
Efficient Distributed Privacy Preserving

Clustering

Mahir Can Doǧanay

Submitted to the Graduate School of Sabancı University

in partial fulfillment of the requirements for the degree of

Master of Science

Sabanci University

August, 2008

Efficient Distributed Privacy Preserving Clustering

Approved by:

Assist.Prof. Yücel Saygın

(Thesis Advisor)

Assoc.Prof. Erkay Savaş

Assoc.Prof. Albert Levi

Assoc.Prof. Mehmet Keskinöz

Assist.Prof. Hüsnü Yenigün

Date of Approval:

ii

c© Mahir Can Doǧanay, 2008

All Rights Reserved

Efficient Distributed Privacy Preserving Clustering

Mahir Can Doǧanay

Computer Science & Engineering, Master’s Thesis, 2008

Thesis Supervisor: Yücel Saygın

Keywords: Privacy Preserving Data Mining, Clustering, Secure Multiparty

Computation, Secret Sharing

Abstract

With recent growing concerns about data privacy, researchers have focused

their attention to developing new algorithms to perform privacy preserving

data mining. However, methods proposed until now are either very inefficient

to deal with large datasets, or compromise privacy with accuracy of data

mining results.

Secure multiparty computation helps researchers develop privacy preserv-

ing data mining algorithms without having to compromise quality of data

mining results with data privacy. Also it provides formal guarantees about

privacy. On the other hand, algorithms based on secure multiparty computa-

tion often rely on computationally expensive cryptographic operations, thus

making them infeasible to use in real world scenarios.

In this thesis, we study the problem of privacy preserving distributed

clustering and propose an efficient and secure algorithm for this problem

based on secret sharing and compare it to the state of the art. Experiments

show that our algorithm has a lower communication overhead and a much

lower computation overhead than the state of the art.

iv

Verimli Mahremiyeti Koruyan Daǧıtık Kümeleme

Mahir Can Doǧanay

Bilgisayar Bilimi ve Mühendisliǧi, Yüksek Lisans Tezi 2008

Tez Danışmanı: Yücel Saygın

Anahtar Kelimeler : Mahremiyeti Koruyan Veri Madenciliǧi, Kümeleme,

Güvenli Çok Partili Hesaplama, Paylaşımlı Şifreleme

Özet

İnsanların son yıllarda artan mahremiyet kaygıları veri madenciliǧi alanında

çalışan araştırmacıları mahremiyeti koruyan veri madenciliǧi algoritmaları

geliştirmeye zorluyor. Ancak şu ana kadar ortaya atılan algoritmalar ya çok

büyük veri yıǧınları üzerinde etkisiz kalmakta, ya da insanları mahremiyet

ve sonuç kalitesi arasında bir seçim yapmaya zorlamaktadır.

Güvenli çok partili hesaplama yöntemleri veri madenciliǧi algoritmalarının

sonuç kalitelerini bozmadan veri mahremiyetini korumaya imkan tanımaktadır.

Ancak güvenli çok partili hesaplama yöntemi ile geliştirilmiş mahremiyeti

koruyan veri madenciliǧi algoritmaları, açık anahtar şifreleme teknikleri kul-

lanılarak geliştirilmektedir. Bu da bu algoritmaların gerçek hayatta büyük

veri yıǧınları üstünde kullanılmasını imkansız kılmaktadır.

Bu tezde açık anahtar şifreleme yerine paylaşımlı şifreleme tekniǧine dayanan

bir daǧıtık kümeleme algoritması önerilmiştir. Yapılan testlere göre algo-

ritma şu ana kadar ortaya atılan eni iyi algoritmalardan çok daha hızlı

çalışmakta ve partiler arası daha az veri transferi gerektirmektedir.

v

Acknowledgments

Firstly I would like to express my gratitude to Dr. Yücel Saygın for his sup-

port during my entire graduate study. He has always been supportive and

understanding and always provided me with good advice on any matter. I

would like to especially thank him for encouraging me to register for confer-

ences and summer schools and pay all the expenses. This really helped me

to broden my vision in the area of computer science.

I would like thank TÜBİTAK, for providing me the financial support with

their excellent scholarship program for graduate studies. I am proud to be a

recipient of this scholarship.

I would like thank Dr. Erkay Savaş and Dr. Albert Levi, who has shown

great interest in my work and guided me with their helpful comments all the

way.

I would like to thank Thomas B. Pedersen, most of the ideas in this thesis

were inspired by our on-board discussions with him.

Finally, I would like to thank my fellows, Ulvi, Ayşegül, Övünç, Ersin,

İsmail Fatih, Sezin, Selim, Cengiz, Ömer, Hakan, the people whom I spent

great time with in Cryptography & Information Security Lab.

vi

Contents

1 Introduction 1

2 Background 4

2.1 Clustering . 4

2.1.1 Partitioning based methods 4

2.1.2 Hierarchical Clustering 5

2.1.3 Density based Clustering 5

2.2 Spatio-Temporal Clustering 6

2.2.1 Trajectory Distance Measures 6

2.3 Secure Multiparty Computation 7

2.3.1 Homomorphic Encryption 8

2.3.2 Secret Sharing . 8

3 Privacy Preserving Data Mining 10

3.1 Data Perturbation Based Algorithms 10

3.2 Secure Multiparty Computation Based Algorithms 11

4 Privacy Preserving Clustering 14

4.1 K-means Clustering Algorithm 14

4.1.1 Problem Definition . 15

4.1.2 Secure Closest Cluster Computation 18

4.1.3 Secure Permutation . 22

4.1.4 Secure Minimum Element 23

4.2 Other Clustering Methods . 25

4.3 Privacy Preserving Trajectory Clustering 27

vii

4.3.1 Spatially Shifted Trajectories 27

4.3.2 Temporally Shifted Trajectories 28

5 Privacy Discussion 31

5.1 Privacy in our algorithm . 31

5.2 Security Comparison . 33

6 Cost Analysis 35

6.1 Communication Cost Analysis 35

6.2 Computation Cost Analysis 37

6.3 Experimental Results . 38

7 Conclusion 43

References 45

viii

List of Figures

1 Secure Permutation Protocol 23

2 Spatially shifted trajectories 28

3 Two temporally shifted trajectories 29

4 Communication cost(1st dataset) 39

5 Communication cost(2nd dataset) 40

6 Computation cost(1st dataset) 41

7 Computation cost(2nd dataset) 42

ix

1 Introduction

Data mining can best be described as the process of turning data into use-

ful knowledge. Massive amounts of data are collected for various reasons

by many organizations with the hope that data mining technology will ex-

tract useful knowledge from the collected data and turn it into something

beneficial. Data mining technology has been proven successful in numerous

applications such as business intelligence, health sciences, traffic management

and security related topics like credit card fraud detection.

However, increasing privacy concerns have begun to put large scale data

mining projects in jeopardy, largely due to the projects carried out by the

Department of Homeland Security in U.S. Privacy concerns even lead to can-

cellation of large scale projects because they failed to meet privacy concerns.

According to a recent article in Computer World by Jaikumar Vijayan “The

chairman of the House Committee on Homeland Security, has asked Depart-

ment of Homeland Security Secretary Michael Chertoff to provide a detailed

listing of all IT programs that have been canceled, discontinued or modified

because of privacy concerns”[25]. Due to these privacy concerns, data mining

researchers have focused their attention to developing techniques that would

enable data mining while preserving the privacy of individuals and started a

popular branch of research named “privacy preserving data mining”[1].

