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Abstract

Modeling and classifying 3D microstructures are important steps in precise micro-

manipulation. This thesis explores some of the visual reconstruction and classifi-

cation algorithms for 3D microstructures used in micromanipulation. Mechanical

characterization of microstructures has also been considered. In particular, visual

reconstruction algorithm (shape from focus - SFF) uses 2D image sequence of a

microscopic object captured at different focusing levels to create a 3D range image.

Then, the visual classification algorithm takes the range image as an input and

applies a curvature-based segmentation method, HK segmentation, which is based

on differential geometry. The object is segmented into surface patches according to

the curvature of its surface. It is shown that the visual reconstruction algorithm

works successfully for synthetic and real image data. The range images are used to

classify the surfaces of the micro objects according to their curvatures in the HK

segmentation algorithm. Also, a mechanical property characterization technique for

cell and embryo is presented. A zebrafish embryo chorion is mechanically character-

ized using cell boundary deformation. Elastic modulus and developmental stage of

the embryo are obtained successfully using visual information. In addition to these,

calibrated image based visual servoing algorithm is experimentally evaluated for

various tasks in micro domain. Experimental results on optical system calibration

and image-based visual servoing in micropositioning and trajectory following tasks

are presented.



MİKROSKOPİK YAPILARIN 3B REKONSTRÜKSİYONU,

SINIFLANDIRILMASI VE MEKANİK NİTELENDİRİLMESİ

Muhammet Ali HOCAOĞLU

Mekatronik Mühendisliǧi, Yüksek Lisans Tezi, 2008

Tez Danışmanı: Doç. Dr. Mustafa ÜNEL

Anahtar Kelimeler: Görsel geri beslemeli kontrol, rekonstrüksiyon, sınıflandırma,

nitelendirme, mikrosistemler

Özet

3B mikroskopik yapıların modellenmesi ve sınıflandırılması hassas mikromanipülas-

yonda önemli aşamalardır. Bu çalışmada, bazı görsel rekonstrüksiyon ve sınıflandır-

ma algoritmaları, mikromanipülasyonda kullanılan 3B mikroskopik yapılar üzerinde

deǧerlendirilmiştir. Ayrıca mikroskopik yapıların mekanik nitelendirilmesi de ele

alınmıştır. Özellikle, görsel rekonstrüksiyon algoritması (Odak bilgisi üzerinden

şekil - SFF) 3B uzaklık imgesi elde etmek için bir mikroskopik nesnenin farklı

odaklama seviyelerinde yakalanarak elde edilen 2B imge dizisini kullanır. Sonra,

görsel sınıflandırma algoritması giriş olarak uzaklık imgesini alır ve türevsel ge-

ometriye dayalı olan eǧrilik tabanlı bölütleme metodunu, HK bölütlemesi, kul-

lanır. Nesne, yüzeyinin eǧriliǧine göre yüzey yamalarına bölütlenir. Görsel rekon-

strüksiyon algoritmasının yapay ve gerçek imge verisi üzerinde başarılı bir şekilde

çalıştıǧı gösterilmiştir. Uzaklık imgeleri mikroskopik nesnelerin yüzeylerinin eǧrilik-

lerine göre HK bölütleme algoritması ile sınıflandırılmalarında kullanılmıştır. Ayrıca

hücre ve embriyo için bir mekanik özellik nitelendirme tekniǧi sunulmuştur. Bir ze-

bra balıǧının embriyo koryonu hücre sınırı deformasyonu kullanılarak mekanik olarak

nitelendirilmiştir. Embriyonun elastik modülü ve gelişimsel evresi, görsel bilgi kul-

lanarak başarılı bir şekilde elde edilmiştir. Bunlara ek olarak, kalibre edilmiş imge

tabanlı görsel geri beslemeli kontrol algoritmalarının performansı, mikro ölçekteki

çeşitli uygulamalarda deneysel olarak deǧerlendirilmiştir. Optik sistem kalibrasyonu

ve imge tabanlı görsel geri beslemeli kontrolün mikro konumlandırma ve yörünge

takibi uygulamalarında kullanılması ile ilgili deneysel sonuçlar sunulmuştur.
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Chapter 1

Introduction

There is a trend of miniaturization in mass-produced products like sensors, actua-

tors, disk drives and displays [1]. Some of these products are fabricated using very

large scale integrated circuit (VLSI) production techniques. However, due to the fact

that these devices are mostly composed of integrated circuits (IC) and micro electro

mechanical systems (MEMS), which includes microscopic parts, it is not possible to

employ industrial robots which have a precision of 100µm at most. For now, there

is not any solution for mass production of products including microscopic electrical

and mechanical components and the production is mostly done manually under a

microscope. In addition to these, mechanics of object interactions at micro scale is

very different. Gravitational forces become ineffective and adhesive forces start to

dominate.

The use of visual feedback in micromanipulation of such components can be a so-

lution for the production of micro scale devices. In the control of micromanipulators,

like microrobots or micro translational stages, instead of using conventional sensors

like motor encoders, computer vision information can be employed. Vision-based

control of micromanipulation enables us to disregard adhesive forces generated due

to scaling since the manipulation environment is observed by an optical microscope

plus camera system and the errors generated by such forces can be easily detected.

In addition to use of visual data in control, it can also be employed in visual

reconstruction of manipulation environment and microscopic objects. Due to the

low depth of field problem in microscopes, it is not possible to observe all sections

of an object. Some parts of the object are not in focus and the images of such

parts are not sharp, which creates a loss of visual information. So, employing 3D
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reconstruction techniques on microscopic object images will ensure more precise

micromanipulation.

It is important to extract meaningful models from visual data and classify the

objects in the micromanipulation environment. In order to achieve this goal, an

image segmentation technique has to be employed. Since 3D image data would be

segmented using a classification algorithm specific to range images, typical 2D image

segmentation techniques do not work for that case. A curvature-based segmentation

technique based on differential geometry can be used to discriminate the objects

from each other. This segmentation is very important for object recognition at

micro scale.

Another application area of computer vision is biomicromanipulation. A proper

microinjection and cell diagnosis necessitates mechanical characterization of cells/

embryos. However, for the cells it is not possible to apply characterization techniques

used for macro scale objects. Visual data combined with force sensor measurement

can be employed to mechanically characterize the cells. The characterization result

can also be used to diagnose the cells and learn whether they are infected or not.

1.1 Contribution of the Thesis

In this thesis visual information is employed in micromanipulator control, visual

reconstruction and classification of microscopic objects, and characterization of cells.

Calibrated image based visual servoing algorithm is evaluated in micropositioning

and trajectory following tasks. Microscopic objects are reconstructed using focus

information and their range images are obtained. Resulting range images are used

in a curvature-based segmentation (HK segmentation) algorithm to recognize the

objects. In addition to these, mechanical property characterization of biological

cells/tissues such as an embryo is outlined.

1.2 Organization of the Thesis

The remaining parts of the thesis are organized as follows: Chapter 2 summarizes

characteristics of microsystems, visual servoing techniques and optical system cali-

bration. Chapter 3 presents visual reconstruction and classification methods. Chap-

2



ter 4 introduces mechanical property characterization of an embryo using biomem-

brane point load model. Chapter 5 presents experimental results performed on a

microassembly workstation and discussions. Chapter 6 concludes the thesis with

some remarks and proposes some future works.

3



Chapter 2

Microsystems and Vision

Micromanipulation differs from object manipulation in macro world due to the high

precision requirements and mechanics of micromanipulation. The problems caused

by characteristics of micro world can be resolved by utilizing real-time visual feed-

back. In this chapter, characteristics of micromanipulation is examined and image

based calibrated visual servoing approach is employed to compensate uncertainties

in microsystems.

