
TESTING STRATEGIES FOR k-out-of-n SYSTEMS UNDER FOREST TYPE

PRECEDENCE CONSTRAINTS

by

AYDIN TANRIVERDİ

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

SABANCI UNIVERSITY

Spring 2008

©

AYDIN TANRIVERDİ 2008

All Rights Reserved

TESTING STRATEGIES FOR k-out-of-n SYSTEMS UNDER FOREST TYPE

PRECEDENCE CONSTRAINTS

APPROVED BY:

Assistant Prof. Tonguç Ünlüyurt ..

(Thesis Supervisor)

Assistant Prof. Kemal Kılıç ...

Assistant Prof. Kerem Bülbül ...

Associate Prof. Bülent Çatay..

Assistant Prof. Cem Güneri...

DATE OF APPROVAL: ...

iv

ACKNOWLEDGEMENTS

To start with, I would like to present my deep gratitude and thanks to my

thesis advisor Dr. Tonguç Ünlüyurt for his endless support throughout my research in

the last year of my master study. His continuous enthusiasm, encouragement and

motivation helped me a lot in the preperation of this thesis. I also want to express my

thankfulness to the committee members for their helpful reviews, comments and

suggestions about the thesis. In addition, my cordial thanks go to Dr. Kemal Kılıç for

his enormous encouragment. The financial support from Sabancı University for this

thesis is also gratefully acknowledged. Last but by no means least, I would like to

thank my family with all my heart for all their love and encouragement that I received

all through my life, and to my dear friends Nazlı, Canan, Nalan, Sevan, Arda, Kutay,

İlter, Can for their support and friendship.

v

ABSTRACT

This thesis investigates diagnosis strategies for k-out-of–n systems

under precedence constraints. A k-out-of-n system consists of n independent

components whose working probabilities of are known in advance. The system itself

functions if at least k components function. The true state of the system is determined

by the sequentially inspection of these components. This inspection is costly and the

cost of inspection for each component is also known. This study aims to minimize

expected cost of determining true state of such a system when there are forest type

precedence constraints. Optimal inspection strategies are already known for series

and parallel systems. In this study, modifications of these strategies are proposed for

k-out-of-n systems. Numerical results are presented to evaluate and compare the

proposed strategies

vi

ÖZET

Bu tez n’in k’lısı (k-out-of-n) sistemlerde öncelik kısıtları oduğu zaman,

tanılama stratejilerini araştırmaktadır. n’in k’lısı sistemler, çalışma olasılıkları

önceden belli n tane bağımsız bileşenden oluşurlar. Sistemin kendisi eğer en az k tane

bileşen çalışırsa çalışır. Sistemin gerçek durumu bileşenlerinin sırayla test edilmesiyle

tespit edilir.Bu test işleminin bir maliyeti vardır ve her bileşenin testinin maliyeti de

önceden bilinir. Bu çalışma n’in k’lısı bir sistemde koru (forest) tipi öncelik kısıtları

varken, sistemin gerçek durumunu belirlemenin beklenen maliyetini asgariye

düşürmeyi amaçlamaktadır. Seri ve paralel sistemler için en iyi test stratejileri zaten

bilinmektedir. Bu çalışmada seri ve parallel sistemler için bulunan bu en iyi stratejiler

n’in k’lısı sistemlere uygulanmak için değiştirilmiştir. Önerilen stratejilerin

performanslarını hesaplamak ve karşılaştırmak için sayısal sonuçlar sunulmuştur.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv
ABSTRACT .. v
ÖZET .. vi
LIST OF TABLES ... viii
LIST OF FIGURES .. ix
1. INTRODUCTION ... 1
2. PROBLEM DESCRIPTION AND LITERATURE REVIEW 4

2.1. Problem description... 4
2.2. Problem Types... 5

2.2.1. Simple Series and Parallel Systems .. 5
2.2.2. k-out-of-n Systems .. 7
2.2.3. Series-Parallel Systems (SPSs) ... 9

3. SOLUTION METHODS... 10
3.1. An optimal algorithm for the series and parallel systems with forest type
precedence graph. [1] .. 10
3.2. An optimal algorithm for k-out-of-n Systems without precedence
Constraints ... 14
3.3. A Heuristic Solution for k-out-of-n Systems With Parallel Chain
Precedence Constraint ... 16
3.4. Strategies For k-out-of-n Problem Under The Forest Type Precedence
Constraints ... 20

3.4.1. Using Intersection Algorithm .. 21
3.4.2. A Greedy Approach by Defining a New Merit Value 23
3.4.3. Permutation Solutions ... 27
3.4.4. Improving Permutation Solutions ... 28

