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in my first days in İstanbul. I am grateful to Sengül and Tekin Yeşilbağlı and Lütfiş
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Abstract

Many remote sensing applications such as weather forecasting and automatic

target recognition (ATR) require high-resolution images. Synthetic Aperture Radar

(SAR) has become an important imaging technology for these remote sensing tasks

through its all-weather, day and night imaging capability. However the effectiveness

of SAR imaging for a specific decision making task depends on the quality of certain

features in the formed imagery. For example, in order to be able to successively use a

SAR image in an ATR system, the SAR image should exhibit features of the objects

in the scene that are relevant for ATR. Recently, advanced SAR image formation

techniques have been developed to produce feature-enhanced SAR images.

In this thesis, we focus on one such technique, in particular a non-quadratic

regularization-based approach which aims to produce so-called “point-enhanced

SAR images”. The idea behind this approach is to emphasize appropriate fea-

tures by means of regularizing the solution. The stability of the solution is ensured

through a scalar parameter, called the regularization parameter, balancing the con-

tribution of the data and the a priori constraints on the formed image. Automatic

selection of the regularization parameter is an important issue since SAR images

are ideally aimed to be used in fully automated systems. However this issue has not

been addressed in previous work.



To address the parameter selection problem in this image formation algorithm,

we propose the use of Stein’s unbiased risk estimation, generalized cross-validation,

and L-curve techniques which have been mostly used in quadratic regularization

methods previously. We have adapted these methods to the SAR imaging frame-

work, and have developed a number of numerical tools to enable their usage. We

demonstrate the effectiveness of the applied methods through experiments based on

both synthetic as well as electromagnetically simulated realistic data.
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KARESEL OLMAYAN DÜZENLİLEŞTİRMEYE BAĞLI SAR

GÖRÜNTÜLEMEDE PARAMETRE SEÇİMİ
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Özet

Hava tahmini, otomatik hedef tanıma (OHT) gibi birçok uzaktan algılama uygu-

laması yüksek çözünürlüklü görüntülere ihtiyaç duymaktadır. Sentetik açıklıklı

radar (SAR), her türlü hava koşulunda, gündüz ve gece görüntüleme yeteneği sayesinde

uzaktan algılama uygulamaları için önemli bir görüntüleme teknolojisi durumuna

gelmiştir. Fakat SAR görüntülemenin belirli bir karar verme görevi için etkinliği

oluşturulan görüntüdeki bazı özniteliklerin kalitesine bağlıdır. Örneğin, bir SAR

görüntüsünü OHT sisteminde başarıyla kullanabilmek için, SAR görüntüsü sahnedeki

nesnenin OHT ile ilgili özniteliklerini sergilemelidir. Son zamanlarda, öznitelikleri

güçlendirilmiş SAR görüntüsü oluşturmak için ileri SAR görüntüleme teknikleri

geliştirimiştir.

Bu tezde, özellikle “noktasal olarak güçlendirilmiş SAR görüntüsü” oluşturmayı

amaçlayan karesel olmayan düzenlileştirmeye dayalı bir yaklaşıma odaklanıyoruz.

Bu yaklaşımdaki fikir çözümü düzenlileştirerek uygun öznitelikleri güçlendirmektir.

Çözümün kararlılığı düzenlileştirme parametresi olarak adlandırılan, ve verinin ve ön

kısıtın oluşturulan görüntüye katkısını dengeleyen sayıl bir parametre ile sağlanmaktadır.

SAR görüntülerinin idealde tamamen otomatik sistemlerde kullanılması hedeflendiğinden,

düzenlileştirme parametresinin otomatik seçimi önemli bir sorundur. Fakat bu sorun

henüz çözülmemiştir.



Bu görüntü oluşturma algoritmasındaki parametre seçme problemi için, daha

önce çoğunlukla karesel düzenlileştirme yöntemlerinde kullanılmış Stein’ın yansız

risk kestirimi, genelleştirilmiş çapraz geçerlilik sınaması ve L-eğrisi yöntemlerinin

kullanımını öneriyoruz. Bu yöntemleri SAR görüntüleme problemine uyarladık ve

kullanımlarına olanak tanımak için bir takım sayısal araçlar geliştirdik. Uygu-

lanan yöntemlerin etkinliğini hem sentetik hem de elektromanyetik benzetimlerle

elde edilmis gerçekçi veriler üzerindeki deneylerimizle gösteriyoruz.
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Özet vii

1 Introduction 1
1.1 Synthetic Aperture Radar Imaging . . . . . . . . . . . . . . . . . . . 1
1.2 Non-Quadratic Regularization-Based SAR Imaging . . . . . . . . . . 3
1.3 Parameter Selection Problem . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Synthetic Aperture Radar Imaging . . . . . . . . . . . . . . . . . . . 6
2.2 Regularization-Based Image Reconstruction . . . . . . . . . . . . . . 9

2.2.1 Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Non-Quadratic Regularization . . . . . . . . . . . . . . . . . . 11

2.3 Point-Enhanced SAR Imaging . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Parameter Selection in Regularization-Based Imaging . . . . . . . . . 15

2.4.1 Stein’s Unbiased Risk Estimation . . . . . . . . . . . . . . . . 16
2.4.2 Generalized Cross-Validation . . . . . . . . . . . . . . . . . . . 17
2.4.3 L-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Parameter Selection in Point-Enhanced SAR Imaging 21
3.1 SURE for Point-Enhanced SAR Imaging . . . . . . . . . . . . . . . . 22
3.2 GCV for Point-Enhanced SAR Imaging . . . . . . . . . . . . . . . . . 23
3.3 L-curve for Point-Enhanced SAR Imaging . . . . . . . . . . . . . . . 23
3.4 Numerical Optimization Tools . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Randomized Trace Estimation . . . . . . . . . . . . . . . . . . 23
3.4.2 Golden Section Search . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Synthetic Scene Reconstructions . . . . . . . . . . . . . . . . . 26
3.5.2 MSTAR Data Reconstructions . . . . . . . . . . . . . . . . . . 35
3.5.3 Backhoe Data Reconstructions . . . . . . . . . . . . . . . . . . 37

ix



4 Conclusions and Future Work 42
4.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 45

x



List of Figures

1.1 Simple illustration of data collection by synthetic aperture radar.

(Image obtained from the web site of Sandia National Laboratories.) . 2

1.2 SAR image of the backhoe. (a) Conventional image. (b) Point-

enhanced image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Ground-plane geometry for data collection in spotlight-mode SAR.

(This figure is taken from [1].) . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The generic form of the L-curve. . . . . . . . . . . . . . . . . . . . . . 19

3.1 Location of x1 and x2 for Golden section search. . . . . . . . . . . . . 25

3.2 The grayscale plot of the magnitude of the (a) 128 × 128 synthetic

scene, (b) PSF and (c) conventional SAR image. . . . . . . . . . . . . 27

3.3 True and estimated trace values of Tλ. (a) p=1. (b) p=0.8. . . . . . . 28

3.4 The ratio between the standard deviation and the mean of trace (A)

for different number of realizations. . . . . . . . . . . . . . . . . . . . 29

3.5 The residual
∥

∥

∥Hf̂λ − g
∥

∥

∥

2

2
and trace(A) for 30 dB SNR data and p=1. 30

3.6 True predictive error, SURE and GCV results for 30 dB SNR data

and p=1. The minimum of the true predictive risk is specified with

the black asteriks and the minimum values of the SURE and GCV

functions are marked with full markers. . . . . . . . . . . . . . . . . . 30

3.7 A closer look to the true predictive error, SURE and GCV results for

30 dB SNR data and p=1. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Point-enhanced reconstructions from the conventional image with 30

dB SNR and for p=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 Mean squared error and the predictive risk of the solution for the

reconstruction in Figure (3.8). . . . . . . . . . . . . . . . . . . . . . . 33

3.10 The L-curve for the reconstructions in Figure (3.8). . . . . . . . . . . 34

xi



3.11 Conventional image for Slicy target. . . . . . . . . . . . . . . . . . . . 35

3.12 Point-enhanced images for Slicy target when p=1. (a) Parameter

selected by SURE and GCV. (b) Parameter selected by L-curve. . . . 36

3.13 Point-enhanced images for Slicy target when p=0.8. (a) Parameter

selected by SURE and GCV. (b) Parameter selected by L-curve. . . . 36

3.14 Backhoe model used in Xpatch scattering predictions. The view to

the right corresponds approximately to the images in our experiments. 37

3.15 Parameter selection of the backhoe image for p = 0.8, SNR=20 dB

and BW=500 MHz. (a) SURE and GCV. (b) L-curve. . . . . . . . . 38

3.16 Point-enhanced backhoe images for p = 0.8, SNR=20 dB and BW=500

MHz. (a) Parameter selected by SURE and GCV. (b) Parameter se-

lected by L-curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.17 Point-enhanced backhoe images for p = 1, SNR=20 dB and BW=1

GHz. (a) Parameter selected by SURE and GCV. (b) Parameter

selected by L-curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.18 Point-enhanced composite images using different λ’s, BW=1 GHz

and SNR=20 dB. λGCV denotes the parameter selected by GCV. (a)

λ = 10−2λGCV . (b) λ = 10−1λGCV . (c) λ = λGCV . (d) λ = 101λGCV .

