
DESIGN AND REALIZATION OF AN EMBEDDED PROCESSOR

FOR CRYPTOGRAPHIC APPLICATIONS

by

ÖVÜNÇ KOCABAŞ

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August, 2008

DESIGN AND REALIZATION OF AN EMBEDDED PROCESSOR

FOR CRYPTOGRAPHIC APPLICATIONS

APPROVED BY

Assoc.Prof.Dr. Erkay Savaş

(Dissertation Supervisor)

Assoc.Prof.Dr. Albert Levi

Assist. Prof.Dr. İlker Hamzaog̃lu

Assist. Prof.Dr. Selim Balcısoy

Assist. Prof.Dr. Yücel Saygın

DATE OF APPROVAL:

© Övünç Kocabaş 2008

All Rights Reserved

i

DESIGN AND REALIZATION OF AN EMBEDDED PROCESSOR

FOR CRYPTOGRAPHIC APPLICATIONS

Övünç KOCABAŞ

CS, Master of Science Thesis, 2008

Thesis Supervisor: Assoc. Prof. Dr. Erkay Savaş

Keywords: embedded processors, public key cryptography, architectural

enhancements,symmetric key cryptography, cache based attacks

Abstract

Architectural enhancements are a set of modifications in a general-purpose

processor to improve the processing of a given workload such as multime-

dia applications and cryptographic operations. Employing faster/enhanced

arithmetic units for the existing instruction set architecture (ISA), intro-

ducing application-specific instructions to the ISA, and adding a new set of

registers are common practices employed as architectural enhancements.

In this thesis, we introduce and implement a set of relatively low-cost en-

hancement techniques to accelerate certain arithmetic operations common in

cryptographic applications on a configurable and extensible embedded pro-

cessor core. The proposed enhancements are generic in the sense that they

can profitably be applied in many RISC processors. These enhancements

are organized into, what we prefer to call as, cryptographic unit (CU) that

offers an extended ISA to the programmer. We then present the speedup val-

ues obtained for various arithmetic operations and public key cryptography

ii

algorithms through these enhancements. Furthermore, hardware overhead

of introducing the enhancements to the embedded extensible processor is

provided in terms of chip area. Our experimental results show that the pro-

posed architectural enhancements provides significant amount of speedup (up

to one order of magnitude) in elliptic curve cryptography and RSA with a

conservative increase in hardware. Last but not the least, we demonstrate

that the proposed enhancements facilitate protection of cryptographic algo-

rithms against certain side-channel attacks by reporting our case study of

AES implementation hardened against cache-based attacks.

iii

KRİPTOGRAFİK UYGULAMALAR İÇİN

GÖMÜLÜ İŞLEMCİ TASARIMI VE UYGULAMASI

Övünç KOCABAŞ

CS, Master Tezi, 2008

Tez Danışmanı: Doç. Dr. Erkay Savaş

Anathar kelimeler: gömülü işlemciler, açık anahtarlı şifreleme, mimari

geliştirmeler, gizli anahtarlı şifreleme, önbellek temelli ataklar

Özet

Mimari iyileştirmeler, genel amaçlı işlemcilerin çoğul ortam uygulaması ve

kritografik işlemler gibi işyüklerindeki performansını arttırmak icin yapılan

değişikliklerdir. Varolan komut kümesi mimarisi için yeni ve geliştirilmiş arit-

metik birimler kullanmak, komut kümesi mimarisine yeni uygulamaya özgü

işlemler tanıtmak ve yeni yazmaç kümesi eklemek genel olarak kullanılan

mimari iyileştirme teknikleridir.

Bu tezde, kriptografik uygulamalarda kullanılan aritmetik işlemleri hız-

landırmak amacıyla nispeten düşük maliyetli iyileştirme teknikleri önerilmiş

ve bu tekniklerin uygulaması yapılmıştır. İyileştirme teknikleri çoğu RISC

işlemcisine uygulanabilecek şekilde tasarlanmıştır. Bu iyileştirmeler Krip-

tografik Birim olarak organize edilmiş ve programcıya genişletilmiş komut

kümesi mimarisi olarak sunulmuştur. Öngörülen iyileştirmeler kullanıldığında

çeşitli aritmetik işlemler ve açık anahtarlı şifreleme algoritmaları için hı-

zlanma değerleri sunulmuştur. Ayrıca, genişletilebilir gömülü mimariler için

iv

önerilen iyileştirmelerin uygulanması sonucunda oluşan donanım gideri yonga

alanı olarak gösterilmiştir. Yapılan deneyler sonucunda önerilen iyileştirmeler

sayesinde eliptik eğri şifreleme ve RSA sistemlerinde makul bir donanım artışı

karşılığında önemli seviye de hızlanma kaydedilmiştir. Son olarak önerilen iy-

ileştirmelerin aynı zamanda kriptograpfik algoritmaların bazı yan kanal atak-

larına karşı korunmasında yardımcı olacağı gösterilmiştir.

v

Acknowledgements

First and foremost, I wish to express my gratitude to my thesis supervisor

Erkay SAVAŞ for his valuable advice and guidance during my thesis study.

His complementary knowledge on cryptography and digital system design

was inspirational during my research and I am grateful to him not only for

the completion of this thesis, but also his patience and unconditional support.

I am grateful to my thesis committee members Albert LEVİ, İlker HAMZA-

OĞLU, Selim BALCISOY and Yücel SAYGIN for their valuable review and

comments on my master thesis.

Furthermore, I would like to thank The Scientific and Technological Re-

search Council of Turkey (TÜBİTAK) for their financial support during my

graduate study so that I can concentrate my research and complete my thesis.

Last but not least, I would like to thank my family for always being there

for me, supporting my decisions and encouraging me throughout my graduate

education.

vi

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Background Information . 3

1.2.1 Public Key Cryptography 3

1.2.2 RSA . 4

1.2.3 Elliptic Curve Cryptography (ECC) 6

1.3 Previous Works and Motivation 9

1.4 Contribution . 10

1.5 Organization of the Thesis . 11

2 General Architecture 14

2.1 Configurable Processors . 14

2.2 Tensilica Xtensa Processor Cores 14

2.2.1 LX2 Cores . 15

2.3 Generating Custom cryptographically-enhanced processor . . . 16

2.3.1 Base Processor . 17

2.3.2 Building cryptographically-enhanced processor 19

2.3.3 Cryptographic Register File (CRF) 20

2.3.4 Cryptographic Execution Unit (CEU) 21

2.3.5 Integer Unit . 22

2.3.6 Multiply Unit . 24

2.4 128-bit Multiplication Implementation Details 24

2.4.1 Computing Partial Products 26

2.4.2 Alignment and Addition of Partial Products 27

vii

2.5 Proposed Instructions . 29

2.6 Total Hardware Cost . 31

3 Modular Multiplication 33

3.1 Montgomery Multiplication 33

3.1.1 Methods for Montgomery Multiplication 35

3.1.2 The Separated Operand Scanning (SOS) Method . . . 36

3.1.3 The Coarsely Integrated Operand Scanning (CIOS) Method 39

3.1.4 Enhanced SOS Method 41

3.1.5 Performance Analysis 43

4 Modular Inversion 45

4.1 Modular Inversion in finite GF (p) 45

4.1.1 Kaliski and Montgomery Inversion Algorithm 46

4.1.2 Implementation Details 51

4.1.3 Performance Analysis 51

5 Implementation Details 54

5.1 FPGA Emulation and Time-Area Metrics 56

6 An AES Implementation Hardened Against Cache Attacks 59

7 Conclusion and Future Work 62

viii

List of Figures

1 Point Addition Operation on elliptic curves 7

2 Point Doubling Operation on elliptic curves 8

3 Xtensa LX2 Core . 16

4 General Architecture of Enhanced Embedded Core 20

5 Detailed Architecture of the CU 22

6 128-bit carry select adder . 23

7 Dividing 128-bit multiplication into four 64-bit multiplication 25

8 Computing Final Product . 25

9 Partial Product Computation 27

10 Alignment and Addition of Partial Sums 28

ix

List of Tables

1 Configuration of base processor 18

2 List of Instructions . 31

3 Hardware Cost of CU (5 stage pipeline) 32

4 Hardware Cost of CU (7 stage pipeline) 32

5 Speedups for Modular Multiplication on 5-stage pipeline version 44

6 Speedups for Modular Multiplication on 7-stage pipeline version 44

7 Montgomery Inversion on base processor 52

8 Montgomery Inversion on cryptographically-enhanced processor 52

9 Kaliski Inversion on base processor 52

10 Kaliski Inversion on cryptographically-enhanced processor . . . 52

11 Montgomery Inversion Speedups 53

12 Kaliski Inversion Speedups . 53

13 Implementation Results for Elliptic Curve Point Multiplication 54

14 Time× Area product for RSA 57

15 Time× Area for ECC . 57

16 Improvements for RSA and ECC 58

17 Overhead of protecting rounds of AES in number of clock cycles 61

x

List of Algorithms

1 Binary Exponentiation Algorithm 6

2 Montgomery Multiplication 34

3 Separated Operand Scanning (SOS) Method 38

4 Coarsely Integrated Operand Scanning (CIOS) method 40

5 Enhanced SOS Method . 42

6 Kaliski Inversion Algorithm 49

7 Montgomery Inversion Algorithm 50

xi

1 Introduction

1.1 Introduction

When embedded microprocessors made their first presence a few decades

ago, they were merely low-end micro-controllers designed to perform only

simple control instructions [9]. Ever since with the escalating innovations in

integrated circuit technology, the role of embedded microprocessors is also

revolutionized. Nowadays embedded microprocessors are used in almost ev-

ery aspects of daily life, ranging from portable devices to large stationary

installations. Furthermore, complexity of these processors rises up from sin-

gle low-end micro-controller unit to multiple units integrated into one board

with peripherals and network connection.

ARM, MIPS and Power PC are some of the examples of the most widespread

embedded microprocessor architectures which were developed in the 1980’s

for stand-alone microprocessor chips. These architectures are excelled in per-

forming wide range of algorithms. However with the emergence of innovative

research areas and their applications fields, such as multimedia and com-

munication applications, more processing power is demanded by designers.

