
LING BROWSER

A NLP BASED BROWSER

FOR
LINGUISTIC INFORMATION

by
ÖNSEL ARMAĞAN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of
Master of Science

Sabancı University
February 2008

c©Önsel Armağan 2008
All Rights Reserved

to my parents

Acknowledgements

I wish to express special thanks to my supervisor Kemal Oflazer, who has sup-
ported me in several ways in this project. His motivation and encouragement will
always guide me through out my professional career.

LING BROWSER – A NLP BASED BROWSER FOR LINGUISTIC
INFORMATION

Önsel ARMAĞAN

Computer Science and Engineering, Master of Science Thesis, 2008

Thesis Supervisor: Prof. Kemal OFLAZER

Keywords: Natural Language Processing, Computer Assisted Language Learning,
Morphological Analysis

Abstract

Linguistic students and researchers need practical tools providing information
about elements of a language to understand its properties and conduct research on
that language. Many computer assisted language learning tools have been developed
since the emerging of computers. However, none of these tools aim to satisfy the
needs of advanced learners. In this thesis, we introduce a tool, LingBrowser, which is
an intelligent hyper-text browser that employs natural language processing technol-
ogy to provide an interactive environment for advanced language learners to access
all kinds of linguistic information about the words in a Turkish text. LingBrowser
provides immediate information about morphological, segmental, pronunciation and
semantic properties about the words in any text. Also, with a search interface,
LingBrowser can locate examples of many linguistic phonemena in the source text.

i

LING BROWSER – DİLBİLİM BİLGİSİ İÇİN NLP TABANLI
TARAYICI

Önsel ARMAĞAN

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2008

Tez Danışmanı: Prof. Kemal OFLAZER

Anahtar Sözcükler: Doğal Dil İşleme, Bilgisayar Destekli Dil Öğrenimi,
Biçimbilimsel Çözümleme

Özet

Dilbilim öğrencileri ve araştırmacıları, bir dilin özelliklerini anlamak ve üzerinde
çalışma yapmak için o dilin öğeleri hakkında bilgi sağlayan kullanışlı araçlara ihtiyaç
duymaktadırlar. Bilgisayarların ortaya çıkışından beri pek çok bilgisayar destekli
dil öğrenim aracı geliştirilmiştir. Ama bu araçlardan hiçbiri ileri düzeydeki kul-
lanıcıların ihtiyaçlarını karşılayacak şekilde düzenlenmemiştir. Bu tezde, ileri düzey
dil öğrencileri için Türkçe bir metinde bulunan sözcüklerle ilgili her türlü dilbilimsel
bilgiyi elde edebilecekleri etkileşimli bir ortam sağlayacak şekilde doğal dil işleme
teknolojileri kullanan, LingBrowser adını verdiğimiz akıllı yardımlı metin tarayıcıyı
tanıtmaktayız. LingBrowser herhangi bir metin içinde seçilen sözcüklerin biçimbilim,
söyleniş, anlambilim özellikleri hakkında anında bilgi vermektedir. Aynı zamanda,
bir arama arabirimi yoluyla, bir dil olayının metin içindeki tüm örneklerinin yerlerini
belirlemek de mümkündür.

i

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Motivation . 1
1.2 Overview of LingBrowser Functionality 2
1.3 Overview of Implementation . 2
1.4 Layout of the Thesis . 2

2 NATURAL LANGUAGE PROCESSING TECHNOLOGY 3

2.1 General Notions . 3
2.2 Morphology . 3

2.2.1 Challenges Of Morphology 3
2.2.2 Turkish Morphology . 4
2.2.3 Morphological Analyzer . 5

2.3 Other Issues of Natural Language Processing 6
2.4 Natural Language Processing in Computer Assisted Language Learning 6

3 FUNCTIONALITY OF LINGBROWSER 8

3.1 Single Word Exploration . 9
3.1.1 Morphological Analysis . 9
3.1.2 Lexical Morpheme Structure 10
3.1.3 Morphology and Lexical Morpheme Structure Alignment . . . 11
3.1.4 Surface Morpheme Structure 12
3.1.5 Lexical Surface Alignment . 12
3.1.6 Pronunciation . 13
3.1.7 Word Translation . 16

3.2 Search Engine . 16
3.2.1 Morphology Rules . 18
3.2.2 Lexical Morpheme Structure Rule 19
3.2.3 Orthography Rule . 19
3.2.4 Pronunciation Rules . 21

3.3 Additional Features . 23
3.3.1 Word Coloring . 23
3.3.2 Search in TELL Database . 23

ii

4 IMPLEMENTATION OF LINGBROWSER 25

4.1 The Software Architecture . 25
4.2 Software Design . 26

4.2.1 Client-Server Communication Interface 26
4.2.2 Server Side Components . 28
4.2.3 Client Side Components . 28
4.2.4 The Execution Flow . 28

4.3 Populating Databases . 30
4.3.1 Transducer Based Database 30
4.3.2 Word Translation Database 30
4.3.3 Frequency Database . 31

4.4 Implementation of Single Word Exploration 31
4.4.1 Morphology-Lexical Morpheme Alignment Annotation 32
4.4.2 Morphological Analysis . 33
4.4.3 Lexical Morpheme Structure 33
4.4.4 Surface Morpheme Structure 33
4.4.5 Lexical-Surface Morpheme Alignment 33
4.4.6 Morphology-Pronunciation Alignment 34
4.4.7 Pronunciation . 34
4.4.8 Translation of root words via WordNet 34

4.5 Implementation of The Search Engine 35
4.5.1 Text Preprocessing . 36
4.5.2 Linguistic Analysis . 37
4.5.3 The Search Process . 38

4.6 Implementation of Frequency Coloring 39
4.6.1 Text Processing . 39
4.6.2 Finding Frequencies . 39
4.6.3 Coloring Words . 39

4.7 Implementation of Search in TELL Database 40

5 A SESSION WITH LINGBROWSER 41

5.1 Installation and Configuration . 41
5.1.1 Server Side . 41
5.1.2 Client Side . 42

5.2 Single Word Exploration . 44
5.3 Activating Search Process . 44

5.3.1 Defining Rules . 45
5.3.2 Search Results . 45

5.4 Coloring Words . 45

6 CONCLUSIONS 48

7 APPENDIX A - Turkish Morphological Features 50

8 APPENDIX B - SAMPA CHART FOR TURKISH 55

iii

9 APPENDIX C - SURFACE LEXICAL PAIRS 56

10 APPENDIX D - LEXICAL MORPHEMES 58

iv

List of Figures

3.1 LingBrowser Main Window of LingBrowser 8
3.2 Morphological Analysis . 10
3.3 Lexical Morpheme Structure . 11
3.4 Alignment of Lexical Morphemes and Features 12
3.5 Surface Morpheme Structure . 13
3.6 Alignment of Lexical Morphemes and Surface Morphemes 14
3.7 Alignment of Features and Pronunciation 15
3.8 Pronunciation of a Word . 15
3.9 Translation of a Word . 16
3.10 Search Window . 17
3.11 Search Results Window . 17
3.12 Morphology Rules . 18
3.13 Lexical Morpheme Rule . 20
3.14 Orthography Rule . 21
3.15 Pronunciation Rule . 23
3.16 Meanings Of Colors . 24
3.17 Word Coloring . 24

4.1 LingBrowser data flow diagram . 29
4.2 LingBrowser data flow diagram for search 36

5.1 Run Server . 41
5.2 Tomcat Window . 42
5.3 Install Plugin . 43
5.4 LingBrowser Configuration . 43
5.5 Mozilla-Firefox Add-on Configuration Panel 44
5.6 Input Box . 45
5.7 Right-Click Menu . 46
5.8 Analysis Completed Message . 46
5.9 Example of Search Rules . 47
5.10 Search Results. 47

v

List of Tables

3.1 Orthography Meta Characters . 20
3.2 Basics Of Regular Expressions . 21
3.3 Pronunciation Meta-Characters . 22

4.1 Feature-Lexical Database Table . 30
4.2 Word Translation Database Table . 31
4.3 Sample Regular Expressions . 38

7.1 Major Part-of-Speech . 50
7.2 Minor Part-of-Speech . 51
7.3 Nominal Forms . 52
7.4 Verb Markers . 53
7.5 Semantic Markers For Derivations . 54

vi

Chapter 1

INTRODUCTION

1.1 Motivation

The primary goal of teaching linguistics is not that students memorize the

linguistic rules of a language, but rather that they comprehend to recognize the

structures where these rules are used in. Without practical exercise and training,

it can be hard to achieve this goal. Also, it is generally accepted that hands-on

experience motivates people to carry out research and stimulates thinking as research

continues. As a result, linguistics students or researchers who wish to understand

linguistic properties of a language, and conduct research on that language, need

practical tools and resources. This need is more critical for Turkish since it has

complex word structures that makes the linguistic exploration more difficult.

One general way of computationally implementing a training tool is to put

all previous self-training materials like exercises, drills, explanations into electronic

form and repeatedly propose exercises to learners. These exercises, however, can have

limited feedback to the learner that will often be like ”the answer is correct” or ”the

answer is wrong”. When acquiring a language, but not just learning the basics, then

we need more communicative tools. For example, let us imagine a linguistics student

encountering an unknown word or an unfamiliar usage of a known word while reading

an external text. In this situation, the linguistic student will desire to learn the

meaning, structure of the word etc. Furthermore, she may need to find examples of

similarly structured words. These can be done only by using computational language

techniques.

In this thesis, we introduce a tool, LingBrowser, that have a different ap-

proach to aid advanced learners while reading. LingBrowser is an intelligent

hyper-text browser that employs natural language processing technology to provide

an interactive environment for advanced language learners to access all kinds of lin-

guistic information about the words in a Turkish text. It is interactive because

users of LingBrowser can interact with a Turkish text in many ways by request-

ing information about properties of words and receiving answers and explanations.

