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ABSTRACT 

 

 The stress relaxation of amorphous filled and unfilled networks is the main objective of 
the present study. For this purpose, unfilled and filled samples having different cross-link 
densities and filler loadings were prepared. Stress relaxation tests were performed on a 
universal tensile test equipment. Constrained Junction Model, which is the model for the 
amorphous networks at equilibrium, was extended for the stress relaxation of the amorphous 
networks. For the unfilled section, it was assumed that the parameter which is the measure of 
the strength of the constraints in Constrained Junction Model follows the stretched 
exponential form. Experimental results showed that the new theory called Dynamic 
Constrained Junction Model can very well capture the isochronous Mooney plots and the 
relaxation of the stress for the unfilled samples. For the filled samples, the new theory was 
further extended with the second assumption that the phantom, equilibrium and non-
equilibrium forces in the Dynamic Constrained Junction Model follow the Guth and Gold 
viscosity relation when fillers are added into the matrix. The experimental results showed that 
the Dynamic Constrained Junction Model can well capture the isochronous Mooney plots and 
stress relaxation of the networks in filled state. 
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Junction Model), gev�eme, amorf a�lar 

 

 

ÖZET 

 

 Bu çalı�manın amacı dolgulu ve dolgusuz a�ların gerilme gev�emesidir. Bu amaçla, 
farklı dolgu oranlı ve çapraz ba�lı numuneler hazırlandı. Gerilme gev�eme deneyleri evrensel 
çekme makinasında yapıldı. Denge halindeki amorf a�ların modeli için kullanılan kaucuk 
elastisite modeli (Constrained Junction Model), amorf a�ların gerilme gev�emesi için 
geni�letildi. Dolgusuz kısım için, kauçuk elastisitesi modelinde dü�üm noktalarına gelen 
kuvvetinin bir ölçüsü olan parametrenin çekilmi� exponansiyel forma uydu�u varsayımı 
yapılmı�tır. Deneysel sonuçlar göstermi�tir ki, dinamik kauçuk elastisitesi diye adlandırılan 
bu yeni model ile dolgusuz numunelerin Mooney e�zaman e�rileri ve gerilme gev�emeleri 
çok iyi yakalanmı�tır. Dolgulu numuneler için, dolgu matrise eklendi�inde, denge ve denge 
dı�ı kuvvetlerin Guth ve Gold vizkosite ili�kisine uydu�u ikinci varsayımı yapılmı�tır. 
Deneysel sonuçlar göstermi�tir ki, dinamik kauçuk elastisitesi modeli  dolgulu numunelerde 
Mooney e�zaman e�rilerini ve gerilme gev�emesini iyi derecede yakalamı�tır. 
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CHAPTER 1 

 
 

1. INTRODUCTION 

 
 

 
 In this section, the basic information about polymers and especially elastomers will be 

discussed. The molecular background and the basic postulates of the rubberlike elasticity will 

be given. Since this study is based on the one of the most famous viscoelastic theory called 

Constrained Junction Model, this model and the other basic molecular origin based 

viscoelastic theories will be given in detail. The Mooney Rivlin equation which is the 

phenomenological based viscoelastic theory will be discussed at the end. 

 
 
 

1.1 Rubbery Materials 

 
 
 

Polymeric materials have been divided into main two groups, thermoplastics and 

thermosets, in terms of their behavior at elevated temperatures or, alternately upon whether 

the polymeric material is cross-linked or not, which is the key structural feature that 

determines behavior at high temperatures. For the sake of convenience of classification, 

polymers are named as elastomers if they have more than two hundred per cent elastic 

elongation. Elastic elongation is defined as the one that any material experience below their 

yield point, widely referred as the elastic limit. The elongation beyond the yield point is called 

inelastic meaning that the elongation will cause a permanent deformation; hence full recovery 

to the original length is not possible. Therefore, elongation beyond the yield point is 

inelastomeric.   

 

Elastomers can be repeatedly stretched over at least twice to their normal length and 

return to their original length on the removal of force. Elastomers may be either 
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thermoplastics or thermosets. If they are thermosets, they are so lightly cross-linked that 

hardening does not occur. It is due to the cross-linking that they cannot be melted after  

curing.  

 

All materials have some elastic elongation, but for most of the materials, especially 

metals, the elastic region is very small. For metals the elastic elongation is less than two per 

cent. Some plastic materials which are referred to as engineering plastics have elastic 

elongations in the same range as metals; whereas others, for example well known plastic such 

as, polyethylene, can have elastic elongations up to fifty per cent. [1].  

 

High strength and high stiffness in materials are related to the crystalline structures, 

other strong interactions between the molecules or atoms, and general stiffness of the 

molecules. Easy movement of the molecules relative to each other is prevented due to these 

features and decrease elastic elongation. The elastomers, therefore, have opposite structural 

features. Elastomeric materials are highly random, in general totally amorphous, and have few 

strong interactions between chains. Flexible polymer chains are of usually aliphatic nature 

rather than aromatic nature. The molecules can easily move relative to each other if a tensile 

force is applied on to an elastomer, probably just a simple uncoiling of the tangled molecules. 

This movement goes on like that with little additional force until the molecules are totally 

stretched or some other means of resistance is overcome. 

 

Up on the removal of tensile force, the molecules will turn back to their original, 

random shape and the whole structure will return to its original shape. The recover of this 

elastic region will occur provided that the molecules have not been displaced in absolute 

position to one another. In other words, they have not slid but have uncoiled. If sliding 

happens, the elastic limit (yield point) will be exceeded and some inelastic movement will be 

introduced. This inelastic movement cannot be recovered [1]. 

 

The tendency of the elastomeric material to return to its original, random state on the 

removal of force is attributed to entropy. Entropy is a measure of disorder of a system. 

Because of the high randomness, the non-stressed state has the highest entropy. When the 

external tensile force is applied to the system, order of the molecules will increase and 

entropy is forced to decrease. From thermodynamics’ point of view this is a less favorable or 
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unstable state. Therefore, on the removal of external force, the entropy will naturally try to 

increase. This is the driving force for the system to return to the original, random state [2]. 

 

When the chains are forced into more ordered positions by stretching the elastomer 

and reducing entropy, the total energy of the system will be lower, heat will be released and a 

slight warming of the sample will be detected. After relaxation of the applied force, heat goes 

into the material to be able to have the randomness and a cooling is realized because the heat 

is being taken in. 

 

Since the elastomers are different from the other materials in terms of the entropy 

based elasticity, here some basic thermodynamic equations will be given for elastomers.  

 

The change in internal energy E accompanying the stretching of an elastic body may 

be written with complete generality as follows [3]: 

 

                                               WQdE δδ −=                                                  (1.1) 

 

Where, the differential heat absorbed by is Qδ   and the differential work done by the system 

on the surroundings is Wδ . If P is the external pressure and f is the external force of 

elongation 

 

                                                      fdLPdVW −=δ                                                 (1.2) 

 

If the process is reversible, TdSQ =δ where S  is the entropy of the elastic body. If we 

substitute this expression for Qδ  in equation 1.1 will require Wδ to represent the element of 

reversible work. In order to be able to comply with this requirement, the coefficients P and 

f in Eq. 1.2. must be assigned their equilibrium values. Especially, f will represent the 

equilibrium force for a given state of the system which may be specified variously by S, V, 

and L, by T, V, and L, or by T,P, and L.  Then, 

 

                                                 fdLPdVTdSdE +−=                                                (1.3) 
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When the Gibbs free energy is introduced 

 

                                                TSPVETSHG −+=−=                                          (1.4) 

 

Where H is the heat content of the body; PVEH +=   

 

                                        SdTTdSVdPPdVdEdG −−++=                                     (1.5) 

 

and substituting for dE from Eq. 1.3, it is obtained  

 

                                                    fdLSdTVdPdG +−=                                             (1.6) 

 

The differential change in free energy in terms of the independent variables P, T, and 

L can be expressed with this equation P, T and L are experimentally measurable quantities. It 

follows from Eq. 1.6 that  

 

                                                  f
L

G

PT

=�
�

�
�
�

�

∂

∂

,

                                                (1.7) 

or 
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The condition for an ideal elastomer is that 
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so, 
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The negative sign means that work is done on the specimen to increase its length.  Similarly, 

 

                                                          
LPT

G
S

,

�
�

�
�
�

�

∂

∂
−=                                                   (1.11) 

 

Alternatively, Helmholtz free energy can be introduced defined by the relation [4]; 

 

                                                       TSEA −=                                                           (1.12) 

 

For a change taking place at constant temperature we have then 

 

                                                    TdSdEA −=δ                                                        (1.13) 

 

Combining this equation with Eq 1.3 we obtain the standard thermodynamic result 

 

                                                 WA δδ =  (Constant T)                                              (1.14) 

 

It means that the change in Helmholtz free energy is equal to the work done on the 

system by the applied forces in a reversible isothermal process. Work done by the applied 

stress corresponding to a tensile force F acting on a specimen of length L, in this case the 

work done is due to a small displacement is 

 

                                                    fdLW =δ                                                                (1.15) 

 

By making use of Eq 1.14 and 1.15 
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�

�
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�

�
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�
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�

�

∂

∂
=                                                       (1.16) 

 

which shows that the tensile force is due to change in Helmholtz free energy per unit increase 

in length of the specimen. The force, like the free energy, can be given as the sum of the two 

terms from the Eq. 1.13, thus 
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where, the first terms expresses the change in internal energy and the second term expresses 

the change in entropy, per unit increase in length. Eq. 1.12 can be written in differential form 

 

                                            SdTTdSdEA −−=δ                                                      (1.18) 

 

From Eq.1.3 and Eq.1.15 

 

                                                TdSfdLdE +=                                                           (1.19) 

 

Combining these two equations gives 

 

                                               SdTfdLA −=δ                                                            (1.20) 

 

By partial differentiation 

 

                                        f
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�
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�
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Thermo elastic experiments can be used for the explanation of the molecular origin of 

the elastic force f exhibited by a deformed elastomeric network. This involves the temperature 

dependence of either the force f at constant length L or the length at constant force. Consider 

first a thin metal strip stretched with a weight M to a point short of that giving permanent 

deformation, as is shown Figure 1.1. 

