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Abstract 

 
The Vehicle Routing Problem (VRP) determines a set of vehicle routes originating and 

terminating at a single depot such that all customers are visited exactly once and the 

total demand of the customers assigned to each route does not violate the capacity of the 

vehicle. The objective is to minimize the total distance traveled by all vehicles. An 

implicit primary objective is to use the least number of vehicles The Vehicle Routing 

Problem with Time Windows (VRPTW) is a variant of VRP in which lower and upper 

limits are imposed to the delivery time of each customer. The arrival at a customer 

outside the specified delivery times is either penalized (soft time windows) or strictly 

forbidden (hard time windows). In the time-dependent VRP, the travel times between 

the customers vary due to different traffic conditions in time intervals throughout the 

scheduling horizon beside different road types. In this thesis, both the time-independent 

and -dependent VRP with hard time windows are addressed. We tackle these problems 

using an Ant Colony Optimization approach. The performance of the proposed 

algorithm is tested on the well-known benchmark instances from the literature. 
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Anahtar Kelimeler: araç rotalama, zaman kısıtlı araç rotalama problemi, karınca 
kolonisi algoritması, ileri sezgisel yöntem 

 

 

Özet 

 
Araç Rotalama Problemi (ARP), tüm müşteriler yalnızca bir kez ziyaret edilecek ve tek 

bir rotaya atanan müşterilerin toplam talepleri araç kapasitesini aşmayacak şekilde 

depodan başlayan ve depoda sonlanan rotaların belirlenmesi problemidir. Amaç, 

toplamda katedilen mesafenin enküçüklenmesidir. Bir diğer örtülü amaç ise en az 

sayıda aracın kullanılmasıdır. ARP’nin bir uzantısı olan Zaman Kısıtlı ARP (ZKARP), 

her bir müşteriye gidilebilecek zaman için en erken ve en geç sınırların tanıtıldığı 

problemdir. Bu sınırlar dışındaki varış zamanları ya cezalandırılmakta (gevşek zaman 

kısıtı) ya da tamamıyla yasaklanmaktadır (sıkı zaman kısıtı). Zaman-Bağımlı ARP’nde 

ise yolculuk zamanları, farklı yol tipleri yanında zaman aralıklarındaki farklı trafik 

koşullarına bağlı olarak değişkenlik göstermektedir. Bu tezde, hem zaman-bağımlı hem 

de zaman-bağımsız sıkı zaman kısıtlı ARP ele alınmaktadır. Çözüm yöntemi olarak 

karınca kolonisi algoritması kullanılmaktadır. Önerilen yaklaşımın performansı 

literatürdeki problemler üzerinde test edilmektedir. 
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CHAPTER 1 
 

INTRODUCTION 

 

Optimizing a distribution network has been and remains an important topic both in the 

literature and real-life applications, and the routing of a fleet of vehicles is one of the 

most widely addressed problem in a distribution network. The Vehicle Routing Problem 

(VRP) firstly introduced by Dantzig and Ramser (1959) determines a set of vehicle 

routes originating and terminating at a single depot such that all customers are visited 

exactly once, and the total demand of the customers assigned to each route does not 

violate the capacity of the vehicle. The objective is to minimize the total distance 

traveled by all vehicles. An implicit primary objective is to use the least number of 

vehicles. The Vehicle Routing Problem with Time Windows (VRPTW) is a variant of 

VRP in which an earliest and a latest delivery time are imposed for each customer. The 

arrival at a customer outside the specified delivery times is either penalized (soft time 

windows) or strictly forbidden (hard time windows). While modeling VRP many 

assumptions are made to simplify the problem and to reduce the solution process 

since the VRP is an NP-hard problem. However, as the number of assumptions 

increases, the model becomes less successful to represent real-life conditions. The 

most widely made assumption is that the travel times are constant and insensitive to 

the changing traffic conditions during the scheduling horizon. In the Stochastic 

Vehicle Routing Problem, the customer demands and/or the travel times between the 

customers may vary. Although stochastic travel times and demand distributions have 

been frequently used in the literature, time-varying travel speeds and Time-

dependent Vehicle Routing Problem with Time Windows (TDVRPTW) have seldom 

been addressed. 

Many exact and heuristic solution approaches are used to solve VRP and its 

extensions. From both the computational time and solution quality point of view, 

metaheuristics have gained much importance (compared to the exact solution 
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methods). Metaheuristics such as Tabu Search (TS), Genetic Algorithm (GA), 

Simulated Annealing (SA), Greedy Randomized Adaptive Search Procedure 

(GRASP) and the recently introduced Ant Colony Optimization (ACO) are solution 

methods capable of avoiding getting trapped in a local optimum while performing an 

extensive search in the solution space by utilizing the interaction between local 

search improvement procedures and higher level strategies (Glover and 

Kochenberger, 2003).  

ACO is a population-based metaheuristic that can be used to find approximate 

solutions to difficult optimization problems (Dorigo, 2008). It is based on the 

observation of the behavior of real ant colonies searching for food sources. Real ants 

deposit an aromatic essence, called pheromone, on the path they walk. Other ants 

searching for food sense the pheromone and use this information in selecting their path. 

The quantity of pheromone deposited on a path is based on the length of the path and 

the quality of the food source. As more ants follow a path the level of pheromone on 

that path will increase, increasing its selection probability by other ants. In ACO, 

artificial ants are used for searching good solutions to an optimization problem by 

taking advantage of this cooperative learning process (Çatay, 2008).  

The aim of this thesis is to develop an ACO approach to efficiently solve both 

the time-dependent and -independent VRP with hard time windows. The thesis is 

organized as follows. In Chapter 2, the mechanisms of the ACO metaheuristic are 

described and some of its variants proposed in the literature are summarized. Chapter 3 

is devoted to the description of TDVRPTW and the overview of the approaches 

proposed for solving the problem. Chapter 4 introduces the proposed ACO approach 

and Chapter 5 presents the computational study to test its performance and the results 

achieved. Finally, concluding remarks and future research are given in the last chapter.  
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CHAPTER 2 
 

ANT COLONY OPTIMIZATION 

 

ACO, introduced by Dorigo (1992), is a metaheuristic approach, developed to attack 

hard combinatorial optimization problems. The approach is motivated from the common 

behaviors of the real ant colonies. A foraging member of a real ant colony 

communicates with the other members via stigmergy, an indirect form of 

communication based on the modification of the environment. The main component of 

stigmergy in a real ant colony is a chemical substance called pheromone which an ant 

deposits on the trail it walks while searching for food. As the number of ants that follow 

the path increases, the pheromone amount on the path and the selection probability of 

the path will increase. The other ants are likely to follow the path on which they sense 

pheromone instead of traveling at random. Pheromone on a trail is also subject to 

evaporation and even to exhaustion unless the path is traversed, which in turn will 

decrease the chance of other ants to follow the path. The amount of pheromone 

deposited and evaporated is correlated with the distance between the nest and the food 

source. The longer the path between the nest and the food source the more the 

pheromone evaporates. On the other hand, the shorter the path the more the pheromone 

is deposited. Thus, the pheromone levels remain higher on the shorter paths. Also, the 

quality of the food is another factor that affects the amount of pheromone deposited. 

 

 

Figure 2.1. Illustration of pheromone deposit 

Nest Food 

Path 1 

Path 2 

Path 3 
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Figure 2.1 illustrates an ant ready to depart from the nest for the food which can be 

reached via three paths. The pheromone levels on these three paths are determined by 

the path choice of the previous ants. The weights of the paths in Figure 2.1 are 

proportional to the amount of pheromone they are deposited. Pheromone on the longest 

path, path 3, has totally evaporated. The ant in the nest is most likely to choose path 2 

having the largest amount of pheromone, thus reinforcing the path.  

The behavior of real ants is simulated via artificial ants in ACO to solve 

combinatorial optimization problems. The artificial ants search the solution space for a 

good solution while the real ants search their environment for food of good quality. In 

order to implement ACO, a transformation of the optimization problem into the problem 

of finding the path that best serves the objective function on a weighted graph is 

performed. The artificial ants incrementally build solutions by moving on the graph 

using a stochastic construction process guided by artificial pheromone and a greedy 

heuristic known as visibility (Dorigo, 2008).  As the solution quality increases, the 

amount of pheromone deposited increases accordingly.  

The first ACO algorithm is the Ant System (AS) which was applied for solving the 

well-known Traveling Salesman Problem (Dorigo, 1992; Dorigo et al., 1996). In AS, 

each ant probabilistically chooses the next city to visit based on a heuristic combining 

the distance to that city and the amount of virtual pheromone deposited on the arc to 

that city. The ants explore, depositing pheromone on each arc that they cross, until they 

have all completed a tour. At this point the ant which has completed the shortest tour 

deposits virtual pheromone along its complete tour. The amount of pheromone 

deposited is inversely proportional to the tour length; the shorter the tour, the more it 

deposits. 

Although AS provided competitive results its performance was still inferior in large 

instances compared to other algorithms specifically designed for the TSP. However, its 

successful application has led to many extensions for various combinatorial 

optimization problems utilizing the similar construction mechanism.  Some early 

applications include the elitist strategy for Ant System (EAS) proposed by Dorigo 

(1992) and Dorigo et al. (1996), rank-based version of Ant System (ASrank) by 

Bullnheimer et al. (1999), MAX-MIN Ant System (MMAS) by Stützle and Hoos 

(1997), and Ant Colony System (ACS) by Dorigo and Gambardella (1997).  
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In the next section, we explain the mechanisms of the AS approach and discuss its 

extensions applied to the TSP following the detailed description provided in Çatay 

(2008). 

2.1. Ant System 

In AS, K artificial ants probabilistically construct tours in parallel exploiting a given 

pheromone model. Initially, all ants are placed on randomly chosen cities. At each 

iteration, each ant moves from one city to another, keeping track of the partial solution 

it has constructed so far. The algorithm has two fundamental components: 

• The amount of pheromone on arc (i, j), ��� 

• Desirability of arc (i, j), ��� 

where arc (i, j) denotes the connection between city i and city j. 

At the start of the algorithm an initial amount of pheromone �� is deposited on each 

arc: ���= �� = K/L0, where L0 is the length of an initial feasible tour and K is the number 

of ants. In AS, the initial tour is constructed using the nearest-neighbor algorithm; 

however, another TSP heuristic may as well be utilized. The desirability value (also 

referred to as visibility or heuristic information) between a pair of cities is the inverse of 

their distance ���  = 1/���, where ��� is the distance between cities i and j. So, if the 

distance on the arc (i, j) is long, visiting city j after city i (or vice-versa) will be less 

desirable.  

Each ant constructs its own tour utilizing a transition probability: an ant k 

positioned at a city i selects the next city j to visit with a probability given by 

���� 	

��
� ���� ����∑ ����������� ��

 ,    if � � � ��

 0                      ,    otherwise

    � (2.1) 

Here, � �� denotes the set of not yet visited cities; α and β are positive parameters to 

control the relative weight of pheromone information ��� and heuristic information ���. 

Note that �������� is also referred to as the attractiveness and is denoted as ���. 

After each ant has completed its tour, the pheromone levels are updated. The 

pheromone update consists of the pheromone evaporation and pheromone 

reinforcement. The pheromone evaporation refers to uniformly decreasing the 
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pheromone values on all arcs. The aim is to prevent the rapid convergence of the 

algorithm to a local optimal solution by reducing the probability of repeatedly selecting 

certain cities. The pheromone reinforcement process, on the other hand, allows each ant 

to deposit a certain amount of pheromone on the arcs belonging to its tour. The aim is to 

increase the probability of selecting the arcs frequently used by the ants that construct 

short tours. The pheromone update rule is the following: 

��� � �1 �  !��� " # Δ%
�&' ����                ( �), �! (2.2) 

In this formulation, ρ (0 < ρ ≤ 1) is the pheromone evaporation parameter and ∆����  is 

the amount of pheromone deposited on arc (i, j) by ant k and is computed as follows:    

∆���� 	 + 1,� ,   if ant k uses edge �), �! on its tour   0 ,   otherwise                                            � 
 

(2.3) 

where Lk is the length of tour constructed by ant k.  

Note that prior to the pheromone update a local search procedure may be applied on 

the tours constructed by the ants to reduce the distance traversed. It has been observed 

that such a procedure enhances the performance of the AS algorithm (Çatay, 2008).  

2.2. The Extensions of AS 

In the EAS (Dorigo, 1992; Dorigo et al., 1996) an elitist strategy is implemented by 

further increasing the pheromone levels on the arcs belonging to the best tour achieved 

since the initiation of the algorithm. That best-so-far tour is referred to as the “global-

best” tour. Then, the pheromone update rule performed as follows: 

��� � �1 �  !��� " # Δ%
�&' ���� " -Δ���./              ( �), �! (2.4) 

Here, w denotes the weight associated with the global-best tour and ∆���./ is the amount 

of pheromone deposited on arc (i, j) by the global-best ant and calculated by the 

following formula: 
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∆���./ 	 + 1,./ ,   if global best ant uses edge �), �! on its tour   0   ,   otherwise                                                             � (2.5) 

where Lgb is the length of global-best tour.  

In the ASrank (Bullnheimer et al., 1999) a rank-based elitist strategy is adopted in 

an attempt to prevent the algorithm from being trapped in a local minimum. In this 

strategy, w best-ranked ants are used to update the pheromone levels and the amount of 

pheromone deposited by each ant decreases with its rank. Furthermore, at each iteration, 

the global-best ant is allowed to deposit the largest amount of pheromone. The update 

rule is the following:  

��� � �1 �  !��� " #�w � r!∆

23'
4&' ���4 " -∆���./        ( �), �! (2.6) 

The ACS presented by Dorigo and Gambardella (1997) attempts to improve AS 

by increasing the importance of exploitation versus exploration of the search space. This 

is achieved by adopting a strong elitist strategy to update pheromone levels and a 

pseudo-random proportional rule in selecting the next node to visit. The strong elitist 

strategy is applied by using the global-best ant only to increase the pheromone levels on 

the arcs that belong to the global-best tour:  

��� � �1 �  !��� "  Δ���./     ( �), �! belonging to global best tour (2.7) 

The mechanism of the pseudo-random proportional rule is as follows: an ant k located at 

customer i may either visit its most favorable customer or randomly select a customer. 

The selection rule is the following: 

�� 	

��
� 567859 ���� ����    ,   if : ; :�� � ���                                   

  ��                          ,    otherwise

� (2.8) 

 

where  z is  a random  variable  drawn  from  a  uniform  distribution  U [0,1] and z0     

(0 ≤ z0 ≤ 1) is a parameter to control exploitation versus exploration. <� is selected 

according to the probability distribution (2.1). ACS also uses local pheromone updating 

while building solutions: as soon as an ant moves from city i to city j the pheromone 
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level on arc (i, j) is reduced in an attempt to promote the exploration of other arcs by 

other ants. The local pheromone update is performed as follows: 

��� � �1 � =!��� " =�� (2.9) 

where ξ is a positive parameter less than 1. 

Similar to ACS, MMAS (Stützle and Hoos, 1997) uses either the global-best ant 

or the iteration-best ant alone to reinforce the pheromones. It has been observed that 

using iteration-best ant at the start of the algorithm and then gradually increasing the 

frequency of using the global-best ant for the pheromone update performs good. 

However, this strategy may cause a rapid convergence to a sub-optimal solution. Thus, 

maximum and minimum limits on the pheromone levels are imposed to avoid 

stagnation. The interval in which the pheromones may vary is set to [τmin, τmax]. The 

pheromone levels are initialized at τmax to allow the exploration of the search space at 

the beginning. In addition, the pheromone levels are reinitialized whenever the system 

approaches stagnation or no improvement has been achieved after a number of 

consecutive iterations. 

The interested reader is referred to Dorigo and Stützle (2004) for more details on 

ACO metaheuristic and its variants. 
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CHAPTER 3 
 

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 

 

VRP determines a set of vehicle routes originating and terminating at a single depot 

such that all customers are visited exactly once and the total demand of the customers 

assigned to each route does not violate the capacity of the vehicle. The objective is to 

minimize the total distance traveled by all vehicles. An implicit primary objective is to 

use the least number of vehicles. VRPTW is a variant of VRP in which an earliest and a 

latest delivery time are imposed for each customer. The arrival at a customer after the 

specified delivery time interval is either penalized (soft time windows) or strictly 

forbidden (hard time windows). An extension of the classical VRPTW is the time-

dependent VRPTW (TDVRPTW) where the travel times vary due to different factors 

such as traffic and road conditions. 

3.1. Description of the VRPTW 

In VRPTW, N geographically dispersed customers are serviced by a homogenous 

fleet of K vehicles with capacity Q. All vehicle routes start and end at the depot, 

denoted with 0, visiting each customer i, i∈{1,..., N}, exactly once. Each customer 

has a demand qi, service time si and time window [ei, li ]. The time window refers to 

the time interval in which the demand must be met and may prohibit the visit of 

certain customer pairs one after the other. The concept is illustrated in Figure 3.1. 

The service time shown by the shaded region is the loading or unloading service 

time at the customer i where the terms ei and li denote the earliest and latest 

available service start time for customer i. As no arrival is allowed after li, this type 

of time window is referred to as a hard time window. In the soft time window, the 

……. 
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Figure 3.1. Illustration of time window concept 
 
 
arrival out of the time window is allowed but penalized. If the vehicle arrives at 

customer i before ei it must wait. In Figure 3.1, if the vehicle departs from customer 

1 at �1>  after a service time of �1> -51> , it arrives at customer 2 at 52> . However, if the 

vehicle departs from customer 1 at �1>> after a service time of �1>>-51>>, it arrives at 

customer 2 at 52>>, beyond the corresponding time window. Thus, the vehicle that is 

currently visiting customer 1 and will depart at time �1>> cannot visit customer 2 on its 

route. 

3.2. Description of the TDVRPTW 

An extension of the classical VRPTW is the time-dependent VRPTW (TDVRPTW) 

where the travel time between any source and destination pair on the road network is 

not a function of the distance alone and is subject to variations due to accidents, 

weather conditions or other random events. Hourly, daily, weekly or seasonal cycles 

in the average traffic volumes also result in temporal variations in travel times 

(Malandraki and Daskin, 1992). Speed limitations imposed by the road type and the 

traffic density distribution of the road which is also affected by the time of the day 

are two main components that cause fluctuations in travel speeds. That is, the travel 

time between two customers is not constant during the entire scheduling horizon and 

changes with the changing sub-divisions of the horizon, called time-periods. This 

time dependency on both road type and time-period is embedded in the model where 

deterministic travel times are used by using a travel speed matrix.  

 

 

 

e1 l1 

e2 l2 

Customer 1 

Customer 2 

51> 51>> 

52> 52>> 

�1> �1>> 
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Table 3.1. A travel speed matrix example 
       
    Period 1 Period 2 Period 3   
  Road Type 1 0.6 0.9 0.7   
  Road Type 2 0.8 1.2 0.5   
            

 

A sample discrete travel speed distribution is given in Table 3.1. The scheduling 

horizon is divided into three time periods and the road network composes two types 

of roads. A travel speed with value 1.0 corresponds to the time-independent VRP. 

The higher the travel speed, the lighter the traffic density. Road type 1 in Table 3.1 is 

mostly congested during the day. In period 2, traffic density is lighter and is 

modeled by a higher travel speed coefficient. Having lower travel speed coefficients, 

period 1 and period 3 are more congested during the day. The rush hours for road 

type 2 are in period 3. The travel time is found by multiplying the distance with the 

corresponding coefficient. Thus, in period 2 for road type 2, the travel time is less 

than the time-independent case as the travel speed coefficient is bigger than 1. 

