
A MODIFIED IDENTITY-BASED ENCRYPTION SYSTEM

FOR MESSAGING APPLICATIONS

by

AYS.E GÜL KARATOP

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabanci University

Spring 2008

A MODIFIED IDENTITY BASED ENCRYPTION SYSTEM

APPROVED BY

Assoc. Prof. Erkay Savas. ..

(Thesis Supervisor)

Assist. Prof. Yücel Saygın ..

Assist. Prof. Selim Balcısoy ..

Assist. Prof. Murat Kaya ..

Prof. Dr. Aytül Erc.il ..

DATE OF APPROVAL: ..

c©Ays.e Gül Karatop 2008

All Rights Reserved

to my family

Acknowledgments

Studying Cryptology in Sabanci University was one of my greatest aims, and I would

like to thank some special people who helped me effectively in this arduous period.

First of all, my thesis instructor Assoc. Prof. Erkay Savas.. Without his support

and confidence in me, I would not be able to complete this thesis. I had a great

time and experience assisting his lectures.

Secondly, it is a pleasure to thank the thesis committee, Prof. Dr. Aytül Erc.il,

Assist. Prof. Yücel Saygın, Assist. Prof. Selim Balcısoy and Assist. Prof. Murat

Kaya for their participation and assistance.

Also I would like to thank my friends; Duygu Karaoğlan, Ulvi Kasapoğlu and İsmail

Fatih Yıldırım. During this period, they have always provided motivation and sup-

port.

Finally and most importantly, I wish to thank my parents for being patient and

considerate during my education.

v

Abstract

Identity-based encryption (IBE) systems are relatively recently proposed; yet they

are highly popular for messaging applications since they offer new features such

as certificateless infrastructure and anonymous communication. However, recent

studies also reveal that the infrastructure needed for IBE systems may be as com-

plicated as the conventional public key cryptosytems and not sufficient research has

been conducted in relevant issues concerning the infrastructure.

Firstly, there is the issue of the existence of the Private Key Generator(PKG) as a

full-trusted third party. Since PKG generates and knows users’ private keys; the user

privacy has not been fully achieved. This issue leads to non-repudiation problem

where PKG can not only decrypt messages but also can fabricate a valid signature

on behalf of any registered user. Secondly, the key-revocation leads tremendous cal-

culations for PKG. In the case of a key-lost, finding a descriptive identity for a user

may be difficult. Thus, a new master secret key is generated resulting in changing

private keys of every user registered in the system.

With this thesis, a new modified IBE infrastructure is proposed to overcome the

stated problems. The master key is secretly shared by two parties, Registration Au-

thority(RA) and Private Key Generator(PKG). In addition, PKG shares the master

key with every registered user. With this approach, PKG will not be able to ac-

quire the master key provided that there will be no collusion between the parties,

RA-PKG and PKG-users.

vi

Özet

Kimlik tabanımlı şifreleme(KTŞ) sistemleri; yeni sunulmalarına karşın, sertifikasız

yapılar ve anonim haberleşmelerde yeni özellikler sunduğu düşünülerek, mesajlaşma

programlarında popüleritesini git gide arttırmaktadır. Buna rağmen, yeni araştırmalar

gösteriyor ki; KTŞ sistemleri, ac.ık anahtarlama kriptoloji sistemleri kadar kompleks

bir yapılandırma gerektirmekte ve bu konuda araştırmalar halen süregelmektedir.

Öncelikle, KTŞ sistemlerindeki Gizli Anahtar üreticisi biriminin tam güvenilir bir

durumda olması probleminin üzerinde durulması gerekiyor. Gizli Anahtar üreticisi

sistemdeki tüm kullanıcıların gizli anahtarlarını oluşturmaktan sorumlu olmasından

ve bu değerleri bilmesinden dolayı kullanıcı gizliliği KTŞ sistemlerinde tam olarak

sağlanamamaktadır. Bu durum aynı zamanda kullanıcılar için inkar edememe prob-

lemini oluşturmakta olup, Gizli Anahtar Üreticisinin sistemde kayıtlı olan herhangi

bir kullanıcı adına imza üretebilme ve kullanıcıların mesajlarını deşifre etmesine

olanak sag̃lamaktadır. İkinci olarak, anahtar geçersiz kılma işlemleri Gizli Anahtar

Üreticisi biriminde aşırı hesaplamalara ve iş yüküne neden olmaktadır. Kullanıcıların

anahtar kaybetmesi durumunda, kullanıcıya atanacak açıklayıcı bir kimlik bulmak

zorluklar getirmektedir. Bu sorunu ortadan kaldırmak için, yapılması gereken sis-

temdeki ana anahtarın tekrar üretilmesi ve dolayısıyla tüm kullanıcılar için yeniden

yeni ana anahtar kullanılarak gizli anahtar oluşturulması gerekmektedir.

Sunulan bu tezle birlikte, Kimlik tabanımlı sistemlerdeki daha önceden bahsedilmiş

olan sorunlara çözüm yolu bulunmuştur. Sistem ana anahtarı iki birimde, Kayıt

Otoritesi(RA) ve Gizli Anahtar Üreticisi(PKG), gizli bir şekilde paylaştırılmıştır.

Aynı şekilde sistem ana anahtarı Gizli Anahtar Üreticisi ile sistemde kayıtlı olan her

kullanıcı arasında paylaştırılmış olup, kullanıcı gizliliği sağlanmıştır. Bu yaklaşımla;

kullanıcıların Gizli Anahtar Üreticisi ve Kayıt Otoritesinin Gizli Anahtar Üreticisiyle

hiç bir şekilde anlaşmaması şartıyla, Gizli Anahtar Üretici hiç bir zaman ana anahtar

bilgisine ulaşamamaktadır.

vii

Table of Contents

Acknowledgments v

Abstract vi

Özet vii

1 Introduction 1

2 Identity-Based Encryption Systems 4
2.1 Background . 4

2.1.1 Public Key Cryptography . 4
2.1.2 Elliptic Curve Cryptography 4
2.1.3 Secret Sharing Method . 5
2.1.4 Finite Fields . 5
2.1.5 Elliptic Curves . 5
2.1.6 Bilinear Map Functions . 6
2.1.7 Hash Functions . 6
2.1.8 Homomorphic Encryption . 7

2.2 Work flow of IBE . 7

3 The Proposed Infrastructure 9
3.1 Setup Phase . 9
3.2 Registration phase . 10
3.3 Public Key Selection and Private Key Extraction 12
3.4 Identification . 13
3.5 Using Pseudonyms for Anonymity . 15

4 Analysis of the Proposed Infrastructure 18
4.1 Security . 18
4.2 Non-Repudiation . 19
4.3 Validity Period of Public Keys . 24
4.4 Key Revocation Problem . 25
4.5 Scalability . 26

viii

5 The Implementation 28
5.1 Multiprecision Integer and Rational Arithmetic C/C++ Library . . . 28
5.2 Mozilla Thunderbird . 28
5.3 The Integration of MIRACL and Thunderbird 31
5.4 Performance . 34

6 Conclusion 36

ix

List of Figures

3.1 The two-party protocol for computing PSY S 9

3.2 The registration protocol . 10

3.3 Private key extraction protocol . 14

3.4 User Identification to the PKG . 14

3.5 Pseudonym generation . 16

4.1 Man-in-the-middle attack when user changes the public keys of the

RA and the PKG . 21

4.2 Man-in-the-middle attack when user is able to change only the public

key of the RA . 22

4.3 Query Attack on the RA . 23

4.4 Secured Version of Step 4 of Registration Protocol 23

4.5 Introducing a new PKG into the system 27

5.1 The System Architecture . 32

5.2 The Decrypt Menu Item . 34

x

List of Tables

5.1 The Properties of Install.rdf . 30

5.2 The chrome.manifest File . 31

5.3 The Performance . 35

5.4 The File Storage . 35

xi

Chapter 1

Introduction

Identity-based encryption (IBE) scheme is a public key cryptosystem where the

public keys are unique identities in arbitrary string forms. For instance, e-mail

addresses, names, pseudonyms or IP addresses can serve as a public key in IBE sys-

tems. The original concept was initially introduced by Shamir in 1984 [17] while the

first practical realization of IBE system is based on pairing-based cryptography by

Boneh and Franklin [1]. With the advent of pairing-based cryptography new appli-

cations of IBE cryptosystem as well as new techniques to realize it more efficiently

become the major focus of the contemporary research.