2.1 Characteristics of Microsystems

Micromanipulation lies between macro-scale manipulation and nano-manipulation

[1], as illustrated in Fig. 2.1. Currently, there is not a generalized solution for

automatic micromanipulation/assembly due to the specific problems related to micro

world. One of the major differences between macro and micro manipulation is the

Figure 2.1: Scale of Micromanipulation

required positional accuracy for the manipulators. Although a precision of a few

hundred microns is typical for a robotic manipulator in the macro domain, for the
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applications in the micro domain, submicron precision is required and this degree

of precision is beyond the capability of the assembly devices used in the industry

due to the fact that precise calibration of these devices is necessary to achieve high

accuracy. According to Nelson et al. [2] precise calibration of these devices is highly

dependent on precisely modeled kinematics which are subject to thermal growth

errors and these errors are typically the most difficult to control and compensate in

precision machine design as Slocum [3] mentioned.

In addition to the different precision requirements, the mechanics of object inter-

actions is different for macro and micro assembly. In macro world, the mechanics of

manipulation are predictable to a degree since the forces due to gravity are dominant.

However, in the micro world, due to the scaling effects, forces that are not significant

in the macro world become dominant [4], [5]. For example, when the parts to be

handled are less than one millimeter in size, adhesive forces between gripper and

object can be significant compared to gravitational forces. These adhesive forces,

caused primarily from surface tension, van der Waals forces and electrostatic at-

tractions, can be a fundamental limitation to part handling as shown in Fig. 2.2.

Surface tension arises from interaction of layers of absorbed moisture on two sur-

faces. Van der Waals forces are caused by instantaneous polarization of atoms and

molecules due to quantum mechanical effects. Electrostatic attractions are due to

charge generation or charge transfer during contact [1].

As described in [6], in micromanipulation, electrostatic forces can dominate and

cause a part to jump into a microgripper before contact actually occurs. When the

microgripper opens to place the micropart at its goal, the part may stick to the

microgripper fingers due to van der Waals and/or electrostatic forces. If humidity

in the room happens to be high, surface tension effects can dominate gravitational

forces, and the part would remain stuck to the gripper. Since, it is hard to model

and estimate micro-scale forces and precise calibration of robotic manipulators is

highly dependent on precisely modeled kinematics which are subject to thermal

growth errors, real-time visual feedback can be used effectively and economically as

a component of a micromanipulation system.

Employing visual feedback effectively in the control loop of a micromanipulation

process presents challenges quite different from those presented in macro scale. First

5



Figure 2.2: Sticking Effects in Micromanipulation

6



difficulty in the micro world is the optical system calibration which is a vital step

for visual servoing applications because the parameters of the optical system are

used in image based visual servoing for image Jacobian computation. Since optical

microscope calibration has its unique characteristics, it introduces challenges that

are different from conventional camera calibration. Another important problem is

visual tracking since the objects generally do not have simple local features such as

line segments, edges or contours in the micro world and a micromanipulator moving

in an unknown environment can be tracked by a template-based tracking algorithm.

These solutions were employed in the application of image based visual servoing in

micromanipulation as done in [10], [11].

2.2 Visual Servoing

Using visual feedback to control a robotic manipulator is termed as visual servoing

[7]. Image features like points, lines or regions are used to enable the alignment

of a manipulator with an object. Use of visual servoing increases flexibility in the

manipulation.

Closed-loop control of a robotic manipulator is composed of feature extraction

from tracking and use of these features to control the manipulator. The manipulator

can be controlled using either two dimensional or three dimensional image features.

Image-based visual servoing (IBVS) employs 2D image measurements to estimate

the desired movement of the robot. Tasks like tracking and positioning are achieved

by reducing the image distance error between current image features and desired

image features. On the other hand, position-based visual servoing (PBVS) employs

3D information about a scene where camera calibration information is used to obtain

position and orientation of an object with respect to camera coordinate system.

Positioning and tracking is defined in terms of 3D coordinates [8]. Real-time 3D

reconstruction of the scene is very challenging in micromanipulation due to the fact

that microscopes have low depth-of-field, which causes only some parts of the scene

to be in focus. In addition to that in most cases there is not a 3D model of the

microscopic object to be used in pose estimation. So, IBVS employing dynamic

look and move structure, shown schematically in Fig. 2.3, is preferred to control

the manipulators. In this structure, input to control law is obtained using vision

7



information, then the output of control law is used by robot controller which employs

joint feedback to internally stabilize the robot.

Figure 2.3: Image-Based Visual Servoing Scheme

In image based visual servoing, for a case of moving target and a constant desired

feature value f ∗ [9], error is defined in the following way,

e = f − f ∗ (2.1)

where f is a vector of image features related to the moving target. The time variation

of the error can be given as:

ė = ḟ = Jṙ +
∂e

∂t
(2.2)

where J is the image Jacobian matrix which is a function of the visual features and

intrinsic/extrinsic parameters of the visual sensor, ṙ is a velocity screw in the task

space, and ∂e
∂t

is the time variation of e due to the unknown target motion. In order

to ensure exponential decrease of e (ė = −λe), control law can be designed using

(2.2) as follows:

ṙ = −λĴ+e− Ĵ+
∂̂e

∂t
(2.3)

where ∂̂e
∂t

is an approximation of ∂e
∂t

and Ĵ+ is an estimate of pseudo-inverse of

Jacobian matrix. The term ∂̂e
∂t

is introduced to compensate for target motion. In

light of (2.3), (2.2) can be modified as follows:

ė = −λJĴ+e− JĴ+
∂̂e

∂t
+

∂e

∂t
(2.4)

If JĴ+ > 0 and estimation ∂̂e
∂t

is sufficiently accurate, error will converge to zero.
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In IBVS, Jacobian matrix can be computed analytically via calibrating the op-

tical system.

2.2.1 Calibration of the Optical System

In the calibration procedure, the intrinsic optical system parameters, which are

tube length of the microscope (Top), objective focal length (f), radial distortion (κ),

distance of the object plane to the front focal plane (d), and the extrinsic optical

system parameters, which are rotation (R) and translation (T ) of world coordinate

frame to objective coordinate frame must be computed.

Several calibration methods exist in the literature that are mostly used in macro

scale vision applications [12]- [14]. However, these methods cannot be utilized with-

out modifications in the calibration of an optical microscope due to its unique char-

acteristics. High-resolution microscope optics means large numerical apertures and

high optical magnifications, thus a very small depth-of-field. The position of mi-

cromanipulator and the geometry of micro object can lead to several focal planes

in the limited depth of field. Therefore, only a calibration pattern which is parallel

to the image plane of the objective could be used. Due to the fact that calibration

algorithm proposed in [12] requires the calibration pattern to be tilted at least 30◦

according to the image plane and the calibration techique in [13] needs at least three

images of the calibration pattern at different orientations that requires rotation in x

and y axis, these methods can not be proposed as a direct solution to the calibration

of the optical system. The camera calibration for a near parallel case is proposed

in [15] under the assumption of small rotations of the camera about x and y axes,

rotation angles around these axes, which are γ and β respectively, were linearized to

simplify the extraction of the extrinsic parameters by the small angle approximation.

However, this model cannot give accurate rotation angles and needs pre-calibration

of the focal length which is not possible for the optical system. The calibration of

an optical microscope has been carried out by Zhou and Nelson based on a Tsai’s

model and specially modified for the parallel case [16].