 

 

Figure 3.2. Illustration of unrealistic waiting time in constant travel speed case 
 

Ignoring the time dependency of the travel times may result in sub-optimal 

solutions or solutions in which the time-windows constraints are violated. Besides, 

assuming a constant speed over the entire length of an arc may lead to waiting time 

at a customer until the end of the current time interval when it is more advantageous 

to wait than departing to the next customer immediately. This situation is 

exemplified in Figure 3.2. The vehicle at customer 1 with time window [e1, l1] is 

ready for departure at time d1. The travel speed is higher in time-period Tk+1 

compared to the time-period Tk in which the vehicle resides currently. Under the 

constant travel speed assumption, the vehicle is motivated to wait until the end of 

time-period Tk rather than departing immediately. When the vehicle departs 

Tk Tk+1 

t2 t1 

e1 l1 

e2 l2 

d1 

Customer 1 

Customer 2 
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immediately, it arrives at customer 2 at t1 whereas it arrives at t2 in the former case. 

That is, departing later results in an earlier arrival. In other words, the vehicle that 

departs later passes the vehicle which departs earlier. 

 

 

Figure 3.3. An example of travel speed and travel time functions (Ichoua et al., 2003) 
 

To overcome this unrealistic effect of passing, Ahn and Shin (1991) considered 

the travel speed as a step function of the time of the day (Figure 3.3 (a)). This leads 

to a piecewise continuous travel time function and guarantees that a customer with 

an earlier departure time will always arrive earlier (Figure 3.3 (b)). This property is 

named as non-passing property. 

 

 

Figure 3.4. Changing arrival times in time-dependent case 
 

In TDVRPTW, the feasible and unfeasible customer pairs are not necessarily 

same as in the time-independent case. A dynamic travel time calculation is required 

to check feasibility in the route construction phase. The arrival time to the next 

customer may be realized earlier or later compared to the time-independent case 

which are illustrated in Figure 3.4 as t1 and t3, respectively, where t2 shows the 

arrival time in the time-independent case. Visiting customer 2 after customer 1 is 
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infeasible when the arrival time at customer 2 is t4 due to a slower travel speed. 

Similarly, an infeasible customer may become feasible due to the changing travel 

speeds as illustrated in Figure 3.5. 

 

 

Figure 3.5. Illustration of an infeasible customer that becomes feasible 

3.3. Literature Review 

VRP has been extensively studied in the literature. However, research related to the 

time-dependent VRP with and without time windows is relatively scarce. In 

TDVRPTW, time-dependency is taken into consideration in two ways: stochastic travel 

times and deterministic travel times. Variable travel times which include real time 

information on traffic congestion and variable demands have also been studied in the 

literature. Since these cases are beyond the scope of this thesis we skip further 

discussion and refer the reader to Fleischmann et al. (2004), Taniguchi et al. (2004), 

Haghani et al. (2005), Kim et al. (2005) and Chen et al. (2006) (variable time) and 

Gendreau et al. (1996) (variable demand) for a more detailed description and 

discussion.  

3.3.1. Stochastic travel times 

Laporte et al. (1992) introduced the stochastic travel times in the vehicle routing 

problem where the fleet consists of uncapacitated vehicles. They presented three 

mathematical programming models and used a branch-and-cut approach to solve 

instances with 10 to 20 customers and 2 to 5 scenarios where target route completion 

times are incorporated. Kenyon and Morton (2003) examined the same problem by 

developing two models. The first model aimed at minimizing the expected completion 

time. The probability that the operation is completed without exceeding a preset target 

time is maximized by the second model. The actual travel times of the routes regarding 

Tk Tk+1 

t1 t2 

e1 l1 

e2 

d1 

Customer 2 

Customer 1 

l2 
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the random travel times are computed after the route construction phase. Van Woensel 

et al. (2007) incorporated the traffic congestion into their model through a queuing 

approach by modeling the behavior of the traffic flows. They used the mean of the 

speed distributions as the expected total travel time. Potvin et al. (2006) described a 

dynamic version of the problem where the customer demands occur in real time and the 

travel times are subject to stochastic variations. The stochastic nature of the travel times 

arise from the short term bias factor that depended on a random variable distributed 

uniformly. Hsu et al. (2007) have extended the literature by considering TDVRPTW in 

perishable food delivery industry where the commodity is subject to quality changes 

due to the time-varying temperatures and time-dependent travel times. Besides the 

transportation costs, they try to minimize the inventory, energy and penalty costs related 

to late deliveries. 

3.3.2. Deterministic travel times 

In the deterministic case, the travel times are not subject to randomness and are known 

in advance. The most widely used approach is to divide the scheduling horizon into time 

intervals and use the travel times, which depend on the distance and the time of the day, 

accordingly. The first study in VRPTW where the time-varying congestion and time-

dependent travel times are considered in a deterministic setting belongs to Ahn and Shin 

(1991). In this study, the important non-passing or first-in-first-out (FIFO) property was 

introduced. Using this property, they extended the basic routing heuristics efficiently. 

Malandraki and Daskin (1992) examined mixed integer linear programming 

formulations for the VRP as well as for the TSP. They presented several nearest 

neighbor heuristic based algorithms. Hill and Benton (1992) proposed a time-dependent 

travel speed based model for the VRP without time windows. However in Malandraki 

and Daskin (1992) and Hill and Benton (1992), the travel time is a step function 

disregarding the FIFO/non-passing property. Park and Song (2006) used a structure that 

utilizes different passing areas and discrete time intervals. They considered the travel 

time as a function of the travel speeds at the customers where the vehicle departs and 

arrives, the time of the day and the corresponding passing areas. The model of Hill and 

Benton (1992) is modified and savings, proximity priority searching and insertion 

techniques are applied in the solution phase. Park (2000) extended this research by 

proposing a heuristic named BC-saving algorithm to solve a model that minimizes the 

total operation time and total weighted tardiness.  
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The proposed solution methodology of Ichoua et al. (2003) for solving TDVRPTW 

satisfies the FIFO property. Taking the rush hours into account, they divide the 

scheduling horizon into three time intervals and consider three types of roads which also 

affect the travel time. As the customers have soft time windows, the infeasible solutions 

are avoided but the exceeded time windows are penalized. They implemented a parallel 

tabu search approach and tested its performance both in dynamic and static 

environments. Furthermore, Zheng and Liu (2006) addressed VRPTW where the travel 

time was regarded as a fuzzy variable. They employed a hybrid intelligent algorithm to 

minimize the total distance traveled. In a very recent study Donati et al. (2008) have 

utilized ant colony optimization in a multi-colony setting. The first colony aims to 

minimize total number of vehicles whereas the second colony aims to minimize the total 

travel time. A speed distribution related with the arc length accounts for the time 

dependency. Proven to be efficient on time-independent problems, the algorithm was 

tested on time-dependent version of the problems. 
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CHAPTER 4 
 

AN ANT ALGORITHM FOR THE VRPTW  

 

In this chapter, we propose an ant algorithm for solving the VRPTW with hard 

time windows and discuss its mechanisms such as the heuristic information, route 

construction phase, local search procedures and rules on pheromone trails. At the 

end of the chapter, the approach is extended to the time-dependent case. When no 

time dependency exists for the travel times, the objective function of the discussed 

problem is to minimize the total distance traveled. However, in the time-dependent 

case, the objective function becomes minimizing the total tour time, which is the 

sum of the total routing times of each vehicle. The flowchart of the proposed 

algorithm is also provided in Appendix A. 

4.1. Heuristic Information 

As the objective function of the problem is to minimize the total distance traveled, a 

distance based visibility function will best serve to this purpose. Two main distance- 

based heuristics are widely used in the literature. The first one (���  @) uses the inverse 

of the distance between the customers and is as follows:  ���  @ 	 1/���           (4.1) 

where ��� denotes the distance between customers ) and �. The second visibility 

function (��� @@) is the well-known Clarke and Wright’s (1964) savings function which 

is ��� @@ 	 ��� " ��� � ���          (4.2) 
 
where ��� is the distance between customer ) and depot and ��� is the distance 

between depot and customer �. 
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The experimental results in the literature (as well as our own results) revealed 

that ��� @@ performs in general better than ���  @. 

4.2. Route Construction 

At the start of the route construction procedure, K ants are placed at the K nearest 

customers to the depot. These ants move in parallel, that is, the number of customers 

visited by all ants at each step is equal. After a vehicle has returned to the depot, it 

continues its tour from the customer with the largest attractiveness value.  

To put a limit on the exploration and to speed up the algorithm, we use a 

candidate list which consists of the nearest CL (candidate list size) neighbors of 

customer. Neighbors that satisfy all of the following conditions are included in the 

candidate list: 

• The vehicle departing from customer ) arrives at the neighbor before its latest 

possible arrival time (also referred to as due date); 

• The remaining capacity of the vehicle can accommodate the demand of the 

neighbor; 

• After visiting the neighbor the vehicle can return to the depot before the 

depot’s due date. 

If the list is empty, then there exists no feasible customer to visit after customer ) and the vehicle returns to the depot. If the candidate list includes only one 

customer, it is selected; otherwise, the next customer is selected using the 

probabilistic action choice rule given in equation (2.1).   

4.3. Local Search 

Dorigo and Stützle (2004) analyzed the efficiency of ACO with and without local 

search procedures and showed that ACO is more efficient when combined with a local 

search procedure. As the neighborhood structures of ACO and local search are different, 

there is a good chance that the quality of our solution constructed by ACO will improve 

by the local search.  

In this thesis, two types of local search procedures, namely Move and Exchange, 

are utilized to further improve the routes constructed by the ants. These procedures are 

applied at the end of each iteration and pheromone trails are updated accordingly.  
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4.3.1. Move Procedure 

Move procedure attempts to improve the solution by removing a customer and inserting 

it between two other customers, intra-route or inter-route. The procedure is illustrated in 

Figure 4.1 (intra-route) and Figure 4.2 (inter-route). 

 

 
 

Figure 4.1. Intra-route move 
 

 
 

Figure 4.2. Inter-route move 
 

The underlined customer in Figure 4.1 and Figure 4.2 is the customer that is being 

considered for “moving”. Note that the inter-route move procedure may reduce the total 

number of vehicles by moving all the customers on one route to other routes. 

4.3.2. Exchange Procedure 

The “exchange” procedure was first proposed for TSP by Croes (1958). The simple idea 

behind this procedure is to exchange two customers in a single route (intra-route) or 

between routes (inter-route) until no further improvements are available. Intra-route 

“exchange” and inter route “exchange” procedures are illustrated in Figure 4.3 and 

Figure 4.4, respectively. 
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Figure 4.3. Intra-route exchange 
 
 

 
 

Figure 4.4. Inter-route exchange 
 

The customers to be exchanged are underlined in Figure 4.3 and Figure 4.4. In a 

problem with N customers, there exist a maximum number of N(N-1)/2 possible 

customer exchanges. However, possible number of exchanges in our problem decreases 

significantly due to the feasibility rules.  

4.3.3. Push Forward Approach  

To speed up the local search, we utilize a structure called push forward (PF), which 

is similar to the structure introduced by Solomon (1985). In the route construction 

process, the maximum available PF value of each customer is calculated and stored. 

Then in the local search, the new PF values are compared with the stored values. If 

any of the new PF values exceeds the corresponding stored values, then the 

exchange/move under consideration is infeasible.  

The calculation of the new values is as follows. First, the PF values at the 

customers that are to be exchanged (in “exchange”) or to be moved (in “move”) are 
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calculated. The vehicle might be waiting at the next customer before the move or the 

exchange and PF is calculated accordingly (Figure 4.5). 

 

 
 

Figure 4.5. PF calculation for the exchanged/moved customers 
 

Time spent at the next customer before the start of the service time is denoted as 

waitingTime. The arrival times at the next customer before and after the move or the 

exchange are denoted as arrivalTime and newArrival respectively where readyTime 

denotes the earliest possible arrival time. For the other customers, the change in 

travel time (referred to as change) due to the possible time interval changes is 

calculated. The PF is again calculated by taking the waiting times into consideration 

(Figure 4.6). 

 

 
 

Figure 4.6. PF calculation for the remaining customers 
 

This calculation continues for the remaining customers until an infeasible 

customer is found, all customers are evaluated or PF is zero. A PF value of zero 

means no change in the arrival and departure time of the customer.  

Figure 4.7 illustrates the calculation of the PF values. The PF values of the 

customers in circles are calculated first and then the calculation is done for the 

customers in rectangles. The arrival and departure times of the other customers in 

the figure do not change.   

if (waitingTime > 0)  

PF = MAX(newArrival-readyTime, 0) 

else 

PF = MAX(newArrival, readyTime)-arrivalTime 
end if   

if (waitingTime > 0)  

if (PF + change > 0) 

PF = MAX(PF + change - waitingTime, 0) 

else 

PF = 0 

end if 

else 

if (PF + change > 0) 

PF = PF + change 

else 

PF = MAX(readyTime – arrivalTime, PF + change) 

end if 

end if   



21 
 

 
 

Figure 4.7.  Illustration of push forward calculations 

4.4. Update of Pheromone Trails 

There is a high correlation between the size of the search space and the amount of 

pheromone deposited and evaporated. In a setting where the evaporation is relatively 

high, a slower convergence is observed. Besides, the ratio of the initial pheromone 

to the amount of pheromone deposited at each iteration is also another factor on the 

convergence rate. The initial pheromone should be high enough to prevent a quick 

stagnation. In this study the nearest neighbor solution with distance L0 is used for 

the initial pheromone setting. Pheromone amount on each arc is initialized as N/L0.  

In the latter iterations, first the pheromone trails are evaporated at the rate ρ and 

then k elitist ants are allowed to reinforce the trails. In our pheromone reinforcement 

strategy, we utilize k-1 best-ranked ants for the first P iterations (referred to as 

preliminary iterations) and in the remainder of iterations we allow best-so-far ant 

along with the k-1 best-ranked ants to deposit pheromone. Our aim in adopting this 

strategy is to avoid a quick stagnation. 

A heuristic procedure called pheromone re-initialization is also implemented in 

order to assist the exploration of the search space. If the objective function value 

does not change for a certain amount of iterations, after a number of preliminary 

iterations, all of the pheromone deposited on each arc is evaporated and re-

initialized using the best-so-far ant’s total distance, best
Ψ.  
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Figure 4.8. Pseudo-code of the pheromone re-initialization 
 

Figure 4.8 gives the implementation of the pheromone re-initialization 

procedure. The performance of re-initializing the pheromones is analyzed in Chapter 

5 within the context of preliminary experiments.  

4.5. Extensions to the Time-dependent VRPTW 

In TDVRPTW, the objective function and travel speeds are adapted accordingly. In 

addition, the local search and pheromone update procedures are modified in line with 

the new objective function of minimizing the total travel time.   

4.5.1. Time Dependency / Travel Speeds 

In this study, deterministic time-dependent travel times are obtained by dividing the 

scheduling horizon into time intervals. In addition to the time interval of the day, the 

travel times depend on the road types. Each arc between customer pairs is assigned a 

road type randomly. Also, each road type has its own travel time distribution over 

the time intervals. During rush hours, the travel time increases and it may become 

infeasible to visit a customer after the current customer. Time-dependent travel 

speeds are embedded in the algorithm by utilizing a travel time matrix similar to 

Ichoua et al’s (2003) approach. Different from their approach, the scheduling 

horizon is also divided to time intervals of inequal length and the performances of 

the settings with equal and unequal time intervals are compared. The whole travel 

speed matrix used in this study is given in Chapter 5 (Experimental Study 3). 

procedure re-initializePheromone 

input currentIteration 

input index   
i ← currentIteration  
if (i > preliminaryIterations and bestΨ(i)=bestΨ(i-1)) then 

index ← index  + 1 
else 

 index ← 0 
end if 

 

if (index =nonImprovingIterations) then 
  reset all pheromone trails 

  initialize pheromone trails with bestΨ(i) 

 end if   

end procedure 
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In the algorithm, the travel speeds are calculated via a procedure named 

calculateTravelTime by taking the travel times and the current time into 

consideration. The pseudo-code of the calculateTravelTime procedure is given in 

Figure 4.9. 

 

 
 

Figure 4.9. Pseudo-code of the calculateTravelTime procedure 
 

The start time of the travel is denoted by B� while ���and CDE�denote the distance 

between the customers i and j and the corresponding travel speed coefficient 

respectively. BF� denotes the start time of period k. 

4.5.2. Local Search 

As the objective function of the time-dependent problem discussed in this thesis is 

minimizing the total tour time, the local search procedures are modified accordingly.  

 

 
 

Figure 4.10. Illustration of an exchange where no gain in terms of tour time is obtained 
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procedure calculateTravelTime 

input t0 

input dij 

input vcTk 

t ← currentTime 
d ← dij 
t’ ← t + (dij/vcTk) 
while (t’ > tGk ) do 

d ← d - vcTk(tGk-t) 

 t ← tGk 

 t’ ← t + (d/vcTk"1) 
 k ← k + 1 
end while 

return (t’- t0) 

end procedure 
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Figure 4.10 illustrates an exchange resulting in a shorter tour distance but the 

same tour time. Local search procedure is applied on a route with 2 customers (depot - 

customer 1 - customer 2 - depot) and an anonymous route (not included in the figure). 

The waiting times resulting from arrivals earlier than the start of the time windows are 

shown in red shaded regions. The first customer with time windows [8.30 am-2.00 pm] 

is exchanged with a customer with time windows [8.00 am-1.00 pm]. However, both 

routes end at the depot at 4.00 pm. So, although this exchange decreases the total 

distance it does not improve the solution in the time-dependent case.   

4.5.3. Pheromone Update 

Since the objective is minimizing the total tour time, the initial pheromone level is 

set to H/,� E where ,� E is the total tour time obtained using the nearest neighbor 

solution. The reinforcement of the pheromone trails is also performed based on the 

tour travel times. Since the scheduling horizon is divided into multiple time intervals, 

the pheromone network also comprises multiple dimensions. An ant in a time interval 

deposits pheromone on the corresponding dimension on the network. 
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CHAPTER 5 
 

COMPUTATIONAL STUDY  

 

This chapter is dedicated to the test of the performance of the proposed algorithm. 

The most widely used VRPTW benchmark instances in the literature were 

introduced by Solomon (1985). Though, there is not one common objective and data 

type that the literature agreed upon. The lack of agreement on the objective function 

can be observed in different studies which try to minimize the total distance 

traveled, the number of vehicles, total waiting time, total tour time and combinations 

of them. The disagreement on the data type arises from the usage of truncated and 

real arithmetic numbers. These differences lead to difficulties in comparing the 

results. However, the use of Solomon instances is still the best way to perform an 

evaluation on the performance of a new approach (Alvarenga et al., 2007). Thus, the 

proposed algorithm is tested on these problems using real numbers (float precision) 

only.  

The benchmark problems of Solomon include six different problem types, 

namely C1, C2, R1, R2, RC1 and RC2. Each type of problem consists of 100 

customers which reside in a 100x100 square area. In the C-type problems the 

customers are clustered whereas they are uniformly randomly distributed over the 

area in the R-type. The RC problem sets include a combination of clustered and 

randomly distributed customers. Problem sets of type 1 and type 2 differ not only by 

the length of the time windows but also by the vehicle capacity. In type 2 problem 

sets the customers have larger time windows and the vehicles have larger capacity. 