4. COMPUTATIONAL RESULTS .. 29
5. CONCLUSION ... 38
REFERENCES .. 39
APPENDIX: NUMBER OF INSTANCES FOR WHICH EACH ALGORITHMS
PRODUCES BEST RESULTS ... 41

viii

LIST OF TABLES

Table 3-1. Size of Binary Decision Tree for Different (n,k) Pairs 24
Table 4-1. (n,k) Pairs for Which We Computed Expected Cost of Binary Decision
Tree Strategies ... 30
Table 4-2. Percent Difference Between all Strategies and Intersection Algorithm With
Random Selection Method .. 35
Table 4-3. Percentage Difference Between all Permutation Strategies and
Permutation According to Ascending Order of c/p ... 37
A-1 Number of instances for which algorithms produces best result n=40 42
A-2 Number of instances for which algorithms produces best result n=60 42
A-3 Number of instances for which algorithms produces best result n=80 42
A-4 Number of instances for which algorithms produces best result n=100 k<=3(all
strategies) .. 43
A-5. Number of instances for which algorithms produces best result n=40
k>6(permutation strategies) .. 43
A-6. Number of instances for which algorithms produces best result n=60
k>5(permutation strategies) .. 43
A-7. Number of instances for which algorithms produces best result n=80
k>4(permutation strategies) .. 44
A-8. Number of instances for which algorithms produces best result n=100
k>3(permutation strategies) .. 45

ix

LIST OF FIGURES

Figure 2.1. Special Type Precedence Graph ... 5
Figure 2.2. A Binary Decision Tree .. 7
Figure 2.3. Two Examples of SPSs ... 9
Figure 3.1.Precedence Graph for Example 3.1 ... 13
Figure 3.2. Parallel Chain Precedence Constraints for Example 3.2 17
Figure 3.3. A Parallel Chain Precedence Graph .. 20
Figure 3.4. Parallel Chain Precedence Graph for Example 3.3 26
Figure 3.5. A Binary Decision Tree for 2-out-of-5 System .. 26
Figure 4.1. Number of Best Solutions v.s Strategies .. 31
Figure 4.2. Average Cost v.s Strategies .. 32
Figure 4.3. Percent Difference Between Best of BDT and Best of Permutation
Solutions .. 32
Figure 4.4. Percent Difference Between the Intersection Algorithm With Random
Selection and Intersection Algorithm With Min Index Selection Method 33
Figure 4.5. Number of Best Solutions v.s Strategies for Different Probability
Distributions .. 34
Figure 4.6. Number of Best Solutions v.s to Different (n,k) Pairs. 36

1

1. INTRODUCTION

The problem of minimizing the expected cost of identifying true state of a

system is encountered in many practical situations. The system consists of

components which are either faulty or working. The system state is determined by the

states of the components and the components should be tested individually until the

state of the system is determined. This testing procedure is usually costly or time

consuming and determining the sequence of testing that minimizes the expected cost

is an important problem and it has been an important research area for several years.

 The testing problems arise in many applications [17] including the design of

interactive expert systems, reliability analysis of coherent systems, classification of

pattern vectors[9], file screening/searching applications [5], manufacturing

applications such as testing of machines before shipment, testing of manufacturing

operations [1,10], design of screening procedures[1], wafer probe testing in electrical

engineering [4]), best value, or satisficing search algorithms in artificial intelligence

[16]), testing incoming patients against some rare but dangerous disease [18],

organization and criterion of an applied research project [13], and in quiz shows

choosing the right order of the quiz categories.

 In this study, we focus on testing k-out-of-n systems. In these types of

problems, the system is functional if at least k of n components are functional and

system functionality only depends on the number of working and faulty components.

This property is specific to k-out-of-n systems and for more general systems the

system state may depend on the functionalities of the individual components in a

more complicated manner. Typically, this dependency can be described by a

monotone Boolean function.

In some applications, it is not possible to execute the tests for the components

in any order. There may be precedence constraints among the tests due to physical,

logical or technological reasons. The precedence constraints could also arise as a

result of process analysis. The precedence constraints, like in other applications such

as scheduling, can naturally be described by an acyclic directed graph. In this directed

graph, the nodes correspond to the components or tests and an arc (i,j) means that

component j cannot tested if component i has not been tested yet. . These precedence

2

constraints increase the complexity of testing problem a lot. The common types of

precedence constraints that have been studied in the literature are parallel chain

precedence constraints [2] and the forest type precedence constraints [1]. We

encounter the precedence constraints in many practical situations. For example, one

wants to detect a rare disease through a series of tests but some certain tests should

use the results of some other tests. The sequence of testing is restricted by the

precedence constraints in this situation.

The k-out-of-n problems are studied very well in the literature. A strategy S

for k-out-of-n problems is naturally represented by a binary decision tree see e.g. [17].

An optimal strategy for k-out-of-n problems, in which there are no precedence

constraints, can be generated in polynomial time. The special cases 1-out-of-n and n-

out-of-n with forest type precedence constraints have also been solved optimally

[6,7]. In [15] Simone and Kadane state the optimal conditions, which a strategy

should provide, under general precedence constraints, but they do not give any

algorithm to obtain such an optimal strategy. In [20] np hardness of n-out-of-n

problem under the general precedence constraints has been proven. For none of the

special precedence graphs, the general k-out-of-n problem has been solved optimally

yet. Usually the solutions for testing problem under precedence constraints are based

on reduction of the precedence graph [1,2]. Reduction of precedence graph means the

partitioning of the precedence graph into subgraphs such that there is no violated

precedence constraints when we order the subgraphs according to special

permutations of components.

In this study, we propose solution methods for testing of k-out-of-n systems

with forest type precedence constraints which generalize parallel chain precedence

constraints. We apply two different reduction algorithms whose results are the same.