Public key cryptosystems, which employ multi-precision arithmetic, also re-

quire more processing power since overwhelming majority of their running

time is spent in a few performance-critical sections. A common solution for

the related performance problem is two-fold: either designers move on to a

processor which has a higher clock frequency or they can design custom hard-

ware for boosting up the performance of the critical portions of their design.

Former is the most straightforward yet old-fashioned method, where the in-

creasing clock frequency triggers excessive power consumption which turns

out to be yet another problem for the designers. In the latter method, design-

ers build custom hardware blocks by using hardware description languages

(e.g. VHDL and Verilog) to speed-up the hot spots of their applications.

This method is extensively used for reaching high frequency values which

embedded microprocessors fail to respond. However, most of the time de-

signing a custom RTL hardware consumes significant amount of time and

effort. Verifying the RTL hardware takes even more time and once designed,

these hardware blocks cannot be changed easily. Due to these issues, RTL

hardware design for performance enhancement may become complicated task

for the designers.

A novel solution for boosting up performance is to use configurable pro-

cessors instead of embedded microprocessors and RTL hardware blocks for

specific applications that demand high performance. These processors are

a new family of processor cores, in which one can modify a processor for a

specific application. These cores are much faster, more efficient and able to

perform more than standard embedded microprocessors.

This work explores the benefits of architectural enhancements for fast and

secure computation of cryptographic operations on a configurable processor.

The enhancements come in three flavors: 1) configuring processor core, 2) ex-

tending architecture with new functional units with reasonable overhead and

3) augmenting the existing ISA with new instructions. The performance of

public key cryptography is primarily determined by the efficient implementa-

tion of arithmetic operations in the underlying algebraic structure (e.g. finite

field). Extending a general purpose processor through relatively low-cost en-

2

hancement techniques for fast arithmetic operations, which dominate cryp-

tographic computations in terms of time and resource usage, has a number of

benefits over using hardware accelerator such as a cryptographic co-processor

which is in the category of RTL design. First, performing the cryptographic

operations within processor core eliminates the communication overhead and

possibly associated security risks, accrued in processor/co-processor settings.

Second, the area of a cryptographic co-processor is generally much larger than

the area overhead of proposed enhancements that are tightly coupled to the

processor core and directly exploited by the instruction stream. Third, ar-

chitectural enhancements offer a degree of flexibility and scalability that goes

far beyond of fixed-function hardware such as a co-processor since extended

architecture still be used for general-purpose computing with the potential

benefit for other application domains as well.

1.2 Background Information

In this section we elaborate on two public key cryptography schemes e.g.

RSA and Elliptic Curve Cryptography which are implemented on enhanced

processor.

1.2.1 Public Key Cryptography

Public Key Cryptography, which is also named as asymmetric cryptography,

is proposed as a solution to distribution and management of secret keys. In a

network environment with n users, n(n− 1)/2 keys should be generated and

distributed and implementing this structure without using a secure channel

is a difficult problem. The first solution to the problem was introduced by

3

Diffie and Hellman [8] in 1976.

In public key cryptography, every user has a pair of keys: public key

and private (secret) key. The private key is only known to user while public

key can be distributed to the network. A generic public key cryptography

protocol between two users, Alice and Bob, is as follows. First Bob sends his

public key to Alice. Alice encrypts her message by using Bob’s public key

and sends encrypted message to Bob. Bob decrypts the encrypted message

by using his private key. In this protocol, only Bob can decrypt the message

since only he knows the secret key. Both public and private key is related to

each other mathematically but by knowing public key, private key cannot be

derived in practical computation limits.

1.2.2 RSA

RSA is the most widely known and used public key cryptography algorithm.

It is invented by Rivest, Shamir and Adleman in 1978 [25]. In RSA, each

user has private and public key pair. The private key of the user in RSA

system is consists of two large primes, p and q, and a secret exponent d. The

public key of the user is n = p · q and e with the properties

e = d−1 mod Φ(n)

gcd(e,Φ(n)) = 1

where Φ(n) is Euler’s Totient Function and Φ(n) = (p− 1) · (q − 1).

In a RSA setting, sender encrypts the messagem by using receiver’s public

key e and sends the encrypted message c = me mod n to the receiver. To

4

decrypt the encrypted message, receiver uses his private key and compute

the following

m = cd = me·d = m1+kΦ(n) = m mod n

Decryption can be performed as shown above according to Fermat’s Little

Theorem. Fermat’s Little Theorem states that an integer a and prime number

p has the relationship of

ap−1 = 1 mod p

Fermat’s Little Theorem can be generalized as Euler’s Totient Function as

follows

aΦ(p) = 1 mod p

where a and p are relatively prime to each other.

The most important operation in RSA is the modular exponentiation

operation. But the numbers used in RSA are big integers, for a minimum level

of security 1024-bit secret keys must be used, therefore it will take long time

to perform modular exponentiation if it is performed as successive modular

multiplications. Instead Binary Exponentiation Algorithm (c.f. Algorithm

1) is used to speedup the modular exponentiation.

5

Algorithm 1 Binary Exponentiation Algorithm
Input: m is the base, e is k-bit exponent in binary form (ek−1, ek−2,e1, e0)
Output: product = me

1. product = 1

2. for i = k − 1 to i = 0

3. product = product× product

4. if (ei = 1)then product = product×m

5. return product

1.2.3 Elliptic Curve Cryptography (ECC)

Neal Koblitz [17] and Victor Miller [21] independently proposed new stan-

dards for public key cryptography which is called as Elliptic Curve Cryptog-

raphy(ECC). They showed that a group defined on an elliptic curve can be

used for cryptographic operations. For cryptographic applications, elliptic

curves defined on prime field GF(p) or binary extension field GF(2n) can be

chosen.

An elliptic curve over GF(p) is defined as the set of solutions to the

following equation

y2 = x3 + a · x+ b

where a and b are elements in prime finite field. If a point (x, y) satisfies the

above equation then it is on the elliptic curve. All points satisfy the equation

above and the infinity point, which is denoted as θ, over prime finite field,

form an additive group and point addition operation is the group operation.

6

The point addition of two points, P = (x1, y1) and Q = (x2, y2), on the

elliptic curve is as follows

R = P +Q = (x3, y3)

λ =
y2 − y1

x2 − x1

mod p

x3 = λ2 − (x1 + x2) mod p

y3 = (λ · (x1 − x3)− y1) mod p

where λ is the slope of the line, passing through points P and Q. The point
addition operation is presented in Figure 1.

y
+ ax + b

R = (P+Q)

x

R = (P+Q)

Q

P

Figure 1: Point Addition Operation on elliptic curves

Another version of point addition is point doubling where S = 2P is

7

computed as follows (c.f Figure 2).

S = 2P = (x3, y3)

λ =
3 · x2

1 + a

2 · y1

mod p

x3 = λ2 − (2 · x1) mod p

y3 = (λ · (x1 − x3)− y1) mod p

y

x

S = 2P

P

Figure 2: Point Doubling Operation on elliptic curves

8

The modular exponentiation operation of RSA is equivalent to point mul-

tiplication operation in ECC. In point multiplication, a point on the elliptic

curve is multiplied with a scalar and the result of the multiplication resides

again on the elliptic curve. Point multiplication operation is performed as

repeated point addition and point doubling. The advantage of the ECC over

RSA is that in ECC same security level of RSA can be achieved by using

shorter key lengths. For instance, 1024-bit RSA security level is equivalent

to 160-bit key length in ECC. This property makes ECC a promising PKC

since the encryption operation can be performed faster than the RSA and

shorter key lengths and digital signatures are required to RSA with the same

level of security.

1.3 Previous Works and Motivation

Previous works [12, 13, 30, 31, 11] propose various enhancements to accel-

erate cryptographic operations. For instance, the authors in [12] propose

five custom instructions to accelerate arithmetic operations in both GF (p)

and GF (2n) on MIPS32 core to benefit elliptic curve cryptography while ISA

extensions in [31] aim to accelerate pairing-based cryptography. Similarly,

the authors in [11] explore the effects of on-chip memory on the execution

time of s-box computations in symmetric key cryptography. A common fea-

ture of these works is that they focus on custom solutions for accelerating an

individual cryptographic operation on general-purpose processors.

In this work, we take a slightly different and holistic approach by designing

and integrating so called Cryptographic Unit (CU) into a configurable and

extensible processor core. Numerous cryptographic operations will benefit

9

from CU for fast and secure execution. The proposed CU facilitates new and

powerful instructions and hardware extensions to accelerate multiplication

and inversion in prime finite field GF (p) and cryptographic operations which

are performed in RSA and elliptic curve cryptography. It is also shown that

CU is instrumental for software implementation of AES which is resistant to

side-channel attacks.

1.4 Contribution

In public key cryptography, the most important operations are finite field

arithmetic operations. In Diffie-Hellman key exchange [8], RSA [25] and dig-

ital signature systems [23] modular exponentiation is the most important and

time consuming operation which is performed as repeated modular multipli-

cations. Also for Elliptic Curve Cryptography (ECC), point multiplication

operation is the most expensive operation in terms of time and area. Point

multiplication operation is performed as point doubling and point addition

operations. These operations consist of modular inversions, modular multi-

plications and modular additions. Thus overall performance of public key

cryptosystems is determined by the performance of arithmetic operations in

finite fields.

In this thesis, we proposed a Cryptographic Unit (CU) for fast and secure

execution of the arithmetic operations in finite fields. The proposed CU is

generic thus it can be integrated into many RISC based processors. Within

the CU a cryptographic register file and a cryptographic execution unit are

introduced. Besides, new instructions are defined to employ the units in the

CU.

10

An enhanced processor is designed by integrating the CU on a config-

urable and extensible processor core. Arithmetic operations are implemented

on the enhanced processor and the speedup values are up to 13.1 times for

modular multiplication and 4.6 times for modular inversion. Both RSA and

ECC operations are implemented on the enhanced processor as well and a

performance improvement of 10.1 times for RSA and 8.08 times for ECC are

obtained.

The enhanced processor is later mapped to a specific FPGA board (Avnet

LX200) and hardware cost and clock frequency of the processor are obtained.

The clock frequency of the processor demonstrates that the CU does not

increase the critical path delay while introducing additional hardware to

processor core. By using the implementation results, time× area product is

computed for both RSA and ECC to investigate if the speedups are profitable.

