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ABSTRACT

FACIAL FEATURE POINT TRACKING BASED ON A GRAPHICAL MODEL
FRAMEWORK

Serhan COŞAR

Electronics Engineering and Computer Science, MS Thesis, 2008

Thesis Supervisor: Assistant Prof. Dr. Müjdat Çetin

Thesis Co-Supervisor: Prof. Dr. Aytül Erçil

Keywords: Facial feature tracking, human-computer interaction, facial expression
analysis, graphical models

In this thesis a facial feature point tracker that can be used in applications such as

human-computer interfaces, facial expression analysis systems, driver fatigue detec-

tion systems, etc. is proposed. The proposed tracker is based on a graphical model

framework. The position of the facial features are tracked through video streams by

incorporating statistical relations in time and the spatial relations between feature

points. In many application areas, including those mentioned above, tracking is a

key intermediate step that has a significant effect on the overall system performance.

For this reason, a good practical tracking algorithm should take into account real-

world phenomena such as arbitrary head movements and occlusions. Many existing

algorithms track each feature point independently, and do not properly handle oc-

clusions. This causes drifts in the case of arbitrary head movements and occlusions.

By exploiting the spatial relationships between feature points, the proposed method

provides robustness in a number of scenarios, including e.g. various head move-

ments. To prevent drifts because of occlusions, a Gabor feature based occlusion

detector is developed and used in the proposed method.

The performance of the proposed tracker has been evaluated on real video data



under various conditions. These conditions include occluded facial gestures, low

video resolution, illumination changes in the scene, in-plane head motion, and out-

of-plane head motion. The proposed method has also been tested on videos recorded

in a vehicle environment, in order to evaluate its performance in a practical setting.

Given these results it can be concluded that the proposed method provides a gen-

eral promising framework for facial feature tracking. It is a robust tracker for facial

expression sequences in which there are occlusions and arbitrary head movements.

The results in the vehicle environment suggest that the proposed method has the

potential to be useful for tasks such as driver behavior analysis or driver fatigue

detection.

xi



ÖZET

GRAFİKSEL MODEL TABANLI YÜZ ÖZNİTELİK NOKTA TAKİBİ

Serhan COŞAR

Elektronik Mühendisliği ve Bilgisayar Bilimleri, Yüksek Lisans Tezi, 2008

Tez Danışmanı: Yard. Doç. Dr. Müjdat Çetin

Yardımcı Tez Danışmanı: Prof. Dr. Aytül Erçil

Anahtar Sözcükler: Yüz öznitelik takibi, insan-bilgisayar arabirimi, yüz ifade

analizi, grafiksel modeller

Bu tezde önerilen yöntem, insan-bilgisayar arayüzü, mimik analiz sistemleri,

sürücü yorgunluğu algımalara sistemlerinde kullanılabilecek bir yüz öznitelik

takip yöntemidir. Önerilen yöntemin tabanı grafiksel modellere dayanmaktadır.

Zamandaki istatistiksel ilişkiler ve öznitelikler arasındaki uzamsal ilişkiler kul-

lanılarak öznitelik noktalarının yerleri takip edilmektedir. Yukarıda bahsedilen

bir çok uygulama alanında takip, bütün sistemin başarımını etkileyebilecek kadar

önemli bir role sahiptir. Bu nedenle iyi bir takip algoritması gerçekte meydana

gelebilecek şartları (keyfi kafa hareketleri ve yüz üzerinde oluşabilecek engeller)

göz önüne almalıdır. Varolan bir çok yöntemde öznitelik noktaları ayrı ayrı takip

edilmekte ve engel olma durumu düzgün şekilde ele alınmamaktadır. Bu, keyfi

kafa hareketlerinde ve engel durumlarında kaymalara sebep olmaktadır. Burada

önerilen yöntem öznitelikler arasındaki uzamsal bilgiyi de hesaba katarak bu tarz

durumlarda gürbüzlük sağlamaktadır. Engeller yüzünden oluşabilecek kaymalar

Gabor öznitelikleri üzerine kurulu bir engel algılayıcı ile düzgün bir şekilde bertaraf

edilebilmektedir.

Önerilen yöntemin başarımı bir çok farklı şartlar altında kaydedilmiş videolar



üzerinde değerlendirilmiştir. Bu farklı şartlar; özniteliklerin engellenerek sahnede

görülmediği durumları, düşük çözünürlüklü verileri, sahnede aydınlanma değişimi

olan durumları, düzlemsel kafa hareketi ve düzlem dışı kafa hareketlerinin olduğu

durumları içermektedir. Yöntem ayrıca otomobil ortamında kaydedilen videolarda

da denenerek, yöntemin pratik bir uygulamadaki başarımı değerlendirilmiştir.

Bu sonuçlardan yola çıkarak, önerilen yöntemin yüz öznitelik takibi için yaygın

kullanılabilecek, gelecek vaadeden bir yöntem olduğu sonucuna varılabilmekte

ayrıca engel ve kafa hareketi içeren mimik video dizilerindeki başarımına göre

de gürbüz bir yöntem olduğu sonucuna varılabilmektedir. Otomobilde sürüş

şartlarında kaydedilen videolardaki başarıma bakılırsa yöntemin, sürücü davranışı

analiz sistemlerinde veya sürücü yorgunluk algılama sistemlerinde kullanılabilecek

kuvvette bir yöntem olduğu kanısına varılabilir.

xiii



CHAPTER 1

INTRODUCTION

The aim of this thesis is to develop a novel method for facial feature track-

ing which is robust under real-world conditions such as occlusions, arbitrary head

movements.

1.1 Motivation

Beginning from the time of the first invention of computers, they made their

way easily to everyone’s homes and offices and they became a part of human’s life.

Now, people spend much of their time in a day working in front of their computers.

People communicate with their computers more than they communicate with their

wives/husbands, friends, parents, etc. The communication between the human and

the computer has become very important and crucial. Since the beginning of this

communication it has been done by using interface devices, such as the mouse and

the keyboard. Although working with a mouse and a keyboard seems comfortable

in most situations, it is not natural to humans at all. There have been an increasing

amount of diseases people suffer because of working in front of computers in

uncomfortable positions. Consider how people pass their thoughts, opinions, and

information to each other. Using non-verbal signals such as body language and

facial expressions, humans can signal need, fear, or pain without words. So one

question can be asked at this point: Why can people not just communicate with

computers in the same manner?

Consider a computer that understands a human based on facial gestures, body

movements, voice, etc. This can be a dream, but as in most cases, it was not in film

industry. Stanley Kubrick directed a film in 1968 called ”2001 : A Space Odyssey”

which is based on the first book of a four novel series by Arthur C. Clarke. In the

film there was a computer called ”HAL 9000” which was the main computer of

the spaceship. But this was not the main thing about it. HAL could hear, speak,

plan, recognize faces, see, and judge facial expressions. It could even read lips!

Considering the current state of the technology, it can be concluded that humans



are not yet close to building a computer with the full intelligence or visual ability

of HAL.

Building such a human-computer interface (HCI) requires a variety of com-

puter vision-based analysis methods such as face analysis, gesture analysis, body

analysis, etc. Considering all these methods, analyzing face can give very effective

results because face has a very important role in the human body that can commu-

nicate lots of information. Face is a natural means by which people recognize each

other. One of the first visual patterns a baby learns to recognize is the face. Such

a face analysis system is a tool that can be used in a broad area of applications

that relate to both academic research and commercial research topics. Such topics

are: automatic surveillance systems, the classification and retrieval of images and

videos, smart environments (smart vehicles, automatic driver fatigue detection,

etc.), video-phone and video conferencing, model-based facial image coding (for

example MPEG-4), face-based biometric person authentication systems, virtual

reality and games, disabled aid, even in experimental behavioral psychology.

1.2 Problem Definition & Current State of the Art

A face analysis system, mentioned in the previous section, concerns some

sub-topics such as the detection, tracking, recognition and modeling of faces or

facial expressions in still images or image sequences. By the developments in the

last decade, it can be concluded that face recognition methods have come to a

certain level. There are many algorithms that can robustly work under various

conditions. But in facial expression analysis systems there are still problems that

have not been solved yet. Facial expression analysis is currently one of the most

challenging problems in pattern analysis research community.

A facial analysis system can be divided into three parts, illustrated in Figure

1.1. The feature detection involves detecting some distinguishable points that can

define the movement of facial components such as eyes, eye brows, mouth. The

expression recognition part uses the information from the tracking part and outputs

results such as happy, sad, surprised, etc. The tracking part is the tracking phase

of the detected features. It can be defined as a bridge between the detection and

recognition part for this reason it is the most important part of a facial analysis

system. Beyond its importance, facial feature tracking is a very challenging problem

because each facial expression is generated by non-rigid object deformations and

these deformations are person-dependent. The complex nature of generating facial

expressions makes it a hard problem starting from the representation phase of facial

2



Figure 1.1: A facial analysis system.

components. Other than the complex movement of these facial components, there

is the movement of head that makes the problem even more complex. In addition

to these ”inner” problems there are ”outer” problems reasoned by external effects

such as external occlusions, low resolution data, etc.

1.3 Contributions of this Thesis

To cope with such problems mentioned in the previous section, in this thesis

a video based facial feature point tracking method that is based on graphical model

framework is proposed. The proposed method is built on a statistical tool that

uses the temporal relations in time and spatial relations between facial features.

These statistical connections provide tracking to continue in the case of arbitrary

head movements and uncertain data. In real-world scenarios facial features can

be occluded and data may become useless. The proposed work can also handle

occlusion and prevent the tracker to lose feature point positions.

1.4 Outline

The outline of the thesis is as follows: in chapter 2, the mathematical tools

that this thesis is based on are explained in detail and some recent works are ex-

amined. In chapter 3, in the light of the mathematical tools, the proposed method

based on graphical models is explained in detail. The performance evaluation re-

sults for the proposed tracker under various conditions are presented in chapter 4.

Finally in chapter 5, conclusions are made and some possible extensions and future

research directions are discussed.

3



CHAPTER 2

BACKGROUND

In this chapter firstly general tracking, covering all kinds of tracking problems,

is briefly introduced and existing methods in this area are examined. In sections 2.2

and 2.3, Kalman filtering and Graphical Models are explained in detail since they

are the tools this thesis is based on. In section 2.4, one of the subtopics of general

tracking and the main topic of this thesis, facial feature tracking is explained and a

detailed literature overview is given. Finally in section 2.5 a discussion in the light

of previous methods is provided; open research areas are stated and the motivation

of this thesis is explained.

2.1 Tracking

Tracking is the process of locating a moving object (or several objects) in

image over time using a camera. This process typically consists of the analysis of

video frames and outputting the location of the moving target within frames as an

output. There are three main cases in tracking problems: moving object, moving

camera, and the case when both of them are moving. Because of the complexity of

other cases most of the current work is focused on the static-camera, moving-object

case. Although this case seems simpler compared with other cases, one of the

main difficulties here is the association of target locations in consecutive frames

when the objects are moving fast relative to the frame rate. To cope with such

problems, different motion models are used to describe the movement of the objects.

Usually tracking is used as the mid-part of a behavior analysis system, as il-

lustrated in Figure 2.1. A typical behavior, motion analysis system consists of three

parts: detection, tracking, and activity recognition. Tracking plays an important

role between detection and activity recognition. It uses the information from

detection part, detected regions or points, and outputs tracking results which are to

be used by the activity recognition part. In recent years because of the improvement

in these kinds of systems, the moving object definition is also extended and other

tracking problems like human tracking, hand tracking, face/head tracking, facial



Figure 2.1: A general diagram of a behavior understanding system.

component tracking have arisen. In this section these problems will be briefly

introduced and the approaches that have emerged as the solution of these problem

will be briefly explained.

As explained above, object tracking is the problem of estimating the trajec-

tory of an object in the image plane as it moves around a scene [55]. There are

lots of methods that differ from each other based on the way they approach object

representation, the way they use image features, and the way they model motion,

appearance, and shape of objects. For example, points, geometric shapes and object

contours can be used for representation [55, 23, 12]. There are some methods that

use probability densities of object features, templates or active appearance models

for representation [55, 15]. Different color spaces, like RGB, HSV or YCrCb, edge

properties, optical flow or texture can be used as image features [55, 11]. For point

tracking there are deterministic methods in which a cost associating each object in

frame t - 1 to a single object in frame t using a set of motion constraints is defined.

There are also statistical methods such as Kalman Filters, Particle Filters that use

the state space approach to model the object properties such as position, velocity,

and acceleration. In methods where objects are represented as templates there are

methods like Mean-Shift, Kanade-Lucas-Tomasi (KLT) Tracker that use density

based appearance models. In contour or shape based methods, some works use

state space models to define the shape and the motion parameters of the contours

or some other works evolves contours using energy functionals to define the shapes.

In addition there are methods that use Hough transform or histograms for object

shape matching.

The methods in human tracking, hand tracking or face tracking which are

other emerging application areas can also be divided into categories similar to the

ones explained above. Because this similar categorization and because these topics

are out of the scope of this thesis, no more information will be given further. For

more information please refer to [55, 48, 47]. In section 2.4, facial feature track-

5



ing as the main scope of this thesis is examined and a literature overview is provided.

Since the statistical tracking methods constitute the main scope of this the-

sis, the theoretical background of these methods is explained in this paragraph.

For such methods, tracking, if described as a statistical problem, is the processing

of measurements obtained from an object in order to maintain an estimate of its

current state, which typically consists of kinematic components (position, velocity,

etc.) and other components (signal strength, image intensity, etc.). Let xt denote

the state to be estimated, and let y1:t be the measurement vector (observations up

to t: {y0, y1, ..., yt}) where the subscript t denotes a discrete time index. Both xt

and y1:t are in general random quantities. Let p(xt) be the distribution of xt; then

the joint distribution is p(xt, y1:t) = p(xt)p(y1:t|xt), where p(y1:t|xt) is the likelihood

function. Using Bayes theorem,

p(xt|y1:t) =
p(xt)p(y1:t|xt)∫
p(xt)p(y1:t|xt)dxt

(2.1)

which is the posterior distribution of xt, and is what Bayesian inference attempts to

estimate. Assuming p(xt|y1:t) is obtained, tracking is solved; knowing, by definition,

everything about the current state of the object, including its location and other

dynamics in the state vector. Thus tracking can be formulated as a Bayesian

inference problem, with p(xt|y1:t) as the objective. Note that in this formulation,

the posterior p(xt|y1:t) is a time-varying quantity; in a tracking problem, p(xt|y1:t)

at time t is evolved from p(xt−1|y1:t−1) at time t− 1. In this sense, tracking is also

a density propagation problem.

In reality, instead of obtaining the posterior density itself, a Bayesian infer-

ence task may focus on only estimating some properties of the density, such as

moments, quantiles, highest posterior density regions, etc. All these quantities can

be expressed in terms of posterior expectations of functions of xt. The posterior

expectation of a function f(xt)is

E[f(xt)|yt] =

∫
f(xt)p(xt)p(yt|xt)dxt∫

p(xt)p(yt|xt)dxt

(2.2)

The integration in this expression has until recently been the source of most of the

practical difficulties in Bayesian inference, especially in high dimensions. In most

applications, analytic evaluation of this integration is impossible. The alternative

is numerical approximation. Most of the statistical tracking literature focus on the

development of this kind of approximate numerical techniques for this computation
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problem.