Today, the need for efficient privacy preserving data mining methods is

more than ever. With many governmental and private institutions collect-

ing data about their clients and users, nowadays personal data about an

individual resides on several servers. In some cases, it is useful to combine

this data and perform data mining on the union of this personal data when

1

analysis of this data is of mutual interest to all data holders. In this case,

protecting privacy becomes not only the individuals’ concern, but data hold-

ers also must pay attention to protecting the indivuals’ data they posses due

to contractual obligations. Thus, there is a need for privacy preserving data

mining algorithms which can work in a distributed scenario.

Over the years, algorithms based on statistics and cryptography were

proposed for privacy preserving data mining problems such as classification,

clustering, and pattern mining that work in centralized and distributed envi-

ronments. However, privacy preserving data management in general, is still

an ongoing research topic, and efficient, as well as provably secure, methods

without strong assumptions are yet to be proposed.

In this thesis, we address privacy preserving clustering of data sets verti-

cally partitioned among multiple sites. We propose a new secure multiparty

computation based algorithm for distributed privacy preserving clustering

that is both more efficient and faster than the state of the art for this prob-

lem. As a case study we chose k-means clustering of moving object trajec-

tories to show the effectiveness of the proposed scheme. In this scheme, we

eliminate the computationally heavy public key encryption operations and

base our algorithm on secret sharing as the cryptographic primitive. The

main contributions of this work can be summarized as follows:

• We propose a new and generic scheme which has lower communication

cost than state of the art up to more than 60 parties, which is reasonable

for most applications.

• We implemented and tested our scheme as well as the algorithm in [24].

Our experiments, confirm that our algorithm has significantly lower

2

computational overhead due to the fact that we replace computation-

ally expensive public key encryption operations with secret sharing.

• We demonstrate that our scheme is applicable in any clustering algo-

rithm which uses a dissimilarity matrix, such as hierarchical clustering

and k-medoids clustering.

• We apply our algorithm to clustering of moving object trajectories and

show that our algorithm is able to deal with trajectories with local time

and distance shifts.

The rest of this thesis is organized as follows. In section 2, we focus

on the necessary background, explaining clustering and secure multiparty

computation. In section 3 we explain privacy preserving data mining and give

related work on the subject. In section 4, we explain our privacy preserving

clustering methods, explaining how it differs from state of the art. Section

5, we show how our methods preserve privacy and security, explaining its

strengths by comparing it to state of the art. In section 6, we show an in

depth computation and communication cost analysis and finally in section 7,

we give our conclusions.

3

2 Background

2.1 Clustering

Clustering is one of the most fundamental data mining problems. Clustering

can be defined as grouping a set of data objects into classes of similar objects.

A cluster is a set of data objects where an object is similar to the objects

in the same cluster and is dissimilar to the objects in other clusters. Clus-

tering has a very diverse application area, ranging from market research(e.g.

customer segmentation) to biology(e.g. finding genes with similar functional-

ity). A number of clustering algorithms have been proposed so far with new

ones still continuing to be proposed. Clustering algorithms can be roughly

divided into 3 categories.

2.1.1 Partitioning based methods

Algorithms in this group partition a set of n data objects and create k par-

titions of it where k ≤ n. The number of clusters,k, is given as a parameter

to the algorithms in this group. Given k, algorithms in this group create

an initial partitioning. Then they iteratively try to improve the quality of

the partitioning until a termination criteria is reached. K-means is a prime

example of a partitioning based clustering algorithm. Another notable ex-

ample k-medoids, very similar in terms of basic idea to k-means clustering.

The main difference between k-means and k-medoids is that in k-means an

imaginary mean object is selected as a cluster representative whereas in k-

medoids one of the actual objects in a cluster is selected as the representative

object for that cluster. This makes k-medoids more robust to outliers, yet it

4

also decreases its computational efficiency.

2.1.2 Hierarchical Clustering

Algorithms in this group create a hierarchical decomposition of the given

set data objects. Depending on how the hierarchical order is computed,

a hierarchical clustering algorithm is further classified as agglomerative or

divisive. Agglomerative approach(bottom − up) starts with putting each

data object in a group of its own and merges objects or groups of objects

that are close to one another until a termination criteria is met. Divisive

approach(top−down) is the opposite, it starts with all the data objects in one

group successively divides each group into smaller groups until it terminates.

The main problem with hierarchical clustering algorithms is that, when an

object is assigned to a false cluster, it is impossible to go back and correct it,

unlike partitioning methods. Some examples of algorithms in this category

are AGNES(AGglomerative NESting) and BIRCH.

2.1.3 Density based Clustering

While partitioning based and hierarchical clustering algorithms are based on

distance, algorithms in this group are based on the notion of density. The

general idea behind algorithms in this class is to keep growing the given

cluster as long as the density in the neighborhood of the cluster is over some

threshold. In other words, for each data object in a given cluster, there

has to be more than a minimum number of points in the cluster. Such

a method is more robust to noise and can also find clusters with arbitrary

shape. OPTICS[2] and DBSCAN[8] are two prime examples of density based

5

clustering methods.

It is very difficult to find the most effective clustering algorithm. Usually

each algorithm is tailor-made to work for a specific type of data, the choice

of the clustering algorithm that gives best results is highly problem specific.

2.2 Spatio-Temporal Clustering

In theory, all the clustering algorithms that work on numeric data can be

applied to spatio-temporal data(e.g. moving object trajectory data). How-

ever, it has been understood that when dealing with moving object trajec-

tories, treating trajectories as numerical data does not yield much success,

time attribute of moving object trajectories should be considered as well.

A regression model based algorithm by Gaffney et al.[11] considers trajec-

tories as a whole rather than as a set of points. A more recent work by

Lee,Han,Whang[18] proposed an algorithm that can detect similar portions

of trajectories that otherwise are not close to each other.

2.2.1 Trajectory Distance Measures

The difficulty of trajectory clustering is a result of the fact that the notion

of “similar trajectories” can change per application. Therefore, depending

on the notion of “similar trajectories”, appropriate distance measures should

be used. Also trajectories in real world may be of different length, they may

have different observation intervals, and trajectories may be subject to local

time and distance shifts. A distance measure should take these issues into

account. Various distance measures for trajectories have been proposed and

this topic is still an active research area.

6

The naive method to compare trajectories is to use Euclidean or Manhat-

tan distances, based on comparing the corresponding location observations

of trajectories of equal length. They are also sensitive to local time shifts

and noise. However, the value they output is metric(i.e. triangle inequality

holds). Also they have a θ(n) complexity, making it very efficient for very

long trajectories.

EDR(Edit Distance on Real Sequence)[5] and LCSS(Longest Common

Subsequence)[26] are distances based on quantized penalty. They try to

match the corresponding location observations of two trajectories. Although

they are resistant to time shifts, the value they output is not metric. Also

both of them have a θ(n2) complexity.

Edit Distance with Real Penalty(ERP)[6] is a combination of Euclidean

Distance and EDR. It calculates the minimum cost of transforming one tra-

jectory to the other after finite number of operations where the cost of each

operation is the spatial shift between the corresponding location observa-

tions. It is resistant to noise, and local time shifts and it is a metric distance

measure. The complexity of ERP is θ(n2).

2.3 Secure Multiparty Computation

The Secure Multipary Computation was introduced by Yao in[28], with “mil-

lionaires problem”. In this problem, two millionaires want to compare their

wealth, but at the same time do not want to reveal the precise amount of

wealth they got. Formal definition of the problem is as follows. A number

of players (P1, P2, ..., Pn) have their private data (x1, x2, ..., xn) respectively.

They want to compute the value y = f(x1, x2, ..., xn) ,such that f is a public

7

function, so that no player can learn anything than the result of the compu-

tation and the public function f reveal. Two important building blocks of

Secure multiparty computation is homomorphic encryption and secret shar-

ing.

