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Abstract

In micromanipulation applications, it is often desirable to position and orient

polygonal micro-objects lying on a planar surface. Pushing micro-objects using point

contact provides more flexibility and less complexity compared to pick and place op-

eration. Due to the fact that in micro-world surface forces are much more dominant

than inertial forces and these forces are distributed unevenly, pushing through the

center of mass of the micro-object will not yield a pure translational motion. In

order to translate a micro-object, the line of pushing should pass through the center

of friction. Moreover, due to unexpected nature of the frictional forces between the

micro-object and substrate, the maximum force applied to the micro-object needs

to be limited to prevent any damage either to the probe or micro-object. In this

dissertation, a semi-autonomous manipulation scheme is proposed to push micro-

objects with human assistance using a custom built tele-micromanipulation setup

to achieve pure translational motion. The pushing operation can be divided into

two concurrent processes: In one process human operator who acts as an impedance

controller to switch between force-position controllers and alters the velocity of the

pusher while in contact with the micro-object through scaled bilateral teleopera-

tion with force feedback. In the other process, the desired line of pushing for the

micro-object is determined continuously so that it always passes through the vary-

ing center of friction. Visual feedback procedures are adopted to align the resultant

velocity vector at the contact point to pass through the center of friction in or-

der to achieve pure translational motion of the micro-object. Experimental results

are demonstrated to prove the effectiveness of the proposed controller along with

nanometer scale position control, nano-Newton range force sensing, scaled bilateral

teleoperation with force feedback.



 

Mikromanipülasyon – Güç Geribeslemeli İtme 

 

Özet 

Mikro-manipülasyon uygulamalarında sıklıkla çok köşeli nesnelerin düzlemsel bir yüzey 

üzerinde konumlanması ve yöneltilmesi amaçlanmaktadır. Mikro nesneleri nokta 

teması sağlayarak itmek tutup sonra yerleştirme operasyonuna göre daha esnek ve 

daha az karmaşık bir yöntemdir. Mikro dünyada yüzey kuvvetlerinin atalet 

kuvvetlerine göre daha baskın olmasından ve bu kuvvetlerin düzensiz dağılımından 

dolayı, bir mikro nesneyi ağırlık merkezi doğrultusunda itme yöntemi sadece doğrusal 

bir harekete sebep olmamaktadır. Bir mikro nesneyi sadece doğrusal yönde hareket 

ettirebilmek için, itme yönü sürtünme merkezinden geçmelidir. Ayrıca, mikro nesne ve 

taban arasındaki sürtünme kuvvetlerinin beklemeyen mizacından dolayı, itici milde 

ya da mikro nesnede oluşabilecek zararları engellemek için, mikro nesneye 

uygulanan maksimum kuvvet değeri sınırlanmalıdır. Bu tezde, özel üretilmiş bir uzaktan 

mikro manipülasyon düzeneğini kullanarak, insan yardımı ile mikro nesneleri sadece 

doğrusal yönde hareket ettirmeyi başaran bir yarı-otomatik manipülasyon tasarısı 

önerilmektedir. İtme operasyonu eş zamanlı gerçekleşen iki adet sürece ayrılabilir. 

İlkinde, kuvvet ve konum kontrolleri arasında geçiş yapmak için empedans 

denetleyicisi gibi davranan operatör, kuvvet geri beslemeli, ölçekli ve iki yönlü 

uzaktan kumanda etme yöntemi ile mikro nesnenin hızını değiştirir. Diğer süreçte ise, 

mikro nesnenin istenen itilme yönü, her zaman değişken olan sürtünme merkezinden 

geçecek şekilde belirlenir. Mikro nesnenin sadece doğrusal bir hareket yapmasını 

sağlamak için, temas noktasındaki bileşke hız vektörünün sürtünme merkezinden 

geçmesini sağlayan görsel geri besleme prosedürleri benimsenmiştir. Önerilen 

denetleyicinin etkinliğini ispatlamak için deneysel sonuçlarla birlikte nanometre 

ölçüsünde konum kontrolü, nano Newton ölçeğinde kuvvet algısı ve kuvvet geri 

beslemeli, ölçekli ve iki yönlü uzaktan kumanda etme yöntemi gösterilmiştir.  
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Chapter 1

Introduction

1.1 Overview

As the nature has provided us with things in a dimension ranging down till mi-

cro/nanometers likewise humans also were able to fabricate components in the same

scales as shown in Figure 1.1, but the prominent challenge lies in the fact to assem-

ble incompatible components in a single and functionalized product or micro/nano

systems. In this thesis, the focuss is on the products whose dimensions are in the

range of micrometers, thus referring only to microsystems. Microsystems that are

optimized as an entire device offer considerable advantage over conventional systems,

as for example high functionality and compact density, very good performance, high

reliability, low weight, and low consumption of material and energy. Moreover, their

small size allows placing sophisticated functionality where it was never possible be-

fore. Hence, in many applications micro/nano systems will prove more accurate,

faster, gentler and less expensive than present day used macrosystems. It will be,

therefore, not incorrect to say that microsystems are finding applications in all parts

of the daily lives including instrumentation and process control, automotive engi-

neering, aeromechanics, telecommunication, medicines, microbiology, environment

technologies and consumer electronics.

Complex microsystems contain, in general, much distinct functionality in sin-

gle products. Thereby it is often about application-specific products which are re-

quired in many different variants, and thus barring few exceptions- in only small and

1
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Figure 1.1: The Scale of Things

medium piece numbers. Even though a monolithic ways of integrating would be more

desirable, when building entire micro/nano systems but unfortunately in general its

not feasible. The small sizes of components, and in particular also incompatibilities

among the variety of materials and different processing of the technologies of the

individual components, as well as the need for interfacing the microsystems to the

macro-world makes microassembly indispensable. Hence, in the manufacturing of

hybrid microsystems, precise manipulation of individual micro component is a very

important and unavoidable phase.

Precise manipulation can be defined as positioning, assembling, cutting, pushing,

pulling, indenting, scratching, twisting, grabbing, releasing, injecting, or any type of

interaction which would change the relative position and relation of entities through

direct or indirect human operator control. Among the various forms of manipulation

process, my research is mostly directed towards pushing of an object in order to make

it to reach its destination position and orientation. Pushing is a useful technique

for manipulating delicate, small, or slippery parts, parts with uncertain location, or
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parts that are otherwise difficult to grasp and carry. The process of manipulation

by pushing of micro objects poses many challenges for present researcher due to

the requirement of sub-nanometer precision motion, robust teleoperation controller

for human intervention and compensating the frictional forces existing between the

object and substrate to achieve smooth movement of the objects. Thus, pushing

using only visual feedback is not sufficient but it is also indispensable to sense and

control the interaction forces involved in the manipulation process with nano-newton

resolution, in other words to adopt vision/force hybrid scheme for force controlled

pushing. Pushing in micro-scale with force control is an emerging area that appears

certain to eventually become an important component in microsystem technologies.

1.2 Problem Definition and Approach

The problem dealt within this work concerns utilizing semi-autonomous manipula-

tion scheme for pushing of polygonal micro-object, by point contact to achieve pure

translational motion with the aid of a human operator employing scaled bilateral

teleoperation with force-feedback and visual display. In order to achieve pure trans-

lation motion, the proper line of action of the pushing force needs to always pass

through the varying center of friction of the polygonal micro-objects. Thus, while

the pushing operation is in progress, it is inevitable to online estimate the center

of friction and align the probe such that line of action passes through the center of

friction of the micro-object.

The above mentioned problem is coped with by utilizing a proposed method

for pushing polygonal micro objects using semi-autonomous scheme with human

assistance. The whole process of pushing a micro-object is divided into two con-

current process: in one process pushing is performed by the human operator which

acts as an impedance controller to switch between force-position control and alters

the velocity of the pusher while in contact with the micro-object. In the second

part, the desired line of pushing for the micro-object is determined continuously so

that it always passes through the varying center of friction. Visual feedback proce-

dures are adopted to align the resultant velocity vector at the contact point to pass
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through the center of friction in order to achieve pure translational motion of the

micro-object. In this thesis, a semi-autonomous scheme is adopted for pushing of

micro-objects. Experimental results are demonstrated to prove the effectiveness of

the proposed method.

1.3 Contribution

In this thesis, a semi-autonomous manipulation scheme is proposed to push micro-

objects with human assistance using a custom built tele-micromanipulation setup to

achieve pure translational motion. The pushing operation is administered by the

human operator through a scaled bilateral control architecture. Visual feedback is

also provided for the operator to monitor the motion of the object. As assistance,

visual servoing procedures aligns the micro-cantilever such that the line of pushing

always passes through the estimated center of friction of the micro-object to attain

pure translational motion. The center of friction is estimated online using recursive

least squares method.

Several intermediate steps are performed to achieve the above can be listed as

follows:

• A custom and open architecture tele-micromanipulation setup is con-

structed for pushing of the micro-objects.

• Implementation of discrete time sliding mode controller along with the dis-

turbance observer is utilized to achieve nanometer scale motion using

piezoelectric actuators.

• Force sensing with nano-newton (nN) resolution is demonstrated using

a commercial available piezoresistive microcantilever.

• Scaled bilateral teleoperation controller is developed and force/position

tracking between the master and the slave is demonstrated.

• Image processing procedures are developed to track polygonal micro-

object to estimate the positions/velocties of feature points along with the

orientation angle.
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• Semi-autonomous pushing scheme is proposed and implemented in which

visual feedback procedure assists human operator during pushing of the micro-

object to achieve pure translational motion.

1.4 Outline of the Thesis

The organization of this thesis is divided into several chapters as follows:

• Chapter 2: The present state of the art in microassembly is presented

along with several approaches in micromanipulation process. Several issues

related with dominant surface force in the micro world is discussed and finally

literature survey on mechanism of pushing is illustrated.

• Chapter 3: This chapter explains the custom built tele-micromanipulation

setup along with the utilized modules for the overall operation.

• Chapter 4: This chapter focus on the several methodologies adopted to

achieve high precision motion using open-loop, closed loop piezoelectric actu-

ators and linear drives. Implementation of discrete time sliding mode controller

and disturbance observer is demonstrated to achieve nanometer resolution mo-

tion using closed loop piezo actuators.

• Chapter 5: In this chapter implementation of scaled bilateral control is

demonstrated. Force sensing with nN resolution using piezoresistive AFM

micro-cantilever is demonstrated. Force/position tracking and transparency

between the master and the slave is presented.

• Chapter 6: This chapter presents a method for pushing polygonal micro ob-

jects using hybrid force-position controller to achieve pure translational motion

with the aid of human operator.

• Chapter 7: The conclusion of the thesis is presented along with the future

works.



Chapter 2

State of the Art

In this chapter, the present state of the art in microassembly is presented along

with several approaches in micromanipulation process. Several issues related with

dominant surface force in the micro world is discussed along with the bilateral con-

trol for human intervention. Finally literature survey on mechanism of pushing is

illustrated.

2.1 What is a Microsystem?

2.1.1 Introduction

The term “microsystem” is composed from the word “micro”, an English prefix

of Greek origin which refers to an object as being smaller than an object or scale

of focus, in contrast with macro. The first representation that crosses the mind

when talking about ‘micro’ is that it surely must be ‘small’. The prefix ’micro’ is

technically standardized as defining the size of a component (10−6m). The terms

“microsystem” and “microsystem technology” (MST) have widely been used in Eu-

rope to describe the same technology which goes under the name MEMS (Micro-

electromechanical Systems) in the USA and “micromachines” in Japan. The use

of different terminology does not only indicate geographical source but also reflect

a different conceptual approach. The background of MEMS lays in the solid-state

silicon IC technology. After the integrated circuits, the next steps towards MEMS

6
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were the maturity of microfabricated silicon sensors, then the innovation of movable

micromechanical parts and finally the concept of microsystems came ahead. MEMS

have eventually been intended to be mass-produced with a low unit cost and this

term mainly refers to bulk-produced silicon microsensors or microactuators. The

concept of micromachine has, in turn, precision and mechanical engineering back-

ground and the idea behind it has been the development of real miniaturized three

dimensional machines. Micromachines are not necessarily to be manufactured in

large quantities and their unit price may be high. In this thesis, we will refer to the

term microsystem to cover both extremes and everything in between: from silicon

microsensors and actuators to polymer and glass chips, active materials and hybrid

microsystems and machines.

2.1.2 Several issues for “Micro” World

We will focus on microproducts or microsystems, made up of microparts or mi-

crocomponents. Generally speaking, we will consider that microsystems have sizes

ranging from a few cm3 to a few dm3.

These microsystems are made up of several microparts or microcomponents that

have a size ranging from 10 µm to 10 mm, but they can have some features with a

size reaching 1 µm. For example, the pumping mechanism of a micropump can be

smaller than a cube with 10 mm edge, having at least one dimension smaller than

100µm. [11] generally refers to 1µm to 100µm as ‘microscale’ and 100µm to 1mm

as ’mesoscale’. As far as assembly equipment is concerned, most microfactories are

desktop factories, having external dimensions of 1m2×40cm height. [12] locates the

field of microassembly between conventional assembly, dealing with part dimensions

higher than 1 mm and what they call as ‘the emerging field of nanoassembly’ (with

part dimensions < 1 µm).

2.2 Trend from Macro to Microassembly

One of the features of microsystem technology, concerning the size of constituent

part and the overall system are very unique but it also includes even more attractive
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features.The three primary unique features (the three “M’s”) define microsystems

technology as miniaturization, multiplicity, and microelectronics. Miniaturization

is clearly indispensable. A small manipulator has the capability to handle microob-

jects much more gently and dexterously than its macro counterparts. With micro-

machines, precise positioning in shorter response times is achievable in comparison

with macroscopic machines. Micromachines have the luxury to travel freely into nar-

row spaces such as blood vessels. Connectors and harnesses hindering the further

miniaturization of electronic equipment will be miniaturized by microsystems tech-

nologies. However, it should be also noted that mere miniaturization of macroscopic

machines is not the best way to realize microsystem because of scaling effects.

Some features of the mesoscale, microscale and nanoscale assembly are depicted

in Table 2.1.

Table 2.1: The features of meso-, micro- and nanoscale assembly systems [10]
Assembly Attribute Mesoscale Microscale Nanoscale

Positioning Easy Difficult Very difficult

Velocity cm/s or m/s are not usual Slow (µm/s) or

(mm/s),vibration sup-

pression

Very Slow Nm/s or µm/s

Force Sensing and Control Easy,necessary to avoid

part damage and improve

manipulability

Difficult,The range of

forces could be as low as

µN

Difficult,AFM used to

measure forces

Dominant Forces Gravity,Friction Surface forces (stic-

tion,friction,electrostatic,Van

der Waals)

Molecular/Atomic Forces

Throughput Serial assembly provides

adequate throughput

Serial assembly is usu-

ally not sufficient.Parallel

manipulation methods are

preferred

Parallel manipulation

methods,or self-assembly

are necessary

Gripper Mechanical,many exam-

ples,RCC,Utah/MIT hand

etc.

Micromechanical,gripper-

free manipulation pre-

ferred

Other,optical,proximity

force etc.

Fixturing Mechanical Micromechanical fixturing

must be used

Chemical

Compliance Gripper compliance is not

necessary if force is mea-

sured

Gripper compliance is usu-

ally necessary

Mechanical compliance

does not apply

Vision Easy Difficult (expensive optics) Impossible in visible wave-

lenghth,SEM,TEM are

used

The table shows a straight comparison between assembly characteristics at three

different scales: meso, micro, and nano. A major difference between assembly in

micro and macro domains is the mechanics of object interactions. In the macroworld,

the mechanics of manipulation are predictable, e.g. when a gripper opens, gravity
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causes the part to drop. In the microworld, things are highly unpredictable as forces

other than gravity dominate due to scaling effects and the parts may not drop due

to surface forces. Surface-related forces, such as electrostatic, Van der Waals and

surface tension forces become dominant over gravitational forces. These attractive

forces depend on environmental conditions, such as humidity, temperature, surface

condition, material, etc. For the manipulation of the microobjects, the physics

in the micro world should be carefully considered. Thermal, optical, electrical, and

magnetic effects will change or become dominant when the objects are miniaturized.