Zhou and Nelson’s calibration method was validated on (optical microscope +

camera) system. The importance of the calibration is that the intrinsic parameters

are used in the image Jacobian matrix and thus it is vital for image based visual

9



servoing.

A. Parametric Model for an Optical Microscope

Perspective projection of a world point on calibration pattern plane onto the virtual

image plane is presented in Fig. 2.4. There are three coordinate system assignments

which are objective coordinate system Co, image coordinate system Ci, and world

coordinate system Cw. Since calibration pattern plane is parallel to the image plane,

it is assumed that Zw = 0 for all points on the pattern. Extrinsic parameters of

virtual image
      plane

calibration pattern
         plane

objective optical
  center plane

             C
o

         (X,Y,Z)

        C
w

(Xw,Yw,Zw)

T
z

d

T
op

        C
r

     (x,y,z)

        C
i

      (u,v)

O

f

Figure 2.4: Parametric Microscope Model

calibration are transformation T and rotation R from world coordinate system to

objective coordinate system which are given as




X

Y

Z


 =




r11 r12 r13

r21 r22 r23

r31 r32 r33







Xw

Yw

Zw


 +




Tx

Ty

Tz


 (2.5)

where R is a function of the three Euler angles α, β, γ:

R =




cosαcosβ cosαsinβsinγ − sinαcosγ cosαsinβcosγ + sinαsinγ

sinαcosβ sinαsinβsinγ + cosαcosγ sinαsinβcosγ − cosαsinγ

−sinβ cosβsinγ cosβcosγ


 (2.6)
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Rotation matrix is obtained by three successive rotations, which are γ degrees

around x axis, β degrees around y axis, and α degrees around z axis,

R = Rz,αRy,βRx,γ (2.7)

Since the calibration pattern plane is nearly parallel with the image plane, it is

assumed that Tz ≈ f + d and T is reformulated as:

T =




Tx

Ty

f + d


 (2.8)

As a result of the perspective projection, the undistorted image coordinates (u′,v′)

of the pattern are obtained as:

u′ = (Top + f)
X

Z

v′ = (Top + f)
Y

Z
(2.9)

Due to the fact that the microscope lenses are manufactured precisely, only first

radial distortion coefficient κ is considered:

u′ = u(1 + κr2)

v′ = v(1 + κr2) (2.10)

where r =
√

u2 + v2, and (u, v) are distorted image coordinates.

Using (2.5)-(2.10), the relation between world coordinates and image coordinates

is obtained as

u(1 + κr2) = (Top + f)
r11Xw + r12Yw + Tx

r31Xw + r32Yw + f + d

v(1 + κr2) = (Top + f)
r21Xw + r22Yw + Ty

r31Xw + r32Yw + f + d
(2.11)

The magnification of the optical system is given as

M =
Top

f
=

Top + f

f + d
(2.12)

Intrinsic and extrinsic parameters of the optical system are calculated using (2.11)-

(2.12).
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B. Algorithm for Optical System Calibration

Calibration algorithm in [16] is used to calibrate the optical system. The algoritm is

composed of two steps. In the first step extrinsic parameters are obtained through

a closed-form solution. Then, in the second step intrinsic parameters are calculated

using nonlinear minimization.

Radial Alignment Constraint(RAC) introduced by Tsai [12] is employed in the

first step to evaluate the rotation angles (α, β, γ) and Tx and Ty components of the

translation vector, T . According to RAC, the vector extending from the origin in

the image plane to the image point radially aligned with the vector extending from

the optical axis to the object point. This constraint can be formulated as

(u, v)× (X,Y ) = uY − vX = 0 (2.13)

In light of (2.5), (2.13) becomes,

u(r21Xw + r22Yw + Ty) = v(r11Xw + r12Yw + Tx) (2.14)

(2.14) can be transformed into a linear form as

u =
[

uXw vYw v −uXw vYw

]




Ty−1r11

Ty−1r12

Ty−1Tx

Ty−1r21

Ty−1r22




(2.15)

A solution for (2.15) can be found using singular value decomposition (SVD). After

applying some algebraic manipulations on the solution as done in [12], the extrinsic

parameters, excluding Tz, can be estimated.

In the second step of the calibration, first, an initial value is estimated for f and

Tz. (2.11) is reformulated using the assumption that calibration pattern is parallel

to the image plane as

u(1 + κr2) = (Top + f)
r11Xw + r12Yw + Tx

f + d

v(1 + κr2) = (Top + f)
r21Xw + r22Yw + Ty

f + d
(2.16)

Let

p = r11Xw + r12Yw + Tx
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q = r21Xw + r22Yw + Ty (2.17)

Combining (2.12), (2.16) and (2.17), a relation between image points and intrinsic

parameters can be obtained as

Top

f
(p + q)− κ(u + v)r2 = u + v (2.18)

(2.18) can be formulated as a linear system as

u + v =
[

p + q κ(u + v)r2

]



Top

f

κ


 (2.19)

Using sufficient number of calibration points, a solution for unknowns Top

f
and κ can

be estimated using SVD. Since microscope objectives are precisely manufactured, f

value given by manufacturer can be used as an initial estimate. Using that estimate

Top can be evaluated. Reformulating (2.12) as

d =
f 2

Top

(2.20)

d can be calculated. Using the initial estimates for f , Top, κ, and d in a nonlinear

optimization, final values of intrinsic parameters can be obtained.

2.2.2 Derivation of the Image Jacobian

Let (X,Y, Z) denote the objective frame coordinates of an observed feature point P .

Locating the image coordinate frame at the center of the CCD array and assuming

weak perspective projection, the undistorted image coordinates (x′s, y
′
s) in objective

frame are given as

x′s = MX, y′s = MY, (2.21)

where M = Top+f

f+d
is the total magnification of the optical system.

Since the lens radial distortion parameter (κ) is very small, the distorted image

coordinates (xs, ys) in pixels can be written as

xs ≈ x′s =
M

sx

X, ys ≈ y′s =
M

sy

Y (2.22)

where sx and sy are the effective pixel sizes.

The optical flow equations can be obtained by differentiating (2.22) with respect

to time

ẋs =
M

sx

Ẋ, ẏs =
M

sy

Ẏ (2.23)
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Assume that the point P is rigidly attached to the end effector of the manipulator

and moves with an angular velocity Ω = (ωx, ωy, ωz) and a translational velocity

V = (Vx, Vy, Vz). The motion in the objective frame is given by




Ẋ

Ẏ

Ż


 =




Vx

Vy

Vz


 +




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0







X

Y

Z


 (2.24)

Substituting (2.24) into (2.23) and using (2.22) implies


 ẋs

ẏs


 =




M
sx

0 0 0 M
sx

Z − sy

sx
ys

0 M
sy

0 −M
sy

Z 0 sx

sy
xs




︸ ︷︷ ︸
, J




Vx

Vy

Vz

ωx

ωy

ωz




(2.25)

where J is the Jacobian for a point feature.

2.2.3 Visual Controller Synthesis

Assuming ∂e
∂t

= 0 since the object position information is estimated from feature

tracking, (2.2) can be written in discrete time as

f(k + 1) = f(k) + TJ(k)u(k) (2.26)

where f ∈ R2N is the vector of image features being tracked, N is the number of

the features, T is the sampling time of the vision sensor, and u(k) is the velocity

vector of the end effector.

The aim of the visual servoing tasks in the experiments is to locate the end

effector to a constant or time varying desired target f ∗(k) by controlling its velocity.