(e) λ = 102λGCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xii



List of Tables

3.1 Selected parameters for the synthetic scene when p=1. . . . . . . . . 33

3.2 Selected parameters for the synthetic scene when p=0.8. . . . . . . . 34

3.3 Selected parameters for Slicy target when p=1. . . . . . . . . . . . . 35

3.4 Selected parameters for Slicy target when p=0.8. . . . . . . . . . . . 35

xiii



Chapter 1

Introduction

This thesis addresses the parameter selection problem in non-quadratic regulariza-

tion based synthetic aperture radar (SAR) image reconstruction. SAR is a form of

radar which is used in a variety of remote sensing applications and has the capability

of imaging at high resolutions even in bad-weather or during night as well as day.

The purpose of this chapter is to introduce the problem addressed in this thesis,

discuss the needs for automatic parameter selection techniques, point out the main

contributions, and present an outline of the thesis.

1.1 Synthetic Aperture Radar Imaging

The increased use of imaging radars in remote sensing technologies is mainly based

upon several principles [2]:

1. A radar carries its own illumination, so it works in dark as well.

2. Radar systems usually emit radio waves. Waves at these frequencies pass

through clouds and precipitation with little or no deterioration.

3. The radar energy scatters off materials differently from optical energy, provid-

ing a complementary and sometimes better discrimination of surface features

than optical sensors.

Thus, taking advantage of these properties, synthetic aperture radar comes into

favour in several military and civilian remote sensing technologies.

SAR systems usually emit microwaves or radio waves. This frequency band

does not cause cloud, fog and rain effects to be observable in the radar image.

1



Figure 1.1: Simple illustration of data collection by synthetic aperture radar. (Image

obtained from the web site of Sandia National Laboratories.)

All-weather, day and night imaging capability of the radar is the primary reason

for radar to become popular for earth surface imaging tasks. Figure 1.1 shows an

airborne imaging radar illuminating an area in the ground. A SAR imaging system

consists of a transmit and receive antenna attached to an aircraft. While the aircraft

moves along its path, it transmits microwave pulses towards the area that is to be

imaged. At the earth surface, the radar pulses are scattered in all directions and the

backscattered waves are received by the sensor and demodulated. These data are

essentially a slice of the spatial Fourier transform of the electromagnetic reflectivity

of the ground and must be inverse transformed to form an image.

In most current SAR systems, image formation is achieved through a 2-D fast

Fourier transform (FFT) algorithm. This technique, which is also called conven-

tional method throughout this thesis, supposes that clean and complete data can

be obtained, however most of the time only reduced data are available. Furthermore,

the conventional technique does not make allowance for any prior information. The

conventional image formation method is basically only data driven and hence the

output image has limited quality and does not incorporate any constraints regarding

prior information about the scene or the objectives for the automated decision task.

2



(a) (b)

Figure 1.2: SAR image of the backhoe. (a) Conventional image. (b) Point-enhanced

image.

1.2 Non-Quadratic Regularization-Based SAR Imaging

Recently developed processing techniques [3, 4, 1] have the potential to enable SAR

systems to produce high-quality images suitable for automated decision making

systems even when the data are limited or corrupted. Among these techniques,

we consider a non-quadratic regularization-based approach which aims to produce

so-called “point-enhanced SAR images” [1].

Point-enhanced SAR image formation technique mainly suggests that the reflec-

tivities in the scene have a sparse representation and incorporates this prior belief

into the solution through a non-quadratic regularizer. With the inclusion of the

sparsity constraint, only the most dominant scatterers are represented by non-zero

components in the image. Figure 1.2 shows the image of the backhoe model obtained

using the conventional method and the point-enhanced image formation algorithm.

In Figure 1.2 (b), the dominant scatterers are enhanced and the components of the

backhoe model are resolved better. The conventional image is actually a smoothed

or unfocused version of the underlying scene and hence enhancing the point-based

features reveals the details which are not observable in the conventional image.

1.3 Parameter Selection Problem

As mentioned before, point-enhanced SAR imaging is a non-quadratic regularization-

based approach. As in other regularization-based image reconstruction problems,

it requires selection of the regularization parameter. This parameter balances the

3



contribution of the data and the a priori constraints on the formed image. Small

parameter provides that the estimate is well fitted to the data whereas large param-

eter ensures the dominance of the prior knowledge or constraints. Particularly in

point-enhanced SAR imaging framework, the image obtained with a small regular-

ization parameter would look like the conventional image. On the other hand, use

of a large parameter would produce an image with a very few number of dominant

scatterers. For this reason, the choice of the regularization parameter is very crucial.

However this issue has not been addressed in previous work.

Selection of the regularization parameter has a great importance not only in

point-enhanced SAR imaging but also in other regularization-based image recon-

struction problems. Most parameter choice methods have been proposed to choose

the regularization parameter in the Tikhonov method [5] which is a well-known and

widely used quadratic regularization approach. There exist some methods which

are based on statistical considerations such as the discrepancy principle [6], Stein’s

unbiased risk estimator (SURE) [7], the generalized cross-validation (GCV) [8, 9]

and Bayesian methods [10], as well as the graphical tools such as the L-curve [11].

All these methods were initially developed to serve to the Tikhonov regularization.

The quadratic form of the Tikhonov solution yields a linear optimization problem

which simplifies the computation of the regularized solution and the regularization

parameter.

As the advantage of sparse representation has been discovered in many different

fields such as optical flow estimation [12], compressed sensing [13] and functional

regression [14], constraints which impose sparsity have became more prevalent. It

has been shown that a non-quadratic regularizer promotes sparsity in the solution

[15]. However, inclusion of such a non-quadratic constraint yields a non-linear opti-

mization problem for image formation. Unlike quadratic methods, in this case the

selection of the regularization parameter is not straightforward. For the parameter

choice in non-quadratic regularization-based techniques, the application of SURE,

GCV and L-curve is limited [16, 17, 10]. Especially for the form of our problem which

considers an ℓp-norm penalty with p ≤ 1 for complex-valued inverse problems, the

use and effectiveness of these methods have not been explored yet.
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1.4 Contribution of this Thesis

The first contribution of this thesis is the formulation of the parameter selection

methods SURE and GCV for the point-enhanced SAR imaging framework. This

framework provides a generalized form of previously developed parameter estima-

tion methods. It is also an extension for complex-valued image reconstruction prob-

lems. We have used SURE, GCV and L-curve for the selection of the regularization

parameter in point-enhanced SAR imaging. The second contribution of this thesis

is the use of numerical tools for efficient implementation of the methods considered.

We have used randomized trace estimation to compute the SURE and GCV function

and golden section search to minimize them. These tools enable the application of

memory-intensive methods to large-scale problems in SAR imaging.

1.5 Organization

This dissertation is organized as follows. In Chapter 2, we review the principles

of SAR, regularization-based imaging, and parameter selection methods in general.

We give a brief summary of quadratic and non-quadratic regularization methods,

their advantages and shortcomings. We also explain several standard methods for

parameter selection in general regularization problems. In Chapter 3, we formulate

parameter selection methods for complex-valued, non-quadratic regularization-based

SAR imaging. This chapter also explains the numerical optimization tools that we

use for implementation of the applied methods. Experimental results are also pro-

vided in this chapter. Finally, Chapter 4 summarizes the results we have obtained,

and suggests a number of topics to be considered in future research.
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Chapter 2

Background

In this chapter, we give background information on SAR and feature-enhanced SAR

imaging upon which this thesis is built. To gain a deeper understanding of point-

enhanced imaging, regularization based image restoration and reconstruction is re-

vised. Already existing methods for regularization parameter selection are also

presented.