1

LingBrowser can make non-computational explanations of linguistic phenomena

available from the underlying computational representations.

1.2 Overview of LingBrowser Functionality

LingBrowser provides information about morphological segmentation and fea-

tures, alignments of lexical and surface morphemes along with the explanation of any

allomorph, segmental structure, pronunciation and any related explanations about

pronunciation phonemena like location of stress in a word. By using WordNet [2, 3],

which is a concept ontology database, meanings of the root can be accessed that one

can observe the semantic properties of a word. Users can locate examples of many

linguistic phenomena in the source text by performing search with various criteria.

1.3 Overview of Implementation

Reading has a crucial part in language learning that it consolidates previously learned

material, increases the knowledge of vocabulary and more importantly it provides a

relaxed, tension-free learning environment. The largest source of reading material

that can be reached through computers is the Internet. Thus, we desired the Ling-

Browser to be a tool that aids language learners while they are browsing the web

pages which are in HTML (Hyper Text Markup Language) format. With this idea

in mind, we converted the popular web browser, Mozilla-Firefox, into a language

learning environment with an add-on.

Mozilla-Firefox add-on development framework has programming limitations

when you try to implement a complex application. For instance, there is no interface

for database connectivity. On the other hand, it provides interfaces for data exchange

in XML(eXtended Markup Language) and HTML (Hyper Text Markup Language)

from external resources. Thus, we implemented a server application which does the

most of computation and the add-on will be responsible for just simple manipulations

and presentation of processed data.

1.4 Layout of the Thesis

The organization of thesis as follows: Chapter 2 introduces NLP Technologies and

the relation of CALL (Computer Assisted Language Learning) and NLP. Chapter

3 presents the functionality of LingBrowser. Chapter 4 discusses the issues of

implementation. In Chapter 5 we will present a session with LingBrowser. Finally

we will conclude the thesis in Chapter 6.

2

Chapter 2

NATURAL LANGUAGE PROCESSING TECHNOLOGY

2.1 General Notions

In this chapter, we will focus on NLP technology for analysis of words and applica-

tions of NLP in computer assisted language learning. We will start with some brief

information about NLP and definitions of linguistics terms.

NATURAL LANGUAGES, including Turkish, English, Arabic etc., are the

written and spoken communication systems between human beings. NATURAL

LANGUAGE PROCESSING (NLP), in a broad term, tries to convert Natural Lan-

guages into formal representations that they can be analyzed or generated by com-

puters. Some of applications of NLP can be listed as machine translation, automatic

summarization, question answering, etc.

LINGUISTICS is a wide field that studies natural languages, and MORPHOL-

OGY is the branch of linguistics that deals with words. In most languages words can

have complex grammatical structures. A word is composed of MORPHEMES which

are the smallest units of structure. Morphemes can express either morphosyntactics

or semantics. The morphemes which express the semantic features are ROOT s or

STEM s. A word will generally have one root morpheme and multiple affix mor-

phemes added to this morpheme.

Affixes that appear before root are called PREFIX and affixes that appear

after root are called SUFFIX. In AGGLUNATIVE languages, like Turkish, affixes

are attached to roots sequentially like ”beads on a string”.

2.2 Morphology

2.2.1 Challenges Of Morphology

There are two main challenges in morphology for linguists and NLP practitioners.

1. Morphotactics

2. Morphophonology

3

Morphotactics

Morphotactics is the study of how valid words are constructed. Thus, one should

define all the possibilities and limitations of word constructions to do a morphological

analysis.

In a natural language, how the construction of word out of morphemes can

occur depends on the morphotactic rules of that language. The most common way

of constructing a word is simply by concatenating morphemes; however many con-

straints affect concatenations. As an example, In English suffix +ation can be

attached to only verbs and produces nouns (compute + ation → computation).

Morphophonology

Morphophonology is the study of alternations during the word construction. One

can assume that knowledge of morphotactics can be enough to break down a word

into morphemes, however there is another aspect of natural language which makes

things more complicated. Through the process of combination of morphemes, some

alternations may appear in form of morphemes. These alteration can appear as

assimilation of phonemes, deletion of phonemes or introduction of new phonemes. As

an example, In English, when we add the plural morpheme +s to the root morpheme

leaf, the word constructed will be leaves. In this case, f is assimilated to v and a

new phoneme e is introduced.

2.2.2 Turkish Morphology

Turkish is a agglunative language in which words consist of morphemes which are

concatenated to root morpheme as beads on a string. Turkish words generally has

one root morpheme and two or more suffixes. Each morpheme produces an inflection

(a change in grammatical information such as tense, number, person, case, etc.) or

a derivation (a change in syntactic group of word such as a change from a verb to a

noun). Thus, multiple inflections or derivations may occur in a Turkish word which

makes the understanding of morphotactics of the word more tricky for a non-native

speaker. As an example, surface morphemes of the Turkish word kolaylaştırdığım

(‘ that which I caused it to become easy’) is separated into morphemes as:

kolay+laş+tır+dığ+ım

The adjective root kolay meaning ‘easy’, is derived into a verb meaning to become

easy with morpheme +laş . The next surface morpheme +tır is a causative mor-

pheme that changes the meaning to ‘to cause to become easy’. Then, past participle

4

marker +dığ and 1st person singular possessor +ım produce the final form of the

word, meaning roughly (‘ that which I caused it to become easy’).

Another complexity of Turkish is that surface representations of morphemes are

conditioned by various morphophonemic process such as vowel harmony, consonant

assimilations and elisions. As a result, a lexical morpheme can be realized in multiple

surface forms. For the above example, the lexical morpheme structure is:

kolay+lAş+DHr+DHk+Hm

In this form, some meta characters which correspond to a set of graphemes are

employed to represent lexical morphemes. For instance, H is used for high vowels,

(u,ü,ı,i) and D is used for alveolar consonants (d , t) in orthography. Thus,

lexical morpheme +DHr can represent 8 different allomorphs (+tir, +tır, +tur,

+tür, +dır, +dir, +dur, +dür) according to the context.

2.2.3 Morphological Analyzer

Main objective of a morphological analyzer is to abstract away the morphotactic

and morphophonological process, and to break down the word into its component

morphemes. When we consider the morphotactics of a language as simple concate-

nations, then it seems that structure of the word can simply be described as finite

automata. However, in finite automata, the description of morphophonological pro-

cess was not clear until the introduction of two-level morphology by Koskenniemi

[5]. The system proposed by Koskenniemi enables linguists to use finite state trans-

ducers to handle especially morphophonological processes. After the introduction of

two-level morphology, morphological analyzers are implemented for many languages.

In this thesis, we are going to make use of the morphological analyzer for Turkish

designed by Oflazer [1].

Once the morphemes are located in a word, one can then map these morphemes

to other morphological features like lexical features, pronunciation, etc., and obtain

further information about the word such as location of stress mark. For the above

we can construct following mappings:

kolay → kolay+Adj

lAş → ^DB+Verb+Become

DHr → ^DB+Verb+Caus+Pos

DHk → ^DB+Adj+PastPart

Hm → P1sg

5

In these mappings, DB stands for derivation boundary. When we replace the

lexical morphemes with these mappings, we get the morphological feature analysis

of the word. In this thesis, we call this resulting representations simply as the

morphological analysis.

kolay+Adj^DB+Verb+Become^DB+Verb+Caus+Pos^DB+Adj+PastPart+P1sg

Note that these mappings are not one-to-one, thus morphological analysis of

a word may have multiple results. A morphological analyzer should present all the

possible results.

2.3 Other Issues of Natural Language Processing

Morphological analysis is the first step in NLP. When we try to process group of

words, more issues arise. Some of these can be listed as:

• Text Segmentation: Before processing a text, it needs to be segmented to its

smaller units, such as words, punctuations, numbers, etc.

• Parsing: Some strings of the words should be assigned to a syntactic analysis

like noun phrases, adjective phrases.

• Word-Sense Disambiguation: Some words can have multiple meanings. Cor-

rect meaning of the word in a text should be determined.

NLP does not only deal with written language, but also spoken language. Some

topics of processing of spoken language can be listed as:

• Speech Recognition

• Text-To-Speech Synthesis

2.4 Natural Language Processing in Computer Assisted Language

Learning

The idea of using computers in language learning is not new and many computer

assisted language learning(CALL) applications have been developed since the 1960s.

However, NLP use has been very limited in these applications. Nerbonne [6], in his

survey of NLP usage in CALL applications, clearly states that only a few of the

CALL applications utilize the techniques of NLP. Also, NLP practitioners do not see

CALL as an interesting research area. Borin [8], in a recent paper that reviews the

6

relation between these two research areas, states that CALL does not seem to have

a place in natural language processing. Essentially, Borin concludes that

”... in the eye of casual beholder - the two disciplines seem to live com-

pletely different words.”.

Despite these views, recently a number of projects that make use of natural

language processing techniques in language learning have emerged. One of the most

successful application is GLOSSER project [7]. The Glosser Project has developed

a system that helps the readers of foreign language by providing access to a dictio-

nary after a morphological analysis and part-of-speech disambiguation of the word.

For Turkish, we can cite the works done by Güvenir [9] and, Güvenir and Oflazer

[10]. These two works introduce a corpus based tutoring system where the corpus

is composed of sentences collected by authors. They proposed a system where users

can search the correct usage of various grammatical rules in this corpus.

However, none of these works aim to satisfy the needs of advanced learners

such as linguistics students.

7

Chapter 3

FUNCTIONALITY OF LINGBROWSER

In this chapter, we will introduce the functionality of LingBrowser in

three main groups: Single Word Exploration, Search Functionality and Additional

Features.

The main window of LingBrowser is shown in Figure 3.1 where one can load

HTML file. All the functionality is available with a tool-bar, right-click menu and

mouse double-click option.

