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Yeşim Hümay Esin

Mechatronics, MS Thesis, 2008

Thesis Supervisor: Assoc. Prof. Dr. Mustafa ÜNEL
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Abstract

Coordination of autonomous robot groups is an active research area and

much recent work has focused on modeling and control issues related to

coordination. Robot groups can coordinate in many different ways. Some

robot groups may execute coordination in which group members move in a

scattered manner like the bees of a beehive or coordination of the group may

require a more strict formation like the swallows. The shape formation is very

important for the coordination of autonomous mobile robot groups because

it increases the capability of a robot group by increasing the competence and

the security of the group. The shape formation is applicable in many tasks

like formation flight, flocking and schooling, transportation systems, search-

and-rescue operations, competitive games, reconnaissance and surveillance.

This thesis develops a flexible shape formation control method for au-

tonomous mobile robots. There are different approaches in the literature for

shape formation of mobile robots. Proposed method is different from these



existing approaches by being applicable to complex formation curves as well

as different number of robots and heterogeneous groups. It consists of two

phases. In the first phase, shape formation is controlled by using potential

fields generated from implicit polynomial representations and in the second

phase, the control for keeping the desired shape is designed using elliptical

Fourier descriptors. In this shape formation method, coordination between

the robots is modeled using virtual linear springs between each robot and its

nearest two neighbors. The success of the proposed method is shown through

simulations on groups of different numbers of point-particle robots. Proposed

method is then extended to non-holonomic mobile robots by using the de-

sired positions in point particle model as references for the non-holonomic

robots. The method is also implemented with real non-holonomic robots

with a bird-eye-view camera.
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MOBİL ROBOTLARIN ELİPTİK FOURIER TANIMLAYICILAR VE

ÖRTÜK POLİNOMLAR KULLANILARAK FORMASYON KONTROLÜ

Yeşim Hümay Esin

Mekatronik Mühendisliğı, Yüksek Lisans Tezi, 2008

Tez Danışmanı: Doç. Dr. Mustafa ÜNEL
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Anahtar Kelimeler: Formasyon Kontrolü, Robot Koordinasyonu, Otonom

Mobil Robotlar

Ozet

Otonom robotların koordinasyonu aktif bir araştırma konusudur. Son

yıllarda bu alanda modelleme ve kontrol konularında bir çok araştırma yapıl-

maktadır. Robot gruplarının koordinasyonu bir çok farklı şekilde sağlanabilir.

Bazı robot gruplarında arılar gibi dağınık bir formasyonda koordinasyon

sağlanırken bazı gruplarda kırlangıçlar gibi daha katı formasyonlar oluşturu-

labilir. Koordineli hareket eden robot gruplarının belli bir formasyon halinde

iş yapmaları bu robot grubunun iş yapma kapasitesini arttırır. Ayrıca birçok

koordinasyon görevi, belli bir formasyonda hareket etmeyi gerektirir. Şekil

formasyonu, arama ve kurtarma, gözetleme, büyük cisimlerin taşınması, bir

grup hava aracının düzenli uçuş yapması gibi bir çok alanda kullanılabilir.

Bu tezde, otonom mobil robotların formasyonu için esnek bir yöntem

sunulmaktadır. Literatürde bu konuda bir çok yaklaşım bulunmaktadır. Bu

tezde geliştirilen yöntem, karmaşık formasyon şekillerine ve çeşitli büyüklük-

teki robot gruplarına uygulanabilir olmasıyla diğer yöntemlerden ayrılır. Su-



nulan formasyon yöntemi iki aşamadan oluşmaktadır. Birinci aşamada for-

masyon, örtük polinom tanımı kullanılarak oluşturulan potansiyel alanlarla

sağlanır. İkinci aşamada oluşturulan şeklin korunumu için eliptik Fourier

betimleyiciler kullanılmıştır. Bu formasyon kontrolünde, robotlar arasındaki

koordinasyon her bir robot ve en yakın iki komşusu arasındaki lineer yaylarla

modellenmiştir. Sunulan yöntemin başarısı çeşitli büyüklükteki robot grup-

larıyla ve farklı formasyon şekilleriyle yapılan benzetimlerle gösterilmiştir.

Bu yöntem daha sonra holonomik olmayan robotlar için de genişletilmiştir.

Yöntem ayrıca holonomik olmayan gerçek robotlar üzerinde uygulanmıştır.
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Chapter 1

Introduction

The role of autonomous robots in our lives is increasing in many fields. The

robots are desired in many tasks for their high speed, precision and repeata-

bility. The robots are also being employed in the areas which are hazardous,

dangerous or boring for humans. The working areas of robots is enlarging

from idealized areas, like industrial plants, to work in natural environments

or to serve humans in their complicate homes. New working areas bring new

problems for researchers. By the increasing demands for robots in different

areas, the robots need to be more adaptive to changing or unknown environ-

mental conditions in the workplace and they should be more intelligent to

be able to make their own decisions in these conditions.

Robots can adapt to complex environments and perform tasks more in-

telligently by working in groups. Robot groups may be composed of many

different kinds of robots like ground vehicles, aerial vehicles, underwater vehi-

cles or spacecrafts. A robot group may be homogenous; each member in the

group may be identical, or it can be heterogeneous; the group may include
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different kinds of robots. Using a team of simple robots is advantageous than

using a single but more complicated robot in many ways. Robot’s working

in groups brings flexibility in a given task. If the robots of a group is doing a

task together, the robots can learn about the environmental conditions more

quickly by gathering sensor information from a variety of sensors of each

member. Besides, if one of the robots gets hurt during the task, the remain-

ing ones can finish the task. This makes the robot group systems more fault

tolerant than single robot systems. Since using a group of robots brings the

possibility of parallel processing, the time required for the completion of the

task decreases, especially when it is a distributed task, like search and rescue

or mapping of unknown areas.

Robot groups can coordinate in many ways. Some robot groups may

execute coordination in which the robots move in a scattered manner like

the bees of a beehive or the control of the robot group may require a more

strict formation like the swallows. The shape formation is very important for

coordination of mobile robot groups because it increases the capability of a

robot group by increasing the competence and the security of the group. The

shape formation is applicable in many tasks like formation flight, flocking and

schooling, transportation systems, search-and-rescue operations, competitive

games, reconnaissance and surveillance.

The shape formation in mobile robots is a challenging topic and there

are many researches on that subject, as it will be mentioned in detail in

Chaper 2. For robot groups coordinating with shape formation, the flexibil-

ity of the shape formation is very important. With the increasing demand

for autonomous robots in different fields, many different kinds of formation
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shapes are required. In non-idealized environments, forming many of the

simple shapes may not be feasible. Besides, many different task definitions

may require very complicated formation shapes. Another important issue

of shape formation is the fault-tolerance. The shape formation algorithm

should guarantee the completion of the task even if some of the group mem-

bers are hurt. Since different tasks require different types of robot groups,

a formation shape algorithm should also be flexible in the number and the

heterogeneity of the team members.

Control of a robot group can be centralized or decentralized. In the

centralized control, the data is collected in a central control unit and the

control commands are sent from that unit to the robots. This central unit

can be an independent computer or can be one of the members of the robot

group which has a higher computational capacity. The central control unit

receives a collection of the data from the robot group and the decision for

each member is done according to this knowledge.

In the decentralized control, each member in the robot group gathers

data using its own sensors and decides about its move according to its role

definition in the desired task. In some cases, there are also some local com-

munications among the group members.

In decentralized control, the members have a local sense of the group

because the knowledge is limited by the sensor angle and occlusions. On the

other hand, since in the centralized control all the data are collected by the

central unit, the effects of the view angle limitation and the occlusions can

be compensated. The central unit has an overall view of the robot group

condition. This leads to a better decision. In the central control, complete

3



solution and global optimum is more likely to be achieved.

One of the limitations of the centralized control is the communication.

In the centralized control, the moves of agents in the group are decided

by the central unit and these commands are sent to each agent. As the

number of the agents increases, the communication load of the central unit

increases. This can be seen as a bottleneck for centralized control but there

are studies which solves this problem by decreasing the communication load

on the central unit.

In robot coordination, the robustness of the algorithm to robot failures

is very important. In centralized control, the detection of agent failure is

available. In such a case, the central unit can decide for a better strategy of

the robot group for the task to be executed in the best way available. On the

other hand, in centralized controls, the failure of the central unit is a major

problem to cause task failure.