The first reduction algorithm is proposed for forest type precedence constraints by

Garey[1], and is used for 1-out-of-n and n-out-of-n systems. This reduction technique

has not been used in the solution of general k-out-of-n systems under the forest type

precedence constraints. The second reduction algorithm which is used for parallel

chain precedence constraints is proposed by Chiu et al [1]. We use this reduction

technique for forest type precedence constraints by making some modifications. After

reduction of the precedence constraints, we use Ben-Dov’s optimal algorithm [3]

which is for k-out-of-n systems without precedence constraints. Ben Dov’s algorithm

is based on finding a set such that testing a random element of this set will give

3

optimal strategy. But under the precedence constraints the random selection does not

give optimal solution anymore. Therefore we evaluate different selection methods

from this set. Moreover we also evaluate strategies that are permutations of the

components and we improve these permutations by applying simulated annealing

method. As far as we know these are the first numerical results for k-out-of-n systems

with forest type precedence constraints.

The remainder of the thesis can be outlined as follows. In chapter 2, we will

formally define the problem and we will give details about different types of testing

problems. A review of the literature on k out of n systems is also included in that

chapter. In chapter 3, we will describe the commonly used testing strategies and

modification of these strategies for k-out of-n problems with forest type precedence

constraints. In chapter 4, we will give computational results of simulations and

present a comparison of algorithms. In chapter 5, we will provide some concluding

remarks and future research directions.

4

2. PROBLEM DESCRIPTION AND LITERATURE REVIEW

2.1. Problem description

Let’s consider a system that consists of n components whose functionalities

are not known yet. The component set of the system is N={ }nttt ,...,, 21 where xi

describes the functionality of component ti as follows:t,







=

otherwise

functionalistif
x

i

i

0

1

A state vector of the system x =),...,,(21 nxxx is a boolean vector whose ith

element shows the functionality of component i and the system functionality is

characterized by the following function:







=
otherwise

xf
0

 xstate systemat workingissystemtheif1
)(

In order to determine whether the system is working or not, we should learn

the states of the components (not necessarily all of them) one by one. Initially, we do

not know the states of the components but we have a prior working probability of

each component. We should test a subset of the components to obtain the system’s

actual state. The testing procedure continues until the state of the system is

determined. It is assumed that states of the components are independent random

variables. Testing of each component is usually costly or time consuming; as such

determining the sequence of testing is a vital issue to minimize the expected cost of

determining true state of whole system. An inspection strategy S is a rule that

specifies which component will be tested next, when we know the states of the

already inspected components. So, an optimal inspection strategy is the one which has

minimum total expected time or cost among all strategies.

 In order to develop algorithms that produce good strategies, typically one

should make use of the special structure of the system function and/or data. In certain

applications, there are precedence constraints among the components. These

constraints essentially state that, certain components are available for inspection if

other certain components are inspected before. This situation generally can naturally

5

be described by an acyclic directed graph. Each arc from node i to node j means

component j cannot be tested before component i . [17].

Some special precedence types we frequently encounter are forest and parallel

chain type precedence constraints. In parallel chain precedence constraints, there are

disjoint subsets mNNN ,...,, 21 of N where the precedence constraints exist only

within each iN . In addition, within each chain there is only one feasible testing

strategy [2]. Garey in [1] defines forest type precedence constraints as “In each

precedence graph either no component has more than one immediate predecessor, or

no task in that component has more than one immediate successor.” In other words,

the precedence graph is a forest of in-trees and/or out-trees. Forest type precedence

constraints obviously generalize parallel chain type precedence constraints. In figure

2.1, we see forest type and parallel chain type precedence constraints.

 (a) (b)
Parallel chain precedence constraints Forest type precedence constraints

Figure 2.1. Special Type Precedence Graph

2.2. Problem Types

2.2.1. Simple Series and Parallel Systems

Simple series and parallel systems are elementary but common. A series

system is functional if and only if all the components are functional. So we continue

to inspect the components until we find a faulty one or until we test the all

components. The state function of the system is,

{ })(),...,(),(min)(21 nxfxfxfxf = Or nxxxxf ∧∧∧= ,...,)(21

On the other hand, for the parallel systems, one functional component is

enough to conclude that whole system is working. So we continue to inspect until we

6

find a fault free component or until we test the all components. The state function of

the system is,

{ })(),...,(),(max)(21 nxfxfxfxf = Or nxxxxf ∨∨∨= ,...,)(21

Although these are simple systems, the results that are obtained for these

special cases are the milestones for the testing literature.

The basic and the simplest type of the testing problems are the simple series

and simple parallel systems. A testing strategy for these problems corresponds to a

permutation of components. For these systems, it is easy to find an optimal

permutation. Let us define permutations τ and π as follows:

)(

)(

)2(

)2(

)1(

)1(...
n

n

p

C

p

C

p

C

τ

τ

τ

τ

τ

τ
≤≤≤

)(

)(

)2(

)2(

)1(

)1(...
n

n

q

C

q

C

q

C

π

π

π

π

π

π
≤≤≤

Then it is easy to show that τ is optimal for simple parallel systems and π is

optimal for simple series systems. [6,7] The expected costs of these strategies can be

written as follows:.