Micro parts stick to the manipulator surface as a result of these attractive forces

and the manipulation becomes a very challenging task. Due to this unevenly scaling

behavior, manipulation in the microworld is completely different from manipulation

in the macroworld. Manipulation in this ‘strange’ world, therefore, requires special

techniques and methodologies.

2.2.1 Microassembly Systems

Even today, micro-system technology dominates the technology market of the 21st

century. The dramatic development of the manufacturing procedure from micro-

electronics technology has made feasible to combine electronics, optical, and me-

chanical function to complex, miniaturized systems, so-called microsystems. Due to

the increasing use of these microsystems in medical devices, such as in endoscopes

for minimally invasive surgery or in sensors - just to mention acceleration sensors

for air bag systems - the requirements on the relative manufacturing procedures

are getting higher and higher. An exceptional feature of microsystems technology

can be seen in the fact that by integrating most different functionalities it deals

with highly application-specific and thus highly variant products. The production

can be confined to a small to medium number of parts [13]. In order to keep the

manufacturing cost as low as possible guaranteeing the products marketability, it

is reasonable to manufacture standard elements in large numbers and to assemble

them into individual single products.
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2.2.2 Serial and Parallel Microassembly

Till now the conventional approach in microworld has been serial process which

means the micro-parts are put together one-by-one according to traditional pick-

and-place paradigm. It involves a sequential process, in which assembly tasks are

performed one after another. To complete assembly, a series of sub task are required

to be accomplished prior. Typical examples for serial micro-assembly techniques

includes manual operation with microscope and optical tweezers, visually based

and teleoperated microassembly, [14]high precision macroscopic robot with sub-µm

motion resolution [15], and micro-grippers. All the mentioned techniques requires

considerable amount of time before completing the assembly process for the final

products as its sequential process. Thus there is a need to make the process in

parallel giving rise to parallel assembly techniques the time needed for assembling

process is decreased, high package density and consistency, decrease in the cost can

be achieved in comparison with serial assembling process.

2.2.3 Existing Microassembly Systems - Microfactory

In today’s literature many examples of microassembly systems exist but very few of

them are fully operational, in a sense suffers from few drawbacks which are indeed

as obligatory requirements. Microassembly systems or microfactory involves several

modules that are presented in Figure 2.1. In most of the cases the presented systems

are part of the research setups for providing facilities for research in the manipulation

of microparts.

The microfactories developed by several research institutes illustrate several

complementary approaches: miniaturization of conventional production equipment

(MEL), vision oriented station (OLYMPUS), modular designed microfactory (AMMS

project), factory integrating new plug-and-produce equipment (LAB), microfactory

in mastered environment (EPFL), case study for the understanding and the ex-

ploitation of the forces in the microworld (TU Delft). Additional examples illustrate

realizations achieved in Europe (IPT), Japan (MITI) and USA (MSL).
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Supervision

Machining

Microassembly

Systems

Man-Machine

Interface

Manipulator

Containment

Attachment

Inspection

Handling

Figure 2.1: Microassembly Functions according to, adapted from [1]

2.3 Manipulation of Micro Object and Approaches

One of the most desirable tasks to achieve microassembly is to be able to pre-

cisely manipulate micro-scale components. Precise manipulation can be defined as

positioning, assembling, cutting, pushing, pulling, indenting, scratching, twisting,

grabbing, releasing, injecting, or any type of interaction which would change the

relative position and relation of entities through direct or indirect human operator

control. Micro/Nano manipulation approaches can be classified depending upon

starting point, process, interaction and operation as depicted in Figure 2.2.

This section discusses the various approaches available in the literature for mi-

cro/nano object manipulation along with comparison of various standard tools uti-

lized by several researchers in the past.

2.3.1 Starting Point Based

With respect to starting point for manipulation, manipulation system can be classi-

fied as bottom-up and top-down approaches. In bottom-up approach small objects

are integrated to form a final product. Such kind of micro/nano technologies is the

ultimate goal towards the miniaturization process. On the other hand, top-down

approach, starts from macroscopic world and move towards smaller object requiring

more precision of handling.
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Micro/Nano Scale Object Manipulation Approaches

Starting Point-

Based Process-Based
Interaction

Type-Based

     Operation

    Based

Bottom-Up

Electrical Mechanical Magnetic Optical

Top-Down
     Self-

Assembly

Physical

Contact

Non-Contact

    Tele-

Operated

 Semi-

Autonomous

Automatic

Figure 2.2: Micro/nano scale manipulation approaches, adapted from [2]

2.3.2 Process Based

With regards to process based manipulation approach, biochemical process such as

self-assembly can be utilized for constructing micro/nano devices or materials. The

second approach which can be called as physical manipulation is aimed in manipu-

lating selected particular micro/nano objects in high precision using physical forces,

i.e. forces such as electrical, mechanical, magnetic and optical forces. By physical

manipulation, an external force required for positioning or assembling objects in

2D or 3D, cutting, drilling, twisting, bending, pick-and-place, push and pull kind

of tasks are meant. Our Focus lies on utilizing physical manipulation based on

mechanical procedures.

2.3.3 Interaction Type Based

Depending on the interaction type, non-contact and contact manipulation systems

exist. In the former, laser trapping (optical tweezers) or electrostatic or magnetic

field forces are utilized. In case of contact manipulation, AFM probe tip is utilized

for pushing particles on substrate by contact pushing or pulling operations. In our

case, we are interested in contact mode manipulation scheme.
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2.3.4 Operation Based

The operation based approach can divided as manual, teleoperated and automatic

approaches and subsequently the automated process can be subdivided into semi-

automated and fully automated microassembly process as depicted in Figure 2.3.

Since the micro/nano physical and chemical phenomena is not yet clearly under-

stood, thus automation of the manipulation process is still a challenging task but

teleoperation technology is at premature stage and is considered to understand the

uncertainties and improve towards automatic manipulation process using human

intelligence.

Microassembly Techniques

       Manual 

Microassembly

 Teleoperated 

Microassembly

   Automated 

Microassembly

Semi-Automated 

  Microassembly

  Fully-Automated 

    Microassembly

Figure 2.3: Classification of microassembly operation-based techniques

Manual Microassembly

Manual microassembly is one of the processes for the realization of assembly tasks

by the involvement of trained professional where high-precision hand motion is per-

formed by the aid of human eye as feedback.

Teleoperated Microassembly

In teleoperated microassembly, motions of the human operator are transferred into

the actuators by means of a MMI (Man-Machine Interface). MMI having more
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number of degrees of freedom enables the control of the motion with the same

number of DOF (Degrees of Freedom)in the microworld workspace.

Automatic Microassembly

One of the major requirements of microassembly process is the capability to handle

microcomponents with high precision to deliver a final product with high quality.

The handling of micro-component requires submicron precision for the high quality

of the final product and the limit of human capabilities makes indispensable to

utilize the process of automated microassembly operation.

Automatic microassembly can be divided into two categories:

• Semi-automated Microassembly

• Fully-automated Microassembly

In semi-automatic microassembly, operator intervention is allowed but to some

level. The operator can define some parameters for the operation such as pushing the

micro-object and operation for finding the line of pushing is executed automatically.

In fully-automated microassembly, all the tasks and the parameters are predefined.

With the aid of sensory feedbacks such as visual feedback, force sensors, etc. the

assembly task is realized automatically.

2.4 Forces in the Manipulation Process

Due to the scaling effect, volumic forces (e.g. the gravity) tend to decrease faster

than other kind of forces such as van der waals, electrostatic and the capillary

forces as depicted in Figure 2.4. Although they still exist on the macroscopic scale,

these forces are often negligible (and neglected) in macroscopic assembly. A micro-

component is consequently brought in contact with the relative increase of this

so-called surface force. According to the literature on microassembly, these surface

forces mainly consist of the electrostatic forces, the van der waals forces, the liq-

uid bridge (also called capillary or surface tension) forces and the forces due to the
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mechanical clamping. These surface forces creates a lot of hindrance in the ma-

nipulation process as it’s difficult to speculate the quantitative values of the forces

as it’s depends upon several parameters such as material, environment and geome-

tries. There are several ways to tackle this problem: these forces can be reduced by

controlling the environment etc, it can be overcome if the correct quantitative esti-

mation of the forces can be made. This section presents a first general classification

of the forces according to their range and introduces the most often cited forces in

microassembly literature.

Figure 2.4: Comparison of surfaces forces effect, adapted from [3]

2.4.1 Classification Scheme of the Forces

In general, the forces can be broadly classified into four main categories as follows:

• Gravity, with an infinite range.

• Electromagnetic Force, with an infinite range.

• Weak Nuclear Force, with a range smaller than 10−18 m.
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• Strong Nuclear Force, with a range smaller than 10−15 m.

These last two forces are outside the scope of this thesis due to their very short

range (inside the nucleus). Electromagnetic forces represent the source of all in-

termolecular interactions and their influence can be combined to that of gravity in

some phenomena such as the rise of a liquid in small capillaries. Intermolecular

interaction due is the dominant force in the micro world which falls in the region of

our interest.

2.4.2 Surface Forces Acting in the Micro World

As mentioned in the previous section, the intermolecular interaction between atoms,

molecules and solids gives rise to dominant interaction between micro bodies with

different ranges as defined by Table 2.2 and characterized by several forces.

Table 2.2: Force Ranges

Interaction distance Predominant force

Up to infinite range Gravity

From a few nm up to 1 mm Capillary forces

> 0.3 nm Coulomb (electrostatic) forces

0.3 nm < separation distance < 100 nm Lifshitz - Van Der Waals

< 0.3 nm Molecular interactions

From 0.1 nm to 0.2 nm Chemical interactions

2.4.3 Force Sensing in the Micro World

Manipulating an object, in broad aspect can be defined as the ability to observe,

position, and physically transform (with force) the object. When manipulating mi-

croobjects, especially delicate parts or biological materials that are usually fragile,

pure position control is usually not enough in ensuring successful operation and

avoiding damage to the object. Force control is often needed to augment the oper-

ation with the position information in order to achieve better manipulation results.
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To achieve the task, force sensing and control in microscale is one of the manda-

tory requirements. Micromanipulation with force control is a promising area that

appears certainly to eventually become an important component in microsystems

technology.

Force sensor is used to measure the interaction forces between the manipulator

and its environment. Depending upon the external force applied to the force sensor,

its sensing unit will deform in proportion to the external forces. The deformation is

either detected by measuring the changes in certain properties of the sensing element

(e.g. change in resistance or capacitance), or directly measured by optical devices

(e.g. atomic force microscope). In micromanipulation application, the magnitude of

the force varies from 1mN down to 1µN . The design and construction of sensors may

face many challenges due to the requirement of high resolution and high accuracy.

To meet these requirements, semiconductor and microfabrication techniques have

been applied to build sensitive and stable sensing elements. Currently, the types of

widely used microforce sensors are as follows:

• Strain Gauge;

• Piezoelectric Force Sensor;

• Capacitive Force Sensor;

• Optical Sensor;

• Piezoresistive Sensors;

In our case, Piezoresistive AFM (Atomic Force Microscope) cantilever [16] is

utilized to sense the force in nN range and capable capable of measuring forces down

to about 100 pN . Since in our application, it is tedious to employ optical detection

scheme due to the complexity to integrate with the system thus piezoresistive sensor

provides the best alternatives. The sensed forced are utilized for human intervention

in the bilateral control framework.
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2.5 Bilateral Control

A compact definition of the word bilateral can be defined has having two sides [17].

In robotics systems, the term bilateral control is used to define two systems actively

interacting with each other by means of position and/or force information. Gener-

ally bilateral systems aims to provide a “feeling” or the force sensation of the remote

environment to the human operator for delicate teleoperation. Typically, it is used

for teleoperation, in which one system is called the “master” side and the other is

called the “slave” side of bilateral action. Slave subsystem is tracking the positions

of the master subsystem and master side provides the forces encountered by the

slave side to the operator and hence, teleoperation is achieved [18]. A simple bilat-

eral systems is represented in Figure 2.5 consisting of a human operator, a bilateral

system and an environment. While the human operator controls the master de-

vice, the communication channel controls the transfer of force and position/velocity

information and the slave device manipulates the environment.

 

Operator Master

Communication

       Channel

Slave Environment

Figure 2.5: General force reflecting teleoperation systems/bilateral systems, adapted

from [4]

In order to perform tele-micromanipulation it is indispensable to achieve robust

and transparent bilateral controllers for human intervention so that high fidelity po-

sition/force interaction between the operator and the remote micro/nano environ-
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ment can be achieved. As bilateral control enables skilled teleoperation on several

tasks, it offers better safety, lower cost and high accuracy, if carefully designed

2.5.1 Teleoperation vs Bilateral Control

Many researcher have proposed several ways of defining or explaining terms bilateral

control and teleoperation which ar defined as follows:

• Teleoperation is operation of system from remote location, such as controlling

an irrigation valve or controlling the Mars observer robots movements from a

ground station.

• Bilateral Control is control of a system mechanically coupled with environment

(slave) by using another mechanically coupled system with human operator

(master). Master side has the control over slave side with a force sensation

from slave environment. These two sides don’t have to be distant from each

other so bilateral control can be without teleoperation like in robotic minimal

invasive surgery.

2.5.2 Ideal Characteristics of Bilateral Control

The definition of ideal characteristics of bilateral control is defined by Yokokohji [19]

as mandatory requirement of following three points:

1. Having the same position response at the master and the slave sides apart

from of the object dynamics;

2. Having the same force response at the master and the slave sides;

3. Having the same force-position response at the master and the slave sides;

The third definition provided by Yokokohji indicates that the operator is working

with the real objects and is defined this as the ideal kinesthetic coupling. A me-

chanical analogy of an ideal bilateral teleoperation system for 1 DOF connecting the

operating and the environment with a infinitely stiff, zero mass rod can be repre-

sented as shown in Figure 2.6. Some of the necessary requirements that needs to be
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considered for ideal bilateral teleoperation will be discussed in detail in the following

sub-sections.

Operator Environment

Figure 2.6: Rigid coupled ideal bilateral teleoperation system, adapted from [5]

Transparency

In a general way, transparency, as the name implies, is defined as the ability of

the bilateral controller to be invisible to the human operator. An ideal bilateral

teleoperation is called perfectly transparent when the human operator feels the same

forces and velocities as the master device as if the operator was directly manipulating

the environment.

Katsura [20] and Onal [18] showed that ideal transparency of a bilateral system

is not achievable even without the absence time delay. Transparency, used as the

evaluation index for bilateral controller indicates the extent of invisibility of the

master-slave transmission line to the human operator. Even though transparency

is the evaluation index for ideality of the bilateral system, there is no standardized

agreed numerical representation for transparency.

Stability

Lawrence [5] proposed that transparency and stability of the system are two con-

flicting design goals in bilateral teleoperation systems. Thus, more inclination to

achieve transparency while designing a bilateral system may delimit the overall sta-

bility of the system and vice-versa. Thus a trade-off exist between transparency and
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stability of the bilateral systems and the designer needs to decide keeping in mind

desired goals.

Scaling

Generally, bilateral control is used for teleoperation on micro-environments not

reachable by human beings like as in our micromanipulation applications. There-

fore, a general bilateral controller should be able to scale the motions and forces

between the two sides for extensive applicability.

Time Delay

Since bilateral teleoperation system posses a communication link between the two

sides as shown in Figure 2.5, it inherently has an unavoidable time-delay. Since

it is physically impossible to eliminate time delays in a network structure bilateral

teleoperation with time delays resulting in degradation of transparency, thus the

time delay problem has received much attention from researchers [21].

In this thesis since the master and the slave are connected to single computer so

the time delay problem is not considered to a matter of concern.

Impedance Shaping

Since the ideal realization of the transparent bilateral system is not possible, another

bilateral teleoperation design philosophy is discussed by several researchers [22].

Instead of designing fully transparent bilateral systems, the focus is concentrated on

impedance shaping, in other words the impedance perceived by the human operator

is shaped in order to create a feeling of virtual tool in the operators hand. By

implementing this method, a human operator can execute a task smoothly for a

specific application.