Generally speaking, in IBE cryptosystems, there exists a trusted third party,

so-called Private Key Generator(PKG), which is responsible for generating global

parameters to be employed in the system as well as the private keys for the registered

users. Users obtain their private keys from the PKG, in order to decrypt their

messages intended for them. The secure delivery of private keys should be performed

over secure channels, where confidentiality and authentication are provided.

IBE is principally a public key cryptosystem, where each user has a public and

private key pair. To illustrate, suppose that a user, Alice, wants to send a message

to Bob. She encrypts the message with Bob’s unique public key, e.g. his e-mail

address ‘bob@sabanciuniv.edu’. Bob requests the corresponding private key from

the PKG, to decrypt the message. The PKG calculates the private key, sends to

Bob, and Bob consequently decrypts the message.

Since the bound between a user and its public key is based on an inherent or real-

word relationship (e.g. user/name, user/e-mail address, user/assumed role etc.), the

need for an infrastructure is seen by some not as comprehensive as the conventional

1

public key infrastructure(PKI). Whereas as elaborately pointed out in [6], a fully-

functional IBE system would also require a complex infrastructure in which some

aspects have not been fully investigated. Firstly, there is the issue of uniqueness

of public keys in IBE since real world names or identities tend to be not unique.

Therefore, there should be a registration authority to keep track of used names, i.e.

public keys. Secondly, the key revocation could lead to some inconvenience since one

may find difficult to obtain a new descriptive name for herself such as finding a new

name. One way to revoke a key without actually changing the public key requires

that system parameters be changed resulting in changing of private key of every

user in the system. And finally, all IBE schemes have the key escrowing property,

which is considered as a weakness since the PKG knows the private key of every

user. Thus, the PKG can decrypt any message intended for any user and it can

fabricate a signature for any message on behalf of any user. The former results in

the loss of privacy and anonymity of users in their communications while the latter

leads to loss of non-repudiation property.

In this thesis, our contribution is proposing solutions to some of the shortcom-

ings of IBE systems. Limiting our attention to messaging systems such as instant

messaging and e-mail applications, we outline an infrastructure for IBE system.

Our basic construction follows the idea of secret sharing of the master secret key

between two semi-honest parties, namely the private key generator (PKG) and the

registration authority (RA). In addition, the PKG shares the same master secret

key with each user in a different way, having one share for each user registered in

the system. Thus, a user and the PKG have to participate in a protocol to generate

the private key for the user. A user’s only interaction with the RA is during the

registration phase, in which the RA not only checks the uniqueness of the identity

but also assists in the protocol that generates two new shares of the master secret

key for the user and the PKG. One benefit of our model is that there is no need to

employ a secure channel between the PKG and users to deliver private keys since

the PKG can send only its share of the private key to users.

We also propose to use ever-changing public keys by attaching date information

to the natural identities of users from the perspective of communication models.

While public keys changing on daily basis are convenient for instant messaging

2

applications, weekly or monthly public keys in case of asynchronous persistent com-

munication models such as e-mail systems seems feasible. The PKG’s share of the

relevant public key is sent to user automatically. The PKG does not need to be

a global party in the system; there can be many local PKGs serving intranets or

subdomains. For instance, the message exchange server is a candidate for a local

PKG.

In our infrastructure, the users can freely adopt pseudonyms or nicknames for

anonymous communication. The hardness of elliptic curve discrete logarithm prob-

lem protects the anonymity of users from the scrutiny of the PKG or any other

party.

Our most basic assumption is that the RA and PKG never collude since they are

semi-honest and follows the protocol steps exactly. Similarly, we also assume that a

user and the PKG do not collude since we believe that there are many incentives for

users not to collude with the PKG such as losing their privacy and/or anonymity if

they do so.

We give a brief information about identity-based encryption systems and their

mathematical background in the second section. The third part includes detailed

information about our proposed infrastructure and the security of the proposed

scheme is discussed in section four. In section five, the implementation of the pro-

posed infrastructure is explained. Finally, the thesis ends up with the conclusion

section.

3

Chapter 2

Identity-Based Encryption Systems

2.1 Background

Identity-based encryption (IBE) systems utilize elliptic curves and pairing opera-

tions as proposed in [1]. The public and private keys, as well as the ciphers are

represented as elliptic curve points and the pairing function is performed during

encryption and decryption processes. The underlying infrastructure of elliptic curve

cryptography is built on finite fields. It is essential to point out some informa-

tion about the background and underlying key terms utilized in the proposed IBE

infrastructure.

2.1.1 Public Key Cryptography

Public-key Cryptography(Asymmetric Cryptography) is a form of cryptography

where users are assigned a pair of keys, public and private keys. While public key

information is widely distributed, the private key is kept secretly on the user side.

Generally, the messages are encrypted with the recipient’s public key and can only

be decrypted with the corresponding private key pair belonging to the recipient.

2.1.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography is an approach to Public Key Cryptography and built

on elliptic curves. The security of the system is directly correlated with the proper-

ties of the Finite Field and the Elliptic Curve that are in used in the implementation

of the elliptic curve cryptography. Since the system is built on elliptic curves, vari-

ables, i.e. public, private keys or messages, are represented as elliptic curve points.

4

Besides, in the decryption and encryption phases, elliptic curve operations are per-

formed.

2.1.3 Secret Sharing Method

As mentioned in the Introduction section, in order to avoid drawbacks of IBE, a

secret sharing method will be utilized between both RA-PKG and PKG-users. With

secret sharing, a secret information is shared between parties and each share is stored

secretly. While the shares stored on each party do not reveal any information about

the shared secret key, the only way to constitute the key is to apply a method where

all users must participate. In our infrastructure, the master key will be secretly

shared by RA-PKG and PKG-Users. The algorithm of the the secret sharing method

will be discussed in section three.

2.1.4 Finite Fields

A field is an algebraic structure, where operations like addition, subtraction, multi-

plication and division are performed. A finite field or Galois field, Fp or GF (p), is

a form of a field that has finitely many elements. The properties of the finite field

are explained below:

• The Finite Fields have the form F n
p , where p is the the characteristic property

and n is the order of the field.

• The number of elements in the field is equal to pn.

2.1.5 Elliptic Curves

An elliptic curve E(Fp) over a finite field Fp is defined with the equation,

y2 = x3 + ax + b with a, b ∈ Fp

The solutions to this equation are called elliptic curve points, and shown as P =

(x, y), where x and y are the coordinates and elements of the underlying field Fp.

The points on elliptic curve along with so-called point at infinity form an additive

group that we can use to define elliptic curve discrete logarithm problem. We can

5

denote the point addition as P +Q, and define elliptic curve scalar multiplication of

an elliptic curve point P by an integer α, as αP . The order of a point is the smallest

integer, n, such that nP = O , where O denotes the point at infinity, which is the

identity element of the elliptic curve group. The security of elliptic curves depends

on the difficulty of solving elliptic curve discrete logarithm problem (ECDLP). The

ECDLP basically states that given two points Q and P from the equation, Q = αP ,

it is computationally difficult to find α.

2.1.6 Bilinear Map Functions

Bilinear maps over elliptic curve points play a central role in IBE systems. A bilinear

map is defined over two groups of the same prime-order q denoted by G1 and G2.