)()(
1

0
)(

1
)(∏∑

−

==

=
i

k
k

n

i
i qCC τττ , where 1)0(=τq

)()(
1

0
)(

1
)(∏∑

−

==

=
i

k
k

n

i
i pCC πππ , where 1)0(=πp

As Ünlüyurt states in [17] these strategies are very intuitive. For a parallel

system the testing procedure ends when a working component is observed. So we are

looking for a component which has minimum cost and maximum working probability.

The component that provides these properties has minimum (pc /) ratio. The dual of

this argument is valid for series systems.

In [1] Garey found optimum solution of the simple series systems in which

testing sequence must satisfy forest type precedence constraints. The Algorithm

mentioned in his study can also be applied to simple parallel systems. His algorithm is

based on some reduction techniques that turn the system with precedence constraints

into one where there are no precedence constraints. Since the testing procedure comes

to halt when a faulty component is found, the optimal solution is a permutation of

components. The results of Garey are not only restricted with the positive costs. They

7

are also applicable for the negative costs (rewards). This algorithm will be described

in detail later.

2.2.2. k-out-of-n Systems

These systems are the generalization of the 1-out-of-n (parallel) systems and

n-out-of-n (serial) systems. The system is functional if at least k of its components are

functional. So we continue inspection procedure until we find k fault free components

or n-k+1 faulty components. The state function of the system can be described as

follows:







+−≥−++−+−

≥+++
=

1)1(...)1()1(0

...1
)(

21

21

knxxxif

kxxxif
xf

n

n

While, testing strategies for the simple parallel and simple series systems are

represented by permutations of components, in general, the strategies for k-out-of-n

systems can be represented by a binary decision tree. In Figure 2.2, we see a binary

decision tree for a 2-out-of-3 problem.

Figure 2.2. A Binary Decision Tree

Each node in the tree corresponds to a component. In the example, the root is

indexed by the first component. This means testing starts with component 1. For each

internal node in the binary decision tree, there are two outgoing arcs. So each internal

node in the tree has two successors and leaf nodes have no successors. The two

outgoing arcs from an internal node correspond to the result of the test of that node.

Let us say the component associated with a node is it , then the right side successor of

it is the component that we test next if we find that it is working and the left side

successor is the component that we test next if it is faulty. The leaf nodes are

8

“success” or “fail” nodes that show the state of the system. There is a unique path

from the root to each leaf node. If the leaf node is success node, then there are k right

arcs and less than (n-k+1) left arcs and for the fail nodes there are (n-k+1) left arcs

and less than k right arcs on the path from the root to that leaf node. On each path

from root to a leaf node we can observe the state of each component on this path and

we can find the cost and probability of the path. The cost can be calculated by

summing up all the costs associated to nodes on this path and the probability can be

calculated by multiplying ip s for the working state components and ip−1 for the

faulty components. In this framework, we can calculate the expected cost by

multiplying path cost with the path probability. By summing up all paths’ expected

cost we will find the expected cost of our decision tree or expected cost of our testing

strategy S.

E (Cs) =)(*)(i
i

i pathCostpathP∑

 j
ji

ii qppathP *)(
,
∏= , where node set i corresponding to working components and

node set j corresponding to faulty components.

)(ipathCost =∑ iC

Let us calculate the expected cost of binary decision tree in Figure 2.2 which is

constructed for 2-out-of-3system. Let us assume the following data for the costs and

probabilities of the components.

8.0)(,5.0)(,4,0)(,4,8,5 321321 ====== tptptpCCC ttt

There are 6 leaf nodes in the example so there are 6 paths. As an example let

us calculate the cost of two leftmost paths.

=),,(21 FttC 21 tt CC +)1(*)1(),,(2121 tt ppFttp −−= ,

 321321),,,(ttt CCCFtttC ++= 231321 *)1(*)1(),,,(ttt pppFtttp −−=

The others can be calculated by the same manner. The total cost of this decision tree

is.
)1(*)(*)()(*)(*)(

)(*))(1(*)())(1(*))(1(*)(

313213131

213212121

tttttt

ttttt

ptpCCCtptpCC

tptpCCCtptpCC

−++++

+−+++−−+

36.1512.0*1748.0*93.0*173.0*13)(=+++=sEC

 When there are no precedence constraints, Ben-Dov [3] obtains an optimal

solution for the k-out-of-n problems, and the optimality of this solution is also proved

9

by Chang et al [4]. His strategy tests a random component which is in both first k

elements of permutation τ and first n-k+1 elements of permutation π.

 In [2], Chiu studies the sequential testing problem of the k-out-of-n systems

with parallel type precedence constraints. They also give a sufficient optimality

condition for the k-out-of-n problems with parallel chain precedence type. A reduction

technique similar to Garey’s reduction technique is used to handle the precedence

relation. After the precedence relation problem is handled, they use Ben Dov’s results,

which are used for k-out-of-n systems for which there are no precedence constraints.

2.2.3. Series-Parallel Systems (SPSs)

An SPS is a specially structured network between two terminal nodes, called

the source and sink. This system is functional if there is a path between source node

and sink node. Simple parallel and simple series systems are special cases of general

SPSs.

 (a) (b)
Figure 2.3. Two Examples of SPSs

In Figure 2.3 a the state function is))((4321 tttt ∨∧∨

In Figure 2.3 b the state function is)((4321 tttt ∧∨∧)

In this study we do not focus on SPSs. The results related to SPSs can be found in

[19].