Human Operator Modeling

Its quite necessary to have an understanding of the various ranges of the frequencies

of the force that creates a range of impact on human operator. This information will

provide a mean to design the master side much effectively to be felt by the human
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operator. Study of human operator should be done in two parts, human motion

control and the human force perception. If the environment is assumed as passive,

then all the motion originates from human operator.

2.5.3 Two Channel Bilateral Control Architecture

There are many bilateral channel proposed such as:

• Position-Force Scheme (Direct force feedback).

• Position-Position scheme.

• Position Error Based Position Force Architecture

• Force-Force Architecture.

• Force-Position Architecture.

In this thesis, position-force scheme is implemented due to the fact that, robust

position controller is already implemented as discussed in chapter 4 to track the

commanded master position and information of the slave force is available from the

force sensor as discussed in Section 5.1. The control architecture of Position-Force,

Direct Force Feedback is represented in Figure 2.7. The commanded position from

the master robot is tracked by the slave robot and the interaction forces between

the slave robot and environment is sent to the master robot.
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Figure 2.7: Position-Force Direct Force Feedback scheme
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2.6 Manipulation by Pushing

Positioning of workpieces and/or aligning them with other objects are the basic

requirement of tele/semi/fully-automated assembly process. Often, it is sufficient to

perform this task on a horizontal plane, i.e. with only three kinematics degrees of

freedom (DOF). More or less accurate positioning can be the goal itself, or serves

as a pre-requisite for the next process, e.g. a 3D assembly operation performed

by a robot. As Mason and Lynch [23], [24] showed, moving objects by actively

pushing them with a manipulator is flexible, also mechanically less complex than

pick-and-place, for planar positioning due to following reasons:

• To pick up objects that are too small or too numerous to grasp easily, rather

you can scoop off the edge of a table into your hand;

• To move objects that are too bulky to grasp, as when rearranging the furniture

you can push them;

• Manufacturing automation systems make frequent use of pushing. Often a

conveyer belt, in conjunction with guides, is used to move objects through

such a system.

Thus we can clearly state that pushing can be a good way to reduce or eliminate

uncertainty in the state of the task as it does not require a special grasping tool, nor

the manipulator needs to lift and support the workpieces. This hypothesis is also

vital for micromanipulation, the problems of precisely releasing the object is circum-

vented. Pick-and-place manipulation, i.e. grasping, transporting and depositing the

object with a manipulator arm equipped with a microgripper [25], allows program-

mable execution of the positioning task and is well suited for environments clogged

with obstacles but on the other hand suffers from above mentioned drawbacks. How-

ever, pushing introduces certain restrictions. The moving object is subject to (dry)

friction at the contact with the substrate. Previous work has lead to a good under-

standing of pushing with robots, including stability [23]. In general, these strategies

work well for macroscopic parts since the forces involved, such as friction, are well

known or can be tightly bounded. Also, the typical accuracy in the millimeter range
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is relatively easy to achieve. This is not the case in the microscopic domain, i.e.,

for part dimensions below 1 mm, where adhesion and other surface effects become

significant. Thus it’s necessary to look into the various models which describe the

adhesion behavior between the micro-part and substrate.

2.6.1 Models of Contact Mechanics

The sliding friction between micro objects and substrate depends upon the ‘real’

contact area which is caused by normal adhesion force between the surfaces [26], [27].

In contrast with macro-scale friction, micro-scale friction is dominated by adhesion

force at low loads, objects are almost wearless [28] and friction becomes an intrinsic

property of the particular interface.

In the literature, several models based on continuum mechanics exists such as

Hertz, Johnson-Kendall-Roberts (JKR), Derjaguin-Muller-Toporov (DMT), Maugis-

Dugdale (MD), which have been used by several researcher to estimate the real

contact area. The Hertz model is rational when the external loads are much larger

than the adhesion forces. However, load amounts may have comparable magnitudes

to adhesion forces during micromanipulation tasks, thus this model should not be

exploited in the case of small loads. The DMT model includes the effect of adhesion

to the Hertz model, and it can be used in the case of rigid systems, low adhesion, and

small radii of curvature. But it may underestimate the true contact area, and the

hysteresis between loading and unloading cannot be modeled with this model. On

the other hand, the JKR model includes the effect of adhesion forces and hysteresis

behavior where it is realistic for small loads. But, it assumes that short-ranged

surface forces act only inside the contact area, and this may underestimate loading

due to the surface forces. Finally, the MD model is currently the best model since

it can be used for any case and does not underestimate surface forces and contact

area.
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2.6.2 Mechanism of Pushing

In this section of discussion regarding the mechanism of pushing, we will restrict

ourselves for stable pushing in which the object is effectively attached to the pusher.

A pushing path is formed by stringing together stable pushes, as depicted in Fig-

ure 2.8.

Figure 2.8: The object is stable pushed from start to target

The aim of the task is to develop algorithm to automatically find pushing plans

to position and orient parts in the plane in order to follow a desired trajectory

starting from the initial location to final destination. As per [24], the final goal is to

develop algorithms to automatically find pushing plans to position and orient parts

in the plane. There are three main issues which need to be dealt with in pushing

operation as follows:

• Mechanics. How does an object move when it is pushed? Some standard

procedure is required that identifies a set of stable pushing directions when

the pusher attains line contact with the object.

• Controllability. The directions an object can move during pushing are limited

due to the limited set of forces that can be applied by the pusher. Given these
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limitations, the study of controllability is motivated by questions of whether

or not it is possible to push the object to the goal configuration, with and

without obstacles. It’s necessary to examine the local and global controllability

of objects pushed with either point contact or stable line contact.

• Planning. Pushing paths consist of sequences of stable pushes, and the space

of stable pushing directions imposes nonholonomic constraints on the motion

of the object. It’s required to work on path planning for nonholonomic to

construct a planner to find stable pushing paths among obstacles.

With regard to above mentioned issues, many researchers have proposed several

theories for stable pushing operation. Mason [23] identified pushing as an impor-

tant manipulation process for manipulating several objects at once, for reducing

uncertainty in part orientation, and as a precursor to grasping. Building on early

work by Prescott [29] and MacMillan [30], Mason implemented a numerical routine

to find the motion of an object with a known support distribution being pushed

at a single point of contact. Recognizing that the support distribution is usually

unknown, Mason derived a simple rule for determining the rotation sense of the

pushed object that depends only on the center of mass of the object. Mason and

Brost [31] and Peshkin and Sanderson [32] followed this work by finding bounds

on the rotation rate of the pushed object. Goyal, Ruina, and Papadopoulos [33]

studied the relationship between the motion of the sliding object and the associated

support friction when the support distribution is completely specified. Alexander

and Maddocks [34] considered the other extreme, when only the geometric extent of

the support area is known, and described techniques to bound the possible motions

of the pushed object. These results have been used to plan manipulator pushing and

grasping operations. Mason [23] used pushing and grasping to reduce uncertainty.

Wilson [35] built a system for orienting a part in an initially unknown orientation

by executing a series of linear pushes with a fence. Brost [31] has also shown how

to find the linear pushing motions resulting in a desired pusher/object equilibrium

configuration. This is like ”catching” the object by pushing it. Balorda [36] has

investigated catching by pushing with two points of contact. Mason [37] has shown
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how to synthesize robot pushing motions to slide a block along a wall, a problem

later studied by Wakatsuki [38], who considered pushing forces out of the plane.

Feedback control of the motion of an object pushed with a single point of contact

has been studied by many researchers. Using only single point of contact for pushing

objects removes the complications of controlling several pushers and it’s an effective

solution for translating object from one location to other. The prominent challenge

lies in finding the desired line of pushing which varies with respect to time while

pushing a micro-object.

2.6.3 Requirements for Reliable Pushing

In order to achieve stable pushing operation for micromanipulation application to

attain desired translational and rotational motion of micro objects, it’s indispensable

to fulfill some of the requirements are as follows:

• High Precision Motion: Actuators needs to be driven with very high resolution

(in nanometer range), high bandwidth (up to several kilo hertz), and relatively

large travel range (up to a few millimeters) . Moreover, a robust controller

needs to be designed and utilized for high precision motion with no overshoot

because even a very low overshoot can damage either the micro object or the

manipulator.

• Visual Feedback: Vision based algorithms is needed to estimate location of ob-

jects being manipulated along with visual feedback procedures to position ma-

nipulators so that these objects can be pushed along a desired trajectory [39].

• Force Sensing: Since manipulating an object requires not only the ability to

observe and position, but also to physically interact with the object. Thus,

micromanipulators solely based on visual feedback and position control are

not effective for dexterous micromanipulation. Force control is often needed

to augment the operation in order to achieve better manipulation results.

Thus it’s inevitable to sense the force with nano-newton resolution and with

milli-newton range.
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• Scaled Bilateral Teleoperation: Robust and transparent bilateral controllers

is necessary for human intervention so that high fidelity position/force inter-

action between the operator and the remote micro/nano environment can be

achieved.

• Force Controller for Pushing: Force controller is required to generate the

desired pushing forces for compensating the surface forces arising between the

object and the environment. This condition is needed to achieve automatic

pushing of the object.

All of the above mentioned points need to be fulfilled for reliable pushing of

micro object lying on a homogenous substrate.

2.7 Conclusion

This chapter starts the discussion with several issues related to the microsystems and

how the micro world differs from the macro world. The aim is directed to the future

developments concerning miniaturization of the products which will be composed

of incompatible hybrid micro objects which cannot be produced using traditional

monolithic process. Microassembly is proposed to be as one of the most effective

solution to integrate the micro parts one by one. Some of the recent techniques

concerning microassembly are presented along with the trend from serial assembly

to parallel assembly approach for mass production. As an initial step several ap-

proaches dealing with manipulation of micro objects are presented which is indeed

a mandatory requirement for microassembly. Due to scaling effect, the task micro-

manipulation of objects become difficult as the surface forces becomes much more

dominant than the inertial forces. Several discussion related with forces in the mi-

cro world are presented and how to sense the forces which are in milli/nano-newton

range. Forces acting in the micro-world are transferred to human operator with the

framework of scaled bilateral control is presented. Finally, manipulation by pushing

is focused more due to the fact that it has more flexibility with respect to manipula-

tion by pick-and-place operation. Pushing is more affected by the friction between
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the micro object and substrate caused by adhesion forces. Several models which

predict the real contact area between the micro object and substrate in presence of

adhesion forces are presented. Several mechanism implemented by some researcher

for pushing operation is presented and finally all the requirements needed for the

reliable pushing are enlisted.



Chapter 3

Tele-Micromanipulation Setup

This chapter briefly describes the experimental setup of custom built tele-micromanipulation

setup along with the working procedures. The setup is comprised of motion control,

force sensing, visual feedback and Human-Machine Interface Modules.

3.1 Description of the Setup

A custom and open structure tele-micromanipulation setup is developed with human-

computer interface containing the master and the slave mechanism as demonstrated

in schematic Figure 3.1 and the experimental setup in Figure 3.2. The setup is

broadly classified into three categories comprising master side, slave side and human-

computer interface. Master mechanism is realized using DC servo with a rigid rod

connected to the shaft of the motor to enable the human operator to rotate and

transfer the commanded position to the slave mechanism. The slave mechanism

employs closed loop piezoelectric actuator to attain motion with nanometer resolu-

tion directed from the master side as shown in zoomed Figure 3.3 and the control

structure to attain nanometer resolution motion discussed in Chapter 4. Moreover,

the substrate is supported by open-loop piezoelectric actuator to bring the micro-

object lying on the substrate to the desired location and the control structure for

hysteresis elimination is discussed in Chapter 4. Force sensing piezoresistive probes

is utilized to sense the interaction forces in nN range while the probe is contact

with the micro-object and the procedures for force sensing part is discusses in Sec-

30
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tion 5.1. Human operator sends the commanded reference position after scaling

to the slave side through the master device so the micro-cantilever can manipulate

the micro-object and feels the interaction force after necessary scaling of the forces

from the slave side. The bilateral control procedures is demonstrated in Section

5.2. Human-computer interface between the master and slave side is realized with

a computer attached with dSpace1103 which assist human being as a visual display

during the manipulation process. The visual feedback from the camera mounted

on top of the microscope is utilized for proper aligning the micro-cantilever and the

methodologies is discussed in Chapter 6.

Figure 3.1: Schematic of Tele-micromanipulation system

3.2 Conclusion

In this chapter, description of the experimental setup along with the working pro-

cedure for manipulation of the micro-objects is explained. The detail working for

each component of the experimental setup is discussed in the respective chapters.
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Slave Side Master Side Human-Computer Interface 

Microscope DC Servo GUI

Piezoresistive Probe

PZT Stages

Base Stage

Figure 3.2: Tele-Micromanipulation Setup

Figure 3.3: Custom built parts in the slave mechanism



Chapter 4

High Precision Motion Control

High precision motion control has become an essential requirement in todays ad-

vanced manufacturing systems such as machine tools, micro-manipulators, surface

mounting robots, etc. In our micromanipulation application, there is strict require-

ments of the motion to be in range of nanometers, without any overshoot as it

may cause damage to the micro-object and/or the micro-manipulator. Moreover

the low-amplitude position tracking is also necessary for trajectory tracking with

varying loads. As performance requirements become more stringent, classical con-

trollers such as the PID controller, which has been the most preferred controller and

widely used in industry for generations, can no longer provide acceptable results.

Although several approaches to the design of better controllers have been proposed

in the literature, control problems associated with system uncertainties, presence of

high-order dynamics and system inherent nonlinearities remain big challenges for

control engineers.

High precision motion control is first challenged by the presence of several un-

certainties present in the real-world systems. These nonlinearities limits the high

precision positioning/tracking of the actuator which simply cannot be eliminated by

introducing an integral action in the controller. The uncertainties which may also

be regarded as parasitic effects are often present in real-world systems such as:

• Parametric uncertainty, such as parameter changes due to different operating

conditions and load changes.

33
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• Actuator/sensor nonlinearities, such as hysteresis, dead-zone, saturation, input-

output slope changes in operating ranges as well as the nonlinearity of quan-

tization when using AD converters for digital-computer control.

• Backlash and compliance in gear-trains.

• Time delay.

The goal of this chapter is to develop a simplified control methodology for im-

plementation into real systems that are required to have very high-precision motion.

The main efforts are concentrated on handling internal nonlinear disturbances and

friction of mechanical systems using discrete sliding mode controller along with dis-

turbance observer. The chapter focuses more on actual implementation of control

methodologies in open-loop PZT, closed-loop PZT and linear drive rather than rig-

orous theoretical analysis.

4.1 Modeling and Control of Open Loop PZT Ac-

tuator

Piezoelectricity is a fundamental process in electromechanical energy conversion. It

relates electric polarization to mechanical stress/strain in piezoelectric materials.

Under the direct effect, an electric charge can be observed when the materials are

deformed. The converse or the reciprocal effect is when the application of electric

field can cause mechanical stress/strain in the Piezo materials. The former effect

is known as the piezoelectric effect and was discovered in 1880 by the Curies. The

latter effect is the inverse piezoelectric effect. The word “Piezo” is derived from

the Greek word “piezen”, which means “to push”. The effect was discovered when

a pushing force or, in other words pressure, was applied to the material. In the

beginning, both pressure electricity and piezoelectricity was used to describe the

same phenomenon.
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4.1.1 Modeling of PZT Actuator

Since piezoceramics are dielectrics, one could expect a PZT stack actuator to exhibit

capacitive behavior along with rate-independent hysteresis exhibited which affects

the net electrical charge delivered to the actuator. Additionally, dynamic observa-

tion indicates that endpoint displacement as a function of electrical charge is well

approximated by second-order linear dynamics.

By keeping the above factors in mind, a fairly accurate model was chosen [40] for

the Piezo-stage due to its easiness for implementation and accuracy for estimating

the actual behavior of these actuators. The Piezo-stage consists of a Piezo-drive

with a flexure guided structure which is designed to possess zero stiction and friction.