This thesis provides a new method for a shape formation method which

brings flexibility to formation shape and is applicable to groups of different

sizes and heterogeneous systems. The achievement of the proposed method

is based on the flexible representation of the desired formation curves us-

ing implicit polynomials and elliptic Fourier descriptors. The success of the

method for point particle and non-holonomic mobile robot models is demon-

strated through simulations. The method is also implemented using real non-

holonomic robots. For the implementations, a centralized control is prefered

by considering the requirements of the task.

Chapter 2 gives a brief survey on formation control. Representation of

complex closed curves is presented in Chapter 3. Chapter 4 is on the mod-

4



eling and trajectory tracking control for non-holonomic mobile robots. The

proposed formation method is presented in Chapter 5. The simulation and

implementation results are given in Chapter 6 and Chapter 7, respectively.

Finally Chapter 8 concludes the thesis and indicates possible future direc-

tions.
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Chapter 2

Literature Survey

In the recent years the coordination of multi-robot systems has been sub-

jected to considerable research efforts. The main motivation is that in many

tasks a group of robot can perform more efficiency than a single one and can

accomplish tasks not executable by a single robot. Multi-robot systems have

advantages like increasing tolerance to possible vehicle fault, providing flex-

ibility to the task execution or taking advantage of distributed sensing and

actuation [10]. Each animal in a herd, for instance, benefits by minimizing

its encounters with predators [50]. Arkin and Balch [39] argued that two or

more robots can be better than one for several reasons:

• Many robots can be in many places at the same time (distributed ac-

tion).

• Many robots can do many, perhaps different things at the same time

(inherent parallelism).

• Often each agent in a team of robots can be simpler than a more com-

6



prehensive single robot solution (simpler is better).

Among the tasks that are done with a robot group, operating in a special

formation increases the capability of the robot team in many ways. Shape

formation during the operation of a task enhances the system performance

by increasing instrument resolution and cost reduction. In [11], it is stated

that global security and efficiency of the team can be enhanced by a proper

configuration for the formation. Formations allow individual team members

to concentrate their sensors across a portion of the environment while their

partners cover the rest. In [6], it is stated that air force fighter pilots for

instance direct their visual and radar search responsibilities depending on

their position in a formation.

Formation in a proper configuration is one of the ways to get the maxi-

mum efficiency from a robot team. There are many tasks that the shape for-

mation of autonomous robots can be used. Examples in the literature include

box pushing [26], load transportation [19] , dispersing a swarm [47] [2],moving

in formation [6], covering areas while maintaining constraints [34], perform

shepherding behaviors [34] and enclosing an invader [54].

2.1 Shape Formation Control in Mobile Robots

Shape formation of multiple mobile robots is a challenging subject. This sub-

ject includes many sub-problems like decision of the feasible formation shape,

getting into formation, maintenance of the formation shape and switching

between the formations.

Shape formation and maintenance of the formation is one of the important

7



problems in the shape formation on which much research has been done.

There are many different approaches to modeling and solving these problems,

ranging from paradigms based on combining reactive behaviors [4], to those

based on leader-follower graphs [17] and potential field methods [44].

One of the common methods is to determine the desired position of each

member within the group to control each robot to these specified positions.

This methods works fine when the number of the group is small. When the

number of robots increases, it becomes difficult and inefficient to manually

determine the position of each and every agent within the formation.

There are some approaches for formation control which are inspired by

biological systems. Biologists who study animal aggregations such as swarms,

flocks, schools, and herds have observed the individual-level behaviors which

produce the group-level behaviors [30] [33]. In some studies this observation

are applied on robot groups and the animal behaviors are mimicked by the

robots.

One of the well-known applications in this field is by Reynolds [37]. He

developed simple egocentric behavior model for the individuals of the simu-

lated group of birds or so-called “Boids” . In this model, the basic flocking

model consists of three simple steering behaviors which describe how an in-

dividual Boid maneuvers based on the positions and velocities its nearby

flockmates. First behavior is separation which is steering to avoid crowding

local flockmates. The other behavior is alignment which is steering towards

the average heading of local flockmates and the last is cohesion; steering to

move toward the average position of local flockmates. Reynolds showed that

Boids behave just like real birds.
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Vicsek et al. reported the group behavior of real bacteria by simple model

[48]. The simple “nearest neighbors” method is proposed in order to inves-

tigate the emergence of autonomous motions in systems of particles with

biologically motivated interaction. In this method, particles are driven with

a constant absolute velocity and they choose the average direction of motion

of the particles in their neighborhood with some random perturbation added.

The developed model showed a good approximation to the motion of bacte-

ria that exhibit coordination motion in order to survive under unfavorable

conditions. This idea has then been widely used in the literature to attack

the problem of modeling the coordinated motion of a group of autonomous

mobile robots [53], [3], [28], [49].

Leader follower method is one of the most common approaches for forma-

tion control. In the leader following method one or more robots are assigned

as leaders and responsible for guiding the formation. The other robots are

required to follow the leader according to predefined behaviors. Examples

include papers by Wang [52], presented some simple strategies for a fleet of

autonomous robots to navigate in formation and studied the interaction dy-

namics of these robots with the presented navigation strategies. In this study,

several strategies which are based on leader following and neighbor following

are presented. The presented strategies include “Nearest-Neighbor Tracking”

in which each robot is assigned to maintain its desired position according to

its nearest neighbor. Another method presented is “Multi-Neighbor Track-

ing” in which several robots are assigned as leaders or the guardians of the

fleet. [35] and [16] are some more recent examples of the formation control

using the leader-follower strategy.
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Behavior based approach is used in many studies for shape formation.

In this approach, shape formation of the whole group is achieved through of

the individual agents by using the weighted sum of some basic and intuitive

behaviors. We can see successful applications of this idea in the subsumption

architecture [27], [24], [7].

Balch and Arkin presented a behavior-based approach to robot formation

keeping [5]. In this study, new reactive behaviors for implementing forma-

tions in robot groups are presented and evaluated. In this study, several mo-

tor schemas, move-to-goal, avoid-static-obstacle, avoid-robot and maintain-

formation are introduced. Each schema represents a vector representing the

desired behavioral response to the current situation of the robot and the

group. A gain value is indicated representing the importance of individual

behaviors. The high-level combined behavior is generated by multiplying the

outputs of each primitive behavior by its gain, summing and normalizing the

result. This method makes the robot group to be able to move to a goal lo-

cation while keeping in formation, avoiding obstacles and collision with other

robots. In [6], this approached is extended by an additional motor schema

which is based on a potential field method.

In [10], a novel behavior based approach is introduced for a platoon of

mobile robots to shape formation while avoiding collision with themselves and

external obstacles. It uses a hierarchy-based approach so called Null-Space-

based Behavioral (NSB) control. This control uses the null-space projection

to obtain the final motion command from outputs of multiple conflicting

tasks.

Potential function approaches to robot navigation provide an elegant

10



paradigm for expressing multiple constraints and goals in mobile robot nav-

igation problems [21]. One of the first work applying artificial potentials to

agent coordination is [36]. In this approach a distributed control for very

large scale robotic (VLSR) systems is presented. Simple artificial force laws

between pairs of robots or robot groups are introduced. This force laws are

inverse-power force laws which incorporates both attraction and repulsion.

These forces are used to reflect “social relations” among robots to a degree

and therefore this method is called “Social Potential Fields”. In this method,

each robot senses the resultant potential from components like other robots,

obstacles, objectives etc. and acts under the resultant force. In this approach

the parameters can be chosen arbitrarily to reflect the relationship between

the robots whether they should stay close together or far apart to form the

desired formation shape.

Yamaguchi and Arai [55] define a potential field on the space according to

the relative distances between neighbors. In this study, the shape-generation

problem is approached using systems of linear equations. Each robot, starting

at some initial location, changes its position according to a linear function of

its neighbors’ positions and some fixed constant. Simulations of the method

show that a group of initially collinear robots will converge into the shape of

an arc.