 

The usual behavior that would be considered is the increase in length of the stretched 

strip as the temperature increases (at constant load). Exactly the opposite result, shrinkage, is 

observed in the case of a stretched elastomer. For comparison purposes, the result observed 

for a gas at constant pressure is included in the Figure 1.1. Raising its temperature would of 

course cause an increase in its volume V, as illustrated by the well-known equation PV=nRT 
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1. Metal 

 

 

 

 

 

2. Rubber 

 

 

 

 

 

3. Gas 

 

 

 

 

 

Figure1.1 Results of thermo elastic experiments carried out on a typical metal rubber,    and 

gas [8, p.7] 

 

The primary effect that is observed when the metal is stretched is the increase ∆E in 

energy caused by changing the values of the distance d of separation between the metal 

atoms. Upon removal of the force, the stretched strip returns back to its original dimension 

since this is associated with a decrease in energy. Similarly, at constant force heating the strip 

gives rise to the usual expansion due to the increased oscillations about the minimum in the 

asymmetric potential energy curve. In the case of the elastomer, however, the major effect of 

the deformation is stretching out of the network chains, which substantially reduces their 

entropy. The retractive force is the result of the tendency of the system to increase its entropy 

toward the maximum value that it had in the underformed state. The chaotic molecular 

motions of the chains are increased when the temperature is increased and thus the tendency 

toward the more random state increases. As a result, length is decreased at constant force, or 

force is increased at constant length.  
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M 
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heat 
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heat 
M 

expansion 



  8 
 

1. Metal 

 

 

 

 

 

 

 

2. Rubber 

 

 

 

 

 

3. Gas 

 

 

 

 

 

 

Figure 1.2 Sketches explaining the observations described in Figure 1.1 in terms of                           

molecular origin of the elastic force or pressure [8, p.7]  

 

Elastomers also exhibit compressive recovery, unless the compressive elastic limit is 

not exceeded. This is called resilience. When the material is compressed, the molecules are 

forced into a more ordered state rather than the preferred, random state. Therefore, entropy is 

decreased by the compression and, on the removal of compressive force, the entropy will tend 

to increase again. The molecules push against the surface to be able to return to their chaotic 

positions again. [5] 
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1.2 General Approach to Rubber Elasticity 

 
 
 
 The continuum mechanical derivation of constitutive equations for elastomeric 

compounds is based on the concept of a strain energy density function or elastic potential Z, 

corresponding to the change in Helmholtz free energy of the material upon deformation [6]. It 

is supposed throughout that the material is isotropic and homogeneous, and that the 

temperature remains constant. Two approaches are generally considered for the rubber 

isothermal mechanical characterization: the kinetic theory which is based on the statistical 

thermodynamics considerations, and the phenomenological approach which treats the material 

as a continuum regardless of its microstructure and molecular nature. The kinetic theory dates 

back to 1940s. It attempts to derive elastic properties from some idealized model of the 

structure of vulcanized rubber. This theory, which is one of the cornerstones of our 

understanding of the macromolecular nature of rubber, is based on the observations that the 

rubber elastic deformation arises almost entirely from the decrease in entropy with increase in 

the applied extension. It generally deals with the assumed statistical distributions of the 

lengths, orientations and structure of rubber molecular networks. People have built networks 

from chains described by Gaussian statistics, that is the chain never approach their fully 

extended length, or have modified the chain statistics to allow larger stretches than are 

afforded by the Gaussian chain, then incorporated non-Gaussian chains into networks of 

three, four or eight number of chains.  

  

Following Rivlin, phenomenological approach starts with the basic assumptions that 

the material is isotropic and its isothermal elastic properties may be described in terms of a 

strain energy function Z.  Numerous strain energy density functions have been proposed, and 

can be subdivided according to whether Z is expressed as a polynomial function of strain 

invariants, or directly in terms of principle stretch ratios, and whether incompressibility is 

assumed or not. 
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1.3 The Molecular Basis of the Rubberlike Elasticity 

 
 
 
 Rubberlike materials contain long polymeric chains having a high degree of flexibility 

and mobility. They are joint into a network structure. The flexibility and mobility comes from 

the very high deformability. Because of an externally applied stress, the long polymeric 

chains may change their configurations, as a result of this, because of the high chain mobility 

an adjustment which takes place relatively rapidly within the network. Because of the solid 

like features in network structures chains are prevented from flowing relative to each other 

under external stresses. As a result of this, a rubber material can be stretched at least 2-3 times 

its original length. Upon removal of the external force applied, this material rapidly recovers 

its original dimensions, with essentially no non-recoverable strain. As a result of these 

mechanical properties, rubbers find important usage ranging from automobile cars to gaskets 

in jet planes, and space vehicles [7].  

  

In most of the solids such as crystalline or amorphous glassy materials, when a force 

externally applied, it changes the distance between neighboring atoms which results in 

interatomic or intermolecular forces. In these materials, for the deformation to be recoverable 

the distance between two adjacent atoms should be changed by only about a few angstroms. 

When the deformations are higher, the atoms slide past each other, there may be a flow or the 

fracture can take place. On the other hand, the rubber response is almost entirely intra-

molecular. Through the cross-links, the forces externally applied are transmitted to the long 

chains, change the conformations of the chains, and each polymeric chain acts like a spring in 

response to the external stress.  

  

The rubberlike elasticity should be defined and then the molecular characteristics 

required to achieve the very unusual behavior should be described [8].  This is shown in Table 

1.1 

 

The definition of rubberlike elasticity basically has two parts (i) Very high deformability upon 

externally applied force and (ii) almost complete recoverability upon removal of the 

externally applied force. Besides these, three molecular requirements must be met for a 

material to exhibit this type of elasticity, as well: (i) the material must consist of polymeric 



  11 
 

chains, (ii) the chains must have a high degree of flexibility and mobility, and (iii) the chains 

must form a network structure. 

 

 

         Table 1.1 Definition and Molecular requirements for Rubberlike Elasticity 

Two Part Definition Molecular requirement 

1. Very high deformability 1. Material composed of molecules that are of 

i. long chains (polymers) 

ii. high flexibility and mobility 

2. Essentially complete recoverability 2. Network structure from cross-linking of 

molecules 

 

 

 The first requirement is related to the very high deformability. It comes from the fact 

that the molecules in an elastomeric material should be able to change their arrangements and 

extensions in three dimensional spaces dramatically as a result of an externally applied stress, 

and only long polymeric chains have the required huge number of spatial arrangements of 

very different extensions. The very high deformability is also responsible from the second 

characteristics of rubberlike elasticity. It denotes that the chains should be flexible and mobile 

and as a result the different spatial arrangements of the chains should be accessible. That is to 

say that, the probable changes in these arrangements should not be hindered by following 

constraints as may result from inherent rigidity of the chains, or by decreased mobility as 

would result due to the chain crystallization, or from the very high viscosity characteristic of 

the glassy state. The network structure is obtained when the chains are joint together, or cross-

linking, the segments between the cross-links, approximately one out of every 100, prevents 

the stretched polymeric chains from irreversibly sliding by one another. The cross-links may 

be either chemical bonds or physical aggregates [8]. 
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1.4 Basic Postulates of Rubberlike Elasticity 

 
 
 
 There are two postulates which are very important for the development of molecular 

theories of rubberlike elasticity [8]. The first one is 

   

i. Although there are intermolecular interactions in the rubberlike materials, these 

interactions are independent of configuration. In other words, they are assumed to be 

independent of extent of deformation and assumed play no role in deformations carried out at 

constant volume and composition, strain induced crystallization is the exception. 

 

The meaning of the first postulates is that rubberlike elasticity is an intra-molecular 

effect, more specifically the entropy-reducing orientation of network chains. These chains 

should be random in the amorphous state, without any deformation. Because intermolecular 

effects are not dependent on intra-molecular effects, there is no inducement for the spatial 

configurations of the chains to be changed. 

 

 This assumption is now supported by a variety of results. First, thermo elastic results 

are found to be independent of network swelling. Second, neutron scattering studies have 

confirmed that chains in the bulk, amorphous, undeformed state are random.  

 

 The second postulate is very closely related to the first. It states: 

 

ii. The Helmholtz free energy of the network should also be separable: 

 

                                          ( ) ( )yANVTAA elliq += ,,                                                 (1.22) 

 

where y is the strain tensor 

 

It is thus assumed that the non-elastic (liquidlike) part of the network free energy is 

independent of deformation.    
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1.5 Structure of Networks 

 
 
 
 A network chain that is a chain between two junction points in fact consists of the 

basis of the basic molecular theory of amorphous polymeric networks. Generally, network 

chains have a distribution of molecular weights about an average molecular weight, which is 

the basis of the representative reference quantity in describing network structure. The number 

of chains connecting at each cross-link (or junction) is called the functionality θ of that 

junction. A network may consist of two or more sets of junctions with different 

functionalities; then we talk about an average functionality. If a chain is connected to a 

junction at only one end is called a dangling chain, and if both of its ends connected to the 

same junction is called a loop. A network is called a perfect network if it has no dangling 

chains or loops and all junctions have functionality greater than 2. Although it is very difficult 

to have a perfect network in reality, it is the simple reference structure for the molecular 

theories. 

  

With the help of some parameters a perfect network may be described: the average 

molecular weight between junctions Me; the number of junctions µ; the number of network 

chains ν; the average functionality θ; and the cycle rank ξ, which denotes the number of 

chains that have to be cut in order to reduce the network to a tree with no closed cycles [7,8]. 

These five parameters are related by three equations. 

 

 The first relation is between ν and µ. The number of the chain ends, 2 ν, must be equal 

to the number of functional groups, θµ, for the network to be perfect. Thus,  

 

                                                           µ = 2ν/θ                                                           (1.23) 

 

which means that, for instance, only µ = ν/θ junctions are required to get ν chains in a perfect 

tetra-functional network. This can be seen pictorially from the sketches given in Figure 1.3  
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Figure 1.3 Sketches of some simple, perfect networks having a) tetra-functional b) tri-

functional cross-links [8, p.27] 

  

 In the tetra-functional network in Figure 1.3-a, the eight network chains should contain 

four junctions. On the other hand, the six chains in the tri-functional network shown in Figure 

1.3-b require the same number of junctions, since the conversion factor 2/θ is now two-thirds 

instead of one-half. 

 

The other equations are 

 

                                                         ( )νθξ /21−=                                                    (1.24) 

 

                                                      
( )

Ac NM
V

/
/21

/ 0

ρθ
ξ

−
=                                               (1.25) 

 

where V0 is the volume of network, ρ is the density, and NA is Avagadro’s number.   

 

 

 

 

 

 

 

(a) (b) 
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1.6 Elasticity of the Single Chain 

 
 
 
 The sum of the elastic free energies of the individual chains consists of the elastic free 

energies of the network, which is indicated in the basic postulate of elementary molecular 

theories of rubber elasticity [7]. 

   

 The statistical properties of a polymer chain are determined by its chemical structure, 

such as its average dimensions in space and its flexibility. They result in affecting the various 

properties of a network consisting of these chains. Therefore understanding of the single chain 

is important.  

 

 According to the statistical mechanical assumptions, when the chain is stretched from 

its two ends, the number of each type of isomeric state in a chain remains essentially the 

same. The change in the end-to-end vector occurs by the redistribution of the isomeric states 

along the chain. Because there is no change in the number of each type of isomeric state, 

during stretching, the total internal energy of the chain remains constant. The elasticity of the 

chain coming from redistribution of isomeric states is called as entropic elasticity, and a major 

part of the elasticity of a network is entropic. During deformation if part of the work done is 

used to change relative populations of isomeric states, the bond angles, and the chain lengths, 

a change in internal energy takes place which results in an “energetic” component of the 

elasticity. 

 

 The vector r takes different values resulting from rotations about the individual bonds. 

For chains with more than about 50 skeletal bonds, the probability P(r)dxdydz that one end of 

r is at the origin and the other end is an infinitesimal volume dV=dxdydz is given by the 

Gaussian function 

 

                              P(r)dxdydz=(3/2π<r2>0)
3/2 exp(-3 r2/2<r2>0)dxdydz                    (1.26) 

 

Here <r2>0 is the average of the squared end to end vectors, and the subscribed zero 

indicates that the chain is in the unperturbed or so called theta state. It is now indicated that 

chains in the bulk undiluted state are in the unperturbed state. Eq.1.26 represents the 

probability distribution of the vectorial quantity r. The distribution p(r) showing the 
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probability is that the magnitude r of r has a certain value irrespective of the direction. Thus, 

the probability that the end to end length of the chain is in the range r to r + dr irrespective of 

its direction is 

 

                              p(r)dr = (3/2π<r2>0)
3/2 exp(-3 r2/2<r2>0)4 π r2 dr                         (1.27) 

 

 The thermodynamic expression which relates the elastic free energy Ael of a Gaussian 

chain to the probability distribution P(r) is  

 

                                           Ael =C(T) – kT ln P(r)                                                     (1.28) 

 

where C(T) is a function of  temperature T, and k is the Boltzmann constant. Substituting Eq. 

