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Abstract

In the literature about algebraic geometry codes one finds a lot of results im-
proving Goppa’s minimum distance bound. These improvements often use the idea
of “shrinking” or “growing” the defining divisors of the codes under certain techni-
cal conditions. The main contribution of this thesis is to show that most of these
improvements can be obtained in a unified way from one theorem. Our results do

not only simplify previous results but they also improve them further.
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Tez Eg Danigmani: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: fonksiyon cisimleri, cebirsel geometri kodlari, kodlarin

minimum uzakligi, Goppa sinir1

Ozet

Goppa’nin cebirsel geometri kodlarinin minimum uzakliklar: i¢in buldugu sinir i-
yilestirme iizerine literatiirde bircok caligma vardir. Bu ¢aligmalar, genellikle kodlari
tanimlayan bolenleri “daraltma” veya “genigletme” fikrine dayanan teknik kogullar
icerir. Bu tezin en Oonemli katkisi, bahsi gecen iyilegtirmelerin bir¢cogunun tek bir
teoremden elde edilebilecegini gostermesidir. Buldugumuz sonuclar, daha onceki

caligmalar: basitlegtirmekle kalmayip onlar1 daha da iyilestirmektedir.
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CHAPTER 1

INTRODUCTION

In this chapter, we recall earlier bounds on the minimum distance of Algebraic
Geometry (AG) codes. A necessary background on function fields and AG codes is

also provided. We use standard notations, cf. [16].

1.1 Preliminaries

Let F'/F, be an algebraic function field of genus ¢ with full constant field F, and G
be a divisor of F//F,. There are two vector spaces over F, that are associated with

G. These are:

L(G) = {z € F|(z) = -G} U{0}

and

Qp(G) ={w € Qp|(w) > G} U{0}.

The dimension of L(G) (resp. Qp(G)) over F, is denoted by ¢(G) (resp. i(G)). The
space L(G) is also known as the Riemann-Roch space of G. The dimension of L(G)
can be computed via Riemann-Roch Theorem (|16, Theorem 1.5.15|):

UG) =deg(G)+1—g+ LW —-G).

Here W is a canonical divisor of F'. We can replace {(W — G) with i(G) by Serre’s
duality (|16, Theorem 1.5.14|) which provides an isomorphism between the spaces
Q(G) and L(W — Q).

Let @ be any place of F.. A nonnegative integer « is called a pole number for

@ if there exists f € F' whose pole divisor (f)e is a@). Otherwise, « is called a gap



number for ). By Weierstrass Gap Theorem (|16, Theorem 1.6.7]), a rational place
@ has exactly g gaps. Moreover, the set of nongaps (i.e. the complement of the gap
set in {0,1,---} = Np) forms a semigroup which is called the Weierstrass semigroup
at Q.

If a divisor A € Div(F) is written as A = Ay — A, where both Ay and A, are
positive with disjoint support, then we call Ay (resp. Ay) the zero (resp. the pole)
part of A. The gap concept can be generalized as follows ([6, 12]):

Definition 1.1.1. Let G be a divisor and Q) be a rational place of F'. Then a >
—deg(Q) is called a G — nongap at Q if there exists f € F such that

((f) + G)oo = Q.
Otherwise, a is called a G — gap at Q).

For A, B € Div(F'), we define their greatest common divisor as

ged(A, B) := > min{vp(A),vp(B)}P.
Lemma 1.1.2. We have L(ged(A4, B)) = L(A) N L(B).

Proof. Since gcd(A, B) is less than or equal to both A and B, the inclusion from

left to right is clear. Let z € F' be the element of the intersection. Then we have
vp(z) > max{—vp(A),—vp(B)} = —min{vp(A),vp(B)} = —vp(ged(A, B))

for any place P. Hence, z € L(gcd(A, B)). O
Next, we introduce the notion of the floor of a divisor.

Proposition 1.1.3. If G is a divisor with ((G) > 0, then there erists a unique
divisor |G| (called the floor of G) of minimal degree such that

(i) £(G) = L(1G]),

(i) |G| < G for all G € Div(F) with L(G) = L(G).

Proof. Since ((G) > 0, any divisor A with £(A) = L(G) satisfies deg(A) > 0. Let
H be the divisor of the least degree such that £(H) = L(G). For any G € Div(F)

with £(G) = L(G), we have

deg(H) < deg(G) (1.1)
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by the minimality of the degree of H. On the other hand,
ged(G, H) < H. (1.2)

Since £(ged(G, H)) = L(G) N L(H) (cf. Lemma 1.1.2), (1.1) and (1.2) imply that
ged(G, H) = H. Hence, H < G and (ii) is proved. We set |G| = H and call it the
floor of G.

Suppose H and H are two divisors of the same least degree such that £(H) =
L(H) = L(G). Then, by part (ii) that we've just proved, we obtain H < H and
H < H. Hence the floor is uniquely determined. O

Corollary 1.1.4. If G > 0, then |G| > 0. In this case we have supp(|G]|) C
supp(G).

Proof. If G > 0 then it is easy to see that

This means (¢) =0 > — |G| for all ¢ € F, \ {0}. Consequently, |G| is effective. [

The dual notion to the floor of a divisor is called the ceiling of a divisor G.
Namely, the ceiling [G] of G (with i(G) > 0) is the unique divisor of maximum
degree such that Qp([G]) = Qp(G). One can show that G < [G] (see [15]). For a

canonical divisor W, we have
W—-]G|=|W-G| and W — |G| =[W —G]| (cf. [15, Theorem 11]). (1.3)

These essentially follow from the isomorphism between Q(G) and L(W — G) (cf.
[16, Theorem 1.5.14]).

We now define the codes of interest in this thesis. Assume that P, Py, - -, P,
are pairwise distinct rational places of F/F, and let D = P, + Py +- - -+ P,. Choose a
divisor G whose support does not contain P;, for any 1 < i < n. Then the Algebraic

Geometry (AG) codes associated with D and G are defined by

Cﬁ = Cﬁ(Daa) = {(f(Pl)a 7f(Pn)) : f € £(G)}

and

Cq =Cq(D,G) = {(wp,(1),...,wp, (1)) :w € Qr(G — D)}.