The time× area product shows that by employing the CU an improvement

up to 6.64 times in RSA and 4.69 times in ECC can be achieved. The results

prove that the benefits of the proposed CU far exceed its cost.

Finally, it is shown that using the CU can be instrumental for protecting

software implementation of AES from certain side channel attacks (cache-

based attacks) with a reasonable overhead in execution time.

1.5 Organization of the Thesis

The outline of the rest of thesis is as follows:

• Chapter 2 reveals the detailed architecture of custom processor de-

signed for cryptographic applications. It starts with the designing

process of the custom processor on configurable and extensible base

11

processor. Architectural enhancements and new set of instructions are

introduced later. Finally hardware cost of implementing custom pro-

cessor is provided in number of gates in 0.13µm technology.

• Chapter 3 explains Montgomery’s method for modular multiplication.

It discusses methods for implementing Montgomery Multiplication on

hardware. Modified version of one of the discussed methods is pre-

sented which utilizes the enhanced architecture of custom processor.

The chapter ends with the comparison of modified method for custom

processor with the most efficient method for implementation on base

processor.

• Chapter 4 starts with the definition of modular inversion operation in

GF (p) finite fields. It introduces two efficient algorithms for computing

modular inverse in hardware. The chapter ends with the comparison of

both algorithm’s performance on custom processor and base processor.

• Chapter 5 shows the impact of the proposed enhancements presented in

Chapter 3 on RSA and elliptic curve cryptography. The speedups for

RSA and elliptic curve cryptography are presented. Implementation

of the enhanced processor on specific FPGA board is explained and

finally time × area products of RSA and elliptic curve cryptography

on custom processor and base processor are compared.

• Chapter 6 moves to symmetric key cryptography with the focus on

AES. A side channel attack e.g. cache based attack, against software

implementation of AES is introduced. Counter measures to protect

12

software implementation of AES are discussed. Finally the overhead of

protection mechanisms are presented in terms of execution time.

• Chapter 7 concludes the thesis and discusses on future work possibili-

ties.

13

2 General Architecture

2.1 Configurable Processors

A typical configurable processor consists of a pre-defined processor core which

can be enhanced for specific application requirements. Configuring these pro-

cessor cores generally includes modifications, additions or removals to pro-

cessor peripherals, memories, external bus widths and handshake protocols.

One can add as many functional units as possible for performance improve-

ment and still keep the area small by removing the unnecessary parts for the

specific application. Once finished with the configuration, configurable pro-

cessors are synthesized as RTL code and can be mapped to ASIC or FPGA’s.

ARC [3], Improv [14], Tensilica [27] are some of the major companies that

offer configurable processor cores.

Tensilica’s Xtensa configurable processor cores are preferred as the target

embedded processor in our work, since they are one of the configurable cores

that offer full software-development tool chain, including compiler, debugger

and ISS (Instruction Set Simulator) to match the configured processor. In

addition, the Tensilica Xtensa cores are also extensible; a property that make

them a superset of configurable processors, offering more flexible solutions

compared to the other configurable-only processors.

2.2 Tensilica Xtensa Processor Cores

Tensilica offers two types of Xtensa configurable cores: LX2 and Xtensa 7,

which are intended for embedded applications. While Xtensa 7 is optimized

for low power applications such as control operations, LX2 cores are more

14

flexible and ideal for high performance demanded data-incentive operations.

Among these cores we choose LX2 cores for our base processor since we

will be dealing with multi-precision arithmetic in finite fields and performing

these operations will require more processing power.

2.2.1 LX2 Cores

Xtensa’s LX2 32-bit processor architecture features a compact instruction

set optimized for embedded system designs. The base architecture includes

a 32-bit ALU, up to 64 general-purpose physical registers, 80 base instruc-

tions including 16 and 24-bit instruction encoding instead of RISC encoding

which enables significant code size reductions [29]. Furthermore LX2 core has

two essential features; namely configurability and extensibility, which will be

utilized in the process of generating custom cryptographically-enhanced pro-

cessor.

Configurability attribute of LX2 core offers designers to robust their de-

sign for the specific applications where they can modify the processor core

according to their design specs. Modification of processor can be made

by defining the width and number of execution units, data interfaces and

optional data paths. Whereas with extensibility feature, custom execution

units, registers, register files, single-instruction multiple-data functional units

can be added to processor data path. Extensions to data path is achieved

through Tensilica Instruction Extension (TIE) language. TIE is a Verilog-

like language which is used to describe instruction set extensions to processor

core. Functional behaviors of desired extensions are defined in TIE and TIE

compiler will generate and place the RTL equivalent blocks into processor

15

data path. A typical LX2 processor core is given in Figure 3 [28].

Figure 3: Xtensa LX2 Core

2.3 Generating Custom cryptographically-enhanced pro-

cessor

Our design criteria for generating a custom cryptographically-enhanced pro-

cessor is to build a processor which provides not only fast and secure execu-

tion of public key cryptography algorithms of RSA and elliptic curve cryptog-

16

raphy but also a core that is resistant to certain side-channel attacks against

the software implementation of symmetric key cryptography algorithms, e.g.

AES.

Design process of creating such processor consists of two steps. First, LX2

processor core is configured into so called base processor and then the base

processor is extended with custom instructions and functional units by using

TIE language to build final configuration which we name as cryptographically-

enhanced processor.

Xtensa Xplorer Integrated Design Environment (IDE) is utilized dur-

ing design and implementation steps of cryptographically-enhanced processor.

Xplorer IDE tool integrates software development and processor optimiza-

tion tools into one common environment and it provides all necessary tools

for processor and TIE development, software development and modeling and

simulation.

All the applications and the public key cryptography algorithms are de-

veloped in C programming language. In the performance analysis sections

of the following chapters, arithmetic operations and public key cryptography

algorithms are compared according to their execution times in terms of clock

cycles. Clock cycle values are obtained by executing code on Xplorer IDE

and looking the profile information, which is generated by the cycle-accurate

Instruction Set Simulator (ISS) of the Xplorer IDE.

2.3.1 Base Processor

Cryptographically-enhanced processor is designed for embedded systems and

configuration of base processor is performed depending on the requirements

17

of embedded systems. Therefore we aim to generate a processor as compact

as possible yet still efficient enough to perform fast execution of cryptographic

operations.

To keep processor size as small as possible, unnecessary units are removed

from LX2 core. For instance, floating point unit is removed from core since

public key operations are performed by using integer arithmetic. Also 32-

bit integer divider is removed as the division operations in cryptographic

algorithms will be performed by shifting the value to the right . Data and in-

struction caches are also chosen as reasonable sizes and direct-mapped cache.

To increase processor’s performance, memory-cache interfaces and Pro-

cessor Interface(PIF) are chosen as 128-bit (largest available) to increase

bandwidth and word size of processor. The configuration of base processor

is presented in Table 1.

Unit Configuration
Multiply Unit 32 bit
Register File 32 × 32-bit

Data memory/cache interface 128-bit
PIF interface 128-bit
Data Cache 8KB / direct-mapped / 16byte line size

Instruction Cache 8KB / direct-mapped / 16byte line size

Table 1: Configuration of base processor

Pipeline length of the LX2 core is also configurable and two versions

of base processor are generated with 5 and 7 stage pipeline length. The

hardware cost of 5 and 7 stage pipelined versions of base processor in 0.13µm

CMOS technology is as follows

• A total of approx. 119,000 gates with 5-stage pipeline configuration,

18

• A total of approx. 137,000 gates with 7-stage pipeline configuration.

2.3.2 Building cryptographically-enhanced processor

Prior to proposing architectural extensions and new instructions to base pro-

cessor, following criteria are taken into consideration and enhancements are

proposed in a way that they do not result in:

• unacceptable increase in area,

• change in instruction format and size,

• difficult integration with available tool-chain(e.g. compilers, debuggers,

linkers),

• major change in the control circuitry and existing pipeline structure

Extensions to the base processor are done by integrating a new unit referred

as cryptographic unit (CU) and introducing new set of instructions to core

ISA. Figure 4 shows the CU which consists of two parts: cryptographic reg-

ister file (CRF) and cryptographic execution unit (CEU). In the following

sections, the CRF and the CEU are explained in detail prior to introducing

new instructions.

19

Data Load / Store Unit

PIF

Local Memory
 Interface

Instruction Fetch / Decode

Data Cache

Data ROM

Data RAM

Xtensa LX2
Processor

Interface Control

Instruction RAM

Instruction ROM

Instruction Cache

Base ISA Execution Pipeline

C
ry

pt
og

ra
ph

ic

R
eg

is
te

r
F

ile

C
ry

pt
og

ra
ph

ic

E
xe

cu
ti

on
 U

ni
t

Base
Register File

Base ALU

MAC 32

MUL 32

Figure 4: General Architecture of Enhanced Embedded Core

2.3.3 Cryptographic Register File (CRF)

The CRF is an array of 32 registers each of which has 128-bit width and

is used to store operands and temporary results of arithmetical operations.

Storing these values in the CRF will significantly reduce the execution time

since the number of time consuming memory access operations will be re-

duced. Besides, the CRF can be used to store sensitive information such

as secret keys and small look-up tables for increasing security level of cryp-

tographic algorithms. In Chapter 6, we will show that the CRF will be

20

of crucial importance for protecting software implementation of AES from

side-channel attacks; e.g. cache attacks.

Furthermore, the CRF can be shared by different processes if the oper-

ating system supports multi-tasking. In order to alleviate the security and

switching cost concerns, we propose transactional usage of the CRF. The con-

tent of the CRF is not saved by the operating system on context switching;

therefore any process that wants to use CRF does not automatically assume

that the register contents remain intact forever. The process is provided with

a consistent view of the CRF for only short duration (e.g. the duration of

one multi-precision multiplication). It can lock the CRF for this duration so

that no other process can use the CRF if the context switching occurs too

frequently. The operating system can assist process for a fair schedule of the

CRF usage in order to prevent starvation or attacks by malicious processes.

A smart scheduling algorithm can easily solve the aforementioned problems.

2.3.4 Cryptographic Execution Unit (CEU)

The CEU is the new execution unit designed to utilize 128-bit width pro-

cessor interface and the CRF during cryptographic operations. By choosing

interface precision as 128-bit we simply increase our word length to 128-bit

for cryptographic operations instead of 32-bit word size of general purpose

processors. Using 32-bit ALU in the core processor will be inefficient for these

operations therefore the CEU is designed to be used as functional unit for

cryptographic operations. Functional units of the CEU will now take their

operands from the CRF instead of 32-bit physical registers of core processor.