Figure 3.1: LingBrowser Main Window of LingBrowser

8

3.1 Single Word Exploration

Single word exploration is the part where one can access the morphological

analysis, lexical and surface morpheme structure, pronunciation analysis and trans-

lation of a word. After loading an HTML or a text file into LingBrowser, if one

double-clicks a word, enters a word in the input box of tool-bar or presses the View

NLP Analysis item of right-click menu after highlighting the word, a pop-up window

which includes these linguistic information about the selected word will appear. Fol-

lowing subsections illustrate the informations that are made available in the pop-up

window.

3.1.1 Morphological Analysis

Morphological Analysis of a word consists of root of the word, part-of-speech

tag (Noun, Verb, Adjective, ...) of the root, related inflectional and derivational

features constructed by any suffixes. Inflectional features indicate grammatical in-

formations about the word such as tense, person, number, case. On the other hand,

derivational features change a word from one syntactic category to a different word

from another syntactic category. For instance, in English, the derivational feature

constructed by suffix +ly changes adjectives to adverbs (rapid ⇒ rapidly). Morpho-

logical analysis of a word can have multiple results if the queried word has multi-

ple interpretations. For instance, LingBrowser displays two results for the word

kitabına:

kitap+Noun+A3sg+P2sg+Dat

kitap+Noun+A3sg+P3sg+Dat

First analysis is the result of the interpretation ‘to your book’ and the second one

corresponds to the interpretation ‘to his/her book’. In this example, we can see that

kitap is the root of the word and part-of-speech tag of the root is Noun. Other parts

are the inflectional features of the word. Following example which is the analysis of

the word iyilik shows a derivation.

iyi+Adj^DB+Noun+Ness+A3sg+Pnon+Nom

As you notice, there is a part named as DB indicating that there is a derivation in the

morphology of the word. For this case, we understand that the word iyilik (goodness)

is a noun which is derived from an adjective root iyi (good) by a derivational feature

+Ness 1.

1Roughly corresponding to the +ness in the English word goodness

9

As a further functionality, LingBrowser shows tool tips for each feature when

mouse hovers on feature names. Since the feature names (A3sg,Dat,P2sg, etc.)

in Morphological Analysis are encoded representations, one may need clarification

for them. In the kitabına case, when the mouse hovers on +Dat, a tool tip which

explains that the feature +Dat indicates Dative Case will be displayed. Figure 3.2

illustrates this functionality. (See Appendix A for the full list of features and their

explanations)

Figure 3.2: Morphological Analysis

3.1.2 Lexical Morpheme Structure

Lexical Morpheme Structure is the representation of morphemes of a word

where the allomorphy caused by any morphographemic phonemena is abstracted

away.

Abstracting the morpheme structure from these allomorphies is crucial for

Turkish language, since a morpheme can evolve into different forms for different

contexts. Fon instance, Turkish plural morpheme can appear as either +ler or

+lar depending on vowel harmony. These allomorphies can easily confuse a non-

native researcher while comparing the words. The next example will illustrate this

importance. When we query the Turkish words, kitabına and kedine, through Ling-

Browser, the following results are displayed in Lexical Morpheme Structure tab of

resulting window.

kitab+Hn+yA

kitab+sH+nA

and

10

kedi+Hn+yA

Although kitabına and kedine do not look similar, they have same lexical morpheme

structures except for the roots. To eliminate the allomorphies in a morpheme, some

meta-characters are employed to represent the groups of surface characters. In the

above examples, H represents the high vowels(ı,i,u,ü) and A represents the non-round

low vowels(a,e).

As an extended functionality, LingBrowser will display a description about

the morphemes when the mouse hovers on them. For kitab+sH+nA case, when

mouse hovers on morpheme +sH, 3rd Person Singular Possessive will be displayed as

a tool tip as one can see in Figure 3.3. (See Appendix D for all lexical morphemes.)

Figure 3.3: Lexical Morpheme Structure

3.1.3 Morphology and Lexical Morpheme Structure Alignment

In Section 3.1.1, we have covered the morphological analysis of a word which

is the combination of features indicated by the morphemes of the word. However,

one should see which features match which morpheme to have an understanding of

underlying process. LingBrowser overcomes this issue by showing features and

morphemes in an interleaved format. For the word kitabına LingBrowser displays

feature and morpheme alignment as:

(kitab)kitap+Noun+A3sg(+Hn)+P2sg(+yA)+Dat

(kitab)kitap+Noun+A3sg(+sH)+P3sg(+nA)+Dat

In the first interpretation, one can see that the root ”kitab” gives rise to features

kitap, Noun and A3sg , morpheme Hn gives rise to feature P2sg, and last morpheme

11

yA gives rise to feature Dat. Also, it is possible to hide either morphological features

or lexical morphemes. Figure 3.4 shows how LingBrowser presents the informa-

tion.

Figure 3.4: Alignment of Lexical Morphemes and Features

3.1.4 Surface Morpheme Structure

Surface Morpheme Structure of a word has the similar information as Lexical

Morpheme Structure of a word has. However, all the meta-characters are converted

to their corresponding surface phonemes and there may be possible deletions accord-

ing to the morphology rules that applies. LingBrowser will display the following

surface morpheme structure for word kitabına.

kitab+ın+a

kitab+ı+na

In the first interpretation, H is converted to ı, A is converted to a and y on the last

morpheme is deleted because the previous morpheme ends with a consonant. Figure

3.5 is a screen shot for this subsection.

3.1.5 Lexical Surface Alignment

Morphological processes of a language involves the relations between surface

morpheme structure and lexical morpheme structure, and the morphological rules

that construct those relations. The Lexical Surface Alignment part is the one that

gives ability to the user to observe the undergoing morphological process in the Turk-

ish language. One can find which morphographemic rules are applied on the word

12

Figure 3.5: Surface Morpheme Structure

and monitor the results of those rules. As an example, LingBrowser shows the

user the following lexical and surface alignment result when one queries the word

kalemine.

kalem+sH+nA kalem+Hn+yA

kalem00i0ne kalem0in00e

One can see that the pair (H,i) is the result of morphographemic rule of Turkish

vowel harmony. According to this rule H is realized as i because the last vowel

before H is one of (e,i). If mouse hovers on one these pairs, LingBrowser displays

explanation of mediating rule according to the two level grammar described in [1].

Figure 3.6 demonstrates this functionality. (See Appendix C for all feasible pairs

and the explanation of rules that apply)

3.1.6 Pronunciation

Most of the Turkish words has only one pronunciation. However, some words

that have multiple morphological interpretations may have multiple pronunciations.

This usually happens when a loan word has a homograph of another Turkish word

which has a different pronunciation. The difference may appear as a change in

consonant quality or vowel length. Another source of ambiguity is the location of

the primary lexical stress. In Turkish, the position of the primary stress usually

depends on the stress marking properties of morphemes, but some root words may

have exceptional stress. LingBrowser displays all the possible pronunciations

13

Figure 3.6: Alignment of Lexical Morphemes and Surface Morphemes

that a Turkish word may possess by using SAMPA (Speech Assessment Methods

Phonetic Alphabet) and IPA (International Phonetic Alphabet). For instance, when

one look for the pronunciation of word ajanda, LingBrowser displays the following

pronunciation which is in SAMPA format. (See Appendix C for the list of all SAMPA

characters for Turkish pronunciation)

a - "Z a n - d a

a - Z a n - "d a

First pronunciation of the word corresponds to the interpretation ”agenda” and the

second one corresponds to the interpretation ”on the agent”. The two pronunciations

differ in the position of stress mark (labeled as " in SAMPA). These results do not

give any clue about the reason why these stress marks are located on those locations.

Thus, LingBrowser also displays the morphological features and pronunciations

that these features give rise to in an interleaved format. This representation looks

like the following:

(a - "Z a n - d a)ajanda+Noun+A3sg+Pnon+Nom

(a - Z a n)ajan+Noun+A3sg+Pnon(- "d a)+Loc

In this representation, one can see that first interpretation has only one morpheme

which is just the root. Now we can understand that first pronunciation has the

stress mark on second syllable as a result of the exceptional stress property of the

root. The second one has the stress on last syllable because where there are no

exceptional stresses, stress is by default on the last syllable.(See the screen shot

in Figure 3.7). Note that syllable and morpheme boundaries do not necessarily

overlap. A morpheme can be split over multiple syllables or syllables may contain

14

Figure 3.7: Alignment of Features and Pronunciation

segments from multiple morphemes. To see an example, anlaysis of word gidiyorum

can be explored. The surface morpheme +iyor has parts of different syllables and

the syllable ‘ -di- spans over morphemes git and +iyor.

(gj i - "d)git+Verb+Pos(i - j o - r)+Prog1(u m)+A1sg

Another pronunciation functionality provided by LingBrowser is the ability

to hear the pronunciation of single symbols in context. When mouse hovers on a

character, the corresponding pronunciation is played and also a phonological descrip-

tion of that is shown in a tool tip. For instance, when mouse hovers on the gj for

the above example, LingBrowser displays that the symbol denotes a palatalized

voice velar stop phoneme. This functionality is exemplified in Figure 3.8.

Figure 3.8: Pronunciation of a Word

15

3.1.7 Word Translation

LingBrowser provides access to translations of the roots of the queried

word from the glosses of English WordNet[2] using the interlingual-index number of

the root which is obtained from Turkish WordNet [3]. The possible translations will

be grouped according to the part of speech tagging of the root. For the Turkish word

yazdı, the root word yaz has two possible interpretations. One is a verb (meaning

”to write”) and the other one is a noun (meaning ”summer”). The translation of

these two interpretations will be presented in the pop-up window as in Figure 3.9.

Figure 3.9: Translation of a Word

3.2 Search Engine

When working on linguistic property or a rule, it is always helpful to see

the examples of applications of the rule for a better understanding. LingBrowser

is able to locate words with various linguistic features through a search panel. In

the search panel, one can define multiple rules and LingBrowser will locate the

words which satisfy all the rules constructed by the user in the current text. The

results of the search are presented in a result panel where one can reach the linguistic

properties that are explained in Section 3.1. The search panel and the result panel

can be seen in Figures 3.10 and 3.11.