Thus, the number of routes is less compared to type 1 problems.   

Due to the random assignment of road types to the arcs in the network, a direct 

comparison with the studies on the time-dependent version of the problem (which 

are scarce in the literature) is not possible. Therefore, the performance of the 

algorithm is tested on the time-independent benchmark problems. The algorithm is 

first shown to be efficient and then applied for the time-dependent version.  
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Three main experimental studies are executed. First, the effect of using a multi-

dimensional pheromone network of time intervals is tested. After determining the 

best parameter set, the second experimental study is carried out on the time-

independent case. In these experiments, some best-known solutions in the literature 

are outperformed. Finally the algorithm is tested on the time-dependent case 

utilizing the findings in the first two experimental studies. 

A trade-off exists between the solution quality and computational time. 

Although narrowing the neighborhood in local search decreases computational time, the 

whole neighborhood is searched to increase the diversification. To reduce the 

computational effort, an elitist local search approach can also be applied in which only 

the solutions obtained by a subset of ants (selected with respect to the solution quality 

they have achieved) are subject to the local search. However, we do not adopt such an 

approach since we attach more importance to the solution quality. 

The order of the local search procedures may also affect the solution quality. In 

addition to decreasing the total distance/total tour time, “move” procedure may decrease 

the total number of vehicles. Applying first the “exchange” procedure narrows down the 

search space of the “move” procedure, thus, resulting in more vehicles. As an implicit 

objective function is minimizing the total number of vehicles, “exchange” procedure is 

applied after the application of “move”. 

The algorithm is coded in C# and executed on a Pentium 2.40 GHz processor.  

5.1. Preliminary experiments 

The preliminary experiments are performed to gain some insights on the algorithm. 

These experiments include the stand-alone performance comparison of ACO and local 

search and the performance evaluation of the re-initializing pheromone procedure.  

5.1.1. ACO and Local Search comparison 

ACO without being supported by a local search procedure exhibits poor performance 

whereas the performance of a local search procedure increases with the increasing 

quality of the initial solution (Dorigo and Stützle, 2004). In this experimental study, 

the contribution of the ACO and the local search procedures to the solution quality 

are compared. This comparison is made on the first problems of each set of the 

instances of Solomon, namely C101, C201, R101, R201, RC101 and RC201. 



27 
 

ACO performs diversification in the initial iterations. The weight of the 

intensification increases with the increasing number of iterations thank to the 

evaporation of pheromone. Thus, the contributions at the 50th iteration over 5 runs 

are used for comparison.  

 
Table 5.1. Stand-alone solutions of ACO and local search procedures 

            
ACO After Move After Exchange Optimal 

Problem TD VN TD VN TD VN TD VN 

C101 891.875 10.4 828.936 10 828.936 10 827.3 10 
C201 714.674 4.8 633.161 4.2 632.651 4.2 589.1 3 
R101 1749.108 20.8 1657.517 20.2 1655.633 20.2 1637.7 20 
R201 1568.053 10.2 1247.214 9.4 1247.133 9.4 1143.2 8 
RC101 1882.978 18.4 1687.613 17 1683.501 17 1619.8 15 
RC201 1840.711 11.2 1424.418 10 1421.064 10 1261.8 9 

 
 

Table 5.1 summarizes the average results. TD and VN denote the total distance 

traveled and the total number of vehicles used, respectively. In the second and the 

third columns, the total distance and the total number of vehicles found by ACO 

without utilizing any local search procedures are given. The fourth and the fifth 

columns give the results gained after the application of Move procedure whereas the 

two columns that follow give the results gained after the application of Exchange 

procedure. In C type problems the gap between the optimal solution and the ACO 

without local search procedures is small due to the clustered network structure. The 

gap increases in R and RC type problems. The average gap over all problem types is 

22.1%. However, it reduces to 5.5% after the application of the local search 

procedures. The total distance decreases by 13.5% on the average after the 

application of “move”. In addition, the total number of vehicles, which is expected 

to decrease implicitly by the “move”, is 6.5% less than the ACO solutions. After the 

“exchange” procedure the total distance decreases by 0.13% on the average. 

Although the local search procedures improve the solution quality considerably, 

they add up to the computational effort much more than the ACO. Figure 5.1 shows 

the average results of the runs made on the first problems of each problem set in 

order to compare the computational times of ACO and local search procedures. 
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Figure 5.1. Computational Time of Local Search in iterations 1, 25, 50, 75 and 100 
 

It can be observed from the Figure 5.1 that nearly 92.02% of the computational 

time is consumed by the local search procedures. For the type 1 problems with tight 

constraints, this percentage decreases to 88.86% whereas it is 95.18% for the type 2 

problems.  

The contributions of ACO and the local search procedures to the overall 

solution quality inquire the role of ACO. One may think that the local search, given 

any initial solution, may bring the objective function to a good value. However, this 

is not the case. The performance of the local search procedures without interacting 

with ACO is also tested using the nearest neighbor solution as the initial solution. 

The test is again carried on a sample including only the first problem of each 

problem set.  

 

Table 5.2. The performance of the local search procedures on the nearest neighbor 
solution 

Nearest  
Neighbor 

After Local 
Search Optimal 

Problem TD VN TD VN TD VN 
 

C101 1779.251 21 857.825 11 827.3 10 
C201 1982.492 15 900.865 8 589.1 3 
R101 2623.245 37 1845.213 25 1637.7 20 
R201 2011.562 15 1342.217 13 1143.2 8 
RC101 2780.442 27 1832.121 18 1619.8 15 
RC201 2487.719 14 1677.929 11 1261.8 9 
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The results are given in Table 5.2. The average gap with the optimal solutions is 

19.4%. There is also a tremendous gap of 32.3% on the number of vehicles. This gap 

was 8.9% in the previous experiment. 

The experiments presented above show that the local search procedures 

contribute a lot to the solution quality of ACO. However, the local search 

mechanism is efficient if it is fed by a good initial solution, such as the solution 

obtained through ACO.  

5.1.2. Re-initialization of Pheromones 

The re-initialization of the pheromones would allow diversification when stagnation 

is observed in the algorithm. In a run with 150 iterations, this approach is applied 

when no improvements in the objective function is observed for 25 consecutive 

iterations. The first 25 iterations are set for diversification and are not accounted for. 

The effect of re-initializing the pheromones is tested on a sample comprising the 

first problem of each set.  

 

Table 5.3. Effects of pheromone re-initialization procedure 
 

Problem TDB TDA Improvement (%) 
C101 828.936 828.936 0.00 
C201 591.556 591.556 0.00 
R101 1647.428 1644.937 0.15 
R201 1171.934 1165.981 0.51 
RC101 1660.904 1659.346 0.09 
RC201 1297.818 1295.556 0.17 
Average 1199.763 1197.719 0.15 

 

The results are given in Table 5.3 with TDB and TDA indicating the total 

distance before and after re-initializing pheromones, respectively. After re-

initialization, the objective function improves 0.15% on the average with the best 

improvement being 0.51%. As the gain of this procedure is very small considering 

the additional computational effort it creates for searching the solution space from 

the beginning, it is not utilized in the rest of the experiments. 

A snapshot of a sample run in which the pheromones are re-initialized is given 

in Appendix E. 
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5.2.  Experimental Study 1 – One-dimensional network – multi-dimensional 

network comparison 

In this experimental study, a multi-dimensional pheromone network is compared 

with the one-dimensional pheromone network. To our knowledge, there is no 

previous study on ACO that utilizes multi-dimensional pheromone network for time-

independent VRP. In our experimental setting, the multi-dimensional pheromone 

network consists of three dimensions, each representing a time interval. All ants 

deposit pheromone on the same single pheromone network in one-dimensional case. 

However, an ant in time interval t deposits pheromone on the corresponding 

dimension in multi-dimensional case as illustrated in Figure 5.2.  

 

  
   (a) (b)  

 

  
   (c) (d)  
 

Figure 5.2.  Pheromone levels on a three-dimensional network for a 25-customer 
problem: (a) Pheromones in the first time interval, (b) Pheromones in the second 

time interval, (c) Pheromones in the last time interval, (d) Route assignments.   
 

This figure shows the pheromone levels on each network in a sample solution of 

the problem R101 with 25 customers found by using a three-dimensional network. 

The length of each interval is found by dividing the due date of the depot by the 
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number of intervals and the first (second, third) network is used to keep track of the 

pheromone levels in the first (second, third) time interval. It can be observed that on 

the first network, the arcs directed from the depot to the customers have high 

pheromone levels whereas on the third network the pheromone levels on the arcs 

directed from the customers to the depot are higher. In the second network, 

pheromone is accumulated only on the arcs which are traversed in the second time 

interval. Multi-dimensional network structure implicitly indicates the most suitable 

time interval for the travel between each customer pair. The pheromone trails and 

the final routes overlap strictly. 

For each problem, 10 runs are made with the following parameter settings that are 

found to perform well in the preliminary experiments; α = 1, β = 0, ρ = 0.15, number of 

iterations = 100, number of preliminary iterations = 25, number of ants = 100, elitist 

ants = 6, CL = 50.  

 
Table 5.4. The summary of the results of experimental study 1 

 

Problem 
Set 

1 Network 3 Networks Best Known 
TD NV TD NV TD NV 

C1 828.380 10.00 828.380 10.00 828.380 10.00 
R1 1186.501 13.58 1187.282 13.58 1181.453 13.08 
RC1 1352.620 13.13 1357.403 13.25 1339.235 12.75 
C2 589.859 3.00 589.859 3.00 589.859 3.00 
R2 908.767 5.82 901.507 5.55 898.067 5.55 
RC2 1033.056 6.38 1027.401 6.50 1015.738 6.38 

       

 

The average results of the experiment 1 are given in Table 5.4. ‘1 Network’ and ‘3 

Networks’ columns show the results for the one-dimensional and multi-dimensional 

pheromone network settings respectively. For C problem sets, both one-dimensional 

and multi-dimensional pheromone networks find the best-known distances as a 

result of the clustered network structure which narrows the feasible solution space. 

For R and RC problem sets there is no global best pheromone network policy. One-

dimensional pheromone network outperforms the multi-dimensional pheromone 

network in type 1 problems where time windows are narrower and vehicle capacities 

are smaller compared to the type 2 problems. However, a multi-dimensional policy 

is more suitable for type 2 problems. When the overall performances are analyzed, 

the multi-dimensional network with the average gap of 0.67% slightly outperforms 
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the one-dimensional network with the average gap of 0.79%. This improved solution 

quality comes at the cost of an increased computational effort. The usage of a multi-

dimensional network increases the average computational time by 22.2%. 

 
Table 5.5. New best values found in experimental study 1 

 
Number of 
Networks 

     Best Known 
Problem TD NV TD NV Ref. 

R110 1079.097 12 1 1080.360 11 RT1 
R202 1048.510 7 3 1049.730 7 A2 
R203 884.752 6 3 900.080 5 A 
R204 756.185 5 3 772.330 4 A 
R211 782.815 4 1 787.511 5 A 
RC203 942.059 5 3 945.960 5 A 

 

The proposed algorithm (ACO-TI) finds the same best-known results reported in 

the literature in 23 instances and gives better results for 6 instances out of 56 

instances. The new best distances are given in Table 5.5. Two of the new best 

distances are of type 1 problems and found by utilizing a one-dimensional 

pheromone network. The rest are found by using a three-dimensional pheromone 

network.  Detailed results of the experimental study 1 can be found in Appendix B. 

5.3. Experimental Study 2 – Extension of Experimental Study 1 with 

parameter analysis 

Experimental study 2 aims at analyzing the role of the heuristic information on the 

solution quality. We first perform a preliminary experimental study to determine the 

best parameter setting. The following parameters are taken into consideration: α = 1, 

β = 0, 1, 2, 3, ρ = 0.05, 0.10, 0.15, number of iterations = 100, number of preliminary 

iterations = 25, number of ants = 100, elitist ants = 6, 12, 18, CL = 25, 50, 100. A total 

number of 108 parameter sets are tested on a sample set that consists of the first 

problems of each set again.  

 
 
 
 

                                                 
1 Rochat, Y. And Taillard, E.D. (1995) 
2 Alvarenga, G.B. et al. (2007) 
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Table 5.6. Results of the parametric analysis 
 

Parameter 
Set ρ CL 

Elitist 
Ants β 

Average  
TD 

Average 
VN Gap 

1 0.15 25 6 1 1441.245 13.75 - 
2 0.15 25 6 2 1441.566 13.70 0.02% 
3 0.15 50 6 1 1441.887 13.90 0.04% 
4 0.10 25 6 1 1442.411 13.70 0.08% 
5 0.15 100 12 1 1443.554 13.55 0.16% 

 

The results of the parametric analysis are shown in Table 5.6. The 5 best parameter 

sets and the gaps between the first and the other parameter sets are reported. The results 

show that the difference between the best performing parameter setting and the fifth is 

minor. We have conducted our experiments on the best parameter with the values α = 1, 

β = 1, ρ = 0.15, number of iterations = 100, number of preliminary iterations = 25, 

number of ants = 100, elitist ants = 6 and CL = 25.  

. 

Table 5.7. The summary of the results of experimental study 2 
 

Problem 
Set 

1 Network 3 Networks Best Known 
TD NV TD NV TD NV 

C1 828.380 10.00 828.380 10.00 828.380 10.00 
R1 1187.465 13.58 1183.613 13.50 1181.453 13.08 
RC1 1362.345 13.63 1352.636 13.13 1339.235 12.75 
C2 589.930 3.00 589.859 3.00 589.859 3.00 
R2 920.780 6.20 900.940 5.73 898.067 5.55 
RC2 1035.055 6.38 1029.411 6.50 1015.738 6.38 

       

 

The average results of the experiment 2 are given in Table 5.7. For C problem sets 

of type 1, both one-dimensional and multi-dimensional pheromone networks find the 

best known distances. In C problem sets of type 2, multi dimensional pheromone 

network finds the best results and the one-dimensional network exhibits the same 

performance except the instance C204. For both R and RC problem sets, the best 

pheromone network policy is to use the multi-dimensional version. The average gap 

of the multi-dimensional network with the optimal is 0.44% whereas it is 0.92% for 

the one-dimensional network. The gap between one-dimensional and multi-

dimensional network settings is only a 0.66%. 
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Table 5.8. New best values found in experimental study 2 
 

Number of 
Networks 

     Best Known 
Problem TD NV TD NV Ref. 

R104 977.547 11 3 982.010 10 RT3 
R108 946.422 10 3 948.573 10 A4 
R110 1075.911 12 3 1080.360 11 RT 
R202 1046.281 7 3 1049.730 7 A 
R203 883.025 6 3 900.080 5 A 
R204 759.775 5 3 772.330 4 A 
R205 964.870 6 1 970.880 6 A 
R211 785.813 4 3 787.511 5 A 
RC202 1111.796 8 3 1113.520 8 A 

 

Table 5.8 gives the new best values found in this experimental study. The new 

best value of the instance R205 is found using one-dimensional network whereas all 

other 8 problems are found by using a multi-dimensional setting. The proposed 

algorithm (ACO-TI) also finds the same results in the literature in 21 instances. 

Detailed results of the experimental study 2 can be found in Appendix C. 

5.4. Experimental Study 3 – Time-dependent Vehicle Routing Problem 

In this experimental study, the performance of the algorithm (ACO-TD) is tested 

on TDVRPTW using an objective function that minimizes the total tour time in a 

multi dimensional setting. Ichoua et al. (2003) set the number of dimensions to three 

besides introducing three types of roads. The first and the third dimensions stand for the 

morning and evening rush hours. The second dimension represents the middle of the 

day. Their approach and travel speed matrix given in Table 5.9  is used in this thesis. 

 

Table 5.9. The travel speed matrix 
 

 
Period 1 Period 2 Period 3 

Road type 1 0.54 0.81 0.54 
Road type 2 0.81 1.22 0.81 
Road type 3 1.22 1.82 1.22 

 

The travel speed coefficients are given in such a way that the average of the 

coefficients is approximately 1 to keep the difficulty of the problems same as 

                                                 
3 Rochat, Y. And Taillard, E.D. (1995) 
4 Alvarenga, G.B. et al. (2007) 
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Solomon’s original problems (Ichoua et al., 2003). The assignment of road types to arcs 

is done randomly. However, these assignments are same for all instances, as reported in 

Appendix G. Thus, they can be utilized in any future research as a benchmark data.  

Three settings are used for dividing the scheduling horizon into three time-periods. 

In the first setting, the length of each period is equal to each other which are the mostly 

used method in the literature. Alternatively, the second and the third settings assume the 

rush hours to be more close to the beginning and the end of the horizon by increasing 

the length of the second time-period.  

 

 

Figure 5.3. The first (1), the second (2) and the third (3) time-period settings 
 

Experimental study 3 includes three main experiments, namely 3.1, 3.2 and 3.3, 

each corresponding to a time-period setting described in Figure 5.3. In each 

experiment, the following parameters are used: α = 1, β = 0, ρ = 0.15, number of 

iterations = 100, number of preliminary iterations = 25, number of ants = 100, elitist 

ants = 6, CL = 50.  

 

Table 5.10. Summary of the results of experimental study 3 
 

Experiment 3.1 Experiment 3.2 Experiment 3.3 

TD NV TT TD NV TT TD NV TT 
C1 1093.140 10.47 9946.00 1021.797 10.42 9898.02 1026.571 10.41 9875.36 

C2 941.016 4.16 9854.87 952.494 4.06 9841.83 967.617 4.00 9829.22 

R1 1499.805 12.72 2298.31 1495.079 12.42 2215.54 1516.487 12.44 2193.30 

R2 1627.551 3.69 2352.81 1648.421 3.55 2283.58 1667.776 3.52 2252.03 

RC1 1645.410 12.64 2405.31 1639.316 12.21 2301.62 1653.922 12.06 2270.71 

RC2 1988.114 4.25 2672.62 2034.117 4.01 2589.75 2035.624 4.04 2550.01 

 

 

Table 5.10 gives the average results of the time-dependent problem using three 

mentioned settings. As the problem gets closer to the time-independent version of the 

1/4 2/4 1/4 

1/3 1/3 1/3 

1st period 3rd period 2nd period 

(1) 

(2) 

1/5 (3) 3/5 1/5 
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problem, the total tour time is decreased regardless of the problem type. The average 

tour time of experiment 3.2 is 1.35% less compared to the experiment 3.1. Besides, the 

average tour time of experiment 3.3 is also 0.54% less compared to the experiment 3.2. 

When the average number of vehicles is analyzed it is observed that as the rush hours 

gets more close to the beginning and the end of the scheduling horizon, less vehicles are 

used.  

The detailed results of experiment 3.1, experiment 3.2 and experiment 3.3 are given 

in Appendix D.  

5.5. Summary of Results  

The main difference between experimental study 1 and experimental study 2 is the 

usage/utilization of the visibility function in the second study. However, there is 

only a slight difference when the average total distances are compared. Unless the 

parameters are changed dramatically, the algorithm exhibits the same performance 

due to the robustness of the local search procedures. 

Table 5.11. Comparison of experimental studies 1 and 2 
 

3 
N

et
w

or
ks

 

Equal 21 
Exp. Study 1 is better 13 

Exp. Study 2 is better 22 
Exp. Study 1 Average Gap 0.556% 

Exp. Study 2 Average Gap 0.461% 
New best known values in Exp. Study 1 4 

New best known values in Exp. Study 2 8 

1 
N

et
w

or
k 

Equal 19 
Exp. Study 1 is better 17 

Exp. Study 2 is better 20 
Exp. Study 1 Average Gap 0.723% 

Exp. Study 2 Average Gap 0.925% 
New best known values in Exp. Study 1 3 

New best known values in Exp. Study 2 3 
 

A comparison of the experimental studies 1 and 2 is summarized in Table 5.11. 