The CEU is composed of three parts: an integer unit, a shifter circuit and

21

a multiply unit. While Integer Unit (IU) is capable of adding/subtracting

and comparison of two 128-bit integers, shifter circuit performs shift oper-

ation on both directions on a 128-bit register. Final functional unit in the

CEU is multiply unit which performs 128-bit multiplication, and generates

256-bit result and stores the most and least significant 128 bit of the result on

special purpose registers HI and LO respectively. Figure 5 shows the detailed

architecture of the CU and functional units inside the CEU.

128

128

128

 Load

Data Cache
Cryptographic
Register File

Shifter

HI LO

 IU MU

 Store

 c_rs
 c_rt

c_rd

128

Cryptographic Execution Unit

Figure 5: Detailed Architecture of the CU

2.3.5 Integer Unit

The Integer Unit (IU) consists of two parts: 128-bit adder and 128-bit com-

parator. While realization of the comparator is done straightforward, the

adder in the IU is implemented as carry select adder. The carry select adder

which is illustrated in Figure 6 consists of three 64-bit ripple carry adders

and one multiplexer.

22

Carry select adder is preferred to 128-bit ripple carry adder since uti-

lizing a 128-bit ripple carry adder will increase the critical path delay. By

implementing carry ripple adder, latency of the 128-bit addition is reduced

to 64-bit addition. Implementation of the carry select adder is performed

by splitting 128-bit operands into 2 parts: 64-bit most significant part and

64-bit least significant part. First least significant 64-bit parts are added to

each other and one bit carry is generated as a result. Meanwhile for the most

significant part, two addition is computed one with the assumption of carry

is being zero and the other with the carry is being one. The carry value

generated from the least significant part of the addition is used for selecting

the result from one of the additions performed for the most significant part.

64-bit adder

 MUX

64-bit adder 64-bit adder

c_rs[127:64] c_rt[127:64] c_rs[127:64] c_rt[127:64] c_rs[63:0] c_rt[63:0]

c_rd[127:64] c_rd[63:0]

Cin=1

Cout

Cin=0

Figure 6: 128-bit carry select adder

23

2.3.6 Multiply Unit

Multiply unit is the most crucial functional unit of the CEU for accelerating

modular multiplication operations which is excessively performed in RSA

and elliptic curve cryptography. To speed up the multiplication operation

we will utilize four parallelized 32-bit multipliers without increasing critical

path delay(CPD). However, choice of the number of multipliers is critical due

to their expensive cost in terms area and number of gates.

Performing a 128-bit multiplication requires 16 32-bit multiplications.

One can choose to instantiate 16 multipliers to calculate all 32-bit multipli-

cations in parallel and one cycle then add the partial products appropriately

to get the final result. Yet using 16 32-bit multipliers will severely increase

the processor area. Instead we prefer to implement 128-bit multiplication

by utilizing four 64-bit multiplications and add the aligned partial products

to get 256-bit result. In each 64-bit multiplication four 32-bit multiplica-

tions will be performed and we will utilize four 32-bit multipliers to execute

them parallel. By using 4 parallel multipliers instead of 16 we will still get a

significant speed up at the expense of acceptable hardware cost.

2.4 128-bit Multiplication Implementation Details

The proposed cryptographically-enhanced processor has 128-bit word size

therefore, all multiplication operations are performed on 128-bit operands.

Implementation of 128-bit multiplication will be performed as follows, first

128-bit multiplication will be divided into four 64-bit multiplications (Figure

7). Each 64-bit multiplication produces a partial product and in the end all

24

partial products will be aligned and added each other to compute final prod-

uct. Final product, which is 256-bits, is stored on HI and LO special purpose

registers as presented in Figure 8. First computation of partial products in

parallel by using four multipliers will be explained and then alignment and

addition of partial products into final product will be shown as successive

iterations in Figure 8.

×

a3 a2 a1 a0

b3 b2 b1 b0

a3 a2

b3 b2 ×

a3 a2

b1 b0 ×

a1 a0

b3 b2 ×

a1 a0

b1 b0 ×

 p3 p2 p1 p0

Figure 7: Dividing 128-bit multiplication into four 64-bit multiplication

 p0

 p1

 p2

 p3

 HI LO

 +

Figure 8: Computing Final Product

25

2.4.1 Computing Partial Products

In a 64-bit multiplication, four 32-bit multiplications are performed and with

four multipliers in the multiply unit, these multiplications can be computed

in parallel and in first clock cycle. HI register stores the tl and th of the

results while LO register stores tint1 and tint2. Before calculating the partial

product, which is 128 bits, two more operations have to be performed. First,

the intermediate results are added (tint1 and tint2) and then the sum is aligned

and added to the value in HI register. After these operations the partial

product is calculated and stored in a 128-bit register. Figure 9 shows the

process of partial product calculation.

26

temp

 2nd clk cycle

 64 IU Cin Cout

 LO tint1 tint2 00000 0000000 LO

 32 0 95 127

 1

 128

 128

IU

 3rd clk cycle

 LO HI

 c_rs [127:96] c_rt [31:0] c_rs [95:64] c_rt [63:32] c_rs [127:96] c_rt [63:32]

 64 64

 c_rs [95:64] c_rt [31:0]

 th tl HI

MUL32 MUL32

 32 32 32 32

 LO tint1 tint2 1st clk cycle

 64 64

MUL32 MUL32

 32 32 32 32

128

Figure 9: Partial Product Computation

2.4.2 Alignment and Addition of Partial Products

Four partial products of each 64-bit multiplications namely p0, p1, p2, p3 (cf.

Figure 10) which are calculated in the previous step, are stored temporarily

in four 128-bit registers. Final product is computed after three iterations

which is composed of successive additions of partial products into HI and

LO registers. These iterations are also summarized in Figure 10.

27

 HI LO

 IU

 p0

 p1

 p2

 p3

 t

 Cin C1 �

1st iteration

 p0 00000000 tL

 IU Cin C2

 LO 2nd iteration

 p3

 HI

 IU C2 Cout

000000000 C1 tH

3rd iteration

Figure 10: Alignment and Addition of Partial Sums

28

1st iteration: Partial products p1 and p2 are added and the result (t) is

stored temporarily in a register (In following iterations, t will be divided into

two halves, tH and tL, and each half will be used as operands of addition to

HI and LO registers). Also the carry of the addition, C1, is stored in one bit

carry register as it is used in the calculation of result on HI register in the

final iteration.

2nd iteration: In this iteration, lower half of the partial sum calculated

in first iteration, tL, is added with the p0 and result will be the lower half of

the final product and stored in the LO register. Again the carry out from

this step, C2, is stored in a carry register and is used in the final iteration.

3rd iteration: With the final step, final product is calculated and stored

in HI and LO registers. In this iteration, upper half of the partial sum of

the first iteration, tH , is concatenated with C1 and summed up with the p3.

During the addition, carry of second iteration, C2, is used as carry-in value.

Finally, result of the addition is stored in HI register.

2.5 Proposed Instructions

A new family of instructions is introduced to the processor ISA to fully em-

ploy the CEU. These instructions operate on 128-bit operands and conform

to instruction type and formats of LX2 core which uses RISC instruction en-

coding. Therefore new instructions are encoded as RISC instructions with a

slight difference. Common notations of source, target and destination regis-

ters (denoted as rs, rt and rd respectively) in RISC encoding are adjusted to

reflect changes such that functional units in the CEU uses operands stored

in the CRF. Therefore source, target and destination registers of the CRF

29

are represented as c_rs, c_rt and c_rd.

All proposed instructions are presented in Table 2. ADD_CREG and

SUB_CREG operations perform unsigned addition and subtraction respec-

tively. Both operations take their operands from c_rs and c_rt registers

and write result back to c_rd register. COMP_CREG operation compares

the values of c_rs and c_rt registers and if the value of c_rs register is

greater than c_rt register than it writes 1 to c_rd otherwise it writes 0.

SHL_CREG and SHR_CREG operations perform 1 bit shift operation. The

CRF has two read ports and only one write port therefore the value of c_rs

register can be changed while the value in c_rt register remains unchanged.

MUL_CREG operation performs 128-bit unsigned multiplication and writes

product to HI and LO special purpose registers. Finally, LOAD_CREG

and STORE_CREG operations perform data transfer operations between

memory and the CRF for given memory address.

30

Format Description Operation

ADD_CREG (c_rd,c_rs,c_rt) Unsigned
Addition (Cout , c_rd) ← c_rs +

c_rt + Cin

SUB_CREG (c_rd,c_rs,c_rt) Unsigned
Subtraction (Bout , c_rd) ← c_rs -

c_rt - Bin

COMP_CREG
(c_rd,c_rs,c_rt) Comparison c_rd = c_rs > c_rt ?

1 : 0

SHL_CREG (c_rs ,c_rt) Shift together
left c_rs ← c_rs[126:0] ||

c_rt[127]

SHR_CREG (c_rs ,c_rt) Shift together
right c_rs ← c_rt[0] ||

c_rt[127:1]

MUL_CREG (c_rs,c_rt) Unsigned
Multiplication (HI / LO) ← c_rs ×

c_rt

LOAD_CREG (c_rd) Load data from
memory c_rd ← Memory

[address]

STORE_CREG (c_rd) Store data to
memory Memory [address] ←

c_rd

Table 2: List of Instructions

2.6 Total Hardware Cost

Introducing the CU to base processor increases the total area. The hardware

costs of the units inside the CU are given in terms of gates in 0.13µm CMOS

technology (c.f. Table 3 and 4) for both 5 and 7 stage pipeline versions of base

processor. Cost of the CRF includes number of gates for 32×128 bit register

file. Multiply unit’s cost includes four 32-bit multipliers and four 128-bit

registers which store the partial products during a 128-bit multiplication.

While cost of the IU includes 128-bit adder and comparator circuit. The

31

rest of additional hardware cost including multiplexing and decoding circuit

given under Other costs part in Tables 3 and 4.