The testing problem for simple series systems and simple parallel systems

without precedence constraint and with forest type precedence constraints have been

solved optimally. For the general precedence type the optimum solution has not been

found yet. The k-out-of-n systems without precedence constraints have been solved

[3], but when there is precedence constraints the optimum strategy has not been

determined yet. In this study we focus on sequential testing problem of k-out-of-n

systems with forest type precedence constraints.

10

3. SOLUTION METHODS

In the previous chapter we mentioned some strategies that are used for the

sequential testing problem of k-out-of-n system with certain precedence constraints.

In this section we will analyze these algorithms in detail. As far as we know this is the

first study for the k-out-of-n system with forest type precedence constraints. We will

provide some numerical results for different strategies. The performance of

permutation strategies is also compared to general binary decision tree solutions. We

will use Ben-Dov’s intersection algorithm and Garey’s reduction algorithm together

to find a good heuristic when there are forest type precedence constraints. We also

modify Chiu’s algorithm for the forest type precedence constraints which is originally

designed for parallel chain precedence constraints.

3.1. An optimal algorithm for the series and parallel systems with forest type
precedence graph. [1]

 Garey provides some reduction rules that turn the precedence graph into a

graph without any arcs. Essentially, the reduction rules combine certain nodes or

delete some arcs in the precedence graph. Eventually, we have a problem with no

precedence constraints where permutation π is optimal. The expected cost of a

strategy S that inspects the components in the order 1,2,…,n is as follows.

∏∑
−

==

=
1

01

()(
i

j
j

n

i
i PCSC)

The following theorem is given for the comparison of expected cost of two

neighborhood strategy.

Theorem: Let’s define)(itR as,)1/()(iii pCtR −= where ip can be used

instead of (1- ip) for the parallel systems and S 1 become a solution of series system

such that S 1 = nttt ,...,, 21 .A neighborhood strategy S2 is obtained by changing the

place of two adjacent components then)()(12 SCSC < if and only if)()(1 ii tRtR <+ .

This theorem shows that if we want to obtain an optimal solution for n-out-of-

n systems, we should inspect the components in ascending order according to R-

values. Since, if there is a solution in which the R-values are not in ascending order,

we can decrease the expected cost of the strategy by simply interchanging

components until they are in ascending order. In order to use this theorem for the

11

problems with precedence constraints, the exchange should be feasible with respect to

the precedence constraints.

When there are precedence constraints, sometimes it is not possible to

exchange the order of two tasks that are not in the correct order with respect to R-

value, without violating the precedence constraints. In order to prevent violation of

the precedence constraints, the precedence graph is reduced to independent block

nodes each of which has a merit value. These blocks can be thought as single nodes.

Within each block only one permutation is possible. Two reduction techniques for

forest type precedence constraints and duals of these techniques are mentioned in this

paper.

First reduction theorem:

Definition 3.1.1: A leaf node in precedence graph G is called “terminal”, and if a

node is not “terminal” it is called “nonterminal”.

Definition 3.1.2: If (it , jt) is a given precedence pair then it , is an “immediate

predecessor” of jt . In other words, it is a predecessor of jt and, there is no other

components that is successors of it and predecessors of jt . In this situation jt is also

called “immediate successors” of it .

Definition 3.1.3: Minimal successors of it is jt if jt is an immediate successors of

it and jt has minimum R-value among all other immediate successors of it .

 Theorem 3.1.1: “For any given task ordering problem which has a solution, let it be

a nonterminal task which has only terminal successors. If jt is a minimal successors of

it such that)()(ij tRtR ≤ and jt has no other immediate predecessors, then there is an

optimal solution in which the subsequence, it , jt occurs.“

 By using this reduction theorem it , jt can be thought as a single component.

This means that ti and tj should be inspected consecutively. We encounter two

problems when combining these two components as a single component. First one is

finding merit value of this component and the second one is updating the precedence

graph.

Since, we find the ratio of inspection cost to the failing probability of

component in merit value formula, in order to find the merit value of this new

12

component we should first consider inspection cost and fail probability of this new

component. The expected inspection cost of this new component is jİi CPC *+ since

we do not inspect component j if the component i is not working.

The failing state of this new component occurs if at least one of the

components is in fail state. Then the probability that this combined component

functions is the product of the working probabilities of these two components. The R-

value for the combined component is the ratio of expected inspection cost to the

failure probability which is 1- functioning probability. Then the R-value for the

combined component can be written in the following way.

=),(jiR =jiji QC ,, / jii CPC + /1-(ji pp) where Qi,j=1-Pi,j and Pi,j=pipj

After we obtain R-value of the new block we should update the precedence

graph G. In order to update precedence graph, first we should delete arc between

(ji tt ,) and add new arcs between this new node and each successors of it and also

between new node and each and predecessors it .

The second reduction theorem:

Let jt be a terminal task having an immediate predecessor it such

that)()(ji tRtR < . In this situation we can update preceding graph G as the following

manner. We delete the arcs between it and jt and we add arcs between predecessors

of it and node jt .

As we can see intuitively, removing the arc between it and jt never violates

the original precedence constraints if we sort the components in ascending order

according to

R-value. After we obtain block nodes, if we sort the blocks according to R-value the

optimal solution for the simple series systems with forest type precedence constraint

is found.