A cost function as in [11] is introduced to penalize the pixelized position errors and

the control energy as

E(k + 1) = (f(k + 1)− f ∗(k + 1))T Q(f(k + 1)− f ∗(k + 1))

+uT (k)Lu(k) (2.27)
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The resulting optimal control input u(k) can be derived as

u(k) = −(TJT (k)QTJ(k) + L)−1TJT (k)Q(f(k)− f∗(k + 1)) (2.28)

The weighting matrices Q and L can be adjusted to ensure desired response.
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Chapter 3

Visual Reconstruction and Classification

Precise micromanipulation requires 3D shape and surface structure of the manipu-

lated object. Conventional 3D reconstruction techniques like structured light, binoc-

ular stereo and shape from shading do not give proper results for microscopic ob-

jects. In order to have a precise reconstruction in the micro domain, shape from

focus (SFF) algorithm is proposed in [20] and further improvements are done on the

algorithm using different focus measures and evaluation methods in [21] - [25]. The

acquisition of the 3D geometry of micro object enables us to apply a curvature-based

descriptor to obtain range surface segmentation. Curvature-based desriptors were

used in several applications like object classification, pose estimation, and computer

graphics. Besl applied HK segmentation on range images of several objects and

scenes, and fitted variable-order surfaces to the segmentation results [28]. Trucco

and Fisher evaluated range image segmentation system using estimates of the sign

of the mean and Gaussian curvatures (H and K respectively) on a range image of

an automobile part [30]. Moreno et.al applied HK segmentation on 3D human face

surfaces for face recognition [31].

In the literature, the problem of extracting surface information from range im-

ages of macro scale objects is addressed. In this chapter, the problem of visual

reconstruction and classification of microscopic objects is examined. Shape of the

object is recovered using SFF technique. Then using the resulting shape from this

process, curvature-based segmentation of the range image is realized.
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3.1 Visual Reconstruction

Visual reconstruction is achieved using focus information of the images. In the

reconstruction procedure, focused and defocused images of an object are captured

at different focusing levels. Using a proper focus measure in SFF algorithm, 3D map

of the object is acquired.

3.1.1 Image Formation in Microscopy

Microscope objective is assumed as a thin lens as shown in Fig. 3.1. Light rays

radiating from object point O and intercepting by the lens are refracted by the lens

to converge at the point C on the image plane. According to the Gaussian lens law,

the relation between object distance do, image distance di and focal length f is given

as:
1

do

+
1

di

=
1

f
(3.1)

Each point on the object plane is projected on a point on the image plane. This

results in a focused image I(x, y). However, if sensor plane and image plane do not

coincide, the image of a point on the sensor plane will be a circular blob of radius

rb.

According to Fig. 3.1, the relation between rb and the sensor displacement, λ,

Figure 3.1: Formation of focused and defocused images in microscope
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can be given as

rb = Rλ/di (3.2)

where

λ = di − ds (3.3)

Using the Gaussian lens law, the blur radius can be reformulated as [27]:

rb = Rds[1/ds + 1/do − 1/f ] (3.4)

Supposing 1/wd = 1/f − 1/ds, (3.4) becomes

rb = Rds[1/do − 1/wd] (3.5)

where wd is working distance of the microscope objective. If an object point is at a

distance do which is equal to wd then it forms a focused image.

The blur in the circular blob can be modeled using a 2-D Gaussian function [26].

Thus, defocused image Id(x, y) on the sensor plane can be described as the result of

convolution of the Gaussian function g(x, y) and the focused image I(x, y):

Id(x, y) = g(x, y) ∗ I(x, y) (3.6)

where

g(x, y) =
1

2πσ2
g

e
−x2+y2

2σg (3.7)

Standard deviation of the function, σg, is proportional to the blur radius rb [26].

Defocusing process can be expressed in the frequency domain if we take the

Fourier transform of (3.6):

ID(u, v) = G(u, v)I(u, v) (3.8)

where

G(u, v) = e−
u2+v2

2
σ2

g (3.9)

G(u, v) low-pass filters the focused image I(u, v). As the sensor displacement λ

increases, blur radius rb increases, and the standard deviation of the function σg

increases. So, high frequency content in I(u, v) is attenuated. Loss of high frequency

elements in the image results in a loss of texture information and sharpness.
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3.1.2 Shape from Focus

A microscopic object with an unknown shape is placed on a micro-translational

stage under the optical microscope as shown in Fig. 3.2. Initially, background of the

object is at the focused plane, and the distance between the microscope objective

and points on the background is working distance. Then, the stage is moved in

increments of ∆d and at each increment the surface element S gradually comes into

focus. A sequence of images are captured at each increment to estimate depth of the

surface element. When the displacement d = ds, where ds is height of the surface

element S, the surface element comes into maximum focus. In Fig. 3.2, d > ds,

so, the surface element S is not in focus. This procedure is applied for all surface

elements on the object.

Microscope objective

sensor  plane

w
d

micro−translational stagen = 0
n = 1
n = 2

focused plane

reference plane

object surface
d

s
d

S

Figure 3.2: Shape Estimation from Focus

A. Focus Measure Selection

In order to evaluate the degree of focus, a focus measure, which would high-pass

filter the defocused image [20], has to be selected. The focus measure is calculated in

a region around each pixel in the image sequence and the operator gives the highest

value at the image which object point is in maximum focus. In order to high-pass

filter the image, Laplacian, which would take second derivative of the image can

be used. However, in textured images, the second derivative in x and y directions
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would cancel each other. So, to avoid such a problem, modified Laplacian operator

given as

∇2
MI =

∣∣∣∣
∂2I

∂x2

∣∣∣∣ +

∣∣∣∣
∂2I

∂y2

∣∣∣∣ (3.10)

is used. Discrete version of (3.10) is a 3× 3 operator which is as follows:

ML(u, v) = |2I(u, v)− I(u− step, v)− I(u + step, v)|

+|2I(u, v)− I(u, v − step)− I(u, v + step)| (3.11)

where step is the variable spacing between the pixels. The focus measure at a point

(i, j) is computed as the sum of modified Laplacian (SML) values, in a small window

around (i, j), using only values that are greater than a threshold:

F (i, j) =
i+W∑

u=i−W

j+W∑
v=j−W

ML(u, v), if ML(u, v) > T (3.12)

where W determines the window size around the pixel (i,j) to compute the focus

measure and T is the threshold value. A small window size of 3× 3 or 5× 5 is used

since large window size introduces blur by taking into account more pixel values

which might be quite different from the pixel in consideration as mentioned in [23].

Computation of F (i, j) at each pixel in the image sequence forms a focus measure

profile from which depth can be estimated using Gaussian interpolation.

B. Gaussian Interpolation for Focus Measure

SML focus measure is calculated at discrete increments of ∆d. Due to this fact,

maximum of the focus measure would result in a coarse estimate of depth for the

object point (i, j). Application of a Gaussian fit to the focus measure values around

the maximum will give a more precise result.

In the Gaussian fit, three focus measure values which are Fm−1, Fm and Fm+1

are used. Fm is the maximum of the focus measure function calculated at d = dm.

Fm−1 and Fm+1 are calculated at dm−1 and dm+1, respectively. Depth estimate from

Gaussian interpolation is obtained using the following equation [20]:

df =
(ln Fm − ln Fm+1)(d

2
m − d2

m−1)

2∆d[(ln Fm − ln Fm−1) + (ln Fm − ln Fm+1)]

− (ln Fm − ln Fm−1)(d
2
m − d2

m+1)

2∆d[(ln Fm − ln Fm−1) + (ln Fm − ln Fm+1)]
(3.13)
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C. Error Correction

Due to the noise and other effects, the range image resulting from SFF procedure is

error prone. In order to eliminate these errors, a postprocessing step on the image

is necessary. The method in [22] is followed to do error correction. The procedure

is conducted on range image pixel R(i, j) according to the following rule

R(i, j) =
{

median(R(i, j)) if df(i, j) ∈ [median(R(i, j))± δ ∗ stdevM(R(i, j))]

(3.14)

where median(R(i, j)) is median filter response at the pixel (i, j) and stdevM(R(i, j))

is standard deviation calculated in a M × M window around the pixel (i, j). δ is

the smoothing parameter.