Song and Kumar [44] introduced a framework for control a group of

robots for cooperative manipulation task. In this framework, the trajectory

generation problem for cooperative manipulation task is addressed. This

framework allows the robots to approach the target object, organize them-

selves into a formation that will trap the object and then transport the

11



object to the desired destination. The robots in the group can also avoid

static obstacles. The controllers are derived from simple potential fields and

the hierarchical composition of the potential fields.

In [6], an approach which is inspired by the way molecules “snap” into

place as they form crystals; the robots are drawn to particular “attachment

sites” positioned with respect to other robots. Using this approach, a new

class of potential functions is developed for shape formation control of mul-

tiple robots homogeneous largescale robot teams while navigating to a goal

location through an obstacle field.

In [23] a shape formation method is presented for a heterogeneous robot

group. In this method, the robots are controlled to reach the goals while con-

trolling the group geometry, individual member spacing and obstacle avoid-

ance is managed. Bivariate normal probability density functions (pdfs) are

presented to construct the surface which swarm members move on to gener-

ate potential fields. Limiting functions are also introduced to provide tighter

swarm control by modifying and adjusting a set of control variables forcing

the swarm according to set constraints. In this method, the swarm mem-

ber orientation and the swarm movement as a whole is controlled by the

combination of limiting functions and bivariate normal functions.

In [25], the potential field approach is combined with virtual leaders

proposed in [20]. A virtual leader is a moving reference point that affects

the robots in the group by means of artificial potentials. Virtual leaders are

used to maintain group geometry and direct the motion of the group. In this

approach, the potential produced from functions of relative distance between

a pair of neighbors. The control force for an individual is derived as the minus

12



gradient of the sum of all potentials affecting that individual. This leads the

individuals are driven to the minimum of the total potential. The desired

group is achieved by designing local potentials with some predescribed inter-

vehicle spacing associated with virtual leaders which are moving reference

points.

In this study, a novel potential function approach for shape formation

of autonomous robot groups is developed. In this method implicit polyno-

mial representations and elliptic Fourier descriptors are used for describing

the formation shape. The implicit polinomial representation is used for pro-

ducing potential fields to make the robots reach to the desired formation

curve. When the robots reach the formation curve, the elliptic Fourier rep-

resentation of the curve is used to define a trajectory for each robot to make

the group travel around the curve. For coordination of the robot group, a

coordination control component is applied with the shape formation con-

trol component. The coordination component is modeled by linear springs

between each robot and its nearest two neighbours. In this method, the

implicit polynomials and elliptic Fourier descriptors introduces flexibility for

the formation shape. The method is applicable for heteregenous groups with

different number of robots.

2.2 Sensors in Shape Formation Control

The formation control of a robot team needs a good pose estimate of the

robot members, obstacles and targets. That is why; the sensor choice has

an important role for the success of the formation control implementation.
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Although numerous types of sensors exist in the market, in the formation

control of robot groups mainly ultrasonic range sensors and vision sensors

are used.

2.2.1 Ultrasonic Range Sensors

Ultrasonic rage sensors on robots are used for having distance measurement

of other robots and obstacles around. These sensors are practical because

valuable data is gathered with low computational costs. They also are robust

against changes in environmental factors such as temperature, color, etc.

compared to other sensing methods.

In formation control implementations, ultrasonic sensors are mostly used

as ultrasonic sensor rings attached to the robot base. Sensor rings helps

the robots to get multiple and more correct measurements and increases the

sensing range of the robot. This provides better tracking of changes around

the robot such as the movement of the robots and obstacles in a wider range.

In [4], ultrasonic range sensors are used this way. Two autonomous robots

equipped with 16 range sensors are used for hazard detection in formation

control implementations. The robots can be seen in Figure 2.1. In this

study, the experiments are run in a test area measuring approximately 10m×

5m. The robots are dictated to travel in formation in two environmental

conditions; with and without obstacles. The robots estimate their positions

using shaft encoders and each robot reports its position to the other one

using wireless communication.
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Figure 2.1: An example of ultrasonic sensor usage in formation control

2.2.2 Vision in Mobile Robotics

The pose estimate of the robot members, obstacles and targets is important

in formation control of a robot team. The main advantage of the cameras in

these applications is the richness of the provided data. Since the cameras are

getting cheaper and reaching higher data speeds, they are becoming more

advantageous. Processing the camera data may cost more than the other

sensors but the recent developments in the processor technology increases

the processing speed, decreasing the size and the costs of the processors

which make vision-based systems become more available for mobile robots.

Although cameras provide rich data, there are some limitations on this

data because of occlusion and view angle. The camera data cannot give infor-

mation about the environment which is beyond its view-angle or is occluded

by an obstacle, another robot etc. Omnidirectional cameras can be used for

15



solving the view angle limitation of the cameras. These cameras are widely

used in shape formation implementations. In [8], a cooperation strategy

based on omnidirectional vision is presented. This strategy is designed to be

applied on a heterogeneous robot group which is formed by small and simple

robots and a bigger leader robot with high computational power. In this

group, the leader robot has an omnidirectional camera and can see the small

robots. The formation strategy is based on non-linear control techniques and

the stability is proven using Lyapunov method. This is a centralized control

method that the leader robot uses its omnidirectional camera system to find

the positions of smaller robots and sends commands to them. The smaller

ones have their own controllers to maintain the commanded linear and angu-

lar velocities. Each follower robot is identified by a colorful rectangle on its

platform. The poses of the robots are estimated through color segmentation

and Kalman filtering.

The best information about the condition of the whole robot group, the

obstacles and the targets can be achieved by sharing the information of the

data from cameras with different positions and orientations if multiple cam-

eras are available. In [1], omnidirectional cameras are used as vision sen-

sors. Estimators that abstract sensory information at different levels enabling

a decentralized control are introduced. Some logical sensors using omnidi-

rectional images are developed. These sensors are an obstacle detector, a

collision detector, a decentralized state observer, and a centralized state ob-

server. The obstacle and collision detectors rely on edges on the images

and the remaining sensors uses color segmentation. Each robot is equipped

with colorful cylinders for this process. A blob extractor is used to the color
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Figure 2.2: An example of robots used in vision-based formation control

segmented image for each robot to isolate teammates within its own image.

On the other hand, the communication for data sharing brings extra com-

putational cost. That is why; there are also some researches for efficient shape

formation without the need of communication. In [31], a vision-based con-

trol strategy for decentralized stabilization of autonomous robot formation is

presented. This algorithm uses leader-follower relative distance and bearing.

The approach is based on an output feedback controller that uses a high-gain

observer to estimate robots’ relative positions. A pan-controlled camera on-

board the follower robot is used for data measurements. In [32], the authors

present a vision-based architecture for mobile robot detection and tracking

from single frames using off-the-shelf on-board cameras and fiducial markers.

The method aims to eliminate the need of inter-vehicle communication. In

the proposed approach, markers are distributed on the back of each robot on

truncated octagon shaped structures. Each face of these shapes have a code

17



that identifies the face and its position on the robot. These robots with the

identifications can be seen in Figure 2.2. Model-based pose estimation can

be stated as the nonlinear optimization problem. Relative position, bearing,

heading angles, and leader’s velocities are estimated by a dual unscented

Kalman filter proposed in this study.
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Chapter 3

Representation of Closed

Curves

In this study, the desired formation shape for the robot group is represented

using Elliptic Fourier Descriptors (EFDs) and Implicit Polynomials (IP).

These representations bring a high flexibility for the formation shape because

using these representations virtually any closed curve can be represented [15].

In this thesis, the implicit functions which are good for producing potential

functions are used for shape formation and the parametric functions are

employed for keeping the formation.

3.1 Elliptic Fourier Descriptors (EFD)

In shape formation of mobile robots, modeling of formation shape with finite

set of measures is one of the main problems. In general, any closed curve can

be described in terms of a set of Fourier series whose coefficients are called
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Fourier descriptors (FD). Fourier Descriptors are convenient in describing 2-D

and 3-D closed curves, as well as 3-D surfaces. Usage of FDs is advantageous

because the shape information is concentrated in the low frequency parts [13]

[51] [22] [56].

Granlund [13] proposed a method for representing closed shapes by using

Elliptic Fourier Descriptors (EFDs). The basic idea of the elliptic Fourier

descriptors is representing x and y coordinates of a point on the closed curve

by a Fourier series.