3



The codes C; and Cgq are also called the functional and the residual codes, respec-

tively. The dimension and the minimum distance of these codes satisfy

K(Co) = €(G) — (G~ D), d(Ce)>n—degC.
(1.4)
k(Ca) = i(G — D) = i(G),  d(Ca) > degG — (29 — 2).

The lower bounds in (1.4) are called the designed distances. Moreover, the functional

and residual codes are dual to each other (|16, Proposition 11.2.10]). We have,
Co(D,G)=Cr(D,W+D—-Q)

where W = (w) such that w is a Weil differential with vp, (w) = —1 and wp,(1) =1
fori=1,---.,n.

Let us finish this section by fixing some notation which will be used throughout.

e [7is an algebraic function field of genus g with full constant field F,.
e Py, ..., P, are pairwise distinct places of F'/F, of degree 1.
e D=P +..+P,.

e (G is a divisor of F//F, such that supp(G) (supp(D) = @.

1.2 Earlier Improvements on d(Cgq)

The main purpose of this thesis is to improve the designed distance of C codes in
(1.4). In this section, we present earlier efforts to achieve this goal.

Several authors have attempted to sharpen Goppa’s general estimate on d(Cgq)
by making assumptions on the divisor G. In [4, 5, 6, 10, 12|, the main idea is
to choose a divisor G with certain assumptions on the Weierstrass gap set of the
points in supp(G) and then use this to obtain better estimates than the designed
distance of Cq. More recently, Maharaj et al. [14] introduced the notion of the floor
of a divisor, which yielded further improvements and extended some of the earlier
works. Finally in [13], Lundell and McCullough generalize the results of Maharaj et
al. Except for [6, Theorem 4], all of the results on d(Cgq) in the articles mentioned so
far can be recovered from the theorem of Lundell-Mccullough (|13, Theorem 3.3]).
Thus, we state the main result of Lundell and McCullough first.
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Theorem 1.2.1. ([13, Theorem 3.3]) Let A, B and Z > 0 be divisors of F such
that L(A) = L(A—Z), L(B) = L(B+ Z). Set G = A+ B. Then the minimum
distance d of the code Cqo(D,G) satisfies

deg(p,c) > deg(G) — (29 — 2) + deg(Z).

Theorem 1.2.1 implies many other results on the improvement of Goppa bound
on Cq codes. These implications are indicated in the next diagram. We will show

how these implications follow in the remaining part of this section.
[13, Theorem 3|

[12, Proposition 3.10] [14, Theorem 2.10] [4, Theorem 3.3]
|5, Theorem 2.1| ‘ ‘ [10, Theorem 3.4]
[15, Corollaries 18] [4, Theorem 3.4]

[10, Theorem 3.3|

Theorem 1.2.2. (/12, Proposition 3.10]) Suppose that the integers o, a+1,- -+, a+t
are A-gaps at Q and B, f—1,---, f—t are B-gaps at Q. Let G = A+B+(a+£-1)Q.
Then, the minimum distance of the code Cq(D,G) satisfies

dog(n,c) > deg(G) — (29 —2) +t + 1.

Proof. et A=A+ (a+1)Q, B=B—(3—t—1)Q and Z = (t + 1)Q. Hence,
we have G = A+ B. Since a,a +1,---a +t are A-gaps at Q, L(A) = L(A — Z).
Similarly, £(B) = L(B+ Z) as 3,8 —1,--- — t are B-gaps at Q. Therefore, the
designed distance of Cq(D, G) is improved as much as deg(Z) =t + 1 by Theorem
1.2.1. U

If we let t = 0 and A = B in Theorem 1.2.2, we obtain the following result of

Garcia and Lax.

Theorem 1.2.3. (/5, Theorem 2.1]) Suppose o and [ are A-gaps at some rational
place Q and let G = (a+  —1)Q + 2A. Then the minimum distance d of the code
Cao(D,G) satisfies

deo(n,qy 2> deg(G) — (29 — 2) + 1.



Another effort to improve the designed distance of the residue codes is due to
Maharaj, Matthews, Pirsic ([14]). They use the notion of the floor of a divisor for

this purpose. We will see that this also follows from the Theorem 1.2.1.

Theorem 1.2.4. ([1/, Theorem 2.10]) Let G = A + | A| be a divisor of F, where
A > 0. Then the minimum distance of the code Cqo(D,G) satisfies

deatn.c) > dog(G) — (2 — 2) + deg(A — [A]).

Proof. Set B = |A] and Z = A — |A|. Then L(A) = L(A - Z) = L(|A]) and
L(B)=L(B+ Z)=L(A). Thus,

dog(n,c) 2 deg(G) — (29 — 2) + deg(A — [A])

by Theorem 1.2.1.
O

Let B € Div(F) be such that |A] < B < A. Slightly modifying Theorem 1.2.4,
let G = A+ B and Z = A— B. This yields the following result of Maharaj-Matthews.

Corollary 1.2.5. ([15, Corollary 18]) Let G = A+ B be a divisor of F' where A > 0
and |A] < B < A. Then the minimum distance of the code Cq(D,G) satisfies

dog(p,c) > deg(G) — (29 — 2) + deg(A — B).

Let Q1,- -+ ,Q; be rational places of F'. A t-tuple of positive integers (v, - , o)
is called a pure gap at (Qq,--- , Q) if and only if
t
'C(Z(ai - 1)Qi) = £(Z ;@)
i=1 i=1
The following result of Carvalho-Torres can also be obtained through the idea of the

floor.

Theorem 1.2.6. ([4, Theorem 3.4]) Suppose that (aq,--- ,aq) and (By,-- -, B) are
pure gaps at (Qq,--+, Q) where oy < B; for all i = 1,...;t. Assume that for all

(V1,0 ) with a; < v < B (for alli = 1,...,t), the tuple (v, ,v) is also a

pure gap at (Q1,...,Q). Then

t
deqn.a) > deg(G) — (29— 2) + 1+ Y (B — w).
=1



Proof. Note that by assumption

t

LY BiQ) = £(Y_(0s = 1)Q:) (1.5)

i=1
If A=3"_, 3;Qi then B=>"_ (; —1)Q; > | A] by (1.5). Hence, as in Corollary

1.2.5, we have

t
deg(p.c) > deg(@) — (29 — 2) + deg(A — B) = deg(G) — (29 = 2) + 1+ Y (5 — @)
i=1
O
The case t = 2 of Theorem 1.2.6 is an earlier result of Homma and Kim.