G1 is an additive group and is formed of a group of points on elliptic curves while

G2 is a multiplicative group. Bilinear map, therefore, is defined as G1 × G1 → G2.

Basically, a bilinear map, which is denoted as ê(·, ·), accepts two elements as input

from G1 and returns an element in G2. Bilinear maps have three properties [7]:

• Bilinearity

ê(xP, yQ) = ê(xP, yQ) = ê(P,Q)xy ∀P,Q ∈ G1,∀x, y ∈ Zq

• Non-degeneracy: The elements of G1, except O are mapped to all elements in

G2.

∀P ⊂ G1, P 6= 0 ⇒ ê(P, P) 6= 1

• Computability: ê is efficiently computable.

Tate and Weil pairings [13], [8] are the most used pairing functions. Several recent

cryptographic schemes utilizes these pairings such as identity-based encryption [1],

short signature [3], and efficient broadcast encryption [2]. Our scheme is based on

Tate pairing which is, in general, more efficiently calculated than the Weil pairing.

2.1.7 Hash Functions

Private keys of users, in IBE systems, are elliptic curve points. Similarly, the iden-

tities are mapped to elliptic curve points using a public function. A hash function,

6

H1 : {0.1}∗ → G1, is employed to convert a string of arbitrary length (i.e. identity)

to a point on the underlying elliptic curve. In addition to H1, another hash func-

tion, H2 : G2 → {0, 1}n is used in encryption and decryption phases. For further

information about elliptic curves and pairing based cryptography one can profitably

refer to [11] and [5].

2.1.8 Homomorphic Encryption

In the proposed infrastructure; Homomorphic Encryption algorithm is used, espe-

cially in the registration phase, in order to apply the secret sharing method for the

user and the PKG. The Homomorphic Encryption algorithm works as follows:

E(m1)∗E(m2) = E(m1+m2) where m1 and m2 are the encrypted messages. (2.1)

2.2 Work flow of IBE

In general, an IBE System consists of four phases [15]:

1. Setup phase: consists of two steps and is performed by the PKG.

• Selection of the elliptic curve and the master key, s, and the generation

of the public key of the system, PSY S = sP , where P is the generator

point of G1, group of chosen elliptic curve.

• Selection of hash functions, H1, H2 and the bilinear mapping function.

2. Extraction: The private key generator generates the users’ private. The

public key of a user, having the identity, ID, is denoted as QID while the

private key of the user is denoted as DID.

QA = H1(A) and DA = sQA where A stands for the identity of Alice

3. Encryption: Encryption is performed by using the receiver’s public key (say

Alice) as follows:

• (U, V) = (rP,M ⊕ H2(gQ))

7

• where r ∈R Z∗

q (i.e. r is randomly selected in Zq)

• and gQ = ê(QA, PSY S)r and ⊕ denotes exclusive-OR operation.

Here M is the plaintext and the pair (U, V) is the ciphertext, which is conse-

quently sent to Alice.

4. Decryption: In decryption phase, the ciphertext (U, V) can only be de-

crypted if the receiver’s private key (DA) is known. The following steps are

applied in decryption process:

V ⊕ H2(gQ′) where gQ′ = ê(DA, U)

The decryption works since

V ⊕ H2(ê(DA, U)) = V ⊕ H2(ê(sQA, rP)) = V ⊕ H2(ê(rQA, sP))

= V ⊕ H2(ê(QA, PSY S)r)

= V ⊕ H2(gQ) = M ⊕ H2(gQ) ⊕ H2(gQ) = M.

8

Chapter 3

The Proposed Infrastructure

This section describes the main steps in the proposed infrastructure omitting the

encryption and decryption phases since they are identical to the original IBE en-

cryption and decryption schemes outlined in the previous section.

3.1 Setup Phase

RA PKG

 selects s
RA

at random

P
RA

 = s
RA

P

 selects s
PKG

at random

P
PKG

 = s
PKG

P

P
SYS

 = P
PKG

+P
RA

 publishes P
SYS

Figure 3.1: The two-party protocol for computing PSY S

We utilize secret sharing of the master key, s. With this purpose, two semi-

honest parties1 are formed; the Private Key Generator (PKG) and the Registration

Authority (RA). The RA is responsible for the registration of users in the beginning

while the PKG is responsible for the distribution of private keys. In addition, the

RA and PKG share the master secret key as follows: Initially, the RA and the PKG

choose two random secret keys, sRA and sPKG, where s = sRA + sPKG is the master

1A semi-honest party follows the protocol steps exactly as defined, and does not involve in

extra-protocol activities. This is somewhat a weaker assumption than the fully-trusted authority.

9

key. Since s must not be known by two semi-honest parties, we stipulate that the

RA and the PKG do not collude with each other. Indeed, so long as the PKG and

the RA do not collude nobody knows the master secret key. A two-party protocol

for generating the secret share and the public key of the system PSY S is illustrated

in Figure 3.1.

After selecting its secret share of master secret key, the RA computes PRA =

sRAP , which is its share of public key of the system, and sends it to the PKG.

Similarly, the PKG computes its share of system public key, PPKG = sPKGP and

performs the elliptic curve addition PSY S = PPKG + PRA. Consequently, the PKG

publishes the system public key, PSY S.

3.2 Registration phase

Alice RA PKG

1) A, X = E
RA

[r
1
-s

A
]

2) Y = E
PKG

[r
1
-s

A
+s

RA
+r

2
]

3) Z = E
PKG

[-s
A
+s

RA
+r

2
], E

PKG
[s

A
P]

 D
RA

[r
1
-s

A
]

r
1

- s
A

+ s
RA

+r
2

E
PKG

[-r
1
]*Y

D
PKG

[T*E
PKG

[s
PKG

]]=s-s
A

D
PKG

[E
PKG

[s
A
P]]=s

A
P

4) T = E
PKG

[-s
A
+s

RA
], E

PKG
[s

A
P]

E
PKG

[-r
2
]*E

PKG
[-s

A
+s

RA
+r

2
]

Figure 3.2: The registration protocol

In the registration phase, the user is first introduced to the system by a secure

three-party protocol that involves the user, the RA, and the PKG. The aim of the

three-party protocol is two-fold: i) check the uniqueness of the user identity, and

ii) securely compute new shares of the master secret and give one share to the user

and the other to the PKG. The protocol steps are illustrated in Figure 3.2. The

10

registration phase utilizes public key cryptography and we assume that the user

(i.e. Alice in Figure 3.2) knows the public keys of the RA and PKG. ERA[x] and

EPKG[x] stand for encryption of x with public key of the corresponding party, i.e. the

public keys of RA and PKG, respectively. The PKG uses a homomorphic public key

cryptosystem similar to the one in [16]. Therefore, we have EPKG[m1] ·EPKG[m2] =

EPKG[m1 + m2].

The protocol steps are explained as follows:

• Step 1 The user (Alice in Figure 3.2), for the first and last time, contacts

the RA by sending her identity (A) in the first message. Alice also encrypts

the difference between her secret share sA and a random number r1 using the

public key of the RA and sends the resulting ciphertext X = ERA[r1 − sA]

along with her identity A to the RA.

• Step 2 The RA first checks whether the ID of Alice, A is unique; if not, it

helps Alice choose a unique identity. It then obtains the difference r1 − sA by

decrypting X and adds its own share of the master secret, sRA and another

random number r2 to the difference. It, subsequently, encrypts r1−sA+sRA+r2

and sends the resulting ciphertext Y = EPKG[r1−sA +sRA +r2] back to Alice.

The value r2 is a random number chosen by the RA.

• Step 3 Alice removes the random number r1 by performing the operation

EPKG[r1 − sA + sRA + r2]×EPKG[−r1] = EPKG[sRA − sA + r2]. The resulting

ciphertext EPKG[sRA − sA + r2] is sent to the RA. Alice also sends EPKG[sAP]

to the RA, which serves as a token to authenticate Alice to the PKG in their

subsequent transactions.