For a multi-dimensional network setting, the results of the experimental study 2 

which uses a visibility function are more satisfactory. Although the average gap is 

smaller for the experimental study 1 using a one-dimensional network, the number of 
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instances that the experimental study 2 finds better is higher. The solutions found in 

experimental study 1 and experimental study 2 overcome 10 of the recently known best 

known solutions.  

From the type of problem point of view, it is observed that a centralized 

pheromone deposit policy is more successful in problems where a small feasible 

solution space exists. As the problem become less constrained, it is more 

advantageous to use a distributed pheromone structure. 

The distances of experiment 3 are longer on the average compared to the time-

independent case. This is an expected result since two problems have different objective 

functions. On the other hand, the average number of vehicles is smaller in time-

dependent case. It is also observed that type 2 problems are more sensitive to the time-

dependent travel times. The distances for type 2 problems increase dramatically due to 

the existence of tighter constraints. 

 

 Table 5.12. Standard deviations of Experimental Study 3 
 

Problem Set Setting 1 Setting 2 Setting 3 

C1 0.58% 0.33% 0.31% 
C2 0.66% 0.47% 0.57% 
R1 0.97% 1.01% 0.99% 
R2 1.58% 1.49% 1.59% 
RC1 1.19% 1.03% 1.10% 
RC2 1.97% 1.73% 1.89% 

 

As there exists no base for comparison for time-dependent problems, the 

efficiency of the algorithm is shown via standard deviations given in Table 5.12. The 

algorithm is shown to be robust over the average standard deviations. 
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CHAPTER 6 
 

CONCLUSION AND FUTURE RESEARCH 

 
 
 
In this thesis, we propose an ACO algorithm for solving the VRPTW and TDVRPTW. 

Our experimental results show that the proposed algorithm provides good quality 

results; however, the computation times are rather long. We have observed that the 

local search procedure enhances the solution quality of ACO significantly. On the 

other hand, a large portion of the computational time is consumed by the local 

search procedure.  

Further research may focus on a selective local search policy to reduce the 

computational effort. To improve the performance of the algorithm, a visibility 

function using the time window information can be implemented and a more 

detailed analysis on the trade-off between the solution quality and computational 

effort may be conducted. 
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Appendix A 

 
Flow chart of the algorithm 

 
 

Figure A.1.1.  Flow chart of the algorithm 
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Figure A.1.2. Flow chart of the algorithm
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Appendix B 

 
Detailed results of the experimental study 1 

A : Alvarenga, G.B. et al. (2007),  
C : Cordeau, J-F. et al. (2000),  
M : Mester, D. (2002),  
RT : Rochat, y. and Taillard, E.D. (1995),  
S : Shaw, P. (1998)  
 
Table B.1 The average results of experimental study 1 for type 1 problems with 1 
network and 3 networks  
 

ACO-TI ACO-TI 
1 Network 3 Networks 

Problem 
 

NV 
  

TD Comp. 
Time (min)   

 
NV 

  
TD Comp. 

Time (min)   
    C101 10.00 828.936 4.76 10.00 828.936 6.01 

C102 10.00 828.936 9.00 10.00 828.936 10.79 
C103 10.00 828.064 14.25 10.00 828.065 16.32 
C104 10.00 824.776 23.50 10.00 824.812 26.52 
C105 10.00 828.936 5.47 10.00 828.936 6.89 
C106 10.00 828.936 6.15 10.00 828.936 7.71 
C107 10.00 828.936 6.57 10.00 828.936 8.50 
C108 10.00 828.936 8.22 10.00 828.936 10.52 
C109 10.00 828.936 13.32 10.00 828.936 16.46 
R101 20.50 1652.607 3.75 20.00 1644.863 4.31 
R102 18.30 1477.616 6.56 18.00 1475.424 7.16 
R103 15.00 1225.745 9.34 14.60 1219.238 10.32 
R104 11.40 995.296 13.19 11.80 1003.092 15.61 
R105 16.00 1375.951 4.78 16.00 1373.015 5.67 
R106 14.00 1254.128 7.76 13.90 1256.158 8.79 
R107 12.00 1088.860 11.13 12.00 1093.655 12.13 
R108 10.50 956.968 14.95 10.60 957.833 16.92 
R109 12.80 1153.232 7.87 12.90 1156.430 8.81 
R110 12.00 1085.842 10.33 12.00 1086.740 10.96 
R111 12.00 1057.948 10.70 12.00 1057.781 11.91 
R112 10.90 972.314 15.42 11.00 972.953 16.37 
RC101 16.90 1667.407 4.30 16.70 1655.778 4.92 
RC102 15.00 1495.219 6.10 15.00 1486.899 7.01 
RC103 12.00 1281.044 8.38 12.00 1286.142 9.65 
RC104 10.60 1157.701 13.38 10.90 1162.586 14.29 
RC105 15.80 1544.204 5.85 16.10 1547.280 6.42 
RC106 13.90 1402.267 6.62 14.00 1402.879 7.48 
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Table B.2  The average results of experimental study 1 for type 2 problems with 1 
network and 3 networks. 
 

ACO-TI ACO-TI 
1 Network 3 Networks 

Problem 
 

NV 
  

TD Comp. 
Time (min)   

 
NV 

  
TD Comp. 

Time (min)   
    C201 3.00 591.556 8.69 3.00 591.556 10.59 

C202 3.00 591.556 20.95 3.00 591.556 24.47 
C203 3.00 591.908 33.76 3.00 591.173 39.86 
C204 3.00 591.643 65.83 3.00 593.789 71.77 
C205 3.00 588.876 12.94 3.00 588.876 15.99 
C206 3.00 588.493 17.96 3.00 588.493 20.93 
C207 3.00 588.286 19.49 3.00 588.286 23.78 
C208 3.00 588.374 24.28 3.00 588.341 28.76 
R201 9.40 1177.562 12.97 8.80 1175.163 14.06 
R202 8.00 1074.425 26.74 7.80 1056.298 28.30 
R203 7.20 913.204 48.60 6.20 897.163 52.47 
R204 4.80 771.894 89.33 4.70 768.836 98.10 
R205 5.90 1000.514 26.27 5.70 994.279 29.26 
R206 6.00 936.137 43.18 5.90 925.800 47.07 
R207 5.50 859.701 66.36 5.40 850.008 74.04 
R208 4.10 750.516 128.87 3.50 739.571 129.35 
R209 6.10 896.446 36.28 5.40 899.955 41.23 
R210 6.40 948.861 40.36 6.00 942.684 43.03 
R211 4.20 796.871 71.62 4.20 802.108 80.52 
RC201 9.60 1298.338 12.69 8.60 1295.461 13.38 
RC202 8.60 1146.624 23.51 8.20 1132.250 25.27 
RC203 6.30 982.383 40.22 5.60 960.726 42.65 
RC204 4.60 829.874 84.48 4.20 823.992 88.80 
RC205 7.30 1178.932 18.91 7.90 1183.235 20.55 
RC206 6.40 1111.072 26.56 6.20 1113.660 28.43 
RC207 6.60 1023.812 38.26 6.60 1013.357 41.44 
RC208 5.10 825.959 73.46 5.10 836.571 78.89 
                  

 
 
  



47 
 

Table B.3  Best total distance (TD) published heuristic results and ACO-TI results for 
type 1 problems. The results are emphasized in bold when ACO-TI overcomes the 
previous best solutions 
 

Previous best     
TD solution ACO-TI     

 Problem Ref. NV TD
  

NV
  

TD 
 

Gap  Number of  
Networks * 

       Comp. 
       Time 
       (min) ** 

    C101 RT 10 828.940 10 828.940 0.000% 1 – 3 4.81
C102 RT 10 828.940 10 828.940 0.000% 1 – 3 8.75
C103 RT 10 828.060 10 828.060 0.000% 1 – 3 14.36
C104 RT 10 824.780 10 824.780 0.000% 1 – 3 23.61
C105 RT 10 828.940 10 828.940 0.000% 1 – 3 5.40
C106 RT 10 828.940 10 828.940 0.000% 1 – 3 6.37
C107 RT 10 828.940 10 828.940 0.000% 1 – 3 6.65
C108 RT 10 828.940 10 828.940 0.000% 1 – 3 8.28
C109 RT 10 828.940 10 828.940 0.000% 1 – 3 13.34
R101 A 20 1642.870 20 1642.876 0.000% 3 3.91
R102 A 18 1472.620 18 1472.815 0.013% 1 – 3 6.60
R103 RT 14 1213.620 14 1213.624 0.000% 3 10.01
R104 RT 10 982.010 11 984.204 0.223% 1 13.51
R105 A 15 1360.780 16 1369.080 0.610% 3 5.76
R106 A 13 1241.518 14 1250.756 0.744% 1 7.69
R107 A 11 1076.125 12 1087.041 1.014% 1 11.10
R108 A 10 948.573 10 948.573 0.000% 1 15.48
R109 A 13 1151.839 13 1151.838 0.000% 1 8.07
R110 RT 11 1080.360 12 1079.097 -0.117% 1 10.01
R111 A 12 1053.496 12 1053.496 0.000% 1 – 3 10.16
R112 RT 10 953.630 10 968.621 1.572% 1 15.58
RC101 RT 15 1623.580 16 1646.532 1.414% 3 4.95
RC102 A 14 1466.840 15 1480.458 0.928% 3 7.01
RC103 S 11 1261.670 11 1276.059 1.140% 3 9.83
RC104 C 10 1135.480 10 1147.546 1.063% 1 12.61
RC105 A 16 1518.600 16 1518.599 0.000% 3 6.26
RC106 A 13 1377.352 13 1389.098 0.853% 1 7.54
RC107 A 12 1212.830 12 1224.244 0.941% 1 8.81
RC108 A 11 1117.526 11 1119.830 0.206% 1 11.19
                    

  
* Multiple numbers indicate that each of the algorithms with the corresponding number of networks 
has found the same best solution 
** Computational time is taken as the average of the algorithms with the corresponding number of 
networks 
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Table B.4  Best total distance (TD) published heuristic results and ACO-TI results for 
type 2 problems. The results are emphasized in bold when ACO-TI overcomes the 
previous best solutions. 
 

Previous best     
TD solution ACO-TI     

Problem 
 

Ref. 
 

NV 
  

TD 
  

 
NV 

 
TD 

 
Gap  Number of  

Networks * 

   Comp. 
   Time 
   (min) ** 

      C201 RT 3 591.560 3 591.560 0.000% 1 – 3 8.87 
C202 RT 3 591.560 3 591.560 0.000% 1 – 3 20.58 
C203 RT 3 591.170 3 591.170 0.000% 1 – 3 32.53 
C204 RT 3 590.600 3 590.600 0.000% 1 – 3 66.20 
C205 RT 3 588.880 3 588.880 0.000% 1 – 3 12.53 
C206 RT 3 588.490 3 588.490 0.000% 1 – 3 17.65 
C207 RT 3 588.290 3 588.290 0.000% 1 – 3 18.96 
C208 RT 3 588.320 3 588.320 0.000% 1 – 3 24.40 
R201 A 9 1148.480 9 1157.269 0.765% 1 12.85 
R202 A 7 1049.730 7 1048.510 -0.116% 3 27.92 
R203 A 5 900.080 6 884.752 -1.703% 3 48.97 
R204 A 4 772.330 5 756.185 -2.090% 3 99.43 
R205 A 6 970.880 5 978.551 0.790% 3 28.94 
R206 A 5 898.914 5 919.315 2.269% 3 47.18 
R207 RT 4 814.780 5 827.821 1.601% 3 73.51 
R208 A 3 723.610 3 724.228 0.085% 3 128.53 
R209 A 6 879.531 6 886.648 0.809% 1 40.24 
R210 A 7 932.887 6 933.597 0.076% 3 42.10 
R211 A 5 787.511 4 782.815 -0.596% 1 71.64 
RC201 A 9 1274.530 10 1282.432 0.620% 3 12.94 
RC202 A 8 1113.520 8 1118.766 0.471% 3 25.34 
RC203 A 5 945.960 5 942.059 -0.412% 3 41.99 
RC204 M 3 798.410 4 801.938 0.442% 3 87.40 
RC205 A 7 1161.810 7 1168.217 0.551% 3 20.98 
RC206 A 7 1059.886 6 1089.589 2.802% 3 28.17 
RC207 A 7 976.400 7 1001.923 2.614% 3 40.49 
RC208 A 5 795.390 5 811.898 2.076% 1 72.40 
                    

 
* Multiple numbers indicate that each of the algorithms with the corresponding number of networks 
has found the same best solution 
** Computational time is taken as the average of the algorithms with the corresponding number of 
networks 
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Appendix C 

 
Detailed results of the experimental study 2 

Table C.1  The average results of experimental study 2 for type 1 problems with 1 
network and 3 networks  
 

ACO-TI ACO-TI 
1 Network 3 Networks 

Problem 
 

NV 
  

TD Comp. 
Time (min)   

 
NV 

  
TD Comp. 

Time (min)   
    C101 10.00 828.936 5.77 10.00 828.936 4.61 10.00 

C102 10.00 828.937 9.04 10.00 828.936 8.91 10.00 
C103 10.00 828.065 15.05 10.00 828.065 12.64 10.00 
C104 10.00 828.305 24.66 10.00 825.322 20.53 10.00 
C105 10.00 828.936 5.67 10.00 828.936 5.35 10.00 
C106 10.00 828.936 5.94 10.00 828.936 6.21 10.00 
C107 10.00 828.936 6.44 10.00 828.936 6.96 10.00 
C108 10.00 828.936 8.35 10.00 828.936 8.57 10.00 
C109 10.00 828.936 13.09 10.00 828.936 13.47 10.00 
R101 20.00 1644.500 3.34 20.00 1643.502 3.39 20.00 
R102 18.00 1473.129 6.02 18.00 1473.840 5.86 18.00 
R103 15.00 1224.608 8.31 15.00 1224.332 8.13 15.00 
R104 11.80 1004.532 14.01 11.60 999.277 13.15 11.80 
R105 16.00 1373.692 4.61 16.00 1373.043 4.55 16.00 
R106 13.60 1253.720 7.34 13.80 1255.105 7.21 13.60 
R107 11.80 1088.170 10.33 11.90 1091.095 10.19 11.80 
R108 10.70 959.761 14.42 10.60 956.589 13.82 10.70 
R109 12.70 1155.462 7.42 13.00 1156.569 7.60 12.70 
R110 12.00 1091.197 9.54 12.00 1084.813 9.15 12.00 
R111 12.00 1054.402 10.10 12.00 1055.652 9.95 12.00 
R112 11.00 973.624 14.29 10.80 970.898 14.05 11.00 
RC101 16.70 1657.636 4.17 16.80 1654.072 4.22 16.70 
RC102 15.00 1486.150 6.01 14.90 1485.018 6.12 15.00 
RC103 12.30 1305.846 8.30 12.20 1304.595 8.13 12.30 
RC104 11.00 1167.720 12.51 10.90 1164.156 12.18 11.00 
RC105 16.00 1555.107 6.60 16.00 1547.663 6.14 16.00 
RC106 14.00 1403.100 6.16 13.90 1399.774 5.82 14.00 
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Table C.2  The average results of experimental study 2 for type 2 problems with 1 
network and 3 networks. 
 

ACO-TI ACO-TI 
1 Network 3 Networks 

Problem 
 

NV 
  

TD Comp. 
Time (min)   

 
NV 

  
TD Comp. 

Time (min)   
    C201 3.00 591.557 8.84 3.00 591.556 9.17 

C202 3.00 591.556 20.55 3.00 591.556 21.43 
C203 3.00 591.989 32.33 3.00 591.173 33.82 
C204 3.00 596.534 69.74 3.00 593.426 58.45 
C205 3.00 588.876 13.02 3.00 588.876 13.70 
C206 3.00 588.493 17.23 3.00 588.493 18.40 
C207 3.00 588.286 19.24 3.00 588.286 20.40 
C208 3.00 588.374 23.66 3.00 588.341 24.96 
R201 9.30 1179.243 12.33 9.40 1182.010 11.89 
R202 8.20 1075.924 26.04 7.50 1066.827 26.53 
R203 7.10 915.365 45.06 6.10 890.658 45.57 
R204 5.00 778.274 90.51 4.90 769.571 87.76 
R205 5.60 994.617 25.91 5.70 986.679 24.76 
R206 5.80 935.904 42.50 5.80 925.597 43.17 
R207 5.70 855.183 65.41 5.30 846.408 66.98 
R208 3.90 750.499 115.32 3.40 736.690 117.94 
R209 6.00 904.026 35.76 5.90 897.921 36.05 
R210 6.70 954.080 39.49 6.50 943.136 38.65 
R211 4.20 801.418 68.14 4.30 797.018 69.04 
RC201 9.60 1289.744 11.52 9.30 1298.449 11.86 
RC202 8.30 1144.355 22.67 8.10 1138.043 22.50 
RC203 6.20 984.588 40.37 5.70 967.793 38.35 
RC204 4.70 832.575 84.76 4.10 821.297 77.58 
RC205 7.80 1186.877 20.79 8.00 1190.386 16.88 
RC206 6.20 1100.560 24.27 6.20 1101.030 23.47 
RC207 6.50 1024.169 36.61 6.60 1016.741 35.52 
RC208 5.00 842.794 74.87 5.00 833.717 66.96 
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Table C.3  Best total distance (TD) published heuristic results and ACO-TI results for 
type 1 problems. The results are emphasized in bold when ACO-TI overcomes the 
previous best solutions 
 

Previous best     
TD solution ACO-TI     

Problem Ref. NV TD
  

NV
  

TD 
 

Gap  Number of  
Networks * 

       Comp. 
       Time  
        (min) **

   C101 RT 10 828.940 10 828.940 0.000% 1 - 3 5.23
C102 RT 10 828.940 10 828.940 0.000% 1 - 3 9.43
C103 RT 10 828.060 10 828.060 0.000% 1 - 3 14.12
C104 RT 10 824.780 10 824.780 0.000% 1 - 3 22.01
C105 RT 10 828.940 10 828.940 0.000% 1 - 3 5.73
C106 RT 10 828.940 10 828.940 0.000% 1 - 3 6.08
C107 RT 10 828.940 10 828.940 0.000% 1 - 3 6.65
C108 RT 10 828.940 10 828.940 0.000% 1 - 3 8.47
C109 RT 10 828.940 10 828.940 0.000% 1 - 3 13.26
R101 A 20 1642.870 20 1642.876 0.000% 1 - 3 3.42
R102 A 18 1472.620 18 1472.814 0.013% 1 - 3 5.75
R103 RT 14 1213.620 15 1222.050 0.695% 3 8.18
R104 RT 10 982.010 11 977.547 -0.454% 3 12.86
R105 A 15 1360.780 16 1371.423 0.782% 1 - 3 4.41
R106 A 13 1241.518 13 1247.875 0.512% 1 7.10
R107 A 11 1076.125 11 1076.567 0.041% 3 9.72
R108 A 10 948.573 10 946.422 -0.227% 3 12.99
R109 A 13 1151.839 13 1151.838 0.000% 1 7.41
R110 RT 11 1080.360 12 1075.911 -0.412% 3 9.23
R111 A 12 1053.496 12 1053.496 0.000% 1 - 3 9.86
R112 RT 10 953.630 10 961.287 0.803% 3 13.99
RC101 RT 15 1623.580 16 1637.999 0.888% 3 4.15
RC102 A 14 1466.840 14 1473.801 0.475% 3 6.03
RC103 S 11 1261.670 12 1277.433 1.249% 1 - 3 8.02
RC104 C 10 1135.480 10 1149.961 1.275% 3 12.17
RC105 A 16 1518.600 16 1518.576 -0.002% 3 5.94
RC106 A 13 1377.352 13 1382.944 0.406% 3 5.95
RC107 A 12 1212.830 13 1245.530 2.696% 3 8.61
RC108 A 11 1117.526 11 1134.846 1.550% 3 10.29
                    

  
* Multiple numbers indicate that each of the algorithms with the corresponding number of networks 
has found the same best solution 
** Computational time is taken as the average of the algorithms with the corresponding number of 
networks  
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Table C.4  Best total distance (TD) published heuristic results and ACO-TI results for 
type 2 problems. The results are emphasized in bold when ACO-TI overcomes the 
previous best solutions. 
 