In the next two sections, two statistical methods based on the Bayesian tracking

scheme explained above are examined in detail.

2.2 Tracking Using Kalman Filtering

A Kalman filter is an optimal recursive estimator that infers parameters of an

interest from indirect, inaccurate and uncertain observations of this interest. In the

state-space representation, this interest becomes the unknown state variable, xt, and

uncertain observations become measurements, yt, for a sequence t = {0, ..., T}. This

is illustrated in Figure 2.2. State-space models can be defined as a notational con-

venience for estimation and control problems. It is developed to make the problems

tractable for analysis. In Kalman filter the process noise is assumed as a Gaussian

distribution. Because there is a linear relation in the model, this assumption pro-

vides the unknown state, xt, to be also represented by a Gaussian. This ensures the

optimality of the estimator that comes from minimizing the mean square error of

the estimated unknown states.

Figure 2.2: State-space representation of Kalman filter.

Consider a dynamic process described by an n-th order difference equation as a

linear system

xi+1 = a0,ixi + a1,ixi−1 + ... + an−1,ixi−n+1 + wi i ≥ 0 (2.3)

where {wi} is the zero−mean (statistically) and white (spectrally) Gaussian noise

with a covariance matrix Q. Considering the initial random variables of x as

{x−n+1, ..., x−1, x0}, these are also zero-mean Gaussian distributions with covariance

matrix Σ0, the initial covariance matrix of the dynamic process in equation 2.3. As-

suming {wi} and {xi} are statistically independent, the linear dynamic system can
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have the following form

~Xi+1 =




xi+1

xi

xi−1

...

xi−n+2




=




a0 a1 · · · an−2 an−1

1 0 · · · 0 0

0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0




︸ ︷︷ ︸
A




xi

xi−1

xi−2

...

xi−n+1




︸ ︷︷ ︸
~Xi

+




1

0

0
...

0




︸ ︷︷ ︸
D

wi (2.4)

Thinking of the observation term, the above expression leads to a general form as

~Xi+1 = A ~Xi + Bui+1 + Dwi (2.5)

~Yi =
[

1 0 · · · 0
]

~Xi + Evi = Ci
~Xi + Evi (2.6)

where {~Yi} represents the observations and {wi}, {vi} represents the statistically

independent Gaussian noises for the process (transition) model and measurement

(observation) model with covariance matrices Q and R respectively. Thus, the

equations 2.5 and 2.6 are the transition equation and measurement equation

respectively. Here the {ui} term represents the input to the model which is a need

for control problems but it can be neglected for most of the estimation problems.

The Kalman filter is a tool for estimating state-space variables that have a

linear-Gaussian relation between each other. The reason it is called a ”filter” is

because it finds the best estimate from noisy data, filtering out the noise, and it

uses only the previous data, not the future data which would produce an off-line

algorithm.

Defining X̂−
k to be a priori state estimate at step k given knowledge of the

process prior to step k, and X̂k to be a posteriori state estimate at step k given

measurement Yk, a priori and a posteriori estimate errors can be defined as

e−k = Xk − X̂−
k (2.7)

ek = Xk − X̂k (2.8)

The a priori and a posteriori estimate error covariances are

Σ−
k = E[e−k e−T

k ] (2.9)

Σk = E[eke
T
k ] (2.10)

Considering the actual measurement, the equations of the Kalman filter begin with

the goal of finding an equation that computes an a posteriori state estimate X̂k as
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a linear combination of an a priori estimate X̂−
k and a weighted difference between

an actual measurement Yk and a measurement prediction CX̂−
k as

X̂k = X̂−
k + K(Yk − CX̂−

k ) (2.11)

The difference (Yk − CX̂−
k ) in equation 2.11 is called the residual that reflects the

disagreement between the predicted measurement CX̂−
k and the actual measure-

ment Yk.

The matrix K is called the gain of Kalman filter that is a minimum mean-

square error (MMSE) estimator for the a posteriori error covariance in equation

2.10. For the detailed derivation of this minimization please refer to [8]. One form

of the resulting K is

Kk = Σ−
k CT (CΣ−

k CT + R)−1 (2.12)

After finding the Kalman gain, the a posteriori (optimal) estimate, X̂k, and the

error covariance matrix of the a posteriori estimate, Σ̂k can be found easily. Con-

sidering the terms (a priori and a posteriori) in the derivations up to now, Kalman

filter has two steps: prediction and the correction of this prediction by the use of

measurements. In the light of the derivations these two steps are

X̂−
k = AX̂k−1 (2.13)

Σ−
k = AΣk−1A

T + Q (2.14)

and

Kk = Σ−
k CT (CΣ−

k CT + R)−1 (2.15)

X̂k = X̂−
k + K(Yk − CX̂−

k ) (2.16)

Σk = (I −KkC)Σ−
k (2.17)

respectively.

As these equations are recursive equations, Kalman filter is a recursion algo-

rithm where a priori estimate and a posteriori estimate contribute to each other

as time increments, illustrated in Figure 2.3.

The two critical assumptions of Kalman filters, the linearity and Gaussian

distribution, may not be satisfied in some cases. For example, there can be some

cases where the relations between the unknown variable and its observations can

not be modeled as a linear-system. To deal with such problems, the non-linear

version of Kalman filter, extended kalman filter (Ekf), can be used. When the
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Figure 2.3: Recursive nature of Kalman filter equations.

Gaussian assumption of Kalman filter is not enough, particle filter that is based

on non-Gaussian distributions can be used.

Kalman filter is also a tool for many control problems. To see such an expla-

nation of the Kalman filter from a control problem aspect, please see [27, 29, 30, 26].

As it can be concluded from the above explanations, Kalman filter is an al-

gorithm that can be used for state estimation problems. In these kinds of problems,

typically the states represent each parameters of interest individually. For instance;

in a tracking problem, each state represent an individual object of interest. This

can not be enough in some cases and there can be need of statistical relations

between each state. This can be done by augmenting the states and defining a new

state that includes all the parameters of interests. Thus, the relations between the

objects can be represented in the covariance matrix of the joint probability. In this

case the corresponding covariance matrix will be a full matrix and this will be a

load in computations. To deal with this problem, according to the relations between

states, the inverse covariance matrices should be constructed as sparse matrices.

But in most cases this construction is not easy. Graphical models provides an

convenient framework in which the inverse covariance matrices can be constructed

as sparse matrices easily by using the visualization property of graph theory. In the

next section this framework will explained in detail.
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2.3 Tracking Using General Graphical Models

2.3.1 General Description

Graphical models can be defined as a marriage of graph theory and proba-

bility theory. As the fruits of this marriage, they provide a tool for the two major

problems of engineering: uncertainty and complexity. The visualization property

and the modular structure of graph theory makes complex probabilistic relations

clear and understandable. In addition, inference algorithms make this structure to

be computationally more powerful and robust.

Most of the classical probabilistic methods like Kalman filters, hidden Markov

models, factor analysis are special cases of this general graphical framework.

Graphical models have an increasingly important role in the design and analysis

of machine learning algorithms and provide a powerful basis, a common language

for many applications with probabilistic descriptions. This gives an opportunity

for their extensive use in fields such as artificial intelligence, error correcting

codes, speech processing, statistical physics, image processing, remote sensing, and

computer vision.

Generally a graph G is defined by a set of nodes V , and a corresponding set

of edges E. Each node s ∈ V is associated with a random vector xs which can

be drawn from a wide range of probability distributions. But only Gaussian

distributions are in the scope of this thesis. Usually there is an observation node ys

that is associated with every node xs. If there is an observation on a node, that

node is shown as shaded. Some examples are given in Figure 2.4-a.

(a) (b)

Figure 2.4: (a) Some examples of different variable types (square is for discrete
random variable, circle is for continuous random variable) (b) an undirected graph.

Each edge (s, t) ∈ E connects two nodes {s, t} ∈ V where s 6= t. Consider there are
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a sequence of nodes s0, s1, ..., sT a path between nodes s0 and sT is defined to be in

such a way that (si−1, si) ∈ E for i = 1, ..., T , and (si−1, si) 6= (sj−1, sj) for i 6= j. If

there is a path between every pair of nodes then G is said to be a connected graph.

A cycle, or loop, is defined as a path which starts and ends with the same node. If

a graph has no cycles, it is said to be tree-structured. Note that in a connected

tree-structured graph, there is a unique path between each pair of nodes. A clique

is defined to be a set of nodes in which every node is directly connected to every

other node in the clique. For example, in Figure 2.4-b the sets {x1}, {x1, x3},
{x1, x3, x4}, and {x1, x3, x5} are all cliques. However, {x1, x3, x4, x5} is not a clique

because there is no edge between x4 and x5.

The (lack of) edges represent conditional independence assumptions. They

provide a compact representation of joint probability distributions. For example,

consider the case of N binary random variables. A representation of the joint,

P (X1, ..., XN), needs O(2N) parameters, whereas a graphical model may need

exponentially fewer, depending on which conditional independence assumptions

are made. The neighborhood of a node s ∈ V is defined as N(s) = {t|(s, t) ∈ E}.
The models are divided into two main categories: directed and undirected graphs.

Directed graphs are graphs in which there is a causal relation between random

variables. In undirected graphs the relation is bidirectional.

2.3.2 Directed Graphs

Directed models are the models where there is a one way relation between

nodes. For instance, if there is an edge from node s to node t this means that s

’causes’ t. So, this disallows directed cycles, loops. Directed graphical models,

also known as Bayesian networks (BNs), belief networks, etc. are popular with the

artificial intelligence (AI) and machine learning communities.

Consider the example in Figure 2.5. Here, nodes represent binary random variables.

The event ”grass is wet” (W = true) has two possible causes: either the water

sprinkler is on (S = true) or it is raining (R = true). The strength of this relation-

ship is shown in the table below W; this is called W’s conditional probability table

(CPT). For example, P (W = true|S = true,R = false) = 0.9 (second entry of

second row), and hence, P (W = false|S = true, R = false) = 1− 0.9 = 0.1, since

each row must sum to one. Since the C node has no parents, its CPT specifies the

prior probability that it is cloudy (in this case, 0.5).

The simplest statement of the conditional independence relationships encoded
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Figure 2.5: A example for directed graphical models (Taken from [31]).

in a Bayesian network, like the example given in Figure 2.5, can be stated as

follows: a node is independent of its grandparents given its parents, where the

grandparent/parent relationship is with respect to some fixed topological ordering

of the nodes. This fact can be used to specify the joint distribution more compactly.

By the chain rule of probability, the joint probability of all the nodes in Fig-

ure 2.5 is

P (C, S,R, W ) = P (C)× P (S|C)× P (R|C, S)× P (W |C, S,R) (2.18)

By using conditional independence relationships, it can be rewritten as

P (C, S, R, W ) = P (C)× P (S|C)× P (R|C)× P (W |S, R) (2.19)

where this allows the third term to be simplified because R is independent of S

given its parent C (written R ⊥ S|C), and the last term because W is independent

of its grandparent C given its parents S, R (W ⊥ C|S,R).

The conditional independence relationships allows to represent the joint more
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compactly. Here the savings seem minimal, but in general, if there are n binary

nodes, the full joint would require O(2n) parameters, but the factored form would

only require O(n2k) parameters, where k is the maximum fan-in of a node.

As mentioned in section 2.3.1, most of the classical statistical methods are

the special cases of general graphical models. For example, PCA, ICA, HMM,

Kalman filters, etc. can be described as directed graphical models. This description

for time-series statistical models like Kalman filters, HMM, etc will be given in this

section. For other explanations please refer to [31].

For time series statistical models, consider the model in Figure 2.6-a, which

represents a hidden Markov model (HMM). This makes the joint distribution

P (Q, Y ) = P (Q1)P (Y1|Q1)
4∏

t=2

P (Qt|Qt−1)P (Yt|Qt) (2.20)

For a sequence of length T , it will be for T time steps. In general, such a dynamic

Bayesian network (DBN) can be specified by just drawing two time slices–the

structure (and parameters) are assumed to repeat.

The Markov property states that the future is independent of the past given

the present, i.e., Qt+1 ⊥ Qt−1|Qt. This Markov chain can be parameterized by using

a transition matrix, Mij = P (Qt+1 = j|Qt = i), and a prior distribution, P (Q1 = i).

An HMM is a hidden Markov model because the states, Qt, of the Markov

chain cannot be seen, instead what is observed is just a function of them, namely

Yt. For example, if Yt is a vector, then P (Yt = y|Qt = i) = N(y; µi, Σi). A richer

model, widely used in speech recognition, is to model the output (conditioned on

the hidden state) as a mixture of Gaussians.

A linear dynamical system (LDS), like in Kalman filter, has the same topology

as the model in Figure 2.6-b, except that the hidden nodes have linear-Gaussian

CPDs. Replacing Qt with Xt, the model becomes

P (X1 = x) = N(x; x0, Σ0) (2.21)

P (Xt+1 = xt+1|Ut = u; Xt = x) = N(xt+1; Ax + Bu,Q) (2.22)

P (Yt = y|Xt = x; Ut = u) = N(y; Cx + Du; R) (2.23)

As it can be seen here, the description of the linear system in Kalman filter is same
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(a) (b)

Figure 2.6: (a)A hidden Markov model (HMM) shown for 4 time slices (b)An input-
output HMM.

with the description in section 2.2. Notice that typical equations of Kalman filter

can also be derived from this aspect.

2.3.3 Undirected Graphs

These models are also known as Markov random fields (MRFs). In Markov

random fields, the structural properties of the graphs play an important role. The

conditional independence in MRF is defined with graph separation. Assume that

A, B, and C are subsets of V . Then B is said to separate A and C if and only

if there is one path between sets A and C which only pass through set B. It can

be said that a graphical model has Markov property if xA and xC are conditionally

independent given xB when A and C are separated by B. According to Figure 2.4-b,

the sets {x4}, {x5}, and {x2} are separated by the set {x1, x3}. So random variables

x4, x5, and x2 are conditionally independent given x1 and x3 as

p(x2, x4, x5|x1, x3) = p(x2|x1, x3)p(x4|x1, x3)p(x5|x1, x3) (2.24)

In general the above property is as follows

p(xs|xV \s) = p(xs|xN(s)) (2.25)

where the neighborhood of a node s is defined as N(s) = {t|(s, t) ∈ E}. This means

that the probability distribution of a random variable, conditioned on its nearest

neighbors, at any given node is independent of the rest of the model.

The joint distribution of MRF is defined by

p(x) =
1

Z

∏
c∈C

ψc(xc) (2.26)

where C is the set of maximal cliques in the graph, ψc(xc) is a potential function

(a positive, but otherwise arbitrary, real-valued function) on the clique xc, and Z is
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the normalization factor:

Z =
∑

x

∏
c∈C

ψc(xc) (2.27)

Consider the example in Figure 2.4-b, with the observations nodes. In this case, the

joint distribution is

P (x, y) α ψ(x1, x3, x5)ψ(x1, x3, x4)ψ(x2, x3)
4∏

i=1

ψ(xi, yi) (2.28)

This structure is first used in a low-level vision problem [20] where the xi’s are

usually hidden, and each xi node has its own ‘private’ observation node yi, as in

Figure 2.4-b. The potential ψ(xi, yi) = P (yi|xi) encodes the local likelihood; this is

often a conditional Gaussian, where yi is the image intensity of pixel i, and xi is the

underlying scene ‘label’.