2.1 Synthetic Aperture Radar Imaging

Radar was originally developed for military purposes to measure the range to a

target, i.e. scattering field. It was used to determine the locations of military

vehicles such as ships, aircrafts, tanks, as well as track them. A radar system

usually consists of an active sensor, i.e. radar antenna, operating in the radio or

microwave region of the electromagnetic spectrum. This frequency band does not

allow cloud, fog and rain effects to be observable in the radar image. All-weather,

day and night imaging capability of radar is the reason of primary importance for

radar to become popular for earth surface imaging tasks. However there is also the

disadvantage that the resolution achievable with the operating wavelength is very

poor. It is known that a better vision, i.e. better resolution, can be attained with

a larger radar antenna. Unfortunately, constructing such a physically large antenna

is not feasible. Similar to optical systems, resolution is proportional to the ratio

between the radiation wavelength and the sensor antenna dimension. In particular,

the cross-range resolution for radars is given by

∆x =
Rλ

D
(2.1)

6



where λ is the operating wavelength, R is the target range and D is the size of the

antenna aperture. Let us assume a D = 1-meter diameter radar antenna operating

at λ = 1 meter, and attached to an aircraft at a range R = 1000 meter. The cross-

range resolution for this antenna is ∆x = 1000 meter which is very poor. To reach

a reasonable level of resolution like ∆x = 1 meter; such that, e.g. vehicles in the

scene can be distinguished from one another, a D = 1000-meter antenna would be

required. Building an antenna aperture of this size is physically infeasible, but in

fact it can be reachable by means of a synthetic aperture. This kind of a system is

called synthetic aperture radar (SAR).

The principle idea behind SAR is to synthesize the effect of a large-aperture

physical radar using multiple observations from a small antenna. Both amplitude

and phase of the received signal must be recorded to synthesize the receiving an-

tenna, however, in fact the measured data are quite unfocused and seems much like

a random noise. These data are called phase history since the essential informa-

tion is hidden in the phase of the received signal and phase-sensitive processing is

needed to focus the image. In the early years of the SAR technologies, optical SAR

processors were used to produce a well-focused image but optical processing was so

demanding that digital SAR processors have emerged and replaced optical ones. By

means of developing digital SAR processor algorithms SAR became prominent with

its ability to produce high resolution images.

A SAR imaging system can operate mainly in two distinct modes: stripmap-

mode SAR and spotlight-mode SAR. In stripmap-mode SAR, the pointing direction

of the antenna is fixed so that a continous strip of ground is imaged. On the other

hand, the antenna is steered and illuminates a single spot on the ground in the

spotlight-mode SAR. Spotlight-mode SAR is more useful if a high resolution image

of a limited area is desirable since it simulates a wider antenna. We will be focusing

on this type of SAR throughout this thesis.

The data collection geometry for spotlight-mode SAR is demonstrated in Figure

2.1. The x − y coordinate system (denoting range and azimuth coordinates respec-

tively) is centered on a relatively small patch of ground illuminated by a narrow RF

beam from the moving radar. As the aircraft moves along the synthetic aperture,

the radar beam is steered such that the spotlighted target area is fixed as shown

7



Figure 2.1: Ground-plane geometry for data collection in spotlight-mode SAR. (This

figure is taken from [1].)

in Figure 2.1. At points corresponding to equal increments of θ (the angle between

the x-axis and u-axis in Figure 2.1), high-bandwidth pulses are transmitted to the

ground patch and echoes are then received and processed. At each observation point,

received SAR signals are demodulated. After some pre-processing and certain ap-

proximations, the observed signal is related to a particular projectional view of the

underlying scene. Then the relationship between the field f (x, y) and the observed

signal Gθ (t) is given by:

Gθ (t) =

∫ ∫

x2+y2≤L2

f (x, y) exp {−jΩ (t) (xcosθ + ysinθ)} dxdy (2.2)

where L is the radius of the ground region of interest, as shown in Figure 2.1, and

Ω denotes the radial spatial frequency. (The structure of Ω and other details on the

pre-processing of the radar signals are given in [1].) The observed signal Gθ (t) can

be interpreted as a slice through the 2-D Fourier transform of the scene f (x, y). As

a consequence of this, the standard image formation algorithm is the polar format

algorithm [18] based on the two-dimensional fast Fourier transform (FFT). It is not

convenient to compute approximate samples of f (x, y) directly from polar samples

of its Fourier transform. Therefore, the known data samples are first interpolated

to a Cartesian grid, assuming unknown samples to be zero. After interpolation,

an inverse 2-D FFT is applied and the magnitude of the reconstructed complex

8



image is displayed for viewing. Although this system is commonly used in SAR

systems, it also involves some drawbacks. First of all, polar format algorithm is

not robust to noisy or limited data. In addition, it does not increase the resolution

or exploit the features or structures which we favour to see in a SAR image. To

address these issues, a feature-enhanced synthetic aperture radar imaging technique

has been developed [1]. This is a model-based and regularized image reconstruction

technique which enables high-resolution SAR images with reduced artifacts. Before

going into details of this approach, we will briefly repeat the notions of regularization

and regularization-based image reconstruction.

2.2 Regularization-Based Image Reconstruction

The problem of image restoration and reconstruction is to recover a 2-D unknown

field f (x, y) given an indirect observation g (x, y) of it. In many engineering prob-

lems, these observations can be accurately modeled by a linear transformation of

the field of interest. Then, the relation between the data and the unknown field, i.e.

the distortion model, can be expressed by a linear integral equation, in particular a

Fredholm integral equation of the first kind:

g (x, y) =

∫ ∞

−∞

∫ ∞

−∞

h (x, y; x′, y′) f (x′, y′) dx′dy′ (2.3)

where h (x, y; x′, y′) is the point spread function (PSF) of the distortion model and

assumed to be known in image restoration and reconstruction framework. We focus

here on the discrete representation of this kind of relation in the presence of noise

which is given by:

g = Hf + w (2.4)

where g and f are the vectors representing the observation, and the unknown field,

respectively, w is the noise and H is a matrix modelling the distortion. The problem

that we consider in general is called a discrete ill-posed problem since it is the

discretization of the Fredholm integral of the first kind in (2.3), which itself involves

an ill-posed problem.

The notion of ill-posedness was first introduced by Hadamard [19]. According

to his definition a problem is ill-posed if it violates any of the following:

1. for each g there exist a solution f ;
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2. the solution f is unique; and

3. the solution is stable with respect to perturbations in g.

The existence of the solution can be ensured through least squares solution:

f̂ls = argminf ‖g − Hf‖2
2 (2.5)

where ‖.‖2 represents the ℓ2-norm. Although least squares approach guarantees that

the first condition is satisfied, it does not necessarily end up with a unique solution

when the null space of H is nonempty, i.e. N (H) 6= ∅. To obtain a unique solution

it is common to choose the one with the minimum size among all possible solutions.

Generally, ℓ2-norm is used to measure the size of the solution. Then, the minimum

norm solution f̂mn is defined as:

f̂mn = argminf ‖f‖
2
2 s.t. min ‖g − Hf‖2

2 (2.6)

When the data are noisy, the generalized solution tries to fit the solution to these

noisy observations and since H is ill-conditioned the noise components of the data

are extremely amplified in the generalized solution. To be able to obtain a stable

solution, one common way is to employ regularization. The purpose of regularization

is to single out a useful and stable solution by incorporating prior information about

the desired solution. This prior information is imposed in different forms depending

what we have or believe a priori and leads to different regularization methods. In

the following sections, we will explain the details of Tikhonov regularization and

non-quadratic regularization.

2.2.1 Tikhonov Regularization

Tikhonov regularization [20, 5] is probably the most widely used regularization

method. The key idea in Tikhonov method is to incorporate a priori assumptions

about the size and smoothness of the desired solution, in the form of the (semi)norm

‖Lf‖2
2. Tikhonov regularization in general form leads to the minimization problem:

f̂T ikh = argminf ‖g − Hf‖2
2 + λ ‖Lf‖2

2 (2.7)

where the regularization parameter λ controls the weight given to minimization of

the regularization term, relative to the minimization of the residual norm.
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The simplest choice for L is the identity matrix. Then, the second term in (2.7)

simply becomes the ℓ2-norm of the solution f . Such a regularizer puts penalty on

the magnitude of the solution and prevents the size of the solution from being too

large. However this may not be the best choice in many applications. Most of the

time, it is more useful to choose the regularization operator L as an approximation

to the 2-D derivative (gradient) operator so that the regularizer is the measure of the

smoothness of the solution. In such a case, the gradient of the solution is penalized

instead of the solution itself and thus, large gradients, i.e. brightness changes in

the image, are suppressed. These large gradients may result either from the noise

components or the edges in the image. Therefore, while suppressing the effect of

noise, this method also reduce the gradients which originally exist in the image and

blur the edges.