1.26 into 1.27 leads to 

 

                                      Ael = A*(T) + (3kT/2 <r2>0)r
2                                               (1.29) 

 

Here, A*(T) is a function of temperature alone. Eq. 1.29 is the elastic free energy of a 

Gaussian chain with two ends fixed at a separation of r. The average force which is required 

to keep the two ends at this length from each other is obtained from the thermodynamic 

expression 
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                                                            (1.31) 

 

where Eq.1.31 is obtained by substituting Eq. 1.29 into Eq. 1.30. The subscript T denotes that 

temperature is constant. 

 

 Equation 1.31 states that the single chain acts as a spring with spring constant  

3kT/<r2>0. 
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1.7 Elasticity of the Network 

 

 

 

 Since there are ν chains in the network, the total elastic free energy ∆Ael of the 

network relative to the undeformed state is obtained by summing Eq. 1.29 [7]. 
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where υ/22 �= rr  is the average square of the end to end vectors of chains in the 

deformed network. Substituting 

 

                                       2222 zyxr ++=                                                      (1.34) 

 

in Eq. 1.33 and knowing that chain dimensions are isotropic in the undeformed state i.e. 
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one gets 
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The x, y and z coordinates shown in the above equations are the laboratory fixed coordinates. 
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 The ratios seen in Eq. 1.36 are microscopic quantities. To be able to define the elastic 

free energy of a network according to the macroscopic state of deformation, an assumption 

which relates the microscopic chain dimensions to macroscopic deformation has to be made. 

 

 The state of macroscopic deformation may be characterized by extension ratios � along 

the x, y and z directions, respectively as 

 

                                λx=Lx/Lx0  , λy=Ly/Ly0 ,   λz=Lz/Lz0                                            (1.37)  

 

where Lx0, Ly0, Lz0 are the lengths before deformation and Lx, Ly, Lz are the corresponding 

lengths in the deformed state. 

  

 Two basic network models to relate the microscopic deformation to the macroscopic 

deformations are: the affine network and the phantom network. 

 
 
 
1.7.1 The Affine Network Model 

 
 
 The Affine network model is based on the following fundamental assumptions [9]; 

 

i. The network consists of ν freely jointed Gaussian chains, where such a network chain is 

defined as a sequence of skeletal bonds lying between two junctions. The mean square end-to-

end dimensions of the ensemble of network chains in the undeformed network are the same as 

those for an ensemble of chains in the bulk, uncross-linked state. The mean end-to-end 

dimensions of the latter, in turn, are equal to those of the single chain in the unperturbed state.  

 

ii. There is no change in volume upon deformation 

 

iii. The junctions move affinely with macroscopic deformation. This assumption played a 

central role in theories of rubberlike elasticity until neutron scattering experiments showed 

that the junctions are not rigidly embedded in the network and that their departure from affine 

displacement is substantial. It should be noted that the affine assumption suppresses the flu 

actuations of he chain end points, but does not impose any constraints at points along the 
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chain contour. In this respect, the chains do not interact with their environments along their 

contour.  

 

iv. The total elastic energy of the network is the sum of the elastic energies of the individual 

chains. Due to assumption that the chains are freely jointed, all spatial arrangements are of the 

same energy, the network deformation is purely entropic, and the relation STEAel ∆−∆=∆  

becomes STAel ∆−=∆ . The treatment may be generalized to non-freely-jointed chains, 

however.  

 

The elastic free energy of an isolated deformed Gaussian chain with its two ends fixed at r 

is given as 

 

                                              ( ) ( ) 2

0

22

3
r

r

kT
TArA +=                                                          (1.38) 

Since there are many chains, this equation should be summed for all chains of the 

network, and then the change elA∆  in the total elastic energy at constant temperature (relative 

to that of undeformed state) is obtained as 
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From the first equality to the second equality in Eq. 1.38, the relationship 

nrr /22 �=
υ

 is used to represent the average of the squared end-to-end vectors. When we 

write the end-to end vector according to the Cartesian components and when we average over 

the ensemble of chains gives; 

 

                                                 2222 zyxr ++=                                            (1.40) 
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When we divide the both sides of this equation by 
0

2
r knowing that the network 

chains are isotropic in the undeformed state, and using the assumption that the chain ends are 

displaced proportionally to the macroscopic strain, results in; 

 

                                              ( ) 3// 222

0

22
zyxrr λλλ ++=                                       (1.41) 

 

Here, λx, λy and λz are the elements of the deformation tensor y, and can be defined as 

the ratio of the final length to the initial length, in all coordinate direction. Substitution of Eq. 

1.41 into Eq. 1.38 gives,  

 

                                           ( ) ( )32/1 222 −++=∆ zyxel kTA λλλυ                                     (1.42) 

 

Here it is pointed out that the intermolecular interactions are accepted as zero in this 

model, that is, the system is essentially like an ideal gas. Then the expression for the force f is 

obtained from the thermodynamic expression; 
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where λ = λx = L/L0  The assumption here made is that the volume of the sample remains 

constant during deformation, and the y and z components of the deformation are written as λy 

= λz = λ-1/2. Substituting Eq. 1.42 into 1.43 and after differentiation the elastic equation of 

state for the force is; 
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It should be pointed out that although the model assumes the simple additivity of the 

free energies of the individual chains and disregarding the intermolecular interactions, its 

predictions well suit to the experimental data within reasonable limits. 
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1.7.2 The Phantom Network Model 

 
 
 In terms of the phantom network model, the junction points fluctuate as the time 

passes but, neighboring chains do not have effect on them. The macroscopic state of 

deformation does not affect the extent of fluctuations. The term phantom is coming from the 

assumed ability of the junctions to fluctuate despite of their entanglements with network 

chains. The assumptions for this model are given as follows [7-9]; 

 

i. The network chains are Gaussian 

 

ii. Some of the junctions at the surface of the networks are fixed and deform affinely with 

macroscopic strain 

 

iii. The chains are subject only to constraints that arise directly from the connectivity of the 

network. The effects of junctions and chains on one another are of no consequence, and the 

effect of the macroscopic strain is transmitted to a chain through the junctions to which a 

chain is attached at its two ends. This characteristic of a phantom network holds at all 

deformations. 

 

 In terms of the theory, a small part of the junctions are assumed to be fixed at the 

surface of the network, and most of the junctions are free to fluctuate over time. The 

instantaneous end-to-end vector of each chain may be represented as a sum of a ir  and a 

fluctuation ∆ri from the mean 

 

                                                             iii rrr ∆+=                                                     (1.45) 

 

The subscript i signifies that Eq.1.45 is for the ith chain. 

 

 The dot product of both sides of Eq.1.45 is 

 

                                                ( )222 .2 iiiii rrrrr ∆+∆+=                                             (1.46) 
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When we average both sides of Eq.1.46 for all chains of the network in the 

undeformed state and in the deformed state gives 
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The average of the term ii rr ∆.  in Eq.1.46 is zero since fluctuations of chain 

dimensions are uncorrelated with mean chain vectors. 

  

At any given time, the mean position r  and fluctuations r∆  shows distributions that 

may be assumed to be Gaussian. The mean squared values 
0

2
r and ( )

0

2
r∆  are related to 

2r  according to the theory by 
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 The components of mean position r  of each chain deforms affinely with macroscopic 

deformation while fluctuations r∆  are not affected; 
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Substituting Eq. 1.50 into Eq. 1.47 and using Eq.1.48 and 1.49 and the condition of 

isotropy in the state of rest leads to 
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Using Eq. 1.24 and Eq. 1.52 in 1.33 gives the following elastic free energy expression 

for the phantom network. 

 

                                            ( )3
2
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1.7.3 Comparing the Models 

 
 
 The affine model and phantom model differs from each other in terms of elastic free 

energy term in that the nature of transformations of chain dimensions built into the two 

models of the elementary theory. 

 

 The elastic free energy expressions for both models may be given as 

 

                                           ( )3222 −++ℑ=∆ zyxel kTA λλλ                                          (1.54) 

 

where the front factor ℑ is equal to υ /2 for the affine network model and to ξ /2 for the 

phantom network model. For a perfect tetra-functional network, ℑ  for the latter model is half 

the value for the former.  

 

 The simplified elastic free energy for the Affine network model deviates from that 

obtained by Flory [8]. Since, there is an additional logarithmic term which is a gas-like 

contribution due to the distribution of the cross-links over the sample volume. Thus the 

correct expression for the elastic free energy of the affine network model is 
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where V is the final volume of the network. 

 

  The most important thing of the molecular theory of rubber elasticity is to make a 

correlation between the state of deformation at the molecular level and the externally applied 

macroscopic deformation. The affine and phantom network models are two simplest models 

derived for this aim. In the affine network model, it is assumed that the junctions are 

embedded securely in the network structure. They do not show any fluctuations over time as 

would be observed in a real network whose junctions show rapid fluctuations about their 

mean positions. As a conclusion of the junctions embedded in the network, the junctions 

translate affinely with macroscopic strain. There is no assumption with regard to the parts of a 

chain between its junctions. On the other hand, the junction points in the phantom network 

model reflect the full mobility of the chains subjects only to the effects of the connectivity of 

the network. The position of a junction can be determined according to a time averaged mean 

location and instantaneous fluctuations from it. In terms of this opposite case, the mean 

locations of junctions transform affinely with macroscopic deformation, whereas the 

instantaneous fluctuations are not affected from this macroscopic deformation. It is the 

phantomlike nature of the chains that they are independent of the instantaneous fluctuations 

from the macroscopically applied state of deformation. During these fluctuations the chains 

may pass freely through each other. They are unaffected by the volume exclusion effects of 

neighboring chains and therefore by the macroscopically applied deformation [8]. 

 
 
 

1.8 Constrained Junction Model 

 
 
 
 The affine and phantom networks given above are based on a hypothetical chain which 

may pass freely through its neighbors as well as through itself. [9]. However, in a real chain 

the situation is different. The volume of a segment is excluded to other segments belonging 

either to the same chain or to others in the network. As a result, the uncrossability of chain 

contours by those occupying the same volume becomes an important factor. Uncross-linked 

bulk polymer contains highly entangled chains. During formation of the network these 

entanglements are permanently fixed when the chains are joined. The number of chains 

sharing the volume occupied by a given chain has a close relation to the degree of 

entanglement or the degree of interpenetration in a network. Deformation dependent 
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contributions from entanglements can be best seen in decreasing in network modulus with 

increasing tensile strain or swelling. The constrained junction model is based on the 

assumption that, when the polymer is stretched the space available to a chain along the 

direction of stretch is increased, thus resulting in an increase in the freedom of the chain to 

fluctuate. In the same manner, when a polymer swells in a good solvent then the separation of 

the chains from one another increases, resulting in decreasing their correlations with 

neighboring chains. The starting point of the constrained junction model is the elastic free 

energy as it is stated for the other models. In agreement with experimental observations, there 

are two contributions for this model in the deformed network for free energy, one from the 

phantom network and the other from the entanglements. There are two assumptions for this 

theory given as the following [9] 

 

i.The network is of uniform structure 

 

ii.The entanglement constraint about every junction is the same 

 

A real network, indeed, shows the properties between that of the affine and the 

phantom network models. In this model, junction fluctuations occurs but not to the extent in 

the phantom model. Constrained junction model is a model which is a quantitative model of a 

network with fluctuations of junctions dependent non-affinely on the macroscopic state of 

strain. In terms of this model, the fluctuations of junctions are affected by the copious 

interpenetration of their pendent chains with the spatially neighboring junctions and chains. 

The most important thing is the degree of interpenetration of a chain with its environment. 