Theorem 1.2.7. ([10, Theorem 3.3]) Let (a1, ) and (B1,B2) be pure gaps at
(Q1,Q2) where o; < f3; for i =1,2. Assume that for all (v1,7v2) with a; < 7v; < f;
(for i =1,2), the tuple (y1,72) is also a pure gap at (Q1,Q2). Then

2

dean,c) > deg(G) — (29 —2) +2+ Y (B — ).

=1

The following result of Carvalho-Torres has weaker assumptions than Theorem

1.2.6 and it follows from Theorem 1.2.1.

Theorem 1.2.8. ([4, Theorem 3.3]) Let (v, -+ ,cq) and (B, -+, B;) be two pure
gaps at (Qla e 7Qt)' IfG = Zﬁzl(ai + BZ - I)Qz; then

dCQ(D,G) Z deg(G) — (29 — 2) + t.

Proof. Let A = 22:1 a;Q;, B = Eﬁzl(ﬁi - 1)Q; and Z = Zle Q; in Theorem
1.2.1. 0

We simply note that [10, Theorem 3.4] is a special case of the Theorem 1.2.8 by
taking ¢t = 2.

As seen so far, the results in the implication diagram all follow from the theorem
of Lundell-Mccullough (Theorem 1.2.1) very easily. There is, however, another
improved bound on d(Cgq) which is independent of Theorem 1.2.1. This is due to

Garcia-Kim-Lax.



Theorem 1.2.9. (/6, Theorem }]) Let each of the integers c,c +1,--- ;a+1t and
—(t—=1),8—=(t—2),---,5 be an A-gap at Q where a+t < . If G =2A+ (a+
f—1)Q, then

deg(n,c) > deg(G) — (29 —2) +t + 1.

Remark 1.2.10. Writing G = (A+ (a+t—1)Q) + (A+ (8 — 1)Q), and letting
7 = t@Q) Theorem 1.2.1 can only yield an improvement of ¢ = deg Z in Theorem
1.2.9. However, if we make the further assumptions that § — ¢t < a+t < 3 in

Theorem 1.2.9, then we have
LA+ BQ) =LA+ (a—1)Q).
In this case Theorem 1.2.1 yields a much stronger improvement of
deg(A + BQ) —deg(A+ (a—1)Q) =B —a+1>t+1.

Let us finish this section by noting a recent work of Beelen (|2]) on improving
the bound for d(Cq). He generalizes the order bound for one point AG codes ([11])
to multi point AG codes. In Chapter 2, we will compare our results’ performance

against Beelen’s bound.

1.3 Earlier Improvements on d(C;) and the Ceiling of a Divisor

In this section we have two goals. The first is to discuss the improvements on the
Goppa bound for C; codes, and the second is to point out that the notion of ceiling
of a divisor is not needed for the existing improvements on the Goppa bound for Cq
codes.

Results on improving the Goppa bound on the functional AG codes are scarce
compared to residue codes. There are only two results known to us: |6, Theorem 3|
and [14, Theorem 2.9]. However the former is implied by the latter, hence there is
only one improved bound for C codes. Let G be a divisor such that ¢(G) > 0 with
P; ¢ supp(|G]) for 1 < i < n. Then, [14, Theorem 2.9| states that

d(Ce(D,G)) > n —deg|G]. (1.6)

Note that £(G) = L(|G]) by definition of the floor, hence Cr(D,G) = Cr(D, |G]).
Applying the Goppa bound (1.4) on the floor divisor, one gets (1.6).

8



We finish by commenting on the role of the ceiling of a divisor on the minimum
distance estimates of AG codes. Maharaj and Matthews use the ceiling of a divisor
to obtain bounds on some residue codes. Their proofs are based on the idea of the
proof of (1.6), i.e. use the Goppa bound on the ceiling rather than the original
divisor. Using the duality between floor and ceiling (cf. (1.3)), we now show that

these results can be proved using the notion of floor.

Proposition 1.3.1. (/15, Theorem 16, Proposition 20]) (i) If G is such that P; ¢
supp ([G — D] + D) for 1 <i < n, then

d(Co(D,G)) > degG — (29 — 2) + deg (W — G+ D) — |W — G + D),
where W is a canonical divisor.
(i) If G is such that P; ¢ supp ([G]) for 1 < i <mn, then

d(Co(D,[G])) = deg G — (29 — 2) + deg ([G] - G).

Proof. (i) We know that Cq(D,G) = Cr(D,W — (G — D)) for a canonical divisor
W with vp, (W) = —1 for each i (cf. [16, Proposition 2.2.10]). By assumption, we
also have vp, (|G — D]) = —1 for 1 < i < n. Using (1.3), we have
vp,(|W —(G—=D)|)=vp(W—-[G—-DJ])=0, forl<i<n.
Therefore, the code Cr(D, |W — (G — D)]) exists. Since C(D, |W — (G —D)|) =
Cr(D,W — (G — D)) = Cq(D, G) and using (1.6), we have
d(Ca(D,G)) = n—deg([W—(G-D)])
= n—deg(W —-(G—-D))+deg((W—-G+D)— |W -G+ D)
= degG—(29—2)+deg(W -G+D)— |W—-G+ D).
(ii) We know that Cq(D, [G]) = Cz(D,W — (|G| — D)) for a canonical divisor W.
From Goppa’s bound (1.4), we conclude
d(Co(D,[G])) > n—deg(W - ([G] - D))
= deg[G] = (29 - 2)
= degG — (29 —2) +deg (|G| — G).