Moreover the flexure stages exhibit high stiffness, high load capacity and insensitive

to shock and vibration. Figure 4.1 describes the overall electromechanical model [40]

of a PZT actuator.
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Figure 4.1: Electromechanical model of a PZT actuator

The hysteresis and piezoelectric effects are separated. H Represents the hys-

teresis effect and uh is the voltage due to this effect. The piezoelectric effect is

represented by Tem which is an electromechanical transducer with transformer ra-
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tio. The capacitance Ce represents the sum of the capacitances of the individual

PZT wafers, which are connected in parallel. The total current flowing through the

circuit is q̇. Furthermore, q may be seen as the total charge in the PZT actuator.

The charge qp is the transducer charge from the mechanical side. The voltage up

is due to the Piezo effect. The total voltage over the PZT actuator is uin, Fp is

the transducer force from the electrical side, Fext is the external applied force, and

the resulting elongation of the PZT actuator is denoted by x. The mechanical re-

lation between Fp and x is denoted by M . Note that one have equal electrical and

mechanical energy at the ports of interaction i.e. upqp = Fpx.

The piezoelectric ceramic has elasticity modulus E, viscosity η, and mass density

ρ. Furthermore,the geometric properties of the PZT actuator are length L and cross-

sectional area Ap. Effective Mass mp, Effective stiffness kp and damping co-efficient

cp can be calculated as follows:

mp = ρApL

kp = ρAp

L

cp = ηAp

L

(4.1.1)

The complete electromechanical equations can be written as:

mpÿ + cpẏ + kpy = Tem(uin(t) − H(y, uin)) − Fext (4.1.2)

Here y represents the displacement of the Piezo stage and H(y, uin) denotes the

non-linear hysteresis which is a function of y and uin.

4.1.2 Introduction to Hysteresis in PZT

An inherent non-linearity in piezoelectric actuator is hysteresis, which is a rate-

independent nonlinearity i.e. the output displacement depends on the present input

voltage as well as on how the inputs were applied previously, but not the input

voltage in the past. The hysteresis behavior, if not considered carefully in the

control system design, may cause limit cycles or even instability [41]. This hysteresis

non-linearity is usually 15 − 20 percent of the output thereby greatly reducing the

performance by the actuator. One effective way to cancel hysteresis is to construct
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a model which can describe its behavior and then reshape the input voltage based

on the inverse behavior of the model. Similar to the inverse dynamics control in the

literature, the effectiveness relies on the accuracy of system model.

Motivated by canceling hysteresis using model inverse, extensive research has

been devoted for developing hysteresis models. For instance one can use a nonlinear

differential equation, or so-called Duhem-Madelung’s model, to describe hystere-

sis [42]. Hysteresis models formed by a weighted superposition of many/infinite

elementary hysteresis operator has also been reported. Depending on the hysteresis

operator chosen, the model can be Preisach type [43], and [44]. These hysteresis

models are mathematically combined with the piezoelectric actuator linear dynamics

to form the overall system model. Such models do not emphasize the physical aspect

of the system’s characteristics. In comparison, PEA model proposed by Goldfarb

and Celanovic [40] is completely based on physical principles. Their model consists

of an electric and a mechanical domain, as well as the energy transfer between the

two domains. Hysteresis therein is modeled via Generalized Maxwell Slip [45] as a

nonlinear resistive-capacitive element in the electrical domain. The complete para-

meterizations is obtained by fitting the model behavior with the initial ascending

part of the experimental curve.

The modeling and identification approaches in all above approaches suffers from

three basic limitations. First of all, these approaches either ignore the impact of

piezoelectric actuators initial charges/strain or assumed it to be in relaxed state

before the voltage is applied [40]. Secondly, hysteresis loops produced by the mod-

els are restricted in the sense they are mainly anti-symmetric, does not match the

experimental behavior of piezoelectric actuators. Though, it requires much more

complicated and repeated experimental procedure. Thirdly, there is no guarantee

that the resultant model behavior can accurately reproduce the whole major hys-

teresis loops as well as other minor loops.

In this paper, a well established model from Bouch-Wen [46] has been utilized

in a directed effort to drastically reduce the hysteresis behavior. Since our major

application is focused on micromanipulation application which indeed requires a

relatively slow and constant velocity, thus the operating frequency has been fixed.
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Moreover, an experimental challenge has been overtaken by using a laser interfer-

ometer to achieve the displacement feedback from open-loop piezoelectric actuator.

4.1.3 Model for Hysteresis

The phenomenon of hysteresis is encountered in many areas of science. But the very

interpretation of hysteresis varies from one area to another and from one context

to another context. As a result, rigorous mathematical definitions of hysteresis are

needed in order to avoid confusion and ambiguity. Such definitions serve a twofold

purpose: they are substitute’s far vague notions, and they create machinery for

elegant proofs.

A transducer can be characterized by an input u(t) and an output f(t). This

transducer is called a hysteresis transducer (HT) if its input-output relationship

is a multibranch nonlinearity for which a branch-to-branch transition occurs after

each input extremes as shown in Figure 4.3. Only the case of static hysteresis

nonlinearity will be further discussed. The term ”static” means that branches of

hysteresis nonlinearities are determined by the past extremes values of input, while

the speed of input variation between extremes points has no influence on branching.

But in our case due to slow motion requirement, the problem can be neglected.

According to the given definition, branching constitutes the essence of hysteresis,

while looping is a consequence of branching.

Consequently, control input is not known beforehand but it is determined by the

interaction of the transducer with the rest of the system. For this reason, a mathe-

matical model is needed which itself (due to its structure) will detect and accumulate

input extremes and will choose the appropriate branch of the hysteresis nonlinear-

ity with respect to the accumulated history. By using such models [44] one can

attempt mathematical descriptions of systems with hysteresis. These models are of

particular interest because they have been used successfully in general control design

algorithms for broad classes of hysteretic systems. For the purpose of characteriz-

ing the dynamics of mechanical structures, the Bouch-Wen [46] nonlinear hysteresis

model appears to be a good choice because of its form (mass-spring-viscous damper

equivalent differential equation of motion) and its versatility. Hence, this model has
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Figure 4.2: Hysteresis multibranch nonlinearity

been selected in the current work to compensate for the hysteresis loop arising in

open-loop Piezo actuator. Numerous researchers have successfully used this model.

For example Constantinou [47] used it for the study of nonlinear hysteretic isolators;

Smyth [48] for adaptive application and Heine [49] for an optimization approach for

degrading hysteretic joints with slack behavior.

The Bouch-Wen hysteresis model is a system of nonlinear differential equations

defined by Eqn.(4.1.3).

ż = αẋ − β|ẋ|z|ż|n−1 − γẋ|z|n (4.1.3)

Where parameter α controls the restoring force amplitude, β and γ controls the

shape of the hysteresis loop, and control the smoothness of the transition from

elastic to plastic response. Because of the assumption for the elastic structure and

materials, then letting n = 1, Eqn.(4.1.3) can be rewritten as Eqn.(4.1.4)

ż = αẋ − β|ẋ|z − γẋ|z| (4.1.4)

which represents the hysteretic relationship between the state variable z or voltage

and excitation x or displacement. The hysteretic variable z is a ”fictitious” displace-

ment related to actual displacement, x. Different combinations of the parameters
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yield also different shapes for the hysteresis loops. To illustrate this let n = 1 and

vary only the parameters β and γ. Different possible stable hysteresis curves [50] are

shown in Figure and the versatility of the system response of differential equations

can be observed as described in Eqn.(4.1.4). By appropriate selection of the val-

ues of parameters, α, β and γ this model can describe the behavior of piezoelectric

actuator very well.

Figure 4.3: z-x curves of several combination α, β, γ. (a) α = 1.0, β = 0.5, and γ=

0.5; (b) α = 1.0, β = 0.1, and γ= 0.9;(c) α = 1.0, β = 0.5, and γ= -0.5;(d) α = 1.0,

β = 0.25, and γ= -0.5; adapted from [6]

4.1.4 Description of Experimental Setup

To verify the established model, an open loop piezoelectric micrometer drive PiezoMike

PI-854 from PhysikInstrumenteTM has been utilized. It’s equipped with integrated

high-resolution Piezo linear drives. They can be operated manually with a resolu-

tion of 1 µm . By controlling the Piezo voltage, the micrometer tip is automatically
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moved in and out up to 25µm with respect to the manually set position. Resolution

of Piezoelectric motion is in the sub-nanometer range. The piezoelectric actua-

tors are being driven by E-663 low voltage Piezo driver from PI in external control

mode. In external control mode, the input voltage is provided from DAC module of

dSpaceTM 1103 in the range from -2 volts to 2 volts which is amplified by 10 times

and feed to Piezo actuators. In order to achieve the displacement of piezoactuator,

a laser interferometer LK-2001 from KeyenceTM has been utilized. It is equipped

with CCD as a light-receiving element, which enables high accurate displacement

measurement, regardless of the light quantity distribution of the beam spot. It has

resolution of 1 µm with a travel range of 18 mm. The technical specification of the

drive is provided in Appendix A.1. The overall schematics is shown in Figure 4.4,

with a corresponding experimental setup demonstrated in Figure 4.5.

dSpace1103

ADC

DAC
Open-Loop PZT

PC

Laser ControllerLaser Head

Piezo driver

Measuring Device

Figure 4.4: Schematic of the experimental setup

The PZT actuator is driven by Piezo driver to which input voltage is provided by

DAC module of dSpace 1103 and the displacement of the open-loop piezo are sensed

by laser head and corresponding analog voltage is generated by the laser module

controller. The resulting voltage in terms of displacement is read by ADC module.

The incorporated Bouch-Wen model generates the necessary voltage along with the

reference signal in order to eliminate the hysteresis behavior.

4.1.5 Experimental Validation

In order to validate the Bouch-Wen model, the parameters values were tuned as

α = 0.1049, β = 1.1115 and γ = −1.0387 to eliminate or reduce the hysteresis
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Figure 4.5: Structure of the experimental setup

behavior present in open-loop PZT.

It is a well established fact that hysteretic behavior increases with respect to

travel range; this is illustrated in Figure 4.6 where the sinusoidal input frequency is

fixed at 1 Hz and with varying amplitude. The hysteretic behavior increases with

increasing frequencies which is clearly illustrated in Figure 4.7 where sinusoidal

input frequencies of 0.5 Hz, 1 Hz and 2 Hz and constant amplitude are applied to

the piezoelectric drives.

Sinusoidal input with constant frequencies of 1 Hz is applied with varying ampli-

tudes and its hysteresis behavior is compensated. Since in our micromanipulation

applications all the motion needs to be very slow, as a results driving frequency is

set constant to 1 Hz. Figure 4.8 and 4.9 shows the hysteresis compensation for

input Voltage of 20 V and 80 V respectively. Figures 4.8 and 4.9 clearly shows

that there is an immense reduction of the hysteretic behavior and the dynamics of

the PZT actuator is enhanced and linearized after applying the model. Thus the

reference can be generated with respect to modified dynamics of PZT actuator.
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Figure 4.6: Hysteresis Loop for Sinusoidal input with 1 Hz and varying Amplitude

4.2 Closed Loop Control of PZT Actuator

As discussed above piezoelectric actuator has been demonstrated with immense po-

tentialities in application with required accuracy within the range from sub microm-

eter to nanometer motion. The main advantage to use piezoelectric as an actuator is

due to the fact that it does not possess any frictional or static characteristics which

generally exist in other forms of actuators. The main characteristics of piezoelectric

actuator are: high resolution in nanometer range, high bandwidth up to several kilo

hertz range, a large force up to few tons and short travel range along with millimeter

range [51]. Some of the major areas where piezoelectric actuator can be used is in

micromanipulation, force feedback as in AFM, micro-assembly and in dual stage

hard disk drives. In all of these applications it is highly desired to have accurate

positioning which can only be achieved using closed-loop control. Though some

attempts have been made in the past [40], [52] to control piezoelectric actuator in

open loop system with fine compensation for hysteresis non-linearity in the system.
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Figure 4.7: Sinusoidal Input with varying frequencies of 0.5 Hz, 1 Hz and 2 Hz with

constant Amplitude

Due to the development of accurate positioning sensors it has become possible to use

robust feedback based nonlinear control methods in order to eliminate the hysteresis

effect.

Many researcher has applied several control methodologies for feedback control to

achieve high-precision motion without any overshoot and to eliminate non-linearities

present in the system. In [53], H∞ based closed-loop is proposed with model based

hysteresis compensation. The model described is too complex in spite of good

outcome but could be replaced by a simpler model. In [54], a neural-network based

feed-forward assisted proportional integral derivative (PID) controller was proposed.

In [55] variable structure control (VSC) for accurate positioning control in sub-

micron ranges is demonstrated.
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Figure 4.8: Sinusoidal Input of 1 Hz frequency and 20 V amplitude

4.2.1 Sliding Mode in Variable Structure System

Sliding mode control (SMC), which is sometimes known as variable structure control

(VSC), is characterized by a discontinuous control action which changes structure

upon reaching a set of predetermined switching surfaces. This kind of control may

result in a very robust system and thus provides a possibility for achieving the goals

of high-precision motion with a very fast response. Some promising features of SMC

are listed below:

• The order of the motion can be reduced.

• The motion equation of the sliding mode can be designed linear and homoge-

nous, despite the original system may be governed by non-linear equations.

• The sliding mode does not depend on the system dynamics, but is determined

by parameters selected by the user.

• Once the sliding motion occurs, the system develops invariant properties which

make the motion independent of certain system parameter variations and dis-
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Figure 4.9: Sinusoidal Input of 1 Hz frequency and 60 V amplitude

turbances. Thus the system performance can be completely established by the

dynamics of the sliding manifold.

Consider the system as below,

ẋ = f(x, t) + B(x, t)u(x, t), x ⊂ Rn, u ⊂ Rm (4.2.1)

where all the elements of vector f(x, t) and matrix B(x, t) are continuous and

bounded along with their first order time derivatives; rank(B(x, t)) = m, ∀x, t > 0

The discontinuous control is given by,

u =







u+(x, t), σ(x) > 0

u−(x, t), σ(x) < 0
(4.2.2)

σ(x)T = {σ1(x), σ2(x), ...., σm(x)}, σ(x) = G(xr − x) (4.2.3)
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here u+(x, t) , u−(x, t) and σ(x) are continuous functions. Since u(x,t) undergoes

discontinuity on the surfaces, it is called the switching surface or the switching

hyperplane.

Let S = X|σ(x)=0 be a switching surface that includes the origin x = 0. If, for

any x0 in S, x(t) is in S for all t > t0, then x(t) is a sliding mode of the system

and the switching surface S is called a sliding surface or sliding manifold. A sliding

mode exists, if in the vicinity of the switching surface S, the tangent or the velocity

vectors of the state trajectory always point towards the switching surface. Existence

of a sliding mode requires stability of the state trajectory towards sliding surface

S = X|σ(x)=0 at least in the neighborhood of S, i.e., the representative point must

approach the sliding surface at least asymptotically. This sufficiency for sliding mode

is called reaching condition, and state trajectory under the condition is called the

reaching mode or reaching phase. The largest neighborhood for which the reaching

condition is satisfied is called the region of attraction.

In order to guarantee desired behavior of the closed-loop system, the sliding

mode controller requires infinitely fast switching mechanism. However, due to phys-

ical limitations in real-world systems, direct application of the above control will

always lead to some oscillations in some vicinity of the sliding surface, i.e. the so

called chattering problem. The main restrictions come from the implementation of

controllers in digital computers which work on discrete-time principles and cannot

permit infinitely fast switching. Since modern controllers are most likely imple-

mented in digital computers, it is inevitable to approach a practical SMC design in

discrete-time.

4.2.2 Design of Sliding Mode Controller and Realization in

Discrete Form

SMC theory was initially developed from a continuous time perspective. It has been

realized that directly applying the continuous-time SMC algorithms to discrete time

systems will lead to some indomitable problems, such as the limited sampling fre-

quency, sample/hold effects and discretization errors. Since the switching frequency

in sampled-data systems cannot exceed the sampling frequency, a discontinuous con-
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trol does will not enable generation of motion in a random manifold in discrete-time

systems. This leads to chattering at the sampling frequency along the designed

sliding surface, or even instability in case of a too large switching gain.