Previous best     
TD solution ACO-TI     

Problem 
 

Ref. 
 

NV 
  

TD 
  

 
NV 

 
TD 

 
Gap  Number of  

Networks * 

   Comp. 
   Time   
   (min) ** 

      C201 RT 3 591.560 3 591.560 0.000% 1 - 3 8.87 
C202 RT 3 591.560 3 591.560 0.000% 1 - 3 20.87 
C203 RT 3 591.170 3 591.170 0.000% 1 - 3 33.12 
C204 RT 3 590.600 3 590.600 0.000% 3 57.06 
C205 RT 3 588.880 3 588.880 0.000% 1 - 3 12.85 
C206 RT 3 588.490 3 588.490 0.000% 1 - 3 17.80 
C207 RT 3 588.290 3 588.290 0.000% 1 - 3 20.08 
C208 RT 3 588.320 3 588.320 0.000% 1 - 3 24.57 
R201 A 9 1148.480 9 1165.922 1.519% 1 11.95 
R202 A 7 1049.730 7 1046.281 -0.329% 3 26.20 
R203 A 5 900.080 6 883.025 -1.895% 3 45.63 
R204 A 4 772.330 5 759.775 -1.626% 3 87.06 
R205 A 6 970.880 6 964.870 -0.619% 1 25.85 
R206 A 5 898.914 6 914.477 1.731% 3 44.03 
R207 RT 4 814.780 5 825.735 1.345% 3 66.24 
R208 A 3 723.610 3 725.236 0.225% 3 118.17 
R209 A 6 879.531 6 890.346 1.230% 3 35.21 
R210 A 7 932.887 6 934.971 0.223% 3 39.49 
R211 A 5 787.511 4 785.813 -0.216% 3 68.92 
RC201 A 9 1274.530 9 1281.144 0.519% 1 11.51 
RC202 A 8 1113.520 8 1111.796 -0.155% 3 22.25 
RC203 A 5 945.960 5 947.068 0.117% 3 37.40 
RC204 M 3 798.410 4 804.391 0.749% 3 75.06 
RC205 A 7 1161.810 7 1164.085 0.196% 1 19.96 
RC206 A 7 1059.886 6 1082.938 2.175% 1 23.80 
RC207 A 7 976.400 6 1001.396 2.560% 3 34.56 
RC208 A 5 795.390 5 822.992 3.470% 3 66.30 
                    

* Multiple numbers indicate that each of the algorithms with the corresponding number of networks 
has found the same best solution 
** Computational time is taken as the average of the algorithms with the corresponding number of 
networks 
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Appendix D 

 
Detailed results of the experimental study 3 

 
Table D.1. Average results of experimental study 3 for setting 1 
 

Problem NV  TD TT 
Comp. 
Time 
(min)   

Problem NV  TD TT 
Comp. 
Time 
(min) 

           

C101 10.10 902.87 9906.83 4.74 C201 3.00 590.66 9585.51 8.58 

C102 10.10 1112.89 10017.36 10.29 C202 4.70 1016.16 10054.86 23.34 

C103 10.80 1337.64 10119.23 20.85 C203 4.80 1562.93 10402.45 51.84 

C104 10.30 1269.33 9981.59 47.16 C204 4.60 1318.27 10098.72 157.07 

C105 10.10 927.79 9860.73 6.55 C205 4.00 678.84 9622.23 14.92 

C106 10.50 1028.03 9938.79 7.92 C206 3.90 766.57 9658.75 22.34 

C107 10.50 1007.53 9875.35 9.94 C207 4.20 784.30 9689.82 30.09 

C108 10.80 1096.65 9906.17 14.58 C208 4.10 810.39 9726.64 34.64 

C109 11.00 1155.53 9907.94 24.96 R201 4.20 2234.84 3077.85 12.95 

R101 18.20 2015.73 3158.74 3.43 R202 4.30 2141.71 2903.67 29.69 

R102 16.00 1922.04 2815.23 6.73 R203 4.00 1737.31 2419.06 62.01 

R103 13.10 1642.10 2379.19 11.23 R204 3.40 1311.47 2030.86 173.75 

R104 10.60 1265.50 2022.35 21.76 R205 4.20 1771.26 2462.77 37.15 

R105 14.30 1676.78 2529.02 5.66 R206 3.90 1593.71 2281.10 64.85 

R106 12.80 1568.63 2269.08 9.84 R207 3.40 1412.95 2112.79 117.42 

R107 11.40 1395.35 2101.75 15.40 R208 3.00 1082.71 1859.22 291.81 

R108 10.40 1192.59 1923.06 26.45 R209 3.30 1594.18 2279.22 62.86 

R109 12.20 1468.52 2227.41 10.00 R210 3.90 1734.94 2455.90 53.86 

R110 11.70 1352.23 2122.04 16.04 R211 3.00 1287.98 1998.45 215.95 

R111 11.10 1311.29 2083.14 16.03 RC201 5.20 2412.80 3230.02 12.57 

R112 10.80 1186.89 1948.70 31.41 RC202 4.70 2400.04 3027.71 25.04 

RC101 14.70 1917.46 2792.24 4.69 RC203 4.20 1880.62 2535.23 55.18 

RC102 13.30 1819.64 2539.36 7.67 RC204 3.50 1487.22 2171.92 151.51 

RC103 12.00 1597.50 2283.71 15.57 RC205 5.00 2469.78 3131.98 19.58 

RC104 11.20 1443.67 2132.13 20.99 RC206 4.30 2070.31 2709.94 33.47 

RC105 13.60 1880.36 2650.75 6.70 RC207 4.10 1856.34 2530.22 54.93 

RC106 13.00 1638.76 2438.62 8.14 RC208 3.00 1327.80 2043.92 198.22 

RC107 12.00 1494.42 2258.71 13.26 

RC108 11.30 1371.47 2146.96 20.37 
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Table D.2. Best results of experimental study 3 for setting 1 
 

Problem NV  TD TT 
Comp. 
Time 
(min)   

Problem NV  TD TT 
Comp. 
Time 
(min) 

           

C101 10.00 863.95 9851.08 4.76 C201 3.00 591.55 9576.35 8.51 

C102 10.00 988.67 9904.66 9.98 C202 5.00 822.08 9935.95 23.31 

C103 10.00 1254.40 10025.82 20.97 C203 5.00 1363.69 10261.57 51.64 

C104 11.00 1184.44 9899.42 46.90 C204 4.00 1128.58 9913.54 156.75 

C105 10.00 854.77 9816.66 6.48 C205 4.00 614.04 9562.56 14.82 

C106 10.00 951.92 9839.86 7.78 C206 4.00 670.55 9548.86 23.11 

C107 10.00 871.51 9795.89 9.98 C207 4.00 677.85 9579.18 31.35 

C108 10.00 966.48 9822.43 14.60 C208 4.00 711.54 9661.52 34.39 

C109 11.00 1056.79 9820.19 24.94 R201 4.00 2040.98 3034.64 13.15 

R101 18.00 1941.23 3094.54 3.41 R202 4.00 2088.65 2838.19 29.28 

R102 16.00 1925.17 2786.56 6.74 R203 4.00 1728.75 2370.29 61.95 

R103 13.00 1584.00 2361.97 11.16 R204 3.00 1263.18 1995.52 173.54 

R104 10.00 1170.88 1981.74 21.49 R205 4.00 1677.75 2399.73 36.69 

R105 14.00 1606.65 2446.19 5.56 R206 3.00 1467.54 2167.96 65.71 

R106 12.00 1507.79 2224.36 9.80 R207 3.00 1336.99 2061.17 119.92 

R107 11.00 1325.76 2046.26 15.28 R208 3.00 1015.34 1817.93 289.42 

R108 11.00 1148.16 1902.97 26.60 R209 4.00 1530.89 2220.23 62.35 

R109 12.00 1418.11 2197.06 9.93 R210 4.00 1556.85 2321.06 53.86 

R110 11.00 1350.43 2101.73 16.25 R211 3.00 1313.44 1985.90 217.02 

R111 11.00 1283.76 2064.55 15.63 RC201 5.00 2344.24 3106.05 12.61 

R112 11.00 1159.84 1936.80 31.10 RC202 5.00 2273.20 2950.51 24.94 

RC101 14.00 1883.96 2720.96 4.71 RC203 5.00 1742.81 2446.02 58.20 

RC102 13.00 1754.76 2484.83 7.60 RC204 4.00 1424.13 2122.75 167.82 

RC103 11.00 1572.02 2215.22 15.29 RC205 5.00 2267.42 2981.71 19.62 

RC104 11.00 1434.94 2108.85 20.77 RC206 4.00 2130.40 2655.50 33.19 

RC105 13.00 1798.18 2584.76 6.55 RC207 4.00 1815.61 2429.87 54.91 

RC106 13.00 1557.97 2421.90 8.32 RC208 3.00 1344.58 2013.95 199.71 

RC107 12.00 1430.19 2210.52 12.95 

RC108 11.00 1310.27 2093.07 20.03 
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Table D.3. Average results of experimental study 3 for setting 2 
 

Problem NV  TD TT 
Comp. 
Time 
(min)   

Problem NV  TD TT 
Comp. 
Time 
(min) 

           C101 11.00 1009.54 10032.95 4.94 C201 3.70 612.87 9652.78 9.32 

C102 10.10 1018.01 9918.11 11.03 C202 4.10 1229.77 10123.65 25.52 

C103 10.50 1255.57 10027.93 22.54 C203 4.90 1590.81 10332.17 57.16 

C104 10.60 1156.91 9907.68 50.35 C204 4.40 1324.97 10038.40 172.42 

C105 10.00 895.57 9852.66 6.71 C205 3.40 654.47 9614.93 15.41 

C106 10.00 897.13 9820.24 8.07 C206 4.20 732.77 9659.13 22.70 

C107 10.30 918.49 9837.93 10.14 C207 4.00 740.39 9665.69 31.31 

C108 10.40 961.99 9815.40 14.90 C208 3.80 733.90 9647.87 35.77 

C109 10.90 1082.96 9869.30 25.66 R201 4.00 2292.95 2973.24 14.03 

R101 18.00 2056.02 3082.87 3.61 R202 4.30 2160.16 2809.11 32.12 

R102 17.00 2025.54 2802.17 7.18 R203 3.80 1771.37 2344.64 67.58 

R103 13.00 1610.46 2283.00 12.18 R204 3.50 1340.42 1998.17 191.56 

R104 10.30 1260.29 1944.20 24.00 R205 3.60 1750.53 2347.82 40.83 

R105 13.30 1617.97 2387.81 5.87 R206 3.60 1594.27 2199.32 69.87 

R106 12.10 1513.24 2168.38 10.43 R207 3.40 1454.42 2067.00 126.72 

R107 10.70 1348.08 2001.90 16.85 R208 2.90 1092.94 1808.43 323.54 

R108 10.00 1207.51 1866.20 29.26 R209 3.20 1639.59 2231.45 68.15 

R109 11.90 1457.14 2137.05 10.75 R210 3.70 1776.96 2402.43 56.90 

R110 11.60 1364.29 2049.36 17.83 R211 3.00 1259.03 1937.78 236.14 

R111 10.90 1315.80 2000.64 17.36 RC201 4.40 2452.96 3054.83 13.85 

R112 10.20 1164.62 1862.94 33.59 RC202 4.70 2456.64 2961.43 28.36 

RC101 13.70 1842.48 2591.52 5.00 RC203 4.30 1966.75 2490.87 61.67 

RC102 12.90 1834.07 2442.30 8.75 RC204 3.30 1512.69 2110.28 163.50 

RC103 11.70 1592.76 2208.60 13.82 RC205 4.20 2526.19 3096.84 20.80 

RC104 10.80 1458.16 2047.30 23.37 RC206 4.10 2049.21 2567.64 37.51 

RC105 13.10 1865.75 2542.06 7.29 RC207 4.10 1942.14 2445.84 60.47 

RC106 12.30 1635.86 2322.96 9.06 RC208 3.00 1366.36 1990.26 217.70 

RC107 12.00 1492.12 2182.92 15.12 

RC108 11.20 1393.34 2075.31 23.13 
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Table D.4. Best results of experimental study 3 for setting 2 
 

Problem NV  TD TT 
Comp. 
Time 
(min)   

Problem NV  TD TT 
Comp. 
Time 
(min) 

           

C101 11.00 969.30 9984.49 4.86 C201 4.00 607.94 9650.60 9.10 

C102 10.00 937.55 9842.49 11.00 C202 4.00 893.58 9889.14 25.08 

C103 10.00 1226.08 9960.42 21.93 C203 5.00 1492.50 10264.79 56.60 

C104 11.00 1032.94 9835.28 50.84 C204 4.00 1192.75 9979.05 171.55 

C105 10.00 879.69 9839.16 6.70 C205 3.00 660.30 9604.12 15.59 

C106 10.00 893.49 9804.56 8.28 C206 4.00 662.23 9607.27 22.47 

C107 10.00 859.31 9806.11 10.24 C207 3.00 660.56 9622.08 31.80 

C108 10.00 878.09 9770.90 14.69 C208 3.00 666.30 9593.74 36.98 

C109 10.00 978.52 9811.68 25.09 R201 4.00 2238.97 2927.79 14.18 

R101 18.00 1990.56 3042.50 3.59 R202 4.00 1930.43 2747.34 31.76 

R102 17.00 2049.31 2783.51 7.13 R203 3.00 1681.19 2281.52 67.33 

R103 13.00 1594.65 2243.88 12.14 R204 3.00 1303.89 1942.93 188.68 

R104 10.00 1229.17 1913.56 23.74 R205 4.00 1720.70 2309.52 40.43 

R105 13.00 1577.03 2339.60 5.74 R206 4.00 1519.67 2130.07 69.34 

R106 12.00 1515.77 2127.21 10.33 R207 3.00 1341.99 2024.03 124.42 

R107 10.00 1305.37 1965.82 16.52 R208 3.00 1017.83 1780.26 319.10 

R108 10.00 1158.81 1845.03 29.41 R209 3.00 1590.68 2178.45 67.40 

R109 11.00 1360.85 2081.00 10.52 R210 3.00 1777.65 2364.38 56.79 

R110 11.00 1361.66 2009.03 17.76 R211 3.00 1214.97 1910.64 232.68 

R111 10.00 1246.98 1957.64 17.32 RC201 5.00 2437.26 2947.12 13.90 

R112 10.00 1134.55 1827.04 32.91 RC202 5.00 2268.97 2812.06 28.65 

RC101 13.00 1785.58 2524.76 4.94 RC203 4.00 1866.92 2405.15 61.58 

RC102 12.00 1781.16 2404.62 8.51 RC204 3.00 1465.62 2065.42 166.52 

RC103 11.00 1501.95 2155.57 13.56 RC205 4.00 2283.40 3027.85 20.94 

RC104 11.00 1420.93 2021.43 23.28 RC206 4.00 1947.86 2465.96 38.09 

RC105 13.00 1837.14 2521.03 7.28 RC207 4.00 1899.03 2392.23 60.86 

RC106 12.00 1575.16 2268.39 8.96 RC208 3.00 1264.23 1966.05 215.51 

RC107 12.00 1438.71 2157.73 14.64 

RC108 11.00 1408.51 2059.26 22.96 
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Table D.5. Average results of experimental study 3 for setting 3 
 

Problem NV  TD TT 
Comp. 
Time 
(min)   

Problem NV  TD TT 
Comp. 
Time 
(min) 

           C101 11.00 1019.59 9987.98 4.91 C201 3.00 624.39 9629.35 9.94 

C102 10.20 1052.37 9908.84 11.18 C202 4.60 1265.35 10155.34 26.26 

C103 10.40 1227.17 9991.06 23.40 C203 5.10 1664.38 10357.89 61.56 

C104 10.50 1176.29 9890.33 52.55 C204 4.60 1327.82 10023.94 175.72 

C105 10.00 920.20 9839.18 6.77 C205 3.20 656.15 9588.98 15.63 

C106 10.00 887.68 9794.75 8.04 C206 3.50 684.11 9592.49 23.43 

C107 10.40 925.23 9821.81 10.19 C207 3.90 767.54 9657.92 32.20 

C108 10.60 1014.88 9831.56 15.63 C208 4.10 751.17 9627.82 37.26 

C109 10.60 1015.73 9812.76 25.96 R201 4.10 2246.08 2959.68 13.81 

R101 18.00 2094.91 3059.83 3.46 R202 4.00 2206.86 2736.92 32.32 

R102 17.00 2032.34 2799.06 7.02 R203 4.00 1859.31 2364.90 70.43 

R103 13.00 1670.10 2289.40 13.28 R204 3.60 1340.71 1967.27 200.54 

R104 10.50 1316.24 1952.45 25.28 R205 3.60 1756.02 2309.22 42.23 

R105 13.40 1649.52 2364.60 6.01 R206 3.30 1639.64 2180.74 71.97 

R106 12.00 1519.32 2129.78 10.73 R207 3.20 1473.58 2030.28 129.33 

R107 11.00 1385.07 1985.35 17.70 R208 3.00 1115.19 1782.96 338.88 

R108 10.40 1208.95 1840.55 31.24 R209 3.20 1648.31 2191.85 69.53 

R109 11.90 1452.59 2100.07 11.23 R210 3.70 1811.36 2363.42 57.21 

R110 11.40 1386.99 2003.59 18.66 R211 3.00 1248.48 1885.03 238.82 

R111 10.70 1315.19 1970.27 18.24 RC201 4.70 2487.59 3078.38 13.76 

R112 10.00 1166.62 1824.71 33.87 RC202 4.40 2484.23 2887.88 28.40 

RC101 13.80 1857.99 2565.61 4.81 RC203 4.30 2052.87 2477.41 62.60 

RC102 13.00 1832.52 2415.80 8.58 RC204 3.40 1515.57 2057.16 181.64 

RC103 11.40 1615.34 2169.83 14.24 RC205 4.20 2386.66 3015.79 20.67 

RC104 10.50 1457.38 2017.03 24.14 RC206 4.10 2060.74 2533.70 37.88 

RC105 13.20 1919.42 2546.19 7.13 RC207 4.20 1898.30 2376.45 59.98 

RC106 12.00 1637.96 2278.98 8.82 RC208 3.00 1399.02 1973.35 223.49 

RC107 11.80 1540.16 2152.22 15.28 

RC108 10.80 1370.61 2019.98 23.46 
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Table D.6. Best results of experimental study 3 for setting 3 
 