• Step 42 The RA removes the random number r2 similarly and forward EPKG[sRA−

sA] to the PKG which first performs EPKG[sRA−sA]×EPKG[sPKG] = EPKG[s−

sA]. It then decrypts the resulting ciphertext and obtain its share of master

secret sA′. Note that s = sA + sA′. The PKG also decrypts EPKG[sAP]

and obtains sAP . Finally, it checks whether the following equality holds:

sAP + sA′P = PSY S.

2Step 4 of the registration protocol is more complicated than described here due to security

considerations. The full description of this step is given in Section 4.2

11

As a result of the registration phase, the user and the PKG come to posses differ-

ent shares of the master secret s. Therefore, a user and the PKG must collaborate to

generate a private key corresponding to any public key chosen by the user. The fact

that they collaborate makes the generation and secure transmission of private key

to the user simpler and more efficient as explained in subsequent sections. Provided

that none of the users and the PKG do not collude, the master secret will never be

revealed. Note that no coalition of users is able to construct the master secret since

the user shares themselves do not contain any information about the master secret.

We have two motivations to believe that non-collusion assumption is valid and

realistic: i) the PKG is semi-honest, and therefore does not try to learn about the

secret shares of the users unless openly told by the users, and ii) a user does not

want to reveal its share to the PKG since doing so gives the PKG the ability to

access the messages intended for the user and to generate signatures on behalf of

the user. Furthermore, the secret share sA of a user can always be kept in a trusted

zone of its hardware and will never leave this zone in the clear. And, we can prevent

the user from learning the secret share by employing tamper-proof crypto module

as explained in Section 4.2.

3.3 Public Key Selection and Private Key Extrac-

tion

In identity-based encryption system, public keys are generally arbitrary strings that

contain identity of the user and other relevant publicly available information. Fur-

thermore, the public keys can contain descriptive information about the intended

recipient. This clearly alleviates the problem of public key certification used to

establish a binding between the public key and the identity of public key owner.

Apparently, this bond is inherent in IBE systems. This, nevertheless, complicates

the key revocation problem since changing a user’s public key entails changing of

its identity. Changing one’s identity raises certain concerns since finding another

descriptive name for an individual may be difficult per se. However, the more im-

portant point is the complicated infrastructure (e.g. certification revocation lists)

required for informing other users on the compromised or stale public keys.

12

In messaging applications, on the other hand, the problem of key revocation can

be addressed using ”ever-changing” public keys. Namely, public key of a user can

contain strings related to situational information such as the location, time, date,

and role of the user besides the unique identity of the user. We simply propose

to include date (or time) information in the identity (hence the public key) of the

user. Therefore, the users in our messaging infrastructure has public keys, that are

updated frequently. For instance, a user ID may contain date information, such as

March 14, 2008, which is a public information and can be appended to the ID easily.

The string ”bob@openuniv.edu:14/03/2008” is an example for ever-changing public

keys.

If the public keys change as frequently as every day, then the corresponding

private keys must be re-computed as frequently. As mentioned earlier, both the

user and the PKG must participate in the private key generation procedure. In

classical IBE systems, the secret key is generated by the PKG and then securely

transmitted to the user. Before, the key generation, the user must authenticate

itself to the PKG and secure channel must be established between the user and the

PKG. Otherwise, the private key can be fallen in the hands of other users or worse

yet adversaries. The proposed scheme, on the other hand, utilizes only implicit

authentication of the user and does not require a secure channel. The private key

generation scheme is illustrated in Figure 3.3.

The user, Alice, selects a public key by appending date and other relevant infor-

mation to her identity and obtains QA, which is sent to the PKG. The PKG then

computes its share of the public key sA′ ·QA and sends it to Alice. Alice then com-

putes DA = sA ·QA + sA′ ·QA = s ·QA, which is her private key, DA corresponding

to the public key QA.

3.4 Identification

In case there is a need for explicit identification of the user to the PKG, they can use

a modified version of Schnorr’s identification protocol as illustrated in Figure 3.4.

The effort undertaken by the user is one elliptic curve point multiplication with a

scalar and one multiplication and one subtraction in modulo n, where n is the order

13

Alice PKG

1) Q
A

2) s
A'

Q
A

D
A
 = s

A
Q

A
+s

A'
Q

A

Figure 3.3: Private key extraction protocol

Alice PKG

2) r (challenge)

1) kP (witness)
random k

yP-rs
A
P = kP

3) y (response)

?

y = k - s
A
r

random r

Figure 3.4: User Identification to the PKG

of base point P .

The steps of the identification protocol are summarized below:

• Step 1 The user Alice, first selects a random integer k and performs the elliptic

curve scalar multiplication, kP , where P is the base point for the underlying

elliptic curve group. Alice sends kP to the PKG as a witness.

• Step 2 The PKG selects a random integer r and sends it to Alice as a challenge.

• Step 3 Alice, upon reception of r, computes y ≡ k − sAr (mod n) and send

the resulting value y to the PKG.

• Step 4 The PKG computes yP − rsAP , where sAP serves as the public key

of Alice obtained during the registration, and authenticate Alice if the result

is the same as the witness kP .

If the PKG needs to authenticate itself to Alice, they can use any identification

14

scheme utilizing the public key of the PKG which is assumed to be in possession of

Alice.

3.5 Using Pseudonyms for Anonymity

The users, for anonymity reasons, may want to use nicknames or so-called pseudonyms

in their interaction with other users in the system. In the classical setting of IBE

systems, the PKG knows both the public key (identity) and private key of every

user; hence the anonymity cannot be achieved. One simple trick can, however, help

users generate pseudonyms on their own without a help from the PKG. Recall that

a user, say Alice, has public and private keys, QA and DA = sQA where s is the

master secret key. Alice can select a random number k, calculates RA = kQA, and

declares RA as her pseudonym. Alice also calculates kDA and uses it as her new

private key in decryption and signing operations. A similar approach is taken in

[10], where users can compute their private keys without any assistance from the

PKG. One important problem, however, associated with this technique is that the

pseudonyms are meaningless random looking bit-strings. Although pseudonyms in

this scheme tend do be unique they are also hard to remember. This may be a

concern in certain applications such as messaging where nicknames are specifically

chosen to be easy-to-remember.

Our approach is based on a technique we call blinding of the pseudonyms. As

illustrated in Figure 3.5, after selecting a pseudonym, QPN , Alice blinds it by per-

forming elliptic curve scalar multiplication, kQPN , where k is the randomly selected

blinding factor. The resulting blinded point QBL is then sent to the PKG that com-

putes sA′QBL and sends it back to Alice. Alice, finally, computes k−1(sA′QBL) +

sAQPN = sQPN . Consequently, Alice declares QPN (or more specifically PN) as

her public key and uses DPN = sQPN as her private key.

Note that no other party including the PKG and the RA can discover the identity

of the user in the proposed anonymity protocol since they do not have the knowledge

of the users private keys under the non-collusion assumption. Blinding does not fully

achieve the anonymity in the classical setting where the PKG is able to compute

the private key corresponding to any given pseudonym. Therefore, the PKG can

15

Alice PKG

1) Q
BL

Q
PN

=

H
1
(PN)

2) s
A'
Q
BL

(s
A'
Q
BL
)/k+s

A
Q
PN
 = sQ

PN

PN: pseudonym

Q
BL
 = kQ

PN

Figure 3.5: Pseudonym generation

decrypt any message being exchanged in the classical setting. However, in the

proposed protocol the PKG and RA needs to collaborate to compute a private key,

which they will do when a legitimate need arises such as revoking the pseudonym

of an ill-behaving user.