There are four general category of the rules that can be constructed: Morphol-

ogy Rules, Lexical Morpheme Structure Rules, Ortography Rule and Pronunciation

Rules. Each category may have sub-categories which will be explained in the follow-

ing subsections.

16

Figure 3.10: Search Window

Figure 3.11: Search Results Window

17

3.2.1 Morphology Rules

LingBrowser is able to search a Turkish text in order to locate the words

that have the possession of various morphosyntactic features. Three kinds of rules

can be defined in this part.

1. The first kind of rule is for searching words according to the part-of-speech tag

of root (Verb, Noun, Adjective, etc). The possible part-of-speech tag can be

chosen from drop down box. As an example, one may search words that have

a verbal root.

2. Second kind of rule gives the user the ability to search words according to the

orthography of the root. For example, the words with the root is yaz can be

located by LingBrowser.

3. Third kind of rule is for searching words which contains a specific morphological

feature. As an example, one may search the words with a past tense marker

(+Past). The morphological features are grouped in categories. The possible

morphological features that are filtered according to the chosen category will

be available to user through a drop down box. Figure 3.12 demonstrate the

usage of this rule.

Figure 3.12: Morphology Rules

These rules can be used individually and also they can be combined so that

one can search words with the verbal root yaz and a past tense marker by defining

multiple rules.

After defining rules and activating the search process LingBrowser will dis-

play the result in the search pane. Since a word may have multiple morphological

18

interpretations, LingBrowser shows all the possible morphological interpretations

and highlights the interpretation that meets the search criteria. If one searches a

text for the words with a verbal root and past tense marker and if the word yazdı

occurs in the text, LingBrowser will find this word and displays it in the result

pane. If this word is selected in the result pane, morphological analysis of the word

will be displayed as the following:

yaz+Verb+Pos+Past+A3sg

yaz+Noun+A3sg+Pnon+Nom^DB+Verb+Zero+Past+A3sg

In this case, since we are looking for a word with verbal root, only the first interpre-

tation will be highlighted.

3.2.2 Lexical Morpheme Structure Rule

This rule is for locating words that have specified lexical morphemes in their

lexical morpheme structure. Possible lexical morphemes is listed in a drop-down box

and user will choose one of them to form a rule. If one defines multiple lexical rules,

LingBrowser finds the words that meet the criteria of all rules. For instance, one

may define two rules, one for morpheme +DA and one for morpheme +sH, the words

that have both +DA and +sH in their morpheme structure will be located. In Figure

3.13, this property is exemplified. If one selects the word in the result pane, lexical

morpheme structure analysis of the selected word will also be made available. Since,

words may have multiple lexical morpheme structures LingBrowser will highlight

the appropriate result.

3.2.3 Orthography Rule

By defining an orthography rule, one may search a Turkish text for words

according to their surface forms. For instance, one may need to find the words that

has lik at the end of the word or the words that starts with a sequence of letters

vowel+consonant+consonant+vowel (e.g. e l l i).

LingBrowser employs simple regular expression rules and meta characters to

achieve this goal. There is a help button which displays a guide for the usage of this

rule. The meta characters that can be used in the construction of this are explained

in Table 3.1. Table 3.2 lists some basic regular expressions containing these meta

characters.

19

Figure 3.13: Lexical Morpheme Rule

Table 3.1: Orthography Meta Characters

Meta Character Meaning

(A) Any character used in Turkish orthography
(V) Any character representing a vowel
(C) Any character representing a consonant

Examples

The following examples will clarify the usage of this rule and Figure 3.14 presents

the view in search panel.

• To locate words that contain lik anywhere in the word, the following expres-

sion can be used: (A)*lik(A)*

• To locate words that contain lik at the end of the word, the following expres-

sion can be used. (A)*lik

• To locate words that contain lik or rik anywhere in the word, the following

expression can be used: (A)*(l | r)ik(A)*

• To locate words that contain a sequence of vowel+consonant+vowel at the

beginning of the word and have at least four characters, the following expression

can be used: (V)(C)(V)(A)+

20

Table 3.2: Basics Of Regular Expressions

Regular Expression Meaning

(A)* Any character sequence containing the empty sequence
(A)+ Any character sequence containing at least one character
(C)* Any consonant sequence containing the empty sequence
(C)+ Any consonant sequence containing at least one character
(V)* Any vowel sequence containing the empty sequence
(V)+ Any vowel sequence containing at least one character

Figure 3.14: Orthography Rule

3.2.4 Pronunciation Rules

This is the part where one can form rules to find the words with various

segmental properties in a Turkish text. For example, one can construct rules to

search for the words that do not follow Turkish vowel harmony or to search for

the words that have stress before the last syllable. LingBrowser provides three

different interfaces to create rules.

The first one uses regular expressions with SAMPA characters along with meta-

characters. Some meta-characters that can be used in this rule are listed in Table

3.3 with their corresponding phoneme group.

Usage Examples

1. To search for words that have a syllable 51 (representing -lı- in ballı) , one

can use the expression -51-

21

Table 3.3: Pronunciation Meta-Characters

Meta Character Description SAMPA Symbol List

(Z) Any vowel or consonant
(C) Any consonant
(V) Any vowel
(E) Front Vowels i,e,y,2

(A) Back Vowels 1,a,o,u

(I) High Vowels u,i,y,1

(R) Round Vowels o,u,y,2

(S) Sonarants h,l,5,m,n,r,y

(O) Obstruents b,c,d,f,g,G,Z,k,p,s,

S,t,v,w,z,tS,dZ,gj

(G) Voiced Stops b,c,d,G,dZ

(K) Voiceless Stops p,t,k,tS

(B) Labial Consonants p,v,w,b,f,m

(T) Non-Labial Consonants c,d,g,G,h,Z,k,l,5,n,

r,s,S,t,y,z,tS,dZ,gj

2. To search for words that have a syllable 5i at the end of the word, one can use

the expression -51$

3. To search for words that do not follow vowel harmony, one needs to define two

rules one with expression (E) (front vowels) and the other one with expression

(A) (back vowels), thus, LingBrowser will locate words that have both front

and back vowels.

4. To search for words that have a syllable with sequence of consonant-vowel-

consonant at the beginning of the word, one uses the expression ˆ(C)(V)(C)-.

An example rule constructed in search panel is presented in Figure 3.15.

The second type of rule is the same of first type except the user can use surface

symbols instead of SAMPA characters to define the rule. The first usage example

above searches the words with syllable -51- which is in SAMPA format. In this

part, user will use the expression -lı- where surface character l is used instead

of SAMPA character 5 and ı is used instead of 1. The details of relation between

pronunciation characters and surface characters is detailed in [4].

The third type of rule is for searching words according to the stress location in

the pronunciation. One will choose the stress mark location which can be (at last

syllable) or (before last syllable) from a drop-down box to define the rule.

22

Figure 3.15: Pronunciation Rule

3.3 Additional Features

3.3.1 Word Coloring

LingBrowser has the ability to colorize the words in a loaded text accord-

ing to their general usage frequency in Turkish. There are nine predefined frequency

range groups and each group has its own color. If one uses the ”Colorize Text” option

provided by LingBrowser, the words will be colorized according to their groups.

When one hovers a colorized word with mouse, a tool tip will be shown presenting

the frequency information about the word. Also, one may access the meaning of

colors through a color information window (Figure 3.16). Note that the frequency

information of some words may not be present, thus they will not be colorized by

this functionality. After the coloring process, source document will look like Figure

3.17

3.3.2 Search in TELL Database

Turkish Electronic Living Lexicon (TELL) was developed in the linguistics depart-

ment University of California Berkeley by a team leaded by Sharon Inkelas. TELL is

a database of 30000 root words and the words constructed from these root words with

additions of various suffixes. When a user activates the ”Search in TELL” button in

tool-bar of LingBrowser, a search panel that performs a search in TELL database

will be opened. This is the same search panel as Section 3.2, but it performs the

search operations in the TELL Database.

23

Figure 3.16: Meanings Of Colors

Figure 3.17: Word Coloring

24

Chapter 4

IMPLEMENTATION OF LINGBROWSER

4.1 The Software Architecture

Our first concern in implementation is that the resulting software should utilize

HTML context and it should be platform-independent. The main source of HTML

is obviously the Internet, so our software should also possess web browsing function-

alities for general Internet usage. Other than browsing the Internet, one may also

need other features like bookmarking, security preventions, etc. Currently there are

many HTML rendering toolkits available, but adding other browsing functionalities

to these toolkit will be very time consuming and will be like reinventing the wheel.

As a result, instead of implementing a basic web browser that only renders HTML

pages, we decided to implement LingBrowser as an add-on for the powerful, per-

vasive, cross-platform web browser, Mozilla-Firefox[12].

However, this decision have some drawbacks. We are limited with the pro-

gramming languages that we are going to use because an add-on for Mozilla-Firefox

can be implemented only by using Javascript along with XUL (XML User Inter-

face Language)[17]. Javascript was originally designed to create dynamic web pages

by manipulating the source of the web page. Thus, it does not have interfaces like

database connectivity which we need to use heavily during the implementation. Also,

XUL is just for designing graphical user interfaces. On the other hand, Javascript

recently gained the ability to exchange XML and HTML data with external resources

with emerging of Ajax technology (Asynchronous Javascript and XML) [16]. Ajax

is able to send HTTP (Hyper Text Transfer Protocol) requests to a web server and

handle the answers for those requests.

At this point, we are able to extract raw data with Javascript from the source

HTML text, send the raw data to a server, gather the processed data with help

of Ajax framework and we can implement user interfaces to present the processed

data in XUL. Remaining part in implementation is a web server that will handle the

requests from the browser add-on application.