Figure 3.1: Basic idea of EFD

As it can be seen from Figure 3.1, a closed curve satisfies

x(s) = x(s + L)

y(s) = y(s + L) (3.1)
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where L is the total length of the curve, x(s) and y(s) are periodic functions

of the arclength, s. Using

t =
s

L
2π (3.2)

substitution these coordinates can be made 2π periodic functions of t, namely

s ∈ [0, L) ⇒ t ∈ [0, 2π) (3.3)

x(t) and y(t) will have the following Fourier expansions:

x(t) = a0 +
n∑

k=1

akcos(kt) + bksin(kt)

y(t) = c0 +
n∑

k=1

ckcos(kt) + dksin(kt) (3.4)

In this expression, a0, c0 are the mean values of x(t) and y(t), the coor-

dinates of the points on the closed-bounded curve, ak, bk, ck, dk are elliptic

Fourier coefficients which are used to model the closed-bounded curve and n

is a positive number which represents the number of the harmonics used to

represent the closed-bounded curve.

In [46], it is mentioned that each term of the summation in Equation 3.4

is the parametric form of an ellipse. The resulting contour can be viewed as

a composition of rotation phasors, each individually represent an ellipse and

rotating with a speed proportional to their harmonic number k. This can be

seen in Figure 3.2, where the contour is constructed using three ellipses.

In Figure 3.2, Co is the center of the first ellipse and each of other point is

the center of the next higher ellipse. The straight lines represent the phasors

for each ellipse shown at three different times. The point Cij traces out the

ith ellipse at time j. The points C31, C32, C33 are three point on the defined

closed curve.
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Figure 3.2: Closed curve constructed from three component ellipses

The computation of elliptic Fourier coefficients is considered in [22]. In

the cases where we have an array of m points of the closed contour, the

Fourier descriptors can be computed by a discrete approximation obtained

by the Reiman summation as

a0 =
1

m

m∑

i=1

xi c0 =
1

m

m∑

i=1

yi

ak =
2

m

m∑

i=1

xicos(kt) bk =
2

m

m∑

i=1

xisin(kt)

ck =
2

m

m∑

i=1

yicos(kt) dk =
2

m

m∑

i=1

yisin(kt) (3.5)

where m is the number of points describing the closed contour and xi, yi are

the coordinates of each point.
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3.2 Implicit Polynomial Representation

Virtually any closed-bounded curve can be represented by implicit polyno-

mial equations. Although elliptic Fourier descriptors are also successful for

representing complex closed-bounded curves, implicit polynomials allow a

better treatment of several problems. For example, using implicit polyno-

mials, it can be determined whether a point is on the curve and a measure

for the distance of a point to the closed curve, an algebraic distance, can

be defined. Using this property, the implicit function is used for producing

potential fields for shape formation.

The representation of the implicit curve has the following form

F (x, y) =
∑

0≤i+j≤d

aijx
iyj = 0 (3.6)

where x, y are point positions on the curve, aij is the coefficients and d is

the degree of the algebraic equation.

The implicit polynomial that represents the closed-bounded curve is not

easily determined directly from points. However, using the method developed

by [15], implicit polynomial representation for any closed-bounded curve can

be found through the elliptic Fourier description of this curve. In this method,

an n-harmonic elliptic representation of any 2-D closed curve is considered

as:

x(t) = a0 +
n∑

k=1

akcos(kt) + bksin(kt)

y(t) = c0 +
n∑

k=1

ckcos(kt) + dksin(kt) (3.7)

where k = 1, . . . , n, (a0, c0) is the center of the curve and ak, bk, ck, dk are

elliptic Fourier coefficients of the curve up to n Fourier harmonics. The well
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known relation

cos(kt) =
ejkt + e−jkt

2
sin(kt) =

ejkt − e−jkt

2
(3.8)

is used for substituting for cos(kt) and sin(kt) to obtain a complex exponen-

tial form of the elliptic Fourier descriptors in Equation 3.7:

x(t) = A0 +
n∑

k=1

Ake
jkt + Bke

−jkt

y(t) = C0 +
n∑

k=1

Cke
jkt + Dke

−jkt (3.9)

where

Ak =
ak − jbk

2
Bk =

ak + jbk

2

Ck =
ck − jdk

2
Dk =

ck + jdk

2
(3.10)

for k = 1, ..., n with A0 = a0 and C0 = c0. By substituting z for ejt,

x(z) = A0 +
n∑

k=1

Akz
k + Bkz

−k ≡
n∑

k=−n

g[k]zk

y(z) = C0 +
n∑

k=1

Ckz
k + Dkz

−k ≡

n∑

k=−n

h[k]zk (3.11)

where

g[k] =







Ak if k > 0

A0 if k = 0

Bk if k < 0

h[k] =







Ck if k > 0

C0 if k = 0

Dk if k < 0

(3.12)

If the g and h sequences are written as vectors

g =
[

Bn . . . B1 A0 A1 . . . An

]

h =
[

Dn . . . D1 C0 C1 . . . Cn

]

(3.13)
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then Equation 3.11 can be rewritten as

x(z) = g · ~z y(z) = h · ~z (3.14)

where

~zT =
[

z−n . . . z−l 1 z . . . zn

]

(3.15)

A well-known time convolution property of the z-transform states that:

g[k] ⇔ x(z) and h[k] ⇔ y(z) =⇒ g[k] ∗ h[k] ⇔ x(z)y(z) (3.16)

Noting that convolution in discrete time domain corresponds to multipli-

cation in the z domain. For example,

x2 = x(z)x(z) = Z{g[k] ∗ g[k]},

xy = x(z)y(z) = Z{g[k] ∗ h[k]},

y2 = y(z)y(z) = Z{h[k] ∗ h[k]}, (3.17)

The monomials for xp yq can be found similarly by writing the following

equation.
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0 . . . 0 1 0 . . . 0

g

h

g ∗ g

g ∗ h

h ∗ h

g ∗ g ∗ g
...

g ∗ h ∗ . . . ∗ h
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n−1
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n
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z−nd

...

z−1

1

z1
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znd


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




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







︸ ︷︷ ︸

~z

(3.18)

or simply Γ = P~z for some complex matrix P of the size (d + 1)(d + 2)/2 ×

(2dn + 1). P can be rewritten as

P = P̂


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
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















1 0 0 . . . 0 0 0

i 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0

0 i 0 . . . 0 0 0
...
...

. . .
...
...
...
...

0 0 . . . 1 . . . 0 0
...
...
...
...

. . .
...
...

0 0 0 . . . 0 1 0

0 0 0 . . . 0 i 0

0 0 0 . . . 0 0 1

0 0 0 . . . 0 0 i
































(3.19)
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for some unique, real (d + 1)(d + 2)/2 × (2d2 + 1) matrix P̂ . Then the

“largest” (d + 1)(d + 2)/2 − 1 = d(d + 3)/2 columns of P̂ are defined by

QR = P̂E using an orthogonal-triangular decomposition. In this equation Q

is an unitary matrix, R is an upper triangular matrix with diagonal elements

in order by decreasing absolute values, and E is a permutation matrix which

orders the coulumns of P̂E in correspondance with those of QR. The first

d(d + 3)/2 columns of P̂E is defines as P̃ . Then vector v that annihilates P̃

can be found from the yielding implicit polynomial function as

vΓ = fd(x, y) = 0 (3.20)

3.3 Examples for Closed-Bounded Curve Rep-

resentations

3.3.1 Representation of a Quadrangle Using 3 Har-

monics

In this example, a quadratic shape will be represented using the methods

presented in Sections 3.1 and 3.2. The complex curve in Figure 3.3 has

been represented by elliptic Fourier descriptors using 3 harmonics and with

a corresponding implicit polynomial of degree 6. The Fourier coefficients are

below:

a0 = 0.0200 c0 = 0.0300
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



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The implicit polynomial representation of the closed curve is found as

follows:

F (x, y) = 1.0000x6 − 0.0148x5y + 3.0032x4y2 − 0.0296x3y3 + 3.0063x2y4 − 0.0148xy5

+1.0031y6 − 0.1292x5 − 0.1650x4y − 0.1993x3y2 − 0.3409x2y3 − 0.0699xy4

−0.1756y514.0521x4 + 77.7449x3y − 70.3379x2y2 − 77.5463xy3 + 14.1695y4

−3.3998x3 − 0.5792x2y9.3872xy2 − 0.2937y3 + 135.7740x2 − 0.0244xy

+134.6475y2 − 5.1995x − 7.6102y − 228.2236 = 0

These representations can be seen in Figure 3.3. This figure is plotted

according to the found EFD and IP representations of the curve. It is seen

that a complex curve is represented successfully using both elliptic Fourier

descriptor and implicit polynomial. It is also seen that the Fourier reprepre-

sentation and implicit function representation matches well.