3.2 Visual Classification

Visual classification is applied on 3D reconstruction from focus, which is in the

form of a range image. In this stage, a curvature-based segmentation method is

applied on the piecewise-smooth surface function of a microscopic object [28]. This

segmentation enables us to learn whether a surface patch of the range image is

planar, cylindric, elliptic or hyperbolic. In addition to that visual classification is

very important for object recognition. Objects with different geometries, as shown

in Fig. 3.3, can be classified according to their curvatures.

Figure 3.3: Objects with Different Surface Curvatures
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3.2.1 HK Segmentation of Range Images

The result of SFF algorithm is in the form of a range image which has the same

dimensions with the image of the object. In order to find shape composition of the

visible surface of an object, a curvature-based segmentation has to be applied. HK

segmentation, which partitions a range image into regions of homogeneous shape,

is a proper method for this classification [29]. This method is based on differential

geometry. According to differential geometry, local surface shape is uniquely de-

termined using first and second derivatives. Gaussian and mean curvature combine

these first and second derivatives to acquire scalar surface features that are invariant

to rotations, translations and changes in parameterization. Hence, visible surfaces

in range images have the same mean and Gaussian curvature from any viewpoint

under orthographic projection [28].

There are eight fundamental surface types, shown in Fig. 3.4, that can be char-

acterized using only the sign of the mean curvature (H) and Gaussian curvature (K)

as shown in Table 3.1, where T is the surface label image.

Figure 3.4: Eight fundamental surface types
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Table 3.1: Shape Classification Scheme

K > 0 K = 0 K < 0

H < 0 Convex Elliptic Convex Cylindric Hyperbolic (Saddle Ridge)

T = 1 T = 2 T = 3

H = 0 none Planar Hyperbolic (Minimal Surface)

T = 4 T = 5 T = 6

H > 0 Concave Elliptic Concave Cylindric Hyperbolic (Saddle Valley)

T = 7 T = 8 T = 9

Gaussian and mean curvature can be calculated by convolving range images

with first and second derivative window operators as in [28]. Due to the fact that

second derivative operator amplifies high frequency noise in the images, which would

degrade the quality of surface curvature estimation, a smoothing stage is necessary.

A 7× 7 binomial weight (approximately Gaussian) smoother is applied to the range

image for smoothing. The binomial smoothing window can be written as S = ssT

where s is given as

s =
1

64

[
1 6 15 20 15 6 1

]T

(3.15)

After the smoothing stage, 7 × 7 derivative operators can be applied to the range

images. The operators are given as

Dx = d0d
T
1 Dy = d1d

T
0 Dxx = d0d

T
2 Dyy = d2d

T
0 Dxy = d1d

T
1 (3.16)

where column vectors d0, d1 and d2 are as follows:

d0 =
1

7

[
1 1 1 1 1 1 1

]T

(3.17)

d1 =
1

28

[
−3 −2 −1 0 1 2 3

]T

(3.18)

d2 =
1

84

[
5 0 −3 −4 −3 0 5

]T

(3.19)

Using (3.15)-(3.19), partial derivatives of the range images are calculated by the

following 2-D image convolutions,

Rx(i, j) = Dx ∗ S ∗R(i, j)

Ry(i, j) = Dy ∗ S ∗R(i, j) (3.20)
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Rxx(i, j) = Dxx ∗ S ∗R(i, j)

Ryy(i, j) = Dyy ∗ S ∗R(i, j)

Rxy(i, j) = Dxy ∗ S ∗R(i, j) (3.21)

Mean(H) and Gaussian(K) images are obtained using (3.20)-(3.21) as follows:

H =
(1 + R2

x)Ryy − 2RxRyRxy + (1 + R2
y)Rxx

2(1 + R2
x + R2

y)
3/2

(3.22)

K =
RxxRyy −R2

xy

(1 + R2
x + R2

y)
2

(3.23)

In order to calculate surface curvature sign images sgnε(H(i, j)) and sgnε(K(i, j)), a

signum function, with a zero threshold(ε) for H and K images, is employed according

to the following rules,

sgnε(x) =





+1 if x > ε

0 if |x| ≤ ε

−1 if x < −ε

(3.24)

Final stage of HK segmentation is to determine a surface label image T (i, j) as

mentioned in Table 3.1. This is accomplished by employing surface curvature sign

images in the following formula:

T (i, j) = 1 + 3(1 + sgnε(H(i, j))) +

(1− sgnε(K(i, j))) (3.25)

Using the image T (i, j), the range image R(i, j) is partitioned to regions of homo-

geneous shape, and surface structure of the microscopic object is obtained.
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Chapter 4

Mechanical Characterization

Mechanical property characterization of a cell or embryo chorion is to extract elastic

modulus information using cell boundary deformation. Mechanical characterization

can be useful in diagnosis of cells and embryo, some samples of which are shown in

Fig. 4.1-4.2. Elastic modulus information can be used to learn whether the cell is

infected or not. In addition to that in an embryo microinjection experiment, it is

very important to have a knowledge about mechanical characteristics of the embryo

since it will ensure that extreme forces, which can harm the embryo, are not ap-

plied during indentation to the embryo by a manipulator. In this chapter, especially

mechanical characterization of zebrafish embryo chorion is examined. Elastic mod-

Figure 4.1: Cell samples: 293T Human Kidney Cell and Jurkat Cancer Cell

ulus describes embryo chorion’s tendency to be deformed elastically when a force

is applied to it. In the literature, there are several approaches for characterization

of embryo chorion(biomembrane). These are contact mechanics models [32]- [33],

micropipette aspiration model [34], and biomembrane point-load model [35]. The

contact mechanics models treat a deformed object as a solid body and assumes small
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Figure 4.2: Zebrafish Embryo

deformation. Also, it is assumed that there is only a local dimple geometry change

and the global geometry of the deformed object remains unchanged. However, these

assumptions are not appropriate for mechanical characterization of zebrafish embryo

chorion. Another approach for characterization is the micropipette aspiration tech-

nique. According to this model, a sucking pressure is applied on the biomembrane

and biomembrane is elongated in the micropipette while biomembranes are indented

by an AFM probe in experiments on the zebrafish embryo. On the other hand, the

biomembrane point-load model is more appropriate for the experiments using AFM

probe to indent biomembrane since it considers a biomembrane as a thin film and

assumes that the inner cytoplasm provides a hydrostatic pressure on the membrane.

Sun et.al [35] used micropipette instead of AFM probe to indent embryo chorion in

their experiments.

4.1 Biomembrane Point-Load Model

In biomembrane point-load model, the biomembrane is deformed by an indenter and

the membrane shape can be defined by three parameters a, wd, and R as shown in

Fig. 4.3. This model precisely estimates mechanical properties of zebrafish embryo

chorion. The assumptions of the model are as follows:

1) The biomembrane encapsulates liquid that exerts a uniform hydrostatic pressure

on the biomembrane.
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2) The cell volume does not change.

3) The biomembrane has a negligible flexural rigidity, so that deformation is caused

by membrane stretching alone.

4) The biomembrane is linearly elastic.