The discontinuous sliding-mode controller involves a continuous plant model with

a discontinuous right-hand-side due to the switching control function as mentioned

above. Drakunov and Utkin [56] introduced a continuous approach to SMC for an

arbitrary finite dimensional discrete-time system. This approach implies that for

a sampled-data controller, as the system becomes discrete, the controller should

be continuous to overcome the sampling frequency limitations of the discontinuous

approach. For such continuous implementation of SMC, plant motion is proven to

reach the sliding manifold of predefined state trajectory in finite time.

The derivation of the controller structure starts with the proper selection of the

Lyapunov function V (σ), and an appropriate form of the derivates of the Lyapunov

function, V̇ (σ).

Natural selection of the Lyapunov function candidate seems in the form

V (σ) =
σ2

2
(4.2.4)

V̇ (σ) = σσ̇ (4.2.5)

In order to guarantee the asymptotic stability of the solution σ(x, xr) = 0, the

derivatives of the Lyapunov function may be selected to be

V̇ (σ) = −Dσ2 − µ
σ2

|σ|
(4.2.6)

Here D and µ is a positive constant. Hence, if the control can be determined

from Eqn.(4.2.5) and Eqn.(4.2.6), the asymptotic stability will be guaranteed since

V (σ) > 0, V (0) = 0 and V̇ (σ) < 0 . By combining Eqn.(4.2.5) and Eqn.(4.2.6) the

following Equation can be deduced,

σ(σ̇ + Dσ + µ
σ

|σ|
) = 0 (4.2.7)
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which means,

σ̇ + Dσ + µ
σ

|σ|
= 0 (4.2.8)

The derivation of the sliding function can be written as

σ̇ = G(ẋr − ẋ) = Gẋr − Gẋ (4.2.9)

after some simplification, we can get

σ̇ = Gẋr − Gf − GBu(t) = GB(ueq − u(t)) (4.2.10)

solving the above equation, we get

u(t) = ueq + (GB)−1(Dσ + µ
σ

|σ|
) (4.2.11)

It can be seen from above equation that ueq are difficult to calculate. Using the fact

that ueq is a continuous function, it can be rewritten in discrete form using Euler’s

approximation as,

σ((k + 1)Ts) − σ(kTs)

Ts

= GB(ueq(kTs) − u(kTs)) (4.2.12)

Here Ts is the sampling time and k = Z+. It is also necessary to write u(t) in the

discrete form which results in,

u(kTs) = ueq(kTs) + (GB)−1(Dσ(kTs) + µ
σ(kTs)

|σ(kTs)|
) (4.2.13)

The value of ueq(kTs) can be written as,

ueq(kTs) = u(kTs) + (GB)−1(
σ((k + 1)Ts) − σ(kTs)

Ts

) (4.2.14)

Since the system is casual, and it is required to avoid the calculation of the

predicted value for σ, as control cannot be dependent on future value of σ. Since

the equivalent control is a continuous function, the current value of the equivalent

control can be approximated with the single-step backward value calculated for

ueq(kTs) as,
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ueqk−1
= uk−1 + (GB)−1(

σk − σk−1

Ts

) (4.2.15)

here ûeqk
(or ûeq(kTs)) is the estimate of the current value of the equivalent control.

After some simplification the resulting control structure as be written as,

uk = uk−1 + (GBTs)
−1((DTs + 1)σk − σk−1 + µ

σ(k)

|σ(k)|
) (4.2.16)

The control structure Eqn.(4.2.16) is suitable for implementation, since it re-

quires measurement of the sliding mode function and the value of the control applied

in the preceding step. For a discrete-time system, the discrete sliding mode can be

interpreted as that the states are only required to be kept on the sliding surface at

each sampling instant. Between the samples, the states are allowed to diverge from

the surface within a boundary layer. Note that the control defined by Eqn.(4.2.16)

is continuous unlike the case for continuous time. Estimation of boundary layer is

explained in next section.

4.2.3 Estimation of Boundary layer in Discrete Sliding-Mode

Control

During the course of designing the controller, it is crucial to analyze the robustness

of the controller or, in other words, whether it satisfy the condition defined by

Eqn.(4.2.8). Moreover the estimation of boundary layer of the sliding manifold is

significant in relation with the robustness of the controller. The analysis that will be

shown are concerned with a general system affine with control such as Eqn.(4.2.1).

Consider the system defined in Eqn.(4.2.1), where f(x, t) and B(x, t) are assumed

to be continuous and bounded. The derivative of the sliding surface is given by,

dσ(t)

dt
= G(ẋr − ẋ) +

δσ(t)

δt
= Gẋr(t) − Gf(t) +

δσ(t)

δt
(4.2.17)

Instead of O(Ts) the control defined by Eqn.(4.2.16) assuming σ = 0 is used and

following result is obtained
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dσ(t)
dt

= Gẋr(t) − Gf(t) − GB{u(t−)+

(GB)−1(Dσ + σ̇)|−t + δσ(t)
δt

(4.2.18)

here t− = t−Ts for discrete time applications with Ts is the sampling time. Further

simplification of Eqn.(4.2.18) leads to,

dσ(t)

dt
= Gẋr(t) − Gf(t) − GBu(t−) +

δσ(t)

δt
− (Dσ +

dσ

dt
)|t− (4.2.19)

Finally Eqn.(4.2.19) can be written as

dσ(t)
dt

= dσ(t−)
dt

− dσ(t−)
dt

− Dσ(t)+

G∆ẋr − G∆f + ∆(
δσ

δt
) − D∆σ

︸ ︷︷ ︸

ζ(Ts)

(4.2.20)

Here,

∆ẋr = ẋt − ẋr(t−),

∆f = f(t) − f(t−),

∆σ = σ(t) − σ(t−),

∆( δσ
δt

) = δσ(t)
δt

− δσ(t−)
δt

,

(4.2.21)

Hence,

dσ(t)

dt
+ Dσ(t) = ζ(Ts) (4.2.22)

Since f(t), xr(t) and σ(t) are smooth functions, ζ(Ts) has order O(Ts). Hence, the

states will remain within an O(Ts
2) boundary layer of the sliding surface.

4.2.4 Design of Disturbance Observer based on Sliding-Mode

Control

There are several hindrances for high precision motion which are highly nonlinear

in nature and arises from several factors such as hysteresis, dead zone, saturation,

backlash etc of the actuators and/or sensing devices, high parameter variations and

time delay.
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It might be possible to combine all the effects of these different kind of distur-

bances on the plant response (i.e. observe their position) and provide a compensation

for them as an addition to the controller output and use this sum as the plant input.

This kind of compensation is called “disturbance compensation” and the observer

used is called “disturbance observer”.

The observer structure is deduced based on Eqn.(4.1.2) under the assumption

that all the plant parameters uncertainties, nonlinearities and external disturbances

can be represented as a lumped disturbance. It is assumed that y is the displacement

and measurable and similarly ut is the input and also a measurable quantity.

mpÿ + cpẏ + kpy = Tpu(t) − Fdis

Fdis = TpH + ∆T (vin + vh) + ∆mÿ + ∆ky
(4.2.23)

Here mp, cp, kp and Tp are the nominal plant parameters while ∆m, ∆c,∆k and

∆T are the uncertainties associated with the plant parameters. Since y and u(t) are

measurable quantity, observer structure can be written in following form,

mp
¨̂y + cp

˙̂y + kpŷ = Tpu − Tpuc (4.2.24)

Here ŷ, ˙̂y and ¨̂y are position, velocity and acceleration respectively. u is the plant

control input and uc is the observer control input as shown in Figure 4.10.
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Figure 4.10: Controller and disturbance observer for position control of the PZT

actuator, adapted from [7]

The estimated position ŷ should be forced to track y. The SMC structure is used

for deriving the observer controller whose sliding manifold is defined as,
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σobs = λobs(y − ŷ) + (ẏ − ˙̂y) (4.2.25)

Here λobs is a positive constant. If σobs is forced to become zero then ŷ should be

forced to y. As described in the previous section, with the same analogy it can be

written as,

σ̇obs + Dobsσobs = 0 (4.2.26)

which guarantees σobs −→ 0. After some modification the resulting equation can be

written as,

(ÿ − ¨̂y) + (λobs + Dobs)(ẏ − ˙̂y) + λobsDobs(y − ŷ) = 0 (4.2.27)

It can be seen that the transient of the closed-loop system are defined by the roots

−λobs and −Dobs. The same structure of the controller will be used in the observer

as described in Eqn.(4.2.16). From structure Eqn.(4.2.24) it can be seen that the

input matrix is given by,

Bobs =
[

0 −
Tp

mp

]T

(4.2.28)

The matrix G for this case is defined as,

G = [λobs 1] (4.2.29)

Thus, after some simplification the controller structure can be written as,

uck
= uck−1

−
mp

Tp

(

Dobsλobsk
+

σobsk
− σobsk−1

Ts

)

(4.2.30)

Here uc is the compensated control input to the system. The positive feedback by

input uc forces the system to behave closely towards the ideal system having the

nominal parameters. But in reality there is also some amount of difference between

the real disturbance and estimated disturbances.
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4.2.5 Experimental Validation of Position Control

In order to illustrate the effectiveness of the proposed controller with the disturbance

observer, experiments were carried out on a single axis of a 3-axis Piezo-stage. The

Piezo stage is manufactured by Physik InstrumentePI and driven by E-664 power

amplifier. The technical specification of the piezo stages and the driver is provided

in Appendix A.2 and A.3 respectively. Table 4.1 shows the parameters of the Piezo-

stage. As hardware to drive the Piezo-stage dSpaceTM 1103 is used and coded

in the C language using the libraries provided by the software. The closed loop

performance of the Piezo stage was investigated while using the overall structure as

shown in Figure 4.10 by applying several input references.

Table 4.1: Properties Of Piezo-Stage

Symbol Quantity Value in SI

mp Nominal Mass 1.5 × 10−3Kg

cp Nominal Damping 220Ns
m

kp Nominal Stiffness 300000N
m

fr Resonant Frequency 350Hz

Tem Transformation Ratio 0.3N
V

In order to verify the performance of discrete time sliding mode controller along

with the disturbance observer, smooth step inputs are given to one of the piezo

stages and responses were drawn in Figure 4.11, 4.12 and 4.13 which represents the

smooth step response for position reference of 100nm, 50nm and 5nm respectively.

The rise times and steady state errors are 30 ms, 23 ms, and 22.5 ms; and 1%,

2%, and 8%, for 100, 50 and 5 nanometer step inputs, respectively. An overshoot

behavior is not observed in any of these tested cases. Operation with no overshoot

is the foremost requirement for micromanipulation applications since overshoot may

result damage to the probe or micro-object. However, the system suffers from noise

coming from the measurement devices, which shows up in the steady state plots.

Figure 4.14 represents the response for trapezoidal input with a height of 0.5µm.

The result shows that it precisely follows the reference and tracking error are found

to be less than ±10 nm. Figure 4.15 and Figure 4.16 demonstrates the position
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response for sinusoidal input with an amplitude of 1µm and 10µm respectively with

a frequency 1Hz. It can be clearly observed that the actual position tracks the

reference with high accuracy and the tracking error is found to be within ±20 nm

and ±0.4µm. These experimental results suggests that the proposed controller along

with the disturbance observer produces acceptable results for positioning with very

high-precision.

Figure 4.11: Position response for a reference of 100nm [8]

4.3 Motion Control of Linear drives

In many micromanipulation applications, it is desirable for the actuators to posses a

long travel range as well as high accuracy of the motion, and linear drives provides

the best option to fulfill the goal. For high precision control it becomes mandatory to

control the shaft of the linear drive to a varying reference angle with high accuracy in

spite of the high disturbance present in the system mostly dominated by the highly

disturbance component. In case of the multidimensional motion of a linear drive it

becomes inevitable to compensate the effect of friction in order to accurately place
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Figure 4.12: Position response for a reference of 50nm [8]

the end effectors of the system in the desired location as well as desired dynamics.

The most dominant disturbance which hinders the precise positioning and the

dynamics is due to frictional part which is highly non-linear in nature. Thus there

is immense need to remove the frictional part present in the system and to come

out with a robust controller in order to achieve a high accuracy and desired dy-

namics. In the literature many methods are proposed in order to compensate for

the disturbance, Yang and Tomizuka [57] compensated the friction component by

adaptively changing the frequency of the control input, Tung et al. [58] compensated

the friction with a repetitive control scheme. Rao et al [59] have proposed a friction

observer and disturbance observer. Pan [60] used a PID controller using a defined

model [61] for angular positioning. Apart from these, many recent approaches fuzzy

control [62] and learning control [63] can be found on the literature. In all the

approaches the frictional model imposes destabilizing effects in the low velocities.

The above approaches did not take the hysteretic behavior when studying friction

for non stationary velocities nor variation in the break-away force with the experi-

mental conditions nor small displacement that occur at the contact interface during
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Figure 4.13: Position response for a reference of 5nm [8]

stiction.

In this section a dynamic friction model [64] is implemented which describes

the stiction behavior along with coulombs friction, viscous friction, and stribeck

effect. This section also describes the implementation of variable structure control

for continuous system with discrete-time implementation of the control algorithm by

maintaining sliding mode as discussed in previous section. A considerable amount

of work has been done for analyzing discrete-time sliding modes [65]. Most of the

proposed control strategies uses, in one or another way, the calculation or estimation

of the discrete-time equivalent control explicitly, which requires the transformation

of the plant model into a discrete-time form.

4.3.1 Canudas Frictional Model

In most of the cases disturbance acting on the plant is considered as smooth dis-

turbance but for friction the smoothness of the disturbance dk is lost in the vicinity

of zero velocity hence the tracking error may be large due to |dk − dk−1|, may be

large in this region e.g. zero-velocity crossing, dk and dk−1 have opposite signs.
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Figure 4.14: Position response for a trapezoidal reference for 0.5 µ

Clearly, the amplitude of the tracking error depends on the difference in friction

amplitude between two sampling values. It is a well established fact that friction

cannot be described by a pure discontinuity at zero velocity, instead friction is a

continuous function of time with complicated and fast dynamics around the zero

velocity. Therefore the difference in friction values between two successive sampling

instances is made smaller by selecting a smaller time period, which reduces the fric-

tion estimated error and the following tracking error during zero-velocity crossing

is also reduced. The obvious solution is to decrease the sampling period as the fric-

tion becomes more “discontinuous”. However, as sampling time T → 0, the control

signal saturates ±usat and due to the saturation the uk will actually chatter with

amplitude of umin ≤ sat(�) ≤ umax, which is unacceptable as it may excite the high

frequency modes in the system.

In order to cope up with the above written problem, the dynamic friction model

proposed by Canudas de Wit [64] is used as a friction acting on the system. The

advantage for selecting this model is because it inherits most of the frictional phe-

nomena that gives rise to control problem such as stick-slip behavior as explained

above. The observer for the frictional model is expressed as,
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Figure 4.15: Position response for a sinusoidal reference for 1µm amplitude

F̂ = σ0ẑ + σ1
dẑ

dt
+ σ2v

Where dz
dt

and σ0g(v) is represented as,

dẑ

dt
= v − |v|

ẑ

g(v)
− ke

σ0g(v) = Fc + (Fs − Fc)e
−( v

vs
)2 (4.3.1)

Where Fs denotes the static friction level, Fc is the level of Coulomb force and vs

is the stribeck velocity. σ0 , σ1 and σ2 represents stiffness, damping co-efficient and

viscous friction co-efficient respectively. e denotes the position error and the term k

is a correction term for the position error. The closed loop system block diagram in

shown in Figure 4.17.
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Figure 4.16: Position response for a sinusoidal reference for 10µm amplitude

4.3.2 Experimental Description

In order to validate the frictional model, a linear drive system equipped with DC

servo from PI Physik InstrumenteTM model M-415.DG has been utilized, which

uses closed loop DC motor with shaft mounted position encoders and backlash-free

gear heads. Two such linear drive systems were used for the x-y stage motion as

shown in the Figure 4.18 and Table 4.2 describes the parameters of the linear drives.