3.3.2 Representation of a Star-Like Shape Using 6 Har-

monics

A more complex shape is represented by using 6 harmonics with EFD and

with a corresponding implicit function of degree 12 using the implicitization
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Figure 3.3: Representation of a quadrangle by EFD and Implicit polynomial

method presented in [15]. The Fourier coefficients are found as:

a0 = −0.1000 c0 = 0.1000
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Figure 3.4: Representation of a star-like shape by EFD and Implicit polyno-

mial
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Resulting 12th degree polynomial has 91 coefficients which will not be

shown here. Figure 3.4 plots both EFD and implicit polynomial curve.
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Chapter 4

Control of Non-Holonomic

Mobile Robots

A robot is nonholonomic if it cannot instantaneously move in all available

directions and has some non-integrable velocity constraints on its movements.

For example, car-like vehicles are non-holonomic because they cannot move

sideways. The control of non-holonomic mobile robots is complicated because

their controllable degrees of freedom (DOF) is less than effective DOF. In

the recent years, there has been a significant research interest on the control

of non-holonomic systems. Some of the successful studies can be found in

[43], [42], [29], [18], [40], [12], [41].

In this work, non-holonomic mobile robots are used in the implementa-

tions. These mobile robots have two actuated wheels in the front and two

spherical wheels at the back which moves freely according to the leading of

the ones in the front. This kind of robots is referred as “Unicycle” robots.

In the following sections, the modeling and trajectory control of this type of
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non-holonomic mobile robots will be presented.

4.1 Modeling of Non-Holonomic Robots

The modeling of non-holonomic mobile robots is difficult because of the con-

straints. Simple dynamic and kinematic equations are not sufficient for mod-

eling these robots. For example, consider a 2-wheeled non-holonomic mobile

robot moving in 2-D, the orientation of this robot has an effect on its move-

ments in x and y directions. That is why; the orientation of the mobile robot

should also be considered in the kinematic model of this robot. There is a

widely known kinematic model for non-holonomic unicycle robots which is

given as:








ẋ

ẏ

θ̇








=








u1cosθ

u1sinθ

u2








(4.1)

where x and y are the Cartesian coordinates of the robot, θ is its orientation

angle with respect to the x axis, u1 and u2 are respectively its linear and

angular velocities.

The pose of the robot is represented by its position (x, y) and its orien-

tation θ. In the mentioned non-holonomic model, these pose variables are

considered to be outputs and the velocity variables are the inputs. The lin-

ear and angular velocities should be designed for the robot to achieve the

desired pose. The mathematical equations of the non-holonomic model can

be rewritten considering the two inputs of the system as:
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






ẋ

ẏ

θ̇








=








cosθ

sinθ

0








u1 +








0

0

1








u2 (4.2)

The velocities u1 and u2 in the above equations are related to the linear

velocities of the right and left wheels, uR and uL as:




u1

u2



 =




(uR + uL)/2

(uR − uL)/(2λ)



 (4.3)

where λ is the half length of the wheel axis as shown in Figure 4.1.

Figure 4.1: A Unicycle robot
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4.2 Trajectory Control of Non-Holonomic Mo-

bile Robots

The control of non-holonomic mobile robots is difficult since the non-holonomic

mobile robots have more DOFs than controllable ones. As it can be seen from

Equation 4.2, only two controls, the linear and angular velocities of the robot,

are used to control three outputs for the pose of the robot.

Although non-holonomic mobile robots are completely controllable in

their configuration space, they cannot be stabilized to a desired pose by

using smooth state-feedback control [43]. However, the feedback stabiliza-

tion of a point on a non-holonomic mobile robot was shown to be possible

in [42]. In that work, C. Samson and K. Ait-Abderrahim proved that feed-

back stabilization of the robot’s pose around the pose of a “virtual reference

robot” is possible provided that the reference robot keeps moving. This con-

trol problem has also been considered by Morin and Samson [29] and tracking

of time-variant reference trajectories are presented.

For time-variant reference trajectory tracking, the reference trajectory

should satisfy the nonholonomic constraint. This is ensured by defining

the trajectory using a virtual reference robot which moves according to the

model:








ẋr

ẏr

θ̇r








=








cosθr

sinθr

0








u1r +








0

0

1








u2r (4.4)

where (xr, yr) is position of the virtual reference robot according to the Carte-
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sian coordinates and θr is its orientation. u1r and u2r are respectively its

linear and angular velocities.

If xr, yr and θr are continuously differentiable and bounded as t → ∞ it

can be shown that:








u1r

u2r

θr








=








ẋrcosθr + ẏrsinθr

(ÿrẋr − ẍrẏr)/(ẋr
2 + ẏr

2)

arctan(ẏr/ẋr)








(4.5)

The tracking errors x̃, ỹ and θ̃ are defined as the difference between the

pose of actual robot and the virtual reference robot as follows:








x̃

ỹ

θ̃








=








x

y

θ








−








xr

yr

θr








(4.6)

For simplifying the control problem, new definitions for tracking errors,

e1, e2 and e3, are obtained based on the kinematic model of non-holonomic

robot in Equation 4.1 as:








e1

e2

e3








=








cosθ sinθ 0

−sinθ cosθ 0

0 0 1















x̃

ỹ

θ̃








(4.7)

Considering the inverse transformation of Equation 4.7 it can be shown

that as t → ∞







x̃

ỹ

θ̃








→ 0 if








e1

e2

e3








→ 0 (4.8)
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In [41], it is shown that with a proper selection of constant control gains,

k1 > 0 and k2 > 0, all tracking errors can be regulated to zero using the

following controls, u1 and u2, for time-variant reference trajectories:




u1

u2



 =




−k1e1 + u1rcose3

−u1r(sine3/e3) − k2e3 + u2r



 (4.9)
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Chapter 5

Shape Formation Control of

Mobile Robots

Shape formation is an important problem in mobile robot coordination be-

cause many coordination tasks need the robots to maintain a desired forma-

tion. It has a key role in mobile robotic tasks like navigation, carrying large

objects, search-and-rescue and hunting behaviors.

The desired formation shape, the number and type of mobile robots used

in formation change according to different task definitions. For example,

for carrying a large, complex shaped object, the mobile robots should form

this shape. This may also be required for search tasks, where an area of

a complex shape is searched; the robots should be able to form the shape

of this area. There may be constraints for the formation shape because of

some environmental conditions like obstacles or restricted areas for robots

which prevent formation of simple shapes. Besides, different number and

types of robots may be required in a task. Some tasks require very crowded
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groups of robots and some tasks require different types of robots with different

capabilities and sizes. Designing a shape formation control which is flexible

in the means of these factors presents a challenge in robot coordination.

In this study, a flexible shape formation method for maintaining and

keeping complex closed curve shapes is presented. The proposed method is

applicable for complex formation shapes and robot groups of different number

of robots and heterogenous groups.

In the presented method, two control phases are introduced for shape

formation. In the beginning of the first phase, the robots are randomly

positioned on the predefined workplace. The aim of this control is to reach

the desired formation shape while maintaining a coordination. The aim of

this coordination is to keep a predefied distance between each robot and its

neigbours. This coordination prevents collisions between robots and provides

that the group members stay together. The second phase starts when the

desired shape is reached. The aim of control in the second phase is to keep

the formation shape while allowing the robots travel around the contour

shape. While keeping the desired shape, the coordination should again be

considered.

For the design of the shape formation control, the robots are modeled as

point particles which have the kinematic model for ith robot as:




ẋi

ẏi



 =




ui

total

vi
total



 (5.1)

where ẋi and ẏi are the velocities of the particle in the x and y directions

respectively.

Then the formation control design is extended to non-holonomic mobile
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robots. In this method, the desired positions found for the point-particle

robots are used as reference for non-holonomic robots and these robots are

controlled using trajectory tracking method mentioned in Section 4.2.