This is described schematically for a tetra-functional network in Figure 1.4-a [8] where four 

filled circles are the junctions that are topologically neighbors of a given junction (empty one) 

 

The spatially neighboring junctions are shown by X’s. The average number Γ of 

junctions within this domain is given by 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

                                                                                         (b) 

 

Figure 1.4 a) Figure showing tetrafunctional junction (empty circle) surrounded by spatial 

neighboring junctions (X’s) and four topological junctions (filled circles) b) Various variables 

defining the mean and instantaneous positions of a given junction in the phantom network [8, 

p.37] 

 

 

where 
0V

µ
  is the number of junctions per unit volume in the reference state of the network. 

Generally Γ is in the range of 25-100 in typical networks. When the macroscopic deformation 

is applied, a significant degree of rearrangement of junctions in domain shown by the dashed 

circle is expected to occur unlike the limiting case of the phantom networks.  
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 A junction point in the constrained junction network model got affected from the 

phantom network and the constrained domains, as shown in Figure 1.4-b. Point A is the mean 

position of the junction in the phantom network. The large dashed circle of radius 

( )
2/12

ph
R∆ is the root mean square of the fluctuation domain for the given junction in the 

phantom network. Point B is the mean location of constrains. It is at a distance s  from the 

phantom center.  The small dashed circle of radius ( )
2/1

0

2
s∆  is the root mean square size of 

the constrained domain in which the junction would fluctuate under the effect of constraints 

only. Point C is the mean position of the junction which is affected from the phantom network 

and constraints. Point D is the instantaneous location of the junction at a distance of R∆ , s∆ , 

Rδ  from points A, B and C, respectively. A quantitative measure of the strengths of the 

constraints is given by the ratio 
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If there is no constraints action ( ) ∞→∆
o

s
2  and 0=κ  from Eq.1.57. In this case 

we end up with the phantom limit. On the other hand, if constraints are infinitely strong then 

there is no junction fluctuations, then ( ) 02
→∆

o
s  and ∞→κ . In this case we end up 

with the affine limit.  

 

 The elastic free energy of the network is obtained as the sum of the phantom network 

and constrained free energies, phA∆  and cA∆ : 

 

                                                     cphel AAA ∆+∆=∆                                                 (1.58) 

 

where the phantom network elastic energy is given by Eq.1.53. The elastic free energy change 

because of the constraints can be given according to the components of the principle 

extension ratios: 
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where 

 

                                        ( )( ) 2222 1
−

+−= κλλκ tttB ,    ttt BD
12 −= κλ                         (1.60) 

 

The constrained junction model formulations are based on determination of the 

distribution of fluctuations Rδ  from the mean position of the junction which is affected by the 

phantom network and constrained effects in the deformed network [10-12].  Since when 

0,0 =∆= cAκ  the elastic free energy of the network is equal to that of the phantom network 

and as κ increases indefinitely, the elastic free energy converges to the affine network, the 

constrained junction model is a network with elastic free energy intermediate in value 

between the phantom and the affine network limits. The affine network model describes the 

real network at low deformations and the phantom network model describes the real network 

as the deformation increases. 

 

 The κ parameter of the constrained junction model, defined by Eq.1.57 can be 

interpreted in terms of the molecular constitution of the network by assuming it to be 

proportional to the average number of junctions in the domain occupied by a network chain. 

Thus; 
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where I is the constant of proportionality, NA is Avogadro’s number, d is the network density, 

M is the molecular weight of a chain with end to end mean square length 
0

2
r . Eq.1.61 

indicates that κ is inversely proportional to the square root of cycle rank density 0/Vξ , 

inversely proportional to the functionalityφ , and directly proportional to the square root of 

network chain molecular weight Mc.  
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1.9 Mooney Rivlin 

 
 
 

As an alternative to the molecular approach of the three models described above, a 

phenomenological model of elasticity may be used. In such a model, a general expression for 

the free energy is written without asking any questions about the molecular interpretation of 

the terms of this free energy [13]. 

  

 The model developed by Mooney and Rivlin starts from three strain invariants (they 

are called invariants because they are independent of the choice of coordinate system) 

 

                                                         222
1 zyxI λλλ ++=                                                (1.62) 

 

                                                  222222
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                                                          222
3 zyxI λλλ=                                                       (1.64) 

 

The free energy density of the network F/V is written as a power series in the 

difference of these invariants from their values in the undeformed network 

( 1=== zyx λλλ ): 
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                (1.65) 

 

The second term in the series is analogous to the free energy of the classical model. 

 

                                                  ( ) ( )33 222
111 −++=− zyxCIC λλλ                               (1.66) 

 

With the identification C1=Gx/2. The third term in Eq.1.65 describes the deviations 

from the classical dependence. For incompressible networks, the third invariant does not 

change with deformation,  
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Making the fourth term of  Eq.1.65 zero. 

For uniaxial deformation of an incompressible network, 
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the Mooney Rivlin free energy density is written in terms of the stretching factor λ  : 
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The true stress in the Mooney Rivlin model can be obtained from the free energy 

density: 
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The engineering stress can be calculated from the true stress by: 
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This leads to the famous Mooney Rivlin equation: 
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In Mooney Rivlin equation 12C and 22C  are the phenomenological coefficients which 

become functions of time when stress relaxation is considered [14]. The long-time relaxation 

experiments of Ferry et. al, [14]on lightly cross-linked poly-butadiene networks showed that 

the time dependent Mooney-Rivlin equation describes the slow relaxation of uniaxial stress as 

well, with the observation that 12C  is approximately independent of time, whereas the slope 

)(2 2 tC  depends on time. Thus, Eq. 1.72 serves as a good approximation both in equilibrium 

and out of equilibrium behavior of networks.  

 

In molecular interpretations of rubber elasticity, the 12C intercept is generally 

associated with contributions from the network cycle rank proportional to the number of 

chains constituting the network, and the slope 22C  is associated with contributions from 

constraints that affect the fluctuations of chains and junction points. Thus, the 12C  term 

reflects contributions from network topology, whereas the 22C  reflects effects of constraints 

that suppress the fluctuations in the system. If the length of a chain between two cross-links is 

much larger than the entanglement length represented by the entanglement molecular weight, 

Me , then under sudden stretch, each sub chain of molecular weight Me will act as a transient 

network chain and will contribute to the stress. The 12C  will be large, reflecting these 

transient contributions, and will subsequently decrease upon relaxation. Thus, at shorter time 

scales, 12C exhibits time dependence and relaxation contains components from the transient 

entanglement network. 

   

The contribution of entanglements to 12C  has been the focus of both experimental and 

theoretical studies over the past several decades. Some experiments[15] show that at 

equilibrium, the effects of entanglements diminish at high extensions and/or high swelling 

ratios, and have no contribution to the 12C intercept, while others [16] show that contributions 

from chain entanglements trapped in the system during cross-linking do not relax fully and 

contribute to 12C [17]. The experiments of Rennar and Oppermann [18] showed the conditions 

under which trapped entanglements are important in a conclusive manner.  
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CHAPTER 2 

 
 

2. BACKGROUND 

 
 

 

In this section, the literature regarding the viscoelastic theories both molecular origin 

based and phenomenological based will be reviewed. The literature in relation to the stress 

relaxation will also be reviewed. 

 

R.J. Spontak et al [19]  worked on the stress relaxation study of the acrylate terminated 

urethane blends in toughened epoxies. They examined the effect of flexibilizer 

polydispersability on the stress relaxation behavior of a commercial epoxy. They prepared 

different epoxy samples containing varying compositions of acrylate terminated urethanes. 

They made stress relaxation tests and tried to fit the data to Kohlrausch Williams Watts or 

stretched exponential equation. Results were unsatisfactory since this expression cannot be 

used for a bimodal relaxation process. Therefore, they applied a biexponential, or two term 

Maxwell expression of the form, 

 

                          σn(t)=φslowexp(-t/τslow) + φfastexp(-t/τfast)                                (2.1) 

 

Fitting this equation to the data gave a good agreement. They concluded that tensile 

stress relaxation data from these blends are well represented by a biexponential decay 

expression possessing two characteristic relaxation times for fast and slow relaxation process.  

  

Ehabe et al [20] worked on the modeling of Mooney viscosity relaxation in natural 

rubber. They compared the 4 different relaxation model with the experiments and made a 

ranking in terms of the “goodness of the fit” of the data. They used 14 samples. 12 of them are 

natural rubber 2 of them are synthetic polyisoprene. They used simple Mooney viscosimeter 

for the experiments and conducted the test at 1000C and (1+4) minutes. (1 minute preheating 
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time, 4 minutes testing time)  They used Maxwell model, Wu Abott model, Power law and 

stretched exponential model (Kohlrausch-Williams-Watts). Of the four model tested, the tri-

exponential generalized Maxwell model and the Wu-Abott model proved to be the most 

efficient in terms of fitting the experimental data. The power law usually employed was one 

of the least appropriate models. 

 

Stephan A. Baeurle et al [21] worked on a new semi-phenomenological approach to 

predict the stress relaxation behavior of thermoplastic elastomers. They compared their 

theoretical studies with the experimental test results which had been conducted by Hotta et al 

with poly(styrene-isoprene-styrene) tri-block copolymers. The origin of their theoretical 

approach was based on the studies conducted by Gurtovenko and Gotlib who described the 

relaxation dynamics of inhomogeneously cross-linked polymers forming agglomerations of 

cross-links. In this study, they demonstrated that method can be extended to predict the 

stretched exponential stress decay of homogeneously cross-linked thermoplastic elastomer. 

Their model correctly predicted the power law decay behavior, experimentally observed by 

Hotta et al below a characteristic temperature, by assuming a macroscopically large single 

domain system of cross-links. Their model correctly predicted the experimentally determined 

of the stretched exponential, which governs the decay behavior of the overall effective 

extensional modulus above characteristic temperature. Their study also demonstrated that the 

mechanical properties of thermoplastic elastomers are strongly influenced by multiple length 

and time scales. 

 

C.K.Ober et al [22] worked on the stress relaxation of a main chain, smectic 

polydomain liquid crystalline elastomer. In this study they used diglycidyl ether of 4,4’-

dihydroxy-α-methylstilbene as liquid crystalline elastomer. They also tested polyisoprene for 

the stress relaxations. They fitted data to a single stretched exponential function as described 

by Kohlrausch-Williams-Watt. For the epoxide based, main chain, smectic LCE, it was found 

that this material exhibits a large amount of stress relaxation, approximately an order of 

magnitude greater than amorphous, isotropic polyisoprene rubber. They have found that the 

relaxation moduli of the smectic LCE could be described by a stretched exponential function 

with a single relatively fast characteristic relaxation time (τ=60s) regardless of the magnitude 

of the strain. The same relaxation time was found to be as 415s for the polyisoprene 

elastomer. 
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S. Ronan et al [23] worked on the long term stress relaxation prediction for elastomer 

using the time temperature superposition method. They used William-Landel-Ferry (WLF) 

and Arrhenius plots for this study. They used NR based samples vulcanized by conventionally 

and semi efficiently. They measured the stress relaxation in compression mold just by 

thinking the application of elastomers in sealing purposes. They also examined the dynamic 

mechanical properties of the samples namely G’ and G’’ by using MTS test equipment. They 

shifted tan delta value which is the ratio of G’’ and G’ and showed that the same shift factor at 

can used for G’ and G’’ as well. In the stress relaxation tests conducted at different 

temperatures they realized that the sample vulcanized by conventionally shows different 

characteristics than vulcanized by semi efficiently at high temperatures. At the lower 

temperatures both samples showed the same stress relaxation characteristics. By using these 

graphs and WLF equation they shifted horizontally along the time axis by taking the reference 

temperature as 23 0C. They showed that both samples have produced plausible master curves 

to predict the 10 years or more stress relaxation. They also added that these predictions should 

be verified by real time tests. 