2.3.4 Inference

The main goal of inference is to estimate the values of hidden nodes, given

the values of the observed nodes.

For a directed graph, if there is an observation on the ”leaves” of the model,

and the hidden variables that causes this are trying to be inferred, this is called

diagnosis, or bottom − up reasoning; if there is an observation on the ”roots”

of the model, and the effects are trying to be predicted, this is called prediction,

or top − down reasoning. In undirected graphs, since there is no causal relation

between nodes, such a distinction is not required, but the main goal still remains.

The inference is divided into two categories: exact inference and approximate

inference. In the following two sections these two categories are explained.

2.3.4.1 Exact Inference

Consider the water-sprinkler network in Figure 2.5, and suppose there is an

observation that shows the grass is wet, which is denoted by W = 1 (1 represents

true, 0 represents false). There are two possible causes for this: either it is raining,

or the sprinkler is on. Which is more likely? Bayes’ rule can be used to compute

the posterior probability of each explanation. Bayes’ rule states that

P (X|y) =
P (y|X)P (X)

P (y)
(2.29)

where X are the hidden nodes and y is the observed evidence. In words, this

formula becomes
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posterior =
conditional likelihood× prior

likelihood
(2.30)

In the current example,

P (S = 1|W = 1) =
P (S = 1, W = 1)

P (W = 1)
=

∑
c,r P (C = c, S = 1, R = r,W = 1)

P (W = 1)
(2.31)

=
0.2781

0.6471
= 0.430

and

P (R = 1|W = 1) =
P (R = 1,W = 1)

P (W = 1)
=

∑
c,s P (C = c, S = s,R = 1,W = 1)

P (W = 1)
(2.32)

=
0.4581

0.6471
= 0.708

where

P (W = 1) =
∑
c,s,r

P (C = c; S = s; R = r; W = 1) = 0.6471 (2.33)

is a normalizing constant, equal to the probability (likelihood) of the data. So,

it is more likely that the grass is wet because it is raining than because of the

sprinkler: the likelihood ratio is 0.708/0.430 = 1.647. (Note that this computation

has considered both scenarios, in which it is cloudy and not cloudy.)

In general, computing posterior estimates using Bayes’ rule is computation-

ally intractable. One way to see this is just to consider the normalizing constant,

Z: in general, this involves a sum over an exponential number of terms. (For

continuous random variables, the sum becomes an integral, which, except for

certain notable cases like Gaussians, is not analytically tractable). Lots of methods

are developed to solve this problem. They have usually used the conditional

independence assumptions encoded in the graph to speed up exact inference. In

the following sections these methods are explained.

Elimination

Consider the problem of computing the normalizing constant P(W = 1) for

the water–sprinkler model. Using the factored representation of the joint implied

by the graph,

P (W = w) =
∑

c

∑
s

∑
r P (C = c; S = s; R = r; W = w)

=
∑

c

∑
s

∑
r

P (C = c)× P (S = s|C = c)× P (R = r|C = c)× P (W = w|S = s,R = r)(2.34)
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The key idea of many inference algorithms is to ”push” the sums in as far as possible,

thus:

P (W = w) =
∑

c

P (C = c)
∑

s

P (S = s|C = c)
∑

r

P (R = r|C = c)×P (W = w|S = s,R = r)

(2.35)

becomes

P (W = w) =
∑

c

P (C = c)
∑

s

P (S = s|C = c)× φ1(c, w, s) (2.36)

where

φ1(c, w, s) =
∑

r

P (R = r|C = c)× P (W = w|S = s,R = r) (2.37)

Performing the second sum,

P (W = w) =
∑

c

P (C = c)× φ2(c, w) (2.38)

where

φ2(c, w) =
∑

s

P (S = s|C = c)× φ1(c, w, s) (2.39)

By performing the above principle of distributing sums over products, the exact

inference becomes computationally tractable. The amount of work done here is

bounded by the size of the largest term that is created, like φ1, φ2. The key thing

here is to choose the proper summation (elimination) order, which is practically a

hard problem.

This method can be generalized greatly to apply to any commutative model

that does not have loops. For example in the undirected case, the above conditional

probabilities will be edge potentials. The basis of many common algorithms, such

as Viterbi decoding [31], is based on this approach.

Junction-tree

Another way to avoid computational load, because of the calculation of

common terms, is to convert the graphical model into a tree by clustering nodes

together. This clustering is the graphical representation of what is done in the

elimination process. The algorithm involves graph-theoretic operations in which

nodes are removed in an order from the graph, where, when a node is removed, its

remaining neighbors are linked. For instance, the clustered version of Figure 2.5 is

given in Figure 2.7. The resulting graph in Figure 2.7 is called a triangulated graph.
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Figure 2.7: A clustered version of Figure 2.5.

The steps of the elimination algorithm applied here are exactly the same as

before. But junction − tree algorithms gives the opportunity to define common

terms by clique potentials. After creating this tree of clusters, local message passing

algorithm, explained in the next section, can be run easily by using the defined

clique potentials.

The running time of these exact algorithms is exponential in the size of the

largest cluster, clique (assuming all hidden nodes are discrete), which is not easy to

minimize. This creates the maximal clique problem that find the largest clique in

the graph. For many graphs which contain nodes with high fan-in, the maximal

clique size is very large. Because of this problem and the evaluation is not tractable

when the nodes are continuous it is necessary to use approximation.

Message-Passing

Most of the time it is needed to obtain more than a single marginal probabil-

ity. So to compute these marginals, it is needed to run the elimination algorithm

separately whereas there are common terms that are calculated successively.

Naturally, this will be loss of time and will create computation load. There is a

need to reuse these terms efficiently.

As Pearl [33] suggested, these common terms can be viewed as ”messages”

attached to edges in the graph. Thus, rather than viewing inference as an

elimination process, based on a global ordering, inference can be viewed in terms

of local message computations and passing these messages to neighbors. A simple

illustration is given in Figure 2.8.

This is a generalization of the well-known forwards-backwards algorithm for HMMs

(chains) [35]. In a theoretical way, this algorithm is only feasible for graphs that

are acyclic, i.e. that have no loops. The loopy structure of a graph would cause

“double counting” the messages. But empirical results show that message-passing
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Figure 2.8: Message-passing.

algorithms produce acceptable results for graphs with loops. This is discussed in

2.3.4.2 section.

Belief Propagation

Belief propagation (BP), also known as the sum-product algorithm, is

an another algorithm for computing marginals on a graphical model that is

based on the concept explained above. BP is an iterative algorithm that is com-

monly used in pairwise Markov random fields, Bayesian networks, and factor graphs.

Considering the Bayesian framework, a general introduction about the appli-

cation in tracking problems is given in section 2.1, for graphs whose prior

distribution is defined by a Markov chain there are efficient recursive algorithms for

exactly computing the single-node conditional marginal distributions p(xs|y). For

any tree-structured graphical model, the prior distribution p(x) can be factorized

in as

p(x) =
∏

(s,t)∈E

p(xs, xt)

p(xs)p(xt)

∏
s∈V

p(xs) (2.40)

where p(xs) and p(xs, xt) are marginal distributions. This equation gives an op-

portunity to factor p(x) using pairwise clique potentials which are simple functions

of the local marginal distributions at neighboring nodes. As discussed previously,

despite the fact that this equation is only satisfied for tree-structured graphs, some

empirical works show that it can be satisfied for graphs with cycles also.

For any s ∈ V and any t ∈ N(s), let ys\t be the set of all observation nodes

in the tree rooted at node s, excluding those in the subtree rooted at node t, as

illustrated in Figure 2.9. The marginal distribution p(xs|y) can be decomposed
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Figure 2.9: A tree-structured graph.

using Bayes’ rule and the Markov properties implied by graph G as

p(xs|y) =
p(y|xs)p(xs)

p(y)
= α p(xs)p(ys|xs)

∏

t∈N(s)

p(yt\s|xs) (2.41)

where α denotes the normalization constant which is independent of x. Note that

the normalization constant α is always chosen so that the function it multiplies

integrates to unity. Thus, the numerical value of α may change from equation to

equation.

From this decomposition, it can be seen that to calculate p(xs|y), the condi-

tional likelihood p(yt\s|xs) is sufficient for the subtree rooted at node t. Using the

conditional independencies implied by graph G, p(yt\s|xs) can be defined as

p(yt\s|xs) =
p(xs|yt\s)p(yt\s)

p(xs)
= α

∫

xt

p(xs, xt|yt\s)
p(xs)

dxt (2.42)

= α

∫

xt

p(xs, xt)p(yt\s|xs, xt)

p(xs)
dxt

= α

∫

xt

p(xs, xt)p(yt\s|xt)

p(xs)
dxt

= α

∫

xt

(
p(xs, xt)

p(xs)p(xt)

)
p(xt)p(yt|xt)

∏

u∈N(t)\s
p(yu\t|xt)dxt

Notice the similarity between equations 2.42 and 2.40. The prior model in equation

2.42 is in terms of the potential functions found in equation 2.40.
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Factorization can continue like this. The general form of equation 2.41 is

p(xu|y) = α

∫

xV \u

∏

(s,t)∈E

p(xs, xt)

p(xs)p(xt)

∏
s∈V

p(xs)p(ys|xs)dxV \u (2.43)

Using the two different representation of joint distribution in equations 2.40 and

2.26, p(xu|y) can also be defined as

p(xu|y) = α

∫

xV \u

∏

(s,t)∈E

ψs,t(xs, xt)
∏
s∈V

p(ys|xs)dxV \u (2.44)

These two different representations give an opportunity to write p(xs|y) as the fol-

lowing

p(xs|y) = αp(ys|xs)
∏

t∈N(s)

mts(xs) (2.45)

mts = α

∫

xt

ψs,t(xs, xt)p(yt|xt)
∏

u∈N(t)\s
mut(xt)dxt (2.46)

This motivates that the desired conditional marginal distribution p(xs|y) and

sufficient statistic mts(xs) may be expressed in terms of the local relationships

between neighboring nodes. Most of the algorithms use this property and solve

these equations using local computations.

The belief propagation (BP) algorithm begins here. It defines the sufficient

statistic mts(xs) as a message that node t will send to node s, while (s, t) ∈ E. This

message includes all of the information about xs which results from xt and all of

xt’s neighbors except xs. If these messages are calculated, the marginal distribution

p(xs|y), which is defined as beliefs, can be easily found from equation 2.45. Usually

equations 2.46 and 2.45 are defined as message update and belief update equations

respectively.

Because of this propagative structure of the algorithm, it depends on itera-

tions. There are typically two kinds of belief propagation algorithms: Serial BP,

Parallel BP. Serial BP is the algorithm in which each message and each belief is

calculated serially. So there will be a scheduling to efficiently calculate beliefs. In

parallel BP equation 2.46 is iteratively applied at each node in parallel, generating

a sequence of messages {mn
ts(xs)} which converge to mts(xs) as n →∞:

mn
ts(xs) = α

∫

xt

ψs,t(xs, xt)p(yt|xt)
∏

u∈N(t)\s
mn−1

ut (xt)dxt (2.47)

When the number of iterations reach to the diameter,D, of the graph, the number of

edges in the longest path, the messages will converge to a fixed point, so mD
ts(xs) =
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mts(xs). This allows p(xs|y) to be exactly calculated for all s ∈ V . Even the steps

before convergence, can provide useful information. This iteration based structure

will affect belief update as

p(xs|yn
s ) = αp(ys|xs)

∏

t∈N(s)

mn
ts(xs) (2.48)

As a conclusion, the marginals p(xs|y) can be calculated by the BP update

equations 2.46 and 2.45 for a tree-structured Markov random field. In practice,

the message update integral 2.46 can be intractable for many distributions p(x).

There exist two general classes of tractable distributions: discrete variables and

Gaussian variables. For discrete variables, the integral becomes sum operation

and for Gaussian variables the integral becomes recursion operation on mean and

covariance parameters of Gaussian distribution. The Gaussian version of the algo-

rithm is explained in the next section. When the distributions are non-Gaussian,

the algorithm called non − parametric belief propagation [40] is used which is a

non-parametric version of the BP algorithm similar to the non-Gaussian versions of

Kalman filters, particle filters, etc.

Gaussian Belief Propagation

Gaussian belief propagation is the application of belief propagation on the

graphs defined as Gaussian distributions. Because this thesis is based on Gaussian

belief propagation, a detailed explanation is given here.

For Gauss Markov random fields, the prior distribution p(x) is uniquely specified

by either the full covariance matrix Σ or the inverse covariance matrix J = Σ−1.

However, because of the sparse structure — (s, t) element of matrix J , (Js,t),

will be zero if there is not any edge between node s and t, (s, t) /∈ E — J

provides the more natural and efficient parameterization. Often, it is convenient to

decompose J into clique potentials as in equation 2.26. Starting from the joint dis-

tribution, p(x) can be decomposed into clique potentials using decomposition of J as

p(x) = 1
Z

exp
{−1

2
xT Σ−1x

}
= 1

Z

∏N
s=1

∏N
t=1 exp

{−1
2
xT

s Js,txt

}
(2.49)

=
1

Z

∏

(s,t)∈E

exp

{
−1

2

[
xT

s xT
t

] [
Js(t) Js,t

Jt,s Jt(s)

][
xs

xt

]}
= 1

Z

∏
(s,t)∈E ψs,t(xs, xt)

where Z = ((2π)N det Σ1/2) is the normalization constant.
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So a clique potential can be defined as

ψs,t(xs, xt) = exp

{
−1

2

[
xT

s xT
t

] [
Js(t) Js,t

Jt,s Jt(s)

][
xs

xt

]}
(2.50)

where the Js(t) terms are chosen so that for all s ∈ V ,

∑

t∈N(s)

Js(t) = Js,s (2.51)

Note that a state space formalism, used in the most of the time series structures like

Kalman filters, is not used here. State space models correspond to the factorization

of p(x) into a product of an initial distribution p(x0) and a sequence of distributions

with one–step transition, p(xt|xt−1), which is not a convenient representation for

graphs with cycles.

Focusing on the Gaussian case of BP, update equations (2.46, 2.45) will be

in the form of mean and covariance update equations. However most of the

time Gaussian distributions are parameterized in the information form. The

information form parameters are defined by using mean, µ, and covariance, Σ, as

ϑ = Σ−1µ Λ = Σ−1 (2.52)

The notation, N−1(ϑ, Λ), is used to define a Gaussian distribution with information

parameters ϑ and Λ. To parameterize update equations as information parame-

ters update equations, each of the terms in these equations should be related to a

Gaussian density defined in information form, as follows

mn
ts(xs) = αN−1(ϑn

ts, Λ
n
ts) p(xs|y) = N−1(ϑn

s , Λn
s ) (2.53)

The clique potential, ψs,t(xs, xt) was defined as a Gaussian in equation 2.50. The

parameters which is undefined is the information parameters, or the mean and

covariances, of the messages and beliefs in equation 2.53. To define these, the

relation between x and y should be examined.