In both phases of the shape formation, the final control input for the

robots
(

ui
total vi

total

)T

is calculated as the sum of coordination control

and formation control components, namely




ui

total

vi
total



 =




ui

coord

vi
coord



 +




ui

formation

vi
formation



 (5.2)

where
(

ui
coord vi

coord

)T

is the coordination component of the control and
(

ui
formation vi

formation

)T

is formation component of the control. The

design of these components is presented in the following sections.

5.1 Coordination Control

The robots are assigned to be in coordination while forming the desired shape

during the both two phases of the formation control. The coordination avoids

collisions between the robots. It can also provide optimum usage of the group

energy. For example, for a task that the robots are assigned for searching an

item in the defined field, it increases the efficiency of the work if the robots

keep a distance between them according to the range of their sensors. Also in

the case that the robot group carries a load around the defined curve, keeping

the desired distance between the neighbours will be extremely important.

In the proposed coordination, each robot keeps a predefined desired dis-

tance between itself and its two nearest neighbours. This is a reasonable

39



Figure 5.1: Modeling of coordination control

coordination because while travelling on a line curve, there are two neigh-

bours which should be considered; the robot at the back of the robot and the

one in the front. Since these two robots will consider their own neighbors at

the back and in the front, as a result of this coordination, the robot group is

expected to line up around the curve with the desired distance kept between

each robot.

The coordination between each robot and its two nearest neighbours is

modeled with virtual linear springs. These springs are placed between each

robot and its two nearest neighbours, as it can be seen in Figure 5.1. Each

of these springs produces a virtual attraction or repulsion force according to

the distance between the robots. The coordination component of the control

is found with the sum of these spring forces.

The proposed virtual springs have a normal length which is equal to the

desired distance between the neighbours. The virtual force produced by the
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springs is linearly proportional to the difference between the actual distance

and the desired distance of the neighbouring robots. The force of the spring

is on the direction of the vector from the ith robot to its neighbor. The

control component of coordination for each robot is the sum of these forces

from its two nearest neighbours, namely:



ui

coord

vi
coord



 = k(ddesired − dip
actual)




xi − xp

yi − yp



 /

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

xi − xp

yi − yp

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

+k(ddesired − diq
actual)




xi − xq

yi − yq



 /

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

xi − xq

yi − yq

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(5.3)

where k is positive number which is an adaptable spring constant. The unit

of k is 1/seconds. p and q are the indices for the robots that are the nearest

two neighbors of ith robot. dip
actual and diq

actual are the actual distances of the

robot i from the robots p and q respectively. (xp, yp) and (xq, yq) are the x

and y position coordinates of the robots p and q.

The spring constant in the Equation 5.3 is different when the robot is

in shape formation and keeping formation phases. A larger spring constant

is used in the first phase than in the second one. The reason is that the

robots are desired to keep a more strict coordination while they are reaching

the desired curve. But when they reache the curve, the spring constant is

decreased to make the robots be able to keep the shape of the complicated

closed curve. [14] is a similar study for coordinating the robots by modeling

with virtual springs and adapting the spring constants during the formation

process. The strictness of the coordination can be changed with the spring

constant for any specific task. The effect of the coordination control can be

increased by increasing the spring constant when a task requires the desired
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distance between the robots to be kept more strictly.

5.2 Formation Control Using Implicit Poly-

nomial Potential Functions

According to the proposed method, in the first phase robots are controlled to

achive the desired formation shape. This control is used for the time interval

from the beginning, when the mobile robots are randomly positioned in the

predefined workplace, until the desired formation shape is achieved by the

robots.

The implicit polynomial representation of the curve given as Fd(x, y) = 0

is used for the design of the formation component of control input. The

position error of the ith robot according to the curve is given by the algebraic

distance function using the implicit equation as

ei
form = F (xi, yi) (5.4)

where ei
form is the position error of ith robot with respect to the desired

curve and xi and yi are positions of this robot. Since the aim of the shape

formation control is to make this position error decrease to zero for the shape

formation to be achieved, it will be designed to force the error to decrease

exponentially, namely

ėi
form = −λei

form (5.5)

where λ is a positive number. Substituting ei
form = F (xi, yi) into Equation

5.5 yields

Ḟ (xi, yi) = −λF (xi, yi) (5.6)
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By using chain rule of differentiation, Equation 5.6 can be rewritten as:

Fx(xi, yi)ẋi + Fy(xi, yi)ẏi = −λF (xi, yi) (5.7)

where Fx(xi, yi) and Fy(xi, yi) are the partial derivatives of function F (x, y)

in the x and y directions at the point (xi, yi). Equation 5.7 can be rewritten

in the vector form as:

(

Fx(xi, yi) Fy(xi, yi)
)




ẋi

ẏi



 = −λF (xi, yi) (5.8)

which in turn implies that

(

Fx(xi, yi) Fy(xi, yi)
)




ui

formation

vi
formation



 = −λF (xi, yi) (5.9)

Equation 5.9 will be used for designing the two control inputs ui
formation

and vi
formation. It can be seen that this is an underdetermined case because

there are two unknowns, ui
formation and vi

formation but we have one equation.

In this case, infinitely many solutions can be found. In this study, the opti-

mum solution, which requires less power and time from the system, will be

used as the control input. Considering an equation in the form

AX = Y (5.10)

where Y is a m × 1 vector, X is a n × 1 vector and A is a m × n matrix.

If m < n, this equation is an underdetermined equation as in the case of

Equation 5.9. It is known that the optimum solution of X satisfying the

equation can be found using the Pseudo inverse of A matrix as:

X = AT (AAT )−1Y (5.11)
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When the same approach is applied to Equation 5.9, assuming that

A =
(

Fx(xi, yi) Fy(xi, yi)
)

= ∇F (xi, yi)
T

X =
(

ui
formation vi

formation

)T

Y = −λF (xi, yi)

where X is a 2×1 vector, Y is a scalar and A is 1×2. The optimum solution

is found as




ui

formation

vi
formation



 = −λ∇F (xi, yi)(∇F (xi, yi)
T∇F (xi, yi))

−1F (xi, yi) (5.12)

Since (∇F (xi, yi)
T∇F (xi, yi)) is a scalar, Equation 5.12 can be rewritten

as:



ui

formation

vi
formation



 = −λ
1

||∇F (xi, yi)| |2
F (xi, yi)




Fx(xi, yi)

Fy(xi, yi)



 (5.13)

5.3 Keeping Formation Using Elliptic Fourier

Descriptors

In the second phase of the formation control, after the robots reach the

desired formation, a new control is proposed. The aim of this control is to

allow the robots to travel around the predefined formation curve while still

keeping the formation and coordination with the other robots. The potential

application areas of this control include the tasks in which the robots are

assigned to search a substance or carry some load around the defined curve.
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For the design of the formation keeping control, the parametric repre-

sentation of the desired formation is used. This representation is a function

of time t. That’s why; the parametric representation is good for trajectory

generation. The desired position (x∗(t), y∗(t)) at time t can be found using

the Equation 3.4, as:

x∗(t) = a0 +
n∑

k=1

akcos(kt) + bksin(kt)

y∗(t) = c0 +
n∑

k=1

ckcos(kt) + dksin(kt) (5.14)

This definition of reference gives a trajectory which moves around the

desired closed curve. This trajectory representation starts from a specific

point (x(0), y(0)). In the application of this method, it is more sufficient

for a robot to start traveling from the point that it reached the formation

curve than starting from the point (x(0), y(0)). That is why, the trajectory

is shifted for each robot to make it start with the point they reach the curve

according to the equation below:

x∗
i (t) = x∗(t + ti)

y∗
i (t) = y∗(t + ti) (5.15)

where (x∗
i (t), y

∗
i (t)) is the desired position for robot i at time t and x∗

i (t+ ti),

y∗
i (t+ ti) are found according to Equation 5.14. In this equation, the shift in

the time, ti, satisfies the equation below:

x∗(0 + ti) = x∗
i (0)

y∗(0 + ti) = y∗
i (0) (5.16)
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where (x∗
i (0), y∗

i (0)) is the position that the ith robot reaches the desired

curve.

The formation keeping control is designed according to this trajectory def-

inition. For simplicity, the general trajectory presentation (x∗
i (t), y

∗
i (t)) will

be used, without loss of generality, while presenting the design of formation

control.