 

Aleksey D. Drozdov and Al Dorfmann [24] studied the nonlinear viscoelastic response 

of carbon black filled natural rubbers. They used natural rubber compounds with 3 different 

carbon black loadings, namely 20-45-60 phr. They used dumbbell shaped test specimens for 

the relaxation tests. Their elongation ratio was changed from 2.0 to 3.5. They derived a 

constitutive equation and compared the experimental results with it. They modeled the filled 

rubber as an equivalent transient network of macromolecules. The network is assumed to be 

strongly heterogeneous, and it is treated as an ensemble of meso-regions with various 

activation energies for separation strands from temporary nodes. They introduced two types of 

meso domains; passive, where rearrangement of strands is prevented by surrounding chains 

and filler clusters, and active, where the rearrangement process is governed by the Eyring 

equation. There are some adjustable parameters in the stress strain relation which was found 

by fitting observations in relaxation tests at elongations up to 350%. The results demonstrated 

fair agreement with the experimental results. 

 

A. Hotta et al [25] worked on the stress relaxation in transient networks of symmetric 

tri-block Styrene-Isoprene-Styrene copolymer. They used two different copolymer having 

14% and 17% styrene contents. In this study they were concerned with the mechanical stress 

relaxation in an effective elastomer formed by the microphase separated SIS copolymer melt. 
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Their findings showed that the two samples under investigation show very similar mechanical 

relaxation despite their rather different “cross-linking morphology”. The stress relaxation 

curves below 300C are essentially straight lines and parallel to each other. At a temperature 

around T* 300C the relaxation curve deviates from this straight line (power law) behavior. In 

the region below 300C both samples have their stress relaxing according to 

 

                           E(t) = E0(1+1.6t-0.12)  for 14% PS                                         (2.2) 

 

                           E(t) = E0(1+2.2t-0.15)  for 17% PS                                         (2.3) 

 

with only E0 a fitting parameter. Significantly, all curves for a given material can be fitted 

with the same power law exponent 0.12 or 0.15 and a pre-factor of 1.6 or 2.2. At higher 

temperatures, above T* or equivalently at longer times on the master curves, the stress 

relaxation becomes much faster. From 39 to 700C, the stretched exponential law becomes the 

only reasonable model that can fit the data for both samples; 

  

                                   E(t) = 835 exp[-(t/τ)0.2] for 4%PS                                             (2.4) 

 

                         E(t) = 1088 exp[-(t/τ)0.2] for 17%PS                                        (2.5) 

 

As with the low temperature regime, all curves for a given sample can be fitted with only one 

fitting parameter, τ. The stretched exponent index has the same value of 0.2 for all experiment 

runs. 

 

M. Van Der Horst et al [26] investigated the stress relaxation and hysteresis behavior 

of NR based elastomers vulcanized by sulfur based and peroxide vulcanization system. They 

also investigated the temperature effect on stress relaxation and hysteresis in their study. The 

rate of relaxation decreases with an increase in temperature and is attributed to slower 

nucleation of strain induced crystallites. The decrease in the volume fraction of extendable 

material as a result of strain induced crystallites has only a small effect on the rate at which 

the slope of the stress strain curve rises. Hysteresis increases rapidly at strains at which strain 

induced crystallization becomes possible, but the hysteresis ratio reaches a plateau at higher 

extensions, supporting the proposal that hysteresis is largely due to the difference between the 
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degree of crystallinity present on extension and retraction. Also they come up with that an 

increase in crosslink density limits crystallization and reduce hysteresis. 

 

Masatoshi Tosaka et al [27] studied the crystallization and stress relaxation in highly 

stretched samples of natural rubber and its synthetic analogue. They made investigations 

when the stretch ratio was 6. The post stretched relaxation of tensile stress and the 

development of strain induced crystallization (SIC) were studied by simultaneous 

measurements of the stress and the diffraction intensities using the synchrotron X-Ray source. 

They found that in the range of 8s NR crystallized much faster than IR. They proposed that 

the origin of the superior toughness of NR was from the ability of rapid SIC. To be able to 

decompose the stress relaxation into its components, namely plastic flow and SIC, they used a 

formula where the time constants were estimated from the X-Ray study. Then the 

crystallization time constants were used to decompose the contribution of SIC from the total 

magnitude of the post stretched relaxation. In the short range of time, the contribution of SIC 

was found to be dominant. For a tensile strain, SIC plays an important role to reduce the 

stress. Although this analysis was successful when the stretch ratio was 6, they couldn’t find 

satisfactory results when the ratio was 7. 

 

V.P. Privalko [28] et al worked on the thermo elasticity and stress relaxation behavior 

of polychloroprene organoclay nano-composites. They used commercial organoclay supplied 

from Süd-Chemie AG. They prepared the compounds at two stages. In the first step CR was 

melt compounded with organoclay and the other ingredients. In the second stage 

vulcanization was carried out by hot stage vacuum press. At the beginning of the study they 

claimed that with increasing strain the initial spatial aggregates of filler particles spanning the 

entire sample volume (infinite clusters, IsC); however, the sizes of the latter are believed to be 

frozen in subsequent stretching/contraction cycles, provided the eventual strains would not 

exceed the maximum pre-strain. They made stress relaxation tests on the samples which have 

different amount of organoclay. They saw that experimental data could be best fitted with 

stretched exponential Kohlrausch equation. The plots of reduced stress vs t for the relaxations 

λf < λLIM nicely superpose on the same master curve whereas a similar plot for λf = λLIM is 

shifted considerably upwards. As a result they concluded that this result is consistent with the 

assumption that is made at the beginning of the study.  
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A.Batra et al [29] studied the stress relaxation of end-linked polydimethylsiloxane 

elastomer with long pendent chains. They prepared networks by end-linking a mixture of low 

polydispersity difunctional vinyl terminated PDMS chains and 10 wt % of low polydispersity 

monofunctional PDMS chains of varying molecular weights using a tetra-functional cross-

linker. They found that the stress relaxation moduli under shear can be fitted only in a limited 

time span by the Chasset-Thirion equation. The exponent m was found to be inversely 

proportional to the number of entanglements of the pendent chains but a weaker dependence 

of 0.55.      

 

V.G. Geethamma et al [30] worked on the tensile stress relaxation of short coir fiber 

reinforced natural rubber composites. They prepared their compounds on a two roll lab scale 

mills by keeping the nip gap, roll speed and number of passage the same for the different 

compounds. They examined the effect of strain level, strain rate and short coir fiber on the 

stress relaxation rate. They showed that the stress decay of unfilled NR samples is 

independent of the strain. The slope of the stress decay is almost identical for 6% and 60% 

strain. Rates were -0,037 and -0,027 respectively. However, this rate was higher for high 

strains, 500% because of the strain induced crystallization behavior of NR.  The rate was -

0,051 for 500% strain. They showed that as the strain increases strain relaxation increases. 

When the material is deformed at a higher strain rate, much of the deformation will be 

reversible and elastic, whereas if it is stressed at a lower strain rate, the individual molecules 

get time to slip past one another, these results in irreversible, plastic deformation. Hence, one 

expects to obtain a lower relaxation rate at a higher strain rate and vice versa. Lastly, they 

showed that the orientation of the coir in the matrix has a effect on the stress relaxation rate.  

 

A.R.R Menon [31] studied the stress relaxation characteristics of natural rubber 

modified with phosphorylated cashew nut shell liquid prepolymer (PCNLS). He prepared 

different samples having different amount of PCNLS.  He vulcanized the samples with a 

conventional press at 1500C and prepared the samples in dumbbell shapes. He conducted the 

tests in universal tensile machine with different strain rates and strain levels. Strain levels 

were changing from 50 to 150% and strain rates were 0.0208, 0.1042, 0.2083 s-1. He found 

that modification of natural rubber with 10-15 phr of PCNSL results in improved tensile 

properties along with a lower degree of stress relaxation (at higher strain rates and strain 

levels) compared to unmodified sample. The increase in dosage of PCNSL to 20 phr resulted 

in a significant increase in the extent and rate of stress relaxation. He also found that at strain 
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levels ranging from 50 to 120 % and strain rates ranging from 0.0208 to 0.2083 s-1, the stress 

relaxation characteristics of unmodified and PCNSL modified NR vulcanizates are 

independent of each other. 

 

L. Zanzotto and J. Stastna [32] studied the dynamic master curves from the stretched 

exponential relaxation modulus. They worked with the regular pavement asphalt and modified 

asphalt with SBR. They indicated that the linear behavior of polymer asphalt blends can be 

described by the general viscoelastic constitutive equation. Asphalt is a thermo rheologically 

simple material. Thus, one can obtain master curves of various material functions by using the 

time temperature superposition principle. In this study, they studied the G’ and G” of the 

asphalt and modified asphalt. For the shift factors they used WLF equation. Assuming the 

relaxation function G(s), has the form of stretched exponential 

 

                                       G(s) =C exp[-(s/λ)β]                                                  (2.6) 

 

where C, λ, β are constants. They derived the storage and loss modulus constitutive equations 

for the viscoelastic materials. They compared the experimental results with the model. 

However, they mentioned that it seems impossible to cover a wide frequency interval with 

one stretched exponential. Therefore, they used different stretched exponential functions for 

different frequency ranges. 

  

Tarek Madkour [33] investigated the step-strain stress relaxation of carbon black 

loaded natural rubber vulcanizates. He subjected the samples to a very rapid strain and fixed 

its length at the deformed state. He investigated the relaxation at different carbon black 

loadings and at different temperatures. He concluded as the temperature increases, the 

relaxation times of the polymer composites decrease. Nevertheless, the higher the carbon 

black content, the slower the relaxation process and the greater the relaxation times will be. 

The activation energy is independent of the temperature of the stress relaxation experiments, 

as the temperature affects only the rate of attainment of equilibrium through the increase in 

the thermal motion of the chains. Increasing the temperature, however, had a lesser effect on 

decreasing the overall stress values at high carbon black concentrations indicating that 

thermal motion at these concentrations is less sensitive to the increase in temperature. The 

increase in the activation energy as a function of the increase in the carbon black 
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concentration is due to the extra temporary bonds formed between the polymer molecules and 

the surface active carbon black. 

 

Osman et al [34] worked on the stress relaxation in carbon black loaded butyl rubber. 

They thermally aged the samples after vulcanization at 90 and 35 days to attain reasonable 

stability and reproducibility of measured quantities. They worked in compression mode rather 

than extension mode. They investigated different loadings of carbon blacks under different 

strain ratios. They concluded that the elastic constant E increases with increasing HAF 

concentrations in butyl rubber according to the relation 

 

                                      E=Eo(1+0.67fc+1.62f2c2)                                           (2.7) 

   

with f=6.5. The relaxation time that is calculated from the stress relaxation relation depends 

on HAF concentration. 

 

G.R. Cotten et al [35] worked on stress relaxation in rubbers containing reinforced 

fillers. They used BR type rubbers in their study. They prepared their compounds by using lab 

scale two roll mills. They vulcanized the sheets at 1450 C and 30 minutes. They made 

relaxation tests in tension mode if it is cross-linked, compression mode if it is uncross-linked 

i.e. raw rubber.  They found an empirical relation for relaxation as the following; 

 

                                                ft = f1.0 t
-n                                                           (2.8) 

   

where f1.0 is force after 1 min of relaxation, n is the relaxation rate of the material and t is the 

time in minutes. They concluded that in both cured and raw butadiene rubbers, stress 

relaxation was found to be a viscous controlled process. In raw rubbers, reinforcing carbon 

blacks decrease the rate of relaxation, while in cured rubbers the effect of carbon black is very 

small. However, in swollen cured rubbers, the rate of relaxation increases with increasing 

carbon black loadings, indicating a slippage and/or breakage of some carbon black polymer 

attachments.    