Unit Gate Count
base processor 118,475

CRF 46,631
Multiply Unit 42,471

IU 5,113
Shifter 35
Other 15,576
CU 109,946

Table 3: Hardware Cost of CU (5 stage pipeline)

Unit Gate Count
base processor 136,829

CRF 48,452
Multiply Unit 46,236

IU 5,122
Shifter 35
Other 15,929

CU total 115,774

Table 4: Hardware Cost of CU (7 stage pipeline)

32

3 Modular Multiplication

3.1 Montgomery Multiplication

The Montgomery multiplication for fast computation of modular multiplica-

tion of big integers is proposed by P.L. Montgomery [22]. The Montgomery

Multiplication algorithm (MM) computes the following:

MM(X, Y,N) = X · Y ·R−1 mod N (1)

where X and Y are the multiplicand and multiplier respectively, N is the

modulus and R is an integer with the property gcd(N,R) = 1. One can

choose any R however if R is chosen as power of 2 (e.g. 2k) then the imple-

mentation of Montgomery multiplication on microprocessors turns out to be

very fast. While calculating

X · Y mod N

requires trial division by N, Montgomery multiplication only needs division

by a power of two, R = 2k, which can be performed by shifting result k times

to right and shift operation is executed very fast in microprocessors and also

comes with a low cost in software and free in hardware.

Prior to performing Montgomery multiplication, all operands need to be

translated to their N-residue representation. N-residue of an integer a is

denoted as

aR = a ·R mod N

33

where R = 2k. The set of {a ·R mod N | 0 ≤ a ≤ n− 1} is a complete

residue system and includes all numbers between [0, p − 1]. The numbers

in the range [0, p − 1] have a one-to-one correspondence with residue set

given above. Montgomery Multiplication employs the property of the residue

system above and computes the N-residue product of two N-residue integers

efficiently. Montgomery Multiplication consists of two steps as described in

Algorithm 2. First multiplication of two residue numbers is calculated and

then product is reduced to its final form. For the reduction step an additional

quantity, N ′, is defined with the following property

R ·R−1 −N ·N ′ = 1

where both N ′ and R−1 can be calculated by using extended Euclidean al-

gorithm.

Algorithm 2 Montgomery Multiplication
1: T = aR · bR
2: U = (T + (T ·N ′ mod R) ·N)/R
3: if U ≥ N then return U −N else return U

The step 2 of Montgomery Multiplication algorithm involves modulo R

and division by R operations. These operations are executed very fast in

microprocessors since division by R = 2k means just shifting result right by

k times and modulo R operation is performed by taking only lower k bits of

product and discarding the rest.

The flow of operations for performing the Montgomery Multiplication

given in Equation 1 are defined as follows

• Conversion of X to N-residue form

34

XR = MM(X,R2, N) = X ·R2 ·R−1 = X ·R mod N

• Conversion of Y to N-residue form

YR = MM(Y,R2, N) = Y ·R2 ·R−1 = Y ·R mod N

• Computation of product in N-residue form

PR = MM(XR, YR, N) = XR.YR.R
−1 mod N

PR = X ·R · Y ·R ·R−1 = X · Y mod N

• Conversion of the product from its N-residue form

P = MM(PR, 1, N) = X.Y.R.1.R−1 = X.Y mod N

To perform one Modular multiplication with Montgomery algorithm, four

multiplications have to be calculated. Also for reduction an extra effort is

made to compute value of N ′. Therefore using Montgomery Multiplication

for single modular multiplication is not feasible. Montgomery Multiplication

become efficient when several modular multiplications have to be performed

as in the case of modular exponentiation. In this case, the N-residue rep-

resentation of intermediate results can be maintained while only conversion

operation is needed during first and last multiplication.

3.1.1 Methods for Montgomery Multiplication

An overview of five different algorithms for Montgomery Multiplication is

provided by Koç et al. [19]. Organization of these algorithms is based on

two facts:

35

• whether multiplication and reduction steps during Montgomery Multi-

plication are separated or integrated,

• form of the multiplication and reduction steps.

In this section we will highlight two of these algorithms: Separated Operand

Scanning (SOS) and Coarsely Integrated Operand Scanning (CIOS). While

all algorithms in [19] require same number of word-level multiplications, the

number of additions, memory read and write operations differ in each. The

CIOS method is the most efficient and fastest method when implemented on

general purpose microprocessors, since it has the least amount of memory

space with s+3 words, where s is the number of words in one operand, and

requires less addition, read and write operations. However, a modified version

of SOS method is implemented for cryptographically-enhanced processor and

the reasons for choosing the SOS method is analyzed in Section 3.1.4.

3.1.2 The Separated Operand Scanning (SOS) Method

The SOS Method (cf. Algorithm 3) consists of two separate steps: multi-

plication and reduction. First multiplication of two integers is performed

and then product is reduced to its final form. Because the outer loop moves

through words of one of the operands during the execution of algorithm, the

method is called as operand scanning [19].

The first part of the algorithm is a school-book multiplication which com-

putes 2s word size product and stores in t where s is the number of words in

the operands. Then value of u is then computed as follows according to the

second step in Algorithm 2

36

u = (t+m · n)/r

where m = t · n′ mod r. First u is taken as u = t, then m · n is added to u

and finally u is divided by r, which is simply shifting u to right or ignoring

lower words of u [19]. The ADD function in the method performs the carry

propagation operation. Since carry can propagate to the last word, one bit

carry may be generated at the end and this carry should be stored. Storing

the final carry increases the size of t by one word and size of t becomes 2s+1

words. Finally value of u is stored in s + 1 words and if the value of u is

greater than the modulus, u is subtracted from modulus and final value of

multiplication is found.

The analysis in [19] demonstrates that during the SOS method, following

number of operations have to be performed

• 2s2 + 2 multiplications

• 4s2 + 4s+ 2 additions

• 6s2 + 7s+ 3 reads

• 2s2 + 6s+ 2 writes

Furthermore, it is noted that the SOS Method requires a total of 2s+2 words

for temporary results. 2s + 1 of these words is used for storing t and one

word is used for storing the value of m.

37

Algorithm 3 Separated Operand Scanning (SOS) Method
Input: a, b, n multi-word integers (w bits in each word),
s: number of words in the operands and modulus
Output: t: multi-word product

1. for i = 0 to s− 1

2. C = 0

3. for j = 0 to s− 1

4. (C, S) = t[i+ j] + a[j] · b[i] + C

5. t[i+ j] = S

6. t[i+ s] = C

7. for i = 0 to s− 1

8. C = 0

9. m = t[i] · n′
[0] mod 2w

10. for j = 0 to s− 1

11. (C, S) = t[i+ j] +m · n[j] + C

12. t[i+ j] = S

13. ADD(t[i+ s], C)

14. for j = 0 to s

15. u[j] = t[j + s]

38

3.1.3 The Coarsely Integrated Operand Scanning (CIOS) Method

CIOS method (cf. Algorithm 4) differs from the SOS method in a way

that the CIOS integrates both multiplication and reduction steps. Instead

of computing entire multiplication, the CIOS method alternates during the

iterations of the outer loops of multiplication and reduction. Integration

of multiplication and reduction is possible since the value of m during the

ith iteration of the outer loop for reduction depends only on the value of

t[i] and this value is already computed by ith iteration of the outer loop for

multiplication [19].

The analysis in [19] reveals the number operations executed while per-

forming modular multiplication with the CIOS method are as follows

• 2s2 + s multiplications

• 4s2 + 4s+ 2 additions

• 6s2 + 7s+ 2 reads

• 2s2 + 5s+ 1 writes

Moreover, it is shown in [19] that the CIOS method reduces memory usage

significantly when compared to the SOS method. The SOS method uses 2s+2

words for storage of temporary results while the CIOS method requires only

s + 3 words where s + 2 words are used to store t and one word is used for

storing m.

39

Algorithm 4 Coarsely Integrated Operand Scanning (CIOS) method
Input: a, b, n multi-word integers (w bits in each word),
s: number of words in the operands and modulus
Output: t: multi-word product

1. for i = 0 to s− 1

2. C = 0

3. for j = 0 to s− 1

4. (C, S) = t[i+ j] + a[j] · b[i] + C

5. t[j] = S

6. (C, S) = t[s] + C

7. t[s] = S

8. t[s+ 1] = C

9. C = 0

10. m = t[i] · n′
[0] mod 2w

11. for j = 0 to s− 1

12. (C, S) = t[i+ j] +m · n[j] + C

13. t[j] = S

14. (C, S) = t[s] + C

15. t[s] = S

16. t[s+ 1] = t[s+ 1] + C

17. for j = 0 to s

18. t[j] = t[j + 1]

40

3.1.4 Enhanced SOS Method

Fastest and most efficient Montgomery multiplication on a general-purpose

processor can be implemented by using the CIOS method according to the

analysis provided in [19]. However, in cryptographically-enhanced processor,

cryptographic operations are executed in the proposed CEU which is differ-

ent than execution units of general purpose computers. The CEU requires

that all operands should be stored in the CRF, therefore a new analysis

should be performed for the CIOS and SOS methods

The SOS method separates the multiplication and reduction operations

and first performs the multiplication and then reduction. For the worst case,

which is performing 1024-bit modular multiplication in RSA, all operands

and the product can fit into the CRF after the multiplication step since the

CRF has a total size of 512 Bytes. For the reduction step modulus and m

value should be stored in the CRF and these values can be written over the

operands since after multiplication step, operands are not used anymore (cf.

Algorithm 3).

However, the CIOS method integrates both multiplication and reduc-

tion step and executes them interleaved. Therefore all operands, product,

modulus and m as well should be stored during the execution of the CIOS

method (cf. Algorithm 4). Storing all these values require 544 Bytes of

space which is larger than the size of CRF. For this reason, a modified ver-

sion of SOS method is implemented for performing modular multiplications

on cryptographically-enhanced processor.

The Enhanced SOS Method is presented in Algorithm 5. In the enhanced

method all multiplications are computed as 128-bit multiplications and the

41

product is stored in HI and LO registers. Therefore for the addition opera-

tions HI and LO registers are used.