2.3.1 Homomorphic Encryption

Homomorphic encryption is a type of encryption that allows us to do compu-

tation on encrypted inputs without having to decrypt the input, thus it is a

fundamental block of Secure multiparty computation. A public key encryp-

tion scheme is homomorphic with respect to a binary operator • if there is a

binary operator ∗ such that E(a) ∗E(b) = E(a • b). One example of such an

encryption scheme is Paillier public key encryption, which is homomorphic

with respect to addition. With modulus n and and base g, the encryption of

the message a will be

E(a) = garn
1 mod n2

The encryption of the message will be

E(b) = gbrn
2 mod n2

From two equations above, it follows that

E(a)E(b) = ga+b(r1r2)
n mod n2 = E(a + b modn)

2.3.2 Secret Sharing

A (t, n) secret sharing scheme is a set of two functions S and R. The function

S is a sharing function and takes a secret s as input and creates n secret

8

shares : S(s) = (s1, . . . , sn). The two functions satisfy that for any set I ⊆

{1, . . . , n} of t indices R(I, sI1 , . . . , sIt) = s. Furthermore we require that it

is impossible to recover s from a set of t− 1 secret shares. A secret sharing

scheme is additively homomorphic if R(I, sI1 + s′I1 , . . . , sIt + s′It
) = s + s′.

A very simple (n, n) secret sharing scheme which is additively homomor-

phic is S(s) = (r1, . . . , rn−1, r), where ri is random for i ∈ {1, . . . , n−1}, and

r = s −
∑n−1

i=1 ri. To recover s all secret shares are added: s = r +
∑n−1

i=1 ri.

If even one secret share is missing nothing is known about s. We use this

simple additive secret sharing scheme in our algorithms in this thesis.

9

3 Privacy Preserving Data Mining

Privacy preserving data mining is a relatively young research area with

around 8 years of history. Aggrawal and Srikant initiated the research on

privacy preserving data mining with their seminal paper about constructing

classifications models while preserving privacy [1]. The aim of privacy pre-

serving data mining is ensuring the privacy of the individuals is preserved

while maintaining the efficiency and accuracy of data mining algorithms. Pre-

serving privacy and performing data mining are two conflicting goals, if one

wants to perform privacy preserving data mining, he has to either sacrifice

accuracy of data mining results or computational efficiency of the algorithm.

Sometimes data mining results themselves can be in breach of privacy[14].

All the work in privacy preserving data mining field try to achieve maximum

privacy protection with minimum loss of accuracy/efficiency.

Privacy preserving data mining algorithms can be divided into two cate-

gories, (1) Random perturbation-based and (2) Secure Multiparty computa-

tion based algorithms.

3.1 Data Perturbation Based Algorithms

Perturbation techniques mix additive or multiplicative noise with the data

so that actual values in the data set are not learned, yet the data mining

results gathered from the perturbed data will not deviate significantly from

the results gathered from the original data. The work of Aggrawal and

Srikant[1] fall in this category. Another notable work in this category is

privacy preserving mining of association rules by Effimievski et. al. [9]. One

10

recent significant work by Kargupta et al.[20] shows that random projection

based multiplicative data perturbation is a very efficient way to perform

privacy preserving clustering. The results obtained from perturbed data have

below 5% error rate as compared to the results obtained from the original

data.

Algorithms in this category present a very practical and efficient way of

performing privacy preserving data mining, bringing little or no computa-

tional overhead to the data mining algorithms. However, these algorithms

are based on trading accuracy of the data mining results with privacy of

individuals. In addition, while the noise added to the data may preserve one

statistical feature of the dataset, other statistical properties are likely to be

affected. Also most of these algorithms consider a centralized scenario, i.e.

cannot deal with data distributed over multiple data holders. Furthermore,

algorithms in this category do not preserve privacy in any formal sense, i.e.

one cannot easily calculate how much effort and resources are needed to filter

out the noise and breach privacy.

3.2 Secure Multiparty Computation Based Algorithms

Algorithms based on secure multiparty computation (SMC) do not have to

trade accuracy with privacy and they preserve the security and privacy of the

data of individuals in a formal way. It is well known from the SMC literature

that any Turing computable function can be computed among distributed

parties without revealing the private inputs[28, 3]. Therefore, theoretically

it is possible to perform distributed data mining without revealing data at

individual sites. However, generalized solutions to SMC problem like Yao’s

11

secure circuit evaluation[28] have very high communication and computation

overhead, thus making infeasible to use in data mining problems where data

size can be hundreds of GBs. Clifton et.al.[7] proposed that data mining algo-

rithms make use of a relatively small set of primitive functions and therefore

generalized SMC algorithms for these primitive functions can be used to solve

data mining problems. However, even this solution suffers from large com-

munication and computation overheads. Therefore, specialized algorithms

should be developed for specific data mining problems.

The first privacy preserving data mining algorithm based on SMC is the

work of Lindell and Pinkas[19] on decision tree classification. This algorithm

however requires each bit of information sent between parties is encrypted,

thus has a very high communication and computation cost. Clifton and

Kantarcıoǧlu[13] proposed an algorithm for association rule mining, based on

the commutative encryption. Clifton and Vaidya[24] proposed an algorithm

for k-means clustering over vertically partitioned data with using homomor-

phic encryption. Common to all these algorithms are high computation and

communication overhead. Inan et.al. [12] give an efficient algorithm for clus-

tering over horizontally partitioned data, however it is not entirely privacy

preserving. It requires a trusted 3rd party and if any party in this algorithm

colludes with the 3rd party, he can learn every other players input.

All the algorithms above rely on public key encryption schemes, which

bring high computation overhead. This high computation overhead can be

avoided with the use of secret sharing. The use of secret sharing to perform

secure multiparty data mining gained some momentum in recent years. One

of the most notable examples is the work of Laur, Lipmaa and Mielikainen[17]

12

in which they use secret sharing for private support vector classification.

One other notable use of secret sharing in a privacy preserving data mining

algorithm is the work of Wright and Yang[27] to compute Bayesian networks

over vertically partitioned data. Similar to these works, our algorithm also

relies on secret sharing.

13

4 Privacy Preserving Clustering

In this chapter, we present our privacy preserving clustering algorithms over

vertically partitioned data. First, we present our k-means clustering algo-

rithm in section 4.1 Privacy preserving k-means clustering over vertically

partitioned data has been studied in the literature by Clifton and Vaidya[24].

Here, we improve on their algorithm. Clifton and Vaidya make use of ad-

ditive homomorphic encryption which requires public key encryptions. The

public key encryptions are the bottleneck of the method described in [24].

In contrast, we use additive secret sharing to achieve privacy, which gives us

lower computation and communication overhead.

In section 4.2, we also show how our method can be used to build a

dissimilarity matrix and can be used in a clustering algorithm that takes

dissimilarity matrix as an input. In section 4.3 we explain how our method

can work with trajectories with spatial and temporal shifts.

4.1 K-means Clustering Algorithm

K-means clustering is the most prominent and widely used clustering algo-

rithm, also referred in the literature as Lloyds algorithm. The algorithm gets

a set of points in the d-dimensional space and assigns each point into one of

k clusters such that the sum of distances to the nearest center is minimized.

While the algorithm is simple and therefore efficient, it has a few drawbacks.

The drawbacks are that it is sensitive to outliers, tends to form only spherical

shaped clusters and the number of clusters, k must be provided in advance.

Our privacy-preserving clustering algorithm is an improvement of the one

14

proposed by Clifton and Vaidya in [24]. The central difference is the how we

do the search for the closest cluster a given object. Another difference is that

we use secret sharing for secure compuatation of closest cluster whereas hmo-

morphic encryption is used in [24]. The power of secret sharing in this setting

is that communication and computation overhead is considerably lower. To

make our presentation clear, we simplify some parts of the algorithm, but

apply the same simplifications to [24] when we compare the efficiency of the

two algorithms in Section 6.3.