This is a well known problem in estimation theory. There is an unknown

random vector x and there are observations of this vector y. It is known that x and

y are jointly Gaussian with zero mean, p(x, y) ∼ N(0, Σ), –it assumed to be zero

mean where a non-zero mean relations can be represented by adding an offset mean

later on. According to these, the conditional distribution, p(x|y) ∼ N(x̂, Σ̂), is also
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a Gaussian distribution with mean and covariances defined by normal equations as

x̂ , E[x|y] = ΣxyΣ
−1
y y (2.54)

Σ̂ , E[(x− x̂)(x− x̂)T |y] = Σx − ΣxyΣ
−
y 1ΣT

xy (2.55)

where Σx , E[xxT ], covariance of x; Σy , E[yyT ], covariance of y; and

Σxy , E[xyT ], cross-covariance.

In many problems, the observations y are expressed as a linear function of x

with errors because of noise

y = Cx + v (2.56)

where v ∼ N(0, R) is a zero-mean Gaussian noise. x and v are independent. So

equation 2.54 and 2.55 become

x̂ , ΣCT (CΣCT + R)−1y (2.57)

Σ̂ , Σ− ΣCT (CΣCT + R)−1CΣ (2.58)

where Σ , E[xxT ] is the prior covariance of the unobserved variables x. Assuming

Σ and R are both positive definite and hence invertible, the information form of

these equations can be derived using the matrix inversion lemma.

(Σ−1 + CT R−1C)x̂ , CR−1y =⇒ ϑ = Σ−1µ (2.59)

Σ̂ , (Σ−1 + CT R−1C)−1 =⇒ Λ = Σ−1 (2.60)

Adapting this structure to every node, xs and ys, in the graph results in the following

p(xs) = N−1(0 , Σ−1
s,s) (2.61)

p(xs|ys) = N−1(CT
s R−1

s ys , Σ−1
s,s + CT

s R−1
s Cs) (2.62)

Here, y is decomposed to {ys}N
s=1, the local, conditionally independent obser-

vations of the hidden variables {xs}N
s=1. So p(y|x) =

∏N
s=1 p(ys|xs). Cs and

Rs have become the decomposition of C and R as C = diag(C1, C2, ..., CN),

R = diag(R1, R2, ..., RN), the block diagonal matrices, respectively. This makes

each xs as a subvector of x, while each Σs,s is a block diagonal element of Σ.

Using Bayes’ rule

p(ys|xs) = α
p(xs|ys)

p(xs)
= αN−1(CT

s R−1
s ys , CT

s R−1
s Cs) (2.63)

Considering the belief update equation 2.45, products of Gaussian densities causes

the sum operation for mean and covariances. So the parameters of p(xs|yn
s ) =
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N−1(ϑn
s , Λ

n
s ) are

ϑn
s = CT

s R−1
s ys +

∑

t∈N(s)

ϑn
ts (2.64)

Λn
s = CT

s R−1
s Cs +

∑

t∈N(s)

Λn
ts (2.65)

Since the message update equation 2.46 consists of more complex terms first the

product of Gaussian densities is calculated

ψs,t(xs, xt)p(yt|xt)
∏

u∈N(s)\s
mn−1

ut (xt) ∝ N−1(ϑ̄, Λ̄) (2.66)

where

ϑ̄ =

[
0

CT
t R−1

t yt +
∑

u∈N(t)\s ϑn−1
ut

]
(2.67)

Λ̄ =

[
Js(t) Js,t

Jt,s Jt(s) + CT
t R−1

t Ct +
∑

u∈N(t)\s Λn−1
ut

]
(2.68)

After applying marginalization over equation 2.66, performing integration over xt,

the BP message mn
ts(xs) = αN−1(ϑn

ts, Λ
n
ts) is found as

ϑn
ts = −Js,t


Jt(s) + CT

t R−1
t Ct +

∑

u∈N(t)\s
Λn−1

ut



−1 

CT
t R−1

t yt +
∑

u∈N(t)\s
ϑn−1

ut


(2.69)

Λn
ts = Js(t) − Js,t


Jt(s) + CT

t R−1
t Ct +

∑

u∈N(t)\s
Λn−1

ut



−1

Jt,s (2.70)

The equations (2.64, 2.65) and (2.69, 2.70) are the parallel BP update equations. It

can be easily seen that the factorization of inverse covariance matrix J into clique

potentials, 2.50 is very important. It should be validated that

Jt(s) +
∑

u∈N(t)\s
Jt(u) =

∑

u∈N(t)

Jt(u) = Jt,t (2.71)

Another version of these equations that does not require a factorization is given by

ϑn
ts = −Js,t


Jt,t + CT

t R−1
t Ct +

∑

u∈N(t)\s
Λn−1

ut



−1 

CT
t R−1

t yt +
∑

u∈N(t)\s
ϑn−1

ut


(2.72)

Λn
ts = −Js,t


Jt,t + CT

t R−1
t Ct +

∑

u∈N(t)\s
Λn−1

ut



−1

Jt,s (2.73)

ϑn
s = CT

s R−1
s ys +

∑

t∈N(s)

ϑn
ts (2.74)

Λn
s = Js,s + CT

s R−1
s Cs +

∑

t∈N(s)

Λn
ts (2.75)
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2.3.4.2 Approximate Inference

Approximate inference is needed not only because of maximal clique sizes,

but also it is needed in many cases where the variables are continuous and the

corresponding integrals needed for implementing Bayes’ rule cannot be performed

in closed form.

There are some popular approximate inference methods like Monte Carlo

methods, Loopy belief propagation, etc. The simplest Sampling (Monte Carlo)

methods is importance sampling, where random samples x is drawn from P (X),

the (unconditional) distribution on the hidden variables, and then the samples are

weighted by their likelihood, P (y|x), where y is the observation. A more efficient

approach in high dimensions is called Markov Chain Monte Carlo (MCMC), and

includes as special cases as Gibbs sampling[21]. Another approach, Loopy belief

propagation is based on applying Pearl’s algorithm[33], message-passing, to the

original graph, even if it has loops. This algorithm was inspired by the outstanding

empirical success on loopy undirected graphs such as turbo codes. Since then,

further empirical works [32, 33, 51] has shown that the algorithm works well in

other contexts, such as low-level vision problems.

2.4 Facial Feature Tracking

In section 2.1 the general tracking is explained and the existing methods are

examined. In this section facial feature tracking, the interested subtopic of general

tracking, is explained with a detailed literature overview.

Facial feature tracking is the tracking of some facial components in videos.

The facial components of interest depend on the context/environment in which the

tracking is performed and the end use for which the tracking information is be-

ing sought. The typical facial components of interest are eyes, eye brows, and mouth.

Facial feature tracking is of paramount importance to applications of intelli-

gent technologies, such as human-computer interaction, face recognition, dynamic

facial expression analysis, 3D face reconstruction, etc. Other than these, in appli-

cations such as MPEG-4 coding based video conferencing applications, face-based

biometric person authentication systems, even in virtual reality and games there is

a need of facial feature tracking system. There are also some applications that use

facial feature tracking to support behavioral psychology researches.

In the scope of this thesis, human-computer interaction, facial expression analysis,
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fatigue detection are chosen as the target application areas for the designed tracking

system. Generally, as mentioned in section 2.1, a facial expression analysis system

consists of three components: feature detection, feature tracking, and expression

recognition. Feature detection involves detecting the distinguishable points that

can define the movement of facial components. This may involve, detection of eyes,

eye brows, mouth or feature points of these components. The tracking part was

explained above. The last part is the expression recognition part which outputs

results such as happy, sad, surprised, etc. according to tracking results of these

feature points. In an expression analysis system, the content or the aim of feature

detection part and expression recognition part can vary depending on the aim of

the analysis system. For example, in an expression analysis system that focus on

the eye states, the feature detection part only detects eye feature points and the

recognition part outputs are defined as eye states. So, the techniques used for facial

feature tracking can differ in so many ways. Generally, these can be categorized in

the way they represent facial features; like 2D/3D points, 2D/3D shapes, according

to features they use; such as edges, color, etc and in the way the mathematical

approaches they are based on.

Tracking facial features is a very challenging problem under practical conditions

due to the complexity of environments with unknown and variable illumination

conditions, and uncertainties of poses and appearance of faces.

There are various types of methods in the literature. It is possible to clas-

sify these methods into two groups: model-based methods and model-free methods.

Model based methods simply model the shape of the facial features. Most of the

models are 3-D models and model shape parameters are updated in each frame. In

model-free methods, there are no shape constraints. Basically these methods are

based on motion estimations. The positions of facial features in subsequent frames

is found by doing a local search inside a suitable sized window for the position

which correlates best with the texture around the feature in the reference frame,

no trained prior knowledge is required.

2.4.1 Model-Based Methods

In [15, 2, 16, 4, 12, 17, 22] AAM/ASM is used to track facial features. A 3-D

face model is constructed using wire-frame models called Candide. First, a training

set is prepared that consists of different face shapes under different poses. The

more shapes from different poses are placed in the training set, the more efficiency

will be gathered under different poses. Then, this training set is transformed to
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PCA space and represented as PCA coefficients. When a new frame has come,

the previous shape model is deformed by finding the best matches between the

current shape and the training set shapes in PCA space using a distance measure.

So, training set is used as the prior information for shape model deformation.

An online learning system that learns the model from previous frame is proposed

in [17]. The model parameters are recovered by using an observation likelihood.

This likelihood is based on a statistical texture model in which the tracking and

the learning processes are running in tandem. There is also a method [54] which

combines the 2-D and 3-D AAMs.

There have been some variations, modifications made to this method in time. A

multi-hierarchical structure of ASM is proposed in [44]. Based on the active shape

model, a two-level hierarchy in feature points is proposed to characterize global

shape of human faces, and local structural details of facial components. In [24]

there is a combination of AAM with Gabor wavelet networks in which there are a

linear combination of 2D Gabor functions whose parameters (position, scale and

orientation) and weights are optimally determined to preserve the maximum image

information for a chosen number of wavelets. A multi-model probabilistic facial

shape model which utilizes a mixture of probabilistic PCAs (MPPCA) to represent

the global nonlinearity of shape variations from different view points is proposed in

[43]. Probabilistic PCAs are a combination of several local PCAs associated with

probability densities.

In addition, there are some methods [49] which use a graph matching tech-

nique to track facial features. A labeled graph matching is done in a graph consist

of nodes, corresponds to facial feature points, and links between the nodes. The

labels are chosen as the templates composed of 17x17 gray levels around the node.

There are also some methods which can also be viewed as model-based methods:

deformable models, active contours, snakes [12]. The basic idea is that an energy

function that relates a parameterized model such as snakes, deformable models,

etc. to an image is formed. This energy function is minimized using any standard

optimization technique, and the resulting parameter set is obtained.

2.4.2 Model-Free Methods

On the other hand, there are optical flow based model-free facial feature

trackers [13, 41, 11, 10]. In [41], the method assumes that intensity values of any

given region (feature window size) do not change but merely shift from one position
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to another. By minimizing a cost function, the translation of this region can be

found. A variation of this method that applies same matching for different image

resolutions in a hierarchical manner is proposed in [11, 10].

Methods based on template matching which use the intensity pattern over

the feature region in the previous frame as the template and search for a region

in the present frame with the closest pattern are proposed in [50, 28, 53, 42, 7].

In [53] this feature region is assumed in ’star’ pattern to reduce the computation

load. ’Sum of squared intensity differences (SSD)’ is used as the matching measure

in [42, 7].

Furthermore, probability density function (PDF) based matching techniques

are proposed in [12, 11]. One of the PDF based matching techniques is Continu-

ously Adaptively Mean Shift Algorithm (CamShift) which is based on an adaptation

of the Mean Shift algorithm. In CamShift, an image is converted to a probability

image via a histogram model of the color being detected, e.g., flesh color in the case

of face tracking. Then, the mean of the color distribution is found by iterating in

the direction of maximum increase in probability distribution [11]. Since the color

distribution changes over time the distribution is updated over time. Here, the

mean of the distribution is assumed as the center of the object and the distribution

determine the size of the object and updating the distribution over time performs

continuous tracking.

Gabor features are used for tracking in so many methods [23, 34, 52, 18, 19].

Gabor wavelet networks (GWN) mentioned above is used in [18, 19]. The GWN

represents the face as a linear combination of 2D Gabor wavelet functions and it

can be repositioned to match a target face image which can be used for tracking of

facial features. The disparity of a point from one frame to the next is estimated in

terms of phase differences of single Gabor jets [52].

There are methods in which the motion of facial features are modeled by

time-series statistical models–as they are the tools used in this thesis, two time-

series statistical methods are explained in section 2.2 and 2.3. In [23, 34, 37]

Kalman filters are used to track facial features. In [23, 34] facial features are

represented by 2-D points and the motion of these points are fitted to Kalman

filter model. The observation of these points are gathered by using Gabor wavelets.

In [37] extended kalman filter is used for gaze direction tracking. Generalized

Hough transform is used as the measurements. There is not much work done

for facial feature tracking using graphical models. There is one paper [9] and its
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variations [39, 38, 25] which uses a directed graphical model for tracking of contours

authors fitted to model facial feature motion. The graphical model is based on

non-Gaussian distributions. In [56] graphical models is used for cue integration for

head tracking. The integration of features like, color, shape, intensity change are

based on a graphical model that uses non-parametric belief propagation.

Also there is a model-free method in which the typical affine motion model

is modified to include ”yaw” and ”pitch” motion to the model [5]. This makes the

method accurately work not only for rigid motions but also for non-rigid motions

which can be viewed as a disadvantage for model-free methods.

Between these two categories, model-based and model-free, there is a method

which is a combination of the tracker in [7] and model-based method.

Besides all the methods described above, there are methods where the fea-

ture detection and tracking parts are together [36, 14]. In these methods usually

feature detection is made for every frame while the detection procedure is updated

by the previous frames.

2.5 Discussion

In this section a comparison will be made on the methods explained in

the previous sections. According to the examined recent works up to now in the

field of facial feature tracking, there are lots of working methods. But they have

advantages/disadvantages when compared with each others.

In most of the existing methods occlusion treatment is a problem which is

not handled directly. There are two kinds of occlusions: external occlusion and

self-occlusion. External occlusion is the occlusion that is caused by an external

object; finger, hand, etc. In contrast, self-occlusion is because of the head movement

most of the time (for example out of plane rotation) . In both cases the data are

uncertain. As a natural human behavior people move their heads or occlude their

faces with their hands or fingers. Apart from occlusion, head movement, on its

own, is a case that should be handled. Most of the model-free methods do not

consider the occlusion or head movement cases. Limited number of methods have a

solution to self-occlusion but in a limited head pose variations. On the other hand,

model-based methods are more robust to head pose variations, but in the limits of

training sets. The more number of training images with pose variations, the more

success for pose variations.
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Another advantage/disadvantage area is the training phases. Model-free methods

do not have a training phase. So they are simpler and are easier to use. But

model-based methods have a training phase which is an extra step for the system.

Because of the mathematical approaches of model-based methods, they have

computationally more load compared with the model-free methods.

In model-based methods, the spatial connection of the facial features are used as

the model of the methods. But in model-free methods these connections are not

considered, thus most of the time drifts, physically impossible tracking results occur.