By using these reduction techniques an optimal algorithm for an n-out-of n

system can be constructed as follows:

Step 0: Initially G’=G.

Step 1: If there are no arcs in the reduced graph G’, then sort the components in a

ascending order and output this order as an optimal solution and STOP. Otherwise go

to step 2.

13

Step2: Find a node it in G’, that has only terminal immediate successors

. Let the minimal successors of node it be node jt .

Step2a: If)()(ji tRtR ≥ then add a new node (ji tt ,) and update G’

and calculate R-values as explained above. Go to step1.

 Step2b: Else, delete the arcs between it and all immediate successors

of it in G’, and then add arcs between the predecessors of it and all successors of it .

Go to step1.

This reduction algorithm continues until there are no precedence constraints.

In the final sorted form of components none of the precedence relation is violated.

Since if the R-value of a component is less than the R-value of its predecessor, a new

component is added to the graph such that the predecessor comes before its successor,

otherwise; the predecessor comes before successors already because of its R-value.

The dual of this problem is 1-out-of-n systems. The algorithm explained in this

paper can be applied to 1-out-of-n systems with only changing R-value by S-value

such that,

iii pCtS /)(= , and))1(*)1((1/*)1(),(jiJiiji ppCpCttS −−−−+= .

Example 3.1

 Let us apply this algorithm to the following example. Fig 3.1.shows the forest

type precedence graph for a system that consists of 7 components.

Figure 3.1.Precedence Graph for Example 3.1

The associated testing costs, probabilities and the R-ratios for the individual

components are as follows.

7.0,15,8.0,10,8.0,5

5.0,10,5.0,15,9.0,5,7.0,10

======

========

ggffee

ddccbbaa

pCpCpC

pCpCpCpC

50)(,50)(,25)(,20)(,30)(,50)(,33.33)(======= gRfReRdRcRbRaR

14

Since component b has minimal successor a which satisfies the condition R

(a)<R(b), (b,a) forms a block with the R-value 37.83. Now c has only terminal

successors and minimal successor of c is d. So (c,d) forms a block with the R-value

26.6. Now (c,d) has only one immediate successor (a,b) and R(a,b)>R(c,d). So, the

first tree is partitioned into the blocks (a,b) and (c,d). Since component e has only

terminal successors f and g which satisfies R (e)<R(f)=R(g), the second tree is

partitioned into three blocks (e),(f),(g) with the R-values 25, 50, 50 respectively. The

final R-permutation is (e,c,d,b,a,f,g) and also f and g can be exchanged since their

ratios are the same..

1.21)(,5.12)(,5,6)(,20)(,30)(,5.5)(,4.14)(======= gSfSeSdScSbSaS

Since S(b)<S(a), we can delete the arc between b and a. Now c has three immediate

successors and S(b)<S(c) so (c,b) is block with the S-value

42.181.0*5.01/5.0*515 =−+ , now the minimum successors of (c,b) is a which

satisfies R(a)<R(c,b). So (c,b,a) is a block with the S-value

27.183.0*05.01/05.0*105.17 =−+ . Since S(c,b,a)< S(d), the first block is

partitioned into two blocks (c,b,a) and (d) with the corresponding R-values 18.27 and

20. Since S(e)<S(f)<S(g) the second tree is partitioned into three S-blocks (e),(f),(g)

with the S-values 6.5, 12,5, 21,1 respectively. The final S-permutation is

(e,f,c,b,a,d,g).

3.2. An optimal algorithm for k-out-of-n Systems without precedence
Constraints

The optimum algorithm for k-out-of-n systems without precedence graph is

stated by Ben-Dov. The optimum testing procedure proposed in [3] is as following.

 Let us define two sets by utilizing the permutations τ andπ defined before.

We take the first i elements of permutation τ and the first i elements of permutation

π for defining the sets U i and Vi, respectively.

{ }ijjU i ≤≤= 1|)(τ

{ }ijjVi ≤≤= 1|)(π

If we take the intersection of the sets 1+−knk VandU (1+−∩ knk VU) and

inspect any of the elements in this set, we obtain an optimal strategy for k-out-of-n

systems without precedence constraints. After we inspect the first component by using

15

intersection set, one of the two possible states for the inspected component may be

observed. If the inspected component is faulty and if we do not reach a result for

whole system, we will have a new system with the parameters k-out-of-(n-1). If the

inspected item is fault-free then new system will be (k-1)-out-of-(n-1). We should

continue to apply this procedure till we find the correct state of the whole system. It

is a surprising result that a randomly chosen component from the intersection leads us

to an optimum strategy. In this point let’s dwell on this surprising result. As a result of

the testing procedure, we can observe either a faulty system or a working system.

Assume that we know the system is faulty and we would like to prove this by finding

(n-k+1) faulty components. That means, we have to inspect at least (n-k+1)

components. We can get (n-k+1) faulty component in the first (n-k+1) tests. At this

juncture, the question as to which (n-k+1) components should be chosen comes to

fore. We search for an item that has both low cost and high probability of not

working. It is obvious that the optimum strategy for this search is the permutationπ .