Algorithm 5 Enhanced SOS Method
Input: a, b, n multi-word integers (w bits in each word),
s: number of words in the operands and modulus
Output: t: multi-word product

1. for i = 0 to s− 1

2. C = 0

3. for j = 0 to s− 1

4. (C, S) = t[i+ j] + LO + C (a[j] · b[i]→ HI ||LO)

5. t[i+ j] = LO

6. C = HI + Carry

7. t[i+ s] = C

8. for i = 0 to s− 1

9. C = 0

10. m = t[i] · n′
[0] mod 2w

11. for j = 0 to s− 1

12. (C, S) = t[i+ j] + LO + C (m · n[j]→ HI ||LO)

13. t[i+ j] = LO

14. ADD(t[i+ s], C)

15. for j = 0 to s

16. u[j] = t[j + s]

42

3.1.5 Performance Analysis

In this section performance analysis of the CIOS and the SOS method is

provided. Modular Multiplication is heavily performed both in RSA and

elliptic curve cryptography, therefore operand sizes are chosen according to

the security levels of both algorithms. Typical unbreakable and secure RSA

key length is 1024-bits and the same level of security for the elliptic curve

cryptography can be achieved by using 160-bit key length . Therefore, in the

performance analysis operand sizes are chosen starting from 160-bit and up

to 1024-bits.

Performance of the CIOS method is tested on base processor since in [19]

it is suggested that the CIOS method is the most efficient method for hard-

ware implementation and processors. The performance of the SOS method

is tested on cryptographically-enhanced processor to utilize the proposed en-

hancements. Performance of both algorithms in clock cycles and speedup

values for modular multiplication is presented in Table 5 and 6. Table 5 pro-

vides the speedup values for 5 stage pipeline versions of base processor and

cryptographically-enhanced processor and Table 6 provides speedup values

for 7 stage pipeline versions of both processors.

Note that execution time of 160 and 192-bit multiplications in the SOS

method is greater than the execution time of 256-bits. The reason for this

deviation is due to the width of registers in the CRF. Since the CRF has 128-

bit width, after multiplication step in the SOS, 160 and 192-bit multiplication

results have to aligned before reduction which increases the execution time.

43

Precision CIOS SOS Speedup
160 2,765 1,047 2.6
192 3,873 1,196 3.2
256 6,691 931 7.2
512 25,605 2,365 10.8
1024 100,304 7,654 13.1

Table 5: Speedups for Modular Multiplication on 5-stage pipeline version

Precision CIOS SOS Speedup
160 3,032 1,132 2.7
192 3,747 1,282 2.9
256 7,310 1,013 7.2
512 27,856 2,598 10.7
1024 108,493 8,418 12.9

Table 6: Speedups for Modular Multiplication on 7-stage pipeline version

44

4 Modular Inversion

4.1 Modular Inversion in finite GF (p)

Basic modular arithmetic operations such as addition, multiplication and in-

version have significant importance on numerous cryptographic systems. The

RSA algorithm [25], Diffie-Hellman key exchange algorithm [8], US Govern-

ment Digital Signal Standard [23] and Elliptic Curve Cryptography [18, 20]

are some examples in which modular arithmetic operations are heavily per-

formed.

Modular inversion operation is crucial in public key cryptography since

it is used for accelerating the so-called addition-subtraction chains [10, 16]

and computing point operations on an elliptic curve defined over finite field

GF (p)[18, 20] .

In elliptic curve cryptography when affine coordinates are used, inversion

in GF (p) becomes the most time consuming operation. Projective coordi-

nates can be used yet one inversion is still necessary for conversion of the

result to a desired representation. Even a single inversion operation brings a

significant overhead on a general-purpose processor.

Modular inverse of an integer a ε [1, p − 1] in GF (p) is denoted as the

integer x ε [1, p− 1] which has the following property:

a · x = 1 mod p

The most common and one of the best ways to compute modular inverse

in finite fields is the binary extended Euclidean Algorithm[16]. However, for

the hardware implementation, most efficient inversion algorithms are Kaliski

45

[15] and its variation Montgomery Inversion algorithms [26].

4.1.1 Kaliski and Montgomery Inversion Algorithm

The modular inverse of an integer, a, is redefined by Kaliski in his work [15].

Kaliski inversion algorithm computes modular inverse of an integer by using

the principles of the Montgomery arithmetic introduced by [22]. The Kaliski

inverse of the integer (cf. Algorithm 6) is defined in residue domain and

compatible with the Montgomery arithmetic and given as follows:

KaliskiInv(a) = a−12n mod p

where p is a prime number and n is the number of bits in prime p (i.e. n =

dlog2pe) .

Kaliski inversion algorithm consists of two phases. Phase I calculates the

integer r such that

r = a−12k mod p

where n ≤ k ≤ 2n. Phase II is merely a correction step and computes the

integer x which is the inverse of a in the residue domain

x = a−12n mod p

The number of iterations in Phase II is entirely dependent on k, which is

found to be about 1.4n where n is the length of the modulus in bits. The

k value is appropriate according to the analysis performed in [16] for the

number of halving in the binary extended Euclidean algorithm.

46

Montgomery Inversion algorithm [26] is similar to the Kaliski Inversion

algorithm. Phase I steps are exactly the same for two algorithms. The

difference between two algorithms is the output value at the end of Phase II.

Modular inverse of the integer a in the Kaliski inversion is computed as

x = KaliskiInv(a) = a−12n mod p

while in the Montgomery inversion the inverse value of a is computed as

x = MontgomeryInv(a) = a−122n mod p

The Kaliski algorithm is suitable for calculating inverse of a number rep-

resented in integer domain since inverse of an integer a is computed as

x = KaliskiInv(a) = a−12n mod p

However, if the input of the Kaliski inversion algorithm is given in the residue

domain, a2n, then inverse of the number in residue form is computed as

x = KaliskiInv(a2n) = a−1 mod p

which is in the integer domain.

In order to have fast elliptic curve operations, operations are performed

using the Montgomery arithmetic thus numbers should be represented in the

residue domain. If one uses the Kaliski inversion for a number represented in

the residue domain, some extra arithmetic operations are needed to convert

result from integer to the residue domain. Instead, the Montgomery inversion

47

(cf. Algorithm 7) can be used for the numbers represented in residue domain.

In Montgomery Inversion, the inverse of a number in residue domain, a2n, is

represented as

x = MontgomeryInv(a2n) = a−12n mod p

which is also in the residue domain.

Both algorithms can be used interchangeably to compute inverse in residue

domain. Kaliski Inversion can be used to compute inverse of a number repre-

sented in integer domain, while Montgomery Inversion can be employed for

computing inverse of numbers in residue domain.

48

Algorithm 6 Kaliski Inversion Algorithm
Phase I

Input: a ε [p− 1] and prime p

Output: r ε [p− 1] and k, where r = a−12k mod p and n ≤ k ≤ 2n

1. u = p, v = a, r = 0 ,s = 1 and k = 1

2. while (v > 0)

3. if u is even then u = u/2, s = 2s

4. else if v is even then v = v/2, r = r/2

5. else if u > v then u = (u− v)/2, r = r + s, s = 2s

6. else v = (v − u)/2, s = s+ r, r = 2r

7. k = k + 1

8. if r ≥ p then r = r − p mod p

9. return r = p− r and k

Phase II

Input : r ε [1, p− 1], p and k

Output : x ε [1, p− 1], where x = a−12n mod p

1. for i = 0 to k − n

2. if r is even then r = r/2

3. else r = (r + p)/2

4. return x = r

49

Algorithm 7 Montgomery Inversion Algorithm
Phase I

Input: a ε [p− 1] and prime p

Output: r ε [p− 1] and k, where r = a−12k mod p and n ≤ k ≤ 2n

1. u = p, v = a, r = 0 ,s = 1 and k = 1

2. while (v > 0)

3. if u is even then u = u/2, s = 2s

4. else if v is even then v = v/2, r = r/2

5. else if u > v then u = (u− v)/2, r = r + s, s = 2s

6. else v = (v − u)/2, s = s+ r, r = 2r

7. k = k + 1

8. if r ≥ p then r = r − p mod p

9. return r = p− r and k

Phase II

Input : r ε [1, p− 1], p and k

Output : x ε [1, p− 1], where x = a−122n mod p

1. for i = 0 to 2n− k

2. r = 2r

3. if (r ≥ p) then r = r − p

4. return x = r

50

4.1.2 Implementation Details

The most time consuming operations performed during Kaliski and Mont-

gomery inversion are multi-precision addition,subtraction, division and mul-

tiplication by 2 operations, which can also be observed in Algorithm 3 and 4.

The IU inside the CEU is designed to increase the performance of these op-

erations. Addition and subtraction operation is performed by 128-bit adder

circuit. Multiplication and division by 2 are implemented as shift left and

shift right operations on microprocessors. However, shift operations in the

cryptographically-enhanced processor slightly differs from the traditional pro-

cessors. Shift operations are performed on the values loaded from the CRF

and the CRF has two read ports but only one write port. Hence shift oper-

ations are performed as shifting boundary bits (i.e. least or most significant

bits) from one register to another while only one of the registers changes (cf.

Table 2).

4.1.3 Performance Analysis

In this section execution times of Kaliski and Montgomery Inversion algo-

rithms on base processor and cryptographically-enhanced processor are pro-

vided in terms of clock cycles. Cycle times are taken from both 5 and 7 stage

pipeline versions of the processors and presented in the tables below. The first

values in the tables represent the execution time on 5 stage pipeline version

of given processor while second values denote the execution time on 7 stage

pipeline version. Tables 7 and 9 demonstrate the execution time of Mont-

gomery and Kaliski Inversion operation on the base processor respectively.

Execution time for the same algorithms on the cryptographically-enhanced

51

processor are given in Tables 8 and 10. Finally speed-up values for both

Montgomery and Kaliski Inversion operations are given in Tables 11 and 12.