The block diagram of the experimental setup is represented in Figure 4.19. Accord-

ing to the motor specification the design resolution of the linear drive is 0.0085 µm,

which means theoretical minimum movement that can be achieved based on the se-

lection of the mechanical drive components (drive screw, gear ratio, angular motor

position etc). Design resolution is much higher than the practical position resolution

or minimum incremental motion. Thus using a robust discrete time SMC controller

as discussed in previous section and frictional compensation a high accurate system
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Figure 4.17: Block diagram of the closed loop system with friction observer

Table 4.2: Parameters of The Linear Drive

Motor Voltage 12 V J (Moment of Inertia) 2.1992e−7 Nm/A

Motor Power 3 W Kt (Torque constant) 0.0133908 Nm/A

Encoder Resolution 2000 counts/rev B (Friction constant) 0.00012002 Nm

Gear Head Ratio 29.641975309 : 1 Travel Range 150 mm

Lead-Screw Pitch 0.5 mm/r Design Resolution 0.0085 µm

along with the desired dynamics is achieved in the vicinity of the design resolution

without any stick slip motion which arises from the disturbance due to friction.

The parameters for the Canudas friction model is tuned as shown in Table 4.3

to achieve high-precision motion without any stick-slip motion due to frictional

component.

Table 4.3: Parameters of the frictional observer

σ0 100000 N/m vs 0.001 m/s

σ1 316.2277 Ns/m T (SampleT ime) 0.0001 s

σ2 0.4 Ns/m k 0.0001

Fc 1 N Fs 1.5 N

Figure 4.20 represents the experimental results for two consecutive smooth re-

sponse of less than 1 µm with the implementation of the frictional observer and it

is seen that it tracks the reference position and the dynamics very accurately. Fig-

ure 4.21 represents the experimental result of circular path of radius of 1µm followed

by the X and Y axis of the linear drive and the result indicates that it follows the
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Figure 4.18: X-Y stages of linear drive

trajectory very accurately but suffers from vibration at some point.

4.4 Conclusion

In this chapter, high precision motion control for micromanipulation application

using open-loop piezoelectric actuator, closed-loop piezoelectric actuator and linear

drives is demonstrated. Open-loop piezoelectric actuator are utilized to achieve high

precision motion by canceling the hysteresis effect using a well established model in

feed-forward fashion. Experimental results are shown to prove the minimization of

hysteresis effect. Discrete-time sliding mode controller along with the disturbance

observer is utilized for closed-loop piezoelectric actuator in order to achieve closed

loop motion with nanometers accuracy. Finally, linear drive mechanism is driven

by sliding mode controller along with the friction observer to minimize the effect of

friction around the vicinity of zero-velocity. Experimental results are demonstrated

with micrometer resolution motion for the X-Y axes linear drives.
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Figure 4.19: Block diagram of the system with two linear axes driven by dSpace1103

Reference Position

Actual Position

Figure 4.20: Response of two consecutive smooth step of less than 1 µm for a single

axis
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Reference Position

Actual Position

Figure 4.21: Experimental results for circular motion of two axes of radius 1 µm



Chapter 5

Bilateral Control in

Micromanipulation

In this chapter implementation of scaled bilateral control in a custom built tele-

micromanipulation setup is presented. Force sensing with nN resolution using

piezoresistive AFM (Atomic Force Microscope) micro-cantilever is demonstrated

and validated with the theoretical estimates. Force/position tracking and trans-

parency between the master and the slave is presented with varying references after

necessary scaling.

5.1 Force Sensing Using Piezoresistive AFM Can-

tilever

In order to achieve force transparency between master and slave, it’s necessary to

sense the force in nano-newton range with high accuracy. Many researchers have

used different ways for sensing or estimating force using PZT actuator [7], Capac-

itive sensors, optical deflection as in AFM scheme, tunneling as in STM etc. In

complex micro-manipulation applications, it may be necessary to utilize more than

one manipulator thus using optical detection mechanism as like AFM may become

very cumbersome process and complicate to integrate in the system. Thus there is

a need to utilize inbuilt force sensors integrated in the probe or the manipulator.
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Piezoresistive AFM cantilever with inbuilt Wheatstone bridge from AppliedNanos-

tructures is utilized as a force sensor as well as probe for pushing operation as shown

in Figure 5.1. Piezoresistive sensors have been used for many other MEMS appli-

cations, including accelerometers, gyroscopes and AFM cantilevers. The primary

advantage of this approach is that the sensor impedance is relatively low (a few

KΩ), and it is possible to extract small signals without interference from noise with

off-chip integrated circuits.

 

piezoresistive 

AFM cantilever

       Wheatstone 

        Full Bridge

Resistor Pads

Figure 5.1: Piezoresistive AFM Cantilever with inbuilt Wheatstone bridge

The working principle of force sensing is demonstrated in Figure 5.2. As the force

is applied at the free end of the cantilever using the PZT actuator with the glass

slide, the change of resistance takes place depending on deflection of the cantilever.

The amount of deflection is measured by the inbuilt Wheatstone bridge providing

a voltage output, which is amplified by the custom built amplifier. To match with

the initial cantilever resistance value, one of the active resistors in the full bridge is

replaced by a potentiometer. The amplified voltage is send to the data acquisition

dSpace1103 card for further processing.

The force is calculated using Hooke’s law as Eqn.5.1.1.
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Figure 5.2: Force measurement setup

F = Kc z (5.1.1)

where Kc is the known spring constant of 0.3603 N/m and z is the amount of

cantilever deflection. The spring constant is calculated by considering a linear beam

equation and verified via a natural frequency test using an AFM [66].

5.1.1 Modeling of the AFM Cantilever

The piezoresistive AFM cantilever is modeled as linear beam equation as represented

in Eqn.(5.1.2).

K =
3EI

L3
(5.1.2)

where E represents the modulus of elasticity (190GPa for silicon), L represents the

length of the cantilever (300 µm)and I represent the moment of inertia calculated

as Eqn.(5.1.3).

I =
bh3

12
(5.1.3)

where b and h represents the width and height of the microcantilever which is 50µm

and 1.6 µm respectively and the calculated value of inertia is 17.067 × 10−24m4.
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5.1.2 Experimental Validation of Force Sensing

The cantilever is mounted on the three axes closed loop stage and the interaction

(contact and non-contact) forces between the tip and glass slide are measured. The

position of the cantilever is selected to be perpendicular to the plane of the optical

axis in order to achieve better visibility of the distance between the cantilever and

the glass slide. Since the displacement range of the x-axis of the closed loop stage

is 100 µm, the glass slide is brought within the range using open-loop manual PZT

axes. Finally, the change of the resistance is converted to change in voltage (millivolt

range) using the inbuilt full bridge along with offset potentiometer, which in turn is

converted to ±10V ranges using the amplifier.

Figure 5.3 and Figure 5.4 [67], [68] represents the attractive forces for pulling

in and in-out phase respectively between the tip and glass slide. The decreasing

distance between the tip and glass slides is represented by the increase in the position

of PZT axis. As the distance between the tip and glass slide decreases the attractive

forces increases and vice-versa. Electrostatic force is inversely proportional with the

square of the separation distance but Van der Waals depends with sixth root. Thus

it can be clearly stated that during initial phase of pulling in/out electrostatic force

will be dominant and has lower slope as compared to Van der Waals. This can be

clearly seen as change in slope of the force measurement plot corresponding to these

two regions can be observed from Figure 5.3 and Figure 5.4.

In order to verify force measurement, theoretical values of pull-off force (breaking

load during the withdrawal of tip) between the silicon tip and the glass surface

is compared with the experimental results. In case of the interaction between a

spherical tip and a flat surface, the interaction force can be approximated by Dugdale

model [69] as Eqn.(5.1.4)

Fpull−off =

(

7

4
−

1

4

4.04λ
1
4 − 1

4.04λ
1
4 + 1

)

πWR (5.1.4)

where W is the work of adhesion between the two mediums, R is the radius of the

sphere and λ is a coefficient, which can be used to choose the most appropriate

contact model for a given case [70]. Using the interfacial energy the pull-off force
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Figure 5.3: Force for smooth step position reference.

can be calculated for λ = 0.54 according to the Dugdale model as 39.43 nN [71,

72]. Figure 5.5 demonstrates that experimentally determined pull-off force is close

to 40 nN , indicating a close match between the theoretically and experimentally

determined values.

5.2 Implementation of Scaled Bilateral Teleoper-

ation

In the micromanipulation applications, scaled bilateral control is used for teleoper-

ation where master/human is not able to access the micro environment on the slave

side. Since the master and slave are working on macro and micro scales respec-

tively, thus its indispensable to use general bilateral controller to scale the position

and forces between two sides for extensive capability. In other words, position in-

formation from the master is scaled down to slave and force information from the

slave side in scaled up to master.
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Figure 5.4: Pulling in-out for smooth step position references

5.2.1 Schematic of Bilateral Control Structure

The scaled bilateral control structure is shown in Figure 5.6 comprising of master

and slave side. Piezo-stage on the slave side is required to track master’s position

as dictated by operator using discrete sliding mode controller structure as discussed

in Chapter 4. The 1D force of interaction with environment, generated by piezore-

sistive cantilever, on the slave side is transferred to the master as a force opposing

its motion, therefore causing a “feeling” of the environment by the operator. The

conformity of this feeling with the real forces is called the “transparency”. Trans-

parency is crucial for micro/nanomanipulation application for stability of the overall

system. Furthermore, for micro system applications, position and forces should be

scaled in order to adjust to operator requirements. Position of the master manipu-

lator, scaled by a factor α, is used as a position reference for the slave manipulator,

while the calculated force due to contact with environment, scaled by a factor β,

is fed-back to the operator through the master manipulator. As a master device

Maxon DC servo is utilized along with the driver and the technical specification is

mentioned in Appendix A.4 and A.5 respectively.
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Figure 5.5: Force curve for interaction between a silicon tip and a glass surface

In order to eliminate oscillations both on master side because of oscillatory hu-

man hand and on the slave side due to piezoresistive cantilever dynamics, position

of master manipulator and force of slave manipulator are filtered by low pass filters

before scaling.

Figure 5.6: Scaled bilateral teleoperation control structure
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5.2.2 Scaling of the Position and Force Information

Since the master and slave side resides on macro and micro scales respectively,

thus its very vital to appropriately choose the scaling factor in order to attain the

optimum performance. In the ideal condition, the steady state condition of the

bilateral controller should be Eqn.(5.2.1).

xs = αxm

Fm = βFs

(5.2.1)

Where α and β represents the position and force scaling respectively. xm,xs denotes

the master and slave position respectively and Fm, Fs denotes the master and slave

force respectively. To be able to meaningfully interact with the micro environment,

positions and forces are scaled to match the operator requirements.

In the first and second experiments, scaling factors of α = 0.027µm

deg
and β =

0.00366 N
nN

are used, that is an angular displacement of 1deg on the master side cor-

responds to a linear displacement of 1µm on the slave side and a force of 0.00366nN

on the slave side corresponds to a force of 1N on the master side. The objective of

these experiments is to provide very fine motion on the slave side for a relatively

larger displacement on the master side, hence α is selected according to this objec-

tive. Then the corresponding forces/torques for each amount of displacement were

compared for the selection of β, keeping in mind that the DC motor on the master

side has low torques.

5.2.3 Experimental Validation of Position Tracking

In order to validate the position tracking between the master and slave, the com-

manded position from the master is transferred after necessary scaling to be tracked

by the slave side. Figure 5.7, 5.8, 5.9, 5.10 illustrates the experimental results for

position tracking along with the tracking error of the bilateral controller. It can

be clearly seen that under different references, the slave tracks the master position

with high accuracy. This position tracking performance is acceptable for precisely

positioning the micro cantilever.
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Figure 5.7: Position Tracking of the Bilateral Controller for zig-zag motion with

amplitude 20nm

5.2.4 Experimental Validation of Force Tracking

In order to validate the force tracking, the slave forces encountered from the en-

vironment is being transferred to the master side after necessary scaling. Fig-

ure 5.11, 5.12, 5.13 demonstrates the force tracking between the master and slave

along with the tracking error. It can be clearly observed from the three figures that

the master tracks the slave force precisely and tracking error is found to be within

±20nN .

5.3 Conclusion

In this Chapter, Piezoresistive cantilever is utilized along with a full bridge in order

to achieve the nano-Newton level interaction forces between piezoresistive probe tip

and a glass surface. Experimental results are compared to the theoretical estimates

of the change in attractive forces as a function of decreasing distance and of the

pull off force between a silicon tip and a glass surface, respectively. Good agreement

among the experimental data and the theoretical estimates has been demonstrated.
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Figure 5.8: Position Tracking of the Bilateral Controller for random motion with

amplitude 0.6 µm

Force/Position tracking between master and slave has been clearly demonstrated

after necessary scaling. It is clearly demonstrated that the slave position tracks

the master position with high precision using discrete time sliding mode controller

as discussed in chapter 4 structure along with disturbance observer yield, which is

necessary for micromanipulation applications. The master feels the interaction forces

between the slave and environment in one dimension. Force tracking also confirms

the transparency between the master and slave which is an essential requirement to

conduct the task effectively.
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Figure 5.9: Position Tracking of the Bilateral Controller for sinusoidal reference with

amplitude 5 µm

Figure 5.10: Position Tracking of the Bilateral Controller for step motion with

amplitude 0.5 µm
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Figure 5.11: Force tracking of the bilateral controller and tracking error
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Figure 5.12: Force tracking of the bilateral controller and tracking error
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Figure 5.13: Force tracking of the bilateral controller and tracking error



Chapter 6

Semi-Automated Pushing of Micro

Object

In this chapter, a method for pushing polygonal micro objects using hybrid force-

position controller is proposed. The pushing task is accomplished through semi-

autonomous fashion. In the semi-autonomous process, velocity controlled pushing

with force feedback is realized along x-axis by the human operator with the aid of

visual display and velocity control along y-axis is undertaken automatically using

visual feedback. Visual feedback control is utilized to track the micro object and

generate the necessary velocity so that the resultant velocity vector passes through

the center of friction of the micro-object to achieve pure translation motion. Since

the location of the center of friction in the micro-world is subjected to unpredictable

changes with respect to time, thus an procedure is demonstrated for online estima-

tion for the location of center of friction.

6.0.1 Introduction

It is a well established fact that human operators are much more adaptable to force

changes and can react much effectively under unexpected situations as compared

with other robotic manipulators. In other words, human operator can perform

force control and motion operation much more skillfully, thus human intervention

can be employed in pushing of the micro-object. The whole process of pushing of

78
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micro-object can be divided into two concurrent process: in one process pushing is

performed by human operator which acts as a impedance controller and alters the

velocity of the pusher while in contact with the micro-object. In another process,

the desired line of pushing for the micro-object is achieved through visual feedback

procedures in one dimension to attain the desired trajectory for the motion of the

micro-object. In this thesis, a hybrid force/position control structure is adopted for

semi-automated pushing of micro-objects.

6.0.2 Problem Definition

The scheme [73] of semi-automated pushing of micro-objects is illustrated in Fig-

ure 6.1. A hybrid force-position controller is proposed in which the proper velocity

direction of the micro cantilever is performed through visual feedback procedures to

achieve pure translational motion of the micro-object while pushing is administered

by a human operator with the aid of visual display.
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Figure 6.1: Semi-automated pushing scheme

Figure 6.1 presents an illustration of the pushing problem where θ represents angle

between the Y-axis and the image axes, and Xc and Yc denotes center of the rectan-

gular object. To achieve pure translation along the X-axis, that is to keep the angle

θ close to zero, the velocity of micro cantilever needs to be automatically adjusted

to pass through center of friction while human operator pushes the object through
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scaled bilateral teleoperation as demonstrated in Chapter 5.