The position error ei
form of the ith robot is defined as the difference be-

tween the desired position and the actual position of this robot at time t,

namely:

ei
form =




x∗

i (t)

y∗
i (t)



 −




xi(t)

yi(t)



 (5.17)

where x∗
i (t) and y∗

i (t) are the desired positions and xi(t) and yi(t) are the

actual positions.

The aim of the control is to decrease this position error to zero. That is

why; the control is designed to make the error decrease exponentially as in

the following equation

ėi
form = −λei

form (5.18)

The time derivative of the position error, ėi
form is found by taking the

time derivatives of both sides in the Equation 5.17, namely:

ėi
form =




ẋ∗

i (t)

ẏ∗
i (t)



 −




ẋi(t)

ẏi(t)



 (5.19)

which in turn implies that

ėi
form =




ẋ∗

i (t)

ẏ∗
i (t)



 −




ui

formation

vi
formation



 (5.20)
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Then the formation keeping control
(

ui
formation vi

formation

)T

is found as:




ui

formation

vi
formation



 = λei
form +




ẋ∗

i (ti)

ẏ∗
i (ti)



 (5.21)

5.4 Shape Formation Control of Nonholonomic

Robots

The shape formation method presented in the previous sections was designed

for point-particle model. This method is extended for the formation control

of non-holonomic mobile robots by using the desired positions found from this

model as references for the nonholonomic robots. A block diagram explaining

the shape formation control method for a non-holonomic mobile robot can

be seen in Figure 5.2.

Figure 5.2: Shape formation control for nonholonomic robot

In this figure, the “Desired Curve Representation” block provides the

EFD and implicit polynomial representations of the desired formation curve.
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“Positions of nearest two neighbors” block finds the two group members

which are nearest to the robot and gives their positions. Using these pa-

rameters and the position data of the non-holonomic robot, “Point particles

control” block produces the shape formation control, u and v. The desired

positions x∗ and y∗ are found by taking the integral of these control inputs.

The initial positions of the point particle robots are the same as the initial

positions of the non-holonomic robots.

The “Non-holonomic control” block produces the appropriate control in-

puts, u1 and u2, for the non-holonomic mobile robot according to the desired

positions and the pose of the robot. This block uses the trajectory tracking

control principles presented in Section 4.2. If the control inputs are above

the limits of the robot, they are saturated.

48



Chapter 6

Simulation Results and

Discussions

The simulations are done for testing the performance of the proposed for-

mation control presented in Chapter 5. In the first part of the experiments,

the mobile robots are modeled as point particles. In the second part of the

simulations, robots are modeled as non-holonomic robots according to the

model presented in Chapter 4. The desired positions in the point particle

robot model have been used as references to non-holonomic robots in the

second part.

The first simulation in each part is done with one robot to see the ef-

ficiency of the proposed formation control. The remaining simulations are

done with multiple robots to see the success of the control with both forma-

tion and coordination components.

In the simulations, the robots are initially randomly placed in a prede-

fined area in the workplace. The task of the robots is to reach the desired
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formation curve and travel around the curve while keeping the formation in

a coordinated manner.

The simulations are performed in Matlab. The program is written to be

modular so that the simulations can be carried out with any desired number

of robots.

In simulations, parameters are chosen to be λ = 5, kShapeFormation = 6,

kKeepFormation = 1 and ddesired = 1.

6.1 Simulations with Point Particle Model

In this part of the simulations, the robots are modeled as point particles.

Three simulations are done in this section, which are simulation with a single

robot and with groups of robots with 5 and 6 agents.

6.1.1 Simulation Results for a Single Robot

In this part, one robot is simulated with a complex closed curve which is

represented by a Fourier descriptor function using 7 harmonics and a corre-

sponding implicit polynomial with degree of 14 using the methods in Chapter

3. The initial position of the robot is: x = 2.5, y = −2. The route of the

robot under the control of the proposed formation control can be seen in

Figure 6.1.

In Figure 6.1, the solid thin line shows the desired formation shape. The

thick black line represents the route of the mobile robot.

It is clearly seen that the proposed method is successful to make the robot

directly reach the desired complex curve. In the second part of the control,

50



−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x

y

Figure 6.1: Route of a point particle mobile robot

the robot travels around the formation shape successfully.

6.1.2 Simulation Results for 5 Robots

In this part, the proposed method is simulated on a group of 5 robots. The

desired formation shape is an ellipse. This desired shape is represented by

an elliptic Fourier descriptor with 1 harmonics and corresponding implicit

polynomial of degree 2. This desired formation shape and the behaviours of

the robots can be seen on Figure 6.2.
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Figure 6.2: Desired formation (ellipse) with 5 point particle robots
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It is seen in the figure that the robots approached the desired curve by

keeping the desired distance between their nearest two neighbours. When

the robots reach the curve, they start traveling around that curve. It is seen

that a desired distance is kept between the robots while traveling. The robots

were able to keep the formation successfully.

6.1.3 Simulation Results for 6 Robots

In this simulation, the proposed method is applied on a group of 6 robots.

The desired pattern is a more complicated star shape which is represented

by 7 harmonics and a corresponding implicit polynomial of degree 14. The

resulting behaviours of the mobile robots with the proposed formation control

can be seen in Figure 6.3

Examination of these figures reveals the fact that although the initial po-

sitions of the robots are far away from the desired formation curve, proposed

method enables robots to achieve and maintain the desired formation while

keeping good coordination with each other.
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Figure 6.3: Desired formation (star shape) with 6 point particle robots
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6.2 Simulations with Non-Holonomic Model

In this part of the simulations, the robots are modeled as non-holonomic mo-

bile robots according to the model presented in Chapter 4. In these simula-

tions, the position references for the non-holonomic mobile robots are found

by the desired positions of the mobile robots in the point-particle model,

which is simulated in the previous section. This simulation is built on the

previous simulation model in that sense.

The success of the proposed shape formation control design mobile robots

with point particle model, has been seen by the simulation in the previous

section. The aim of the simulations in this section is to see the success of the

proposed shape formation control on non-holonomic mobile robots. In this

simulations, u1, the linear velocity of the robots, is limited to 0.04 and u2,

the angular velocity, is limited by 0.04π in a unit time. These are reasonable

limitations when the unit time is thought to be 0.01 seconds.

In the first simulation, there is a single robot with a desired formation

shape which is a complex curve. The other two simulations are done with

a robot group of 5 robots with an elliptic formation shape and a group of 6

robots with a more complex formation shape.
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6.2.1 Simulation Results for a Single Robot

In this part of the simulation, a single non-holonomic robot is simulated.

This robot starts from the position x = 2.5, y = −2.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x

y

Figure 6.4: Route of non-holonomic mobile robot

When the figure is examined, it can be seen that the robot reached the

desired curve successfully. It is seen that some oscillations occured after

the robot reaches the curve. This oscillations occured because of the non-

holonomic restrictions on the velocity of the robot. After the robot is settled

on the formation curve, the robot is seen to travel along the curve successfully.
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6.2.2 Simulation Results for 5 Robots

In this part, a group of 5 non-holonomic robots is simulated. In this simu-

lation, the desired curve is an ellipse which is represented by EFDs with 1

harmonic and a corresponding IP of degree 2. The result of this simulation

can be seen in Figure 6.5.

In the figure, the black points are the non-holonomic mobile robots and

the red points are the desired positions for these robots. It can be seen

that the robots reached the formation curve and traveled around this curve

in a coordination. Because of the non-holonomic constraints on the linear

and angular velocities, the robots could not catch the references at first but

it is seen that they catched these references after a while and reached the

formation as in the point-particle model.

6.2.3 Simulation Results for 6 Robots

In this simulation, a group of 6 non-holonomic mobile robots are simulated.

The desired formation shape is a more complex one which is represented by

EFDs with 7 harmonics and a corresponding IP of degree 14. The result can

be seen in Figure 6.6.

In the figure, black points are the non-holonomic robots and the red ones

are reference points. Inspecting the figures show that the non-holonomic

robots reached the curve and traveled around it by keeping the coordination.