Precision Phase I Phase II Total
160 63,855 / 77,168 14,319 / 16,848 78,174 / 94,016
192 86,300 / 104,400 19,782 / 22,896 106,082 / 127,296
256 140,624 / 170,424 31,783 / 37,515 172,407 / 207,939
512 468,936 / 566,448 110,942 / 131,656 579,878 / 698,104

Table 7: Montgomery Inversion on base processor

Precision Phase I Phase II Total
160 29,153 / 32,012 7,825 / 8,777 36,978 / 40,789
192 34,706 / 38,185 9,158 / 10,300 43,864 / 48,485
256 45,552 / 50,259 11,616 / 13,095 57,168 / 63,354
512 114,447 / 123,942 27,389 / 29,879 141,836 / 153,821

Table 8: Montgomery Inversion on cryptographically-enhanced processor

Precision Phase I Phase II Total
160 63,906 / 77,041 8,504 / 9,832 72,410 / 86,873
192 86,313 / 104,135 11,432 / 13,369 97,745 / 117,504
256 141,075 / 170,311 18,573 / 22,100 159,648 / 192,411
512 473,306 / 570,196 59,594 / 70,340 532,900 / 640,536

Table 9: Kaliski Inversion on base processor

Precision Phase I Phase II Total cycles
160 29,560 / 32,318 3,374 / 3,679 32,934 / 35,997
192 35,103 / 38,463 3,894 / 4,281 38,997 / 42,744
256 45,961 / 50,483 4,779 / 5,089 50,740 / 55,572
512 116,814 / 126,613 11,198 / 11,939 128,012 / 138,552

Table 10: Kaliski Inversion on cryptographically-enhanced processor

52

Precision Phase I Phase II Total
160 2.19 / 2.41 1.83 / 1.92 2.11 / 2.30
192 2.49 / 2.73 2.16 / 2.22 2.42 / 2.63
256 3.09 / 3.39 2.74 / 2.86 3.02 / 3.28
512 4.10 / 4.57 4.05 / 4.41 4.09 / 4.54

Table 11: Montgomery Inversion Speedups

Precision Phase I Phase II Total
160 2.16 / 2.38 2.52 / 2.67 2.20 / 2.41
192 2.46 / 2.71 2.94 / 3.12 2.51 / 2.75
256 3.07 / 3.37 3.89 / 4.34 3.15 / 3.46
512 4.05 / 4.50 5.32 / 5.89 4.16 / 4.62

Table 12: Kaliski Inversion Speedups

53

5 Implementation Details

In this section, we provide the speedup values obtained for both RSA and

elliptic curve cryptography by using the proposed enhancements in Chapters

3 and 4. Also we will demonstrate time × area metric for RSA and elliptic

curve cryptography the cryptographically-enhanced processor synthesized on

Avnet LX200 FPGA board.

We implement a simple 1024-bit RSA using two methods: windowing

method with 4-bit window size and no windowing. On the base processor,

1024-bit RSA with 4-bit windows takes on average 132, 361, 636 clock cycles.

The profile of the operation reveals that 97.48% of execution time is spent

on modular multiplication. Consequently, the speedup obtained by running

same operation on the cryptographically-enhanced processor is 11.26. 1024-

bit RSA with no windowing method takes 156, 812, 860 clock cycles on base

processor, 97.86% of which is spent on modular multiplication according to

the profile information. The speedup for this case is found out to be 11.47.

Similarly, we implemented elliptic curve scalar point multiplication with

jacobian coordinates [6] and the implementation results are given in Table

13.

Precision base processor enhanced processor % of Multiplication Speedup
160 5,684,844 2,695,097 87 2.11
192 9,774,069 3,673,000 90.17 2.66
256 21,509,576 4,412,633 92.49 4.87
512 160,109,439 19,798,812 96.51 8.08

Table 13: Implementation Results for Elliptic Curve Point Multiplication

54

It is a common tendency to think that there is no need to speedup inver-

sion operation due to projective coordinates (e.g. jacobian coordinates) [6].

Projective coordinates eliminate all but one inversion from elliptic curve point

operations at the expense of more multiplications; only inversion operation is

needed for converting from projective coordinates to affine coordinates. We

demonstrate, in this section, that the time spent on one inversion might be

significant especially when the modular multiplication is performed on our en-

hanced processor. Using projective coordinates, one elliptic curve scalar point

multiplication takes approximately 2, 695, 097 clock cycles for 160-bit elliptic

curve on the enhanced processor. Our implementation of Montgomery inver-

sion for 160-bit operands would consume, on the other hand, 76, 692 clock

cycles if the ISA is not utilized. The inversion, therefore, consumes only

about 2.8% of all clock cycles spent on scalar point multiplication including

conversion. This does not call for a strong need to speedup the inversion

operation since any improvement on inversion will marginally speedup the

entire point operation. There are, however, pre-computation techniques that

significantly improve the elliptic curve point operations. For example, with

fixed-base comb method it is possible to perform one scalar point multipli-

cation in expectedly 342, 901 clock cycles on the enhanced processor. This

time, the inversion operation would consume about 22.36% of clock cycles

without the CU ; which is a good motivation for speeding up inversion op-

eration. Consequently, this would be translated into 11.78% speedup in one

point multiplication due to the improvement in inversion calculations.

55

5.1 FPGA Emulation and Time-Area Metrics

Tensilica supports implementation of LX2 cores on both ASIC’s and FPGA

boards. Since ASIC implementation of the cryptographically-enhanced pro-

cessor is costly and time consuming process, the cryptographically-enhanced

processor is synthesized on FPGA boards. Tensilica supports only Avnet

LX60 and Avnet LX200 boards for implementation of LX2 processor cores.

Among two boards, Avnet LX200 board is chosen for the realization of

cryptographically-enhanced processor due to its high flexibility and greater

number of slices.

Implementation of the cryptographically-enhanced processor on Avnet LX200

board is as follows: first configuration of the cryptographically-enhanced pro-

cessor with TIE files attached to processor, which defines the architecture

extensions, are sent to Tensilica Xtensa Processor Generator (XPG) server.

XPG generates and supplies precompiled bitstreams for Avnet LX200 boards.

Prior to sending the cryptographically-enhanced processor to XPG, target

frequency is set to 50 MHz, which is the largest target frequency for Avnet

LX200 boards. Both the base processor and the cryptographically-enhanced

processor is sent to XPG. According to the bitstreams, the frequency of the

base processor is 50.6 MHz while frequency of the cryptographically-enhanced

processor is 50.3 MHz. Furthermore, the base processor occupies 18, 224

slices on Avnet LX200 boards and the cryptographically-enhanced processor

occupies 31, 530 slices on the same FPGA board. These results show that ar-

chitectural enhancements increase the core size without affecting the critical

path delay.

By utilizing the information obtained from the bitstreams of both proces-

56

sors, time×area metric for RSA and elliptic curve scalar point multiplication

is presented in tables below. Table 14 presents the time × area product of

RSA for both no windowing and 4-bit windowing options. The product val-

ues are normalized to the 4-bit windowing implementation of RSA on the

cryptographically-enhanced processor.

Core Operation Area (Slices) Clock Cycles Time × Area
Base RSA (4-bit w.) 18,224 132,361,636 6.50

Enhanced RSA (4-bit w.) 31,530 11,753,299 1.0
Base RSA (no w.) 18,224 156,812,860 7.71

Enhanced RSA (no w.) 31,530 13,642,547 1.16

Table 14: Time× Area product for RSA

Table 15 provides the time × area product values of point multiplica-

tion operations for elliptic curve cryptography (ECC). Note that, the prod-

uct values are normalized to the 160-bit point multiplication operation on

cryptographically-enhanced processor.

Core Operation Area (Slices) Clock Cycles Time × Area
Base 160-bit ECC 18,224 5,684,844 1.22
Base 192-bit ECC 18,224 9,774,069 2.10
Base 256-bit ECC 18,224 21,509,576 4.61
Base 512-bit ECC 18,224 160,109,439 34.34

Enhanced 160-bit ECC 31,530 2,695,097 1.00
Enhanced 192-bit ECC 31,530 3,673,000 1.36
Enhanced 256-bit ECC 31,530 4,412,633 1.64
Enhanced 512-bit ECC 31,530 19,748,196 7.33

Table 15: Time× Area for ECC

Finally, Table 16 presents the performance improvement of RSA and ECC

point multiplication operation.

57

Operation Improvement
RSA (4-bit w.) 6.51
RSA (no w.) 6.64
160-bit ECC 1.22
192-bit ECC 1.54
256-bit ECC 2.82
512-bit ECC 4.69

Table 16: Improvements for RSA and ECC

58

6 An AES Implementation Hardened Against

Cache Attacks

Efficient software implementations of many symmetric key ciphers are vul-

nerable to cache attacks since they usually utilize look up tables for nonlinear

function (s-box) calculations, where these look up tables generally fit in the

first or second-level caches of the modern processors. The most efficient AES

implementation in software is due to Barreto [4] where four 1 KB tables are

used for the first nine round of 128-bit AES. Another table of the same size

(can actually be made smaller, i.e. 256 B) is used in the last round. Many

cache-based attacks [1, 2, 7] exploit access patterns of cryptographic process

to cache lines, which may contain the desired data value (cache hit), or not

(cache miss). Considering the fact that a cache miss introduces a significant

(and observable) delay to the computation due to the fact that cache mem-

ory is much faster than the main memory, the discrepancies in the execution

time of different runs of AES leak information on the secret (or round) keys.

For a formal model of cache attacks, one can profitably refer to [5, 24].

Most powerful attacks focus either on the first round of AES as in [24] and

on the last round as in [1] since these rounds directly interact with outside

world by taking the plaintext and outputting the ciphertext, both of which

are easily observable by an adversary. Therefore, it is of utmost importance

to protect the first and last rounds. Implementing even one round without

using any look up tables (in order not to leave any trace in the cache) can

be painfully slow in software due to involved bit manipulation operations.

A fast AES implementation secure against cache attacks may have to use a

59

combination of the techniques proposed in [5, 24]. Our proposed architecture

can be beneficial in applying these protection mechanisms. For example, the

aforementioned CRF can be used to store a part of the s-box since its limited

size does not lend itself to accommodate all look up tables, which are 5 KB

in total size. 256 bytes of the CRF can only hold up precomputed values for

byte substitution layer of one AES round. Since lookups in this table result

in accesses to the register file, which returns the requested byte in constant

time, there will be no timing differences. Furthermore, the fact that the CRF

is not time shared (at least while cryptographic process has locked it), other

(possibly spy) processes cannot observe the trace left by the cryptographic

process.

A small look up table, specifically placed for AES implementation and

organized for a fast access enables that any round of the AES can be securely

implemented without any significant overhead in timing when compared to

the implementation in [4]. However, our design principle is to recycle versatile

cryptographic units to benefit various cryptographic operations. Since the

timing requirements for public key algorithms is more demanding, we elect

to organize the CRF as one-dimensional array of 32 elements of 128 bit each.