Another issue with the anonymity is the uniqueness of chosen pseudonyms. As

pointed out in [6], having two users sharing the same pseudonym will result in the

loss of security and privacy. Thus, users should check whether it is available before

they adopt a pseudonym. One solution to this problem is that the RA publishes an

authentic list of used pseudonyms. The users check the pseudonym against this list

and notify the RA that the chosen pseudonym is no longer available if it is not in the

list. The RA, in turn, updates the list of used pseudonyms. In certain applications

users may not want the RA to know the used pseudonyms. In this case, the RA

keeps a list for the hash values of the used pseudonyms and users can decide if a

pseudonym is used by performing the comparison over the hash values3.

Another issue using pseudonyms is that there is still a risk that a user may take

a pseudonym which is already adopted by another user; a problem which exists in

other pseudonym-based schemes as well. Since we do not explicitly address this

problem, the protocol in Figure 3.5 does not prevent users from adopting other

3If the so-called dictionary attack is of a concern, we may require that the RA perform the

uniqueness check. Having a semi-honest RA which never involves in extra protocol activities we

assume that it does not apply the dictionary attack. Alternatively, the RA can utilize a secure

comparison protocol.

16

users’ pseudonyms. Instead, a three-party protocol between user, the RA, and the

PKG is to be developed to ensure that the users register with unique pseudonyms.

A sketch of the protocol, which is based on the one outlined in Figure 3.5 can be

given as follows: User anonymously contacts with RA and sends QPN value. The

RA checks if another user has already registered with the same QPN ; if not, the

blinding operation is performed by multiplying QPN with a random value of k, the

result is digitally signed with the RA’s signature and sent together with k back to

the user. In the following step, the user sends (kQPN)sign to the PKG that verifies

the RA’s signature. If the signature is verified, the PKG computes sA′kQPN and

sends the result back to the user. The received sA′kQPN value is multiplied with

k−1 and sA′QPN is obtained on the user side. Finally; user’s private key, sQPN , is

calculated by adding sAQPN and sA′QPN . Since our primary application area is that

of e-mail, where pseudonyms are not used, a secure pseudonym-creation protocol for

other messaging applications requires further effort and security analysis depending

on the applications’ requirements.

17

Chapter 4

Analysis of the Proposed Infrastructure

In this section, we analyze the proposed infrastructure from four different perspec-

tives, namely i) security, ii) non-repudiation, iii) validity of public keys, and iv) key

revocation.

4.1 Security

Employing two or more trusted parties that do not collude was already proposed by

Boneh and Franklin in [1] and also in [4]. In both schemes, a user has to contact all

trusted parties to obtain its private key and furthermore the user has to establish

a secure channel with each trusted party in this key extraction phase. Our scheme

diverges from the previous schemes in two aspects. Firstly, it introduces two trusted-

third parties, the private key generator (PKG) and the registration authority (RA),

which secret share the master secret s and again do not collude with each other.

Secondly, each user shares the same master secret with the PKG in a different way.

Therefore, a user does not need to contact both trusted parties to acquire his/her

private key since s/he can do so using a protocol involving itself and the PKG

(cf. Figure 3.3). Furthermore, the communication between the user and the PKG

does not need to be encrypted. Users do not wish to collude with the PKG since

otherwise would mean the loss of their privacy and/or anonymity in their messaging

transactions.

Our second assumption involves the semi-honest nature of the PKG and the RA.

We do not make any assumption on the users of the system; they only try to protect

their own interest. Property of semi-honest party was first introduced by Goldreich

18

in [9] and it simply assumes that such parties are honest but curious. In other

words, they do not participate in extra protocol activities but gather any leaked

information from the protocol. For instance, the PKG will never try to register as

a user in the system since this would compromise the master secret to the PKG.

The interface for user registration is not available to the PKG. Unless users openly

encrypt their private shares of the master secret with the public key of the PKG

and send it to the PKG the semi-honest PKG will never learn the private shares of

the users. A user will not reveal his/her private share to the PKG or RA since this

share also serves as his/her private key in the identification protocol illustrated in

Figure 3.4. In other words, a user should not collude with the PKG since doing so

will enable the PKG to calculate the master secret s.

Another advantage of the proposed infrastructure is that it provides convenience

in key distribution. Only assumption we hold in key distribution is that a user who

would like to register knows the public keys of the PKG and RA. Users can acquire

this knowledge from publicly available resources such as web pages. Furthermore, a

user does not necessarily authenticate oneself to the PKG to obtain the private key

since the value sent by the PKG, i.e. sA′QA, does not contain any information on

the private key of the user. The information sent by the PKG becomes useful only

if it is received by the intended user.

Considering the difficulty of initial identification of users during the registration

as pointed out in [6], we assume that the user is able to prove her identity to the

RA during the registration protocol. It could be the case where the user personally

goes to the RA and show a piece of identification to prove her identity.

4.2 Non-Repudiation

Non-repudiation, by which a user cannot deny her own transactions with the other

entities in the system, is a property almost non-existent in IBE systems. Our in-

frastructure provides the non-repudiation property under certain assumptions. The

first assumption is non-collusion assumption between the PKG and the RA, and a

user and the PKG. Since a user’s share of the master secret serves also her private

key in her interaction with the PKG, such as identification protocol, she can be held

19

responsible for protecting her share from compromise as in the case of private key in

conventional public key cryptosystems. However, a user can claim that some other

user compromises his own share to the PKG not her and that the PKG becomes

able to sign messages for every user (hence the loss of non-repudiation). If this is

the case, our infrastructure reduces to classical IBE system. However, the situation

with our infrastructure is indeed better than the classical IBE systems since a user’s

ability to compromise her share of master secret to the PKG can be constrained.

One way of doing it is to employ a trusted tamper-proof crypto module that op-

erates on the secret share of the user and performs all the functions in a protected

manner. This module or engine will have a certain interface to the outside appli-

cations that can be designed not to leak information on user’s share of the master

secret. It should be noted that we only try to prevent the leakage on the user’s

share since its compromise to the PKG will destroy the non-repudiation property

of the whole system. Therefore, the primary goal in providing the non-repudiation

property is to ensure correct functioning of the system against the disruptive user

activities.

There are five instances that a user makes calls to the crypto module’s functions

that involve her secret share:

1. ERA[r1 − sA] in registration phase (cf. Figure 3.2).

2. EPKG[−r1] × EPKG[r1 − sA + sRA] in registration phase (cf. Figure 3.2).

3. DA = sAQA + sA′QA in private key extraction phase (cf. Figure 3.3).

4. y = k − sAr in user identification phase in Figure 3.4.

5. sA′QBL/k + sAQPN in pseudonym generation (cf. Figure 3.5)

In instance 1, only the difference of the share sA to a random value chosen by the

module leaves the module; hence it leaks no information on sA. In instance 4, a zero

knowledge protocol is used, which was proved to leak no information on the secret

value. In instances 3 and 5, sA leaves the module as the multiple of an elliptic curve

point. This value also does not leak any information based on hardness of ECDLP.

In instance 2, the user can call EPKG[−r1]×EPKG[r1−sA +sRA +r2]×EPKG[sRA] if

it obtains EPKG[sRA], which will never be available to her. However, the registration

20

phase must be inspected more closely to reveal the attack possibilities, which we do

in the following.

The user may cause the share sA to be revealed to herself or the PKG by chang-

ing the public keys used in the registration protocol. Assuming that the user is

capable of changing both public keys, she applies the man-in-the-middle-attack in

the registration phase and learns sA as illustrated in Figure 4.1.