25

We implemeted the server side application in Java programming language using

the Sun’s Java Servlet Technology [14] and the server side runs on Apache/Tomcat

application server [15]. Since, Java is a cross-platform programming language, server

side can run on any hardware and operating system platforms. On the server, we

used MySQL [13] as the database application which can run on different platforms.

To summarize, LingBrowser is the composition of a client application which

is a part of web browser and a server application.

4.2 Software Design

We can divide the software design of LingBrowser into three main components:

Client-Server Communication Interface, Client Side and Server Side.

4.2.1 Client-Server Communication Interface

In this part, we will introduce two controllers: one is on server side and the other one

is on client side. These controllers construct the communication between the server

and the client. Furthermore they work as a decision maker. The communication

between the server and the client is asynchronous since we are using Ajax framework.

So, the main job of these controllers is to channel the requests and results of the

requests to the appropriate components of the software.

The Client Controller

Client controller is XMLHttpRequest object of Ajax framework. It opens a HTTP

(Hyper Text Transfer Protocol) channel to server, posts the parameter and waits for

the answer from the server. When the answer, which is either in HTML(Hyper Text

Markup Language) or XML (Extended Markup Language), arrives from the server,

it channels the message to appropriate handler.

We need to define at least two javascript functions to activate the controller:

a function for posting the data and a function for handling the response. Below is a

simplest javascript snippet that shows the usage of Client Controller.

26

var xmlHttp ;

var resultXML ;

func t i on a c t i v a t eC l i e n tCon t r o l l e r (params)

{

var u r l = ”http ://”+ se rv e r+”/NLPAnalyzer/ n lpa jax ” ; //URL of the s e r v e r c o n t r o l l e r

var postRequest = ”paramName=”+params ; // Any data that we want to send to s e r v e r .

xmlHttp=new XMLHttpRequest () ; // c r ea t e a Cl i ent Cont ro l l e r Object

xmlHttp . open (”POST” , u r l , t rue) ; //Opens the HTTP channel

// Set the encoding f o r data

xmlHttp . setRequestHeader (’ Content−Type ’ , ’ a pp l i c a t i on /x−www−form−urlencoded ’) ;

// s e t the name o f the handler method which w i l l handle the response

xmlHttp . onreadystatechange = handler ;

xmlHttp . send (postRequest) ; // sends the data

}

f unc t i on handler ()

{

i f (xmlHttp . readyState==4) // check i f the answer a r r i v e s

{

// check the e r r o r s t a tu s . 200 i s the HTTP sta tu s code f o r suc c e s s

i f (xmlHttp . s t a tu s == 200) {

resultXML = xmlHttp . responseXML ;

// we can use xmlHttp . responseHTML i f we are wait ing an HTML response

. . .

. . . Process the resultXML va r i ab l e f o r needed f u n c t i o n a l i t y

. . .

}

e l s e

{

// i f the re i s an e r r o r during HTTP Cal l handle i t here

a l e r t (”Html Error . . ”+xmlHttp . s t a tu s) ;

}

}

}

The Server Controller

The server controller is a simple servlet class of Java named web.NLPAjax. This

class waits for the HTTP POST request from the client and extracts the parameters

from the request and channel the parameter to the corresponding processor unit.

Adding Functionality

After the implementation communication interface, it is easy to plug-in additional

functionality on this communication. We just need to implement client side compo-

nents that process XML or HTML files and server side components that generates

XML or HTML responses.

27

4.2.2 Server Side Components

On the server, we have two layers other than the controller which are the annotation

layer and the database layer.

An annotator takes a string as input and outputs an XML or HTML text. On

the annotation layer, there are four types of annotators that we implemented:

1. Annotator for single word exploration

2. Annotator for search engine

3. Annotator for frequency coloring

4. Annotator for search in the TELL Database

With simple changes on Server Controller, other functional units can be added

to this layer.

On the database layer, there are three types of databases that work with an-

notators: the WordNet database for translation of root word, frequency database

for words and transducer based databases for linguistic analysis. In Section 4.3, we

present the details of databases.

4.2.3 Client Side Components

On the client side, we have four functional components which are plugged to the

client controller. These components are listed as Single Word Exploration Window,

Search Panel, Word Colorer and main tool bar for activating these components.

The client side components have two subcomponents; graphical user interface

and logical units. The initial user interface is defined by XUL (XML User interface

language). An XUL file defines the locations of buttons, menu items, input boxes

and determines listener methods for events like pressing a button.

Logical units of a client side components are the Javascript methods which

implement all functionality by modifying user interfaces, extracting the data from

source document, communicating with Client Controller and manipulating the source

text according to the results from Client Controller.

4.2.4 The Execution Flow

Execution flow of LingBrowser can be summarized in following steps:

1. Client side components extract the raw data from the source or inputs and

send the raw data to the client controller.

28

2. Client controller sends the data and the appropriate analysis type to server

controller.

3. When the data arrives to the server controller, the server controller decides

which annotator will be used according to the analysis type sent by client

controller and sends the data to appropriate annotator.

4. The annotator makes the analysis by employing queries to the databases, places

the results of analysis in an HTML or XML document and sends this processed

data to the server controller.

5. Server controller sends the processed data to the client controller.

6. Client controller forward the resulting data to corresponding client side com-

ponent.

7. When the client side component gets the data, it processes data if it is needed

(for instance search panel performs a search) and presents last form of the data

to the user

Figure 4.1 represents this execution flow.

Figure 4.1: LingBrowser data flow diagram

29

4.3 Populating Databases

LingBrowser makes use of three types of databases. Finite State Transducer

Based Database, Translation database and Frequency Database.

4.3.1 Transducer Based Database

Although, we have extensively used finite state transducer technology, we used it

in an indirect way. Currently we do not have a finite state transducer runtime

library that will do an on the fly analysis, thus we populated a database of analysis

from a large set of words that is integrated to the server side to achieve a proof of

concept software. When a runtime library is available, this process can be easily

altered that we can replace this database with the runtime library. We used Xerox

FST tool to construct the transducers and all the transducers that are used to

populate these databases are derived from a core morphological analyzer [1]. We used

this core morphological analyzer with additional finite state transducers to extract

all the relevant representations such as surface morpheme structure, pronunciation

representation, etc.

We have four database tables in this database: Feature-Lexical table, Surface

Morpheme Structure table, Lexical-Surface Alignment table, Feature-Pronunciation

table. We used simple table structures that tables have two-columns: word and

analysis. Sample table example for Feature-Lexical is presented on table 4.1. Sample

analysis for other tables will be detailed in section 4.4.

Table 4.1: Feature-Lexical Database Table

Word Analysis

kitabına (kitab)kitap+Noun+A3sg(+Hn)+P2sg(+yA)+Dat
kitabına (kitab)kitap+Noun+A3sg(+sH)+P3sg(+nA)+Dat

4.3.2 Word Translation Database

To populate the translation database we used English WordNet [2] glossaries and

Turkish WordNet [3]. One of the objectives of English WordNet project was assigning

a interlingual index number for each word. Turkish WordNet aligns with the English

WordNet, thus we find the interlingual index number of the words from the Turkish

WordNet and find translation of the word in English WordNet using this interlingual

index number. Note that a word can have multiple interlingual index numbers that

30

corresponds to different interpretations, so we store all the possible translations along

with the part of speech tagging of the word. As a result our database table consists

of three columns: word itself, part-of-speech tagging and the translation.

Table 4.2: Word Translation Database Table

Word Part-of-Speech Translation

yaz Noun Summer season
yaz Verb To write

4.3.3 Frequency Database

From a very large corpus of Turkish words, we have computed the frequency of each

unique word and stored these frequencies in a database. Our first concern is not

the calculation of the exact frequencies, but to find most common words. So, the

frequency of a word in a large corpus will give us a general idea about how common

a word is. We store the calculated frequencies in a table with two columns where

the columns are word and frequency value which is normalized to 10,000.

4.4 Implementation of Single Word Exploration

Once a word is selected from the browser or entered as input at the tool-bar of Ling-

Browser add-on, the selected word is sent directly to the Controller on server side

with a parameter that indicates that a single word exploration will be performed.

Then, controller sends the input word to the Single Word Annotator (SWA). Single

Word Annotator performs the annotations via series of processes:

• Morphology-Lexical Morpheme Alignment Annotation

• Morphology Annotation

• Lexical Morpheme Structure Annotation

• Surface Morpheme Structure Annotation

• Lexical-Surface Morpheme Alignment Annotation

• Morphology-Pronunciation Annotation

• Pronunciation Annotation

31

• Translation Annotation

After these processes, SWA places all the annotated results into an HTML

template and sends the resulting HTML document to the Controller. HTML gives

us the ability to present the data interactively, such as showing-hiding information,

pop-up windows, playing sounds, etc.

4.4.1 Morphology-Lexical Morpheme Alignment Annotation

First, SWA queries the input word in Feature-Lexical Database. The results of the

query is annotated with HTML tags to present the results in an HTML table . Also,

SWA employs some additional HTML tagging to be able to hide morphology or

lexical parts of the results by simple split and replace operations performed with

regular expressions. For instance, database query results for word kitabına is :

(kitab)kitap+Noun+A3sg(+Hn)+P2sg(+yA)+Dat

(kitab)kitap+Noun+A3sg(+sH)+P3sg(+nA)+Dat

The annotated result will be:

<table>

<tr>

<td>1)</td>

<td>

kitab

(k i tab)

 k i tap+Noun+A3sg

+Hn

(+Hn)

+P2sg

+yA

(+yA)

+Dat

</td>

</tr>

<t r >

<td>2)</td>

<td>

kitab

(k i tab)

 k i tap+Noun+A3sg

+sH

(+sH)+P3sg

+nA

(+nA)

+Dat

</td>

</tr>

</table>

Note that this HTML code is given to show how annotation process results. In other

parts, HTML annotations will not be detailed.