According to these, a method which considers the spatial connections be-

tween facial features as well as the temporal relation for facial features, that take

into account occlusion, is needed. A method that fits this description is proposed

in the next chapter.
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CHAPTER 3

GRAPHICAL MODEL BASED FACIAL FEATURE POINT
TRACKING

In this chapter, a facial feature point tracker that can cope with the problems

recent works suffer is proposed and the graphical model framework that the tracker

is based on is explained in detail.

As discussed in the section 2.5, the recent methods have advantages/disadvantages

over each other. But most of the methods have some level of difficulty in handling

cases involving occlusion or head movement. Face occlusion by hands, fingers or

head movements results from natural human actions and these cases should be

carefully considered. In addition, these methods do not use the spatial relations

between facial features. Here a facial feature tracker that uses not only temporal

information about feature point movements, but also information about the spatial

relationships between such points is proposed. The proposed method is also robust

to external occlusions and head movements.

In section 3.1, the proposed statistical model is described in detail. The na-

ture of the data used in this framework is explained in section 3.2. The algorithm

to make inference based on the proposed model is explained in section 3.3. Finally,

in section 3.4 the approaches developed to cope with real-world scenario problems

such as occlusion and head movements are discussed.

3.1 Proposed Model

The proposed model is a graphical model that consists of three sub-models:

a temporal model, an observation model, and a spatial model. The relations are

represented as undirected edges. A representative version of the model that can be

used only for two facial features is illustrated in Figure 3.1.

Here nodes represent the 2-D facial feature points. Each hidden variable

(xs) are vectors, each with four elements: x-coordinates, y-coordinates, velocity at



Figure 3.1: The graphical model built for tracking two facial features.

x-axis and velocity at y-axis of the points. The observed nodes (ys) are vectors,

each with two elements; x-coordinates and y-coordinates of observation data. So in

this notation, (x1
t ) means hidden variable of the first feature point at time t and

(y2
t+1) is the observed variable of the second feature point at time t+1. Considering

real-world coordinates, actually the hidden variables are 3-D points that move in the

real-world coordinate system. But because of some problems, discussed later in this

chapter, the feature points are assumed as 2-D points that move on the camera plane.

Since the head and facial components (mouth, eyes, etc.) can not move sep-

arately, the movement of feature points are dependent on two things: head

movement and individual facial component movement (opening of mouth, eyes,

etc.). Because facial component movement is in the scope of this thesis, the

considered cases can be divided into two groups: the case where there is only facial

component movement and the case where there are both head movement and facial

component movement. This also creates two tracking problems: tracking only facial

feature movements or tracking both head movement and facial feature movement.

For this reason, the nodes in the model can represent two positions: the global

position of facial features (when tracking both head and facial features) or the local

position of facial features relative to head pose (when tracking facial features). The

proper selection of this representation depends on different cases and scenarios.

Which one of these representations is selected in this thesis is explained in the later

sections when different cases are handled.

The relations between nodes are represented by clique potentials, as described

in subsection 2.3.3. In this thesis, these potentials are selected as Gaussian

distributions. Assuming the point coordinates and velocities are independent of
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each other the prior covariance matrix of hidden variables are in the following form:

Σx0 =




σx0
2
x 0 0 0

0 σx0
2
y 0 0

0 0 σx0
2
u 0

0 0 0 σx0
2
v




(3.1)

In the next subsections, construction of clique potentials in the sub-models will be

explained in detail.

3.1.1 Temporal Model

The temporal model captures the temporal relations between facial feature

points, hidden variables (xs). So this model only considers the time-series relations

between nodes, as illustrated in Figure 3.2-a. Since this model is about time-series,

most statistical methods for tracking uses a model of this form. This temporal model

can be constructed as linear or non-linear. The model used in the Kalman filter

algorithm can be an example for linear temporal models. For non-linear models the

model in extended Kalman filters can be an example. In this thesis, the temporal

relations are modeled using linear dynamics. As in models assumed in Kalman

filtering, this relation is based on

xt+1 = A · xt + w (3.2)

where w represents the noise in temporal transitions. This transition is formed by

the matrix A. Typically in a linear dynamical model used for tracking, it is assumed

that the movement of the objects involved is characterized with constant velocities

for each time step. Therefore, usually matrix A is selected as

A =




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1




(3.3)

which simply makes the position in the next time step as the summation of previous

position and the constant velocity for that time step.

The temporal transition noise has a Gaussian distribution as p(w) ∼ N(0, Q) where

Q denotes the covariance matrix. Assuming the noise in point coordinates and
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(a)

(b)

(c)

Figure 3.2: The sub-models that form the whole graphical model in Figure 3.1:
(a)temporal model, (b) spatial model, (c) observation model.

velocities are independent of each other Q is formed as follows

Q =




σ2
x 0 0 0

0 σ2
y 0 0

0 0 σ2
u 0

0 0 0 σ2
v




(3.4)

The parameters of this matrix are dependent on the scenario and they are selected

according to the video input. In section 4.1 an example for these parameters is

given according to the experimental data.

Using the model shown in equation 3.2, the clique potential that represents

the temporal relation, in the form of the equation 2.50, becomes as

ψt+1,t(xt+1, xt) = N(A · xt, Q) = α exp
{
(xt+1 − A · xt)

T Q−1(xt+1 − A · xt)
}

= α exp

{[
xT

t+1 xT
t

] [
Q−1 −Q−1A

−AT Q−1 AT Q−1A

][
xt+1

xt

]}
(3.5)
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3.1.2 Spatial Model

This part is the most important part of the model in the sense that it contains

one of the main contributions of this thesis. This part models the spatial relations

between facial features, illustrated in Figure 3.2-b. Here a model is introduced

which simply insures the expected spatial distances between feature points. This is

represented in a Gaussian distribution form as

ψ1,2(x1, x2) = α exp

{[
x1 − (x2 −4x)

]T

Σ−1
[

x1 − (x2 −4x)
]}

(3.6)

where 4x represents the difference vector and Σ represents the covariance matrix of

the uncertainty. Since the hidden variables, (x1,x2), are four-element vectors, the dif-

ference vector, 4x, is also a four-element vector 4x = [ 4xx 4xy 4xu 4xv ]T

where 4xx and 4xy represent the spatial differences between facial features on the

x-axis and y-axis, respectively and 4xu and 4xv represent the spatial differences

between velocity components on x-axis and y-axis, respectively. As mentioned in

section 3.1, the proposed method tracks the locations of the projection of the

feature points on the camera plane. So in this case the spatial differences are simply

the 2-D spatial distances on the camera plane.

Think about that the global positions of the facial feature points are tracked.

Since the head moves, these 2-D spatial distances (4xx and 4xy) on the camera

plane will change. An updating procedure is needed. The solution to this case is

explained in detail in subsection 3.4.2. Consider the case when the local positions

of the facial features relative to head pose are tracked. In this case the 2-D

spatial distances will not change (positions are relative to head pose) but, since the

velocities of these points are independent of each other constraining the velocities

may not be a sensible idea. So these components (4xu and 4xv) can be set as

zero.

The covariance matrix of this clique potential is selected as below

Σ =




σ′2x 0 0 0

0 σ′2y 0 0

0 0 σ′2u 0

0 0 0 σ′2v




(3.7)

Similar to the parameters in matrix Q, these parameters are also dependent on the

scenario. An example is given in section 4.1.
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But to make everything clear about this sub-model, an application of the

model for a simple case is given here. Consider two eye corner points are spatially

connected and head is straight. The spatial distance between these points (on the

camera plane) is 10 pixels on x-axis and 0 pixel on y-axis (head is straight, they

are on the same line on y-axis). Assuming that the velocities are not spatially

constrained and the error on x-axis and y-axis are ± 2 pixels, the spatial difference

vector and the inverse error covariance matrix will be as follows

4x =




10

0

0

0




Σ−1 =




1/4 0 0 0

0 1/4 0 0

0 0 0 0

0 0 0 0




(3.8)

Although the velocities are not spatially constrained, the spatial distances for veloci-

ties are shown as zero. But this doesn’t constraint the velocities. The only thing that

spatial constraints depend on is the corresponding parameter of the inverse covari-

ance matrix. By setting the corresponding parameters for velocities in the inverse

covariance matrix as zero, the velocities are set as spatially unconstrained.

3.1.3 Observation Model

As illustrated in Figure 3.2-c, this part is about the relations between the

hidden variables and the corresponding noisy observations. The relation is modeled

in a linear form as

yt = C · xt + v (3.9)

where v represents the measurement noise. The matrix C is the observation matrix

which forms the analytical relation between hidden variables and observations. In

this thesis, observations are composed of the 2-D facial feature points (the extraction

of this information is explained in section 3.2 in detail). Since the observation vector

is the 2-D coordinates, the matrix C is simply constructed in the way that relates

the 2-D coordinate values in the hidden variables and the observations as

C =

[
1 0 0 0

0 1 0 0

]
(3.10)

The measurement noise has a zero mean Gaussian distribution with covariance ma-

trix, R, namely p(v) ∼ N(0, R). Similar to the transition noise it is assumed that

noise on the point coordinates are independent of each other. So the matrix R is

formed as

R =

[
σ′′2x 0

0 σ′′2y

]
(3.11)
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In section 4.1 an example for these parameters is given.

According to this formation, the clique potential of the observation model

is

ψt(xt, yt) = N(C · xt, R) = p(yt|xt) (3.12)

3.2 Data Pre-processing

In subsection 3.1.3, the observation model is explained but how the observed

data is obtained is not mentioned. In this section the observation process of the

model will be explained. This process can be considered as a pre-process that

construct the observations for the model at each time step.

As illustrated in Figure 3.3, for any given image from a video sequence the

interested feature point is searched in a search region by comparing with a template

patch that is selected as a reference for the corresponding feature. The comparison

is based on the Gabor filter outputs of both the template image region and the

given image region. Thus, the search region is the region for filter convolution. The

Gabor filter functions are selected as in [6]. Then, as in [23], 24 Gabor filter kernels

consisting of 6 different orientations (0◦, 30◦, 60◦, 90◦, 120◦, 150◦) and 4 different

wavelengths (4, 8, 12, 16 pixels) are constructed for the convolution. Convolution

with these kernels produce 24 real and 24 imaginary coefficients for each pixel in the

regions for both template and video sequence images. The magnitude values and

phase values of the complex outputs of the filtering are compared using a similarity

metric. Assuming n coefficients for each image, the similarity metric is as follows

Similarity =

∑
n mnm

′
ncos(φn − φ′n)√∑

n m2
n

∑
n m′2

n

(3.13)

where m and m′ are the magnitude outputs for the template image and the given

image respectively and φ and φ′ are the phase outputs for the template image

and the given image respectively. This metric is chosen to evaluate the ”phase”

similarity as well as the ”magnitude” similarity. It computes a similarity between

-1.0 and 1.0. This similarity metric produces these similarity values for every point

in the convolution region. The location of the point with the highest similarity

value is considered as the best match for the interested feature point in the given

video frame. So this can be used as the observation data for the corresponding

feature point.
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Since this pre-processing is done in each time step for each feature point, to

start such a process there is a need of initial point coordinates. In a general

behavior analysis system, as explained in section 2.4, the feature detection part

produces these initial coordinates to be tracked. Since feature detection is not

in the scope of this thesis, these initial coordinates are produced by marking the

first frames in each video sequence. Thus, the template image for comparison is

selected as the first frame of the sequence. By selecting template as the first frame,

comparison is made between the first frame, in which the positions are assumed as

true, and the next frames of interest. In [23] consecutive comparison is proposed

but the experiments show that this kind of comparison causes drifts. In consecutive

comparison, because the previous filtering results are assumed as the reference for

comparison, when a drift occurs in the previous frame, it begins to accumulate for

the following frames. To avoid this kind of drifts the comparison is made between

the first and subsequent frames. This procedure makes the filtering output of the

first frame a template Gabor patch that is used as a reference for comparison.

Here Gabor filters are used as the observer of the graphical model. Gabor

wavelet based feature representation is related to the psychophysical basis of human

vision [46], and achieves robust performance for expression recognition and feature

extraction under illumination and appearance variations. Gabor wavelets can

completely represent both the time and frequency domains. This property of 2D

Gabor image representations are important because of their increasing role in many

computer vision applications and also in modeling biological vision, since recent

neurophysiological evidence from the visual cortex of mammalian brains suggests

that the filter response profiles of the main class of linearly-responding cortical

neurons (called simple cells) are best modeled as a family of self-similar 2D Gabor

wavelets.
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While applying this framework to videos containing facial gestures, it has

been observed that, ’eye-blinking’ and ’eye-closure’ cases produce a data association

problem on the eyelid feature points. In both of these cases, because the eyelid is

closed, the upper lid feature point and lower lid feature point begin to intersect and

get mixed-up. Because the eye region is a small region and the edge structure on

the eye region is changing too fast in the case of eyelid closure, the observation stage

finds the same locations for both of the feature points. This causes a data association

problem. As a solution to this case, the search regions of these feature points are

limited in a way to avoid this misselection in the observation stage. Consider four

eye feature points: inner corner, outer corner, upper lid, and lower lid, as illustrated

in Figure 3.4. The line that passes through both outer and inner eye corner feature

points is selected to limit the search regions of the upper lid and lower lid feature

points. Because the same case occurs while the mouth is opened or closed, such

a limitation can be needed for the opening of mouth. But during the trials it has

been observed that, because the mouth region is a bigger area compared with the

eye regions, the edge structure of search regions for the mouth feature points does

not change dramatically when the mouth is opened or closed. So this does not affect

the observation stage.

Figure 3.4: Search region limits for the eyelid feature points in the case of eyelid
closure.

The output value of the similarity metric also gives a quantitative information about

how similar these points are. This information can be used to detect frames in

which there is an occlusion in the region of interest of a feature point. The occlusion

detection part, another contribution of this thesis, is explained in subsection 3.4.1

in detail.

3.3 Inference Algorithm

As explained in subsection 2.3.4, inference algorithms are used to estimate

the values of hidden nodes. In many computer vision and image processing appli-

cations, these algorithms are used to find the conditional density function p(xs|y),

42



where xs is a hidden variable that represents the location of a feature point and y

is the set of all observed data. Since in this thesis the relations between nodes are

selected as Gaussian distributions, explained in section 3.1, the inference algorithm

is chosen as ’Gaussian Belief Propagation’ algorithm. Because of the parametric

nature of Gaussian distributions, this inference algorithm simply turns into a mean

and covariance update procedure, explained in the related part of subsection 2.3.4.1.

To make the proposed tracker usable in real-time applications, the chosen in-

ference algorithm is constructed in a way to use only the current and the previous

data. Thus, the inference algorithm used here becomes a filtering algorithm. This

construction modifies the update equations, (equations 2.73, 2.72, 2.75, 2.74), in a

way that they allow one-sided message passing in time. Consider the model; to make

an inference on a node only the information from previous temporal neighboring

node, current spatial neighboring node and current observed neighboring node is

incorporated. The illustration of this one-sided structure is given in Figure 3.5.