To minimize the Tikhonov cost, we take the gradient of (2.7) with respect to f

and set it equal to zero; and thus we obtain the following set of linear equations for

the Tikhonov solution f̂tikh:

(

HT H + λLT L
)

f̂T ikh = HT g (2.8)

If the null spaces of H and L intersect trivally, i.e. if N (H) ∩ N (L) = {0},

then the Tikhonov solution f̂T ikh is unique. Note that here for λ = 0, the Tikhonov

solution is nothing but the least squares solution.

2.2.2 Non-Quadratic Regularization

The aim of the standard Tikhonov method was to include a quadratic side constraint

‖Lf‖2
2 to the least squares criterion. Using such a quadratic regularization term leads

to the linear problem (2.8) and thus the solution becomes a linear function of the

data and can be computed easily. Despite its computational advantage, quadratic

regularizers are limiting in the sense that they do not take into account the outliers

in the true image while suppressing noise components. To be able to obtain more

effective results, non-quadratic constraints can be incorporated. For this reason, we

consider more general problems of the following form:

f̂NQ = argminf ‖g − Hf‖2
2 + λ

n
∑

i=1

Ψ ((Lf)i) (2.9)
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where n is the length of the vector Lf , and (Lf)i denotes its i-th element.

The form of the employed regularizer depends on the characteristics of the field

of interest and the purpose of imaging. Regarding the regularization term, there is

a special attention on the ℓ1-norm in some applications, such as image deblurring,

where this norm preserves the edges. Sparsity is an important feature that occurs

naturally in some image types, e.g., molecules and star fields. The emerging field of

compressed sensing [13] uses sparsity in the parameter vector and similarly it has

been used in optical flow estimation [12]. The ℓp-norm penalty, where p < 2 on the

image values is known to increase sparsity in the estimate. As the value of p gets

smaller, the relative penalty on large values of the function reduces. Comparing

to quadratic constraints, ℓ1-norm puts a smaller penalty on large values of the

components of the vector whose norm is being computed. As a results of this

behavior, it has the capability of producing sparse images if L is chosen as identity

[14, 15, 21], or images with preserved edges if L is a derivative operator [22]. Point-

enhanced SAR imaging is based on a similar reasoning, therefore we focus here on

the problem with ℓp-norm regularizer:

f̂ = argminf ‖g − Hf‖2
2 + λ

n
∑

i=1

((Lf)i)
p (2.10)

where 0 < p < 1.

While taking the gradient of the above cost function, we also have to consider

the non-differentiability of the ℓp-norm around the origin. One way to deal with this

issue is to smooth the function such that the regularizer has the form

‖Lf‖p
p ≈

n
∑

i=1

(

|(Lf)i|
2 + β

)p/2
(2.11)

where β is a small smoothing constant. Then, the estimate is the solution of the

following set of equations:

(

2HT H + λLT W
(

f̂ , β
)

L
)

f̂ = 2HT g (2.12)

where the diagonal weight matrix W
(

f̂ , β
)

is given as:

W
(

f̂ , β
)

= diag







p
[

|(Lf)i|
2 + β

]1− p

2







. (2.13)
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where diag {.} is a diagonal matrix whose i-th diagonal element is given by the

expression inside the brackets. Note that the only difference between (2.8) and (2.12)

is the weight matrix W
(

f̂ , β
)

which makes the non-quadratic estimate adaptive to

the underlying field. When |(Lf)i|
2 is small, the weight goes to a large value,

imposing greater penalty to the solution in these regions. When |(Lf)i|
2 is large,

the weight goes to a small value, allowing large values or large gradients at those

points [23]. On the other hand, Tikhonov regularization does not consider such

weighting and adds just a spatially invariant penalty term to the cost function.

Although non-quadratic regularization is a much more powerful method, it re-

quires extra effort to compute the solution because of the non-linearity in (2.12).

Fortunately, through a fixed point iteration [24, 25], each iteration of the non-linear

problem turns out to be a linear problem:

f̂ (k+1) =
(

2HT H + λLT W
(

f̂ (k), β
)

L
)−1

2HT g (2.14)

where f̂ (k) is the solution obtained in the kth iteration.

In this section, we tried to highlight the superiority of non-quadratic methods

compared to quadratic ones. In the following section, we explain how this kind of

non-quadratic regularization methods can be used to produce point-enhanced SAR

images.

2.3 Point-Enhanced SAR Imaging

In Section 2.1, we briefly explained the SAR observation geometry and the pre-

processing of the collected SAR data. Now, the problem is to reconstruct a SAR im-

age from this pre-processed SAR data. In this section, we focus on a regularization-

based SAR imaging framework proposed by [1].

Conventional SAR image formation methods mostly do not have an explicit

dependence on the SAR observation relation in (2.2). However, an explicit discrete

model of the SAR sensor and observation geometry can provide some advantages

given in [1]:

• It lets us handle limitations in data quantity more effectively. Examples of such

limitations are angular diversity limitations (e.g. due to sensor re-tasking),

resolution limitations, and missing observations.
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• The model-based approach ties readily into the statistical processing methods.

This lets us handle limitations in data quality more effectively, through a noisy

observation model.

• When the particular data relationship deviates significantly from the Fourier

model, a model-based approach can readily take this into account.

Starting from the expression in (2.2), if we discretize and interpolate the observed

data, then we can represent this discrete model through the relation :

G = H̃F (2.15)

where F represent the 2-D Fourier transform of f and H̃ defines a rectangular

window in Fourier domain to which the polar data is interpolated. By using the

property of Fourier transform which suggests that the transform of a product is equal

to the convolution of the transform of the individual terms, the image produced by

computing a 2-D inverse Fourier transform of the observed data can be written as:

g = h ∗ f (2.16)

where ∗ denotes two dimensional convolution, g and h is the 2-D inverse Fourier

transform of G and H̃ respectively. Here, we call h the point spread function (PSF)

of the system. To be consistent with the discussion in Section 2.2.2, we write this

relation in vector matrix notation in the presence of noise w:

g = Hf + w (2.17)

where H is a convolution matrix for the observation kernel h.

We have explained model-based, regularized image reconstruction in the previous

section. With the same motivation, the SAR image reconstruction problem is defined

as:

f̂ = argminfJ (f) (2.18)

where J (f) has the following form:

J (f) = ‖g − Hf‖2
2 + λΨ (f) (2.19)

where Ψ (f) is the side constraint. The first term in (2.19) is the data fidelity term

and measures the squared error between the actual observations and the observa-

tions that would be obtained by passing the solution of the reconstruction problem
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through the linear forward model. The second term Ψ (f) brings in the prior infor-

mation we would like to impose. The side constraint should be determined in such

a way that it causes the artifacts to be suppressed and the desired features to be

enhanced. We have mentioned that the standard Tikhonov solution cannot satisfy

such objectives in general. Therefore, in regularized SAR imaging, constraints in

a non-quadratic form are considered. One favoured choice for Ψ (f) is ‖f‖p
p, where

‖.‖p denotes the ℓp-norm. This regularizer is aimed at enhancing point-based fea-

tures by imposing a constraint on the energy of the solution. The outcome of the use

of this term is to suppress the artifacts and increase the resolvability of scatterers.

A smaller value of p puts a smaller penalty on large pixel values as compared to a

larger p, and thus produces a field with a smaller number of dominant scatterers,

and results in better preservation of the scatterer magnitudes.

As in other regularization-based image reconstruction problems, the choice of the

regularization parameter λ is again crucial. When the value of λ is too large, very

few scatterers would be observable. Although the artifacts are mostly suppressed in

such a result we cannot consider the reconstruction as satisfactory since a number

of scatterers is most probably not observable. On the other hand, for a very small λ

the solution would be dominated by the artifacts and the noise components which

are present in the observed data would be amplified in the solution. To address the

issue of parameter selection in feature-enhanced SAR imaging, we investigate some

parameter selection methods and apply them to our problem.

2.4 Parameter Selection in Regularization-Based Imaging

As discussed in Section 2.2.1 and Section 2.2.2, the regularized image reconstruction

framework involves a scalar parameter λ which is called a regularization parameter.

Let us consider the general ℓp-norm solution in (2.10), which we repeat here for

convenience:

f̂ = argminf ‖g − Hf‖2
2 + λ

n
∑

i=1

((Lf)i)
p . (2.20)

The first term in (2.20) is usually refered as the data fidelity term, whereas the

second term imposes the prior knowledge about the unknown field. The parameter

λ controls the tradeoff between these two terms. Small λ makes the residual norm

‖g − Hf‖2
2 become more dominant in the optimization problem (2.20), and therefore
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the estimate is well fitted to the data. However, it is obvious that this is not a good

idea when the noise level is high. On the other hand, when λ is large, the side

constraint
∑n

i=1 ((Lf)i)
p is dominant. If the data are relatively less noisy, then

choosing a large λ means mostly relying on the prior information and sacrificing

some useful data. In summary, the choice of λ is very crucial to obtain a meaningful

estimate.