Problem NV  TD TT 
Comp. 
Time 
(min)   

Problem NV  TD TT 
Comp. 
Time 
(min) 

           C101 11.00 978.75 9945.98 4.96 C201 3.00 624.39 9629.35 9.82 

C102 10.00 952.35 9818.89 10.91 C202 4.00 857.28 9787.07 26.68 

C103 10.00 1104.43 9900.80 22.91 C203 5.00 1597.40 10286.84 61.12 

C104 10.00 1151.68 9835.66 52.48 C204 5.00 1140.89 9867.49 177.80 

C105 10.00 883.64 9823.73 6.87 C205 3.00 631.82 9569.05 15.71 

C106 10.00 867.81 9780.38 8.04 C206 3.00 655.45 9560.62 23.62 

C107 10.00 925.48 9810.74 10.21 C207 3.00 667.97 9591.49 32.81 

C108 10.00 930.00 9772.20 15.61 C208 4.00 710.26 9575.48 37.30 

C109 10.00 970.26 9780.26 26.19 R201 4.00 2150.06 2914.54 13.87 

R101 18.00 2087.61 3025.75 3.47 R202 4.00 2160.29 2621.35 32.49 

R102 17.00 1972.22 2774.60 6.96 R203 4.00 1737.35 2271.94 69.98 

R103 13.00 1610.01 2244.79 12.42 R204 4.00 1291.80 1949.35 195.95 

R104 10.00 1222.17 1910.62 25.00 R205 3.00 1745.25 2265.04 42.08 

R105 13.00 1558.24 2307.95 5.87 R206 3.00 1592.12 2093.08 72.45 

R106 11.00 1475.34 2078.31 10.58 R207 4.00 1411.36 1990.15 129.21 

R107 11.00 1286.89 1952.55 17.53 R208 2.00 1043.58 1760.04 333.71 

R108 10.00 1208.00 1810.95 31.03 R209 3.00 1575.59 2154.23 69.46 

R109 12.00 1408.79 2077.64 11.02 R210 3.00 1687.86 2257.99 56.74 

R110 11.00 1374.20 1982.58 18.33 R211 3.00 1205.98 1849.20 233.98 

R111 10.00 1244.49 1940.88 17.83 RC201 4.00 2304.06 2953.21 13.71 

R112 10.00 1143.69 1806.37 33.34 RC202 4.00 2352.83 2832.59 28.64 

RC101 13.00 1820.05 2474.12 4.64 RC203 4.00 1847.65 2342.86 62.13 

RC102 12.00 1757.89 2359.48 8.53 RC204 3.00 1482.43 2023.34 181.25 

RC103 11.00 1605.22 2139.64 14.09 RC205 4.00 2385.13 2917.04 20.80 

RC104 10.00 1432.40 1992.48 23.79 RC206 5.00 1829.91 2468.05 37.46 

RC105 13.00 1908.21 2487.35 6.85 RC207 4.00 1650.16 2229.52 59.64 

RC106 12.00 1596.21 2241.90 8.63 RC208 3.00 1332.30 1947.49 222.06 

RC107 11.00 1466.13 2112.26 15.30 

RC108 10.00 1326.33 1999.06 23.48 
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Appendix E 

 
Pheromone Re-Initialization Illustration 

 

 
 

Figure E.1. Illustration of pheromone re-initialization procedure on instance R201. The 
red line indicates the iteration the procedure is applied. 
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Appendix F 

 
The general interface of the software used 

 

 
  

Figure F.1. The general interface of the generated software 
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Appendix G 

 
Road Types Used in Experimental Study 3 

 
Table G.1. One-way road types for traveling from the customers 0-50 to the customers 
0-50. The matrix should be read over rows. 

→ 0 1 2 3 4 5 6 7 8 9 
1 
0 

1 
1 

1 
2 

1 
3 

1 
4 

1 
5 

1 
6 

1 
7 

1 
8 

1 
9 

2 
0 

2 
1 

2 
2 

2 
3 

2 
4 

2 
5 

2 
6 

2 
7 

2 
8 

 
2 
9 

3 
0 

3 
1 

3 
2 

3 
3 

3 
4 

3 
5 

3 
6 

3 
7 

3 
8 

3 
9 

4 
0 

4 
1 

4 
2 

4 
3 

4 
4 

4 
5 

4 
6 

4 
7 

4 
8 

4 
9 

5 
0 

 0  - 2 2 3 2 3 2 1 2 2 1 2 1 3 2 2 2 2 3 1 3 3 1 2 2 2 3 3 2 2 3 3 2 3 3 1 3 2 1 3 2 3 2 1 3 2 2 2 2 1 3 

 1  3 - 3 3 2 3 1 1 3 3 2 3 2 3 2 2 3 1 1 3 2 3 3 3 1 1 3 2 1 2 3 2 1 1 1 3 3 1 1 2 3 3 1 3 1 1 3 2 1 1 3 

 2  3 2 - 3 2 1 2 2 2 1 1 1 1 2 1 3 2 1 3 2 1 3 1 2 2 3 1 2 3 3 3 3 3 3 1 3 3 2 1 1 3 1 2 3 1 3 3 1 2 1 2 

 3  3 3 1 - 1 1 2 2 3 3 3 1 2 2 1 1 3 2 3 2 3 3 3 1 1 1 3 1 2 3 2 3 3 2 3 3 2 3 1 1 3 1 2 2 1 1 1 3 3 1 3 

 4  3 1 2 1 - 3 2 3 1 3 3 2 2 1 3 1 2 2 3 1 1 2 3 3 2 3 3 1 3 2 2 1 3 3 2 3 3 2 1 2 1 3 3 2 3 1 2 1 1 2 3 

 5  3 2 1 1 3 - 3 2 1 2 3 2 2 1 1 2 2 3 1 2 2 1 3 3 1 3 3 3 1 1 2 1 2 3 2 2 1 2 3 2 3 3 2 1 1 1 1 3 3 3 2 

 6  3 1 1 1 2 1 - 3 1 1 2 2 3 3 3 3 1 2 2 3 3 2 2 2 3 1 1 1 3 2 2 1 2 1 1 1 1 3 3 1 1 1 2 1 2 1 2 3 3 3 3 

 7  3 1 2 3 2 1 3 - 3 1 2 2 2 2 2 3 2 3 2 2 3 3 1 3 2 1 3 3 1 3 1 1 3 2 3 1 1 1 1 2 3 2 1 2 2 2 1 3 1 1 1 

 8  3 1 3 2 3 1 1 1 - 3 2 2 1 1 2 2 2 2 1 3 3 2 2 3 2 1 1 1 1 1 3 2 2 1 3 1 3 3 3 3 1 1 3 2 2 1 2 3 3 2 1 

 9  2 1 3 3 2 2 3 1 3 - 2 1 3 1 3 1 3 3 1 3 3 2 3 1 2 2 1 2 3 1 2 1 3 1 2 3 2 2 3 2 3 1 2 1 3 2 2 1 2 2 2 

1 0  3 2 3 3 1 2 1 3 1 2 - 1 1 1 3 1 1 3 3 1 1 3 2 3 2 1 1 1 2 3 2 3 1 2 3 2 2 3 2 1 3 1 2 1 2 1 1 3 3 3 3 

1 1  2 2 1 2 3 3 1 3 3 1 3 - 2 3 2 3 2 3 1 3 2 1 2 1 1 2 2 1 1 3 2 2 1 2 1 2 3 1 1 3 2 3 3 2 1 2 2 3 2 1 1 

1 2  3 1 2 1 3 1 1 1 2 2 3 1 - 2 3 2 1 1 1 2 2 1 2 1 2 2 1 1 3 3 3 2 2 1 1 1 3 1 3 1 2 1 2 3 3 3 2 2 2 1 2 

1 3  3 3 3 2 2 3 3 2 1 3 3 2 2 - 1 3 2 2 3 3 1 3 3 3 2 3 3 1 2 1 2 1 1 1 2 2 3 2 1 3 2 2 1 3 1 1 1 3 1 3 1 

1 4  3 3 2 3 1 3 2 1 1 2 2 2 3 1 - 1 1 3 1 1 1 1 1 3 1 2 3 3 2 3 2 1 1 1 3 3 3 2 1 1 2 1 2 1 2 1 3 1 3 3 2 

1 5  2 1 2 2 3 1 2 2 1 3 2 2 2 2 3 - 1 1 2 2 3 1 2 2 3 1 2 1 2 3 3 2 3 1 3 1 1 2 1 1 1 3 3 2 2 3 2 2 1 3 2 

1 6  3 2 3 2 1 1 2 2 3 1 1 3 1 2 1 2 - 3 3 3 2 3 1 3 2 1 2 1 2 2 1 1 3 2 1 3 2 1 1 2 2 1 1 3 1 3 2 3 1 2 1 

1 7  3 2 2 3 1 3 3 1 2 2 1 2 2 1 1 1 3 - 3 3 2 2 1 1 2 2 3 2 2 1 3 2 2 1 2 3 2 1 2 2 3 3 2 2 1 1 2 1 3 2 3 

1 8  3 1 3 2 3 1 1 2 1 1 3 2 1 2 3 2 1 2 - 1 3 3 2 2 3 3 3 2 3 1 2 1 3 2 2 1 2 1 3 2 2 1 3 1 2 2 2 3 1 2 1 

1 9  3 2 2 2 2 1 3 1 2 3 2 1 3 2 1 1 3 3 3 - 3 3 3 2 3 3 2 2 2 3 2 1 3 3 2 3 2 3 1 3 3 1 1 2 1 1 3 1 2 2 3 

2 0  3 1 1 3 2 2 3 2 3 2 1 1 3 1 3 3 2 1 2 1 - 2 1 2 3 3 2 1 1 1 3 1 2 3 1 2 1 3 1 3 3 2 2 1 1 1 2 1 2 1 1 

2 1  3 1 2 2 1 1 1 1 1 1 2 2 2 3 2 3 3 2 2 1 1 - 1 3 3 1 2 1 2 2 2 3 3 2 1 2 1 1 2 3 2 1 1 1 2 1 3 1 2 1 2 

2 2  3 3 1 2 3 2 3 2 2 1 3 3 3 1 3 3 1 2 3 2 3 1 - 3 2 3 1 2 2 2 2 1 1 2 1 1 3 3 1 2 1 2 3 1 3 3 3 3 2 2 3 

2 3  2 3 2 2 3 1 2 3 3 2 2 3 3 3 2 3 2 1 3 2 1 2 1 - 1 1 3 3 1 2 2 1 1 2 2 1 2 2 2 3 1 1 2 1 1 2 1 1 1 2 1 

2 4  3 3 2 2 3 1 2 3 1 3 1 1 3 3 1 3 3 3 3 3 3 2 3 1 - 3 2 3 1 3 2 1 3 3 2 2 2 3 1 2 2 1 2 3 3 1 1 1 1 3 3 

2 5  3 1 3 2 3 1 3 3 2 1 3 3 1 1 1 2 1 3 3 2 3 3 3 1 3 - 2 3 2 3 1 2 1 1 1 3 1 3 3 1 2 1 3 1 1 2 3 2 2 3 3 

2 6  3 2 1 3 3 3 1 3 1 1 1 2 3 1 2 3 3 3 3 3 2 1 2 2 2 2 - 1 3 1 3 1 2 1 2 1 2 2 3 1 3 2 1 2 1 3 1 2 1 2 2 

2 7  3 3 3 2 1 2 2 2 1 2 1 2 1 2 2 2 1 3 1 1 3 3 1 1 1 2 2 - 3 1 1 1 2 1 1 3 1 1 3 2 2 2 1 2 2 3 2 3 1 1 2 

2 8  3 3 2 3 1 2 3 1 3 2 1 3 3 1 1 3 3 1 2 3 2 3 3 2 3 3 3 2 - 2 2 2 3 1 1 2 2 1 1 1 3 1 1 2 2 3 2 2 1 1 2 

2 9  3 1 2 2 1 2 2 2 3 1 3 1 2 1 3 2 3 1 1 1 3 3 3 2 1 2 2 1 2 - 2 3 1 2 1 3 1 3 3 3 2 2 3 3 1 1 2 2 1 3 2 

3 0  3 1 3 1 3 1 3 2 3 2 2 2 3 2 3 3 1 3 1 3 2 2 3 1 2 3 3 2 1 2 - 1 3 3 3 1 2 2 3 2 2 3 2 1 1 2 2 1 1 1 2 

3 1  3 1 3 3 1 3 3 2 1 3 1 3 3 2 3 2 2 3 2 1 3 1 2 2 1 1 3 3 2 3 3 - 3 2 2 2 2 1 2 2 3 1 1 1 2 3 2 1 3 2 2 

3 2  3 1 2 1 3 1 3 2 2 2 2 2 2 3 1 1 1 3 3 1 3 2 2 1 2 3 3 3 2 1 2 2 - 2 1 3 3 2 3 1 3 2 3 2 1 2 2 2 1 1 3 

3 3  3 1 1 1 1 3 1 3 1 2 2 3 3 3 3 1 2 3 1 2 2 3 3 3 3 2 1 2 2 3 1 1 2 - 3 1 2 3 2 2 2 2 3 3 3 3 2 1 3 1 2 

3 4  3 1 1 3 3 1 3 2 3 1 1 1 1 1 2 1 2 1 2 2 2 2 1 3 1 1 3 2 2 1 2 1 2 3 - 1 1 1 1 1 2 1 2 3 2 3 3 1 1 2 2 

3 5  3 1 1 2 3 3 3 3 3 3 2 3 2 2 3 3 1 2 2 2 2 2 1 2 3 3 3 1 3 3 1 3 1 1 2 - 2 1 1 1 2 2 2 1 3 1 1 1 3 1 1 

3 6  3 3 1 1 2 2 1 3 2 1 3 3 1 1 2 1 3 1 3 3 3 3 2 2 3 2 1 1 3 3 3 1 2 3 3 2 - 3 3 1 3 1 3 1 2 3 2 1 2 2 1 

3 7  3 1 1 2 2 2 1 2 1 1 2 2 1 3 3 3 1 1 2 2 3 1 2 1 3 2 2 3 3 1 1 1 2 2 1 1 1 - 1 1 3 2 1 3 2 2 2 1 2 1 1 

3 8  2 2 3 2 2 1 2 3 2 2 2 1 1 3 3 3 3 3 3 2 2 2 3 1 1 1 1 1 1 1 1 2 1 2 1 3 1 3 - 1 1 1 3 1 1 1 2 1 3 1 3 

3 9  3 2 1 3 3 1 2 3 1 2 2 3 2 2 1 2 2 1 3 1 3 3 2 1 1 1 1 2 1 3 2 2 1 3 2 2 3 1 2 - 2 3 1 1 1 1 1 1 1 3 3 

4 0  3 2 2 1 1 1 3 2 1 3 2 3 1 1 3 1 1 2 3 2 1 1 1 3 1 3 3 2 3 2 3 1 2 2 1 2 2 3 1 2 - 2 1 2 2 2 3 2 1 2 1 

4 1  3 3 2 1 2 2 2 3 1 2 2 3 2 2 1 1 3 3 2 1 1 1 2 3 2 3 2 3 2 1 1 3 1 1 3 2 1 3 2 2 1 - 2 3 3 1 3 2 2 2 1 

4 2  3 2 1 1 1 1 3 2 2 1 3 3 3 1 2 1 3 2 3 1 2 1 3 3 1 1 3 2 3 2 1 2 1 1 2 2 2 3 1 1 2 3 - 1 2 3 1 3 1 1 1 

4 3  3 3 2 1 2 3 2 2 2 1 3 1 2 1 1 1 2 3 1 2 1 1 2 3 1 2 3 1 3 3 2 3 3 1 2 2 1 3 2 1 3 3 1 - 1 3 2 3 3 3 2 

4 4  1 2 2 1 2 1 1 2 1 2 2 3 3 3 2 3 1 1 2 3 1 2 2 2 2 2 1 1 2 2 3 1 1 3 1 3 2 3 2 1 3 2 3 2 - 3 2 3 2 3 2 

4 5  3 3 3 1 2 2 2 3 3 1 1 1 1 3 2 2 3 1 1 2 3 2 3 2 3 2 2 1 1 3 2 1 1 1 2 3 3 3 1 3 2 2 2 1 1 - 3 2 1 3 3 

4 6  3 2 3 1 3 2 1 3 1 1 1 3 3 3 3 2 3 2 2 1 3 2 2 3 1 2 2 3 2 3 1 1 3 2 3 2 3 1 2 3 1 2 1 2 1 3 - 2 2 2 2 

4 7  3 3 2 3 1 3 1 2 1 1 3 1 2 3 2 1 3 2 2 1 3 3 2 3 3 3 1 3 3 1 1 2 2 1 3 3 1 2 3 2 3 2 2 3 2 2 1 - 2 2 2 

4 8  3 2 1 2 2 3 1 1 1 3 3 2 1 3 1 3 3 3 3 3 2 3 2 3 2 1 1 2 3 2 3 1 1 1 2 1 1 3 3 3 1 3 2 2 3 3 1 3 - 2 3 

4 9  3 2 3 2 1 3 3 3 2 2 3 1 1 1 1 3 1 1 3 2 1 3 1 2 3 2 2 1 3 3 1 3 3 3 1 3 3 1 1 3 1 3 2 1 2 1 3 2 2 - 1 

5 0  3 2 1 1 1 1 2 3 2 3 2 2 2 1 1 2 3 2 1 3 1 2 3 3 1 3 2 2 2 3 3 3 1 2 3 3 3 2 2 2 1 1 2 3 3 3 1 1 2 1 - 
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Table G.2. One-way road types for traveling from the customers 51-100 to the 
customers 0-50. The matrix should be read over rows. 
 