CHAPTER 2

NEW IMPROVEMENTS ON THE DESIGNED DISTANCE OF AG
CODES

Our goal in this chapter is to obtain two different improvements on the Goppa
bound by extending the results of |6, 13]. Let us assume that D = P, +---+ P, as
in the previous chapter where Py, --- P, are rational places of F'. We note that the
MAGMA software ([3]) has been used for our numerical computations (cf. Example

2.1.6, Table 2.1, etc.)

2.1 The First Lower Bound on d(Cy)

We start with a useful observation.

Lemma 2.1.1. Let A, B, H be divisors with the following properties:

(i) £(A) € L(B),

(ii) H > 0,

(iii) vp(A) = vp(B) for all P € supp(H).

Then we have L(A— H) C L(B — H).

Proof. Let f € L(A— H). Then f € L(B) since L(A— H) C L(A) C L(B) by (i)
and (ii). For P ¢ supp(H), we have

’Up(f) Z —’UP(B) = —’UP(B — H)

For P € supp(H),
Up(f) Z —UP(A — H) = —UP(B — H)

by (iii). Hence, f € L(B — H). O

The following is an immediate consequence of Lemma 2.1.1 and it generalizes

[10, Lemma 3.1].

10



Corollary 2.1.2. Let A, B be divisors with L(A) = L(B). Let H > 0 be a divisor
with vp(A) = vp(B) for all P € supp(H). Then L(A— H) = L(B— H).

Remark 2.1.3. Condition (iii) in Lemma 2.1.1 is essential. To see this, let A = P
be a place with /(A) = 1. Let B = 0 and H = P. Then, £L(A) = L(B) = F,.
However, L(A — H) =F, and L(B — H) = L(—P) = {0}. So, L(A) C L(B) but
L(A-H)Z L(B—H).

We are ready to state our first improvement on Goppa’s bound for residue codes.

Theorem 2.1.4. Suppose that A, B,C,Z € Div(F) satisfy the following conditions:
(i) (Supp(A) U supp(B) U supp(C) U Supp(Z)> supp(D) =0,

(ii) LA)=L(A—Z) and L(B) = L(B+ Z),

(iii) £L(C) = L(B).

If G = A+ B, then the minimum distance d of the code Cq(D, G) satisfies

d>degG — (29 —2)+deg Z + (i(A) —i(G - C)). (2.1)
Proof. Let w € Q(G — D) be a differential such that the codeword
¢ = (wp(1),...,wp, (1))

of Cq(D,G) has the minimal weight d. Assume without loss of generality that
wp, (1) # 0 for 1 <14 < d. If we set

D'=P +--+ Py
then (w) > G — D'. The canonical divisor W = (w) can be written as
W=G-D+E, (2.2)

with £ > 0 and supp(F) Nsupp(D') = (). Since degW = 2g — 2, it follows from
(2.2) that
d=deg D' =degG — (29 — 2) + deg E. (2.3)

We want to give a lower bound on deg E. By the Riemann-Roch theorem we have
((A+E) = deg(A+E)+1—-g+i(A+E)
((A) = degA+1—g+i(A),

11



and hence
degE = ({(A+E)—((A)+ (i(A) —i(A+ E)). (2.4)

Terms on the right-hand side of (2.4) can be rewritten as follows:

A+ E)—(UA) = ((A+E)—lA-2) (by (ii))
> ((A+E)— (((A— Z) + B) (as £ > 0)
= degZ+I((W —-A—FE)— (W —-(A—-Z)—FE) (by Riemann
-Roch thm.)
= degZ+{(B-D')—4(B+2Z)-D") (by (2.2)
= degZ (by (i,ii) and
Cor. 2.1.2)

On the other hand,

(A+E) = (W —-A-E)
= ((B-D) (by (2.2) and defn. of G)
= ((C—-D) (by (i,iii) and Cor. 2.1.2)
< U(C—-D'+E) (since E>0)
= (G -0) (by (2:2))

Combining these two inequalities with Equation (2.4), we get
deg E > deg Z + (i(A) —i(G - CO)).
Putting this in (2.3), we finish the proof of Theorem 2.1.4. O

Remark 2.1.5. Note that we can assume that i(A) — (G — C) > 0 since by letting
C=B,wehave G—C =G - B=A.

The bound of Lundell-McCullough (Theorem 1.2.1), and hence all of the other
results that it implies (cf. the diagram in Section 1.2), is obviously a special case of

Theorem 2.1.4.

Example 2.1.6. Consider the Suzuki function field F' = Fg(x,y)/Fs defined by the

10 23, This function field has 65 rational places and its genus

equation y® —y =2
is 14. Let Py denote the unique (rational) place at infinity and Py be the rational
place corresponding to z = y = 0. Let D be the sum of the remaining rational

places. We consider the two-point AG code Cq(D, G) with G = 17P5 + 11FP . Let
A= 15P00+3P0’0, B:2Poo+8pg’0, CZSPO’U, and Z:2P00

12



Since
£(13Poo+3p(],0) = £(15P00+3P0’0) and ;C(SPO’(]) = ,C(QPOO—FSPO’U) = £(4P00+8P0’0),

the hypotheses of Theorem 2.1.4 are satisfied. We have i(A) —i(G —C') = 1. Hence,

the Goppa bound on the minimum distance is improved by 3 to obtain
deqn,a) > 28 —26+2+1=35.

We note that the improvement on this code obtained by Lundell-McCullough only
comes from deg Z and it is equal to 2 (cf. [13, Table 2]).

Similary, we improve the Lundell-McCullough bound by 1 for the codes in Table
2.1, i.e. one more improvement over deg Z. For simplicity, we write aPy + bF as
(a,b) in the table. Note that dg,d s, d; represent the bounds of Goppa, Lundell-

McCullough and Theorem 2.1.4, respectively.