32

4.4.2 Morphological Analysis

For annotating morphological analysis of a word, the query results from 4.4.1 will be

used. We can derive the morphological analysis of the word by simply removing the

parts in parenthesis from the query results. For the example in 4.4.1, if we remove

the parts in parenthesis, we will have the following morphological analysis:

kitap+Noun+A3sg+P2sg+Dat

kitap+Noun+A3sg+P3sg+Dat

After extracting the morphological analysis, we may perform the HTML anno-

tation to form the presentation of morphological analysis. In this section, annotation

includes placing HTML tags for showing and hiding pop-up windows for explanations

of morphological features.

4.4.3 Lexical Morpheme Structure

In this section, we also use the database query results from 4.4.1. In contrast to 4.4.2,

we will extract the parts in parenthesis and join them to form the Lexical Morpheme

Structure of the input word. During this operation, descriptions of morphemes are

also gathered. For the example in 4.4.1, we will acquire the resulting analysis as:

kitab+Hn+yA

kitab+sH+nA

Each morpheme in this representation will be placed between HTML tags, so

that the meanings of morpheme can be shown as a pop-up window.

4.4.4 Surface Morpheme Structure

The annotation of Surface Morpheme Structure is straight forward. SWA looks up

the words in Surface Database and simply places the results in an HTML Table.

4.4.5 Lexical-Surface Morpheme Alignment

We query the input word in Lexical-Surface Alignment table for this section and

do simple HTML formatting along with text processing. As an example, for word

kedisine, query result will be:

k*ke*ed*di*i+*0s*sH*i+*0n*nA*e

33

Then we extract the feasible pairs as (k,k), (e,e), (d,d), (i,i), (+,0),

(s,s), (H,i), (+,0), (n,n), (A,e). After, we determine the corresponding expla-

nations that are going to be presented in pop-up window. For instance pair (H,i)

matches with the explanation “Lexical H realized as surface i, since the last surface

vowel is one of e,i. ”. (See Appendix C for a complete list). Then we do HTML

formating and return the result.

4.4.6 Morphology-Pronunciation Alignment

This part is same as 4.4.1 except SWA looks up the word in Morphology-Pronunciation

database. A similar annotation process is performed subsequently to hide Morphol-

ogy or Pronunciation parts. As an example, query result for word ajanda is:

(a - "Z a n - d a)ajanda+Noun+A3sg+Pnon+Nom

(a - Z a n)ajan+Noun+A3sg+Pnon(- "d a)+Loc

4.4.7 Pronunciation

To get the possible pronunciations of a word, SWA uses the query results from

4.4.6. As in the example of the previous section, parts in parentheses correspond to

the pronunciation of the words. These parts are extracted and combined to form

the pronunciation. In the annotation step, each character placed in HTML tags so

that a pop-up window with related information about character can be shown when

mouse hovers on them. Another functionality of LingBrowser is the ability to

display pronunciation in IPA. We get the query results in SAMPA from the database.

There is a one-to-one mapping between SAMPA and IPA, thus we simply change

all SAMPA characters to IPA characters to convert SAMPA pronunciation to IPA

pronunciation. When we get the IPA form of the pronunciation, we simply perform

the same annotations to construct the result.

4.4.8 Translation of root words via WordNet

To have the translation of root, first we must extract the root of the word. We

already have the morphological analysis of the word from 4.4.2, thus getting the root

of the word is straightforward. Then, SWA looks up the root of the word in WordNet

database. The results for the query include the translation and part-of-speech tag

of the root. At the end, these results are converted into HTML form and returned

to SWA.

34

4.5 Implementation of The Search Engine

Search Engine is one of the core components of LingBrowser that it en-

ables the users of LingBrowser to locate examples for linguistic rules of Turkish

language in a Turkish text. To perform a search, LingBrowser analyzes all the

words in a text, stores the resulting analysis and performs the search action on these

analysis. This will be realized in four steps:

1. LingBrowser processes the text in web browser to sort out the words which

will be used in search process.

2. The words gathered in preprocessing phase will be sent to server side to be

analyzed.

3. The Server side analyze the words and send the processed data back to client.

4. Analysis of the words are stored in client side and then LingBrowser will

perform the search over these analysis by utilizing regular expressions which

are constructed according to the inputs of users.

Basic data flow of this process summarized in Figure 4.2 and the process will

be detailed in following subsections.

35

Client Side

Preprocessor
Server Side

Search Engine

Raw Text

Processed Text

Results Window

Figure 4.2: LingBrowser data flow diagram for search

4.5.1 Text Preprocessing

Since, the main source of text that will be utilized by LingBrowser is web pages in

HTML. In an HTML page, there are HTML tags, HTML comments, various scripts

and the main text of page. A very simple HTML page will look like as the following:

<html>

<head>

<t i t l e >This i s the t i t l e o f page</ t i t l e >

</head>

<body>

<!−− This i s a comment −−>

<div>Merhaba , bu sayfada habe r l e r bulunur .</div>

<s c r i p t >

f unc t i on foo ()

{

a l e r t () ; // ba s i c j a v a s c r i p t

}

</s c r i p t >

</body>

</html>

For the above example, we will get rid of all the HTML components by straight-

forward text processing and obtain the raw text as

Merhaba, bu sayfada haberler bulunur.

At this point, we remove the punctuation marks and the resulting text will be:

Merhaba bu sayfada haberler bulunur

Then, this result is sent to Server Side.

36

4.5.2 Linguistic Analysis

In this phase, raw text is tokenized. Then for each word, mophological analysis,

pronunciation, lexical morpheme structure , surface morpheme structure are obtained

with similar operations that are described in section 4.4. After this point, the results

are annotated in XML. Annotating the results in XML enables us to use XML parsing

and editing utilities of underlying web browser Mozilla-Firefox. For the example in

Section 4.5.1, the annotated document will look like as the following:

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>

<root>

<word value=”Merhaba”>

<f ea ture >

<f eature i tem >merhaba+Noun+A3sg+Pnon+Nom</feature i tem >

</feature >

< l e x i c a l >

<l e x i c a l i t em >merhaba</l e x i c a l i t em >

</ l e x i c a l >

<pronoun>

<pronounitem>”m e r − h a − b a</pronounitem>

</pronoun>

<sur face >

<sur face i tem>merhaba</sur face i tem>

</sur face >

</word>

<word value=”bu”>

<f ea ture >

<f eature i tem >bu+Pron+Demons+A3sg+Pnon+Nom</feature i tem >

<f eature i tem >bu+Det</feature i tem >

</feature >

< l e x i c a l >

<l e x i c a l i t em >bu</l e x i c a l i t em >

</ l e x i c a l >

<pronoun>

<pronounitem>”b u</pronounitem>

</pronoun>

<sur face >

<sur face i tem>bu</sur face i tem>

</sur face >

</word>

<word value=”sayfada”>

<f ea ture >

<f eature i tem >say fa+Noun+A3sg+Pnon+Loc</feature i tem >

</feature >

< l e x i c a l >

<l e x i c a l i t em >say fa+dA</l e x i c a l i t em >

</ l e x i c a l >

<pronoun>

<pronounitem>s a j − f a − ”d a</pronounitem>

</pronoun>

<sur face >

<sur face i tem>say fa+da</sur face i tem>

</sur face >

</word>

<word value=”habe r l e r”>

<f ea ture >

<f eature i tem >haber+Noun+A3pl+Pnon+Nom</feature i tem >

</feature >

< l e x i c a l >

<l e x i c a l i t em >haber+lAr</l e x i c a l i t em >

</ l e x i c a l >

<pronoun>

<pronounitem>h a − b e r − ” l e r</pronounitem>

</pronoun>

<su r f a c e />

</word>

<word value=”bulunur”>

<f ea ture >

37

<f eature i tem >bul+VerbˆDB+Verb+Pass+Pos+AorˆDB+Adj+Zero</feature i tem >

<f eature i tem >bul+VerbˆDB+Verb+Pass+Pos+Aor+A3sg</feature i tem >

<f eature i tem >bulun+Verb+Pos+AorˆDB+Adj+Zero</feature i tem >

<f eature i tem >bulun+Verb+Pos+Aor+A3sg</feature i tem >

</feature >

< l e x i c a l >

<l e x i c a l i t em >bul+Hn+Hr</l e x i c a l i t em >

<l e x i c a l i t em >bulun+Hr</l e x i c a l i t em >

</ l e x i c a l >

<pronoun>

<pronounitem>b u − 5 u − ”n u r</pronounitem>

</pronoun>

<sur face >

<sur face i tem>bul+un+ur</sur face i tem>

<sur face i tem>bulunur</sur face i tem>

</sur face >

</word>

</root>

As one can see, results for each word is grouped in <words> tags and analysis

of the word is structured in these tags accordingly.

4.5.3 The Search Process

At this point, we have a processed text that a search can be performed on. The

search process begins with constructing regular expressions from the rules defined

by the user. Sample regular expressions for each type of rule are presented in Table

4.3.

Table 4.3: Sample Regular Expressions

Type Input Regular Expression

Morphology (root POS) Noun ˆ[ˆ\+] + Noun\+?
Morphology (root) gel ˆgel\+
Morphology (hasFeature) PastPart ˆ\S + \ + PastPart(\+)?
Pronunciation (Expression) -5i- -5i($|-)
Pronunciation (Ascii Expression) -li- -(5|l)i($|-)
Lexical DA d

After the construction of a regular expression, we traverse the XML document

obtained from Section 4.5.2 and try to match the corresponding analysis. If we can

match all the regular expressions with at least one interpretation, than we flag the

word as a result and also flag the interpretation to be able to highlight them in the

search result window. Then, the flagged words and analysis of those words is sent

to result window. Since we know which interpretation matches all the rules that

applies, we can simply highlight that interpretation of the selected word in search

result window. Note that, we are not able to construct an indexing mechanism on

the analysis, since we are using multiple types of rules and nature of these rules do

38

not allow us to apply any indexing methods. However, this situation won’t cause

any performance problems, since a web page generally does not have more than 1000

words.