In this section, some methods for choosing the regularization parameter will be

discussed: Stein’s unbiased risk estimator and generalized cross-validation, both

based on prediction error; and the L-curve, based on a plot of the residual norm

versus the side constraint norm.

2.4.1 Stein’s Unbiased Risk Estimation

The unbiased risk estimator method was concurrently and independently developed

by Stein [7] and Mallow [26] for model selection in linear regression and thereafter

adapted for the solution of inverse problems. It is usually called Stein’s unbiased

risk estimator (SURE) in the literature.

SURE mainly aims to minimize the following predictive risk, i.e. predictive mean

squared error:
∥

∥

∥Hf̂λ − Hftrue

∥

∥

∥

2

2
. (2.21)

Here, f̂λ denotes the solution obtained by using λ and ftrue is the true, unknown

field. Obviously, the predictive risk cannot be calculated exactly since it depends

on ftrue which is the unknown of the problem. However, Stein’s method achieves an

unbiased estimate of the predictive risk.

To explain Stein’s method, let µ = Hf and consider the following observation

model:

g = µ + w (2.22)

Let µ̂ be a nearly arbitrary estimate of µ and assume that it has the form µ̂ =

g + e (g), where e (.) is a weakly differentiable function. To measure the mismatch

between µ̂ and µ, introduce the mean squared risk of µ̂:

Rλ = ‖µ̂ − µ‖2
2 . (2.23)
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SURE provides the expected value of this risk as:

R̂λ = nσ2 + ‖e (g)‖2
2 + 2σ2∇e (g) (2.24)

where ∇e (g) =
∑

∂ei (g) /∂gi. Thus, R̂λ is an unbiased estimate of the risk of the

nearly arbitrary estimate g + e (g). Here, e (g) is a measure for the fitness of the

estimate µ̂ to the observation g, and usually called residual.

For standard Tikhonov solution, the computation of the gradient in (2.24) is

straightforward since the regularized solution is linearly dependent on the data as

is given in (2.8). However, when non-quadratic regularization methods are consid-

ered, a nonlinear relation arises between f̂ and g. Holding for all cases, also for

non-quadratic methods, it has been shown in [16] that the risk estimate takes the

following form:

R̂λ = −nσ2 + ‖e‖2
2 + 2σ2trace

(

HJ−1

f̂ f̂
Jf̂g

)

(2.25)

where J is the objective function, Jf̂ f̂ is the Hessian and Jf̂g = ∂2J/∂f̂∂gT . Then,

as far as σ2 is known or accurately estimated, SURE parameter selection method is

to pick:

λsure = argminλR̂λ. (2.26)

It is actually not clear that the λ which minimizes the predictive risk in (2.21) will

yield a small value for the estimation error
∥

∥

∥f̂λ − ftrue

∥

∥

∥

2

2
. We can just make some

interpretations such that minimizing the predictive risk minimizes the upper bound

on the estimation risk, if the the columns of H are linearly independent.

2.4.2 Generalized Cross-Validation

As mentioned in the previous section, SURE requires the prior knowledge of the

variance σ2. On the other hand, the method of generalized cross-validation (GCV)

[8, 9] provides an estimate for the λ which approximately minimizes the expected

value of the predictive risk, without needing the variance σ2.

This method, in fact, is the weighted version of the ordinary cross-validation

[27, 28]. The ordinary cross-validation has some shortcomings in estimating λ, and

thus GCV has been developed, see [9]. The idea of this method is as follows. Let f̂
(k)
λ

be the estimate of f with the kth data point gk, omitted. If λ is a good choice, then
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the k-th component
[

Hf̂
(k)
λ

]

k
of Hf̂

(k)
λ should be a good predictor of gk. Therefore,

cross-validation estimate of λ is the minimizer of:

Pλ =
1

n

n
∑

k=1

([

Hf̂
(k)
λ

]

k
− gk

)2

. (2.27)

The ordinary cross-validation function has the form

OCVλ =
1

n

n
∑

k=1





[

Hf̂λ

]

k
− gk

1 − akk





2

. (2.28)

where aii denotes the i-th diagonal element of the influence matrix Aλ which is

defined to be:

Hf̂λ = Aλg. (2.29)

Then, the weighted form of P (λ) is obtained by replacing aii in (2.28) by the average

of all diagonal elements:

Vλ =
1
n
‖eλ‖

2
2

[

1
n
trace(I − Aλ)

]2 (2.30)

Note that GCV is a rotationally invariant extension of OCV.

The GCV method was originally designed for problems in which Aλ is indepen-

dent of g. For more general regularization methods it was proposed in [29] to replace

the denominator in (2.30) by
[

1
n
trace

(

I − HJ
(

f̂
))]2

, where J
(

f̂
)

is the Jacobian

of f̂ with respect to g. Note that HJ
(

f̂
)

= Aλ if f̂ is linearly dependent on g. The

GCV estimate for λ is:

λgcv = argminλVλ. (2.31)

2.4.3 L-curve

L-curve was first defined as a parametric plot of the (semi)norm
∥

∥

∥
Lf̂λ

∥

∥

∥

2
, versus the

corresponding residual norm
∥

∥

∥
Hf̂λ − g

∥

∥

∥

2
, with the regularization parameter λ as the

parameter [11, 30]. The L-shaped corner of the L-curve appears for regularization

parameters close to the optimal parameter that balances the regularization errors

and perturbation errors in f̂λ. The L-curve criterion for choosing the regularization

parameter is based on this feature.

The L-curve basically consists of a vertical part and an adjacent horizontal part

as in Figure 2.2. It is important to plot the L-curve in log− log scale in order to
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Figure 2.2: The generic form of the L-curve.

emphasize the two different parts of the curve. The horizontal part corresponds

to oversmoothed solutions where the regularization parameter is too large and the

solution is dominated by regularization errors. The vertical part corresponds to

underregularized solutions where the regularization parameter is too small and the

solution is dominated by perturbation errors. This behavior does not rely on any

additional properties of the problem, such as the distortion model or the statistical

distribution of the errors. Besides, L-curve does not need any prior knowledge of

the noise.

As the regularization parameter λ increases, the solution norm corresponding the

vertical axis becomes smaller and the residual norm corresponding the horizontal

axis becomes larger. For relatively small λ values, the decrease in the solution norm

is very steep however the increase in the residual is quite slight. On the other hand,

for larger λ values, the solution norm decreases very small amount and the residual

norm increases significantly. The corner of the L-curve should satisfy the balance

between these two extremes. Although this intuition is natural and quite simple,

computing the corner of the L-curve may not be so easy. Several ideas are applied

to determine the corner including the point of maximum curvature, the point closest

to a reference location, such as the origin, and the point of tangency with a line of

slope −1.
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As mentioned before, L-curve was first developed for choosing the regularization

parameter in Tikhonov regularization. Then, it was extended to the case of general

functions [31]. L-curve for general functions is nothing but the log− log plot of

those functions. This is quite natural since L-curve tries to balance the two terms

involved in the regularization problem regardless of their structures.
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Chapter 3

Parameter Selection in Point-Enhanced SAR Imaging

In this chapter, we expand all techniques mentioned in Section 2.4 to SAR imaging

framework. Unlike usual image reconstruction problems, SAR involves complex-

valued and random-phase reflectivities. For this reason, standard parameter se-

lection methods should be modified and validated for this particular problem. In

SAR imaging, to achieve the desired resolution for a wide observation range, one

has to deal with large size images. For example, if we image a 10 m by 10 m field

with a resolution of 0.3 m, we obtain a 256 × 256 representation. This size may

seem reasonable for many image processing problems, however it is quite problem-

atic for our task. Problem size is an important limitation especially for SURE and

GCV. To be more explicit, for the same example, the observation is modelled with a

65536×65536 convolution matrix. To find the regularized solution and the optimum

regularization parameter, we need to execute some operations including taking the

inverse for matrices of that size. Most of the time, these operations are held by

means of singular value decomposition (SVD). For large-scale problems, however,

neither to construct the system matrix nor to find its SVD is easy . To avoid these

obstacles, all the involved matrix vector products are actually carried out by con-

volution operations (in the Fourier domain) such that there is no need to construct

the convolution matrix and deal with memory-intensive matrix operations. Unfor-

tunately, this strategy brings another difficulty when computing the trace term in

SURE and GCV.