G A B C Z |dg | diy | dy
(17,9) | (15,1) | (2,8) | (0,8) | (2,1)| 0 | 3 | 4
(17,11) | (15,3) | (2,8) | (0.8) | (2,0)| 2 | 4 |5
(18,8) | (15,2) | (3,6) | (0,0) | (2,1)| 0 | 3 | 4
(21,5) | (15,2) | (6,3) | (0,0) | (1,2)| 0 | 3 | 4
(24,6) | (16,2) | (8,4) | (0,8) | (0,2) | 4 | 6 | 7

Table 2.1: Improvements on codes over the Suzuki function field over Fg via Theorem

214

Remark 2.1.7. Aside from the removal of positivity condition on divisor Z, the
main contribution of Theorem 2.1.4 over Theorem 1.2.1 is the difference of indices

of speciality (cf. Inequality 2.1 and Example 2.1.6).

Remark 2.1.8. Since L(A) = L(A — Z), we have degZ = i(A — Z) — i(A) by
Riemann-Roch theorem. Hence, maximum possible contribution by (2.1) over the

Goppa bound is

degZ+i(A)—i(G-C)=i(A-2)—i(G-C) <i(A—-Z).
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2.2 The Second Lower Bound on d(Cy)

In this section, our aim is to obtain a second improvement on the Goppa bound by
generalizing the result of Garcia-Kim-Lax in [6]. For this purpose we define a useful

function. If £ > 0 is an effective divisor, define
hg(A) :=0l(A+ FE)—{((A) >0, forany A€ Div(F).

We need some lemmas related to the function hg. Note that these lemmas are

generalizations of the Lemma on page 203 of [6].
Lemma 2.2.1. If Z > 0 is a divisor with supp(Z) Nsupp(E) = 0, then hg(B) <
hg(B + Z) for any divisor B € Div(F).
Proof. Define the linear map
v: L(B+Z) — LB+Z+E)/L(B+E)
z — z mod L(B+ E).
Note that the kernel of ¢ is

ker(¢) = L(B+ Z) N L(B + E) = L(B)

by Lemma 1.1.2 and the assumption that supp(Z) N supp(E) = (. Therefore ¢
induces an embedding of £L(B + Z)/L(B) into L(B + Z + E)/L(B + E), which
implies that the difference

hi(B+ Z) — hp(B) = ((B+ Z + E) — (B + E)) — (((B + Z) — ((B))
is nonnegative. Hence, hp(B) < hg(B + 7). O

Lemma 2.2.2. Let A, B, D', E, Z be divisors with the following properties:
(i) Z>0, L(A)=L(A—=Z) and L(B)=L(B+ Z),

(ii) D' > 0 and supp(Z) Nsupp(D') =0,

(i) E=W — A— B+ D' >0 for a canonical divisor W.

Then, hg(A) = hg(A—Z) +deg Z and hg(B + Z) = hg(B) + deg Z.

Proof. The first equality follows from the following:

hg(A) —hp(A—Z2) = A+E)—lA-Z+E) (by (i))
= degZ+((W—-A—-FE)—((W—-A+Z—-FE) (byRR)
= degZ+((B—-D')—¢B+7Z-D) (by (iii))
= degZ (by (i,ii))
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The other equality is proved similarly. O
The following is our second improvement over Goppa’s bound.

Theorem 2.2.3. Suppose that A, B, Z € Div(F) satisfy the following properties:
(i) (supp(4) Usupp(B) Usupp(Z) ) supp(D) = 0,

(ii) supp(A — B) C supp(Z),

(iii) Z >0, L(A) =L(A—Z) and L(B) = L(B+ Z + Q) for all @ € supp(Z),
(iv) B4+ Z+ P < A for some P € supp(Z).

If G = A+ B, then the minimum distance d of the code Cq(D, G) satisfies

d>degG — (29 —2) +deg Z + 1. (2.5)

Proof. By Theorem 2.1.4, we know that d > deg G — (29— 2) + deg Z. Suppose that
the equality holds and let w € Q(G — D) be a differential yielding a codeword of
weight deg G — (29 — 2) + deg Z. Proceeding as in the proof of Theorem 2.1.4, we
can assume that w € Q(G — D’) for D' = P, +- - -+ P;. Then, there exists a positive
divisor F with deg FF = deg Z such that

(W)=G—-D+E.

We claim that supp(E) Nsupp(Z) = 0. Suppose not and let @ be a place in the

supports of both divisors. Then we can write
(W)=G+Q—-D +F

with £’ > 0. Hence w € Q(G + Q — D). Note that if we view G+Q = A+ (B+Q),
then Theorem 2.1.4 applies to the code Cq(D,G + Q) to yield

d(Ca(D,G+ Q)) > deg(G+ Q) — (29 — 2) + deg Z.

This means that the weight of the codeword (wp,(1),---,wp, (1)) is different from
deg G — (29 — 2) + deg Z, which is a contradiction. Hence,

supp(E) Nsupp(Z) = 0. (2.6)
We clearly have
hg(A) =U(A+ E) — ((A) < deg E = deg Z. (2.7)
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If P is the place in (iv), then

hgp(A) = hg(A— P)+degP (by Lemma 2.2.2)
> hg(B+Z)+degP (by (ii), (iv), (2.6) & Lemma 2.2.1) (2.8)

> hg(B)+degZ +deg P (by Lemma 2.2.2)

However, (2.7) and (2.8) contradict each other. Therefore, our initial assumption is

wrong, i.e. d > degG — (29 — 2) +deg Z + 1. O

Remark 2.2.4. By choosing A = A+ 3Q, B = A+ (a — 1)Q in Theorem 1.2.9
and applying Theorem 2.2.3 to the divisor G = A + B, we recover the result of

Garcia-Kim-Lax.

Remark 2.2.5. Assume that a hypothesis stronger than (iv) in Theorem 2.2.3
holds:
“There exists P € supp(Z) with A—Z < B+ Z+P <A’

Note that this assumption is analogous to the assumption we made in Remark 1.2.10.
That is, this amounts to changing (iii) in Theorem 1.29to f —t < a+t < . In
this case, we have £L(B) = L(A—Z) = L(B+ Z + P) = L(A) and Theorem 2.2.3 is
a special case of Theorem 2.1.4. In fact, Theorem 2.1.4 yields a better improvement

for the same code Cq(D, A+ B):
deg A —deg B =deg Z +deg(A—Z — B) > deg Z + 1.