4.1.1 Problem Definition

Suppose there are R data holders, such that R ≥ 4 with each one of them

holding some attributes of the each entity in the dataset. The number of

entities in the dataset is n. The goal of the r parties is to perform k-means

clustering on their aggregated data without revealing the values of the at-

tributes they own to the other parties. At the end of the algorithm, each

entity in the dataset is assigned to one of k clusters and each party learns

the cluster means corresponding to their own attributes, and the index of

the cluster into which each entity is assigned. Ideally, no party should learn

anything other than this.

Let µc, c ∈ {1, ..., k}, represent the cluster means of the result. Let µci

be the projection of cluster mean c onto the attributes of party i (µc =

(µc1, . . . , µcr)). As output of privacy preserving k-means clustering party i

gets:

• The final mean µci for each cluster c ∈ {1, . . . , k}.

• The cluster index for each entity j ∈ {1, ..., n}.

15

Each data holder involved in the algorithm is assumed to be semi-honest,

meaning each data holder will follow the algorithm as expected, but may

store any information he receives during the execution of the algorithm.

The algorithm starts with choosing initial cluster means, then all entities

in the dataset are assigned to the closest initial clusters. After the initial

assignment of clusters, the cluster means are recalculated and each entity is

reassigned to the cluster with the closest cluster mean. The process continues

until a termination criterion is met. The initial assignment of cluster means

greatly affects the final clustering results, a detailed study is given in[4]. In

our algorithm, we assume the initial assignment is done randomly, as in[24].

Algorithm 1 shows the pseudo code of the privacy preserving k-means

clustering algorithm.

The algorithm that we present in this paper terminates when there is

no change in the assignment of clusters. The algorithm presented in [24]

terminates when the change in cluster means between two iterations is less

than a given threshold. Our termination criterion corresponds to setting the

threshold to 0, which means the algorithm will terminate when there is no

change in the cluster assignments.

Another factor to be considered is the distance measure used. For sim-

plicity we use Euclidean distance, though our algorithm will work with every

Minkowski distance. When we compare our work to the work of [24], we use

Euclidean distance in their algorithm as well.

Since the data is vertically partitioned, each party can compute part of

the distances between each of the n entities in the dataset and the cluster

means. Since we use Euclidean distance the square of the total distance

16

Algorithm 1 Privacy Preserving k-means algorithm

do in parallel for each party i ∈ {1, . . . , r}

for each cluster c← 1, . . . , k do

initialize µci randomly

end for

end parallel

repeat

for each entity j ← 1, . . . , n do

Cluster[j] ← SecurelyComputeClosestCluster(j)

end for

do in parallel for each party i ∈ {1, . . . , r}

for each cluster c← 1, . . . , k do

µci ← mean of party i’s attributes in cluster c

end for

end parallel

until termination criteria met

17

between an entity and a cluster mean is the sum of the squares of the sub-

distances computed at the subspaces of each party:

‖xi − µc‖2 =
r∑

p=1

‖xip − µcp‖2. (1)

However, the parties cannot reveal their sub-distances in order to compute

the sum of them, since the local sub-distances may contain private infor-

mation. We therefore need to compute and compare the distances securely

without revealing the individual sub-distances. This is done in the “Secure-

lyComputeClosestCluster” algorithm, which we will describe in the next sub-

section. It is in the secure computation of closest clusters that our algorithm

varies from that of [24].

4.1.2 Secure Closest Cluster Computation

To compute the closest cluster mean for a given entity in the database we

have to securely sum the sub-distances computed by each party and compare

the results so that nothing other than the comparison result is learned. With

n entities, the algorithm has to be invoked nt times, where t is the number

of iterations in the standard k-means algorithm. In this section, we describe

the algorithm for securely finding the cluster mean which is closest to a given

entity.

The security of our algorithm relies on three ideas:

• Each party sends secret shares its sub-distance to all the other parties,

and the sum of the sub-distances is computed on the secret shares.

• The comparison of distances is performed on secret shares so that only

18

the comparison result is learned. The actual values of the distances are

not learned.

• The ordering of clusters is permuted so that for each entity in the

database, only the index of the closest cluster is learned. Relative

orderings of the entity’s distances to each cluster mean µc cannot be

learned. This is very simple when we work with secret shares, but in

[24] this is the step that requires the highest amount of communication

and computation since they rely heavily on public key encryptions.

The most important difference between our work and the work of Clifton

and Vaidya is the secure computation of the closest cluster. In [24] the first

party selects “disguising values” for each pair of cluster and party such that

the sum of all disguising values corresponding to one cluster is zero. Then, the

first party together with all other parties compute the encryption of the sub-

distances plus the corresponding disguising value. Afterwards, the encrypted

distances are permuted by the second party. Finally, the first party decrypts

the distances, finds the minimal distance, and reveals the identity of the

closest cluster with the help from party 2. The closest cluster corresponds

to the new cluster assignment of the given entity. In contrast to Clifton

and Vaidya, we use additive secret sharing, which allows us to compute all

distances by locally adding up the correct shares. Our algorithm for securely

computing the closest cluster mean for each entity has three phases. Pseudo

code of these three phases are in Algorithm 2.

Phase 1: In the first phase of the secure closest cluster computation

algorithm each party secret shares its sub-distance for each cluster mean

with every other party. Let Xic be the ith sub-distance between the entity

19

Algorithm 2 Secure Closest Cluster Computation

Require: entity e, cluster means µ1, . . . , µk

Ensure: Closest cluster to e

do in parallel for each party i ∈ {1, . . . , r}

for each cluster c← 1, . . . , k do

Phase 1 :

Xic ← local component of the distance from e to cluster mean µc

for every other party j do

αij ← random number

send αij to party j

end for

αii ← Xic −
∑

j 6=i αij

Phase 2 :

Tic =
∑

j αji

send Tic to party r (Party 1 does not send anything!)

end for

end parallel

Phase 3 : (Phase 3 only involves parties 1, 2, 3 and r)

do in parallel for parties i = 1, r

for each cluster c← 1, . . . , k do

Party 1: D1c ← T1c

Party r: Drc ←
∑r

i=2 Tic

end for

(D′
i1, . . . , D

′
ik)←SecurePermute(Di1, . . . , Dik)

end parallel

return SecureFindMinimum(D′
i1, . . . , D

′
ik)

20

that is being evaluated and the cluster mean c. Each party (i) creates a

random number αc
ij for every other party, and sends αc

ij to party j for all

c ∈ {1, . . . , k}. The ith party keeps αc
ii = Xic −

∑
j 6=i α

c
ij to himself. Note

that Xic cannot be computed unless all parties come together to recover it.

Phase 2: After the completion of Phase 1, for every cluster c, we let Tic

denote party i’s secret share of the distance between the given entity and

cluster mean c (Tic =
∑r

j=1 αc
ji).

Since all αc
ij, i 6= j, are random numbers, Tic is also a random number, so

nothing can be learned from it. Every party, apart from the first party, now

sends Tic to the rth party.

Phase 3: This phase only involves parties 1, 2, 3 and r. Party r adds

the values Tic to compute Drc =
∑r

i=2 Tic. Party one defines D1c = T1c. The

distance between the given entity and cluster mean c is now Dc = D1c +Drc.

Since party 1 did not send T1c, party r cannot learn the distance. The task of

party 1 and r is now to find the minimum element from the list (D1, . . . , Dk),

where party 1 knows D1c, and party r knows Drc of each element. This is

done by comparing each of the elements with the current smallest element

one by one. The comparison presents two problems:

1. How do parties 1 and r compare two numbers Dc = D1c + Drc and

Dc′ = D1c′ + Drc′ such that neither of them will learn the values of Dc

and Dc′?