Figure 3.5: The one-sided message passing diagram of one algorithm step for the
minor graphical model in figure 3.1

To illustrate the process of the update equations, here , one step of the algorithm

is shown as an example. Consider two eye corner points as features of interest that

are spatially connected and there are spatial constraints on x and y axes. Assume

that their initial coordinates are x1
0 = (10, 10) and x2

0 = (20, 10) respectively and

their prior covariance matrices are as follows:
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Σ1
0 = Σ2

0 =




100 0 0 0

0 100 0 0

0 0 25 0

0 0 0 25




(3.14)

Consider that the observation in the next time step for these features are

y1
1 = (13, 13) and y2

1 = (18, 11). Assuming the position errors on both x and y axes

(σ2
x, σ

2
y) are ±4 pixels and the velocity errors on both x and y axes (σ2

u, σ
2
v) are ±2

pixels in the temporal model; the position errors on both x and y axes (σ′′2x , σ′′2y ) are

±2 pixels in the observation model and the position errors on x and y axes (σ′2x , σ′2y )

are ±2 pixels in the spatial model, the covariance matrices in these sub-models

(equations 3.4, 3.7, 3.11) are selected as follows:

Q =




16 0 0 0

0 16 0 0

0 0 4 0

0 0 0 4




R =

[
4 0

0 4

]
Σ−1 =




1/4 0 0 0

0 1/4 0 0

0 0 0 0

0 0 0 0




(3.15)

According to the update equations 2.72 and 2.73, the temporal mean and covariance

messages of the x1
1 node are

ϑx1
0,x1

1
= −Jx1

1,x1
0

(
Jx1

0,x1
0
+ Λx1

0

)−1 (
ϑx1

0

)
⇒ µx1

0,x1
1

=




−3.6120

0.2032

−2.6546

−0.9143




(3.16)

Λx1
0,x1

1
= −Jx1

1,x1
0

(
Jx1

0,x1
0
+ Λx1

0

)−1

Jx1
0,x1

1
⇒ Σx1

0,x1
1

=




−18.56 0 0.64 0

0 −18.56 0 0.64

0.64 0 −4.8 0

0 0.64 0 −4.8




The spatial mean and covariance messages of the x1
1 node are
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ϑx2
1,x1

1
= −Jx1

1,x2
1

(
Jx2

1,x2
1
+ CT R−1C + Λx2

0,x2
1

)−1 (
CT R−1y2

1 + ϑx2
0,x2

1

)
(3.17)

⇒ µx2
1,x1

1
=




2.9711

3.6323

1.0587

0.6440




Λx2
1,x1

1
= −Jx1

1,x2
1

(
Jx2

1,x2
1
+ CT R−1C + Λx2

0,x2
1

)−1

Jx2
1,x1

1

⇒ Σx1
0,x1

1
=




−0.1233 0 0 0

0 −0.1233 0 0

0 0 0 0

0 0 0 0




The parameters Λx2
0,x2

1
and ϑx2

0,x2
1

can be evaluated as in the equation 3.16. Using

the messages evaluated above, the mean and covariance belief of the x1
1 node can

updated using the equations 2.74, 2.75 as follows:

ϑx1
1

= CT R−1y1
1︸ ︷︷ ︸



11.9802

8.4671

2.6561

1.5013




+ϑx1
0,x1

1
+ ϑx2

1,x1
1
⇒ µx1

1
=




11.3393

12.3026

1.0602

1.2310




(3.18)

Λx1
1

= Jx1
1,x1

1
+ CT R−1C + Λx1

0,x1
1
+ Jx2

1,x1
1

⇒ Σx1
1

=




2.6052 0 0.4619 0

0 2.6052 0 0.4619

0.4619 0 24.6493 0

0 0.4619 0 24.6493




As in the same manner the mean and covariance of the x2
1 can be estimated. The

results will be as follows:

µx2
1

=




19.6883

11.6422

0.7674

1.1139




Σx2
1

=




2.6052 0 0.4619 0

0 2.6052 0 0.4619

0.4619 0 24.6493 0

0 0.4619 0 24.6493




(3.19)

As it can be seen from the estimated feature locations; although the observations

45



seems to make the features get closer to each other (because of they are uncertain),

the spatial model provides the spatial constraints and keep the expected spatial

distance between the features. It can be observed from the covariance matrices that

the uncertainties on the positions on x and y axes are decreased. This shows that

the reliability of these estimations are increased.

3.4 Feature Point Tracking under Real-World Conditions

As a natural human actions people move their head, hands or fingers all

the time. To build a facial feature tracker system that is robust to real-world

conditions, these cases should be handled properly. Unfortunately, most of the

recent methods, reviewed in section 2.4, do not consider these cases.

The proposed method here is designed in a way to deal with these problems.

This is one of the main contributions of this thesis. These problems can be dealt in

two different cases: external occlusion (moving hands, fingers, etc. in front of the

face) and 3D head movements. The proposed solutions for these cases are explained

in the next subsections respectively.

3.4.1 External Occlusion

The word ’occlusion’ is a word that can be defined in so many ways. It

contains different meanings. Looking from the general perspective of computer

vision and image processing applications, occlusion case can be divided into two

categories: external occlusion and self-occlusion. Self-occlusion can be defined

as the case when the object of interest occlude itself, most of the time this

occurs because of the movements of the object. Contrarily, external occlusion

is the occlusion that is caused by external effects. In the context of this thesis,

self-occlusion can be defined as the occlusion when there is out-of-plane motion of

the head. For example; when the head rotates left or right, on the observed image

the feature points will begin to occlude each other. This case should be handled in

the scope of head movements. This is done in subsection 3.4.2. In this subsection

the external occlusion case, which can be defined as the occlusion of the face by

hands, fingers, and varied other objects, is explained.

When occlusion occurs, the information coming from the observation stage

become useless for the occluded feature point. Consider an eye corner point that is

occluded. In this case the observation stage, that is looking for an eye corner point

in the search (convolution) region similar to the template of this feature point, can

not find a similar point because of the occlusion. This problem will make it select
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an arbitrary point in the region that is not similar to eye feature but that has a edge

structure alike the template eye corner. For this reason the observation stage gives

a wrong location that it thinks as an eye corner point. To deal with this situation

the information coming from the observation stage should be omitted. This lack

of information will not cause the tracker’s performance because the informations

coming from the temporal and spatial relations are enough to continue the tracking.

To apply the procedure explained above, to prevent drifts caused by mislead-

ing of the observation stage, the occlusion should be detected. As mentioned

in section 3.2, Gabor feature-based observation stage provides quantitative

information about the similarities in the search region. It has been observed that

when an occlusion occurs on a feature point, the similarity values begin to drop,

as illustrated in Figure 3.6. This property can be used to detect the occlusion

times in the video frames. According to the procedure mentioned above, the overall

treatment for external occlusion is given in Algorithm 3.1.

Algorithm 3.1: Overall procedure in the case of occlusion
Evaluate the similarity metric;

Find the point with the highest similarity;

if this similarity value > threshold then
take the point as data;

else
close the data term;

end

Figure 3.6: The best match similarity value outputs of the observation stage in case
of occlusion.
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3.4.2 3-D Head Movements

In the context of facial analysis, head movement is often divided in two

categories: in-plane head motion and out-of-plane head motion. Defining these

in terms of six degree of freedoms; in-plane head motion includes the translation

in x-axis, translation in y-axis and the rotation on z-axis (rolling). On the other

hand, out-of-plane head motion includes the translation in z-axis, rotation on x-axis

(pitching) and y-axis (yawing).

To deal with these kinds of 3-D movements of the head, ideally (and unlike

the development up to this point) a framework in which the feature points are

represented as 3-D points is needed. In real-world coordinate system, facial feature

points are 3-D points. But, since the observations are 2-D videos taken from a

monocular camera, the framework up to this point is designed on the camera plane

and feature points are represented as 2-D points. This produces a problem of

building a 3-D model using 2-D data.

Considering this problem, there is a need of back projection that will trans-

form the 2-D observation data (yt) to 3-D coordinate system (xt). Going from 2-D

to 3-D is a hard problem which does not have an exact solution because of the

ill-posed structure of the problem. Considering the literature, there are two main

approaches to this problem. One approach is stereo vision. The other approach is

using the motion (Chapter 8 of [45]). In stereo vision applications, one needs to

take the advantage of stereo cameras. Since in this thesis monocular cameras are

used, this approach is out of the scope. There are many proposed methods in the

literature to obtain the 3-D information from motion. Some experimental analysis

on 3D reconstruction given the kind of data of interest is conducted in this thesis,

and the ill-posed nature of this problem has been observed. As a result, it has been

decided not to pursue that path.

To suppress this deficiency of the 2-D data for 3-D movements, using the

head pose can be a solution. If this information is obtained somehow and pene-

trated into the model, then the 2-D model can act according to the pose of the

head and it can continue tracking in the case of 3-D head movements. For this

reason the instant head pose is needed. This can be obtained by using a head pose

tracker that works in parallel with the proposed method or for off-line applications

head tracking can be done beforehand. Another way can be to use the existing

system and extend it in a way to take the advantage of reliably tracked points.

There are some facial feature points, like eye corners, that their movements only
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depend on head movement. Thus these can be defined as more reliably tracked

points and they can be used to get the head pose information. These two methods

are explained in the next sections.

Tracking Based On Given Head Pose

To cope with 3D head movements, one approach can be to use the head pose

information that is given by a head pose tracker- for instance; a vision-based head

pose tracker. This head pose information consists of three-dimensional translation

(Tx, Ty, Tz) and orientation information (θx, θy, θz) with respect to the origin. This

information can be inserted into the model in two ways. One way is to transform

back the observed data of the model, explained in section 3.2, using the head pose

information. With this transformation, head movement effects will be removed

from the observation data, then it can be used as if there was no head movement.

Another way is to update the spatial distances of the spatial model, defined in

subsection 3.1.2, according to the head pose change. In the next paragraphs these

two methods will be explained.

Figure 3.7: The illustration of data back transformation.

Consider a 3-D coordinate system, as illustrated in Figure 3.7, in which there is

a 3-D point P = [X, Y, Z]T . Here P1 = [X1, Y1, Z1]
T is any arbitrary 3-D feature

point on the face before head pose change. Point p′1 = [x′1, y
′
1]

T is the projection of

point P1 onto the camera plane. The coordinates of the point p′1 can be found as

follows using the pin-hole camera model’s projection equations:

p =
f

Z
P x = f

X

Z
(3.20)

y = f
Y

Z

where f is the focal length of the camera. It is assumed that when the head pose
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is changed point P1 will become the point P2 = [X2, Y2, Z2]
T . The projection of P2

onto the camera plane will be p′2 = [x′2, y
′
2]

T which is the point that the observation

stage will produce for the corresponding feature point. The coordinates of p′2 can

also be found from P2 using equation 3.20.

Since P2 is assumed as the new location of P1 after the head pose change,

P1 can be written in terms of P2 and the head pose parameters, (Tx, Ty, Tz) and

(θx, θy, θz), as

P1 = R · P2 + T (3.21)

where R is the rotation matrix defined as follows:

R =




1 0 0

0 cos(−θx) − sin(−θx)

0 sin(−θx) cos(−θx)


·




cos(−θy) 0 sin(−θy)

0 1 0

− sin(−θy) 0 cos(−θy)


·




cos(−θz) − sin(−θz) 0

sin(−θz) cos(−θz) 0

0 0 1




(3.22)

and T = [−Tx,−Ty,−Tz]
T is the translation vector. The head pose parameters

taken from the tracker are the translation and rotation parameters when P1 (the

point when the is on previous position) turns into P2 (the point when the is

on current position). Thus, to define the transformation from P2 to P1 these

parameters are negated.

By writing the P2 in equation 3.21 in terms of p′2, since the coordinates of

p′2 are known from observation stage, the coordinates of P1 can be found. No-

tice that the z-axis parameter of P2 is unknown. But the z-axis parameter of

P1 can be found from the first head pose parameters obtained by the tracker.

By using the z-axis parameter of P1, the z-axis parameter of P2 can be easily

found using equation 3.21. According to this procedure, the observation data

is transformed back and tracking can continue without the effects of head movement.

On the other hand, the approach where the spatial distances in the spatial

model are updated is different from the previous approach. Consider Figure 3.8. As

in the previous approach, the points P1 and P2 are two 3-D feature points on the

face and they are spatially connected. Their projections on the camera plane are

p′1 and p′2. When the head pose is changed, it is assumed that P1 will become P3

and P2 will become P4. Since the transformation parameters are known from the

head pose tracker, the coordinates of the new points, P3 and P4, can be found using

equation 3.21. Notice that, as in the previous approach, the z-axis parameters of

P1 and P2 are not known. But these parameters can also be found from the first

head pose parameters obtained by the tracker. According to equation 3.20, P3 and
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P4 can be projected onto the camera plane as p′3 and p′4. This projection provides

the exact coordinates of the new points on the image. Using these coordinates the

spatial distances on x-axis and y-axis in the model can be easily updated.

Figure 3.8: The illustration of updating spatial distance procedure.

Tracking Using Reliable Points

Other than the methods explained above, head pose information can be

obtained by using feature points whose movement only depends on head movement.

Because the movement of these feature points only depends on head movement,

these points can give information about the movement of the head. To get reliable

information from these points, one requirement is that these points should be

reliably tracked. One example is inner eye corner points. The inner eye corner

points can be easily detected by the observation stage, due to their edge structure,

and their movement only depends on head movement. So these points can be used

to obtain the pose information and update spatial distances in the spatial model

(subsection 3.1.2), such as the distances between inner and outer corner points.

Figure 3.9: The Affine-ratio rule.

Updating is based on using the Affine-ratio rule [3]. Consider Figure 3.9. Affine-
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ratio is defined assuming there are three parallel lines (a, b, c) and there are two

arbitrary lines (m1,m2) that pass through these lines. The rule satisfies that

the ratio between distances (|AB|, |BC| and |A′B′|, |B′C ′|) is always constant

( |AB|
|BC| = |A′B′|

|B′C′|), i.e. it is affine invariant. To apply this ratio rule to the proposed

model, it is assumed that the projection of the 3-D feature points on the camera

plane is orthographic projection. Ideally the assumption should be perspective

projection and in this case the cross-ratio invariance should be used. But to use

such an invariance, there is a need of three reliable points that are on the same line

(Chapter 10 of [45]). Since there are not any three reliable points on face that are

on the same line, the affine-ratio invariance is selected for updating.

Consider A,B,C points as the true point locations (like the ones that are

initially marked) and there is a spatial connection between point B and point C.

Then assume that, A′,B′,C ′ points are the new point locations after the head pose is

changed. If A′,B′ points are assumed to be reliably tracked points then the spatial

distance between B′ and C ′ in the model can be updated using the ratio rule. For

different head poses, the application of this procedure on eye corner feature points

is illustrated in Figure 3.10.