5) The cell is free of initial membrane stress or residual stress.

6) The model starts with a planar circular area with zero residual stress.

An AFM probe of width 2c exerts a force F on the biomembrane, creating a dim-

ple with radius a and depth wd and semicircular curved surfaces with radius R.

The model is a good approximation for the shape composition of membrane after

indentation.

2c

r R

w
d

R

2a

F

Figure 4.3: Deformation of an Embryo Membrane by an Indenter

In the model, first the force equilibrium at the local dimple is considered. As

shown in Fig. 4.3, the internal pressure produces a force πr2p counterbalancing the

applied force F , where p is the internal pressure. Also, due to the membrane stress

σd, there is another counterbalancing force σdsinθ2πrh. A small angle approxi-

mation, which assumes that dw/dr ≈ sinθ ≈ θ, where w is the deformed dimple

profile [37], is used. Thus, the force balance equation at the equilibrium is formed

as follows:

F = πr2p + σdsinθ2πrh (4.1)

where h is membrane thickness.

Integrating (4.1) with a boundary condition of w = 0 at r = a and approximating

p = F/(πa2) yields the following dimple profile

w = − F

4πσdh

[
1−

(r

a

)2

+ ln
(r

a

)2
]

(4.2)
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which is valid in c ≤ r ≤ a. The dimple depth from the maximum height of the

deformed membrane, as shown in Fig. 4.3, can be calculated by evaluating (4.2) at

r = c as:

wd = w|r=c = − F

4πσdh

[
1−

( c

a

)2

+ ln
( c

a

)2
]

(4.3)

Within the dimple, each ring element on the membrane of radius r and width

dr is stretched by the external load to a final width of dr/cosθ. So, elastic strain,

εd, on such an element is given by

εd =
dr

cos θ
− dr

dr

≈ θ2

2

=
1

2

(
dw

dr

)2

(4.4)

Due to the fact that elastic strain on a membrane is proportional to area change

[37], second-order terms can be ignored, and the average strain on the biomembrane

can be given as

εd =
1

2

∫ a

c
1
2

(
dw
dr

)2
rdr∫ a

c
rdr

(4.5)

where denominator is the area of the annulus, with c and a the inner and outer

radii, respectively.

According to linear elasticity [38]- [39],

σ̄d =
E

1− ν
ε̄d (4.6)

where E is the biomembrane elastic modulus and ν is the Poisson ratio.

Combination of (4.5) and (4.6) yields the force equation for zebrafish embryo

chorion

F =
2πEhw3

d

a2(1− ν)

[
3− 4ζ2 + ζ4 + 2 ln ζ2

(1− ζ2)(1− ζ2 + ln ζ2)3

]
(4.7)

where ζ = c/a. Due to the fact that in the experiments instead of a holding pipette,

a force sensing probe is used to hold the zebrafish embryo, the measurements of the

parameter a were conducted from the dimple side as done in [35].
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Chapter 5

Experimental Results and Discussion

In this chapter, experimental results for optical system calibration, microposition-

ing and trajectory following tasks, visual reconstruction and classification, and me-

chanical characterization of zebrafish embryo are given. Initially, microassembly

workstation in which the experiments were conducted is introduced.

5.1 Hardware Setup

The experiments were conducted on the microassembly workstation shown in Fig.

5.1. There are two manipulation stages and each of them consists of three PI M-

111.1 high-resolution micro-translation stages to give motion to the probe/gripper

with 50 nm incremental motion in x, y and z positioning axes. Also, there is a sam-

ple stage which consists of two PI M-111.1 high-resolution micro-translation stages

which gives motion in x and y positioning axes. In the visual servoing experiments,

a Zyvex microgripper with a 100 µm opening gap was used at the manipulation

stages. Then, in the mechanical characterization experiments a Nanosensors TL-

CONT AFM probe and a Femtotools force sensing probe were employed to manip-

ulate zebrafish embryo. Manipulation and sample stages are controlled by a dSpace

ds1005 motion control board. In order to avoid problems related to vibration in

micromanipulation, a Table Stable TS-140 isolation table is used.

Nikon SMZ 1500 stereomicroscope coupled with a Basler A602fc and a Sony

XCD-X710CR camera, orthogonal to XY plane with 9.9 µm×9.9 µm and 4.65 µm×
4.65 µm cell sizes, respectively, are utilized to provide visual feedback. The micro-

scope has 1.2X and 1.6X objectives, and additional zoom. Additional zoom can be

varied between 0.75X − 11.25X, implying 15 : 1 zoom ratio. In addition to these
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Figure 5.1: Microassembly Workstation

cameras, there is also a side camera which is a Sony XCD-X710CR. The side camera

is positioned using an Edmund Optics articulating arm. Two calibration patterns,

Edmund Optics IAM-1 with 50 µm and 200 µm square sizes, and Mvtec calibration

grid with 70 µm radius circles (Fig. 5.2) were employed to calibrate the optical

system.

Figure 5.2: Square and Circular Calibration Patterns

5.2 Calibration Results

Before visual servoing tasks were performed, a sub-micron accurate calibration of

the optical system was accomplished through a parametric model [16]. Two different
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types of calibration patterns were used to establish the correspondence between the

world and image coordinates under 1X and 4X zoom levels, hence implying∼ 1.6 and

∼ 6.4 magnifications as can be verified from Table 5.1. For the square one, a Sobel

edge operator, edge linking and then a line fitting algorithm were applied to obtain

every edge line of the squares. Corners of the squares -intersections of the calculated

edge lines- were taken as the calibration points. For the round calibration grid, the

center coordinates of the circles were calculated through a least square solution.

Calibration results are tabulated in Table 5.1.

It can be observed from this table that the radial distortion coefficient is very

small. This proves that the microscope lenses are machined very precisely. Moreover,

β and γ angles have non-zero values which can be resulted from a mechanical tilt

of the microscope stage or from an inaccurate design of the calibration pattern.

In the experiments it was observed that the circle grids give more accurate cal-

ibration results. Due to imperfect illumination, lens aberration, systematic and

random sensor errors, the image might be blurred by a point spread function (PSF)

and the features might not be extracted very accurately. Flusser and Zitova [18]

claim that most of the PSF are circularly symmetric and circular shapes are invari-

ant to this type of PSF. Thus, our experimental results are in accordance with their

interpretation as shown in Table 5.2.

5.3 Real-Time Feature Tracking

Visual servoing algorithms necessitate real-time measurement of the image features

in an efficient, accurate and robust manner. Both Kalman filtering and the efficient

second-order minimization (ESM) algorithm [19], which is based on the minimization

of the sum-of-squared-differences (SSD) between the reference template and the

current image using parametric models, were employed in our experiments. The

ESM algorithm has high convergence rate like the Newton method, however, it

can track more frames per second than the other tracking algorithms. The ESM

algorithm accomplished to track a 50× 50 window up to 250 pixels/sec velocity at

33 Hz in the experiments.
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Table 5.1: Computed Intrinsic and Extrinsic Parameters using Circular and Square

Patterns

Circular Square

1X 4X 1X 4X

M 1.5893 6.3859 1.6236 6.444

Top (µm) 200490 200610 199690 200880

f (µm) 126150 31415 122990 31174

d (µm) 78750 4955.5 75441 4833.5

κ (µm−2) −8.4e− 10 1.5e− 11 2.1e− 10 1.5e− 10

α (deg) 90.7144 88.9825 87.2897 95.4143

β (deg) -2.7912 2.6331 -1.6248 -1.9407

γ (deg) 175.9179 0.9088 177.6637 178.2925

Tx (µm) -781.4 76.755 -1792.7 -1653.1

Ty (µm) -55.002 -156.58 -1210.3 -1194.5

Tz (µm) 204900 36370 198430 203610

Table 5.2: 3D Reprojection Errors of Circular and Square Patterns for 1X and 4X

Circular Square

1X 4X 1X 4X

Mean Error (µm) 0.2202 0.0639 0.4618 0.0920

Standard Deviation (µm) 0.3869 0.1321 2.9101 0.5316

Maximum Error (µm) 1.7203 0.5843 12.0898 2.3988

5.4 Visual Servoing Results

In the experiments, micropositioning and trajectory following tasks were performed

at 1X and 4X zoom levels using calibrated visual servoing (VS) algorithm. The

control input is designed according to (2.28). Real-time feature tracking is employed

to track the opening of the Zyvex microgripper shown in Fig. 5.3 and mean of square

corner points is used as f(k) in VS. For the optimal control design, Q and L matrices

in (2.28) were chosen as diagonal matrices with diagonal entries (0.9,0.9) and (0.025,
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0.05) respectively.