→ 0 1 2 3 4 5 6 7 8 9 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

2
3 

2
4 

2
5 

2
6 

2
7 

2
8 

2
9 

3
0 

3
1 

3
2 

3
3 

3
4 

3
5 

3
6 

3
7 

3
8 

3
9 

4
0 

4
1 

4
2 

4
3 

4
4 

4
5 

4
6 

4
7 

4
8 

4
9 

5
0 

5 1 3 1 3 2 1 2 2 3 2 2 2 1 3 3 2 3 3 3 2 3 2 1 1 1 1 2 3 3 2 1 2 1 3 3 3 3 1 3 1 2 3 2 3 1 2 1 2 2 3 2 2 

5 2 3 2 2 1 3 2 1 3 1 1 2 1 1 1 3 3 3 2 1 3 3 1 3 1 2 1 2 3 3 3 1 3 2 2 1 2 2 2 3 2 1 3 2 3 1 3 2 1 3 1 1 

5 3 1 1 3 3 1 3 3 2 3 3 3 3 1 3 1 1 1 1 3 1 3 2 1 3 2 3 2 2 1 3 2 2 3 1 2 2 2 1 3 3 3 1 1 2 2 3 1 3 1 2 2 

5 4 3 2 2 2 3 2 1 2 2 1 1 1 1 3 3 3 1 3 1 3 1 2 2 2 3 1 1 1 2 3 3 3 2 2 1 1 1 3 3 2 2 2 3 1 3 1 1 1 3 2 1 

5 5 3 2 2 1 3 2 1 1 1 2 1 2 1 3 1 1 3 3 2 1 2 1 1 3 2 3 2 3 2 3 3 3 2 3 1 3 2 1 1 1 3 3 2 3 2 2 1 1 3 1 2 

5 6 3 3 2 2 2 3 2 2 1 1 2 1 2 3 2 1 2 1 1 1 1 2 2 3 1 2 1 2 1 3 1 2 1 1 2 3 2 2 3 1 2 1 2 2 1 1 2 2 2 1 1 

5 7 3 1 1 1 2 1 3 1 2 3 1 2 3 1 3 1 1 1 3 1 1 1 2 3 3 3 3 1 2 1 1 2 1 2 1 1 2 3 3 2 2 2 2 1 2 1 1 1 2 1 1 

5 8 3 1 3 3 3 3 2 3 1 3 2 3 3 1 1 2 1 2 3 1 2 3 2 2 2 3 1 1 2 2 2 1 3 2 3 3 1 2 3 2 3 3 2 2 3 1 2 3 1 2 1 

5 9 3 2 2 3 1 2 2 3 1 2 3 2 3 1 3 2 1 1 1 2 3 1 2 3 3 3 2 2 2 1 2 2 3 2 1 3 2 2 1 3 1 3 1 2 3 3 3 3 1 2 1 

6 0 3 2 2 2 2 2 2 1 1 2 1 3 1 2 2 2 3 2 1 3 1 3 1 1 2 2 3 1 2 3 3 3 2 1 2 1 1 2 2 1 2 3 3 2 3 2 2 1 2 2 2 

6 1 3 2 1 1 1 2 3 3 3 1 1 3 3 2 1 3 1 1 3 1 1 2 1 2 2 2 2 2 2 2 3 3 2 2 3 2 2 3 1 1 1 2 2 2 1 1 3 1 1 3 1 

6 2 3 2 2 2 2 3 3 2 1 3 2 1 1 1 1 2 3 1 1 3 2 3 2 1 1 1 1 3 2 3 2 3 3 3 3 1 1 3 2 2 3 2 2 1 3 1 3 1 2 3 1 

6 3 3 3 2 2 1 3 3 2 2 1 1 3 2 3 1 2 3 1 1 2 1 3 3 2 3 2 1 3 3 1 2 1 1 2 3 2 2 3 2 1 3 1 1 1 3 2 2 1 1 1 2 

6 4 3 1 1 2 1 2 2 1 1 3 3 1 3 1 2 2 3 3 2 3 1 1 3 3 3 3 2 3 2 1 2 1 2 3 2 3 3 3 3 1 2 3 1 2 1 2 2 1 1 3 3 

6 5 3 3 2 2 1 3 1 1 3 2 2 1 1 2 1 2 1 1 3 1 1 2 3 3 1 3 2 3 2 3 1 1 1 3 2 2 3 3 2 2 3 2 1 2 2 2 1 3 2 2 2 

6 6 3 3 3 3 3 2 3 1 2 1 1 2 2 3 3 2 1 2 1 3 3 2 3 1 3 3 3 3 1 1 2 2 3 1 1 3 3 2 2 3 2 2 3 1 3 1 2 3 1 2 1 

6 7 2 3 1 2 3 2 1 2 1 1 1 2 1 1 2 3 2 2 1 3 1 1 1 1 1 2 3 3 1 1 2 2 3 2 1 2 2 1 2 2 2 1 1 1 2 1 3 1 3 2 2 

6 8 3 3 1 2 1 1 3 2 3 3 2 2 3 3 3 1 2 2 3 2 2 3 1 2 2 3 2 1 3 3 1 2 2 3 3 2 2 2 2 1 3 2 3 3 3 1 2 1 1 2 2 

6 9 3 3 1 3 3 2 2 1 2 1 2 1 3 2 1 2 3 2 2 3 3 2 1 2 2 3 2 3 3 1 1 1 2 2 1 2 3 1 2 3 2 1 3 3 1 3 1 3 3 1 2 

7 0 3 2 3 2 1 2 2 3 2 1 2 1 2 2 2 2 2 2 1 2 1 3 3 1 1 1 3 1 3 3 3 1 2 2 3 1 1 1 2 1 1 2 3 2 1 3 3 2 1 1 2 

7 1 3 2 3 1 2 1 3 1 3 2 1 3 2 1 2 3 1 1 1 1 3 1 2 1 2 1 2 3 2 1 3 2 1 3 3 3 1 3 3 1 3 1 2 1 2 3 3 2 3 2 3 

7 2 3 1 2 1 3 2 1 3 3 3 2 2 1 3 1 3 1 2 2 3 1 3 1 2 3 3 1 3 3 3 1 3 3 3 3 1 2 3 1 3 2 3 1 3 1 1 2 2 1 2 2 

7 3 3 1 1 1 3 3 2 3 2 2 3 3 2 1 2 3 3 2 2 2 2 3 2 2 3 3 2 1 2 1 1 1 3 1 1 1 1 2 2 3 2 2 2 1 1 2 3 1 3 1 2 

7 4 3 3 1 2 2 1 3 1 3 2 3 2 2 3 1 3 1 3 1 3 2 2 2 1 3 1 1 2 2 3 3 1 2 3 3 1 1 3 3 2 3 1 1 2 3 3 3 1 2 2 3 

7 5 3 2 1 2 3 2 3 1 1 3 3 3 1 3 1 2 1 3 1 1 2 3 2 2 3 2 2 1 2 1 3 1 2 2 1 3 2 2 1 2 2 1 1 1 3 1 1 1 2 3 2 

7 6 2 1 2 1 1 3 3 1 2 2 1 1 1 1 1 3 3 2 3 1 2 3 1 2 1 3 1 1 2 1 1 1 3 2 1 1 3 2 1 2 1 3 1 1 3 2 3 1 2 2 1 

7 7 3 1 2 3 3 2 2 3 3 1 1 1 1 1 3 1 3 3 2 3 3 3 3 3 3 3 1 2 1 2 3 2 3 2 3 3 3 1 1 2 3 3 3 1 3 3 1 3 3 2 1 

7 8 3 2 2 3 1 2 2 3 3 2 2 3 2 3 1 1 1 2 1 3 3 3 2 1 2 1 2 1 3 1 2 2 1 1 1 1 2 3 3 3 1 3 3 3 2 2 3 1 3 1 3 

7 9 3 2 2 3 2 2 1 2 2 1 1 2 2 1 3 2 3 1 3 2 1 2 2 3 1 1 3 3 3 1 1 2 3 1 1 3 3 2 2 1 2 1 3 3 2 2 3 1 1 2 2 

8 0 3 2 1 1 3 1 1 1 3 1 2 1 1 1 2 2 2 2 1 3 3 3 2 3 1 2 1 1 3 3 2 3 1 2 2 1 2 2 2 2 3 3 3 2 2 2 3 3 3 1 2 

8 1 3 1 1 2 1 2 2 3 1 3 1 2 2 1 3 3 2 3 3 3 2 3 1 1 1 2 2 3 2 3 3 1 1 1 1 1 1 3 1 3 3 2 2 3 1 3 3 3 1 2 2 

8 2 3 1 3 2 3 3 3 1 3 1 2 2 1 2 3 2 1 2 3 2 1 1 2 1 2 3 3 3 3 3 3 1 2 1 1 2 3 1 1 2 2 2 2 3 1 2 3 1 3 2 1 

8 3 3 3 3 2 3 1 3 1 1 3 1 3 3 2 2 2 3 3 1 2 1 2 1 3 2 3 2 1 3 1 2 2 1 3 2 1 2 1 3 3 2 3 1 3 1 3 1 3 3 1 1 

8 4 3 1 3 2 2 2 1 1 1 2 2 1 1 1 3 3 2 3 1 2 1 3 3 1 3 1 1 3 1 1 3 2 1 3 3 3 3 3 1 2 3 3 3 2 1 2 2 3 1 2 2 

8 5 3 2 3 3 2 1 1 1 1 3 1 3 2 2 3 3 2 1 2 3 2 2 2 1 2 2 2 1 1 1 2 3 3 1 2 1 2 3 2 2 3 2 2 3 3 3 3 2 2 2 3 

8 6 3 2 2 3 1 2 3 1 3 1 1 1 1 2 3 3 2 3 2 2 3 1 1 3 3 1 3 1 2 3 3 2 1 3 1 1 1 3 3 3 1 1 3 3 3 1 1 1 2 2 3 

8 7 3 3 3 3 3 1 2 2 3 2 2 3 3 2 2 1 1 2 1 1 2 2 2 1 3 1 3 3 2 1 2 1 1 2 3 2 3 2 1 1 3 3 2 2 3 1 3 1 2 1 1 

8 8 3 2 2 2 3 2 3 3 3 1 3 1 2 3 2 2 2 3 3 1 3 2 2 2 3 1 2 2 3 2 3 1 1 3 2 3 1 3 2 2 3 2 1 2 1 3 2 2 2 2 2 

8 9 3 3 1 3 2 3 3 2 3 2 3 3 3 2 1 1 1 2 1 1 1 1 3 3 3 1 2 1 1 1 1 1 3 2 1 2 3 1 3 2 1 3 3 1 2 1 1 3 3 1 1 

9 0 3 1 2 2 1 1 3 2 3 1 2 2 2 2 2 3 2 3 1 1 1 3 1 3 3 1 1 3 2 2 1 1 2 2 1 2 3 2 2 2 1 3 2 3 1 1 1 2 1 1 1 

9 1 3 1 1 1 1 3 3 2 2 1 1 2 2 1 3 2 1 2 1 3 1 3 1 2 1 1 1 2 1 3 2 2 2 2 3 3 2 2 1 2 1 2 2 3 2 2 2 2 3 3 3 

9 2 2 3 1 3 2 1 3 1 1 3 2 1 2 2 2 3 2 3 3 1 3 2 3 1 3 1 2 1 3 1 2 3 2 1 1 3 2 3 3 2 2 2 1 3 3 1 2 3 3 3 3 

9 3 3 1 3 1 2 2 1 2 3 3 2 2 3 1 3 1 3 1 2 3 1 3 2 2 1 2 2 3 1 3 2 2 1 2 2 1 2 1 3 2 2 2 1 1 3 1 2 2 3 1 2 

9 4 3 1 3 1 2 1 2 2 2 1 2 2 1 2 1 3 3 3 3 2 1 1 3 2 1 2 2 3 1 1 3 2 3 3 1 2 1 2 2 1 2 2 3 2 3 1 1 2 3 3 2 

9 5 3 2 2 1 3 1 3 3 3 1 1 3 3 3 2 2 3 2 1 2 1 2 1 2 1 3 3 3 3 1 3 2 2 3 2 3 2 3 2 3 3 1 1 3 2 2 3 2 3 2 1 

9 6 3 3 3 1 2 1 1 1 3 3 3 3 2 2 1 2 1 2 2 1 1 2 3 1 1 1 3 1 3 1 2 1 2 2 2 1 2 3 3 3 3 2 3 2 2 3 1 2 2 1 2 

9 7 3 1 2 3 1 3 2 3 2 3 3 3 1 3 3 3 1 3 3 3 1 2 1 1 3 1 3 1 1 1 2 2 3 3 1 2 3 3 3 3 1 2 2 3 3 1 3 3 2 2 3 

9 8 3 3 1 2 2 3 1 3 2 1 3 1 3 1 3 3 2 3 1 3 3 2 1 2 3 1 1 1 1 3 2 3 2 1 1 2 1 1 1 1 2 2 3 3 2 1 3 3 1 1 1 

9 9 2 1 3 2 2 2 1 3 2 3 2 1 1 1 1 1 3 3 3 1 1 3 1 2 2 1 1 2 1 3 3 2 1 3 3 1 1 2 2 1 2 3 1 3 3 2 2 2 2 2 3 

1 0 0 3 3 1 1 1 3 3 2 3 3 3 3 3 1 1 3 2 2 3 3 1 2 3 1 3 3 3 2 3 2 2 2 2 2 2 1 1 2 2 1 2 2 2 2 2 1 1 2 3 1 1 
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Table G.3. One-way road types for traveling from the customers 0-50 to the customers 
51-100. The matrix should be read over rows. 
 

→ 
5
1 

5
2 

5
3 

5
4 

5
5 

5
6 

5
7 

5
8 

5
9 

6
0 

6
1 

6
2 

6
3 

6
4 

6
5 

6
6 

6
7 

6
8 

6
9 

7
0 

7
1 

7
2 

7
3 

7
4 

7
5 

7
6 

7
7 

7
8 

7
9 

8
0 

8
1 

8
2 

8
3 

8
4 

8
5 

8
6 

8
7 

8
8 

8
9 

9
0 

9
1 

9
2 

9
3 

9
4 

9
5 

9
6 

9
7 

9
8 

9
9 

1
0
0 

0 2 3 1 2 3 1 3 1 3 1 3 2 3 2 3 2 1 2 2 2 2 1 1 3 2 1 1 2 3 3 3 3 1 3 2 1 3 1 2 2 1 2 3 3 3 1 3 1 2 3 

1 3 2 2 3 3 1 3 2 2 1 3 1 2 3 1 2 1 3 2 3 3 1 3 3 2 2 3 3 3 2 1 1 3 2 1 3 3 1 2 3 1 2 3 1 1 3 3 1 3 3 

2 2 1 2 2 1 2 3 1 3 1 3 3 2 2 2 1 1 2 1 1 1 1 2 3 3 1 1 1 3 3 1 3 2 2 1 3 2 1 1 1 3 1 1 1 3 2 1 1 3 3 

3 3 1 3 1 1 3 2 1 3 2 2 1 3 1 3 2 1 2 1 3 1 2 2 3 2 1 1 1 1 3 1 1 2 1 3 3 1 1 3 3 3 2 1 3 1 1 3 2 1 2 

4 2 1 1 3 1 1 2 1 2 3 2 1 2 2 3 3 2 3 1 2 3 2 2 1 2 2 2 3 1 2 2 3 1 2 3 1 2 3 1 3 2 1 3 2 3 3 1 1 1 2 

5 1 1 3 3 1 1 2 3 2 3 1 2 1 1 3 1 2 3 2 2 3 3 2 2 3 3 2 2 1 3 1 1 1 3 2 3 3 1 1 2 2 3 2 2 3 1 2 1 2 3 

6 3 1 2 2 2 1 2 2 1 1 3 3 2 2 1 1 3 2 2 3 1 2 1 2 2 1 2 3 3 3 2 2 1 3 3 1 1 2 3 1 2 2 2 3 2 2 3 2 1 1 

7 3 2 3 2 1 2 2 1 3 2 1 2 3 1 2 2 3 2 1 3 1 2 1 3 2 3 3 2 3 1 3 3 1 3 2 2 3 1 3 3 2 1 2 1 2 3 1 2 1 1 

8 1 1 3 1 2 2 2 2 1 2 3 1 3 1 3 1 3 2 1 3 2 3 1 2 2 3 1 2 2 2 2 1 2 3 2 1 3 3 1 3 1 1 2 2 2 1 3 1 2 3 

9 1 3 2 3 2 3 3 1 1 1 3 1 1 2 2 1 3 3 3 3 2 3 3 3 2 1 3 2 3 1 1 3 2 2 1 1 2 2 3 1 2 1 3 1 1 1 1 3 1 1 

1 0 1 2 2 3 2 1 3 1 2 1 1 2 3 3 3 3 3 2 2 2 1 1 2 2 1 1 1 1 2 3 1 2 3 3 1 1 3 2 1 2 3 2 1 1 2 2 3 1 3 1 

1 1 3 2 2 1 3 3 1 1 3 1 3 1 3 1 2 3 3 2 1 1 1 2 2 2 3 2 3 1 2 3 3 2 3 3 3 1 3 2 2 3 2 1 2 2 2 3 3 2 3 2 

1 2 2 3 1 2 1 1 3 1 2 2 1 1 1 2 3 2 3 2 2 3 3 2 3 3 1 2 2 1 3 1 3 2 2 1 2 2 2 3 3 3 3 1 2 2 2 3 2 2 1 1 

1 3 1 2 2 3 2 3 1 2 2 3 3 2 1 2 2 3 2 3 3 1 3 2 1 2 2 3 1 2 2 2 3 3 3 1 2 2 2 1 1 3 2 1 3 3 3 1 3 1 2 2 

1 4 1 2 3 1 2 2 3 2 1 1 1 3 2 3 1 2 2 3 1 1 2 3 1 2 3 2 1 2 3 2 2 1 3 1 2 2 1 3 2 1 1 1 3 3 2 1 1 2 2 3 

1 5 1 3 1 2 2 1 3 2 1 2 1 1 2 2 2 3 2 3 2 2 2 3 1 2 3 2 3 3 1 3 1 3 2 2 3 3 3 2 1 1 2 1 3 3 3 3 1 1 1 1 

1 6 1 2 1 3 1 3 3 1 1 2 1 1 1 3 3 2 1 1 3 3 1 3 2 1 2 3 2 2 2 2 2 3 3 2 3 3 3 3 3 3 2 3 3 3 2 1 1 3 1 2 

1 7 2 1 1 3 3 2 2 1 2 2 2 1 1 2 1 3 2 1 1 3 3 1 1 3 3 3 3 3 1 3 2 3 1 2 2 1 1 1 2 2 1 1 3 1 2 2 2 3 1 2 

1 8 2 3 3 1 3 2 2 3 3 1 2 1 1 3 3 1 1 2 2 1 2 2 1 3 3 3 1 1 1 2 3 2 2 1 3 1 1 1 3 2 1 1 3 2 3 1 2 2 2 2 

1 9 1 3 2 2 2 2 3 3 2 3 3 2 1 3 2 2 2 1 2 2 2 3 3 1 2 3 1 2 3 1 1 3 1 1 2 2 1 1 3 2 3 1 3 3 1 3 3 2 2 2 

2 0 2 3 1 2 1 2 3 1 1 3 2 3 2 1 2 3 2 3 3 2 1 1 2 3 2 3 3 1 3 2 1 3 3 3 2 2 2 1 3 3 2 2 1 3 1 3 1 1 3 2 

2 1 3 2 2 2 1 3 1 2 2 2 3 3 2 2 2 3 1 1 1 2 2 2 3 1 1 3 3 2 2 1 2 3 2 1 2 1 1 3 1 2 3 2 3 2 3 2 3 2 3 2 

2 2 1 2 3 2 2 2 3 2 3 3 3 1 3 1 1 2 2 3 3 1 1 1 3 3 3 1 1 1 3 3 1 1 3 3 1 3 2 3 3 3 3 1 1 3 1 1 3 1 3 1 

2 3 3 3 2 2 1 3 3 2 1 3 2 2 1 1 1 2 2 1 3 1 2 3 1 2 1 2 2 3 3 1 2 2 2 2 2 2 2 1 2 2 2 1 1 1 3 3 1 3 3 1 

2 4 3 1 1 1 1 1 1 1 3 2 1 2 3 2 2 2 2 1 2 2 3 2 2 1 3 1 2 1 1 2 1 2 1 1 3 3 3 2 1 1 2 2 2 1 1 2 2 1 1 3 

2 5 2 3 1 2 1 3 1 2 2 2 1 2 3 2 2 2 3 3 2 1 3 2 2 2 2 3 3 3 2 1 3 2 2 1 2 3 1 2 1 3 3 1 1 3 1 3 3 2 2 1 

2 6 3 1 3 2 2 3 3 2 1 2 2 2 2 1 1 2 2 2 1 3 1 1 2 1 2 1 3 2 2 2 1 1 1 3 1 1 3 2 1 1 3 3 2 2 1 1 3 1 1 1 

2 7 3 1 1 1 1 3 3 3 1 3 1 2 2 3 1 3 1 3 3 2 1 1 1 3 2 3 2 3 1 3 2 2 3 2 2 1 2 1 1 1 2 1 2 2 1 1 2 2 2 3 