The velocity control of the micro cantilever is critical during planar pushing to

ensure that the object tracks the desired straight line trajectory with desired zero-

angle orientation. In order to achieve pure translation motion, the proper line of

action of the pushing force needs to be determined with the help of feedback gathered

through image processing techniques and force feedback from the piezoresistive force

sensor. Once the position and orientation of the micro-object is determined along

with the sensed force, proper vector of the micro cantilever and its components along

the Y-axis can to be calculated to compensate for the orientation error of the object.

6.0.3 Proposed Approach - Hybrid Force-Position Control

The overall mechanism for hybrid force-position control structure for semi-automated

pushing of micro-objects is depicted in Figure 6.2.
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Figure 6.2: Hybrid control structure for semi-automated pushing

Human operator utilizes the scaled bilateral control structure as demonstrated in

Chapter 5 to generate the desired position which is scaled with a factor α before

feeding to the position controller. The position controller uses the feedback from

PZT actuator to compensate the position error to achieve the desired position of the

piezoresistive micro-cantilever. As the micro-cantilever comes in contact with the

micro-object the interaction resultant forces are felt by the human operator through

the force fed from the piezoresistive micro-cantilever after scaling by a factor of β.

Depending upon the situation human operator which acts an impedance controller
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can adjust the impedance (effective muscle stiffness) to change from position con-

trol to force control to push that micro-object along X-axes with the commanded

position/force. Moreover, the operator has the access to the visual information for

monitoring the pushing process. Visual feedback procedures is performed automat-

ically to estimate the correct line of pushing to achieve pure translational motion.

Visual processing algorithms are employed to detect position and orientation of the

micro-object for the estimation of the location of the center of friction. Finally, the

velocity of the piezoresistive cantilever is varied at the contact point using visual

feedback process to ensure that resultant line of pushing passes through the center

of friction to achieve pure translation motion along the X-axes.

6.0.4 Pushing Mechanism

Precise positioning of micro-objects lying on a substrate using a point contact push-

ing to track a desired trajectory posses lot of challenges. The pusher or probe needs

to controlled in such a way to reorient and transport the microobject to its final

location using a stable pushing1 operation. Using only a point contact with a limited

number of freedom the task of pushing on a horizontal plane can be realized. In

the micro-world, the inertial effect can be neglected with compared to the frictional

forces existing between the micro-object and substrate. Thus, in the mechanism of

pushing, the relation between the motion of the pushed object and the frictional

forces between the object surface and the support forces plays a very dominant role.

The direction and the magnitude of the frictional forces will determine the direction

and magnitude of the velocity thats needs to be applied at the contact point to move

the object in a desired trajectory. The velocity at the contact point is the control

variable for the object motion and it is necessary to understand the properties of

frictional forces before planning the pushing operation.

In this thesis, I am interested in translation of a regular object from one location

to another by orientating the line of action of the pushing force to the desired

direction. The desired translational motion of the object cannot be achieved if the

1The probe or pusher is always in contact with the micro-object during the pushing operation.
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line of pushing at the contact point passes through the center of the mass of the

micro-object. Due to the dominance of the frictional forces existing in between the

micro-object and supporting surface, the inertial effect will be neglected and the

motion will be dependent upon the motion and direction of the frictional forces.

Thus, the resultant line of pushing needs to be directed to eliminate any moment

caused by the frictional force so that orientation effect of the pushed object is rejected

to ensure only translational motion. The frictional distribution in between the

contact surface of the micro-object and supporting surface gives rise to centroid

of the frictional distribution, center of friction2 where all the distribution of friction

can be lumped into a single point. Mason [23] showed that when the resultant

pushing force vector applied on an object passes through the center of friction, the

motion of the object is a pure translation. The result is obtained by assuming that

the coefficient of friction of object with the substrate is constant over the time.

Unfortunately, this is not a feasible solution in micro-world, where due to uncertain

topography of the surfaces the frequency distribution changes with respect to time,

giving rise to the unpredictable location of the center of friction which is not constant

over time. Thus, the most important task lies in the online estimation of the center

of friction using visual information.

In this section, the goal is to online estimate the center of friction and adapt the

controller using visual feedback to generate the velocity to achieve the desired line

of pushing. In the following subsections several issues related with stable pushing

of micro-object to achieve translational motion will be presented such as:

• To prevent the sliding between the micro-object and the pusher at the contact

point while the pushing operation is undergoing.

• To generate the desired line of pushing for known center of pushing such that

the direction of line of pushing passes through the center of friction.

• Online estimation of the center of friction and center of instantaneous rotation

while the object is in motion.

2Center of friction is defined as single point where the frictional distribution between the inter-

face of object/substrate can be lumped.
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6.0.5 Sliding of Micro-Objects

During the pushing operation of a regular object, the motion of an object being

pushed through a single point of contact is often indeterminate. Despite this in-

determinacy, it is sometimes possible to predict qualitative features of the motion,

including whether the object will rotate and in which direction [9]. In order to

understand pushing, it is necessary to introduce the following definitions:

• The line of pushing lp passes through the contact point and is in the direction

of the velocity of the pusher.

• The line of motion lm passes through the contact point and is the direction of

the velocity of the object.

The mechanism of orientation is described in Figure 6.3, depicting the line of pushing

lp and the line of motion lm. The left and right edges of friction cone are denoted by

lL and lR, respectively along with the line of pushing force lF . To prevent sliding, the

line of the pushing force needs to be within the friction cone. The value of this force

can be altered depending upon the line of motion to achieve a desired trajectory.

Right Sliding Fixed Left Sliding 

Rl
FlLl =

Ml

Pl

Rl
FlLl

Ml Pl=

Pl

Rl =Ll
Ml

Fl

Figure 6.3: Sliding of micro-object [9]

Some constraints on the line of motion and line of action of pushing force can be

stated for each contact mode as follows:

• Separation. The object remains in the same position. Line of action of pushing

force and line of motion does not comes into affect.



Chapter 6. Semi-Automated Pushing of Micro Object 84

• Fixed. The line of motion coincides with the line of action of pushing: lP = lM ,

and the line of action of pushing force comes in between the left and right edges

of the friction cone.

• Left Sliding. The line of motion falls in left side with respect to the line of

pushing, and the line of action of pushing force coincides with the right edge

of the friction cone: lF = lR.

• Right Sliding. The line of motion falls to the right with respect to the line

of pushing, and the line of action of force coincides with the left edge of the

friction cone: lF = lL.

In order to prevent the sliding of the micro-object during the pushing operation, it is

necessary that the the pusher falls within the friction cone3 as denoted in Figure 6.4.

Theoretical value of µ between the silicon tip of the cantilever and micro-object is

0.25, thus the angle for friction cone can be calculated as 28.07 ◦. Rotational manual

base stages controlled by human operator can be set to proper rotational angle using

visual display to ensure that the line of pushing lies within the friction cone for the

desired translational motion.

6.0.6 Trajectory Control for Known Center of Friction

Figure 6.5 represents the scenario of pushing rectangular object using a point contact

pushing to achieve pure translation motion. The rectangular micro-object has two

points, namely COM (center of mass) and COF (center of friction). The contact

point of the pusher is taken as the origin of the reference frame. The x-axis and

y-axis of the frame is chosen to be parallel and perpendicular connecting to the edge

of polygon. The velocity of the probe along x-axis (~Vx) and y-axis (~Vy) are controlled

by visual feedback and human operator, respectively. The desired velocity vector

~Vdes, resultant of ~Vx and ~Vy needs to pass through COF, hence have an angle θd to

achieve a pure translation motion. The value of ~Vy cannot be controlled to achieve

3friction cone is defined as to be the set of all wrenches satisfying Coulomb’s law for an object

at rest, i.e. all the wrenches satisfying: |ft| ≤ µ|fn|
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Figure 6.4: Calculation of friction cone

the desired velocity vector as it is administered by the human operator, rather it

is only a measurable quantity. The variable ~Vx can be calculated by taking into

consideration the value of ~Vy to achieve the desired velocity vector ~Vdes making an

angle θd as in the following equations.

The relationship between the ~Vx and ~Vdes can be written as Eqn.(6.0.1) by analyzing

Figure 6.5 and solving for ~Vdes yields Eqn.(6.0.2).

~Vdes cos θd = ~Vx (6.0.1)

~Vdes =
~Vx

cos θd

(6.0.2)

Similarly, the relationship between the ~Vy and ~Vdes can be written as Eqn.(6.0.3)

and inserting the Eqn.(6.0.2) into Eqn.(6.0.3) will yield Eqn.(6.0.4)

~Vdes sin θd = ~Vy (6.0.3)

~Vy = ~Vx tan θd (6.0.4)

The Eqn.(6.0.4) indicates that its possible to only control ~Vy to achieve the

resultant velocity vector ~Vdes to pass through COF. As its already discussed, the
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Figure 6.5: Calculation of velocity vector for known center of friction

location of the COF is not constant with respect to time, thus it is necessary to

calculate the location of COF.

6.0.7 Center of Friction

In this subsection, I have focussed on the estimation of the center of friction of the

rectangular micro-object lying on a support surface and pushed by the point contact

probe using the technique proposed by Yoshikawa [74]. However, the concept is

further extended by online estimation of COF for each visual data and necessary

value of θd is updated online.

Some of the assumption which needs to considered are as follows:

1. The micro-object is rigid.
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2. The micro-object is in contact with the supporting surface with n points, that

is, the object is supported by n points. In this case n=4, as the four corners

of the rectangle.

3. The position of the supporting points with respect to the object remains un-

changed even when the micro-object is in motion.

4. Since the micro-object is pushed by point contact, the friction between the

pusher and micro-object is assumed to be negligible due to the fact that contact

area is very less.

5. The coefficient of friction between the object and the support surface may

depend on the position of the supporting point, but is constant with respect

to time.

6. The pushing force is applied horizontally to a point on the object near the

support surface.

7. The velocity of the object is low enough that the inertia force can be ignored

in comparison with the frictional force.

Figure 6.6 represents the micro-object lying on the supporting surface. A refer-

ence coordinate frame
∑

u(Ou −XuYuZu) is attached to the supporting surface. An

object coordinate frame
∑

o(Oo − XoYoZo) is also fixed to the object with its X0Y0

plane coinciding the base of the object. Some of the notations expressed in
∑

0 are

defined as follows:

• pi : Position of ith supporting point.

• vi : Velocity of object relative to support surface at pi.

• ai : Magnitude of frictional force at pi.

• fi : Frictional force at pi.

• f : Frictional force vector.

• mi : Frictional moment at pi with respect to
∑

0.
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Xu
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Zu

U∑

Yo

Xo

O∑
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Mf

Vi

fi

PiFt

Pc

Fc

Support Surface (Substrate)

Micro-Object

Figure 6.6: Reference frame and object frame

• Ff : Total frictional force.

• Mf : Total frictional moment with respect to
∑

0.

• Fc : The pushing force applied by the probe.

• pc : The location of the contact point with the micro-object.

• pg : The location of the center of friction.

The frictional force fi and the frictional moment mi at the ith supporting point

are given by, Eqn.(6.0.5) and Eqn.(6.0.6), respectively:

fi = −
vi

‖vi‖
ai (6.0.5)

mi = pi ×−
vi

‖vi‖
ai (6.0.6)
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where ‖.‖ and × denote the Euclidean norm and the vector product. Thus, the total

frictional Ff and total frictional moment Mf can be represented in Eqn.(6.0.7) and

Eqn.(6.0.8), respectively:

Fi =

n∑

i=1

fi = −

n∑

i=1

vi

‖vi‖
ai (6.0.7)

Mf =

n∑

i=1

mi = −

n∑

i=1

{

pi ×
vi

‖vi‖
ai

}

(6.0.8)

If the micro-object rotates, then the position of instantaneous center of rotation

of the motion pr = [xr, yr, 0]T can be deduced by using visual data. In Figure 6.7

the origin of the reference frame is place at the lower left vertex of the rectangle.

The edges PQ and P′Q′ are the two edges of the rectangular micro-object before

and after pushing by a probe using point contact. The midpoints of the line PP′

and QQ′ are found and a perpendicular line is formed from both the midpoints.

The point where the two lines intersect meet is the instantaneous center of rotation

referred as pr whose location is denoted as [xr, yr, 0]T .

Pr    

(0,0)
x-axis

y
-a

x
is

Probe

P  

P‘

Q‘

Q

Figure 6.7: Instantaneous center of rotation

The unit vector which is along the direction of relative velocity at each supporting
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point pi = [xi, yi, 0]T is denoted in Eqn.(6.0.9).

vi

‖vi‖
= k ×

pi − pr

‖pi − pr‖
(6.0.9)

where k is the unit vector that is along the direction of the rotation of the object. Let

the rotational angle of frame
∑

0 with respect to
∑

u be θ. The unit vector k can be

calculated as k is [0, 0, sgn(θ̇)]T . The value of k = [0, 0,−1]T when the direction of

rotation is counterclockwise and k = [0, 0, 1]T when its object is rotating clockwise.

The pushing force Fc at the contact point pc = [xc, yc, 0] can be decomposed as

Fc = [Fcx, Fcy, 0]T and with assumption 7, one can state the following relations;

Fc = −Ff (6.0.10)

Mc = −Mf = pc × Fc (6.0.11)

where Mc = [0, 0, Mcz]
T denotes the moment due to Fc. Let the total friction

force Ff be decomposed of Ff = [Ffx, Ffy, 0]T , Mf = [0, 0, Mfz]
T . From the

Eqs.(6.0.7−6.0.11), one can obtain Eqs.(6.0.12−6.0.14).

sgn(θ̇)Fcx = −
n∑

i=1

Yi

Ri

ai (6.0.12)

sgn(θ̇)Fcy =
n∑

i=1

Xi

Ri

ai (6.0.13)

sgn(θ̇)Mcz =
n∑

i=1

xiXi + yiYi

Ri

ai (6.0.14)

Then, the value of Xi, Yi and Ri can be expressed as

Xi = xi − xr, Yi = yi − yr, Ri =
√

X2
i + Y 2

i (6.0.15)

Since ai is the magnitude of the frictional force at the supporting point (xi, yi), a

frictional force vector can be formed as f = [a1, a2...., an]T for n supporting points.

If the object moves without any rotation, the direction of the relative velocity vi

‖vi‖

of all the supporting point are the same and can be written as
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ev =
vi

‖vi‖
, (i = 1, 2..., n) (6.0.16)

Rewriting the value of Ff and Mf , one can derive

Ff = −ev

n∑

i=1

ai (6.0.17)

Mf = −
{ n∑

i=1

piai

}

× ev (6.0.18)

Define a variable pg and represented as if

pg =

∑n

i=1 aipi
∑n

i=1 ai

(6.0.19)

By the definition of pg, Eqn.(6.0.18) can be written as

Mf = pg × Ff (6.0.20)

Eqn.(6.0.20) indicates the total frictional force Ff to cause a frictional moment of

Mf acts on the objects at point pg, called as center of friction. From Eqn.(6.0.10)

and Eqn.(6.0.17), the pushing force applied to the micro-object can be written as

Fc = ev

n∑

i=1

ai (6.0.21)

Mc + Mf = 0

−→pc ×
−→
Fc + −→pg +

−→
Ff = 0

(−→pc −
−→
pg)

−→
Fc = 0

−→pg = −→pc (6.0.22)

By analyzing Eqn.(6.0.21) and Eqn.(6.0.22), it can be concluded for a translational

motion that the direction of Fc needs to be the same as the motion of the object and

the line of action of Fc needs to pass through pg. In other words, if one applies a

external force Fc acting on the object such that the line of action Fc passes through

the point pg, then it is possible to push the object without any rotation.
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6.0.8 Method for Online Estimation of the Center of Fric-

tion

As mentioned in the previous section, due to dominance of adhesion (surface) forces

in the micro-world, the friction distribution between the micro-object and supporting

surface alters giving rise to unpredictable changes of COF. The change in the location

of the COF may be very fast due to unexpected changes in frictional distribution,

thus online estimation of COF needs to be performed and the probe needs to align

so that the line of action of the applied force Fc passes through the COF.