2. How do we prevent parties 1 and r from learning the ordering of all the

distances? They should only learn the minimum distance?

The first problem is solved by observing that Dc < Dc′ if and only if

21

D1c−D1c′ < Drc′−Drc. Party 1 knows the left hand side, and party r knows

the right hand side. They can now compute the result of the comparison by

applying the so called “Yao’s millionaires problem”. We will describe this in

detail in Sec. 4.1.4.

To solve the second problem above, parties 1 and r permute the order of

the elements in the vector (D1, . . . , Dk) with the help of party 2 and party

3. We discuss this further in Sec. 4.1.3 below.

Once Phase 3 is completed parties 1 and r can reveal the index of the

cluster which is closest to the entity being considered.

4.1.3 Secure Permutation

Since parties 1 and r obtain the result of all the comparisons of the distances

from a given entity to all the cluster-means they will not only know which

cluster is closer to the given entity, but also know which cluster is furthest

away, second furthest away and so forth. This clearly gives parties 1 and

r an advantage over the other parties. To prevent parties 1 and r from

obtaining this information, we first make a “secure permutation” of all the

cluster distances. After finding the minimum element in the permuted list

of distances parties 1 and r are only told the true identity of the cluster at

minimum distance.

The secure permutation is the bottleneck for the algorithm by Clifton

and Vaidya since it amounts to more than 90% if the computation time.

The reason being that in their algorithm party 1 has to create kr public-key

encryptions for each entity in the database.

In our algorithm we take advantage of secret sharing to make a consider-

22

Party 1 Party r Party 2 Party 3

-
(D11, . . . , D1k)

-
(Dr1, . . . , Drk)

-�
π

�
(D1π(1) + r1, . . . , D1π(k) + rk)

�
(Drπ(1) − r1, . . . , Drπ(k) − rk)

Figure 1: Secure Permutation Protocol

ably more efficient permutation algorithm. Parties 1 and r need the help of

two other parties, parties 2 and 3, for the permutation. Party 1 simply sends

his secret shares to party 2, and party r sends his secret shares to party 3.

Then parties 2 and 3 agree on a permutation and each of them apply the

permutation to the vector of shares they received. To make sure that parties

1 and r cannot recognize the elements in the vector they get back, party 2

adds a random number ri to element i, while party 3 subtracts ri (recall that

each element of the vectors are additive secret shares of a distance, so adding

and subtracting the same random number will not change the result of the

algorithm). After applying the permutations, they send the vector back to

the parties they got them from. The algorithm can be seen in Fig. 1.

4.1.4 Secure Minimum Element

In the last step of the “Secure Closest Cluster Computation” parties 1 and r

compare the distances between the current entity and all the cluster means.

Each of them has a secret share of the k entries in the permuted vector

of these distances. To find the minimum, they perform k − 1 comparisons

23

with the current minimum element (they do not compare the first distance).

After finding the minimal element, party 1 informs party 2 of the permuted

identity of the closest cluster. Since party 2 knows the permutation, she can

announce the real identity of the closest cluster to all parties.

Clifton and Vaidya[24] suggest using Yao’s circuit evaluation[28] for the

comparisons. They argue that even though Yao’s algorithm is very inefficient,

it may be plausible to use it for the comparison, since they only perform kn

comparisons in each iteration of the k-means algorithm. Nonetheless, in our

experiments, we use an algorithm proposed by Savaş, Pedersen, and Kaya in

[16] in both our algorithm and our implementation of Clifton and Vaidya’s

algorithm.

In the comparison algorithm of [15, 16], two players who wish to compare

two integers, each create two bitwise secret shares of their own inputs and

send these shares to two semi-honest non-colluding third parties. Two k−bit

integers x, y are compared according to the formula :

x > y ⇐⇒
k∨

i=1

(xi ∧ ¬yi

k∧
j=i+1

(xj ⊕ yj)) (2)

The algorithm utilizes the fact that additive secret sharing is homomorphic

with respect to addition, thus bitwise additive secret sharing is homomorphic

with respect to bitwise addition, XOR operation of bits. The algorithm

of [16], like Fischlin’s algorithm[10], uses a trick by Sander, Yung, Young

[23] to convert XOR homomorphic secret sharing into AND homomorphic

secret sharing without disclosing the secret. For the proofs of correctness

and security, the readers are referred to [16].

We have modified the algorithm from [16] slightly, by observing that the

24

two semi-honest third parties are actually not needed in the algorithm. In

the original algorithm, the parties involved in secure comparison secret-share

their inputs with 2 semi-honest third parties, sending one share to a third

party and the remaining share to the other third party. This is equivalent to

each party secret-sharing their inputs among themselves; each party sends a

secret share of its input to the other party while keeping the remaining se-

cret share to itself. Therefore, in our algorithm, the parties who are involved

in the secure comparison (parties 1 and r) apply the algorithm in [16] by

secret-sharing their inputs among themselves. In the original algorithm[16],

two third parties end up with secret shares of a binary vector. The vector

is as long as the inputs that are compared. If the first input to the compar-

ison is greater than the other, then the vector has exactly one 1-bit at the

first position where the first input is greater than the second input. Since

the position of the 1-bit gives information about the relative difference be-

tween these two inputs, the two third parties agree on a permutation and

permute the vector before it is sent to the party who will learn the result

of the comparison. In our algorithm, parties 1 and r do not perform the

permutation themselves since they are the ones that will learn the result of

the comparison. Instead, we use the permutation algorithm described above

in Sec. 4.1.3.

4.2 Other Clustering Methods

In this section, we show that our privacy preserving clustering scheme can

be applied to any clustering algorithm that takes a dissimilarity matrix as an

input, such as k-medoids and agglomerative hierarchical clustering(AGNES).

25

Pieces of our k-means algorithm, with little modification can be also used to

compute a dissimilarity matrix of entities in the dataset.

Suppose there are n entities in the dataset. A dissimilarity matrix D is an

N×N matrix, with one entry in the dissimilarity matrix, D[a][b], corresponds

to the distance between entities a and b in the dataset. Since the data is

vertically partitioned, each party can compute part of the distances between

the entity a and b in the dataset. Then, just as in our k-means algorithm

each party will secret share its calculated subdistance with every other party.

If this step is repeated for all the a, b entity pairs, then each party will have

a N × N matrix D, with D[a][b] containing a secret share of the distance

between the points a and b. It can easily be seen that this step is exactly the

same as step 1 of the algorithm “FindClosestCluster” given in section 4.1.2.

Once this dissimilarity matrix computation step is completed, it can be

given as input to a dissimilarity matrix based clustering algorithm, such as

AGNES. AGNES algorithm starts with every single entity in the dataset put

into a cluster of its own. Then in bottom up fashion, closest pair of entities

are merged into bigger clusters at every level. With a dissimilarity matrix

given as an input to AGNES, closest pairs of entities and groups can be

easily computed. However, revealing the dissimilarity matrices may cause

some threats to privacy. Therefore we cannot simply sum the matrices each

party holds and give to some party to continue with the AGNES algorithm.

Instead, we can use Secure Comparison protocols we discussed in sections

4.1.4. Suppose we want to find out the whether entity a is closer to the

entity b or entity c, we should compare if D[a][b] < D[a][c], where D is

the global dissimilarity matrix. Like step 2 in our “FindClosestCluster”

26

algorithm, every party apart from P1 will send Di[a][b] and Di[a][c] values to

Pr, where Di[a][b] and Di[a][c] are secret shares of D[a][b] and D[a][c] party

i has. Afterwards, P1 and Pr can privately compute D[a][b] < D[a][c] and

reveal the result to every other party.