In this chapter, we first formulate SURE and GCV functions for point-enhanced

SAR imaging problem. Then, we explain the numerical tools used for the evaluation

and minimization of the parameter selection methods. Finally, we present exper-
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imental results based on synthetic and real SAR data to demonstrate and discuss

the effectiveness of these methods.

Throughout this chapter, we consider the objective function in (2.10) with L = I,

which we repeat here for convenience:

J = ‖g − Hf‖2
2 + λ

n
∑

i=1

(

|fi|
2 + β

)p/2
(3.1)

where p ≤ 1.

3.1 SURE for Point-Enhanced SAR Imaging

Starting point that we use is the SURE function in (2.25). Evaluation of the first

two terms is straightforward, therefore we directly focus on the trace term, i.e.

trace
(

HJ−1

f̂ f̂
2HT

)

. From now on, let us call HJ−1

f̂ f̂
2HT = Tλ. The Hessian of (3.1)

with respect to f is:

Jf̂ f̂ = 2HT H + λK
(

f̂λ, β
)

(3.2)

where K
(

f̂λ, β
)

is given by:

K
(

f̂λ, β
)

= diag
[

p
(

|fi|
2 + β

)

p

2
−2 (

(p − 1) |fi|
2 + β

)

]

. (3.3)

Note that for p = 2, Tλg = Hf̂λ, i.e. Tλ is equal to the influence matrix Aλ mentioned

in Section 2.4.2. However, for any other choice of p, Tλ has a different structure.

When we substitute the above expression in (2.25), we obtain the SURE function

as:

R̂λ = −nσ2 +
∥

∥

∥
Hf̂λ − g

∥

∥

∥

2

2
+ 2σ2trace (Tλ) (3.4)

where

Tλ = H
(

2HT H + λK
(

f̂λ, β
))−1

2HT . (3.5)

Now we need to calculate the trace term. As we have mentioned before, we define

the PSF of the system and obtain the regularized solution by means of convolution.

Since we do not really construct Tλ, it does not seem possible to find its trace

directly.

At this point, we seek help from another technique called randomized trace esti-

mation to be able to estimate the trace of Tλ. We use the trace estimation approach
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also in GCV computation, and therefore the details of this technique will be ex-

plained in Section 3.4.1, after we discuss the GCV method for point-enhanced SAR

imaging problem.

3.2 GCV for Point-Enhanced SAR Imaging

In Section 2.4.2, we mentioned that the Jacobian of the regularized solution f̂λ with

respect to g can be employed instead of Aλ when Aλ is not independent of g. This

modification leads up to the same expression that we derived for SURE. In other

words, we again replace f̂g by J−1

f̂ f̂
Jf̂g (Here, we drop the λ subscript of f̂ for the

sake of a simpler notation). This produces the same Tλ stated in (3.5). Then, the

GCV function can be expressed as follows:

Vλ =

1
n

∥

∥

∥
Hf̂λ − g

∥

∥

∥

2

2
[

1
n
trace(I − Tλ)

]2 . (3.6)

3.3 L-curve for Point-Enhanced SAR Imaging

We can directly use the standard L-curve method in our problem, since it does not

require computation of any additional quantities. We just constitute the log-log

plot of the data fidelity term and the regularizer in (3.1). It is quite natural to use

L-curve for any functions regardless of their structures because it simply tries to

set a balance between those functions. On the other hand, there is still the issue of

locating the corner of the L-curve. In our experiments, we choose the point with a

tangent line of slope -1 and positive curvature as the corner of the L-curve.

3.4 Numerical Optimization Tools

3.4.1 Randomized Trace Estimation

As mentioned in Section 3.1 and 3.2, SURE and GCV methods require the trace of

the matrix Tλ. For large scale problems, Tλ can not be easily constructed due to

the memory limitations of computers. In such cases, it is more convenient to find

an estimate of the trace instead of making the exact calculation.

This method has been developed to calculate an estimate of the trace of the in-

fluence matrix involved in regularization of linear equations and aimed to enable the
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use of the GCV method for choosing λ in large-scale problems [32]. The influence

matrix Aλ for standard Tikhonov solution is defined in (2.29). In quadratic regular-

ization methods, the solution depends linearly on the data, and hence the influence

matrix is independent of the solution. Since this is not the case for non-quadratic

regularization problems, an approximation of the influence matrix is used as given

in (3.5). Here we compute the estimate of this approximated influence matrix Tλ.

To use trace estimation, the matrix has to be symmetric, and this assumption holds

for Tλ.

If Q is a white noise vector with zero mean and unit variance, then an unbiased

estimator for trace (Tλ) is the random variable:

t (λ) = QT TλQ. (3.7)

The method can be applied through the following algorithm:

• generate K independent realizations of qi of Q,

• compute ti (λ) = qT
i Tλqi, and then

• take the sample mean t̄ (λ) =
∑K

1=1 ti (λ) /K to be the trace estimate.

The accuracy of this estimate depends on the variability of the ti (λ)’s, and this

variability can be quatified in terms of the variance of t (λ). It is shown that this

variance is minimized by taking Q to be a random vector whose components are

independent and take values +1 and -1, with probability 1/2 [33].

To simulate such a random vector, we first generate a realization z of a random

vector Z whose components are independent and uniformly distributed on the in-

terval [0, 1]. Then we take q to have components qi = +1 if zi ≥ 1/2, and qi = −1

if zi ≤ 1/2.

This algorithm has an explicit dependence to the matrix Tλ. However, here we do

not construct Tλ. Note that the matrix H in (3.5) is a convolution operator. Thus,

in practice, whenever a vector matrix product appears, we perform convolution.

In Section 3.5, we will investigate further properties of this method utilizing our

experimental results.
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Figure 3.1: Location of x1 and x2 for Golden section search.

3.4.2 Golden Section Search

Golden section search is a derivative-free optimization method for unimodal func-

tions [34]. If the function f (x) is unimodal in an interval [a, b], then f (x) will have

only one local minimum on [a, b]. As we know that the optimal solution is in the

interval [a, b], we can reduce the size of the interval by evaluating f (x) at two points

on [a, b]. The search goes as follows:

Begin with two test points x1 and x2 on [a, b] such that x1 < x2. Evaluate f (x1)

and f (x2) and shrink the interval according to the following rules:

• If f (x1) ≤ f (x2), then the new interval becomes [a, x2].

• If f (x1) > f (x2), then the new interval becomes [x1, b].

Determine two new test points on the new interval and continue to shrink interval

until it is sufficiently small. The new test points are set so that they divide the

interval into the Golden section. Golden section requires:

length of the whole interval
length of the larger part of the interval

=
length of the larger part of the interval
length of the smaller part of the interval

.

This relation results in the quadratic equation r2 + r = 1. The positive root of

this equation is r = 0.618 and used to determine the new test points x1 and x2, as

shown in Figure 3.1.

SURE and GCV functions obtained for point-enhanced SAR imaging are uni-

modal in general. However we have also observed that for very small regularization

parameters SURE cost has some local minima around that region. These minima

probably arise due to the large noise amplification in the regularized solution for
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very small parameters. We note that these minima occur at very small parameters

which cannot produce a reasonable solution. Therefore, if the initial interval is se-

lected properly, then the SURE function will be unimodal in that interval and the

assumption will hold for the golden section search. In our experiments, we use the

interval [10−4, 10] for the regularization parameter λ which covers all the solutions

ranging from under-regularized to over-regularized, and hence definitely contains

the global minimum.

3.5 Experimental Results

We demonstrate the effectiveness of the applied methods on synthetic and real SAR

scenes. We present point-enhanced SAR images with selected parameters and com-

pare these results to different parameter choices and conventional reconstructions.

The real SAR data used in the following sections provide formed imagery only how-

ever we need to know the true scene to validate the performances of the applied

methods. Thus, we generate a synthetic scene to test the methods first.

3.5.1 Synthetic Scene Reconstructions

The synthetic scene consists of 15 point scatterers as shown in Figure 3.2(a). Figure

3.2(b) and (c) shows the PSF of the SAR imaging system defined in (2.16) and the

conventional SAR image of the synthetic scene. The PSF is a 2-D sinc function

which comes from the 2-D Fourier transform of the rectangular window and defined

as h in 2.16. Thus, the conventional image is a filtered or smoothed version of

the true scene. We perform the experiments for two different noise level. We add

complex Gaussian noise to the simulated SAR image, so that the signal-to-noise

ratio (SNR) is 30, 20 and 10 decibels (dB). We take the SNR1 to be the variance

ratio of the noise-free data to noise in dB. Throughout our work, we display the

magnitude (in dB) of the complex-valued reflectivities.