Visual information is utilized to determine the position and velocities of the

four corners, the centroid of mass for the rectangular micro-object along with the

position of the contact point pc = (xc, yc) with the probe. The instantaneous center

of rotation pr and orientation angle θ are calculated as discussed in above Section

for each captured frame. The force Fc measured by the probe is coupled and can be

decomposed into two dimension as Fcx = Fccosθ and Fyx = Fcsinθ. The moment

Mcz generated by the applied force be written as

Mcz = xcFcy − ycFcx (6.0.23)

Once two consecutive visual frame are captured while pushing and from Eqn.(6.0.12−6.0.14),

Eqn.(6.0.24), the relationship between the pushing force Fc and frictional force vec-

tor f can be written as

Fc = Gf (6.0.24)

where Fc is calculated for each two consecutive frames captured using as

Fc = [sgn(θ̇1)Fcx1, sgn(θ̇1)Fcy1, sgn(θ̇1)Mcz1, sgn(θ̇1)Fcx2, sgn(θ̇2)Fcy2, sgn(θ̇2)Mcz2]
T

(6.0.25)

where Fcx1, Fcy1, Mcz1 represents pushing force in x-axis for the first captured frame,

pushing force in y-axis for the first captured frame and moment in the z-direction

for the first captured frame respectively. Similarly Fcx2, Fcy2, Mcz2 represents for

the second captured frame. The value of G4×6 matrix is calculated using two sets
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of consecutive captured frame and four supporting points considering the vertices

of the rectangle. The G4×6 is written as

G =

















− Y11

R11
− Y21

R21
− Y31

R31
− Y41

R41

X11

R11

X21

R21

X31

R31

X41

R41

x1X11+y1Y11

R11

x2X21+y2Y21

R21

x3X31+y3Y31

R31

x4X41+y4Y41

R41

− Y12

R12
− Y22

R22
− Y32

R32
− Y42

R42

X12

R12

X22

R22

X32

R32

X42

R42

x1X12+y1Y12

R12

x2X22+y2Y22

R22

x3X32+y3Y32

R32

x4X42+y4Y42

R42

















(6.0.26)

From Eqn.(6.0.25), an estimate value of f(f̂) can be derived as

f = G+F (6.0.27)

where G+ is the pseudo-inverse matrix of G matrix. From Eqn.(6.0.19), the esti-

mated location of the center of friction p̂g can be obtained as

p̂g =
XT f̂

eT
n f̂

=
XT G+F

eT
nG+F

(6.0.28)

where XT represents the location of each vertices of the rectangle and can be written

in matrix form as

X =








x1 x2 x3 x4

y1 y2 y3 y4

0 0 0 0








T

(6.0.29)

where en represents unity vector with four elements as

en = [1, 1, 1, 1]T (6.0.30)

6.0.9 Image Processing Procedures

Several image processing techniques are utilized to achieve the positions and ve-

locities of the four vertices for the rectangular micro-object along with orientation

angle. The image processing techniques are depicted as shown in Figure 6.8.
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Shape ContraintsFitting Rectangle
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Orientation

Figure 6.8: Image Processing Procedures

As the first step of image processing, gray scale images are captured with a rate

of 30 frames per second using a commercial camera. Fast thresholding algorithm is

performed for each frame to filter noise. After thresholding, edge detection algorithm

is executed. Closed regions are detected using the rectangular shape and area of

the object as the image invariants. This process is repeated for each frame, and the

fitted rectangles are tracked during the course of pushing operation. The center,

corners and contact point positions along with orientations of the fitted rectangles

are calculated and numerically differentiated to estimate their velocities and angular

velocities. The snapshot of tracking a polygonal object is demonstrated in Figure 6.9

along with the parameters of the rectangle such as center coordinates, length, width

and orientation angle of the rectangle. The values are utilized to estimate the center

of friction and align the micro-cantilever so that the line of action passes through

the center of friction to achieve pure translation motion of the micro-object.

6.0.10 Pushing Algorithm

In order to push a rectangular micro-object to achieve pure translational motion,

it necessary to get the friction distribution and location of the varying center of

friction as discussed in above Subsection for online estimation of COF. The pushing

operation is performed in several steps by considering the image frame as a reference

frame. The steps are as follows:

• Step 1: Aligning the micro-cantilever such that the probe is in contact with
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Figure 6.9: Snapshot of tracking polygonal micro-object

the rectangular micro-object at the midpoint of the length using the bilateral

teleoperation as discussed in Section 5.3.

• Step 2: Human operator starts to push the object using bilateral teleoperation

and monitors the behavior of the object using visual display. Concurrently,

the visual processing starts as discussed in above subsection to generate the

position and velocities of vertexes and contact point.

• Step 3: The data from visual processing is utilized to calculate the center of

rotation pr and concurrently the force exerted Fc by the probe is utilized to

calculate Fcx, Fcy and Mcz as discussed above.

• Step 4: The matrix Fc and G are formed using two successive visual and force

data sets. The force data is downsampled and averaged to 30 Hz to matching

the sampling rate of visual frame capturing.

• Step 5: The value of the center of friction pg is estimated using the values
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obtained in Step 4 and thereafter desired value of the velocity of the probe in

x-direction ~Vx is calculated as discussed in above subsection so that the vector

of the resultant can be orientated to ensure that the lone of action passes

through the estimated center of friction.

• Step 6: ~Vx is set to the calculated value and kept constant until the arrival of

new visual data.

• Step 7: The human operator continuously monitors any sliding of the micro-

object at the contact point which may result if the probe comes out of the

friction cone. When sliding occurs, the human operator reverts back and

changes the location of the contact point after rotation stages is orientated to

proper value.

• Step 8: Step 3 is repeated using the next visual data and the first three rows

of G matrix are updated each time new data sets becomes available. Step 3 to

Step 6 are repeated in a recursive manner to track the location of the center

of friction.

Human operator is responsible for generating desired force for pushing of the

micro-object by visualizing the motion of the micro-object and can pull the probe

back if undesirable behavior in the motion of the micro-object is observed during any

of the above mentioned steps. Since humans are very good at adapting to unexpected

change in the forces, the force controlled pushing operation is administered by human

operator.

6.0.11 Experimental Validation of Pushing Operation

In order validate the above mentioned pushing algorithm, several intermediate ex-

periments were conducted by pushing a rectangular micro-object of size 200 µm at

the mid-point of the length of rectangle and the line of action passes through the

center of mass. Figure 6.10 demonstrates the snapshot of the pushing operation and

it can be clearly observed that after several steps the micro-object starts to rotate.
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Thus, it is unmanageable to translate a micro-object by pushing through the center

of mass.

Figure 6.10: Snapshot of pushing rectangular object at the mid-point of the rectangle

and line of action passes through center of mass of the object.

In another process, to compensate the orientation of the rectangle, the contact

point was altered depending upon the sign of orientation angle with respect to the

mid-point of length of the rectangle. Figure 6.11 demonstrates the pushing operation

to achieve pure translation motion of micro-object by changing the contact point

which depends upon the orientation angle. It can be clearly observed that it is not

feasible solution to achieve pure translation motion because of the zigzag motion

caused by the pushing process and moreover it is not desirable solution because the

process of change from contact to non-contact may give rise to huge impact resulting

damage to the probe or the micro-object.

The above mentioned discussion provides necessary arguments to conclude that

to achieve pure translation motion it is necessary that the line of action passes

through the center of friction to compensate the orientation angle. Figure 6.12
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Figure 6.11: Snapshot of pushing rectangular object by changing the contact point

depending upon the orientation angle

demonstrates the snapshot of pushing rectangular micro-object such that the line of

action passes through the center of friction. It can be clearly seen that the proposed

procedures was able to compensate the orientation effect to attain pure translational

motion. Figure 6.13 shows the position of the probe in Y-axis, force sensed during

the pushing operation and location of the center of rotation respectively.

6.1 Conclusion

In this chapter, a method for pushing polygonal micro-object using a hybrid force-

position controller is proposed. The goal is to push the micro-object to achieve

pure translation motion using semi-autonomous mechanism with the aid of human

operator. The pushing operation is undertaken by the human operator using visual

display which acts an impedance controller and can switch between velocity control

to force control by adjusting the stiffness (muscle stiffness) depending upon the

behavior of the motion of the micro-object. Visual module provides the information

about the position and orientation of the micro-object to calculate the time-varying

COF (center of friction) in recursive manner for each captured frame. The velocity at

the contact point is altered using visual feedback procedures such that the resultant

direction of velocity passes through the COF to achieve pure translational motion.
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Figure 6.12: Snapshot of pushing rectangular object such that the line of action

passes through the center of friction
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Figure 6.13: Snapshot of pushing rectangular object such that the line of action

passes through the center of friction



Chapter 7

Conclusions

7.1 Summary of the Thesis

In this thesis, the effort is directed to push a polygonal micro-object in a semi-

autonomous fashion, administered by human operator to achieve pure translational

motion using a custom built tele-micromanipulation setup. Human operator uti-

lizes the custom built tele-micromanipulation setup with force feedback to push the

micro-object with a piezoresistive AFM probe. Moreover, the estimated center of

friction is calculated online using recursive least square method utilization infor-

mation received from image processing techniques and measured interaction forces.

Visual feedback process align the micro-cantilever automatically so that the line of

pushing passes through the center of friction of the micro-object, varying with time

to attain pure translational motion.

A custom built tele-micromanipulation setup is employed to implement the above

mentioned task. Discrete time sliding mode controller is implemented for high pre-

cision motion control using piezoelectric actuator. Force sensing with nano-Newton

resolution is demonstrated with a commercial available piezoresistive cantilever

which is utilized in scaled bilateral teleoperation with force feedback. Experimental

verification concerning force/position tracking is provided to show the transparency

between the master and the slave. Image processing procedures are developed to

track polygonal micro-object to achieve the position/velocties of feature points along

with the orientation angle.

101
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7.2 Future Works

Some of the future works are as follows:

• Presently strain-gauge sensors are utilized for the position feedback in piezo-

electric actuator which is not effective in nanometer range motion rather some

other sensors should be utilized such as laser interferometer.

• The piezoelectric actuator takes voltage as an input which is provided by 16-

bit DAC (Digital-to-Analog Converter) but in order to achieve sub-nanometer

resolution it is indispensable to utilize DAC with much higher number of bits.

• Piezoresistive AFM cantilever is presently utilized to sense force with nano-

newton range only in one dimension, for dexterous tele-micromanipulation its

worth to investigate sensing the force in 2 and 3 dimensions.

• In the present context, position and force scaling is discussed in the context

of scaled bilateral teleoperation , it will be worth to consider the frequency

scaling from slave to master.

• Presently one probe is utilized to push the micro-object using point contact

but the task may become simpler using more than one probe.

• Utilizing camera with faster frame capture rate may enhance the speed for

pushing operation.

• The present discussion are limited to pushing of micro-objects but using a

micro-gripper with force feedback is necessary for 3D manipulation of micro-

objects.

• Accurate models are required to model the adhesion force between the micro-

object and substrate, in order to move towards automatic pushing of micro-

objects.
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Appendix A

Bilateral Control

Micromanipulation

A.1 PI P-854 PiezoMike: Piezoelectric Microm-

eter Drive

Table A.1 explains the technical specification of the open-loop piezoelectric micro-

motor drive.

Table A.1: PI P-854 PiezoMike: Piezoelectric Micrometer Drive Technical Data

Property Value Units

Travel range (micrometer drive) 18 mm

Piezo fine travel range (@ 0 to 100 V) 25 µm ±20%

Min. incremental motion (piezo drive) <1 nm

Micrometer sensitivity 1 µm

Max. axial push/pull force 20 / 5 N

Micrometer drive M-626.10

Micrometer pitch 0.5 mm/rev.

Stiffness 1.5 N/µm

Electrical capacitance (piezo) 1.5 µF

Electrical connection LEMO Cable:

coaxial, FFA.00.250,

male. RG 178,

Teflon coated, 1 m

Weight 0.1 kg

Body material N -S

Recommended piezo driver A, C, G
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A.2 PI P-611 NanoCube XYZ Piezo Nanoposi-

tioning Systems

Table A.2 provides the technical specification of the P-611 Nanocube.

Table A.2: PI P-611 3-S NanoCube XYZ Piezo Nanopositioning System Technical

Data

Property Value Units

Active axes X, Y, Z

Open-loop travel @ 0 to 100 V 100 / axis µm ±20%

Closed-loop travel 100 / axis µm

Integrated feedback sensor SGS

* Closed- / open-loop resolution 2 / 1 nm

Repeatability 25 nm

Stiffness 0.3 N/µm ±20%

Max. normal load +15/-5 N

Electrical capacitance 1.5 / axis µF ±20%

Dynamic operating current 1.7 / axis µA/(Hz x µm)

coefficient (DOCC)

Unloaded resonant frequency (X/Y/Z) 350/220/250 Hz ±20%

Operating temperature range -20 to 80 ◦C

*** Voltage connection D

*** Sensor connection D

Weight (w/o cables) 250 g ±5%

Body material S/Al

Recommended amplifier/controller N, D, H

A.3 PI E664 NanoCube Piezo Controller

Table A.3 provides the technical specification of E-664 Nanocube Controller.

A.4 Maxon RE-40 DC Servo Motor

Table A.4 provides the technical details of the RE-40 DC Servo motor utilized as

master device.
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Table A.3: PI E664 NanoCube Piezo Controller Technical Data

Property Value

Function Power amplifier sensor/position

servo-control of P-611 NanoCube

NanoPositioning systems

Channels 3

Amplifier

Maximum output power 14 W / channel

Average output power 6 W / channel

Peak output current <5 ms 140 mA / channel

Average output current >5 ms 60 mA / channel

Current limitation Short-circuit proof

Voltage gain 10 ±0.1

Polarity Positive

Control input voltage -2 to +12 V

Output voltage -20 to 120 V

DC offset setting 0 to 100 V with 10-turn pot.

Input impedance 100 kΩ

Display 3 x 31/2 -digit, LED

Control input sockets: 3 x BNC (rear)

PZT voltage output socket 25 pin sub-D on rear

Dimensions 236 x 88 x 273 mm + handles

Weight 3.0 kg

Operating voltage 90-120 / 220-240 VAC, 50-60 Hz (linear P/S)

Position Servo-Control

Sensor type Strain Gauge

Servo characteristics P-I (analog) + notch filter

Sensor socket 25 pin sub-D on rear (same as PZT voltage)

Sensor monitor output socket 3 x BNC on rear

Additional I/O 14 pin connector on rear for On-Target

and Overflow status and control in

and sensor monitor out

A.5 Maxon 4-Q-DC Servoamplifier ADS in Mod-

ule Housing

Table A.5 provides the technical specification of Maxon 4-Q-DC Servoamplifier uti-

lized as driver for Master device.
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Table A.4: Maxon RE 40 DC Motor Data

Nominal voltage 48 V

No load speed 7580 rpm

No load current 68.6 mA

Nominal speed 7000 rpm

Nominal torque (max. continuous torque) 184 mNm

Nominal current (max. continuous current) 3.12 A

Stall torque 2500 mNm

Starting current 41.4 A

Max. efficiency 92 %

Terminal resistance 1.16 Ω

Terminal inductance 0.329 mH

Torque constant 60.3 mNm / A

Speed constant 158 rpm / V

Speed / torque gradient 3.04 rpm / mNm

Mechanical time constant 4.39 ms

Rotor inertia 138 gcm2

Table A.5: Maxon 4-Q-DC Servoamplifier Data

Supply voltage VCC 12 - 50 VDC

Max. output current Imax 10 A

No load current
mA

Continuous output current Icont 5 A

Switching frequency of power stage 50 kHz

Efficiency 95 %

Band width current controller 2.5 kHz

Built-in motor choke 160 µH / 5 A

Input

Set value -10 ... +10 V

Enable +4 ... +50 V

Input voltage DC tacho 2 VDC - 50 VDC

Encoder signals max. 100 kHz, TTL

Output

Current monitor ”Monitor I” -10 VDC ...+10 VDC

Speed monitor ”Monitor n” -10 VDC ...+10 VDC

Status reading ”READY” max. 30 VDC

Voltage output

Aux. voltage, short circuit protected +12 VDC, -12 VDC, max. 12 mA

Encoder supply voltage +5 VDC, max. 80 mA
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