Figure 5.3: Real-time tracking of microgripper opening

Micropositioning VS results are plotted in Fig. 5.4-5.5. In this task, a reference

of 50 pixels in x and y directions is given to the manipulator. The distance from

initial position to the reference position for 1X and 4X zoom levels is 311µm and

77µm, respectively. As shown in Fig. 5.4-5.5, control effort (velocity) is constant due

to the saturation limit at the beginning. Decrease in the error results in decrease of

the velocity and it can be recognized when velocity input to the micro-translational

stage is less than the saturation limit. Performance parameters of VS in microposi-

tioning, which are settling time(ts), accuracy and precision, are tabulated in Table

5.3. Settling time is less than 1 second for both zoom levels. Tasks are achieved

with an accuracy of 9.86µm and 1.35µm for 1X and 4X, respectively, which implies

an error of less than 3% at the settling time. Also, the precision is very low which

is due to the robustness of calibrated VS.

Table 5.3: Results of micropositioning for calibrated visual servoing

Step ts Acc. Prec.

(pixels) (sec) (µm) (µm)

1x 50 0.80 9.86 2.71

4x 50 0.45 1.35 0.57

The trajectory following results for circular, square and sinusoidal trajectories are

depicted in Figs. 5.6-5.8. Tracking performance parameters for different trajectories

are presented in Table 5.4. Due to the fact that effective pixel size for 1X and 4X

zoom levels are 6.23µm and 1.55µm, respectively, accuracies for both cases in terms
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Figure 5.4: Step responses and control signals of calibrated VS at 1X

of pixels in different trajectory following tasks is nearly the same. The results show

that desired trajectories are tracked accurately in general.

5.5 Visual Reconstruction and Classification Re-

sults

In this section, first the application of SFF algorithm on synthetic and real data is

presented, and then surface shape classification results of the range images, acquired
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Figure 5.5: Step responses and control signals of calibrated VS at 4X

Table 5.4: Results of trajectory tracking for calibrated visual servoing

Square Circular Sinusoidal

Acc. Prec. Acc. Prec. Acc. Prec.

(µm) (µm) (µm) (µm) (µm) (µm)

1x 5.93 2.28 7.72 1.40 4.79 2.37

4x 1.47 1.19 1.57 0.95 1.12 1.31
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Figure 5.6: Circular trajectory and tracking error in calibrated VS at 1X
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Figure 5.7: Square trajectory and tracking error in calibrated VS at 1X
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Figure 5.8: Sinusoidal trajectory and tracking error in calibrated VS at 1X

from the application of SFF algorithm, using HK segmentation is given.
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5.5.1 SFF Results

SFF is first evaluated on a synthetic texture image shown in Fig. 5.9(a). An image

sequence is created in which at each focus level a different part of the parabolic

object is focused. In the creation of these images, camera defocus PSF was modeled

as a 2-D Gaussian function and given by (1)/(2πσ2)exp(−(i2 +j2)/(2σ2)) where σ is

the deviation of the Gaussian function [27]. A 7× 7 2-D Gaussian filter with σ = 1

is employed to create defocus effect on the textured image.

SFF algorithm is applied on the image sequence, some of which shown in Fig.

5.9(b), (c), (d), corresponding to a parabolic shape created assuming ∆d = 25µm

and object height is 500µm. The resulting focused image is shown in Fig. 5.9(e).

Since the spikes in range image would result in problems at HK segmentation

stage, these were detected and replaced with the response of median filtering ac-

cording to (3.14). In this error correction procedure, median filtering and standard

deviation calculation are done in a 9× 9 window, and smoothing parameter δ = 2.

After this procedure, also, a 7×7 averaging filter is applied to further smoothen the

image. Resulting range image is shown in Fig. 5.10.

After the application of SFF on synthetic data, it is also evaluated on real data.

The image sequence shown in Fig. 5.11(a)-(c), which belongs to a solder ball on

paper, is captured under an optical microscope. Initially as it is shown in Fig.

5.11(a), paper in the background is focused. Then, micro-translational stage is

moved with a ∆d = 50µm until whole object is scanned (Fig. 5.11(b), (c)). The

implementation of SFF on this image sequence resulted in the following focused

image shown in Fig. 5.11(d). Error correction is also applied to the range image

acquired from real data. However, due to the rough surface of the ball, the range

image result is not very smooth (Fig. 5.12). Since the object is observed from above,

only half of it can be examined. This is why lower part of 3-D map of the object is

cylindric and the top part is spherical.

5.5.2 HK Segmentation Results

HK segmentation is initially applied on the parabolic profile, resulting from the

application of SFF on synthetic data, to examine the surface structure of the syn-

thetic object. Before the segmentation procedure, binomial smoothing window is
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Figure 5.9: (a) Original Textured Image (b), (c), (d): Defocused Images in the

Image Sequence for SFF (e) Resulting Focused Image from SFF

convolved with the range image. Also zero threshold ε for H and K images were

determined as 0.03 and 0.015, respectively. In the resulting segmentation, as it is

shown in Fig. 5.13, left and right of the maximum of the parabola is planar. The

part of the range image near maximum of the parabola is mostly convex cylindric

as expected. There are also some surface patches estimated as hyperbolic (saddle

ridge) and convex elliptic. These patches are estimated that way due to the errors

generated by SFF procedure, but the number of these patches is small and they

are also convex. The edge of the surface is detected as concave cylindrical due to

the fact that altitude of the edge points is 0. So, edges are estimated as a valley
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Figure 5.10: (a) Resulting Parabolic Range Image from Synthetic Data (b) Range

Image x-y View

Figure 5.11: (a)-(c) Defocused Images of Solder Ball. (d) Resulting Focused Image

from SFF.

compared to the planar surfaces at the sides.

HK segmentation is also evaluated on the 3D reconstruction result from real

data. Binomial smoother is again convolved with the range image, and the same

zero threshold values for H and K images are used. Then surface structure of the
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Figure 5.12: (a) Solder Ball Range Image (b) Range Image x-y View

solder ball was acquired by applying HK segmentation on the range image result of

SFF as it is shown in Fig. 5.14. Due to the roughness of the ball surface, mostly

concave and convex cylindric parts were detected on the upper surface of the object.

There were also some hyperbolic patches again as a result of rough surface structure.

Background of the object is estimated as planar due to the fact that object stands

on a planar surface.

5.6 Mechanical Characterization Results

Zebrafish embryo chorion is mechanically characterized by employing a force sensing

probe holding the embryo and sensing the generated forces during the cell is indented

by an AFM probe, which are shown in Fig. 5.15. The image, which is captured

when the measured force is maximum, used in the characterization is shown in Fig.