 

Franklin Chang [36] made an investigation on stress relaxation and hysteresis at 

various strain rates. He used polyisobutylene sheets in 2 mm thick. All specimens were 

conditioned at 23 0C and 50% relative humidity for three days. He made all the calculations 
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based on the Maxwell model and Boltzman superposition principle. He indicated that any one 

of the three types of stress namely extension, relaxation and hysteresis stresses can be 

calculated from the other two. However, the time increment in each operation is limited by the 

value of t0 which is usually not very large. Although the technique can be applied 

advantageously for a short range of time, it might be very tedious for the purpose of obtaining 

a curve of wide range of time. Also, the investigation shows a convenient method to 

determine hysteresis loss directly from the extension stress time curve. Also he claimed that 

the relaxation modulus curve determined at various strain rates is essentially the same unique 

and characteristic curve for each viscoelastic material. 

  

Thor L. Smith [37] worked on the large deformation tensile properties of elastomers. 

He mainly concentrated on the temperature dependence of C1 and C2 in Mooney-Rivlin 

equation. In this study he used unfilled butyl and silicone vulcanizates and six 

hydrofluorocarbon vulcanizates. He derived the C1 and C2 values in Mooney-Rivlin equation 

from 1 min. isochronal data. He carried out the tests in the temperature range of  -20 to 150 0C 

for the butyl vulcanizates and -45 to 200 0C for the silicone vulcanizates. He concluded that 

C1 increases with temperature at a rate which is in reasonable agreement with published data 

from the force temperature measurements. Because C2 is sensibly temperature independent 

over these extended temperature ranges, it was concluded that C2 is a finite quantity under 

equilibrium conditions. He tested the hydrocarbon vulcanizates between temperature range of 

-5 to 230 0C. He concluded that for every sample vulcanizates between 25 and 230 0C, C1 

273/T is temperature independent, but it increases with decreasing temperature below 25  0C. 

Except at the lowest temperature, C2 273/T decreases with increasing temperature, the rate of 

decrease becoming progressively less with an increase in cross-link density. 

 

MacKenzei et al [38] made stress relaxation tests on NR, BR and SBR based rubber 

containing different loadings of carbon black.  They also used unfilled vulcanized rubbers to 

be able to make comparisons. They plotted σ/σ0 against log t. The slopes vary little with 

strain for the NR vulcanizates, but for the BR and SBR, there is some decrease in slope with 

increase in strain, with the slope leveling off at high strain. For the black loaded NR 

vulcanized, they obtained two straight lines rather than one as in the gum vulcanizates. The 

first line of greater slope applying for times less than 1 min. and the second for the greater 

times. They have also stated that increase in the strain reduces the initial slope, but has little or 

no effect upon the latter slope. They stated that there are two distinct relaxation processes. For 
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the longer time process the data well represented by a power law in the time. However, for the 

short time it is not so precise. Therefore used the double power law for the whole time period, 

( ) 21
21

nn
tatat

−− +=σ   which has 4 adjustable parameters.  

 

Bartenev et al [39] divided the stress relaxation into three processes for the unfilled 

rubbers and into five processes for the black filled rubbers. Process 1 is due to the orientation 

and displacement of free segments of chain molecules taking place very rapidly with 

relaxation times of 10-4-10-6s. Process 2 is due to the regrouping of super molecular structural 

element with relaxation times within the range of 102-104s. This process is responsible for 

viscous flow in linear polymers. Process 3 is due to the regrouping of the chemical cross-links 

and chemical bonds in chains both during chemical reactions under the action of stress with 

relaxation times of 107-109s. For the filled elastomers there are two additional processes due 

to the rupture from filler particles of rubber macromolecules. This process can be given by the 

formula ( ) � =

−=
n

i

t

ieEt
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/
0

τεσ where ε0 is given deformation, Ei is coefficient, τi is the 

relaxation time. For five different processes n= 5 is used. Except τ5 the relaxation times are 

independent of deformation in the region of small elongation.  

 

In this review Guth et al. [40] mentioned about the Einstein’s viscosity theory of a 

suspension. Einstein viscosity theory has the following form; 

 

                                                     ( )V/5.210 υηη −=                                                  (2.9) 

 

where η is the viscosity of the solvent, η0 is the viscosity of the suspension, υ is the total 

volume of the suspended particles V is the volume of the suspension. However this equation 

holds only for small concentrations. For higher concentrations one must take into account the 

mutual disturbance caused by a pair of particles of a laminar stream. This has been done by 

H.A. Lorentz and the equation became 

 

                                        ( )22
0 /1.14/5.21 VV υυηη −−=                                        (2.10) 

 

This equation is applicable to all solutions of high molecular weight substances with spherical 

shape, such as rubber latex solutions, protein solutions and the changing of the viscosity of 
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lubricating oils by the addition of small quantities of higher molecular compounds. The 

equation was verified experimentally in the case of suspended glass spheres. 

 

Guth [41] worked on the theory of reinforcement. He stated that the well known 

Einstein’s viscosity equation has the following form; 

 

                                                      [ ]c5.21* += ηη                                                     (2.11) 

 

where η∗  and η are the viscosity of the emulsion and solvent and c is the volume 

concentration. Einstein’s theory of viscosity gives a pattern for similar theories of other 

physical properties of suspensions of colloidal particles in a continuous medium, whether this 

medium be fluid or solid. For instance, properties which may be discussed in this way include 

Young’s modulus, thermal conductivity, and dielectric constant. He subdivided the carbon 

black- polymer mixtures to the three categories. First one is the one where loadings are till 10 

%. In this category carbon blacks are well separated from each other. In the second one the 

loadings are up to 30 % where a network is formed between the carbon black particles. In the 

last category where the loadings are greater than 30 %, carbon blacks are tightly stacked. 

Lorentz modified the Einstein’s theory for the higher concentrations and it was applied to 

elastic properties first by Rehner. The computation of the change in the elastic constants of 

rubber by the embedded black spheres is entirely analogous to the procedure in the theory of 

viscosity. If a rubber black suspension is stretched, the suspended particles perturb the 

stresses, and strains set up in the body. This perturbation leads to an increase in the elastic 

energy. This in turn gives an increase in the elastic constants i.e. a stiffening of the stock. 

Therefore, Young’s modulus can be given by the following formula; 

 

                                                [ ]2* 1.145.21 ccEE ++=                                            (2.12) 

 

If the concentration increases above 10 percent, the stiffness of the stocks increases much 

more rapidly than equation would predict given above. This is the formation of chains by the 

spheres. One can study this accelerated stiffening more quantitatively by considering rod like 

filler particles embedded in a continuous matrix. For this model one obtains as an analog of 

equation above; 
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                                            [ ]22* .62.1.67.01 cfcfEE ++=                                     (2.13) 

 

Here f is the shape factor (=length/breadth) of the rod, and he has assumed f>>1. This 

equation clearly exhibits the rapid increase of modulus with increasing concentration.   

 

H.M. Smallwood [42] worked on the reinforcement of rubber. He used natural rubber 

based compound and used many fillers to correlate them with Einstein’s viscosity relation. He 

used carbon blacks, whitening from different sources and zinc oxide again from different 

suppliers and clay. He compared the experimental results with the theoretical ones. There are 

deviations in carbon black loaded ones interpreted as being the flocculation of the carbon 

black in the matrix. Compounds filled with clays have higher modulus values than model 

predicted. It was interpreted as being the acicular shape of the clay particles. Whitening gives 

good correlation with the model. Lastly, zinc oxide filled compounds had higher modulus 

values than model. It couldn’t be explained clearly in the paper. 

 

A.I. Medalia [43] investigated the immobilization of rubber occluded within carbon 

black aggregates. He proposed that in a carbon black-rubber system the rubber which fills the 

void space within each aggregate is occluded and immobilized and thus acts as part of the 

filler rather than as part of the deformable matrix. The amount of occluded rubber can be 

calculated directly from the DBP absorption value of the carbon black. However he made 

assumptions regarding the distribution of void space within and between the aggregates. It 

was suggested that at the end point of oil absorption test the packing of the aggregates was 

intermediate between “close” and “random” packing so that the void space between the 

aggregates amounted to 31.5% of the total volume of the system. Secondly, at the DBP 

endpoint the system contains around 15% air. Based on these assumptions he correlated the 

DBP absorption of the carbon black with occluded rubber.  He also introduced the 

effectiveness of this occluded rubber and this was found as 0.5.   

 

 K.L. Ngai and C.M. Roland [44] worked on the junction dynamics and proposed 

Coupling Model. The coupling model is an attempt to provide a unifying picture of the 

constrained dynamics of relaxation phenomena in a dense phase. They claimed that motion of 

any moiety in a dense packed system is governed by constraints originating from intra-

molecular and intermolecular interactions with other groups.  At short times each moiety 



  44 
 

relaxes independently, the dynamic constraints not having built up to an extent sufficient to 

impede the motion. In this short time regime, the relaxation rate can be expressed in terms of 

the transitions of independent moieties.  The correlation function describing the independent 

relaxation in this short time regime has the exponential form. However, from general physical 

principles, there exits a time scale after which the average relaxation rate of the moieties will 

be slowed down by the dynamic constraints. As a consequence, the normalized correlation 

function that describes the relaxation of a macroscopic variable will have the stretched 

exponential form; 

 

                                         ( ) ( )[ ]n

c ttC
−

−=
1*/exp τ ,    t>tc                                           (2.14) 

 

where 

 

                                                 ( )[ ]
)1/(1

0
* 1

n
n

ctn
−

−−= ττ                                                (2.15) 

 

where τ0 is the inverse of relaxation rate, t is time, tc is the critical time and n is the exponent. 

Although this model gives good results in some viscoelastic properties, a number of 

anomalies exist without any explanation.   
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CHAPTER 3 

 
 

3. EXPERIMENTAL: 

 
 
 

 In this section, the details of the experimental part will be given. The details of the raw 

materials used, compounding, vulcanization and stress relaxation tests will be explained. The 

details of the equipments used will also be given in this section.  

 

 
 

3.1 Materials Used 

 
 
 

The raw materials used in this recipe were Natural rubber (polyisoprene), Zinc Oxide, 

Stearic Acid, CBS (N-cyclohexyl-2-benzothiazole sulphenamide), Carbon black (N330) and 

Sulfur. All the raw materials were used as received. All the specification values given here 

have been taken from the analysis reports of the raw materials used. The natural rubber grade 

was Ribbed Smoked Sheet, RSS1, with a Mooney viscosity of 85 Mooney Units, MU, at 

100°C, MW�350000 and a polydispersity index of 2.5, supplied from Eversharp Rubber 

Industries, Jalan, Singkang, Jementah, Johor.  Zinc oxide, 99,7 % purity with a 550 g/l bulk 

density was supplied from Metal Oksit (www.metaloksit.com). Stearic acid with an acid value 

208,8 mg KOH/g, fatty acid composition 55,2 % C16, 44,2% C18 was supplied from Natoleo 

(www.natoleo.co.kr). Carbon black was supplied from TUPRA� (www.tupras.com.tr) with a 

DBP absorption of 102 ml/100g, with an iodine adsorption of 83.2 mg/g and with a bulk 

density of 378 g/l. CBS was supplied from MLPC. Its melting point was 97°C, ash content 

was 0,3% and specific gravity was 1,27. Sulfur was supplied from MLPC (www.mlpc-

intl.com). Its melting point was 115 °C and specific gravity was 2,04. 
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3.2 Compounding 

 
 
 

Compounds were prepared by using a lab scale 1,5 liter Werner & Pfleiderer internal 

mixer. This internal mixer has standard tangential rotor geometry. The homogenizations were 

made on the two roll open mills.  Rubber was fed into the chamber, masticated for 2 minutes 

and then Zinc Oxide and Stearic acid were added. The compound was dumped at around 135 

°C. It homogenized on the two roll mill for 5 minutes. In the second stage, for the filled 

elastomers first of all carbon black incorporated and then accelerator and sulfur were added 

on the two roll mill for different compounds. 