Crypto

Module
RA

 User

Man-in-the-middle

1’) A, X’ = E
RA’

[r
1
-s

A
]

2) Y = E
PKG

[r
1
-s

A
+s

RA
+r

2
]

3’) Z’ = E
PKG’

[-s
A
]

E
PKG’

[-r
1
]*Y’

1) A, X = E
RA

[r
1
-s

A
]

2’) Y’ = E
PKG’

[r
1
-s

A
]

3) Z = E
PKG

[-s
A
+s

RA
+r

2
]

Figure 4.1: Man-in-the-middle attack when user changes the public keys of the RA

and the PKG

The user makes the crypto module to use a different public key with which she

encrypts r1−sA and returns the ciphertext X ′. After having decrypted the ciphertext

X ′ and obtained r1 − sA, the user re-encrypts it using the RA’s real public key and

forwards the ciphertext X to the RA. The RA responds to this message in usual way

and sends Y to the user, who replaces it with Y ′. The ciphertext Y ′ is the ciphertext

of r1 − sA encrypted under another public key which the crypto module treats it as

the authentic public key of the PKG. However, this public key is in fact chosen by

the user who naturally knows the corresponding private key. The user decrypts Z ′

and obtains the secret share sA; since she also knows r1 − sA, the user is able to

recover r1 as well. The user performs EPKG(−r1) × EPKG(r1 − sA + sRA + r2) and

sends the result EPKG(−sA + sRA + r2) to the RA. Therefore, we must prevent the

user from changing the public keys employed in the crypto module. A tamper-proof

and trusted crypto module can have hardcoded public keys, or public keys which

can be changed by only authorized users. The remaining questions to resolve is that

21

whether we protect both public keys or only one of them.

If the user is able to change only one of the public keys then the situation will

require another two analysis. Firstly, assume that the user can change only the

public key of the RA. Then the man-in-the-middle-attack works as in Figure 4.2.

As can be observed from the figure, the user herself cannot recover the secret share

sA, but enables the PKG to do so when the PKG decrypts EPKG(−sA). Note that

the user has to use the correct public key of the PKG since we assume that it cannot

replace it.

Crypto

Module RA
 User

Man-in-the-middle

1’) A, X’ = E
RA’

[r
1
-s

A
]

2) Y = E
PKG

[r
1
-s

A
+s

RA
+r

2
]

3’) Z’ = E
PKG

[-s
A
]

E
PKG

[-r
1
]*Y’

1) A, X = E
RA

[r
1
-s

A
]

2’) Y’ = E
PKG

[r
1
-s

A
]

Figure 4.2: Man-in-the-middle attack when user is able to change only the public

key of the RA

Finally, in case the user is able to change only the public key of the PKG, since

the RA and the hardware module use different public keys no information is revealed

to anyone. Therefore, if the user is not able to change the public key of the RA, then

the two attacks described above cannot be applied. Therefore, it is sufficient that

the tamper-proof crypto module must prevent the user from changing the public

key of the RA.

Another type of attack that can be applied by anyone who knows the two public

keys is called query attack and depicted in Figure 4.3, wherein the secret share of

the RA is revealed to the PKG. To prevent this attack, Step 4 of the registration

protocol (cf. Figure 3.2) must be modified as in Figure 4.4.

In the modified version of Step 4, the RA does not immediately remove its

random number r2 after it receives the message Z from the user. Instead, it relays

22

RA Adversary

2) Y = E
PKG

[r
1
+s

RA
+r

2
]

E
PKG

[-r
1
]*Y

1) A, X = E
RA

[r
1
]

3) Z = E
PKG

[s
RA

+r
2
]

PKG

3) T = E
PKG

[s
RA

]

Figure 4.3: Query Attack on the RA

Z to the PKG that decrypts it and obtains −sA +sRA +r2 (or sRA +r2 in case query

attack is applied). The secret share of the RA sRA is protected by the random

number r2 even if the query attack is applied. The PKG performs elliptic curve

point multiplication of the base point P by the integer −sA +sRA +r2 and sends the

resulting elliptic curve point Z ′ to the RA. The RA in turn computes (−sA + sRA +

r2)P − r2P = (−sA + sRA)P , which would be sRAP in case of the query attack.

Therefore, the RA can detect the query attack when Z ′ − r2P is equal to sRAP ;

if this is the case it aborts the registration protocol. Otherwise, it continues with

regular execution of the step 4 of the registration protocol as described in Figure

3.2.

RA PKG

D
PKG

[Z]=-s
A
+s

RA
+r

2

D
PKG

[E
PKG

[s
A
P]]=s

A
P

4’) Z = E
PKG

[-s
A
+s

RA
+r

2
], E

PKG
[s

A
P]

D
PKG

[T*E
PKG

[s
PKG

]]=s-s
A

4’‘) Z’ = (-s
A
+s

RA
+r

2
)P

 Z’ - r
2
P = s

RA
P

?

4) T= E
PKG

[-r
2
]*E

PKG
[-s

A
+s

RA
+r

2
]

Figure 4.4: Secured Version of Step 4 of Registration Protocol

23

One can claim that the registration protocol is complicated and may take quite

a long time. However, this complication can be tolerated since it is executed only

once for each user initially or in case of secret share refreshment which occurs not

very frequently. On the other hand, our private key generation and distribution

protocols are very efficient and convenient.

In summary, it is not possible to provide non-repudiation in IBE systems with-

out a tamper-proof crypto module that protects the secret share of the users and

public key of the RA used in the registration protocol. Best way to implement a

tamper-proof crypto module is doing it in the hardware whereby there are many

techniques to guarantee the protected and secure execution of cryptographic primi-

tives. Software obfuscation methods to hide secret keys and protect the public key

of the RA against replacement can also be used to provide a similar protection.

However, obfuscation methods are proven to give way to certain attack types; they

only provide limited protection.

4.3 Validity Period of Public Keys

Another issue in the proposed infrastructure is the validity duration of users’ public

keys. As mentioned earlier, we propose to append date information to IDs of the

users. The issue then becomes what sort of date information to use in the IDs. Our

approach is to define the duration, depending on the application and the underlying

communication model used in the message exchange. For instance, we propose to

append day information to the IDs in instant messaging applications where users

must be on-line and the communication is transient. The user acquires the PKG’s

part of the belonging private key in the first login in that day and it computes the

private key, which expires next day.

For asynchronous messaging systems such as e-mail, where users are most of the

time off-line, we propose to use either date of current week or month information

appended to users ID. We believe that to change the public key of the user every

week does not constitute too much overhead in e-mail applications. Considering

many e-mail messages an average user receives in a week, storing PKG’s share of

user’s private key (a point on the underlying elliptic curve) in the same directory as

24

the e-mails received in that week only marginally increases the storage requirements

allocated for that user. Once the user connects to the exchange server for the first

time in a week it downloads PKG’s share of the belonging private key for that week.

If the user has not connected to the e-mail server for more than a week, the e-mail

program downloads PKG’s share of the private key for previous weeks as well. Note

that these downloading operations are done transparently to the user or rather it

is pushed to the user by the e-mail server. By adding the user’s own share to the

PKG’s share, the user obtains the private key for the current week and will be able

to decrypt any message received that week. Note that when the need arises, for

instance by an explicit request from the user, PKG can re-generate its share of any

user’s private key.

Another approach in determining the validity period of the public keys is to give

the sender of the message as an option in e-mailing applications. This way, the

sender will choose whether it uses monthly or weekly public key of the recipient.

Our infrastructure can easily accommodate role-based messaging applications

as proposed in [14]. Instead of using names, e-mail addresses, pseudonyms, any

description for a role or time and space constraints can be used as a public key in

our infrastructure.

4.4 Key Revocation Problem

In the proposed IBE scheme, revocation becomes an issue in two different circum-

stances: i) a particular time-dependent private key, e.g. sQA, or ii) secret share of

any particular user, e.g. sA, is compromised. When the former happens, the adver-

sary can decrypt the messages intended for the corresponding user or sign messages

on behalf of that user until the expiration date of the corresponding public key. This

is the reason why we would like to use frequently changing public keys. The shorter

the validity period of a public key, the less likely the corresponding private key being

fallen in the hands of an adversary assuming that capturing a private key requires

substantial efforts. In addition, the damage is also minimized when a public key is

used only for short amount of time. In order to guarantee that no compromised key

is used in encryption or signature verification operations, the PKG can publish a

25

(revocation) list of compromised keys. Compromised public keys can be extended

with a known public information to generate a new public/private key pair.