Example 2.2.6. Consider the Suzuki function field F' over Fy as in Example 2.1.6.
Let G = 27Py + 6Fy0 and D be the sum of the remaining rational places. Let us
decompose G as A+ B, where A = 14P,,+6F 9, B = 13P4, and let Z = P+ Py .

Then, assumptions (i,ii) in Theorem 2.2.3 are satisfied. Moreover, we have
E(l?)Poo + 5P0’0) — £(14Poo —|— 6P0’0),

Hence, assumptions (iii,iv) of Theorem 2.2.3 are also satisfied. Therefore, the im-
provement over the Goppa bound via Theorem 2.2.3 is deg Z + 1 = 3. In [13], the

improvement for the same code is 2 (see [13, Table 2|).
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Similarly, we increase the Lundell-McCullough improvement over Goppa bound
from 2 to 3 for the codes in Table 2.2 over the Suzuki function field. We use the
same notation as in Table 2.1. We denote the bound obtained from Theorem 2.2.3
by dy. Also, (a,b) = (¢,d) means that the Riemann-Roch spaces of the associated
divisors are the same. Note that among the codes in Tables 2.1 and 2.2, only
Cqa(D,17Pyx+11Fy ) is common, i.e. both Theorem 2.1.4 and Theorem 2.2.3 apply

and yield the same improvement on this code.

G, A, B, Z L space equalities de | dia | ds
(13,5) = (14, 6)
(16,11) (14,6) (2,5) (1,1) 1| 3 |4
(2,5)=(3.6) = (3,7) = (4,6)
(13,5) = (14, 6)
(17,11) (14,6) (3,5) (1,1) 21 4 |5
(3,5)=(4,6) = (4,7) = (5,6)
(13,5) = (14, 6)
(18,11) (14,6) (4,5) (1,1) 31 5 |6
(4,5) = (5.6) = (5,7) = (6,6)
(19,11) (14,6) (5,5) (1,1) (13,5) = (14,6) 41 6 |7
(5.5) = (6.6) = (6,7) = (7.6)
(13,3) = (14,4)
(27,4) (14,4) (13,0) (1,1) 51 7 |8
(13,0) = (14,1) = (14,2) = (15,1)
(13,5) = (14, 6)
(27,6) (14,6) (13,0) (1,1) 71 9 |10
(13,0) = (14,1) = (14,2) = (15,1)
(16,0) = (17,1)
(30,1) (17,1) (13,0) (1,1) 51 7 |8
(13,0) = (14,1) = (14,2) = (15,1)
(32,1) (19,1) (13,0) (1,1) (18,0)= {19, 1) 71 9 |10
(13,0) = (14,1) = (14,2) = (15,1)

Table 2.2: Improvements on the Suzuki function field over Fg via Theorem 2.2.3

2.3 Refinements of the Second Bound

In this section, our goal will be to obtain further improvements over Theorems
2.1.4 and 2.2.3. This is possible if the Riemann-Roch spaces involved satisfy extra

conditions, which are listed in the following Lemma.
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Lemma 2.3.1. Let A, B, D', E, Z be divisors which satisfy

(iv) supp(A — Z — B) Nsupp(F) = 0,

in addition to the hypothesis (1),(ii) and (iii) in Lemma 2.2.2. Let G = A + B,
P € supp(Z)\supp(E) and

AU = B, Al,...,An,Q, An,1 I:A—Z, An = A

be a sequence of divisors satisfying

(V)L(A;) = L(A; + P), foralli=0,1,...,n—1,

(vi) L(G— A) =L(G—A; — P), foralli=0,1,...,n—1,

(vii) A;+ P < Ajyq, foralli=0,1,...,n— 1.

Then, hg(A) > (n — 1) deg P + deg Z.

Proof. We give a sketch since analogous arguments have already been used in the

proofs of earlier results. First, we prove that

The proof is very similar to the proof of Lemma 2.2.2. We use (v), Riemann-Roch

Theorem, (iii), (vi) and Corollary 2.1.2. Then, we see that
hg(Aiz1) > hg(A;+ P), foralli=0,1,...,n—1. (2.10)

We use the assumptions (iv) and (vii) in order to employ Lemma 2.2.1 here. Using
Equations 2.9 and 2.10, we conclude that
hp(A—2Z) =hg(An1) > hp(Ano + P)
- hE (An—Z) + deg P

> hg(Ag) + (n—1)deg P > (n— 1) deg P.

By Lemma 2.2.2 we have hg(A) = hg(A — Z) +deg Z. Hence, the proof is finished.
U

Example 2.3.2. Let F' be the Suzuki function field over Fg as in the previous
examples. Let G = 27P,, and D be the sum of the remaining 64 Fs-rational places.

The gap sequence at P, is
1,2,...,7,9,11,14,15,17, 19, 27. (2.11)

=
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Hence, by choosing A = 27P,,, B =0 and Z = P, in Theorem 2.2.3, we improve
the Goppa bound by 2 and obtain

d>27-26+2=23.

Note that the result of Garcia-Kim-Lax is also applicable here since the code is a
one-point code (let A = 0 in Theorem 1.2.9). The improvement for the same code
Cq(D,G) is 1 in [13, Table 2|.

Now, we would like to improve the lower bound further by using Lemma 2.3.1.
Assume that d = 3. Let (w) = W = G — D' + E be a canonical divisor, where
w € Q(G — D) is a differential yielding a weight 3 codeword, D’ < D is of degree
3 and £ > 0 with deg E = 2. We proceed as in the proof of Theorem 2.2.3 to
conclude that Py, ¢ supp(F). Namely, assuming the opposite we can construct the
code Cq(D, 28 P,,) which contains the codeword produced by w and whose minimum
distance is at least 28 — 26 + 2 = 4, by Theorem 2.1.4 via tha gap sequence (2.11).
This is a contradiction.

Consider the sequence of divisors:

Ay =0, A, = 8P, Ay = 10P,, A3 = 13P,, Ay = 16P,, As = 18P, Ag =
26P,,, A; = 27P4. By the gap sequence (2.11) and the fact that Py, ¢ supp(FE),
this sequence satisfies the hypotheses of Lemma 2.3.1. Hence, hp(27Pyx) > 6+ 1 =
7. However, we also have hp(27P,) < degE = 2, by definition of hg. This
contradiction implies that d(Cq(D,27P,) > 4 and we improve the Goppa bound
by 3.