Even we obtain the result from first (n-k+1) tests we should inspect all of the

components in 1+−knV if the system is faulty. In the alternative case, when the system is

working, we have to inspect at least k components. We should inspect all of the

components in kU for any optimal solution if we know that system is working. In

short an optimal strategy should inspect all of the components in 1+−knV so as to obtain

a faulty system. In an attempt to obtain a fault-free system it should also inspect all

components in kU . Obviously, if there is such an item that it is in both kU and 1+−knV

then it should be tested within all optimal sequences.

Because there are k components in kU and (n-k+1) components in 1+−knV , the

set 1+−∩ knk VU cannot be null. Any component in the set 1+−∩ knk VU will be

inspected in this optimal strategy. In addition, the working probability of an item and

cost of inspection of an item do not depend on the sequence of item in the strategy,

hence the randomly chosen item from 1+−∩ knk VU will be used in the optimal

strategy.

16

3.3. A Heuristic Solution for k-out-of-n Systems With Parallel Chain
Precedence Constraint

Chiu [2] claims that the intersection algorithm proposed by Ben-Dov can be

used to find a good solution under the parallel chain precedence constraints. They also

give a sufficient condition for the strategies to be optimal for k-out-of-n systems with

parallel chain precedence constraints. They do not evaluate performance of their

algorithm numerically and they do not provide any selection method when there are

more than one component in the intersection. Actually they use the same logic with

Garey and the blocks obtained from these two reduction algorithms are the same.

Now we describe the algorithm in Chiu 2 in detail.

Let I become an ordered set of components such that I = (jiii ,...,, 21). Let us

assume we are testing the components in the order induced by I and we stop as soon

as we find a faulty component (simple series case).Then the R-value of I can be

calculated as follows:

∏

∏

=

−

=

−

+++

=
j

k
i

j

k
İiii

k

Jki

p

CpCpC

IR

1

1

1

1

...

)(
211

As we said before, we can use the same reason in simple parallel systems.

Let’s define S-value of I as follows:

∏

∏

=

=

−

+++

=
j

k
i

j

k
iiiİ

k

k

q

qCqC

IS

1

1

1

....*

)(
211

Because we have two types of merit values (S-value and R-value) for a block,

the precedence graph G can be partitioned into two type blocks according to S-value

and R-value by using the following procedure

Blocking (reduction) procedure

Definition 3.3.1: A “chain” is the precedence constraint which only gives a

unique inspection order. In the reduction procedure a chain is partitioned into two

parts 21 , II . Let *
1I becomes 1I such that *

1I has min R-value among all possible 1I and

1I is not empty. *
1I is obtained as a first R-block for that chain. After removing the

first R-block, we obtain a new chain. If this new chain is empty, blocking is complete

17

for that chain; otherwise the procedure is applied to this new chain. The blocking

procedure continues until all the chains are partitioned into blocks. For the S-blocks

the same proceeding is done except, only S-value is used instead of R-value. After

blocking is complete, we obtain R-blocks and S-blocks; each has R-probability and S-

probability, R-cost and S-cost. There is no precedence relation between these blocks.

Because of there are no precedence constraints between blocks, the intersection

algorithm can be used for these blocks. Fig 3.2 shows a system with two parallel

chain precedence constraints; let us obtain R-blocks and S blocks from these chains.

Example 3.2

Figure 3.2. Parallel Chain Precedence Constraints for Example 3.2

6.0,5.0,8.0,4.0,25.0,5.0

12,1,7,6,5,10

======

======

fedcba

fedcba

pppppp

CCCCCC

94.13
4.0*25.0*5.01

6*.25.0*5.05*5.010
),,(

,29.14
25.0*5.01

5.0*510
),(,20

5.0

10
)(

=
−

++
=

=
−

+
===

cbaR

baRaR

So our first block is (a,b,c) with the R-value 13.94

57.16
6.0*5.0*8.01

12*5.0*8.01*8.07
),,(

,13
5.0*8.01

1*8.07
),(,35

2.0

7
)(

=
−

++
=

=
−

+
===

fedR

edRdR
 T

The second chain is partitioned into two R-blocks, (d,e) and (f) with the R-

values 13 and 30 respectively. As a result we obtain the R-permutation as (d,e,a,b,c,f).

93,21
6.0*75.0*5.01

6*75.05*5.010
),,(

,20
75.0*5.01

5.0*510
),(,20

5.0

10
)(

=
−

++
=

=
−

+
===

cbaS

baSaS

18

The first chain is partitioned into two S-blocks,(a,b) and (c) with the S-values

20 and 21,93

12.8
4.0*5.0*2.01

6*5.0*2.01*2.07
),,(

,8
5.0*2.01

1*2.07
),(,75.8

8,0

7
)(

=
−

++
=

=
−

+
===

fedS

edSdS

The S-blocks that are obtained from second chain are (d, e), (f) and final S

permutation is (d, e, f, a, b, c).

Chiu also gives the following sufficient condition for optimality for k-out-of-n

problems with the parallel chain precedence constraints. Let’s define R
~

-ratio of a

block ljN as)(min{
~

2IRRLJ = | }, 212 IINI lj =∅≠ and S
~

-ratio of a block ljM as

)(min{
~

2ISS lj = | }, 212 IIMI lj =∅≠ .

“We say sequence α satisfies condition C1 if the S
~

 ratio of any block in the

sequence is no less than the S-ratio of any block before it, which comes from a

different chain. Similarly we say sequence β satisfies condition C2 if the R
~

-ratio of

any block in the sequence is no less than the R-ratio of any block before it that comes

from a different chain. The inspection procedure Ω∈σ (all inspection procedures) is

optimal for the k -out-of-n system with parallel-chain precedence constraints under

condition C1 and C2.”