If a user compromise her share of the master secret, which we believe is less

likely than the former case, the situation must be handled in a different way. The

adversary that has the secret share can impersonate the corresponding user, decrypt

any messages intended for the user and sign messages on behalf the user. In addi-

tion, the adversary can generate a new private key in collaboration with the PKG.

Therefore, shortening the validity period does not remedy this situation. In this

case, the user must change its share and initiate a new registration phase. With the

new share of the master secret, the user implicitly invalidate the old one, with which

the adversary cannot extract the private keys. There is no need to keep revocation

lists since the user does not have to change its public key after the new share is

generated. Adversary revealing the compromised share to the PKG will, however,

result in loss of non-repudiation property.

4.5 Scalability

In order to improve the scalability, we can envisage an architecture where there are

many private key generators while a single RA is responsible for registering users by

associating them with an appropriate PKG. The RA shares the same master secret

with every PKG in a different way. A user that wants to register in the system

indicates the PKG it prefers to the RA which in turn uses it in the registration

protocol. The master secret key is determined by the RA and the first PKG in the

system; and a new PKG is introduced into the system by running a protocol similar

to the registration protocol as described in Figure 4.5. We assume that private key

generators are semi-honest and non-colluding.

26

PKG2 RA PKG1

1) E
RA

[r
1
-s

PKG2
]

2) E
PKG1

[r
1
-s

PKG2
+s

RA
+r

2
]

3) E
PKG1

[-s
PKG2

+s
RA

+r
2
]

4) E
PKG1

[-s
PKG2

+s
RA

+r
2
]

5) E
RA

[-s
PKG2

+r
2
+s]

Figure 4.5: Introducing a new PKG into the system

27

Chapter 5

The Implementation

The proposed identity-based infrastructure is built by utilizing Miracl library[12]

and is integrated with one of the most used open-source mail applications, Mozilla

Thunderbird.

5.1 Multiprecision Integer and Rational Arithmetic

C/C++ Library

Multiprecision Integer and Rational Arithmetic C/C++ Library(Miracl) is a big

number library provided by Shamus Software Limited and maintains a rich platform

to design elliptic curve cryptography implementations. The main asset of of Miracl is

that the bilinear mapping functions and the elliptic curve operations are efficient and

fast when compared to other big number libraries. The underlying infrastructure of

Miracl is built by using C/C++ coding language. Our infrastructure is built upon

a supersingular elliptic curve with the equation y2 = x3 + 1 mod p where p has a

size of 512 bits so as to provide an equivalent security to 1024-bit RSA. In addition,

both Tate pairing and hash functions are provided by Miracl library.

5.2 Mozilla Thunderbird

IBE systems, as pointed out earlier, are convenient for messaging applications.

Therefore, a simplified version of the proposed infrastructure is integrated with one

of the widely used open-source e-mail applications, Mozilla Thunderbird. In order to

embed the proposed infrastructure in an e-mail application, Thunderbird provides

28

a flexible and rich platform. Developing an extension requires a knowledge of XUL

and JavaScript languages. While XUL language is generally used to define new win-

dow elements such as bars, menu items or buttons on the user interface, JavaScript

is utilized to assign events on the created window elements and also executes the

underlying C++ built processes such as encryption and decryption routines.

Before building an extension, the development environment has to be prepared.

Preparing the development environment involves populating the appropriate exten-

sion folders with specific files. This extension (add-in) folder contains the following

items.

• /chrome.manifest: Specifies where the chrome files are located.

• /install.rdf: The description file of the extension.

• /locale/*:

• /locale/en-US: Contains translation for text string codes in *.xul files.

• /defaults/:

• /defaults/preferences/*.js: Contains

• /content/: Contains two types of files with the extensions, .xul and .js. While

xul file contains the definitions of user interface elements, such as buttons,

menu items; the javascript file is the script file in which the actions are defined.

• /skin/:

After the development environment is prepared, one may start developing the

extension by first writing the definition of the extension in the XML formatted

install.rdf file, which is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:em="http://www.mozilla.org/2004/em-rdf#">

<Description about="urn:mozilla:install-manifest">

<em:id>encry@encry.org</em:id>

<em:name>encry</em:name>

29

<em:version>1.0</em:version>

<em:creator>encry Team</em:creator>

<em:homepageURL>http://www.encry.org/</em:homepageURL>

<em:optionsURL>chrome://encry/content/options.xul</em:optionsURL>

<em:targetApplication>

<Description>

<em:id>{3550f703-e582-4d05-9a08-453d09bdfdc6}</em:id>

<em:minVersion>1.5</em:minVersion>

<em:maxVersion>2.0.0.*</em:maxVersion>

</Description>

</em:targetApplication>

</Description>

</RDF>

The description of the install.rdf is given in Table 5.1.

Table 5.1: The Properties of Install.rdf

Tag The Functionality

xml version Defines the xml version of the document

id The ID of the extension, given in e-mail address for-

mat

name The name of the extension

version The version of the extension

creator String information that represents the the designer of

the extension

homepageURL Homepage URL of the extension

Description/id Thunderbird’s application ID

Description/minVersion The minimum version of the Thunderbird the exten-

sion can work with

Description/maxVersion The maximum version of the Thunderbird the exten-

sion can work with

The chrome.manifest file references the chrome, or namely, the source files, where

30

the scripts and xul files defining the functionality of the extension, are located. A

sample of chrome.manifest file for the plug-in encry is shown in Table 5.2.

Table 5.2: The chrome.manifest File

content encry content/

locale encry en-US locale/en-US/

locale edithtml en-US locale/en-US/

skin encry classic/1.0 skin/

overlay chrome://messenger/content/messenger.xul

chrome://encry/content/messengerOverlay.xul

overlay chrome://messenger/content/messageWindow.xul

chrome://encry/content/messengerOverlay.xul

overlay chrome://messenger/content/messengercompose/messengercompose.xul

chrome://encry/content/composeOverlay.xul

The locale folder shall include a folder, named en-US, in which the translation

of the text string codes in *.xul files are located. Every extension has an option

box that provides a user-friendly interface for the users, allowing to modify the

preferences of the extension. The structure and functionality of this box is provided

by the javascript files, located in the preferences folder. The functionality and

behavior of the extension are defined with the javascript and xul files, located in

the content folder. While the XUL file provides adding new user interface elements

on Thunderbird, the Javascript file contains the action and behavior information of

these elements together with the extension’s functionality.

5.3 The Integration of MIRACL and Thunder-

bird

As pointed out earlier, the implementation comprises two tiers, MIRACL and Mozilla

Thunderbird. While MIRACL covers the security aspect, Mozilla Thunderbird con-

31

stitutes the communication part of the project. Since these two components are

implemented in different programming languages, it is also important to explain

how they are integrated to each other in order to conceive their cooperation.

In the implementation part of this thesis; three add-ins have been developed, for

the RA, the PKG and the user separately, since these entities have different roles.

Each plug-in contains the executable files and the plug-in source code. The c++

built processes, that involve the cryptographic operations, are invoked automatically

by Thunderbird whenever the appropriate action takes place. For instance, the

encryption process is called from Thunderbird, each time the user sends an email.

It is important to mention that the plug-in also serves as an environment to store

the cryptographic parameter files, such as private keys and public keys. As shown

in Figure 5.1, the entities communicate via mail server. The e-mail server plays the

central role and generally works as a bridge between PKG, RA and the user. In

addition, two additional email addresses have been registered for the RA and the

PKG, namely ‘ibe ra@sabanciuniv.edu’ and ‘ibe pkg@sabanciuniv.edu’.