We first show some experimental results to measure the accuracy of the random-

ized trace estimation method. To validate this method we need to know the true

trace value of Tλ and therefore we have to construct the approximated influence

1SNR (dB) = 10 log
10

[Var(Hf)/Var(w)]
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(a) (b) (c)

Figure 3.2: The grayscale plot of the magnitude of the (a) 128×128 synthetic scene,

(b) PSF and (c) conventional SAR image.

matrix Tλ. However it is not easy to construct Tλ for large-scale problems. For this

reason, we generate a 32 × 32 synthetic scene which is reasonably small. We first

construct the convolution matrix for the PSF and then the influence matrix Tλ as

is given by (3.5). Trace of this matrix is the true trace value. On the other hand,

we use the randomized trace estimation method and compute the estimated trace

value for the same influence matrix. Figure 3.3(a) and (b) show the estimated and

true trace values for p = 1 and p = 0.8, respectively.

As mentioned in Section 3.4.1, randomized trace estimator is defined as the

mean of the random variable t (λ). To find a reliable estimate with small variance

we should consider sufficient number of realizations. The ratio between the stan-

dard deviation and the mean of the random variable t (λ) for different number of

realizations of Q is given in Figure 3.4. It is shown that running K independent

realizations reduces the variance by a factor of K−1 [33]. Making use of this graph

and as a result of our experiments we conclude that 10 realization is a reasonable

number to compute and sufficient to serve our purpose.

Now we present the parameter selection results for this synthetic problem. Since

we know the underlying scene, we can compare SURE and GCV estimates to the

true value of the predictive risk given by (2.21). We first consider conventional SAR

image with 30 dB SNR. There are two determining terms for SURE and GCV costs:

the regularized residual and the trace of the influence matrix. Figure 3.5 shows the

trace and the residual terms for varying regularization parameter λ. As λ increases,
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Figure 3.3: True and estimated trace values of Tλ. (a) p=1. (b) p=0.8.
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Figure 3.4: The ratio between the standard deviation and the mean of trace (A) for

different number of realizations.

the residual become larger since the solution fits less to the data, and the value of

the trace term decreases since λ and the solution norm get larger.

In our experiments, we consider the interval [10−4, 101] for λ and divide this in-

terval in 12 constant grids in logarithmic scale . Then, we calculate SURE and GCV

costs for each of these λ values. Figure 3.6 shows the true predictive risk, SURE and

GCV costs in this interval. As seen from the figure, both SURE and GCV have their

minima at the same λ which minimizes the true predictive risk. Stein’s estimator is

an unbiased estimator, GCV function, on the other hand, takes distinct values and

very flat around its minimum. Still, all of them attain the same minimizers. Now,

let us have a closer look around the minima. In Figure 3.7, we consider a smaller

interval to see whether they have the same minima in a larger scale. We observe

that SURE and GCV have their minima at a smaller λ than the true predictive risk.

This leads an under-regularized solution but the difference between these solutions

is not realised visually. Despite this slight under-regularization effect, SURE and

GCV work well for this complex-valued, non-quadratic regularization-based imaging

problem. To see whether the selected λ produces a visually satisfying reconstruc-

tion, we compare it to the solutions obtained by using other choices of regularization

parameters. These results are presented in Figure 3.8.

SURE and GCV functions are minimized at λ = 1.9×10−2. This λ value achieves
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markers.
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Figure 3.7: A closer look to the true predictive error, SURE and GCV results for

30 dB SNR data and p=1.

to produce a good point-enhanced image with very little artifacts. However, in fact

some of the reconstructions for larger λ values seem even better. This case probably

arises because both methods are trying to minimize the predictive risk instead of

the solution error, i.e
∥

∥

∥f̂λ − ftrue

∥

∥

∥

2

2
. For this example, since the true scene is known,

we can compute the solution error and compare it to the predictive risk. As it can

be seen in Figure 3.9, the predictive risk and the solution error exhibit different

behaviour. The curves are quite different and not minimized at the same λ. For

this reason, SURE and GCV methods cannot guarantee that the selected parameter

would produce the minimum solution error even if the predictive risk is estimated

precisely. In this particular example, λ = 1.5×10−1 is the best solution regarding the

solution error and visual inspection, however SURE and GCV select the optimum

regularization parameter as λ = 1.9×10−2 since they aim to estimate the predictive

risk.

We now show the results of another parameter selection method L-curve in Figure

3.10. To be able to compare to the solution error and other methods, we consider

the same interval and grids for L-curve. The corner of the L-curve is selected as the

point of tangency with a line of slope closest to -1. To do this, we first compute

the numerical derivative of the L-curve at each λ and select the one with slope -1

and positive curvature as the corner of the L-curve. The corresponding λ equals to
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λ = 10−4 λ = 2.8 × 10−4 λ = 8.1 × 10−4

λ = 2.3 × 10−3 λ = 6.6 × 10−3 λ = 1.9 × 10−2

λ = 5.3 × 10−2 λ = 1.5 × 10−1 λ = 4.3 × 10−1

λ = 1.2 λ = 3.5 λ = 1.0 × 101

Figure 3.8: Point-enhanced reconstructions from the conventional image with 30 dB

SNR and for p=1
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Figure 3.9: Mean squared error and the predictive risk of the solution for the recon-

struction in Figure (3.8).

SURE GCV L-curve

30 dB 0.0107 0.0107 0.1270

20 dB 0.1620 0.1620 0.3511

10 dB 0.5844 0.4574 1.3879

Table 3.1: Selected parameters for the synthetic scene when p=1.

5.3 × 10−2, which in this case is the parameter value that minimizes the solution

error.

Up to now, we showed the general behaviour of the SURE, GCV and L-curve in

a particular interval. However, bruteforce searching with a reasonably small number

of λ values provides just a rough parameter choice since the interval is quite large.

For example, to choose the minimizer with an error of ±0.1 in logarithmic scale, 50

reconstructions should be computed. On the other hand, when we use the Golden

section search, we observe that this number is not more than 20 to obtain the same

sensitivity. For these reasons, we give the minimizing λ values for 20 dB and 10 dB

SNR data in Table 3.1 and 3.2. When the noise level is higher, then SURE, GCV
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Figure 3.10: The L-curve for the reconstructions in Figure (3.8).

SURE GCV L-curve

30 dB 0.0449 0.0630 0.1520

20 dB 0.1620 0.1620 0.3545

10 dB 0.3379 0.4574 1.0560

Table 3.2: Selected parameters for the synthetic scene when p=0.8.
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Figure 3.11: Conventional image for Slicy target.

SURE GCV L-curve

30 dB 0.0008 0.0015 0.0045

20 dB 0.0107 0.0117 0.0480

10 dB 0.0733 0.1196 0.3560

Table 3.3: Selected parameters for Slicy target when p=1.

and L-curve select a larger parameter, as expected. We note that SURE and GCV

give almost the same results while L-curve tends to choose a larger λ in general.

3.5.2 MSTAR Data Reconstructions

We now show results on data from the Moving and Stationary Target Acquisi-

tion and Recognition (MSTAR) public target data set [35]. The slicy target of

the MSTAR data set is a precisely designed and machined engineering test target

containing standard radar reflector primitive shapes such as flat plates, dihedrals,

trihedrals, and top hats. The conventional image of the slicy target is shown in

Figure 3.11. We add complex Gaussian noise such that SNR is 30 dB, 20 dB and

10 dB.

Similar to the synthetic example, the selected parameters and the correspond-

SURE GCV L-curve

30 dB 0.0006 0.0008 0.0038

20 dB 0.0042 0.0048 0.0355

10 dB 0.0574 0.0574 0.3480

Table 3.4: Selected parameters for Slicy target when p=0.8.
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(a) (b)

Figure 3.12: Point-enhanced images for Slicy target when p=1. (a) Parameter

selected by SURE and GCV. (b) Parameter selected by L-curve.

(a) (b)

Figure 3.13: Point-enhanced images for Slicy target when p=0.8. (a) Parameter

selected by SURE and GCV. (b) Parameter selected by L-curve.

ing images are shown in Figure 3.12-3.13 and in Table 3.3-3.4. L-curve selects the

regularization parameter larger than the SURE and GCV choice. We cannot ex-

actly conclude that L-curve performs better, however the experiments and visual

inspection indicate this. We can observe that a smaller p value yield a smaller regu-

larization parameter in general. Since smaller p favors that less dominant scatterers

are observable in the image, a smaller regularization parameter may be sufficient to

produce images with resolved point scatterers. Although the reconstructed images

look visually indistinguishable even when the selected parameter values are distinct,

this is probably not the case when we consider an ATR system.
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Figure 3.14: Backhoe model used in Xpatch scattering predictions. The view to the

right corresponds approximately to the images in our experiments.