2 8 1 2 1 2 2 2 1 3 3 1 3 1 3 1 1 2 3 2 3 3 2 3 3 2 2 1 2 1 2 2 2 2 2 3 1 3 2 3 2 1 2 1 1 3 3 1 1 1 2 2 

2 9 1 1 1 2 2 3 1 1 2 3 1 2 3 2 2 3 2 2 2 3 3 1 2 2 3 1 1 2 2 3 3 1 1 1 2 3 1 1 2 1 1 3 2 1 2 1 3 1 3 2 

3 0 3 1 1 1 3 1 2 2 2 3 1 2 2 1 1 2 3 3 1 2 1 1 2 3 3 1 1 2 2 1 3 3 1 2 3 3 3 2 1 3 1 1 2 2 1 1 1 1 1 1 

3 1 3 2 3 3 1 2 2 1 2 1 1 1 3 2 3 1 1 1 1 2 2 3 2 2 1 3 1 1 3 3 3 1 1 1 3 2 1 3 2 1 3 3 3 2 3 3 2 3 3 2 

3 2 3 2 3 2 2 2 2 2 3 1 1 1 3 1 1 1 3 1 3 1 2 1 2 1 2 1 1 2 2 3 2 3 2 3 1 3 2 1 2 1 2 1 3 1 3 2 1 1 1 2 

3 3 1 1 1 3 1 1 1 2 2 3 2 3 1 1 2 2 2 3 3 2 2 3 2 2 3 3 3 3 1 1 1 1 1 3 2 3 3 3 3 3 1 1 1 3 3 3 2 2 2 1 

3 4 1 1 3 1 3 2 1 1 3 2 2 1 3 3 3 3 3 2 3 2 1 1 1 1 1 1 2 2 1 1 1 3 1 3 1 1 2 1 3 3 3 1 2 2 1 1 2 1 3 3 

3 5 2 3 1 2 2 1 1 2 3 1 1 2 3 1 2 3 2 1 3 1 3 3 2 1 3 1 1 1 2 2 2 3 3 3 2 2 3 3 3 2 2 2 2 1 1 1 2 1 2 2 

3 6 2 1 2 2 2 3 2 3 1 1 2 1 1 3 1 2 1 1 1 1 2 3 1 1 2 1 2 3 2 2 1 2 3 3 1 2 3 1 2 3 1 1 2 1 1 1 3 1 2 1 

3 7 3 2 2 3 1 3 2 3 2 1 1 2 2 3 1 1 1 2 3 3 2 3 1 3 1 3 2 1 3 2 1 1 2 3 1 2 2 3 2 2 2 2 3 3 3 1 3 3 1 2 

3 8 1 3 1 3 3 3 2 2 1 1 3 2 2 2 1 3 1 3 2 1 3 3 2 2 2 2 1 3 1 3 3 1 1 2 3 1 1 1 2 2 1 2 3 3 2 2 1 2 3 1 

3 9 1 3 3 2 2 2 1 1 3 3 1 3 3 2 1 3 3 2 3 3 2 1 3 1 2 2 3 2 3 3 3 3 3 1 2 2 3 2 2 1 2 3 1 2 1 3 2 3 3 1 

4 0 3 1 3 2 1 2 2 2 3 2 1 2 2 2 1 2 1 3 3 2 3 1 2 1 1 3 3 2 1 2 2 3 3 3 3 3 1 1 2 3 3 3 3 2 2 3 2 1 2 1 

4 1 1 3 2 2 3 1 2 2 2 3 1 3 1 3 2 3 3 1 2 2 1 1 1 1 3 3 2 2 2 2 1 3 1 2 1 1 1 2 2 3 1 3 1 3 1 2 2 3 2 2 

4 2 2 3 1 1 3 3 3 2 3 3 1 2 2 3 3 1 3 3 2 3 2 3 2 3 3 3 1 2 3 3 2 3 1 3 3 1 1 3 1 2 3 1 3 1 3 3 1 1 2 2 

4 3 2 2 1 3 2 2 2 3 1 1 3 2 2 3 3 3 2 1 2 3 3 2 2 3 3 1 3 2 3 2 2 3 1 1 1 3 3 3 3 1 1 2 2 1 2 2 1 2 2 3 

4 4 1 1 1 2 3 3 1 3 3 1 3 3 1 2 2 1 3 3 3 2 1 2 2 1 3 3 2 1 3 1 3 2 1 3 2 3 1 2 1 1 3 3 3 2 1 3 2 1 3 2 

4 5 1 1 1 1 2 1 1 1 2 3 3 1 3 1 2 3 3 1 1 3 3 3 1 1 1 2 3 2 2 3 1 2 2 2 2 1 1 1 2 2 2 2 1 1 3 1 2 2 2 1 

4 6 2 1 1 1 2 2 3 1 3 2 1 2 2 1 3 3 3 2 1 2 2 2 3 2 1 1 2 3 2 1 3 3 2 3 2 3 1 3 3 1 2 3 2 1 3 3 1 3 2 1 

4 7 3 2 2 2 2 2 2 3 1 1 3 1 3 3 1 1 2 2 1 2 1 2 3 1 2 1 2 3 1 1 2 2 2 1 1 2 1 3 2 2 2 2 1 2 3 2 2 2 2 1 

4 8 3 3 3 1 2 1 3 1 3 1 2 3 1 3 1 2 2 3 1 3 2 1 3 1 3 3 2 3 1 2 1 2 3 1 3 3 2 3 3 2 1 1 3 2 1 1 2 2 1 1 

4 9 1 2 3 3 1 3 2 1 3 2 2 2 3 3 2 1 1 2 1 2 1 3 1 1 2 2 1 3 3 2 2 3 3 2 2 2 1 3 2 2 2 2 2 2 2 2 3 2 3 2 

5 0 3 2 2 3 2 2 3 2 1 1 3 3 1 2 1 3 2 1 2 1 3 1 3 3 2 3 3 3 3 1 3 1 1 2 1 1 1 1 3 1 1 1 2 1 2 1 1 3 3 1 
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Table G.4. One-way road types for traveling from the customers 51-100 to the 
customers 51-100. The matrix should be read over rows. 
 

→ 
5
1 

5
2 

5
3 

5
4 

5
5 

5
6 

5
7 

5
8 

5
9 

6
0 

6
1 

6
2 

6
3 

6
4 

6
5 

6
6 

6
7 

6
8 

6
9 

7
0 

7
1 

7
2 

7
3 

7
4 

7
5 

7
6 

7
7 

7
8 

7
9 

8
0 

8
1 

8
2 

8
3 

8
4 

8
5 

8
6 

8
7 

8
8 

8
9 

9
0 

9
1 

9
2 

9
3 

9
4 

9
5 

9
6 

9
7 

9
8 

9
9 

1
0
0 

5 1 - 2 2 1 2 1 3 2 1 3 3 3 2 1 3 2 1 1 1 2 3 1 2 3 3 1 2 3 2 1 1 1 3 3 3 1 2 3 1 3 3 2 2 2 3 1 1 2 1 1 

5 2 2 - 2 2 1 2 3 1 3 3 3 1 3 2 1 2 2 2 1 1 1 2 2 3 2 1 3 3 1 3 2 2 3 3 2 3 2 3 2 2 3 2 3 1 3 3 3 1 3 3 

5 3 2 2 - 2 3 3 3 1 1 1 2 2 2 1 2 1 3 3 2 2 2 1 2 3 1 3 2 2 1 2 2 2 1 2 1 3 1 2 2 3 2 1 3 2 2 2 3 3 3 2 

5 4 3 3 1 - 1 2 3 3 2 2 1 1 3 2 1 2 3 2 2 2 3 2 3 2 1 2 2 1 3 3 1 1 1 1 3 3 1 2 2 3 1 1 1 1 1 2 3 2 3 1 

5 5 3 3 2 3 - 2 2 3 3 1 1 1 2 1 3 1 1 2 3 2 2 2 2 2 2 2 3 1 1 3 2 1 3 2 1 3 3 3 3 3 2 3 2 1 1 3 1 1 1 1 

5 6 1 1 1 3 3 - 1 2 1 3 3 3 2 2 1 3 1 2 2 2 2 1 2 1 2 1 3 3 3 1 1 3 3 1 2 1 2 3 1 2 3 3 1 1 2 2 3 1 2 1 

5 7 3 1 2 3 3 3 - 2 1 3 1 2 2 1 3 2 1 1 3 2 2 2 1 2 2 3 3 1 2 2 2 3 3 1 3 1 2 3 2 2 1 1 2 1 1 1 1 1 1 3 

5 8 3 2 2 3 1 2 2 - 2 3 2 2 1 2 2 2 1 1 2 1 2 2 2 2 2 2 1 3 3 1 1 1 1 1 2 3 3 1 3 3 2 3 1 3 3 2 3 3 1 1 

5 9 2 2 2 2 1 3 3 3 - 1 1 3 2 1 3 1 3 1 1 3 3 3 1 2 2 1 3 1 3 1 3 3 1 1 3 1 1 1 3 1 1 2 3 3 3 2 1 1 2 2 

6 0 3 3 3 2 1 2 1 3 1 - 2 1 2 1 2 1 1 3 1 1 1 1 3 1 1 1 3 2 1 1 3 3 3 1 2 1 1 2 3 2 3 3 3 2 2 2 2 3 1 3 

6 1 1 1 3 2 2 1 2 2 2 3 - 1 1 2 2 2 2 2 3 2 1 2 1 2 3 3 1 3 2 2 2 2 2 3 1 3 3 2 3 2 2 1 1 2 1 1 1 1 1 3 

6 2 3 1 2 1 3 3 1 2 1 3 1 - 3 1 1 3 2 1 2 3 2 1 3 2 3 3 2 1 2 3 1 1 1 3 3 3 2 2 2 1 1 3 1 1 3 2 2 2 1 1 

6 3 1 1 3 3 3 3 1 2 3 2 1 2 - 1 3 1 2 1 3 2 1 3 3 1 2 1 3 3 2 2 1 3 2 3 3 1 3 2 2 1 3 1 2 3 2 2 2 3 1 3 

6 4 2 2 2 3 2 2 2 3 1 1 3 3 1 - 1 3 2 3 2 2 3 3 1 2 2 1 1 1 2 1 1 2 2 2 2 1 2 1 1 3 2 1 1 2 3 3 1 1 1 2 

6 5 3 1 3 2 2 3 3 2 2 1 2 2 1 1 - 2 3 1 1 2 3 1 3 1 2 2 1 1 1 3 2 3 2 1 1 2 3 1 2 3 3 3 2 1 1 1 1 3 2 3 

6 6 2 3 2 1 3 1 3 3 3 3 1 1 1 2 3 - 2 2 2 3 2 2 1 1 2 1 3 2 2 2 2 3 2 2 1 3 2 2 1 2 3 1 2 2 1 1 2 2 3 3 

6 7 3 1 3 3 2 3 1 1 2 3 2 1 1 2 3 3 - 3 1 1 1 2 1 3 1 1 3 1 2 1 2 2 1 3 2 3 1 3 2 2 3 1 1 1 3 1 3 1 3 3 

6 8 2 2 1 1 2 2 2 3 2 3 3 2 3 3 3 3 3 - 3 2 3 1 3 2 2 1 1 2 2 2 1 1 1 1 1 3 1 2 3 2 3 3 2 1 2 1 3 3 1 1 

6 9 2 2 1 1 3 3 3 1 1 1 2 1 1 3 1 2 1 2 - 3 2 2 3 3 2 3 2 1 2 3 2 2 1 3 3 3 3 1 2 2 2 1 1 1 2 3 3 3 1 3 

7 0 1 3 1 3 1 2 2 2 1 3 1 3 2 1 1 2 1 3 1 - 2 1 1 3 1 2 3 2 1 1 2 1 3 2 1 3 1 2 2 3 3 2 3 2 1 1 3 1 2 1 

7 1 2 3 1 2 1 1 2 2 2 3 1 2 3 2 2 3 3 1 2 2 - 1 1 1 2 2 2 2 2 3 1 3 3 1 1 2 2 1 2 3 3 2 1 2 2 2 2 3 3 3 

7 2 3 2 3 3 1 3 3 2 3 2 1 3 3 2 3 3 1 1 1 2 2 - 2 3 2 1 2 1 2 2 2 2 2 2 2 1 1 3 3 3 1 2 1 1 1 1 3 2 1 1 

7 3 2 3 3 2 2 3 3 1 1 1 2 1 1 2 2 3 1 3 1 2 1 3 - 3 3 1 2 1 2 2 3 1 1 2 3 2 1 1 3 2 2 2 1 2 2 1 2 1 3 2 

7 4 2 3 1 1 1 1 3 3 1 1 1 3 1 2 2 1 2 1 3 3 2 3 3 - 3 1 1 1 2 3 1 3 1 3 3 1 1 1 3 2 1 2 3 2 2 3 2 1 3 1 

7 5 2 1 2 3 3 3 2 3 2 1 2 3 1 1 2 2 3 3 1 3 3 3 3 3 - 2 3 2 2 2 1 1 3 2 2 1 1 3 3 1 3 3 2 3 2 3 1 3 3 1 

7 6 2 3 3 2 3 1 3 3 1 3 3 3 2 1 1 2 2 1 3 3 1 1 2 3 2 - 2 3 2 2 1 3 2 3 3 3 1 3 3 2 1 1 2 1 3 2 1 3 1 3 

7 7 3 3 3 1 2 2 2 3 3 1 3 2 2 2 2 2 3 2 3 1 3 2 1 1 3 3 - 2 1 1 2 1 3 3 1 3 3 3 2 1 2 1 1 1 1 3 2 1 2 1 

7 8 3 3 3 1 1 1 1 1 1 3 1 3 2 1 3 3 2 3 1 2 2 3 2 2 1 3 2 - 3 1 1 2 2 3 2 2 3 1 3 3 1 1 2 3 3 1 3 2 2 2 

7 9 3 2 1 1 1 1 2 3 1 2 1 3 1 1 3 2 1 1 1 2 1 2 2 1 3 2 3 2 - 2 2 3 2 1 3 1 3 3 3 1 3 1 3 2 3 1 2 3 2 3 

8 0 1 2 3 3 1 1 1 3 2 1 3 2 1 3 3 1 3 2 2 1 1 3 3 3 1 3 3 2 3 - 2 1 2 2 2 1 1 2 2 2 1 2 3 1 2 1 2 3 3 2 

8 1 2 1 3 1 3 1 1 1 2 1 2 2 1 3 1 2 2 3 3 3 2 3 3 1 3 2 2 1 2 3 - 2 2 3 2 2 3 1 3 2 1 3 3 3 3 1 1 1 3 3 

8 2 2 1 1 2 1 3 3 3 3 3 3 2 3 1 1 3 3 1 1 3 3 2 1 3 2 3 3 3 1 1 2 - 3 2 3 2 3 2 2 1 3 3 2 2 2 3 1 2 2 1 

8 3 2 2 1 3 3 2 3 1 3 2 3 1 1 2 3 3 3 3 1 3 2 1 1 3 1 2 2 3 3 3 3 2 - 2 1 1 3 1 1 3 2 2 1 1 1 3 2 3 1 1 

8 4 3 3 3 1 3 1 2 3 2 1 2 3 1 3 1 3 1 1 1 3 2 3 2 3 1 3 2 1 1 2 1 3 3 - 2 3 2 2 2 1 2 1 1 2 1 2 3 3 2 3 

8 5 2 2 3 2 1 3 2 1 3 3 3 3 3 1 1 1 1 1 3 2 2 3 1 3 1 1 3 2 3 3 3 2 3 2 - 3 2 3 3 1 1 1 3 2 2 1 2 2 2 2 

8 6 2 1 1 3 3 1 3 1 3 3 3 2 1 2 3 3 2 2 3 2 2 3 2 2 2 1 2 3 2 1 2 2 3 1 1 - 2 1 3 2 1 2 3 1 1 1 3 3 2 1 

8 7 1 3 1 3 3 1 3 1 3 1 3 1 3 3 1 2 1 2 1 1 2 2 3 2 2 1 3 1 2 2 3 1 2 3 2 2 - 3 3 1 1 1 1 1 3 3 2 3 3 2 

8 8 3 3 2 3 1 3 1 2 2 1 1 3 1 2 2 1 3 1 3 1 3 1 2 2 1 2 1 1 1 2 1 3 2 1 1 2 3 - 3 2 3 1 2 1 2 2 3 1 1 3 

8 9 1 1 3 2 2 3 1 1 1 2 3 2 3 1 2 3 1 1 2 1 1 2 2 1 2 1 2 2 2 3 2 1 3 3 1 1 1 3 - 2 2 3 1 3 1 2 1 1 3 3 

9 0 1 1 3 2 2 3 3 3 3 1 3 3 2 3 1 3 1 2 3 1 1 1 2 1 2 2 2 2 2 1 2 3 1 2 1 1 3 3 3 - 3 3 3 3 2 1 3 3 3 3 

9 1 1 3 1 3 3 3 2 1 1 2 2 1 3 2 2 3 3 1 3 1 3 2 3 3 3 2 2 1 3 2 3 3 2 3 2 3 2 3 1 1 - 3 2 1 3 2 1 2 1 3 

9 2 2 3 3 1 1 3 1 1 2 3 2 1 3 2 3 2 2 1 2 1 3 3 1 3 2 1 3 2 2 2 2 2 1 1 1 1 3 1 1 1 2 - 3 2 3 3 2 1 2 1 

9 3 1 2 3 3 1 3 1 1 3 3 2 2 1 2 1 2 2 3 3 3 2 2 3 2 3 2 2 3 3 3 3 3 3 1 1 1 1 2 2 2 2 3 - 3 3 1 3 1 2 3 

9 4 1 1 3 3 2 1 2 1 3 2 3 1 1 1 1 2 2 1 2 3 1 1 2 3 2 1 2 2 1 2 3 1 2 3 3 1 1 1 2 1 3 2 2 - 3 3 2 3 1 3 

9 5 3 3 2 2 1 1 3 1 3 1 1 3 3 1 3 1 1 2 3 3 3 3 2 3 3 2 1 1 2 3 2 3 2 1 1 3 3 1 1 2 3 3 2 2 - 2 2 1 3 2 

9 6 3 2 2 2 2 1 3 1 2 2 3 2 3 1 2 2 1 3 3 3 2 2 3 1 2 3 1 3 2 3 2 2 3 3 2 2 3 3 3 1 3 2 2 2 1 - 3 1 1 3 

9 7 1 1 2 3 3 1 1 3 3 3 1 2 2 2 2 3 1 3 1 3 1 1 1 3 2 3 1 2 2 1 1 2 3 1 2 2 2 1 1 2 3 1 3 3 3 3 - 1 2 2 

9 8 3 3 3 2 3 2 2 2 2 2 3 3 3 3 1 2 3 3 2 3 2 3 3 2 2 2 2 1 2 1 1 1 1 3 2 3 2 2 1 3 2 2 2 3 2 2 1 - 1 1 

9 9 3 1 3 1 2 1 2 1 2 2 3 3 2 3 1 3 1 1 3 1 1 1 3 3 1 3 1 3 1 2 2 3 3 1 3 1 2 3 1 1 3 2 1 2 3 1 3 3 - 3 

1 0 0 2 2 2 1 1 3 3 1 1 1 1 2 2 1 2 1 2 3 3 2 1 3 2 2 3 3 2 2 3 2 1 3 3 2 1 3 3 1 1 1 1 1 2 1 1 3 1 1 1 - 

 