Mail Server

PKGUser RA

SMTP

Add-in

SMTP

Add-inAdd-in

SMTP

Figure 5.1: The System Architecture

After the extension is installed all phases are handled automatically except for

the decryption phase. The specific details are given below:

1. Setup Phase: When started, both add-ins on RA and PKG’s side randomly

select secret numbers and each calculates their shares of the system public

key. The setup phase is initiated when the RA automatically sends its share

of the system public key to the PKG via an e-mail message whose subject is

‘IBE Setup’. The add-in on PKG’s side has an event listener which checks for

the sender and the subject field of the newly arrived mails. If the received

32

mail’s subject is ‘IBE Setup’ and the sender is ‘ibe ra@sabanciuniv.edu’ then

PKG executes its setup phase and ends up with calculating the public key

of the system. We assume that the PKG and RA have a secure channel to

communicate.

2. Registration Phase: When a user installs the Modified Identity-based En-

cryption(MIBE) plug-in, the registration steps are transparently done and

automatically executed on each party. Specifically the registration phase is

initiated by the user’s plug-in when Thunderbird is firstly launched on user

side. The plug-in automatically selects the user secret share(sID) and the ran-

dom number, r1, encrypts the subtraction of these values and sends the result

to RA. If the user’s mail address is unique, RA adds the user’s mail address to

its database and executes the following registration phase steps. Otherwise,

if the user mail address is not unique, it sends an e-mail with the subject

‘REGISTRATION DENIED’ to the user and warns to register with another

e-mail address.

3. Encryption Phase: When a user clicks on the send button; the encryption

process in the add-in is called, the mail body is automatically encrypted and

sent to the recipient. The encryption is performed using enveloping method

whereby a symmetric secret key is encrypted by the public key of the recipi-

ent which is equal to its e-mail address concatenated with the date informa-

tion(Day.Month.Year).The body of the message is encrypted by the symmetric

key using AES.

4. Decryption Phase: Users can decrypt their messages by clicking on the

decrypt menu item as shown in Figure 5.2.

Since we do not employ a secure crypto module to guarantee a secure execution

of cryptographic primitives, we hardcoded the public key of the RA in the user

add-in program and do not allow users to change it. Similarly, the secret share

of the user sA is not kept in a place where the user cannot easily access. We did

not implement the user identification and pseudonym generation protocols. The

private key extraction protocol is implemented in a different manner from Figure

3.3. The PKG periodically e-mails its share of user private key to each user, from

33

Figure 5.2: The Decrypt Menu Item

which the user add-in computes the private key of the user. The messages in all

the implemented protocols are sent as e-mails with a unique identifying description

in the subject field. The corresponding add-in programs constantly check for the

subject fields of every e-mail messages to take an appropriate action.

5.4 Performance

Intel Celeron 1.5 Ghz computer is used as a base platform together with its Windows

XP operating system. Table 5.31 features the execution times of the cryptographic

operations in different protocols for each party, namely PKG, RA and the user. The

numbers indicated below each party, show the execution times of the correspond-

ing processes, relevantly in terms of milliseconds. Clearly, our infrastructure not

only offers a secure infrastructure but also provides an efficient system with high

execution performance.

The data to be stored on each party is also another important aspect to be taken

into account since it heavily affects the implementation in terms of its performance.

The size of the data in bytes, to be stored on each entity, is shown in Table 5.4.

1Note that the communication latencies are excluded. Table 1 is constructed by running user

side only one time, considering the latency requirement on user side; and both PKG and RA 100

times, since throughput is a concern.

34

Table 5.3: The Performance

Process PKG(ms) RA(ms) User(ms)

Computing PSY S 16 17 -

Registration 242 271 140

Private Key Extraction 16 - 20

Pseudonym Generation 16 - 60

Whereas the C++ built processes are indicated as executables, the parameters and

variables are stored in data files with the extension ‘.ibe’. It should also be pointed

out that the size of executable files may vary depending on the implementation and

deployment method. Supporting this fact, the larger size of database connection

executables deployed in PKG and RA side are introduced by their implementation

in C#.

Table 5.4: The File Storage

Entity File name File size(Mb)

PKG Data Files 2.39

Executables 16.6

RA Data Files 2.63

Executables 32.6

User Data Files 2.00

Executables 1.70

35

Chapter 6

Conclusion

In this thesis, a new IBE infrastructure that is intended for utilization in messaging

applications is proposed. The proposed infrastructure aims to solve some inherent

drawbacks of the IBE systems while retaining their advantage. Key escrowing prob-

lem is solved by a method where users and the private key generator secret shares

the master secret key. The omniscient private key generator in classical IBE sys-

tems which knows all private keys is replaced by a semi-honest third party that does

not have information about these private keys. In the presence of the semi-honest

private key generator, it is possible to have anonymous and secure communication

under the non-collusion assumption. We also made investigations as to how the

non-repudiation property can be provided in our infrastructure. We implemented

the cryptographic protocols used in the proposed infrastructure and demonstrated

that computational requirements for the parties are acceptable. We also integrated

an e-mail system with the proposed infrastructure and are currently experimenting

with the implementation to evaluate its convenience to the users.

36

Bibliography

[1] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In

Advances in Cryptology - CRYPTO 2001: 21st Annual International Cryptology

Conference, Santa Barbara, California, USA, volume 2139, page 213, CA, USA,

2001. Springer Berlin / Heidelberg.

[2] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption

with short ciphetexts and private keys. In CRYPTO 2005, volume LNCS 3621,

pages 258–275. Springer Berlin / Heidelberg, 2005.

[3] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing.

In ASIACRYPT 2001, volume LNCS 2240, pages 514–532. Springer Berlin /

Heidelberg, 2001.

[4] L. Chen, K. Harrison, D. Soldera, and N. Smart. Applications of multiple trust

authorities in pairing based cryptosystems. Hewlett-Packard Trusted Systems

Laboratory, HPL-2003-17, February 2003.

[5] H. Cohen and G. Frey. Handbook of elliptic and hyperelliptic curve cryptography.

Chapman and Hall/CRC, 2006.

[6] Y. Desmedt and M. Burmester. Identity-Based Key Infrastructures, page 167.

IFIP International Federation for Information Processing. Springer, 2004.

[7] R. Dutta, R. Barua, and P. Sarkar. Pairing based cryptography: A survey.

2004.

[8] G. Frey and H.-G. Ruck. A remark concerning m-divisibility and the discrete

logarithm in the divisor class group of curves. Math. Comp., 62(206):865–874,

1994.

37

[9] Oded Goldreich. Secure multi-party computation. Working Draft, 2000.

[10] D. Huang. Pseudonym-based cryptography for anonymous communications in

mobile ad hoc networks. International Journal of Security and Networks, 2(3–

4):272–283, 2007.

[11] N. Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag,

1994.

[12] Shamus Software LTD. Miracl. http://www.shamus.ie, 2005.

[13] A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curves log-

arithms to logarithms in a finite field. IEEE Transactions on Information

Theory, 39(5):1639–1646, 1993.

[14] M. C. Mont, P. Bramhall, C. R. Dalton, and K. Harrison. A flexible role-

based secure messaging service: Exploiting ibe technology in a health care

trial. Hewlett-Packard Trusted Systems Laboratory, HPL-2003-21, February

2003.

[15] L Owens, A. Duffy, and T. Dowling. An identity based encryption system. In

ACM International Conference Proceeding Series; Vol. 91, Las Vegas, Nevada,

USA, volume 2139, pages 154–159, Las Vegas, Nevada, USA, 2004. Trinity

College Dublin.

[16] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Advances in Cryptology - EUROCRYPT ’99, LNCS Vol. 1592, pages

223–238, Las Vegas, Nevada, USA, 1999. Springer.

[17] A. Shamir. Identity-based cryptosystems and signature schemes. In Proceedings

of CRYPTO 84 on Advances in cryptology, Santa Barbara, California, USA,

pages 47–53, CA, USA, 1985. Springer-Verlag New York, Inc.

38