4.6 Implementation of Frequency Coloring

The data flow of this section is similar to previous section. We can study the im-

plementation in three phases: Text Processing, Finding Frequencies and Coloring

Words.

4.6.1 Text Processing

Implementation described in subsection 4.5.1 will be used in this part.

4.6.2 Finding Frequencies

On the server side, when the raw text arrives, we look up the frequency database for

each word in the text. According to the value of frequencies, each word is assigned

to a color group and the results are sent to the client in an XML format. Generated

XML document will look like the following:

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>

<root>

<word value=”ve” co l o r=1 />

<word value=”daha” co l o r=2 />

<word value=”mut lu luk lar ” c o l o r=3 />

</root>

4.6.3 Coloring Words

In this phase, first we parse the XML document and construct a Javascript built-in

Array object which is a hash table implementation. As a result of the hash table

property of Javascript Array object, we do not need an additional indexing structure

to increase the performance. This array object stores the data as key-value pairs.

In our case, words will be key and color groups will be value. After this process, we

simply traverse the source document loaded in LingBrowser(HTML document)

and go over all the words. We look up the assigned group of each word from the

constructed Array object. If the word exists in the Array object, then we replace

the word with an HTML fragment which will color the word. A Generic HTML

Fragment for this case will be:

39

<span c l a s s=”c l r zd ”

t i t l e =”[% f r equency in f o %]”

s t y l e=”background−c o l o r : [% bgco lo r %]; c o l o r : b lack ;”>[%word%]

We generate the HTML fragment of a word by replacing [%frequencyinfo%],

[%bgcolor%] and [%word%] with the corresponding information.

4.7 Implementation of Search in TELL Database

Tell database has nearly 85.000 words. First we analyze all these words and create

a huge XML File (30MB) in the format that is described in 4.5.2 on the server side.

When the tell search is activated on server side, this file is downloaded to the client

side only once and stored at the client side. When the search process is activated

again, we use the previously downloaded data. Previously explained search opera-

tions can now be performed on this file. Since, we designed the search operations

for 1000-2000 words, this functionality have some performance problems. A com-

plex search can take 5 minutes or more since we have to check for all 85.000 words

and their analysis. We are trying to match regular expressions while performing the

search and there is no applicable indexing structures for this type of operations in

Javascript. However, in near future, we are planning to move the search operations

for this functionality to the server side where we can use the indexing features of

MySQL database engine.

40

Chapter 5

A SESSION WITH LINGBROWSER

In this chapter, we will present a guide to start a session with LingBrowser

in a Microsoft Windows environment to demonstrate the capabilities of our system.

This guide can be applied to other environments with minor changes.

5.1 Installation and Configuration

5.1.1 Server Side

We pre-configured the server side and packed the LingBrowser application, the

MySQL database, the java runtime environment and the tomcat application server

into a single zip file. To start the server, one just needs to unzip this zipped file and

run the ”startup.bat” file in bin folder (See Figure 5.1).

Figure 5.1: Run Server

This will start Tomcat Server using the Java Runtime Environment that comes

with the package and will start the MySQL database server (See Figure 5.2).

41

Figure 5.2: Tomcat Window

By default Tomcat Application Server uses port 8080, but this can be changed

by editing below lines in /lingbrowser-server/conf/server.xml file.

<Connector port=”8080” maxHttpHeaderSize=”8192”

maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”

enableLookups=” f a l s e ” r ed i r e c tPo r t =”8443” acceptCount=”100”

connectionTimeout=”20000” disableUploadTimeout=”true ” />

To stop the server, one can simply close the Tomcat window.

5.1.2 Client Side

In this part, we assume that the Mozilla-Firefox is installed and running properly on

the user’s machine. The client side of LingBrowser is packed into a Mozilla Firefox

Add-On file whose name is lingbrowser.xpi. Curently, our plugin can run on 1.x and

2.0.x versions of Mozilla-Firefox. To install the plugin, one clicks File→Open File

menu item, selects the lingbrowser.xpi file and clicks Open button. This action will

open a window which is presented in Figure 5.3. To finish the installation, one

clicks install button and restart the Mozilla-Firefox application. After the restart,

a toolbar will be added to Mozilla-Firefox. Before using LingBrowser one may

need to overview the configuration. We can configure the client side, so that it works

with a server which runs on different machine in a configuration window (See Figure

5.4) which can be opened through Add-On configuration panel of Mozilla-Firefox

(Tools→Add-ons menu item and see also in Figure 5.5). Furthermore, we can

configure the size of single word exploration window, we can enable/disable double

click functions through this control panel. After the configuration phase, we can

42

Figure 5.3: Install Plugin

Figure 5.4: LingBrowser Configuration

43

Figure 5.5: Mozilla-Firefox Add-on Configuration Panel

start using LingBrowser. Note that javascript property of the Mozilla-Firefox

Application should be enabled.

5.2 Single Word Exploration

One can analyze a word with LingBrowser through three different ways. Firstly,

one can double-click the word in browser window. Secondly, one can type the word

in the input-box which is located in tool bar (See Figure 5.6) and hit the Show

Analysis button and as a last one, one can highlight the word and click the ”View

NLP Analysis” item of right-click menu (See Figure 5.7). Last one can be used to

analyse words that cannot be double-clicked like the words that appears in an HTML

link.

5.3 Activating Search Process

One can start the search process by clicking the Search Panel button on tool-bar.

After the click, user should wait a message indicating the completion of analysis

process (See Figure 5.8). By clicking the OK button on this message, search panel

will be displayed. Analysis process is only executed when a new page is loaded. Once

the analysis of a page is done, clicking Search Panel button on the tool bar again

will not trigger another analysis process, but will directly open Search Panel.

44

Figure 5.6: Input Box

5.3.1 Defining Rules

Users can start defining criteria by selecting the type of rule from the drop down

box located on search panel and clicking the Add Rule button. Figure 5.9 presents

a sample view of the search panel with two rules.

5.3.2 Search Results

After defining the rules, Search button should be clicked and the result of the search

will be shown in a new window (See Figure 5.10). On this window, one can now

browse the results of the search process.

5.4 Coloring Words

Frequency coloring functionality can be activated by simply clicking Colorize Word

button that is on the tool bar of LingBrowser. After colorization of words, one

can clear the colors by clicking the Clear button on tool-bar. Another button named

Color Info will display a information window about the colors and the frequencies

that they correspond to upon clicking.

45

Figure 5.7: Right-Click Menu

Figure 5.8: Analysis Completed Message

46

Figure 5.9: Example of Search Rules

Figure 5.10: Search Results.

47

Chapter 6

CONCLUSIONS

In this thesis, we introduced LingBrowser, an NLP based hypertext browser

for linguistic exploration of Turkish words. With LingBrowser, one can reach the

morphological analysis and other linguistic properties of a word and locate the words

that possess user defined properties in a text.

The important property of LingBrowser is that it can work on HTML pages,

thus it can utilize the limitless resources of Internet without relying on previously

prepared text. This gives the learners the advantage of choosing the reading materials

freely according to their interest areas. Thus, they will be more involved with the

text and learning quality will dramatically improve. At this point, let us point out

an interesting follow-up work. Imagine a linguist encountering an unknown word

while reading a text. He will have two choices. He can immediately look up the

structure of the word via LingBrowser, or he can first try to infer the structure

from the context and then look up the structure. Obviously, second choice will have

a positive effect on learning. One may add a mechanism to LingBrowser that

encourages users to first infer the structure from the context. For example, before

presenting the results of a query, users may be forced to enter an answer for some

properties like morpheme structure and then LingBrowser can show the results

in a fashion that users can compare them with their answers.

The functionality of LingBrowser was limited with words in this work. Main

reason for that is NLP technology for larger scopes like sentence parser, concordances

analyzers, ambiguity resolvers are not mature yet. When these technologies become

robust as morphological analyzers are, they can easily be utilized by LingBrowser

framework.

Emergence of robust morphological analyzers made NLP to have a place in

computer assisted language learning (CALL). However, many CALL systems does

not make use of NLP. LingBrowser was developed with the idea that NLP tech-

nologies should be used in language learning because classic self-study tools which

are based on multiple-choice exercises do not satisfy the advanced learners. We

48

hope that LingBrowser will motivate the linguists to conduct research on Turkish

language and greatly increase the number of researches on Turkish.