Example 2.3.3. We continue working with the Suzuki function field F//Fg. Let
G = 27P, + 2Py and D be the sum of the remaining rational places. Let A =
17Py + 2Py, B = 10Py and Z = P, + 2F . Using the equalities

we improve the Goppa bound by deg Z = 3 to conclude that d(Cq(D,G)) > 6 (cf.
Theorem 2.1.4). This is the same as the improvement of Lundell-McCullough (|13,
Table 2]).

Assume that d = 6 and proceed as in Example 2.3.2. Let (w) =W =G—-D'+F

be a canonical divisor, where w € Q(G — D) is a differential yielding a weight 6
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codeword, D' < D is of degree 6 and F > 0 with deg E' = 3. If we assume that P, €
supp(E), then we can construct the code Cqo(D,G + Px) = Cq(D,28Py + 2P, )
which contains the weight 6 codeword produced by w. However, the minimum
distance of Cq (D, 28 P+2P, ) is at least 30—26+(17—13) = 8, since 28 Py, +2FPy ¢ =
(15P5 + 2Py ) + (13P4) and we have L£(15P, + 2Pyy) = L(13P4) (cf. Theorem
2.1.4). This is a contradiction and hence, P, ¢ supp(E).

Due to the fact that P, ¢ supp(E) and the properties of the relevant Riemann-

Roch spaces, the following sequence satisfies the hypotheses of Lemma 2.3.1:
Ag = ]_OPOO, Al = ]-3P007 A2 = ]_6Poo, A3 = ]-7Poo + 2P0,0.

Hence, hp(17Ps + 2Py o) > 2 + 3 = 5. However, we also have hg(17P + 2Py ) <
deg F = 3, by definition of hg. This contradiction implies that d(Cq(D,27P, +
2Py)) > 7 and we improve the Goppa bound by 4. In fact, a similar argument can

be carried out one more time to further improve the estimate to d(Cq(D,27Py +

2Py )) > 8.

(4,7) | da | dra | dg d;
(27,1) | 2 4 716
(29,1) | 3 6 8 | 8
(30,1) | 4 7 8 18
(31,1) | 5 8 919
(32,1) | 6 9 |10 |10
(33,1) | 7| 10 | 11 |11
(24,2) | © 3 4 | 4
(27,2) | 3 6 718
(28,2) | 4 8 718
(30,2) | 6 9 9 |10

Table 2.3: Comparison of the bounds for C; ; = Cqo(D, iPx + jFo )

In |2], Beelen obtained improved minimum distance estimates for codes of the
form C;; = Cqo(D,iPx + jFPoo) (j = 1,2, i + j > 26) on the Suzuki function field
over Fg by using the concept of the generalized order bound. Here, D is the sum

of the remaining 63 rational places of the function field, as in Example 2.3.3. For
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many C; ;’s his bound coincides with that of Lundell-McCullough (cf. |2, page 674]).
Therefore, our bounds in Theorems 2.1.4 and 2.2.3 perform at least as good as the
estimate of Beelen in those cases. In Table 2.3, we list some examples where our
results yield a better estimate than one of the two bounds mentioned above. Except
for one case ((i,7) = (30,1), cf. Table 2.2), we use arguments as in Examples 2.3.2
and 2.3.3 to obtain these improvements. We denote Lundell-McCullough, Beelen

and our bounds by dj,/, dp, ds respectively.
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CHAPTER 3

A NEW EQUIVALENCE RELATION ON THE DIVISOR GROUP

The results of Section 2.1 motivate the study of the following relation on Div(F):
M~N <= L(M)=L(N) (3.1)

In this case we call the divisors M and N equivalent. Clearly, this is an equivalence
relation on Div(F) and we denote the class of a divisor M by ¢(M). Note that this
relation is different from the usual notion of linear equivalence of divisors (cf. [16,
page 16]).

For a divisor M with ¢(M) > 0, it is clear that | M | € ¢(M). Note that Theorems
2.1.4 and 2.2.3 demand divisors M whose class with respect to the new equivalence
is nontrivial, i.e. ¢(M) 2 {M}. Clearly, if ¢(M) = {M} then M = |[M|. The
converse of this is not true in general.

We start with a lemma that contains an observation to be used in this chapter.

Lemma 3.1. If M is nonspecial (i.e. {(M) = deg M + 1 — g), then there exists no
N > M such that L(N) = L(M).

Proof. Since M is nonspecial, any divisor N > M is also nonspecial. If N £ M,
then
((N)=degN+1—g>degM+1—g=4L((M).

Hence, L(N) 2 L(M). O
Proposition 3.2. If deg M > 2g, then ¢(M) = {M}.

Proof. Since M is nonspecial, there exists no divisor N > M in ¢(M) by Lemma
3.1. Hence, if we can show that | M| = M the proof will be finished.
Suppose | M| < M. If deg| M | > 2¢g — 2, then

(([M])=deg|M|+1—g<degM+1—g=1{DM).
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Since | M| € ¢(M), this is a contradiction. Therefore, we have deg| M| < 2g — 2.
Then by Clifford’s Theorem (|16, Theorem 1.6.11]), we have

)y <14 2

However, /(M) = deg M +1— g > g+ 1 by hypothesis. This is a contradiction and
hence, | M| = M. O

Proposition 3.2 shows that the divisor G = A + B in Theorems 2.1.4 and 2.2.3
must satisfy deg G < 4g, since we would like both of the divisors A and B to have
nontrivial classes ¢(A) and ¢(B).

The following observation shows that the lower bound on deg M in Proposition

3.2 is sharp.

Proposition 3.3. Let M be a divisor of degree deg M = 2g — 1. Then, either
c(M)={M} or M =W + P for a canonical divisor W and a rational place P. In
the latter case, we have |[M| =W and

(M) ={WUu{W +Q : Q is a rational place}.