In Figure 3.10 it is assumed that there is a spatial connection between eye

corner points (P1 and P2), (P3 and P4). Consider that the points P1, P2, P3, P4 are

true point locations that are initially marked and points P2 and P3 are the points

that can be reliably tracked. The spatial distances between eye corner points can

be easily updated for the new position using the Affine-ratio as follows:

4x1

4x2

=
4x′1
4x′2

=
4y′2
4y′1

=
4x′′1
4x′′2

=
4x′′′1
4x′′′2

=
4x′′′′1

4x′′′′2

(3.23)

It can be concluded that the ratio rule can be used to update the spatial distances

(between spatially connected feature points) in the model. Notice that to apply this

rule, there is a need of at least two reliably tracked points. Usually the inner eye

corner points can be selected as the reliable points. But in the case of the head

rotations around x-axis and y-axis these points can be occluded by other feature

points because of the head movement. This can be a limitation for the tracker

(make it work up to a point where feature points begin to occlude each other).

Discussion

Considering the approaches proposed to handle the 3-D movements of the

head, since the head pose is an additional and a very useful information, tracking

facial features while the head pose is known will give better results. In a scenario
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Figure 3.10: The application of Affine-ratio rule on eye corner feature points for
different head poses.

where the head pose information can not be obtained, although there is the limi-

tation above, the proposed method can still work and it can continue facial feature

tracking using the reliable points.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter the performance of the proposed method explained in the pre-

vious chapter is demonstrated on data recorded in various conditions. The setup

and the parameter selection procedure is explained in section 4.1. In section 4.2,

data that consist only of head movements is used to test the framework’s perfor-

mance in the case of simple movement. Since the main motivation of this thesis

is facial expression recognition systems, the proposed method is tested with videos

that include facial gestures; the results of which are presented in section 4.3. Finally

Section 4.4 contains the results of the proposed method applied to real-world data

recorded in a vehicle environment.

4.1 Setup & Parameter Selection

The data used in experiments are grayscale videos with 640x480 resolution.

Videos are recorded with a rate of 30 frames per second without compression. As

explained in subsections 3.1.1, 3.1.2, and 3.1.3, the parameters of the corresponding

noise covariance matrices should be selected based on the experimental data. But

here for simplicity these parameters are selected identically in all scenarios. In these

identically selected covariance matrices; to decrease the number of parameters and

to make simple assumptions, the position (and the velocity) errors on x and y axes

are selected identically for all features. The selected transition model noise (Q) and

the observation model noise (R) are as follows:

Q =




16 0 0 0

0 16 0 0

0 0 4 0

0 0 0 4




R =

[
4 0

0 4

]
(4.1)

In the transition model it is assumed that the position errors on both x and y axes

(σ2
x, σ

2
y) are ±4 pixels and the velocity errors on both x and y axes (σ2

u, σ
2
v) are ±2

pixels. For observation model the position errors on both x and y axes (σ′′2x , σ′′2y )

are assumed as ±2 pixels.



In the spatial model, covariance matrices are formed in information form.

Consider the case in which there are constraints only on x and y axis positions

for two spatially connected feature points. Assuming the position errors on x

and y axes (σ′2x , σ′2y ) are ±2 pixels, the inverse covariance matrix (Σ−1) for the

corresponding spatial model is selected as follows:

Σ−1 =




1/4 0 0 0

0 1/4 0 0

0 0 0 0

0 0 0 0




(4.2)

As mentioned above, the position errors (σ′2x , σ′2y ) are selected as equal for simplicity.

Since the covariance matrices for hidden variables are updated in each algo-

rithm step, the prior covariance matrix, explained in section 3.1, is chosen with

large error values. Assuming the uncertainties on positions and velocities on both x

and y axes are ±10 pixels and ±5 pixels respectively, the selected prior covariance

matrix is as follows:

Σx0 =




100 0 0 0

0 100 0 0

0 0 25 0

0 0 0 25




(4.3)

The proposed method is run under Matlab v6.5 on a Celeron 1.5Ghz computer. The

process time for the non-optimized code is slower than the real-time processing rates.

The slowest part of the algorithm is the convolution operation performed in the

Gabor filter-based pre-processing procedure described in Section 3.2. The inference

part for the proposed framework is much faster than the convolution part.

4.2 Head Tracking Experiments

First of all, the proposed framework is tested in simple scenarios involving

only head movement. Head movement is a simpler movement than the movement

of facial components such as eyes, mouth, etc. In this section, the results of the

proposed method for such a case are shown. Since the main motivation of this

thesis is facial feature tracking not head tracking, the purpose of showing these

results is not to compete with other head tracking methods in the literature.
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Four eye corner points are selected to be tracked to capture head movement.

As shown in Figure 4.1, simply eye corner points are connected spatially to each

other for each eye individually. These spatial connections put constraints on x and

y axes. To handle the head movements Affine invariance is used and the inner eye

corners are selected as reliable points.

Figure 4.1: The selected feature points and the spatial connections for head move-
ment sequences.

In Figure 4.2 the results for tracking these four points while there is a head rotation

around z-axis and a translation in x-axis are shown. To display the performance of

the spatial difference update procedure, the real difference vectors (in cm) between

the left eye corners (measured on face) and the projection of these differences to the

camera plane (in pixels) are shown in Table 4.1. Since the real differences are the

real distances between the eye corner points they do not change. As it can be seen

in the results, the proposed method performs well in the case of head movements

and the spatial differences are updated properly. To test the occlusion detector

in the case of head movements the framework is applied to videos containing

occlusions. Consider a case that includes head translation in z-axis, rotation around

z-axis and occlusion of one facial feature by hand. The results for such a case are

shown in Figure 4.3. In Table 4.2 the real difference vectors and the projection of

the difference vectors on to the camera plane in this sequence are shown. It can

be observed that even in the case of occlusion on a facial feature, the algorithm

continues tracking successfully. The occlusion detector senses the occlusion on the

left eye outer corner and the information coming from data of the occluded feature

is closed, but the information from temporal and spatial relations is sufficient to

continue tracking.

4.3 Facial Expression Experiments

One of the main motivations of this thesis is solving the problem of facial

feature tracking in a facial expression analysis system. In this section, tracking re-
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No. No.

2 431

112 561

307 616

Figure 4.2: Tracking results of the proposed method for a sequence that includes
head rotation around z-axis and translation in x-axis.

No. 4x (in pixels) 4x (in cm)
4xx 4xy 4xu 4xv 4xx 4xy 4xu 4xv

1 59.00 2.00 0.00 0.00 3.80 0.4 0.00 0.00
2 58.82 4.99 0.00 0.00 3.80 0.4 0.00 0.00

112 51.50 14.01 0.00 0.00 3.80 0.4 0.00 0.00
307 53.28 12.69 0.00 0.00 3.80 0.4 0.00 0.00
431 55.74 1.19 0.00 0.00 3.80 0.4 0.00 0.00
561 55.71 2.28 0.00 0.00 3.80 0.4 0.00 0.00
616 57.45 2.48 0.00 0.00 3.80 0.4 0.00 0.00

Table 4.1: The updated difference vectors and the real spatial difference vectors
between the left eye corner points for the sequence in Figure 4.2.
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No. No.

2 745

194 958

287 1073

470

Figure 4.3: Tracking results of the proposed method for a sequence that includes
head rotation around z-axis, translation in z-axis, and an occlusion of a facial feature
by hand.
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No. 4x (in pixels) 4x (in cm)
4xx 4xy 4xu 4xv 4xx 4xy 4xu 4xv

1 43.00 0.00 0.00 0.00 3.80 0.4 0.00 0.00
2 42.99 1.07 0.00 0.00 3.80 0.4 0.00 0.00

194 42.41 3.53 0.00 0.00 3.80 0.4 0.00 0.00
287 43.97 10.38 0.00 0.00 3.80 0.4 0.00 0.00
470 42.85 5.17 0.00 0.00 3.80 0.4 0.00 0.00
745 33.86 1.40 0.00 0.00 3.80 0.4 0.00 0.00
958 55.81 4.67 0.00 0.00 3.80 0.4 0.00 0.00
1073 37.88 2.79 0.00 0.00 3.80 0.4 0.00 0.00

Table 4.2: The updated difference vectors and the real spatial difference vectors
between the left eye corner points for the sequence in Figure 4.3.

sults based on this motivation are shown. Basically some distinct facial gestures

are selected for the experiments. These include mouth opening, eye closure, smil-

ing, and eye (wide) opening. The sequence consisting of such gestures is recorded

continuously, and also includes natural eye blinking movements. 12 feature points

are selected including 4 points for each eye and 4 points for the mouth. In Figure

4.4, the selected feature points and the spatial connections, that are simply selected,

for such an experiment are illustrated. In Table 4.3, the spatial constraints of the

corresponding connections are shown by using the projection of the initial spatial

differences and the real differences. It should be noticed that the distance values are

dependent on the scenario.

Connected Couples 4x (in pixels) 4x (in cm)

4xx 4xy 4xu 4xv 4xx 4xy 4xu 4xv

1-4 28.00 0.00 0.00 0.00 1.90 0.00 0.00 0.00
3-4 50.00 0.00 0.00 0.00 3.80 0.00 0.00 0.00
7-4 28.00 0.00 0.00 0.00 1.90 0.00 0.00 0.00
2-5 24.00 0.00 0.00 0.00 1.90 0.00 0.00 0.00
4-5 0.00 2.00 0.00 0.00 0.00 0.05 0.00 0.00
6-5 50.00 0.00 0.00 0.00 3.80 0.00 0.00 0.00
8-5 24.00 0.00 0.00 0.00 1.90 0.00 0.00 0.00
9-11 42.00 0.00 0.00 0.00 2.95 0.00 0.00 0.00
10-11 0.00 4.00 0.00 0.00 0.00 0.05 0.00 0.00
12-11 42.00 0.00 0.00 0.00 2.95 0.00 0.00 0.00

Table 4.3: The selected spatial constraints of the corresponding spatial connections
shown in Figure 4.4 for the experiments in section 4.3.

The results for the sequence described above are shown in Figure 4.5-b. To make

a comparison, an algorithm that uses only temporal relations and that is based on

Kalman filter [23] is also applied to the same sequence and the results are shown in
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Figure 4.4: The selected feature points and the spatial connections for facial expres-
sion experiments.

Figure 4.5-a. It can be clearly seen that the proposed method gives more reliable

results, while drifts occur for the other algorithm. Most of the drifts occur in the

eye region points because eye blinking and eye closure cause the observed region to

change rapidly. Since the other algorithm doesn’t use spatial relations, these rapid

changes make it lose tracking. It should be also noticed that although the resolution

of the video frames are 640x480, the size of the head region occupies a much smaller

region. After all it can be concluded the proposed method can successfully track

even the size of the head is small.

To extend these results, some variations of this sequence have been used to test the

tracker under different conditions. In subsection 4.3.1, the tracker is tested in a

sequence in which there is an occlusion on mouth and eye points. In many practical

applications, available video resolution is not much higher than that can be provided

for example by webcams. To test the practicality of the method, it has been tried

with videos that have low resolution. Such results are shown in subsection 4.3.2.

Another practical application problem can be the illumination changes. These tests

are displayed in subsection 4.3.3. One of the main contributions of this thesis is

the facial feature tracking in the case of head movements. In subsections 4.3.4 and

4.3.5 the tracker’s performance when there is in-plane and out-of-plane head motion

are given respectively. In these experiments it is assumed that there is not any

external source that can give the head pose parameters. The head pose information

is obtained by using the reliably tracked points.
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No.

2

272

377

432
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No.

635

694

854
(a) (b)

Figure 4.5: Tracking results of (a) the method in [23] (b) the proposed method for
a sequence that includes facial gestures such as mouth opening, eye closure, opening
eyes wide, and smiling.
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4.3.1 Under External Occlusion

The purpose of this experiment is to test the performance of the occlusion

detection part, explained in subsection 3.4.1, in facial expression sequences. Here,

a sequence that consists of the occlusion of a mouth feature point and an eye cor-

ner point as well as facial gestures like mouth opening and wide opening eyes is

used. There is also natural eye blinking movements in the sequence. The proposed

tracker’s performance in such a sequence is illustrated in Figure 4.6-b. In Figure

4.6-a, the results of an existing technique [23] is shown. To make a proper compar-

ison, the same occlusion detector is also used for the existing technique.

It can be observed that in the case of data loss because of occlusion, spatial con-

straints enable the tracking to continue. Without the spatial relations, the positions

of the points cannot be accurately estimated, as demonstrated by the results of

[23] in Figure 4.6-a. When the occlusion occurs the information coming from the

data term of the occluded feature is closed in both tests. The proposed method

continues to track using the spatial information and temporal information, but the

other algorithm fails to track because only temporal information is not enough to

track. Using only temporal relationships will cause the feature points to go on with

constant velocity (due to the nature of the linear state space model used). The

drifts are because of this lack of information. As explained in subsection 3.4.1, the

best match similarity outputs for the corresponding feature points give quantitative

information about occlusion. These similarity values for four eye corner points are

given in Figure 4.7. It can be clearly seen that thresholding the similarity values

below 0.95 (red line) can detect the occlusion.

4.3.2 Lower Video Resolution

There are many facial feature tracking methods in the literature and most

of these methods are tested in ideal cases. But the practical application of these

systems can suffer from some assumptions. High video resolution is one of these

assumptions. The higher the video resolution, the bigger the head region in frames

which makes tracking easier. To test the proposed method in low-resolution the

same sequence in Figure 4.5, this time with 320x240 and 160x120 resolutions, is used.

Since the video data sizes are half or quarter of the previous sizes the wavelengths of

Gabor filter in section 3.2 are selected as half or quarter of the previous wavelengths.

In Figure 4.8-a,b and 4.9-a,b the results for the method in [23] and the re-

sults for the proposed method are given respectively. It can be clearly seen that,

when the video resolution is 320x240 the proposed method can continue tracking
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No.

2

123

170

639

756

932
(a) (b)

Figure 4.6: Tracking results of (a) the method in [23] (b) the proposed method for
a sequence includes facial gestures and external occlusion by hand.
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Figure 4.7: The similarity outputs for four eye corner point in the sequence shown
in Figure 4.6. Red line represents the threshold value.
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robustly. But when the video resolution is 160x120, the proposed method can lose

tracking of some features. Here drifts occur because of the misleading information

coming from the observation stage. The main reason is missing edge structure of the

feature of interests because of the very low resolution data. Low resolution causes

the edge structures to disappear. There are drifts in the other algorithm again

because of the eye blinking and eye closure. Although the proposed method can

lose tracking when the data have very low resolution (160x120) it can be concluded

that, in the case of practical applications, when the video data resolutions are not

so much low, the proposed method can still be a solution for the facial feature

tracking problem.

4.3.3 Illumination Changes

In the previous subsection the robustness of the proposed method to lim-

itations in video resolution has been examined. In this subsection, the issue of

robustness to another important variable, illumination is considered. Illumination

change is a well-known problem in practical applications. The illumination in

scenes can change in time because of the nature of the real-world conditions. So

this is a case that should be handled.

The results of the method in [23] and the proposed method is given in Fig-

ure 4.10-a,b respectively. Tracking results show that there can occur drifts when

the illumination in the scene is very low (frame no.s: 312, 357, 415). But when the

illumination is very high (frame no: 139) the proposed method tracks better than

the existing technique. The reason of the drifts is again missing edge structure of

the feature of interests. In the case of low illumination, Gabor filters cannot detect

the feature locations due to the lack of visibility of the edge structure. This reduces

the quality of the data fed into the system from the observations stage. But as

compared to the results of the existing technique the proposed method gives more

reliable results.