4.3 Privacy Preserving Trajectory Clustering

Our k-means clustering algorithm can be applied to trajectories without any

change, if trajectories are optimally aligned. Consider two trajectories TA

and TB. Let points on TA be (xi, yi) and (pi, qi). The distance between

their positions ,d, on time i will be di =
√

(xi − pi)2 + (yi − qi)2 if we use

Euclidean distance or di = (xi− pi)+ (yi− qi) if we use Manhattan distance.

The total distance between TA and TB will be sum of di values. If Euclidean

or Manhattan distance measures are used, our algorithm can be directly

applied to trajectories as if it was ordinary numerical data.

4.3.1 Spatially Shifted Trajectories

Two trajectories can be very similar except for a small constant spatial shift.

Then Euclidean distance or Manhattan distance may fail to realize the close-

ness of these two trajectories. The figure 2 shows two trajectories with a

spatial shift between them.

Needham and Boyle[21] propose a metric for handling two such trajecto-

ries. They propose that the optimal shift,δ, between two trajectories TA and

TB can be calculated by the formula :

27

Figure 2: Spatially shifted trajectories

δ = µ(di) =
1

n

∑
i

di (3)

The new distance between the trajectories can be calculated as Euclidean

distance between TB and TA with all points of Ta shifted by δ. Since the

data is vertically partitioned, every player Pi will be able to compute part

of δi = 1
n

∑
i di on the attributes he owns. δ is equal to sum of δi’s of every

player. Since δi values are private, every player secret share its own δi with

every other player. This step is the same as step 1 of the algorithm 2, now

every player can sum their δi’s and reveal δ .

4.3.2 Temporally Shifted Trajectories

Two trajectories can be very similar except for a small constant time shift

between them. Consider two moving objects, one following the same trajec-

tory of the other, but only after some time. Euclidean distance may not be

able to classify these two trajectories as similar trajectories. Figure 3 shows

28

two such trajectories.

Figure 3: Two temporally shifted trajectories

Needham and Boyle[21] propose a metric for handling two such trajecto-

ries. The optimal time shift j between two trajectories TA and TB can be

calculated by the formula

j = arg mink(
1

n− k

∑
i

|(xi+k, yi+k)− (pi, qi)|). (4)

Since the data is vertically partitioned (xi+k, yi+k) and (pi, qi) could be

held by different players. In such case, the players secret share their points

with each other. Suppose player a holds (pi, qi) points and player b holds

(xi+k, yi+k) and they want to compute. To compute xi+k − pi, player b sends

a random number rb to player a, his share becomes xi+k−rb. Player a sends a

random number ra to player b, his share becomes pi− ra. Player b calculates

xi+k − rb − ra.

Player a calculates

rb − (pi − ra).

29

If player a and b add their shares, they will get xi+k − pi. At the end the

each player will have a secret share of 1
n−k

∑
i |(xi+k, yi+k)− (pi, qi)|. Using

the Secure Minimum Element described in section 4.1.4, they can compute

the minimum k without anyone learning other’s input. Once the time shift

j is known, the distance between TB and the shifted trajectory TA, j is cal-

culated.

30

5 Privacy Discussion

In this section, we show why our algorithm preserves privacy(sec 5.1) and

compare the security of our algorithm with that of Clifton and Vaidya[24](sec

5.2). Before going into the discussion about privacy, we have to define what

we mean by private information in the algorithm. Above we set as our goal

that the only information party i will learn after the algorithm is:

• The final mean µci for each cluster c ∈ {1, . . . , k}.

• The cluster index for each entity j ∈ {1, ..., n}.

No information other than these two should be learned out of algorithm. The

actual values of data attributes belonging to the data holders are obviously

private information. Since these values are not shared among data holders

during the execution of our algorithm, we may say that these values are kept

private. Portions of distances(Xic values) calculated by each party according

to their set of attributes are also deemed private information since one may

recover the actual values of the entities by knowing the distances of the

entities to the cluster means.

5.1 Privacy in our algorithm

In order to examine how our method protects privacy, we focus on the “Se-

curely Computing the Closest Cluster” algorithm which is the only part of

the algorithm in which there are interactions among the parties. In Phase

1 of the algorithm, all parties secret-share their local distance values with

the other parties. Since each party keeps one share for himself and since all

31

shares are needed to recover the local distances, no information will leak even

if all the remaining r − 1 parties collude.

In Phase 2 of the algorithm all parties send their Tij values to party r.

Since Tij are secret-shares of the total distance (it is the sum of the secret-

shares of the local distances) and since party 1 does not send T1j to party r,

parties 1 and r cannot gain any information unless they collude. Notice that

T1j contains shares from all other parties’ local distance components.

Phase 3 of the algorithm consists of the permutation and secure com-

parison sub-phases. In the permutation phase parties 1 and r send their

secret shares of the distance to parties 2 and 3 respectively. Now parties

2 and 3 are in the same situation as parties 1 and r were after Phase 2.

Collusion between parties 2 and 3 allow them to learn an entity’s distance

to each cluster mean, therefore the permutation phase is privacy-preserving

under the assumption that parties 2 and 3 are non-colluding. The secure

comparison is privacy-preserving under the assumption that parties 1 and r

are non-colluding; detailed proof is explained in [16].

Finally the “Securely Computing the Closest Cluster” algorithm returns

the closest cluster to the given entity. Clearly this is exactly what the par-

ties are supposed to learn in the last round. However, all parties will see

how entities change cluster in each iteration of the k-means clustering al-

gorithm. An entity, which fluctuates between two clusters, can be assumed

to be approximately half-way between the two cluster means. This is more

information than is strictly allowed. However, since the data holders need

to learn intermediate results to compute the new means, mitigation of this

problem is extremely difficult if not impossible.

32

5.2 Security Comparison

In both our algorithm and the algorithm by Clifton and Vaidya [24], privacy

breaches may occur when two or more parties collude. Therefore, in both of

the algorithms, some non-collusion assumptions have to be made for some

specific parties. However, the gained information in Clifton’s and Vaidya’s

algorithm as a result of collusion is much more severe. In the algorithm by

Clifton and Vaidya, each party, upon computing local distances Xic, sends

Xic to party 1. Party 1 adds random values αic to Xic of each party. After

this phase, each party sends Xic + αic to party r. Here, collusion between

parties 1 and r allows them to learn the value of Xic of all other parties, which

is no doubt a severe privacy breach. In our algorithm such a privacy breach

is mitigated by the use of secret sharing. Each party secret-shares Xic with

every other party, so the value of Xic can be recovered only if all parties come

together. As a solution to this problem, Clifton and Vaidya[24] propose an

extension to their algorithm that increases the number of colluding parties

needed to reveal Xic of each party. In essence, they apply their permutation

steps more than once according to a chosen anti-collusion parameter. If this

parameter is denoted as p, they repeat the permutation algorithm p − 1

times by choosing a different party at each time to play the role of party 1.

This method increases security of the algorithm; however, it also increases

computation and communication cost considerably.

In our algorithm, we have non-collusion assumptions for parties 1, 2, 3

and r. If the permuter parties (parties 2 or 3) collude, they can reveal each

entity’s distance to each cluster mean µc. Also, if parties 1, r and one of the

permuter parties(2 or 3) collude, they can reveal each entity’s distance to each

33

cluster mean µc. We can say that collusion between 2 specific parties(parties

2 and 3) leads to a privacy breach in our algorithm in the worst case. We

can also do the same trick as in the algorithm of [24] and increase the non-

collusion threshold by applying the permutation algorithm more than once,

at each iteration picking different two parties to play the roles of party 2

and 3. Since our permutation algorithm does not contain any encryption

or similar expensive operations, it can be applied more than once without

bringing too much computation and communication overhead.