 
 
 

3.3 Vulcanization 

 
 
 

Vulcanization was carried out in a compression molding with 160 t clamping force. 

All test sheets were vulcanized at 150°C/ 35min. The test sheet dimensions were 210x300x2 

mm3.Before the test sheets were vulcanized, rheometer curves were checked at 150 °C which 

is the temperature at which the test sheets were vulcanized later on. The rheometer used is 

from Alpha Technology, MDR 2000. The rheometer curves showed that the torque values 

reach a plateau and remained constant from thereon, indicating that there is no reversion. The 

optimum cure times were obtained between 25-30 minutes depending on the different cross-

linking densities in the rheometer curves. To be on the safe side, all sheets were vulcanized at 

150°C for 35 minutes knowing that there is no reversion for these recipes. 

 

 

 

3.4 Relaxation Tests 

 
 

  Dumbbell shaped test specimens of 2 mm thickness were cut out from the vulcanized 

sheets with the help of a Zwick sample cutter in accordance with DIN 53 504, S1. Relaxation 

tests were carried out in a Zwick Roell Z2,5 universal tensile machine (UTM) with a load cell 

of 2,5 kN. Extension data were acquired at every 10 microns with an accuracy of 1%. The 
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equipment used testXpert V10.1 version software. Dumbbell shaped test sheets were tested at 

UTM with a pre-load of 0,2 N that prevented the initial curvature of the free samples. Test 

sheets were stretched to different extension ratios at a speed of 800 mm/min, and relaxed for 

880 sec. for every sample. Data was taken at every 0.02 s. during the test.  
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CHAPTER 4 

 
 

4 RESULTS AND DISCUSSION 

 
 

 
In this section, experimental and computational results are given and detailed 

discussions will be made. This section can be divided into two sections. The first section is 

the networks without carbon black namely unfilled section and the second one is the networks 

containing carbon black namely filled section. In both sections the details of the theoretical 

works will be given and then the experimental results and theoretical results will be 

compared. 

 
 
 

4.1 Unfilled Samples 

 
 
 

4.1.1 Theory and Model 

 
 

At equilibrium, a network junction exhibits large-scale fluctuations about its mean 

position. This is because the pendent chains to the junction exhibit large-scale diffusive 

motions about their equilibrium configurations. In a tetra-functional phantom network where 

there are no constraints to suppress junction fluctuations, mean squared fluctuations ( )2
R∆  

of a junction are related to the mean-squared end-to-end distance 
0

2
r of a network chain by 

[9] ( )
0

22

8
3

rR =∆ . For a polyisoprene network with reduced stress, 21.0*][ −= Nmmf , 

the radius of the fluctuation domain for a junction at equilibrium is about 50 Å and there are 

about 50 cross-links that share this domain. In real networks this sphere is smaller due to 
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constraints. According to the constrained junction model, [12,45] the mean-squared radius of 

the domain in which a network junction fluctuates is inversely proportional to the constraint 

parameter, κ0. This parameter is defined as the ratio 

 

                                                     

0

2
0

2

0
s

R

∆

∆
=κ                                                            (4.1) 

where, 
0

2
R∆ is the mean-square fluctuation of the junction in the phantom network and 

0

2
s∆ is the corresponding value in the real network, in the presence of constraints. The 

value of κ varies between 0 for highly cross-linked networks and about 10 or 12 for lightly 

cross-linked networks.  

 

 The diffusive motions of junctions have been observed in spin echo experiments [46]. 

These experiments, carried out on poly(dimethylsiloxane) networks with labeled junctions 

showed that the junctions move diffusively with characteristic relaxation times of 1-10 ns in a 

region whose size agrees with the predictions of the constrained junction model. The factors 

that effect the diffusion times of a junction comes from its steric interactions with the 

entanglement domain and from the network chains that are covalently attached to it at the 

φ functional junction.  

 

According to the constrained junction model, the entanglement domains transform 

affinely with macroscopic deformation. In a deformed network at equilibrium, the junctions 

fluctuate in an affinely transformed domain. Given the sufficiently long time, they can explore 

all points in this domain, as shown by the spin echo experiments. At short times following a 

sudden stretch, the junction does not have a chance to explore all points available to it at 

equilibrium. It explores the small vicinity of its position during the moment of stretch. As the 

network is allowed to relax, however, the junction diffusively explores larger and larger 

regions of the constraint domain. Stated in another way, the size ( )2
s∆ of the domain that 

appears in the definition of the κ parameter, Eq. 4.1, in which the junction can fluctuate is 

small at short times following the stretch and spreads out as time progresses. Thus, the κ 

parameter should be a function of time. The time dependent contributions to κ are expected to 

be large at short times following the sudden stretch and vanish with time as equilibrium is 
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approached. The process may be followed easily through the time dependence of the 12C and 

22C parameters where the former reflects the dynamics operating below length scales of 

2/1

0

2

�
�
	




�
�
�



��
�

�
��
�

�
r

M

M

c

e while the latter reflects the dynamics at length scales of 
0

2
r  or larger. 

Here, Mc is the molecular weight of a network chain, and 
0

2
r is the mean-squared end-to-

end distance of the unperturbed network.  

 

Based on the above discussion, we write the force f(t) acting on the network at time t 

as 

 

                                                  )()( , tffftf ceqcph ++=                    (4.2) 

 

where, phf  is the component of force due to the phantom network, and eqcf ,  and )(tfc  are the 

equilibrium and non-equilibrium forces due to constraints, respectively. 

For uniaxial deformation, [9]  
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Here, 0L  is the length of sample, and ξ is the cycle rank of the network denoting the number 

of chains that should be cut in order to reduce the network to a tree. The second term eqcf ,  in 

Eq. 4.2 is given by the constrained junction model as 
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The fundamental assumption of the theory of irreversible thermodynamics is that the 

functional dependence of local entropy on the local extensive parameters is identical to the 

dependence in equilibrium [47]. This assumption allows us to extend the equilibrium 

constraint theory to the time domain, according to which the term )(tfc in Eq. 4.2 now reads 

as 
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where the time dependence is introduced to the K function as 
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with 
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The parameter )(tκ now becomes the only additional parameter to describe the 

relaxation behavior of the networks. The junction performs Brownian motion under the joint 

action of the pendent chains and the constraint domain. We assume that the pendent chains 

impose quickly varying forces on the junction relative to the response of the constraint 
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domain. The latter provides the friction force. The motion of the junction may then be studied 

by the Langevin equation.  

  

In real networks, there are several relaxation pathways of different time scales that 

contribute to the time dependent κ parameter. In general these are such that the relaxation 

through one pathway depends on the prior relaxation through another pathway. In order to 

introduce such dependencies, the functional form of κ(t) should show more diffuse 

dependence on time. Two such possible forms are 
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where, τ is the characteristic time of relaxation of constraint effects, β is the exponent, m is 

the power, and 0κ and A are the front factors. The expression on the left in Eq. 4.12 is the 

stretched exponent form, and the one on the right is a power form, originally used by Chasset 

and Thirion [48] to describe the long time relaxation of natural rubber networks. The two 

functions exhibit significant differences, both at short and long times. The power relation 

diverges as time goes to zero. It shows much faster decay than the stretched exponent at short 

times, and much slower decay at long times. Comparison with experimental data, as will be 

discussed in more detail below, showed that the power relation does not represent relaxation 

satisfactorily whereas the stretched exponent shows almost perfect agreement with data. We 

therefore adopt the stretched exponent form.. The stretch exponent β, indicating the 

multiexponential behavior of relaxation, is different than unity as will be shown in the 

experimental validation of the theory below. 

 

 The theoretical model presented in this section is valid only at long times at which the 

time dependence of the )(2 1 tC term has vanished in Mooney Rivlin equation as given in 

Introduction section. There are excellent theories of rubber viscoelasticity that describe the 

short time behavior in which the transient entanglement network contribution is significant 

[49].  In the following section, we present an experimental validation of the Dynamic 

Constrained Junction Model.  
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4.1.2. Experimental Validation 

 

 

The sample details used in this section is presented in Table 4.1 

 

                                      Table 4.1 Sample notation for unfilled samples 

Sample Notation Sulphur amount, phr 

S01 0,75 

S02 1,0 

S03 1,25 

 

In Figure 4.1-4.3, the isochronous plots for networks for different cross-link densities 

were presented.  The ordinates denote the reduced stress *][ f  and the abscissas are the 

reciprocal extension ratios. The points show the results of experiments. The shortest time of 

observation is one second. The longest time of 880 seconds recorded in the experiments did 

not correspond to full equilibrium, but sufficiently close to it for all of the samples. The 

curves are obtained from the theory presented in method and theory section.. They are 

obtained for each figure as follows: First a value for 0κ , and *][ phf  is assumed. We also 

assumed the stretched exponential form for the function )(tκ . For a given value of τ and β the 

calculated *][ f  values are compared with *][ f  values obtained from experiments. The 

calculations are repeated and the (τ,β) pair that gives the best agreement is accepted. The 

same procedure is repeated for each figure. The relaxation time of 40 s that gives the best 

agreement of theory with experiment is the same for all four samples.  

 

The parameters for Dynamic Constrained Junction Model for unfilled samples were 

presented in Table 4.2 
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Figure 4.1 Isochronous plots of Sample S01 and comparison with Dynamic Constrained     

Junction results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Isochronous plots of Sample S02 and comparison with Dynamic Constrained 

Junction results. 
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Figure 4.3 Isochronous plots of Sample S03 and comparison with Dynamic Constrained 

Junction results. 

 

 

Table 4.2 The parameters for Dynamic Constrained Junctions model for unfilled samples 

Sample Notation fph(Mpa) κ0 τ  

(Relaxation 

time,s) 

β  

(Exponent) 

S01 0.092 9 40 0,4 

S02 0.104 8 40 0,4 

S03 0.132 6 40 0,4 

  

In Figures 4.4-4.6, the dependence of stress on time is presented for the samples 
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Figure 4.4 Dependence of stress on time for S01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Dependence of stress on time for S02 
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Figure 4.6 Dependence of stress on time for S03 

 

In this section, we extended the equilibrium constrained junction model to stress 

relaxation in uniaxial extension. In line with the fundamental assumption of irreversible 

thermodynamics, we took the functional dependence of the out of equilibrium stress on 

deformation same as given by the equilibrium theory. Results based on this simplification are 

in excellent agreement with experiment. Relaxation is described by a single parameter, )(tκ  

which leads to experimental data only if it is of the stretched exponent form. This form, which 

is known as the Williams-Watts-Kohlrauch form in phenomenological theories, may be taken 

as an indication of serial cooperativity where different pathways of relaxation exist in which 

one relaxation step depends on the occurrence of another. Stated in another way, relaxation 

goes through hierarchically constrained steps: Sudden stretching of the network causes an 

affine-like deformation of chains. Chains deformed in this manner do not relax all at once. A 

group of chains relax first, this induces the relaxation of others, through network connectivity. 

Thus, according to this interpretation, relaxation propagates from one junction to its 

topological neighbors in a serial fashion. We would like to indicate that this interpretation, 

although plausible, is one of several other possible relaxation pathways. This type of 
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hierarchical relaxation was introduced by Palmer et al., [49] and since then has been adopted 

for relaxation in a diverse field of materials.  