4.3.4 In-plane Head Motion

As mentioned in subsection 3.4.2, head movement is a natural human action

that should be taken into account in facial feature tracking systems. In-plane head

motion is the motion of head in three degrees of freedom : Tx, Ty, θz. In-plane head

motion can be thought of more simple movements as compared with out-of-plane

head motion. In this section the proposed method is applied to a sequence that

consists of the combination of motions involving these three degrees of freedom.

The sequence also includes a mouth opening gesture.
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No.

2

177

286

540

695

935
(a) (b)

Figure 4.8: Tracking results of (a) the method in [23] (b) the proposed method for
the same sequence in Figure 4.5 with 320x240 resolution.
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No.

2

285

363

620

794

824
(a) (b)

Figure 4.9: Tracking results of (a) the method in [23] (b) the proposed method for
the same sequence in Figure 4.5 with 160x120 resolution.
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No.

2

139

312

357

415

537
(a) (b)

Figure 4.10: Tracking results of (a) the method in [23] (b) the proposed method
for a sequence that includes facial gestures and illumination changes.
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As a solution to head movement cases two different approaches are given in

subsection 3.4.2, one requiring and one not requiring information about the head

pose parameters from an external source. Here, it is assumed that the head pose

parameters can not be obtained by an external source. For this reason, the approach

based on reliably tracked points is used to get the missing head pose information

(by Affine invariance) and continue tracking. The left and right inner eye corner

points are selected as reliably tracked points. The results of this approach for such

a sequence explained above is given in Figure 4.11-b. The same sequence is tested

using the method in [23] to make a comparison. These results are given in Figure

4.11-a.

No.

2

69

121

191

70



No.

273

404

464
(a) (b)

Figure 4.11: Tracking results of (a) the method in [23] (b) the proposed method
for a sequence that includes translation on x and y axes, rotation around z-axis and
mouth opening.

The real spatial differences (in cm) and the projection of the distances on camera

plane (in pixels) between the left eye corner points through the sequence in Figure

4.11 are given in Table 4.4. It can be clearly observed that the spatial distances

are properly updated when the head rotates around z-axis. For example; when the

head rotates left (frame no. 121) and right (frame no. 273) around z-axis, the 2-D

distance on y-axis between eye corner points will be larger than the distance when

the head is straight. According to the projected distances on y-axis in Table 4.4, it

can be seen that this increment is properly handled.

Although the spatial distances are properly updated there occur some drifts

in the results of the proposed method. The main reason of the drifts in the

proposed method’s results is the out-of-plane movements of the head. Here the

assumption is in-plane head motion, but in practice, limiting the head to perfect

in-plane motion is hard. It can be seen that in frames 121 and 273 there is a little

rotation around x-axis which affects the reliable points. Thus, because of the drifts
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No. 4x (in pixels) 4x (in cm)
4xx 4xy 4xu 4xv 4xx 4xy 4xu 4xv

1 47.00 3.00 0.00 0.00 3.80 0.4 0.00 0.00
2 47.03 2.57 0.00 0.00 3.80 0.4 0.00 0.00
69 43.44 7.67 0.00 0.00 3.80 0.4 0.00 0.00
121 44.42 17.50 0.00 0.00 3.80 0.4 0.00 0.00
191 44.75 3.00 0.00 0.00 3.80 0.4 0.00 0.00
273 48.13 5.41 0.00 0.00 3.80 0.4 0.00 0.00
404 48.29 2.20 0.00 0.00 3.80 0.4 0.00 0.00
464 48.94 1.45 0.00 0.00 3.80 0.4 0.00 0.00

Table 4.4: The updated difference vectors and the real spatial difference vectors
between the left eye corner points for the sequence in Figure 4.11.

in the reliable points the head pose information can not be obtained properly from

these points and there occur drifts in all other points. In a case when the proper

head pose information can be obtained from an external source these results will

be improved.

4.3.5 Out-of-plane Head Motion

The out-of-plane motion is the motion of head in the following three degrees

of freedom: Tz, θx, θy. For problems involving 2-D data, out-of-plane motion of the

head can be considered as a more complex motion as compared with the in-plane

motion. In this section, the proposed method is tested on three different sequences

each of which includes one of these three motions and a facial gesture (mouth

opening).

Figures 4.12, 4.13, and 4.14, show respectively the results for a sequence

that includes rotation around y-axis (θy, yawing), rotation around x-axis (θx,

pitching), and translation on z-axis as well as mouth opening. The results of these

sequences for the method in [23] are shown in Figures 4.12-a, 4.13-a, and 4.14-a.

Moreover, the results for the proposed method are shown in Figures 4.12-b, 4.13-b,

4.14-b.

In Table 4.5 the real spatial differences (in cm) and the projection of the

distances on camera plane (in pixels) between the left eye corner points are given

through the sequence in Figure 4.14. It can be observed that the spatial differences

are properly updated when the head translates backwards and forwards on z-axis.

Considering all the results, it can be seen that there occurs some drifts in
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No.

2

175

249

317

383

425
(a) (b)

Figure 4.12: Tracking results of (a) the method in [23] (b) the proposed method
for a sequence that includes rotation around y-axis (θy) and mouth opening.
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No.

2

40

84

147
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No.

304

353

425
(a) (b)

Figure 4.13: Tracking results of (a) the method in [23] (b) the proposed method
for a sequence that includes rotation around x-axis (θy) and mouth opening.

No. 4x (in pixels) 4x (in cm)
4xx 4xy 4xu 4xv 4xx 4xy 4xu 4xv

1 49.00 4.00 0.00 0.00 3.80 0.4 0.00 0.00
2 49.26 2.73 0.00 0.00 3.80 0.4 0.00 0.00
53 47.85 2.29 0.00 0.00 3.80 0.4 0.00 0.00
128 34.18 1.62 0.00 0.00 3.80 0.4 0.00 0.00
251 47.07 3.01 0.00 0.00 3.80 0.4 0.00 0.00
289 54.07 4.10 0.00 0.00 3.80 0.4 0.00 0.00
413 43.59 0.86 0.00 0.00 3.80 0.4 0.00 0.00

Table 4.5: The updated difference vectors and the real spatial difference vectors
between the left eye corner points for the sequence in Figure 4.14.

the results of the proposed method. One reason of this is again reliably tracked

points (left and right eye inner corners). As explained in subsection 3.4.2 when

the feature points that are accepted as reliably tracked points can not be tracked

well, the proposed method can lose tracking. Because in this case the head pose

information can not be obtained well using reliable points, there occur drifts in

all other feature points. Another reason is the orthographic assumption of Affine

invariance. Affine invariance provides accurate results up to a point of head
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289
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Figure 4.14: Tracking results of (a) the method in [23] (b) the proposed method
for a sequence that includes translation on z-axis and mouth opening.
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movements. When there is large movements of head the assumption fails. But

considering the results of the method in [23], the proposed method appears to be

a better tracker. If the head pose information can be obtained from an external

source then these results will be much improved.

4.4 Vehicle Environment Results

In this section, in order to evaluate the performance of the proposed method

in a real-world application, the framework is tested on videos recorded in vehicle

environment [1]. The sequences are 640x480 resolution videos, compressed with

DIVX codec, that include head movements and facial component movements. As

in the experiments in subsections 4.3.4, 4.3.5 reliably tracked points are used to

cope with head movements. The left and right inner eye corner feature points are

selected as reliable points. In Figure 4.15-a,b the results for the method in [23] and

for the proposed method are shown respectively. This test sequence is taken from

the part when the driver is performing a ”phone-banking” task. For this reason the

sequence also includes mouth movements because of speaking.

It can be clearly seen that except for some drifts on the lower lid feature

points the proposed method can successfully track while the method in which only

temporal relations are used [23] fails to track and loses the positions. When there

occurs occlusions because of the eye blinks the spatial connections in the proposed

method are sufficient to continue tracking. But in the other method , because of

this lack of information feature points go on with constant velocity (due to the

nature of the linear state space model used). It should also be noticed that an

external source that gives the head pose parameters is not used in these cases.

Such information will improve the results. Considering the results from the vehicle

environment, it is concluded that the proposed tracker has the potential be used in

practical real-world problems.
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Figure 4.15: Tracking results of (a) the method in [23] (b) the proposed method
for a sequence, recorded in vehicle environment [1], that includes facial gestures
(speaking, mouth opening) and head movements.
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CHAPTER 5

CONCLUSION

In this thesis a facial feature point tracker that can be used in applications

such as human-computer interfaces, facial expression analysis systems, driver fatigue

detection systems, etc. is proposed and the performance of the tracker is evaluated

under various conditions.

5.1 Summary

The proposed tracker is based on a graphical model framework. The position

of the facial features are tracked through video streams by incorporating statistical

relations in time and the spatial relations between feature points. In most of the

recent works, the spatial connections are not used, the tracking of feature points are

done individually. This causes drifts in the case of arbitrary head movements. By

using the spatial relations, the proposed method provides facial feature tracking in

a holistic way and provides robust tracking in the head movement cases. Another

advantage of the proposed method is the treatment of external occlusions. In the

case of occlusion, the data in the occluded region become useless. To prevent drifts

because of occlusions, a Gabor feature based occlusion detector is developed and

used in the proposed method.

According to the given results it can be concluded that the proposed method

provides a general framework for facial feature tracking. It is a robust tracker for

facial expression sequences where there is uncertain and useless data because of

external occlusion. There can occur drifts in the case of arbitrary head movements.

Especially in the cases in which there is large movements and in the cases when

the reliable points can not be tracked well, since the proper head pose information

can not be obtained drifts occur in all points. But in a case in which the head

pose information is obtained properly by an external source the proposed method

can continue tracking robustly. Although there occur some drifts when the video

resolution is too low, the proposed method can be thought of a robust tracker

when the data resolution is low. In the conditions where the illumination level of



the scene is very low the proposed method can suffer because of the misleading

of observation stage. But when the illumination is very high the method can

continue tracking reliably. The results in the vehicle environment show that the

proposed method can be a practically usable tool for a analysis system such as

driver behavior analysis, driver fatigue detection, etc.

5.2 Suggestions for Future Work

There can be extension of the proposed method in different ways. Since

the algorithm works on Matlab platform, this prevents the algorithm to work in

real-time rates. This can be a disadvantage for practical implementations. The

algorithm can be modified to run on C++ platform and can be much faster.

One extension can be in the observation phase. When the eyes are closed or

there is eye blinking, the edge structure in the eye region is totally different from

the structure when the eyes are open. To handle these cases totally, two different

edge structures can be represented by using two Gabor feature patches. There

can be some modifications in the occlusion detection part. The threshold selection

for the occlusion part is manual. This can be done automatically. Instead of

thresholding according to the similarity outputs, similarity values can be used to

change the uncertainty of the observation model. This can weight the information

coming from observations.

As mentioned above, the proposed method provides a general framework and

it is flexible. The framework can be manipulated in different ways to extend

the system; for example by assigning different spatial relations, increasing the

number of facial features, etc. The proposed framework can be also modified in

a way to model the relations between facial features hierarchically. This can be

done by connecting low-level feature points (e.g. right eye feature points, mouth

feature points) together as one high-level point (e.g. center of right eye, center of

mouth) and then connecting each high-level point together. This will provides a

multi-resolution tracker. The representation of facial features can be in 3-D.

Another extension can be to learn these relations from training sets. In this

framework the statistical relations between feature points are represented using

Gaussian distributions. This is the simplest way to perform inference parametrically.

The framework would allow more complex relationships that use non-parametric

density models. Again a training phase can also be useful to choose the proper

distributions to be assigned for relations between features.

81



REFERENCES

[1] H. Abut, H. Erdogan, A. Ercil, B. Curuklu, H.C. Koman, F. Tas, A.O. Ar-
gunsah, S. Cosar, B. Akan, H. Karabalkan, E. Cokelek, R. Ficici, V. Sezer,
S. Danis, M. Karaca, M. Abbak. M.G. Uzunbas, K. Ertimen, C. Kalaycioglu,
M. Imamoglu, C. Karabat, and M. Peyic. Data collection with ’uyanik’: Too
much pain; but gains are coming. In Proc. Biennial on DSP for In-Vehicle and
Mobile Systems, Istanbul, Turkey, June 2007.

[2] J. Ahlberg. Using the active appearance algorithm for face and facial feature
tracking. In IEEE ICCV Workshop on Recognition, Analysis, and Tracking of
Faces and Gestures in Real-Time Systems, pages 68–72, 2001.

[3] Aleksandr Danilovitch Aleksandrov, Andrei Nikolaevich Kolmogorov, and
Mikhail Alekseevich Lavrent’ev. Mathematics: Its Content, Methods and
Meaning. M.I.T. Press, Cambridge, Mass, USA, 1963.

[4] P. Antoszczyszyn, J.M. Hannah, and P. Grant. Local motion tracking
in semantic-based coding of videophone sequences. In Sixth International
Conference on Image Processing and Its Applications, pages 46–50, 1997.

[5] Michael J. Black and Yaser Yacoob. Tracking and recognizing rigid and non-
rigid facial motions using local parametric models of image motion. In ICCV,
pages 374–381, 1995.

[6] David S. Bolme. Elastic bunch graph matching. Master’s thesis, Colorado State
University, 2003.

[7] F. Bourel, C. Chibelushi, and A. Low. Robust facial feature tracking, 2000.

[8] R.G. Brown and P.Y.C. Hwang. Introduction to Random Signals and Applied
Kalman Filtering. John Wiley & Sons, Inc., third edition, 1996.

[9] Su C and Huang L. Spatio-temporal graphical-model-based multiple facial
feature tracking. EURASIP Journal on Applied Signal Processing, 13:2091–
2100, 2005.

[10] Jingying Chen and B. Tiddeman. A robust facial feature tracking system.
In IEEE Conference on Advanced Video and Signal Based Surveillance, pages
445–449, 2005.

[11] Jingying Chen and B. Tiddeman. Robust facial feature tracking under various
illuminations. In IEEE International Conference on Image Processing, pages
2829 – 2832, 2006.



[12] T. Chen and R. Rao. Audio-visual integration in multimodal communications,
1998.

[13] Jeffrey Cohn, Adena Zlochower, Jenn-Jier James Lien, and Takeo Kanade.
Feature-point tracking by optical flow discriminates subtle differences in fa-
cial expression. In Proceedings of the 3rd IEEE International Conference on
Automatic Face and Gesture Recognition (FG ’98), pages 396 – 401, April 1998.

[14] Antonio Colmenarez, Brendan Frey, and Thomas S. Huang. DETECTION
AND TRACKING OF FACES AND FACIAL FEATURES. pages 657–661.

[15] F. Dornaika and J. Ahlberg. Efficient active appearance model for real-time
head and facial feature tracking. In IEEE International Workshop on Analysis
and Modeling of Faces and Gestures, pages 173 – 180, 2003.

[16] F. Dornaika and J. Ahlberg. Fast and reliable active appearance model search
for 3-d face tracking. IEEE Transactions on Systems, Man and Cybernetics,
Part B, 34(4):1838 – 1853, August 2004.

[17] F. Dornaika and F. Davoine. Online appearance-based face and facial fea-
ture tracking. In Proceedings of the 17th International Conference on Pattern
Recognition, pages 814 – 817, 2004.
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