The comparison of the security of the two algorithms reveal that collusion

between 2 specific parties leads to some privacy breach in both algorithms.

However, in [24] the leaked information is more severe in case of a collusion.

Some information specific to a party (Xic for party i) can be learned in [24],

whereas in our algorithm leaked information is global information, not bound

to a specific party.

34

6 Cost Analysis

A privacy preserving distributed data mining algorithm aiming to be used in

real life applications should not bring too much communication and compu-

tation overhead. In the following two subsections we analyze the communi-

cation and computation overheads of our algorithm. The overheads mainly

occur in the “Securely Finding the Closest Cluster” part of the algorithm.

Thus, we only analyze this portion of our algorithm. It should be noted that

both communication and computation overheads of the k-means clustering

algorithm depend on the dataset. The number of iterations required before

the termination criteria is met depends on the data and the initial cluster

means. Therefore, in the communication and computation cost analysis, we

only consider one iteration of the k-means algorithm. We let r be the num-

ber of parties, n the number of entities in the database and k the number of

clusters.

6.1 Communication Cost Analysis

Most of the communication overhead in our algorithm is created in Phase 1

of the “Securely Finding the Closest Cluster” algorithm. In this phase, for

each entity, one party sends secret shares of its portion of the distance to

every other party for each of the k clusters. This is equal to sending each

party a vector of length k. Each entry of this vector is a secret share of 32

bits. Since there are r parties and each of them send a shared secret vector

of length k to every other party, the communication cost of this step of our

algorithm is 32r(r − 1)kn bits. Therefore, Phase 1 of our algorithm has a

35

communication complexity of θ(r2kn).

In the original work of Clifton and Vaidya[24], every party sends its local

distance value encrypted to party 1. Party 1 adds random values to these

local distance values by using the additive homomorphic property of the

public key encryption scheme used, and sends the distorted values back to

each data holder. Assuming that a public key encryption scheme with 1024

bits of key and block size is used, which is the minimum for security purposes,

the communication cost of this phase in the work of Clifton and Vaidya is

2(r − 1)1024kn = 2048(r − 1)kn bits. This phase of Clifton and Vaidya’s

algorithm has a communication complexity of θ(nrk)

Phase 2 of our algorithm is very similar to Clifton and Vaidya’s algorithm

in terms of communication cost, each party apart from party 1 will send a

32 bit integer to the rth party, therefore the communication costs here are

the same, 32n(r − 2)k bits, giving a complexity of θ(nrk).

In Phase 3 of the algorithm we run an algorithm for Yao’s Millionaires

problem which gives us very little communication overhead. The only com-

munication is one call to the permutation algorithm in each call to the com-

parison algorithm. The vectors permuted are of length 32λ, where λ is a

security parameter given to the comparison algorithm. Typical values for λ

are around 50. We have applied the same comparison algorithm in our im-

plementation of the algorithm by Clifton and Vaidya, so the two algorithms

have the same communication overhead in this step. This step is always

executed between 2 parties, therefore complexity of this step is θ(nk)

In total, our algorithm has a complexity of θ(nr2k) + θ(nrk) + θ(rk) =

θ(nr2k). Communication complexity of our algorithm is quadratic with the

36

number of parties. On the other hand, Clifton’s[24] algorithm has a total

communication complexity of θ(nrk) + θ(nrk) + θ(nk) = θ(nrk), linear with

the number of parties.

Although our algorithm has a higher communication complexity(quadratic

vs linear), from the above analysis we observe that for values of r up to

2048/32 = 64, our algorithm has smaller communication cost in phase 1 as

compared to the work of Clifton and Vaidya[24](when using 1024-bit encryp-

tion in [24]). We confirm this bound in our experiments in Section 6.3.

6.2 Computation Cost Analysis

The computational complexity of our algorithm is θ(rnk) for each party

involved in the algorithm. In Clifton’s algorithm one party has the computa-

tional complexity of θ(nrk) whereas all the other parties have the computa-

tional complexity of θ(nk) However, in terms of computation overhead, our

algorithm is more efficient than the algorithm of Clifton and Vaidya. Since

we use secret sharing rather than encryption, our algorithm uses primitive

operations only. However, the algorithm of Clifton and Vaidya uses public

key encryptions which requires expensive modular exponentiation operations

on very large numbers. In Phase 1 of Clifton and Vaidya’s algorithm two pub-

lic key encryptions and one public key decryption are needed for every entity

and cluster pair. In total, 3nk modular exponentiations are needed in Clifton

and Vaidya’s algorithm. Given the primitive nature of the operations in our

algorithm, our algorithm gives much lower computation overhead, which is

confirmed by our experiments in Section 6.3.

37

6.3 Experimental Results

We implemented our algorithm and the algorithm of Clifton and Vaidya[24]

and performed tests on them in order to validate the theoretical findings for

both communication and computation costs given in Section 6.For testing

purposes, we used two spatio-temporal datasets, consisting of moving object

trajectories in the city of Milan. The datasets were provided to us by our

GeoPKDD, 6th Framework EU project, partners. One dataset has 150 tra-

jectories while the second one has 600. The number of measurement points

for each trajectory is over 1050. Since each measurement consists of one

x and one y coordinate, each item in the dataset has over 2100 attributes.

For both of the datasets, the attributes are partitioned among the parties

evenly; that is, every party has equal or near equal number of attributes.

However, the distribution of attributes does not affect neither of the two

algorithms considerably (since the first step of each iteration is to compute

local distances).

It is important to note that the initial cluster assignments of entities

greatly affects the execution time of the k-means clustering algorithm. In

order to make a fair comparison, we make sure that initial cluster assignments

of the entities in the datasets are the same for each test for both of the

protocols.

We made distributed implementations of both of the algorithms, with

each data holder in both of the algorithms running as a separate process.

Communication between processes is done with Message Passing Interface(MPI).

The implementations are done in the C#.NET programming language and

38

the as an MPI library we used MPI.NET1, developed by Indiana University.

In the implementation of the protocol in [24], we use the Paillier[22] public

key encryption scheme with 2048 bit cipher texts.

We have performed two tests with each of the datasets. First test is to see

how much communication overhead our protocol brings and how the commu-

nication overhead in our protocol compares to communication overhead in

the protocol of Clifton and Vaidya[24]. The total amounts of transmissions

caused by the protocols with respect to the number of parties are depicted

in Figures 4 and 5 for two different datasets.

0

20000

40000

60000

80000

100000

120000

140000

5 10 15 20 25 30 35 40 45 50 55 60

D
at

a
Tr

an
sf

e
re

d
(K

B
)

Number of parties

Communication Cost

Our Algorithm

Clifton's
Algorithm

Figure 4: Communication cost(1st dataset)

1http://www.osl.iu.edu/research/mpi.net/

39

0

20000

40000

60000

80000

100000

120000

140000

5 10 15 20 25 30 35 40 45 50 55 60

D
at

a
Tr

an
sf

e
re

d
(K

B
)

Number of parties

Communication Cost

Our Algorithm

Clifton's
Algorithm

Figure 5: Communication cost(2nd dataset)

As can be seen from these figures, our protocol has lower communication

cost. In the analysis section(6.1), we expected that our algorithm should

have a lower communication cost up to a threshold. If 1024 bit encryption

was used in the implementation of [24], this threshold was expected to be 64.

Since we use Paillier encryption, which creates 2048 bit cypher texts, this

threshold is higher in our figures.

The second test that we have performed is to analyze and compare the

computational overheads brought by our protocol and the protocol of Clifton

and Vaidya[24]. Execution times of the protocols with respect to the number

of parties are shown in Figures 6 and 7 for the two datasets.