The drawback of this approach is some overhead in accessing the desired

bytes in the register file. One can, all the same, always arrange the CRF as

byte array if symmetric cipher performance is more important.

We modified the implementation in [4] by replacing the rounds with their

secure counterparts, and listed the overhead (in number of clock cycles)

roundwise in Table 17 for a single block encryption of 128 bits.

60

[4] 1st last 1st + last per round
796 171(21.5%) 33(4.5%) 199(25%) 178(≈ 22.4%)

Table 17: Overhead of protecting rounds of AES in number of clock cycles

To give an idea as to how expensive is to protect even one round of AES,

we also implemented an AES version without any look up table in software

optimized for speed; the resulting overhead of protecting only the first round

of AES turns out to be 36, 125 clock cycles.

As explained in [5] for standard implementation, a small table can be used

to protect the rounds of AES. We also implemented the standard method for

different rounds and found out that protecting one round brings about the

overhead of approximately 29%, which is higher than our . Consequently, the

standard implementation whose all rounds are protected takes about 2654

clock cycles, while our fully-protected implementation on the enhanced core

takes about 2, 246. This translates into 16% improvement over the standard

implementation. Note that the standard implementation may be still vulner-

able to synchronized attacks through a spy process that can evict cache lines

during the AES computation. On the other hand, our AES implementation

provides perfect security against cache attacks and costs almost no overhead

in hardware since we utilize the cryptographic unit which is already included

for public key operations.

The case study of AES confirms our claim as to the necessity of a cryp-

tographic register file that can be used for multiple purposes, e.g. speeding

up the cryptographic operations, storing sensitive key elements, and secure

implementation of non-linear functions (s-boxes).

61

7 Conclusion and Future Work

We designed and implemented a cryptographic unit (CU), for secure and fast

execution of a wide range of cryptographic algorithms. The proposed CU

introduces new functional units and instructions for performing faster multi-

precision arithmetic operations on finite fields. To show the design’s efficiency

and applicability, we integrated the proposed CU into the execution pipeline

of a low cost, configurable and extensible embedded processor core. We ob-

tained considerable speedups for basic multi-precision arithmetic operations

such as modular multiplication and inversion in GF (p) finite field, which

are the dominant operations in many public key cryptosystems. Impact of

the speedups are demonstrated for scalar point multiplication operation of

elliptic curve cryptography and RSA. Up to 8 and 10 times of performance

improvements are achieved respectively for these public key cryptosystems.

We synthesized the extended processor core on a specific FPGA board

to observe hardware cost of the CU. Synthesis results reveal a conservative

hardware cost for the CU. However, additional hardware does not result a

significant increase in critical path delay. Time× area product of RSA and

elliptic curve cryptography shows a performance enhancement up to 6 and 4

times respectively. A comparison of the obtained speedup values and incurred

hardware overhead clearly confirms that the benefits of the CU far exceed

its cost. Furthermore, we showed that CU can be used to harden software

implementations of symmetric-key ciphers with low overhead against certain

side-channel attacks (i.e. cache attacks).

We leave the actual implementation of the enhanced embedded proces-

sor on ASIC’s as a future work. Higher frequency values can be achieved

62

on ASIC implementations. Throughout the design process of CU, all the

enhancements introduced are designed in such a way that they do not have

significantly adverse effect on the critical path of the base processor. For

instance, the critical path of a 128-bit multiplier consists of four 32-bit mul-

tipliers that work in parallel to each other. We applied the same approach

for the other functional units in the CU. There will be, however, definitely an

associated penalty in the maximum applicable frequency in ASIC implemen-

tation due to the increase in the total chip area. Limited reduction in clock

frequency would not be a major problem for embedded applications where

relatively low clock frequencies are adopted. Exploring the (possibly nega-

tive) effect of the CU on the maximum applicable frequency and optimizing

the functional units to minimize this effect is left as a future work.

63

References

[1] Onur Aciiçmez and Çetin Kaya Koç. Trace-Driven Cache Attacks on

AES (short paper). In Peng Ning, Sihan Qing, and Ninghui Li, editors,

ICICS, volume 4307 of Lecture Notes in Computer Science, pages 112–

121. Springer Verlag, Berlin, Germany, 2006.

[2] Onur Aciiçmez, Werner Schindler, and Çetin Kaya Koç. Cache-Based

Remote Timing Attacks on the AES. In MAsayuki Abe, editor, CT-

RSA, volume 4377 of Lecture Notes in Computer Science, pages 271–286.

Springer Verlag, Berlin, Germany, 2007.

[3] ARC. Arc configurable cores. Website. http://www.arc.com/

configurablecores.

[4] P. Barreto. The AES Block Cipher in C++. Website, 2003. http:

//planeta.terra.com.br/informatica/.

[5] Johannes Blömer and Volker Krummel. Analysis of Countermeasures

Against Access Driven Cache Attacks on AES. In Selected Areas in

Cryptography, pages 96–109, 2007.

[6] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve

exponentiation using mixed coordinates. In ASIACRYPT ’98: Proceed-

ings of the International Conference on the Theory and Applications of

Cryptology and Information Security, pages 51–65, London, UK, 1998.

Springer-Verlag.

64

http://www.arc.com/configurablecores
http://www.arc.com/configurablecores
http://planeta.terra.com.br/informatica/
http://planeta.terra.com.br/informatica/

[7] D. Bernstein. Cache-Timing Attacks on AES. Website, 2005. http:

//cr.yp.to/papers.html#cachetiming.

[8] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.

ieee Transactions on Information Theory, IT–22(6):644—654, 1976.

[9] Nikil Dutt and Kiyoung Choi. Configurable processors for embedded

computing. Computer, 36(1):120–123, 2003.

[10] Omer Egecioglu and Cetin Kaya Koc. Exponentiation using canonical

recoding. Theoretical Computer Science, 129(2):407–417, 1994.

[11] A. Murat Fiskiran and Ruby B. Lee. On-Chip Lookup Tables for Fast

Symmetric-Key Encryption. In ASAP, pages 356–363, 2005.

[12] Johann Großschädl and Erkay Savas. Instruction Set Extensions for

Fast Arithmetic in Finite Fields GF(p) and GF(2m). In CHES, pages

133–147, 2004.

[13] Johann Großschädl, Stefan Tillich, and Alexander Szekely. Perfor-

mance Evaluation of Instruction Set Extensions for Long Integer Mod-

ular Arithmetic on a SPARC V8 Processor. In DSD, pages 680–689,

2007.

[14] Improv. Improv configurable dsp. Website. http://www.improvsys.

com.

[15] Burton S. Kaliski. The montgomery inverse and its applications. IEEE

Trans. Comput., 44(8):1064–1065, 1995.

65

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://www.improvsys.com
http://www.improvsys.com

[16] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art

of Computer Programming. Addison-Wesley, Reading, Massachusetts,

second edition, 10 January 1981.

[17] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,

48:203–209, 1987.

[18] N. Koblitz. Elliptic curve cryptosystems. Math. Computing, 48:203–209,

1987.

[19] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing

Montgomery multiplication algorithms. IEEE Micro, 16(3):26–33, June

1996.

[20] Alfred J. Menezes. Elliptic Curve Public Key Cryptosystems.

Boston:Kluwer Academic Publishers, 1993.

[21] V.S. Miller. Use of elliptic curves in cryptography. In Advances in

Cryptology — Crypto ’85, pages 417–426, New York, 1986. Springer-

Verlag.

[22] P. L. Montgomery. Modular multiplication without trial division. Math.

Computation, 44(170):519–521, April 1985.

[23] National Institute of Standards and Technology. Digital signature stan-

dard (dss). Federal information processing standards publication 186-2,

2000.

[24] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and

Countermeasures: The Case of AES. In CT-RSA, pages 1–20, 2006.

66

[25] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM, 21(2):120–

126, February 1978.

[26] E. Savas and Ç. K. Koç. The montgomery modular inverse-revisited.

IEEE Trans. Comput., 49(7):763–766, 2000.

[27] Tensilica. Tensilica:configurable and standard processor cores for soc

design. Website. http://www.tensilica.com/.

[28] Tensilica. The xtensa lx2 architecture. Website. http://www.

tensilica.com/products/lx_architecture.htm.

[29] Tensilica. Xtensa lx2 embedded processor core. Website. http://www.

tensilica.com/products/xtensa_LX.htm.

[30] Stefan Tillich and Johann Großschädl. Instruction Set Extensions for

Efficient AES Implementation on 32-bit Processors. In CHES, pages

270–284, 2006.

[31] Tobias Vejda, Dan Page, and Johann Großschädl. Instruction Set Ex-

tensions for Pairing-Based Cryptography. In Pairing, pages 208–224,

2007.

67

http://www.tensilica.com/
http://www.tensilica.com/products/lx_architecture.htm
http://www.tensilica.com/products/lx_architecture.htm
http://www.tensilica.com/products/xtensa_LX.htm
http://www.tensilica.com/products/xtensa_LX.htm

	Introduction
	Introduction
	Background Information
	Public Key Cryptography
	RSA
	Elliptic Curve Cryptography (ECC)

	Previous Works and Motivation
	Contribution
	Organization of the Thesis

	General Architecture
	Configurable Processors
	Tensilica Xtensa Processor Cores
	LX2 Cores

	Generating Custom cryptographically-enhanced processor
	Base Processor
	Building cryptographically-enhanced processor
	Cryptographic Register File (CRF)
	Cryptographic Execution Unit (CEU)
	Integer Unit
	Multiply Unit

	128-bit Multiplication Implementation Details
	Computing Partial Products
	Alignment and Addition of Partial Products

	Proposed Instructions
	Total Hardware Cost

	Modular Multiplication
	Montgomery Multiplication
	Methods for Montgomery Multiplication
	The Separated Operand Scanning (SOS) Method
	The Coarsely Integrated Operand Scanning (CIOS) Method
	Enhanced SOS Method
	Performance Analysis

	Modular Inversion
	Modular Inversion in finite GF(p)
	Kaliski and Montgomery Inversion Algorithm
	Implementation Details
	Performance Analysis

	Implementation Details
	FPGA Emulation and Time-Area Metrics

	An AES Implementation Hardened Against Cache Attacks
	Conclusion and Future Work