3.5.3 Backhoe Data Reconstructions

We now present 2D image reconstruction experiments based on the Air Force Re-

search Laboratory (AFRL) Backhoe Data Dome, which consists of simulated wide-

band (7-13 GHz), full polarization, complex backscatter data from a backhoe vehicle

in free space [36]. The backscatter data are available over a full upper 2π steradian

viewing hemisphere. In our experiments, we use VV polarization data, centered at

10 GHz, and with an azimuthal span of 110◦ (centered at 45◦). The backhoe model

is given in Figure 3.14.

Advanced imaging strategies such as point-enhanced imaging have enabled resolution-

enhanced wide angle SAR imaging. We consider the point-enhanced composite

imaging technique [37] and show experimental results in this framework. In this

framework, the whole angle is divided into subapertures and a seperate image is

formed for each subaperture. Then, the dominant components of each subaperture

image are combined and one final image is obtained for a wide observation angle. For

composite imaging, we use 19 subapertures, with azimuth centers at 0◦, 5◦, . . . , 90◦,

and each with an azimuthal width of 20◦. We consider two different bandwidths:

500 MHz and 1 GHz. For each of these bandwidths, we consider data with two

different signal-to-noise ratios: 30 dB and 20 dB.

Figure 3.15 shows one example of the SURE and GCV costs and the L-curve

for backhoe image for 20 dB data with 500 MHz bandwidth. SURE and GCV

again selects the same parameter and it is smaller than the one selected by L-curve.
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(b)

Figure 3.15: Parameter selection of the backhoe image for p = 0.8, SNR=20 dB and

BW=500 MHz. (a) SURE and GCV. (b) L-curve.
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(a) (b)

Figure 3.16: Point-enhanced backhoe images for p = 0.8, SNR=20 dB and BW=500

MHz. (a) Parameter selected by SURE and GCV. (b) Parameter selected by L-curve.

(a) (b)

Figure 3.17: Point-enhanced backhoe images for p = 1, SNR=20 dB and BW=1

GHz. (a) Parameter selected by SURE and GCV. (b) Parameter selected by L-

curve.

The reconstructed backhoe images are shown in Figure 3.17. L-curve choice gives

a visually better solution; the artifacts are minimized successfully. Although the

point scatterers are enhanced in SURE-GCV result, it suffers from side artifacts.

In Figure 3.14, the backhoe reconstructions with a bandwidth of 1 GHz and p = 1

are shown. In this example the point scatterers are resolved better. Generally, the

choice of p and λ is very sensitive in the sense that the choice of λ directly effects

the result for p. Therefore, the choice for p and λ mutually affects the overall

performance.

To give a general idea, we also display the reconstructed images with different

regularization parameters in Figure 3.18. Here we present how the reconstructions
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(a)

(b)

(c)

(d)

(e)

Figure 3.18: Point-enhanced composite images using different λ’s, BW=1 GHz and

SNR=20 dB. λGCV denotes the parameter selected by GCV. (a) λ = 10−2λGCV . (b)

λ = 10−1λGCV . (c) λ = λGCV . (d) λ = 101λGCV . (e) λ = 102λGCV .
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change with respect to the parameter choice but this behaviour is common for all

methods. Ideally, we would like to be able to observe the scattering centers of the

backhoe in a good reconstruction. From this point of view GCV seems to serve the

purpose. The under-regularized image in 3.18 (a) is dominated by artifacts and the

over-regularized image in Figure 3.18 (e) does not display the the structure of the

backhoe correctly because of the unobservable scattering parts.
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Chapter 4

Conclusions and Future Work

4.1 Summary and Conclusions

In this thesis, we have explored the application of regularization parameter selection

methods in point-enhanced SAR imaging. We have provided extensions of several

parameter selection methods to be used in SAR imaging and developed algorithms

for parameter selection in point-enhanced imaging of complex-valued SAR reflectiv-

ity fields. We have presented experimental results based on real and simulated SAR

data and discussed the effectiveness of the applied methods.

In Chapter 3, we reformulated Stein’s unbiased risk estimation, generalized cross-

validation, and L-curve methods for the point-enhanced SAR imaging framework.

These methods were originally proposed for standard Tikhonov type regularization

problems. Their use in non-quadratic regularization is still under exploration. We

have tested their effectiveness in SAR imaging. SURE and GCV are both aimed

at estimating the predictive risk. Although they can successfully estimate the pre-

dictive risk, this does not guarantee that the minimizers of the predictive risk and

the mean squared error of the solution are the same. From this aspect, we cannot

conclude that SURE and GCV always produce satisfying results. However, most of

the time their parameter choice leads to reasonable but slightly under-regularized

images when compared to the images where the regularization parameter is selected

manually. L-curve, on the other hand, tends to select a larger parameter and appears

to provide more effective results . This method basically tries to balance the two

terms involved in the optimization problem of point-enhanced SAR imaging. Our

experiments indicate that L-curve works well in this framework and the L-curve

solution is very close to the minimizer of the mean-squared error between the true
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and the reconstructed scene.

The implementation of the applied methods, especially SURE and GCV, was

challenging. To overcome the memory-intensive computations, we have used several

numerical optimization tools. To compute the SURE and GCV costs, we have

employed randomized trace estimation and have shown that this method works well

for complex-valued problems. To find the minima of the cost function, we have

used the golden section search algorithm. This approach has greatly decreased the

computational cost. Since the cost functions are quite flat around their minimum,

resulting in an interval does not affect the solution noticeably.

Overall, this thesis has addressed an open problem in non-quadratic regularization-

based SAR imaging. It is also general enough to cover any complex-valued or

ℓp-norm regularized image reconstruction problems. The numerical tools can be

applied to other types of large-scale problems. This study has provided automatic

selection of the regularization parameter, and thus resulting in a new opportunity

for advancement in the use of point-enhanced SAR images in ATR systems.

4.2 Future Work

Throughout this thesis, we have considered point-enhanced imaging which is aimed

at enhancing point-based features. In some cases, it is also favourable to enhance

other features. For example, enhancing region-based features results in a piecewise

smooth image. The parameter selection methods considered here can be applied to

those image reconstruction problems as well.

As mentioned previously, SURE estimates the predictive risk in regularization-

based imaging. We have also mentioned that the predictive risk and the mean-

squared error do not need to have the the same minimizer. If SURE can be adapted

to estimate the mean-squared error itself, that might lead to better parameter

choices.

High-resolution, point-enhanced SAR images are mostly promising to be used

in ATR systems. We have not carried out any experiments in an ATR system.

Testing the applied methods and obtained SAR images in an ATR system can be

very helpful to evaluate their effectiveness in ATR systems.

In this thesis, we consider a spesific cost function which has been proposed for
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point-enhanced SAR imaging problem. However, there are other forms of cost func-

tions for imaging problems with different motivations. We note that SURE, GCV

and L-curve can also be extended for the selection of the regularization parameter

in these problems.

Both SURE and GCV functions depend on the regularized solution and therefore

we have to find the reconstructed scene to compute the SURE and GCV costs. In

this thesis, for each value of the regularization parameter, we have run the image

reconstruction algorithm until convergence, and then have used the reconstructed

image to evaluate the SURE and GCV functions. However it might also be possible

to update the regularization parameter without running the image reconstruction

algorithm until convergence. This way, we would be spending less time in image

formation, and hence we could speed up the parameter selection task. Hereafter, we

are also planning to consider and try out this approach.

Experiments show that the selection of p is also important as well as the regular-

ization parameter λ. Actually, both p and λ affect the quality of the reconstructed

image. Selection of both of these parameters in a data driven fashion can yield

effective solutions. We have also considered this problem and tried to explore the

relationship between p and λ. We have not reached any final conclusion on this

relation but it is one of our ongoing research topics.

In this study, we have not considered any Bayesian approach for parameter selec-

tion. There are some pieces of work [10, 38] which consider the image reconstruction

problem and the parameter selection problem as part of an overall estimation prob-

lem. This approach also requires several approximations and involves computational

difficulties. Despite these difficulties we have considered some estimation theoretical

methods for parameter selection however we have not observed any advantages over

the methods considered and applied in this thesis. Yet, we feel this line of thought

is worth further attention.
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