40

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

e
cs

)

Number of Parties

Computational Cost

Our Algorithm

Clifton's Algorithm

Figure 6: Computation cost(1st dataset)

The execution times of our protocol are always less than 400 seconds,for

the 1st dataset and 2000 seconds for the second dataset. whereas the exe-

cution times of [24] are thousands of seconds. The reason of this significant

performance difference lies in the use of public key cryptography. In order

to compare each entity to each cluster mean, Clifton and Vaidya[24] have

to perform expensive public key encryptions and decryptions linear in the

number of parties. In our protocol, however, we do not rely on such com-

putationally expensive public key operations. Although our algorithm has a

θ(n2) complexity, the most time consuming part in our algorithm is phase 3

of the algorithm 2. That phase is always run by 2 parties, that is the reason

41

15 20 25 30 35 40 45 50

Number of Parties

Our Algorithm

0

20000

40000

60000

80000

100000

5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

e
cs

)

Number of Parties

Computational Cost

Our Algorithm

Clifton's Algorithm

Figure 7: Computation cost(2nd dataset)

the figures do not show linear growth.

42

7 Conclusion

In this thesis, we studied the problem of distributed privacy preserving clus-

tering over vertically partitioned data. We proposed algorithms for dis-

tributed k-means clustering algorithm and distributed dissimilarity matrix

computation, which can be given as input to clustering algorithms such as

AGNES or k-medoids. We also showed that although our algorithms are for

generic numeric data, it can also handle some special properties of spatio-

temporal data, i.e. moving object trajectories.

Our k-means clustering algorithm is an improvement of the work by

Clifton and Vaidya[24]. By replacing computationally expensive public key

encryptions with secret sharing, we showed that most of the communication

and computation overhead can be avoided. Although our algorithm show

worse asymptotic behavior than the work in [24], a more detailed analysis

and experimental results show that our algorithm has a much better com-

munication and computation overhead up to a reasonable amount of parties.

Secret sharing based privacy preserving data mining algorithms not only

helps us archive better computation and communication overhead, but also

provide better security as well. By using secret sharing, we were able to get

rid of non-collusion assumptions among involved parties, or at least minimize

the value information gained by colluding parties.

We believe concerns about user privacy will increase in the foreseeable fu-

ture, developing new privacy preserving data mining algorithms or improving

existing ones will still be an important research problem. Only secure mul-

tiparty computation provides “true” privacy among data mining algorithms.

In this thesis we showed that SMC based privacy preserving data mining

43

algorithms do not have to suffer from high overheads, making them posses

good practical value.

44

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data

mining. In Proceedings of the 2000 ACM SIGMOD International Con-

ference on Management of Data, May 16-18, 2000, Dallas, Texas, USA,

pages 439–450. ACM, 2000.

[2] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg

Sander. Optics: ordering points to identify the clustering structure.

In SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD international

conference on Management of data, pages 49–60, New York, NY, USA,

1999. ACM.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness

theorems for non-cryptographic fault-tolerant distributed computation.

In STOC ’88: Proceedings of the twentieth annual ACM symposium on

Theory of computing, pages 1–10, New York, NY, USA, 1988. ACM.

[4] Paul S. Bradley and Usama M. Fayyad. Refining initial points for k-

means clustering. In ICML ’98: Proceedings of the Fifteenth Interna-

tional Conference on Machine Learning, pages 91–99, San Francisco,

CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[5] L. Chen and R. Ng. The marriage of lp-norms and edit distance, 2004.

[6] Lei Chen, M. Tamer Özsu, and Vincent Oria. Robust and fast similarity

search for moving object trajectories. In SIGMOD ’05: Proceedings of

the 2005 ACM SIGMOD international conference on Management of

data, pages 491–502, New York, NY, USA, 2005. ACM.

45

[7] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and

Michael Y. Zhu. Tools for privacy preserving distributed data mining.

SIGKDD Explor. Newsl., 4(2):28–34, 2002.

[8] Martin Ester, Hans peter Kriegel, Jrg S, and Xiaowei Xu. A density-

based algorithm for discovering clusters in large spatial databases with

noise. pages 226–231. AAAI Press, 1996.

[9] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserv-

ing mining of association rules, 2002.

[10] Marc Fischlin. A cost-effective pay-per-multiplication comparison

method for millionaires. In Progress in Cryptology - CT-RSA 2001:

The Cryptographers’ Track at RSA Conference 2001, volume 2020 of

Lecture Notes in Computer Science, page 457, 2001.

[11] Scott Gaffney and Padhraic Smyth. Trajectory clustering with mixtures

of regression models. In Knowledge Discovery and Data Mining, pages

63–72, 1999.

[12] Ali Inan, Yücel Saygın, Erkay Savaş, Ayça Azgın Hintoğlu, and Al-

bert Levi. Privacy preserving clustering on horizontally partitioned

data. In 22nd International Conference on Data Engineering Workshops

(ICDEW’06), page 95. IEEE Computer Society, 2006.

[13] Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed

mining of association rules on horizontally partitioned data. IEEE

Trans. Knowl. Data Eng., 16(9):1026–1037, 2004.

46

[14] Murat Kantarcioǧlu, Jiashun Jin, and Chris Clifton. When do data

mining results violate privacy? In KDD ’04: Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 599–604, New York, NY, USA, 2004. ACM.

[15] S. V. Kaya, T. B. Pedersen, E. Savaş, and Y. Saygin. Efficient privacy

preserving distributed clustering based on secret sharing. In PAKDD

2007 International Workshops: Emerging Technologies in Knowledge

Discovery and Data Mining, pages 280–291. Springer, 2007.

[16] Selim Volkan Kaya. Toolbox for Privacy Preserving Data Mining. Mas-

ter’s thesis, Sabanci University, Istanbul, TURKEY, July 2007.

[17] Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. Cryptographically

private support vector machines. In KDD ’06: Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 618–624. ACM, 2006.

[18] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering:

a partition-and-group framework. In SIGMOD ’07: Proceedings of the

2007 ACM SIGMOD international conference on Management of data,

pages 593–604, New York, NY, USA, 2007. ACM.

[19] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining.

Lecture Notes in Computer Science, 1880:36–??, 2000.

[20] Kun Liu, Hillol Kargupta, and Jessica Ryan. Random projection-based

multiplicative data perturbation for privacy preserving distributed data

mining. IEEE Trans. Knowl. Data Eng., 18(1):92–106, 2006.

47

[21] Chris J. Needham and Roger D. Boyle. Performance evaluation metrics

and statistics for positional tracker evaluation. In ICVS, pages 278–289,

2003.

[22] Pascal Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In Advances in Cryptology — EUROCRYPT ’99.

International Conference on the Theory and Application of Crypto-

graphic Techniques, Lecture Notes in Computer Science, pages 223–238.

Springer-Verlag, May 1999.

[23] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryp-

tocomputing for nc1. In FOCS ’99: Proceedings of the 40th Annual

Symposium on Foundations of Computer Science, page 554, Washing-

ton, DC, USA, 1999. IEEE Computer Society.

[24] Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means clustering

over vertically partitioned data. In KDD ’03: Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 206–215, New York, NY, USA, 2003. ACM Press.

[25] Jaikumar Vijayan. House committee chair wants info on cancelled dhs

data-mining programs. Computer World, September 18 2007.

[26] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidi-

mensional trajectories, 2002.

[27] Rebecca Wright and Zhiqiang Yang. Privacy-preserving bayesian net-

work structure computation on distributed heterogeneous data. In KDD

’04: Proceedings of the tenth ACM SIGKDD international conference on

48

Knowledge discovery and data mining, pages 713–718, New York, NY,

USA, 2004. ACM.

[28] Andrew C. Yao. Protocols for secure computations. In Proceedings of

the 23rd IEEE Symposium on Foundations of Computer Science (FOCS

’82), pages 160–164, 1982.

49