 
 
 

4.2.Filled Samples 

 
 

 
4.2.1 Theory and Model 

 
 

Filers are incorporated into rubbers to increase the strength of vulcanizates. Thus it is 

hardly surprising that relatively few applications of elastomers use the polymer in the unfilled 

state. Reinforcement signifies primarily an increase in ultimate properties such as tear and 

tensile strength and abrasion resistance and is most pronounced with non-crystallizing 

rubbers. Fillers also increase the modulus of elasticity and are often added for this purpose 

[7]. The Einstein’s theory of viscosity [40,42]which relates the viscosity of the suspension to 

the viscosity of the solvent with the volume fraction of the suspended particles is given as  

 

                                                            ( )φηη 5.21* +=                                              (4.13) 

 

where η∗ is the viscosity of the suspension η is the viscosity of the solvent and φ is the 

volume fraction of the suspended particles.  Guth and Gold [41] later extended this equation 

to the higher concentrations taking inter-particular disturbances into account. 

 

                                                    )1.145.21( 2* φφηη ++=                                        (4.14) 

 

where the notations are the same as given above.  Einstein’s theory of viscosity gives a pattern 

for similar theories of other physical properties of suspensions of colloidal particles in a 

continuous medium, whether this medium be fluid or solid [41]. For instance, properties 

which may be discussed in this way include Young’s modulus, thermal conductivity and 

dielectric constant. Medalia [43] added ‘occluded rubber’ volume to the actual carbon black 

filler volume to obtain the ‘effective’ volume of the rigid phase. ‘Occluded rubber’ was 

defined as the rubber part of the elastomeric matrix which penetrated the void space of the 

individual carbon aggregates, partially shielding it from the deformation. He obtained the 
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‘occluded volume of the rubber’ by using the DBP absorption value of the filler used. He used 

the effective volume in Guth and Gold equation instead of the volume fraction of the filler 

itself. 

 

The sample details used in this section is presented in Table 4.3 

 

                            Table 4.3 Sample notation for the filled samples 

Sample notation Effective filler volume 

fraction, φ 

Sulphur amount, phr 

S11 0.0397 0.75 

S12 0.0397 1.00 

S13 0.0397 1.25 

S21 0.0799 0.75 

S22 0.0799 1.00 

S23 0.0799 1.25 

S31 0.1129 0.75 

S32 0.1129 1.00 

S33 0.1129 1.25 

 

As it is given in unfilled section, Dynamic Constrained Junction Model captures the 

isochronous Mooney plots and stress relaxations of the vulcanizates successfully for the 

unfilled and different cross-link density samples. In this section, this theory is extended for 

the filled and the different cross-link density amorphous polymeric networks as well. 

  

 In the Dynamic Constrained Junction Model force acting on the network is given as in 

Eq 4.2. where, phf  is the component of the force due to the phantom network, and eqcf ,  and 

)(tfc  are the equilibrium and non-equilibrium forces due to the constraints, respectively. In 

this section, the basic assumption is that the force due to the phantom network, and the 

equilibrium and non-equilibrium forces due to the constraints follow the Guth and Gold 

equation when fillers are added into the matrix and these three terms can be written as 

follows; 

 

                                                  ( ) ( )2

0
1.145.21 φφ ++= phph ff                                   (4.15) 
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                                                 ( ) ( )2

0,, 1.145.21 φφ ++= eqceqc ff                                 (4.16) 

       

                                                ( ) ( )( ) ( )2
0 1.145.21 φφ ++= tftf cc                                 (4.17) 

 

where subscript 0 describes the unfilled amorphous network, φ is the effective volume 

fraction which includes the occluded rubber as mentioned in the introduction section. When 

we rearrange Eq 4.2 by multiplying and dividing by phf   then we obtain: 
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in this equation the second and the third terms in the bracket are independent of φ and only the 

third term is time dependent.  Additionally, only the first phf term of the right hand side of the 

equality is φ dependent. 

 
 
 

4.2.2. Experimental Validation 

 
 

The curves are obtained from the theory presented in unfilled section with the 

exception that ( )tf  is calculated by using Eq.4.18 given in this section. The fitting parameters 

of τ, β, ( )
0phf  were calculated for the unfilled different cross-link density samples in unfilled 

section and used in this section as they are. These parameters can be seen in Table 4.2 as well. 

Only fitting parameter in this section is the κ0 for the filled samples and presented on each 

graph.  κ0 values are given in Table 4.4 
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Table 4.4 The κ0 values for Dynamic Constrained Junction model for filled samples 

Sample Notation κ0 

S11 10,5 

S12 11,5 

S13 9 

S21 5,5 

S22 10,5 

S23 3,5 

S31 9,5 

S32 11 

S33 8 

 

 We present isochronous Mooney plots for filled samples in Fig. 4.7 -4.15  

 

 

Figure 4.7 Isochronous plots of Sample S11 and comparison with the Dynamic Constrained 

Junction Model results. 
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Figure 4.8 Isochronous plots of Sample S12 and comparison with the Dynamic Constrained 

Junction Model results. 

   

Figure 4.9 Isochronous plots of Sample S13 and comparison with the Dynamic Constrained 

Junction Model and results. 
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Figure 4.10 Isochronous plots of Sample S21 and comparison with the Dynamic Constrained 

Junction Model and results. 

 

 

Figure 4.11 Isochronous plots of Sample S22 and comparison with the Dynamic Constrained 

Junction Model and results. 
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Figure 4.12 Isochronous plots of Sample S23 and comparison with the Dynamic Constrained 

Junction Model and results. 

 

Figure 4.13 Isochronous plots of Sample S31 and comparison with the Dynamic Constrained 

Junction Model and results. 
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Fig.4.14 Isochronous plots of Sample S32 and comparison with the Dynamic Constrained 

Junction Model and results. 

 

 

Figure 4.15 Isochronous plots of Sample S33 and comparison with the Dynamic Constrained 

Junction Model and results. 
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In Fig. 4.16-4.24 the dependence of stress on time is presented for all samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Dependence of stress on time for Sample 11 

 

 

Figure 4.17 Dependence of stress on time for Sample 12 
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Figure 4.18 Dependence of stress on time for Sample 13 

 

 

 

 

 

Figure 4.19 Dependence of stress on time for Sample 21 
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Figure 4.20 Dependence of stress on time for Sample 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Dependence of stress on time for Sample 23 
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Figure 4.22 Dependence of stress on time for Sample 31 

 

 

 

 

Figure 4.23 Dependence of stress on time for Sample 32 
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Figure 4.24 Dependence of stress on time for Sample 33 

 

In this section, we extended the Dynamic Constrained Junction Model to stress 

relaxation of filled samples with different cross-link densities in uniaxial tension. The basic 

assumption that we made is the Guth and Gold equation dependence of the phantom, 

equilibrium and non-equilibrium forces acting on the network. We also used the occluded 

rubber for the effective volume of the fillers as proposed by Medalia.  In Dynamic 

Constrained Junction Model there were 4 fitting parameters as given in unfilled section 

namely, phantom contribution ( )
phf , relaxation time, τ, exponent, β and κ0 . Since we used the 

same cross-link densities in the unfilled section, we used 3 parameters out of 4 as they were 

found in unfilled section. We only used κ0 as the fitting parameter in the filled section. 

Results showed that the assumption that we have made for the filled elastomers really work 

well for capturing the stress relaxation behavior. Results revealed that the theory for the filled 

elastomers is well capturing the results irrespective of the filler amount. It means that this 

theory can be applicable for higher loadings as well. In some of the graphs there are some 

deviations from the experiment which are most probably due to the difficulty in nature of 

preparing the compounds and samples.    

 

 

 
 

0,25 

0,27 

0,29 

0,31 

0,33 

0,35 

0,37 

0,39 

0,41 

0 100 200 300 400 500 600 700 800 
Time (s) 

R
e
d

u
c
e
d

 S
tr

e
s
s
 (

N
/m

m
2
) 

λ=1.45 

λ=1.55 

λ=2.0 



  71 
 

 
 
 
 
 
 

CHAPTER 5 

 
 

5. CONCLUSION 

 
 

 
 One of the most important properties of the rubber is the viscoelastic property. 

Therefore, researches have been working on this subject for a long time. Generally, studies 

can be characterized based on two approaches: the kinetic theory which is based on the 

statistical thermodynamics considerations, and the phenomenological approach which treats 

the material as a continuum regardless of its micro-structural and molecular nature. One of the 

most important molecular based theories is the Constrained Junction Model. It has two 

contributions; one is from the phantom network and the other one is from the entanglements. 

Mooney Rivlin is the famous phenomenological approach to this subject. 

 

 In this study, Constrained Junction model is extended to the analysis of relaxation of 

amorphous networks. Experiments were carried out on natural rubber (NR) based compounds. 

Results can be subdivided into two categories. First category is for the unfilled samples and 

the second category is for the filled samples. For both categories, 3 different sulphur amounts 

(in other words, 3 different crosslink densities) were used. For the filled category, 3 different 

filler loadings were used.  

 

 Constrained Junction Model is used for networks at equilibrium. In this study, it is 

extended to the analysis of relaxation of the networks. It is made time dependent and named 

as Dynamic Constrained Junctions model. It is assumed that the κ parameter which is the 

measure of the strengths of the constraints in the model follow the stretched exponential form 

for the network relaxations.  It is assumed that κ has the following form for the relaxation of 

the networks; 
�
�
	




�
�
�



�
�

�
�
�

�
−=

β

τ
κκ

t
t exp)( 0 .  Experimental results showed that the isochronous 

Mooney plots can be well captured with the Dynamic Constrained Junction Model for three 
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different cross-link densities. This model also works well in predicting the dependence of 

stress on time for all cross-link densities studied. Therefore, for this unfilled category we can 

conclude that our new theory can be used for the relaxation of the unfilled amorphous 

networks. 

 

 In the second part of the study, filled elastomers were studied. In order to be able to 

adopt the Dynamic Constrained Junction Model for the filled elastomers, we made use of the 

Guth and Gold viscosity relation which is based originally on the Einstein’s rule of viscosity 

for the suspended particles. Guth and Gold viscosity relation has the following form; 

)1.145.21( 2* φφηη ++= . The applicability of this relation to Young’s modulus for filled 

polymers was studied by others. For this filled category our assumption is that this form can 

also be used for the phantom, equilibrium and non-equilibrium forces in the Dynamic 

Constrained Junction model. Therefore, phantom, equilibrium and non-equilibrium forces 

have the following form in Dynamic Constrained Junction Model, respectively; 

( ) ( )2

0
1.145.21 φφ ++= phph ff , ( ) ( )2

0,, 1.145.21 φφ ++= eqceqc ff ,  ( ) ( )( ) ( )2
0 1.145.21 φφ ++= tftf cc . 

We also used that filler volume should be effective filler volume which takes into account the 

occluded rubber in the matrix.  Experimental results showed that isochronous Mooney Plots 

and dependence of stress on time for filled elastomers can be captured with this new model as 

well.  There are some deviations in some of the samples. These can be attributed to the 

difficulty of preparing the filled samples. A good dispersion and distribution of the fillers in 

the matrix was difficult for these samples.   

 

 In conclusion, we can say that this new theory, namely Dynamic Constrained Junction 

Model, can well capture the relaxation of amorphous networks in unfilled and filled state. It 

has the advantage over other theories in that the Dynamic Constrained Junction model has a 

very good molecular basis since it is the adoption of Constrained Junction Model to the 

relaxation of amorphous networks.  

 

 For future work, we can say that this new theory can be examined for different 

deformation modes such as compression, or shear, or multiaxial loading.  
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