5.16. In order to characterize the embryo, boundary information of the embryo

chorion has to be extracted.

The first step is to crop the dimple side of the embryo, shown in Fig. 5.17 (a),

from where the measurements are acquired. Due to the fact that AFM probe in the

scene acts as a disturbance in cell boundary extraction, it has to be segmented. To

achieve that first the region including the probe is selected, then edge detection is

applied and the region is filled with background gray level as shown in Fig. 5.17 (b).

After segmenting the probe, Canny edge detection is applied on the image region

including the segmented probe and embryo chorion to extract cell contour as shown
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Figure 5.13: HK Segmentation of Range Image Result of Synthetic Data

Figure 5.14: HK Segmentation of Range Image Result of Real Data

in Fig. 5.17 (c).

Cell contour information is fed into curve-fitting procedure to precisely estimate

the parameters for mechanical characterization. First, cell contour data is taken

as xfit vs. yfit with a weight on xfit points. Then, the data is smoothed using

Loess(quadratic fit) with a span of 0.25. Resulting smoothed data is shown in Fig.
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Figure 5.15: Force Sensing Probe and AFM Probe used in Cell Manipulation

Figure 5.16: Zebrafish Embryo with Indenter and Force Sensing Probe

5.18.

After the smoothing stage, curve-fitting can be applied. Due to the fact that the

curve is complex, eighth degree Gaussian fit using Trust-Region Reflective Newton

algorithm is applied to cell boundary data. The curve fit shown in Fig. 5.18 is cal-

culated using 1500 max number of iterations. The eighth degree Gaussian function

used in the fit is as follows:

fm(x) = a1e
−((x−b1)/c1)2 + a2e

−((x−b2)/c2)2+

a3e
−((x−b3)/c3)2 + a4e

−((x−b4)/c4)2+
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Figure 5.17: (a) Dimple Side of Embryo Chorion (b) AFM Probe Segmentation (c)

Extraction of Cell Boundary.
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Figure 5.18: Smoothed Cell Contour and Gaussian Curve-Fit Result

a5e
−((x−b5)/c5)2 + a6e

−((x−b6)/c6)2+

a7e
−((x−b7)/c7)2 + a8e

−((x−b8)/c8)2 (5.1)

43



The parameter values resulting from the curve-fit are shown in Table 5.5. In the

Table 5.5: Coefficients of Gaussian Curve-Fit

Coefficient Number a b c

1 89.38 129.5 44.25

2 93.14 243.3 41.71

3 9.011 203.7 6.922

4 28.6 213.3 14.61

5 44.78 77.2 30.84

6 17.99 182.5 13.58

7 40.7 169.9 23.55

8 17.26 48.01 18.9

cell boundary curve there are two local maximum and one global minimum. The

parameters wd and a, in elastic modulus equation which is given as follows:

E =
Fa2(1− ν)

2πhw3
d

[
(1− ζ2)(1− ζ2 + ln ζ2)3

3− 4ζ2 + ζ4 + 2 ln ζ2

]
(5.2)

can be evaluated using the local maximum at the left and the global minimum. The

derivative of fm(x) is 0 at the local maximum coordinate (x1, y1) = (130.98, 94.1202)

and at the global minimum coordinate (x2, y2) = (194.71, 62.8384). In order to cal-

culate wd and a in terms of metric coordinates, camera CCD cell size and microscope

objective magnification information is used as follows:

wd = |CS ∗ (y2 − y1)/M |

a = |CS ∗ (x2 − x1)/M | (5.3)

where magnification M = 1.2 and cell size CS = 4.65µm. Resulting wd and a are

shown in Fig. 5.19. All the parameters used in elastic modulus calculation are

tabulated in Table 5.6. The parameters h and ν are taken from [36], F is measured

by force sensing probe and c parameter in ζ is half of the width of AFM probe.

The elastic modulus estimation procedure is also evaluated at different dimple

depths and measured force configurations. Following mean elastic modulus and

standard deviation results, which are tabulated in Table 5.7, are obtained.
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a = 246.95

w
d
 = 121.22

Figure 5.19: Geometric parameters wd and a for mechanical characterization

Table 5.6: Parameter Values for Mechanical Characterization and Resulting Elastic

Modulus

Parameter Name Value in the Experiment

h (chorion thickness) 3 µm

wd (dimple depth) 121.22 µm

a (dimple radius) 246.95 µm

ν (poisson ratio) 0.5

ζ(c/a) 44.78

F (measured force) 197.24 µN

E (elastic modulus) 1.3237 MPa

Table 5.7: Elastic Modulus Evaluation Results at Different Dimple Depths

Mean Elastic Modulus Standard Deviation

1.2791 MPa 0.05
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The mean elastic modulus value implies that zebrafish embryo was at the gas-

trula stage during the experiment according to the results in [36]. Elastic modulus

information can be used in automatic microinjection tasks and dynamic force esti-

mation using cell boundary information.
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Chapter 6

Conclusion

In this thesis, visual reconstruction and classification algorithms, and mechanical

characterization are experimentally evaluated on microscopic samples. In addition

to that results of experimental evaluation of calibrated image based visual servoing

algorithm for various tasks in micro domain are presented.

More specifically, in Chapter 2 image-based visual servoing algorithms and opti-

cal system calibration algorithms are presented. In Chapter 3, a visual reconstruc-

tion from focus algorithm, SFF, and a visual classification algorithm, which is based

on curvature-based segmentation, are outlined. The visual reconstruction algorithm

uses 2D image sequence of a microscopic object captured at different focusing lev-

els to create a 3D range image. Then, the visual classification algorithm takes the

range image as an input and applies a curvature-based segmentation method, HK

segmentation, which is based on differential geometry. The object is segmented

into surface patches according to the curvature of its surface. In Chapter 4, a me-

chanical property characterization technique for cell and embryo is presented. In

the characterization procedure, the biomembrane point-load model which extracts

elastic modulus information from cell boundary deformation is given. In Chapter

5, first experimental results on optical system calibration and image-based visual

servoing in micropositioning and trajectory following tasks are presented. Then, ex-

perimental results on visual reconstruction and classification of microscopic objects,

and mechanical characterization of a zebrafish embryo using visual information are

given.

Optical system calibration algorithm is evaluated at 1X and 4X zoom levels of

the microscope and it was shown that the system is calibrated with sub-micron
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reprojection error. Resulting intrinsic calibration parameters from this procedure

were employed in image jacobian estimation. The image jacobian is used in vision-

based control of the micromanipulators. Image-based visual servoing algorithm is

employed in the control and it is shown that the algorithm works very precisely and

accurately in the given tasks.

Then, it is shown that the visual reconstruction algorithm works successfully for

synthetic and real image data. The range images are used to classify the surfaces of

the objects according to their curvatures in the HK segmentation algorithm. For the

synthetic data, range image is segmented into homogeneous surface patches. Due to

the fact that the solder ball object has a rough surface, convex and concave surface

patches are estimated from the range image.

Finally, a zebrafish embryo chorion is mechanically characterized using cell bound-

ary deformation. Elastic modulus and developmental stage of the embryo are ob-

tained successfully using visual information.

As a future work, real-time 3D reconstruction of the micromanipulation en-

vironment can be done. HK segmentation can be used for object recognition in

a microassembly task if range images are obtained. Also, dynamic estimation of

the forces from cell boundary deformation and mechanical characterization of the

embryo can be realized. This can be used in an automatic microinjection if mi-

croassembly workstation is modified for such a task.
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