It is seen that the non-holonomic constraints caused some error on the shape

formation but this error decreased by the time.
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Figure 6.5: Desired formation (ellipse) with 5 non-holonomic robots
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Figure 6.6: Desired formation (star shape) with 6 non-holonomic robots
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Chapter 7

Experimental Results

In the previous chapters, our method for shape formation has been described

and the success of this method has been shown with simulations. In this

chapter, the performance of the algorithm will be examined using real mobile

robots.

7.1 Assumptions

The implementations are done on a flat surface of the size 260cm × 200cm.

It is assumed that there are no obstacles other than the robots. In the

implementations, robots are assumed to be visible during the implementation

by the vision system which will be presented in detail in Subsection 7.2.2. It

is also assumed that the target formation shape is predefined.
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7.2 The System

7.2.1 Our Robots

In the implementations, a modified version of Trilobot [38] mobile robots

are used. The implementation robot can be seen in Figure 7.2.1. Trilobot

is a non-holonomic mobile robot with two actuated wheels. It has several

sensors including sonar range sensor, passive infrared motion detector, a

digital compass, whiskers and motor encoders. 8 whiskers are placed around

the robot near the ground and other sensors are on a pan-tilt head structure.

The body dimensions of the robot are 30cm × 30cm × 30cm.

Figure 7.1: The robot used in the shape formation implementations

Trilobot has an onboard microcontroller which is responsible for driving

motors and manage the data from the sensors. In Trilobot, a 2k EEPROM is

available to the master processor for storage of parameters. Simple programs

can be written to the unoccupied space in this memory for onboard processor.

For complex programs, the robot is available to be controlled from an

external PC. The microcontroller can communicate with a PC using serial
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RS-232 interface. Using the communication protocol of Trilobot, motor driv-

ing commands can be sent and sensor data can be reached.

The implementations of this work need complex programming for data

processing, networking for data transmission and motor controls. The on-

board processors of Trilobots would not be sufficient for these tasks. That is

why; new small but powerful PC’s; Via Epia EN15000Gs are placed on the

robots. This PC can be seen in Figure 7.2

Figure 7.2: The powerful PC on implementation robots

One of the main advantages of Via Epia EN15000G is its small size. This

PC is 17cm ×17 cm which is quite appropriate considering the size of the

Trilobots. Another important feature of this PC is that it consumes very low

energy according to similar PCs. EN15000G, has several useful ports like

4 USB2.0 ports, serial port, PS2 mouse port, PS2 keyboard port. Lithium

polymer 14.8 V 2200mA rechargeable batteries are used for the robot and

the processor instead of the original D-cells batteries. This decreased the

load on the robots for a better performance.

Via Epia EN15000G is fully compatible with Microsoft Windows and
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Linux operating systems. In the implementations, Windows XP operating

system is used. The coding is done with Visual Studio C++. The PCs are

connected to the processor of the Trilobot through RS-232 communication

from serial port. The data transmission is achieved by a wireless computer-to-

computer network which is built using Asus WL-167G usb2.0 wireless LAN

adapters which provide wireless network access with IEEE 802.11g protocol.

7.2.2 Vision System

For implementations of the proposed method, the positions of the robots

and the desired formation shape should be known implicitly. In our shape

formation implementation scenario, there are several mobile robots and there

is a target shape which should be formed in a specific coordinate. In this

scenario, the target position can be far from the robots that it may not be

recognized by their on-board sensors.

A supervision system implemented with a bird-eye-view camera which

can see the whole environment is useful for this senario. It is a realistic task

definition that the mobile robots are desired to reach a desired formation in

a field and some supporting vehicles such as helicopters can send data to the

mobile robots about the positions of the desired shape and the robots. This

system is implemented by placing a camera on the ceiling of the implemen-

tation room.

In the implementation, this bird-eye-view camera is connected to a central

computer. The driving commands for robots are produced by this computer.

The commands for each robot are sent through wireless connection. For this

communication a computer-to-computer connection is used.
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In this system, Visual Studio C++ is used for image processing, producing

the velocity control commands and sending control commands to the robots

in the central unit. OpenCV library [45] is used for image processing to

model the desired shape and track the robots. Two signs are placed on each

robot to mark its left and right sides. These signs are tracked using a Kalman

filter. Using the positions of these two signs, the position and orientation of

the robots are calculated.

The wireless data sending is done through a socket programming code.

In this socket programming, the central unit works as server and each robot

connects to the server as clients. The desired control command is sent as a

character array according to a predefined protocol. This protocol is designed

for keeping number of sent characters small but sufficient for increasing the

communication speed.

The robots listen to the socket constantly and when a data is received

from socket, the data is sent to the serial port according to the protocol of

Trilobot. Windows XP operating system restrains data sending and receiving

through serial port. This problem is solved by using Marshallsoft serial com-

munications component library (WSC4C) [9] with the C++ code. WSC4C

allows communicating through serial port using a C/C++, Visual C++, C#

or .Net program. The velocity control commands sent to the processor of

Trilobot are processed and the motors are controlled accordingly by the pro-

cessor. In Figure 7.2.2 the connection between the PC and the processor of

the robot can be seen in detail.
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Figure 7.3: RS-232 connection between PC and the processor of Trilobot

7.3 Experiments

In the first part, the implementation will be made using a single robot to

see the behaviour of this robot under the shape formation control. Then the

implementation will be made on a robot group of 3. In the implementations,

a simple circular formation shape is used.

7.3.1 Experiment with One Single Robot

The aim of this experiment is to observe the formation control on a real

non-holonomic mobile robot. In this implementation, the robot start from

a random position in the workplace, reaches the desired curve and travels

around this curve. Some frames from the implementation result can be seen

in Figure 7.4.

It is seen that the non-holonomic mobile robot reached the desired curve

and traveled around this curve successfully.
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Figure 7.4: Implementation of shape formation with a single robot

7.3.2 Experiment with a Robot Group

The aim of this experiment is to see the effect of the formation control with

the coordination control on real robots. Frames from the experiment results

can be seen in Figure 7.5.

In the figures it is seen that the robots reached and kept the desired

formation shape in coordination. It is seen that even the robots started
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Figure 7.5: Implementation of shape formation with 3 robots

in a positions in which the distance between each other is smaller than the

desired, the required distance is achieved. The robots kept this distance until

finishing the formation and while keeping the formation.
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Chapter 8

Conclusion

In this thesis, a flexible shape formation method which uses elliptic Fourier

descriptors and implicit polynomials for representing complex closed curves is

presented. The proposed method is applicable for complex formation shapes,

groups of different sizes and heteroenous groups. The success of this method

is shown through simulations for robots of point-particle and non-holonomic

models. This method is also implemented on real non-holonomic mobile

robots.

Particularly, in Chapter 2 formation control methods in the literature are

summarized. In Chapter 3 the representation of complex closed curves using

elliptic Fourier descriptors and implicit polynomials are presented. By the

examples, the flexibility of these representations are demonstrated. Chapter

4 was on modeling and trajectory control for non-holonomic mobile robots.

A novel method for shape formation control is developed in Chapter 5. The

aim of this formation control is to achieve a desired complex formation shape

and to keep it while traveling around the formation shape in a coordinated
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manner. The coordination aims to keep a desired distance between the robots

and their neighbors. In this method, two phases are presented for shape for-

mation. The first phase starts at the beginning of the formation until the

robots reach the desired formation shape. In this phase, the implicit poly-

nomial representation of the complex curve is used for producing potential

functions. The second phase is employed for the robots to travel around the

formation curve after they reach the curve. In this phase, the elliptic Fourier

description of the curve is used for the control design. The coordination of

the robots is modeled by artificial linear springs between each robot and its

nearest two neighbors.

In Chapter 6 simulations are done for robots of particle-point and non-

holonomic models. In the first parts of these simulations, a single robot is

used to see the success of the shape formation control for a complex shape.

In the second parts, multiple robots are used to see the success of the shape

formation method with the coordination control. It is seen that the robots

have reached and kept the desired formation shape in all of the simulations.

In the simulations which multiple robots are used, the desired distance is

observed to be kept between the neighbors. In Chapter 7, implementations

are done with real non-holonomic mobile robots. In the first implementation

single robot is used and the success of the proposed formation control is

seen. The second implementation is done with multiple robots to observe

the success of the formation control with coordination.

As a future work, obstacle constraints can be added to the presented

shape formation control. Also this method can be investigated for 3D shape

formation of mobile robots.
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