Proof. Assume that ¢(M) # {M}. By Riemann-Roch theorem, we have ¢(M) = g.
Note that a divisor N > M cannot be in ¢(M), since ¢(N) > g for such N. Assume
that N € ¢(M) and N < M. If degN < 2g — 2, then ¢(N) < g by Clifford’s
bound. So, deg N = 2g — 2. Moreover, {(N) = {(M) = g and hence, N = W is a
canonical divisor. Since W < M, we must have M = W + P for a rational place P.
Note that there is no divisor smaller than W in ¢(M) and for any rational place @,

W+ Q) =g. Hence, |[M| =W and W + @Q € ¢(M) for any rational place Q. O

The next result shows that among the divisors of interest with respect to Propo-

sition 3.2, those meeting the Clifford bound are equal to their floor.

Proposition 3.4. If 0 < deg M < 29 — 2 and {(M) = 1+ (deg M)/2, then M =
[ M].

Proof. 1f deg M = 0, then ¢(M) = 1. Note that /(M — P) = 0 for any place P since
deg(M — P) < 0. Therefore, M = | M| in this case.
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For a divisor M with 0 < deg M < 2¢g — 2 that meet the Clifford bound, assume
that |M | # M. Then, L(M) = L(M — P) for some place P. On one hand

deg M
2 b

O(M = P)= (M) =1+

and on the other hand

deg(M — P
(M —-P)<1+ % ( by Clifford’s Theorem).
This yields a contradiction, hence | M| = M. O

Remark 3.5. By Proposition 3.4 we have W = |W | for any canonical divisor.

Our discussion on the triviality of the class of a divisor will end with a result that
relates this to the index of speciality of its floor (cf. Corollary 3.7). For this purpose
we need the following lemma which is a slight generalization of [16, Proposition

1.6.10]. We will denote the set of rational places of the function field F' by ]P’%l).

Lemma 3.6. Let M be a special divisor of F' and assume that F' has at least 2g —
1 — deg M rational places. Then, there exists a rational place P € ]P’%l) such that
L(M)= L(M+ P).

Proof. Suppose that L(M + P) # L(M) for any rational place P. This implies that
UM+ P)=0M)+1 and (M + P) =i(M),

for any P € ]P’g). Hence, L(W — M — P) = L(W — M) for a canonical divisor W of
F and for any P € ]P’E}). Then we have

LW-M) = () LW-M-P)
= L{ged({W—-M-P:PePP}))  (by Lemmal12)

By assumption ¢(W — M) = i(M) > 0 whereas the dimension of the last divisor

is 0, since its degree is negative. So, there must exist a rational place P with

L(M) = L(M + P). O
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Corollary 3.7. Let M be a divisor of F' with ((M) > 1.

(i) If | M| is nonspecial, then | M| = M and ¢(M) = {M}.

(ii) Assume that F has at least 2g — 1 — deg M many rational places. Then the
converse of part (i) is true, i.e. if ¢(M) = {M}, then | M| is nonspecial.

Proof. (i) By Lemma 3.1, there exists no divisor in ¢(M) that is greater than | M |.
From the minimality of the floor, we reach the conclusion.

(ii) Assume that |M | is special. Then, Lemma 3.6 implies that L(|M| + P) =
L(|M]) for some rational place P. Hence | M |+ P € ¢(M), which is a contradiction
to triviality of the class of M. O

For a divisor M with ¢(M) > 1, define the height of its class ¢(M) as
ht(c(M)) :== max{deg N —deg L : N, L € ¢(M)}.

Since the floor of divisors in the same class are the same, the height of any two
such divisors are also the same. In the rest of this section, we are interested in the

maximum possible height for a given class.

Proposition 3.8. Let M be such that (M) > 1. Then,

ht(e(M)) < i([M]) (3-2)
< g+1—4M) (3.3)
<y (3.4)

Proof. If deg M > 2g or i(| M |) = 0, we know by Proposition 3.2 and Corollary 3.7
that ¢(M) = {M?}, which is not interesting. Therefore we assume that deg M <
2g — 1 and i(|M]) > 0. Let N be a divisor in ¢(M). Since ¢((N) = ¢(|M]), from

Riemann-Roch theorem we have
deg N — deg| M| =i(|M]) —i(N) <i(|[M]).

This proves (3.2). Let W be a canonical divisor of the function field. Since we
assumed that i(|M]) =¢(W — |[M]) > 0 and ¢(|M]) = (M) > 1, by [16, Lemma
1.6.12] we have that

LW = [M]) =W — [M])+([M]) = ([ M]) ST+EW)—l(M) =g+1—((M).
This proves (3.3). Note that the last inequality is trivial. O
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The bound (3.2) on the size of ht(c(M)) is sharp under a mild assumption as

the following theorem shows.

Theorem 3.9. Assume that a function field F' has at least 2g—1—deg| M | rational
places, where M is a divisor with (M) > 1 and i(|M]) > 1. Then for any 1 <
i <i(|M]), there exists N; € ¢(M) such that deg N; — deg| M | = i. In particular,
ht(e(M)) = i(| M),

Proof. By Lemma 3.6, there exists a divisor Ny € ¢(|M|) = ¢(M) with deg Ny —
deg| M| = 1. If N; is nonspecial, then

U(|M])=4t(N;) =deg Ny +1—g=deg|M|+1—g+1.

Hence, i(| M ]) = 1 and this shows the sharpness of the bound (3.2). If NV} is special,
then apply Lemma 3.6 to Ny to construct Ny € ¢(Ny) = ¢(|M]) with deg Ny =
deg Ny +1. Continuing this way, we can construct divisors Ny, ..., Nim)) € ¢([M])
such that

deg N; —deg| M| =i, foreach 1 <i<i(|M]).

U
Remark 3.10. By [1, Proposition 9|, most function fields F/F, of genus g > 2

have an effective nonspecial divisor of degree g. The dimension of such a divisor M

satisfies

(M) =degM+1—g=1.

Hence, L(M) = F, = £(0). Therefore, the bound 3.4 is reached by some pair of

divisors for many function fields, regardless of the number of rational places.
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