49

Chapter 7

APPENDIX A - Turkish Morphological Features

Table 7.1: Major Part-of-Speech

Feature Explanations

+Noun Noun
+Adj Adjective
+Adv Adverb
+Cond Condition
+Det Determiner
+Dup Onomatopoetic words
+Interj Interjection
+Ques Question
+Verb Verb
+Postp Postpositive
+Num Number
+Pron Pronoun
+Punc Punctuation

50

Table 7.2: Minor Part-of-Speech

Feature Explanations

+Card Cardinal
+Ord Ordinal
+Percent Percentage
+Range Range
+Real Real
+Ratio Ratio
+Distrib Distribution
+Time Time
+Inf Infinitive
+PastPart Past Participle
+FutPart Future Participle
+Prop Proper Noun
+PastPart Past Participle
+FutPart Future Participle
+PresPart Present Particple
+DemonsP Demonstrative Pronoun
+QuesP Question Pronoun
+ReflexP Reflexive Pronoun
+PersP Personal Pronoun
+QuantP Quantifying Pronoun

51

Table 7.3: Nominal Forms

Feature Explanations

+A1sg 1. singular Person/Number Agreement
+A2sg 2. singular Person/Number Agreement
+A3sg 3. singular Person/Number Agreement
+A1pl 1. plural Person/Number Agreement
+A2pl 2. plural Person/Number Agreement
+A3pl 3. plural Person/Number Agreement
+P1sg 1. singular Possessive Agreement
+P2sg 2. singular Possessive Agreement
+P3sg 3. singular Possessive Agreement
+P1pl 1. plural Possessive Agreement
+P2pl 2. plural Possessive Agreement
+P3pl 3. plural Possessive Agreement
+Pnon Pronoun (no overt agreement)
+Nom Nominative
+Acc Accusative/Objective
+Dat Dative (to ...)
+Abl Ablative (from ...)
+Loc Locative (on/at/in ...)
+Gen Genitive (of)
+Ins Instrumental (with ...)
+Equ Equative (by (object) in passive sentences)

52

Table 7.4: Verb Markers

Feature Explanations

+Pass Passive
+Caus Causative
+Reflex Reflexive
+Recip Peciprocal
+Able able to verb
+Repeat verb repeatedly
+Hastily verb hastily
+EverSince have been verbing ever since
+Almost almost verbed but did not
+Stay stayed/frozen while verbing
+Start start verbing immediately
+Pos Positive
+Neg Negative
+Past Past tense
+Narr Narrative past tense
+Fut Future tense
+Aor Aorist, may indicate, habitual, present, future
+Pres Present tense
+Desr Desire/wish
+Cond Conditional
+Neces Necessitative, must
+Opt Optative, let me/him/her verb
+Imp Imperative
+Prog1 Present continuous, process
+Prog2 Present continuous, state

53

Table 7.5: Semantic Markers For Derivations

Feature Explanations

+SinceDoingSo Since doing so
+As
+When
+ByDoingSo
+While
+AsIf
+WithoutHavingDoneSo
+Ly corresponds to English slow → slowly
+Since
+With
+Without
+FitFor
+InBetween this actually in productive compounding
+Agt Property of being involved in someway with the stem noun
+Dim Diminutive
+Ness as in Red vs Redness
+Become to become like the noun or adj in the stem
+Acquire to acquire the noun in the stem

54

Chapter 8

APPENDIX B - SAMPA CHART FOR TURKISH

Sampa Orthography Example Sampa Orthography Example

i i kil e e kedi
y ü kül 2 ö göl
u u kul o o kol
1 ı kıl a a kal
p p ip b b bal
t t ot gb d d dede
c k kedi gj g genç
k k akıl g g karga
f f fare v v ver
s s ses z z azık
S ş aşık Z j müjde
h h hasta G ğ sağır
tS ç seçim dZ c cam
m m dam n n anı
l l lale 5 l hala
r r raf j y yat

55

Chapter 9

APPENDIX C - SURFACE LEXICAL PAIRS

A:a → Lexical ”A” is realized as a surface ”a” since the last surface vowel is one

of ”a,ı,o,u”

A:e → Lexical ”A” is realized as a surface ”e” since the last surface vowel is one of

”e,i,ö,ü”

H:y → Lexical ”H” is realized as a surface ”y” since the last surface vowel is one of

”a,ı”

H:i → Lexical ”H” is realized as a surface ”i” since the last surface vowel is one of

”e,i”

H:u → Lexical ”H” is realized as a surface ”u” since the last surface vowel is one of

”o,u”

H:ü → Lexical ”H” is realized as a surface ”” since the last surface vowel is one of

”ö,ü””

A:0 → Lexical ”A” is deleted on the surface since the next morpheme is the present

continuous morpheme ”+Hyor”

a:0 → Surface ”a” is deleted on the surface since the next morpheme is the present

continuous morpheme ”+Hyor”

e:0 → Surface ”e” is deleted on the surface since the next morpheme is the present

continuous morpheme ”+Hyor”

n:0 → Lexical ”n” is deleted on the surface since the previous morpheme ends with

a consonant

y:0 → Lexical ”y” is deleted on the surface since the previous morpheme ends with

a consonant

H:0 → Lexical ”H” is deleted on the surface since the previous morpheme ends with

a vowel

+:0 → Morpheme boundary

D:t → Lexical ”D” is realized as a surface ”t” since the previous morpheme ends

with with a fricative consonant – one of ”ç,p,t,k,ş”, or ”D” is word final

D:d → Lexical ”D” is realized as a surface ”d” since the previous morpheme does

56

not ends with a fricative consonant – one of ”ç,p,t,k,ş”

57

Chapter 10

APPENDIX D - LEXICAL MORPHEMES

+lHk → FitFor/Ness

+lH → With

+ZHz → Without

+lAn → Acquire

+HmsH → JustLike

+ZAl → Related

+cH → Agent

+cHm → Short form of Diminutive for 1 person possessive

+cHk → Diminutive

+lAS → Become

+lAr → Plural/3rd person plural agreement

+lArarasI → InBetween

+sH → 3rd person singular possessive

+lArH → 3rd person plural possessive

+Hm → 1st person singular possessive

+Hn → 2nd person singular possessive

+yH → 3rd person singular possessive/Accusative case

+HmHz → 1st person plural possessive

+HnHz → 2nd person plural possessive

+nH → Accusative case

+yA → Dative case/Optative Mood

+nA → Dative case

+DAn → Ablative case

+ndAn → Ablative case

+DA → Locative case

+ndA → Locative case

+nHn → Genitive case

+nHm → Genitive case

58

+ylA → Instrumental case

+cA → Equative ly as in slow-ly

+ncA → Equative case

+ki → Relativized Pronoun/Modifier

+yDH → Past Tense

+ysA → Conditional Mood

+ymHS → Narrative Past Tense

+yken → While

+cAsHnA → AsIf

+ykene → While

+yHm → 1st person singular agreement

+ZHn → 2nd person singular agreement

+yHz → 1st person plural agreement/1st person plural agreement for negative

aorist

+ZHnHz → 2nd person plural agreement

+DHr → Copula/Causative

+m → 1st person singular agreement

+n → 2nd person singular agreement

+k → 1st person plural agreement

+nHz → 2nd person plural agreement

+mHS → Narrative Past Tense

+DH → Past Tense

+sA → Conditional Mood

+HS → Reciprocal/Collective

+Hn → Reflexive/Passive

+Ar → Causative/Aorist

+Hr → Causative/Aorist

+Ht → Causative

+t → Causative

+Hl → Passive

+HnHl → Passive

+mA → Verbal Negation/Infinitive Marker

+yAmA → Verbal Negative Possibility Marker

+zsHn → 2nd person singular agreement for negative aorist

+z → 3rd person singular agreement for negative aorist

+zsHnHz → 2nd person plural agreement for negative aorist

59

+zlAr → 3rd person plural agreement for negative aorist

+yAbil → Able

+yAdur → Repeat

+yHver → Hastily

+yAgel → EverSince

+yAgOr → Repeat

+yAyaz → Almost

+yAkal → Stay

+yAkoy → Start

+yAgid → Continue

+mAksHzHn → WithoutHavingDoneSo

+mAdAn → WithoutHavingDoneSo

+yAmAdAn → WithoutBeingAbleToHaveDoneSo

+yHcH → Agent

+mAzlHk → NotState

+yAmAzlHk → NotAbleState

+mAK → Infinitive

+yHS → Infinitive

+mAcA → ActOf

+yAn → PresentParticiple

+yAcAk → Future Tense/Future Participle

+yAsH → FeelLike

+yAsHyA → Adamantly

+DHk → Past Participle

+DHkCA → AsLongAs

+yHncA → When

+yArAk → ByDoingSo

+yHp → AfterDoingSo

+yAlH → SinceDoingSo

+r → Aorist Mood

+Hyor → Present Continouns

+mAktA → Present Continouns State

+mAlH → Necessitative Mood

+ZA → Imperative Mood/Desiderative Mood

60

Bibliography

[1] Oflazer K.:Two level description of Turkish morphology. Literary and Lin-
guistic Computing 9 (1994) 137-148

[2] Fellbaum, C., ed.: WordNet, An Electronic Lexical Database. MIT Press
(1998)

[3] Bilgin,O.,Çetinoglu, O., Oflazer, K.:Building a WordNet for Turkish. Ro-
mainian Journal of Information Science and Technology 7 (2004) 163-172

[4] Oflazer,K.,Inkelas, S.:The architecture and the implementation of a finite
state pronunciation lexicon for Turkish. Computer Speech and Language
(2006) Volume:20 No:1

[5] Koskenniemi, K., Two-level Morphology: A general computational model for
word recognition and production. Publication No:11, Department of General
Linguistics, University of Helsinki (1983)

[6] Nerbonne, J.: Computer assisted language learning and natural language
processing. In Mitkov, R., ed.: Handbook of Computational Linguistics. Ox-
ford University Press (2002)

[7] Nerbonne, J., Karttunen, L., Paskaleva, E., Proszeky, G.,Roosmaa, T.:
Reading more into foreign languages. Proceedings of the Fifth Conference
on Applied Natural Language Processing (1997)

[8] Borin, L. What have you done for me lately? The fickle alignment of NLP
and CALL. In Proceedings of EuroCALL 2002 pre-conference workshop NLP
in CALL (2002)

[9] Güvenir, H.A.: Drill and Practice for Turkish Grammar. In Swartz, M.L.,
Yazdani, M., eds: Intelligent Tutoring Systems for Foreign Language Learn-
ing. Volume F80 of NATO ASI Series. Springer Verlag (1992)

[10] Güvenir, H.A., Oflazer, K.: Using a corpus to teach Turkish Morphology.
In proceedings of the Seventh Twente Workshop on Language Technology,
Enschede, Netherlands (1994)

[11] Eclipse - an open development platform, http://www.eclipse.org

[12] Mozilla Firefox, http://www.mozilla.org

61

[13] Mysql - an open source database engine, http://www.mysql.org

[14] Java Technology, http://java.sun.com

[15] Apache Tomcat Application Server, http://tomcat.apache.org

[16] XMLHttpRequest object, base of the Ajax, specification by W3C.
http://www.w3.org/TR/XMLHttpRequest/

[17] XUL-XML User Interface Language, http://www.mozilla.org/projects/xul

62