So far we mentioned optimal strategies for the special types of testing

problems. Namely, optimal strategies are known for simple series and parallel

systems under forest type precedence constraints and for k-out-of-n systems with

parallel chain precedence constraints a sufficient condition for optimality is known for

the algorithm of Chiu et. al. In this study we focus on different strategies for k-out-of-

n systems with forest type precedence constraints. And we will compare different

strategies in terms of their expected cost for randomly generated problem instances.

Some of the strategies we will consider can be described by a permutation of the

components while others can be described by a binary tree. Suppose the set of

components is given by },...,,,{ 321 nttttS = . Then a binary tree for a k-out-of-n system

can be built by the following recursion where),(kSP corresponds to the testing

procedure for the system S which is functional if the at least k of its components are

functional..

19

.

{ } { }














>

=

≤<−−−

=

nkiffailure

kifsuccess

nkifktSPktSPttest

kSP

ii

0

0))1,(),,(),((

),(

For the recursive case, we choose component it by the different strategies. In the

following section we will deliberate on these different strategies. Although we use the

intersection algorithm after we reduce the forest type precedence graph, we are not

sure about optimality of the strategy due to the precedence constraints. Let us analyze

this situation in the following example. Let’s consider a component set

{ }54321 ,,,, tttttS = and two different 3- out-of-5 systems, 21 SandS which are

composed of these components.

In system 1S there are no precedence constraints. Let π andτ be the

permutations according to ascending order of pCandqC // respectively. Then the

intersection of first k elements of permutation π and first (n-k+1) elements of τ is not

empty. After we test a component from this set, the resulting system will be 2-out-of-

4 in the case the tested component is functioning or 3-out-of-4 system in the case the

component fails. Let us assume the following data for the problem.

58.2,2,4.2,6.2,2 54321 ===== CCCCC

5.0,6.0,5.0,5.0,4.0 54321 ===== ppppp

π = 25431 ,,,, ttttt

τ = 25134 ,,,, ttttt

Initially, we have k=3 and (n-k+1)=3 for this example.The intersection set is

1+−∩ knk VU ={ }43 , tt . Regardless of which component we choose, if the resulting

system is 2-out-of-4 then 1+−∩ knk VU will not include any additional component,

only the component we did not choose for inspection will be included in the new

intersection. If the new system is 3-out-of-4 then, 1t and the component we did not

choose for inspection will be included in the new intersection. The additional

component, 1t in the new intersection does not depend on the component that was

chosen for the inspection.

20

If there are precedence constraints and if there are more than one component

in the intersection then it becomes important which component that we choose for the

inspection. In accordance with the item that is chosen the new intersection set may

change. We can see this situation in the following example. We use the same data

with the precedence constraints shown below.

Figure 3.3. A Parallel Chain Precedence Graph

After the blocking procedure is applied, the following blocks are obtained.

Blocks that are obtained from R-values are []13 , tt , []42 , tt 5t and blocks that are

obtained from S-values are [] 54213 ,,,, ttttt . The ascending order of the blocks

according to R and S values respectively are, []13 , tt []42 , tt 5t .and []42 , tt , []13 , tt , 5t .The

set 1+−∩ knk VU is obtained as{ }23 , tt . If we select 3t from this set and additionally if

3t is not functioning then the new intersection will be{ }2,1 tt . On the other hand, if we

select 2t and also 2t is not functioning then new intersection will be{ }43 , tt . Although

we obtain the same system after the first inspection, the next intersection and

consequently the strategy may change according to the component that we choose

from the intersection. As a result of this, Ben Dov’s algorithm is not always optimal

for the k-out-of-n systems with precedence constraints. Because of this, we analyze

the performance of different selection methods of the component from the

intersection. We also modify the reduction technique used in [3] for the forest type

precedence constraints.

3.4. Strategies For k-out-of-n Problem Under The Forest Type Precedence
Constraints

Now we can mention some strategies that we apply to solve k-out-of-n-

problems with forest type precedence constraints

21

3.4.1. Using Intersection Algorithm

In order to solve this problem, we can use Ben-Dov’s idea which chooses

available items from intersection of two permutations. For the forest type precedence

constraints we modify Chiu’s reduction algorithm and obtain the two permutations

accordingly. For the reduction case, we can also use Garey’s Algorithm. In addition,

we compare different selection methods if there are more than one component are

available in the intersection set.In the next section we will analyze these strategies.

In order to use intersection algorithm, first we should obtain the independent

blocks. This is performed by modifying Chiu’s reduction algorithm.

Let us first apply this procedure to the example given in Figure 3.1.

The 4 chains for the leave nodes are as follows:

c-b-a, c-d, e-f, e-g.

The chain c-b-a is partitioned into the following S and R blocks.

R(c)=30,

11.327.0*9.0*5.01/9.0*5.0*105.0*515),,(

,81.315.0*9.01/5.0*515),(

=−++=

=−+=

abcR

bcR

the block with the minimum ratio is (c).

So c is the first block for chain c-b-a , when we continue to apply blocking procedure

we obtain the following blocks.

R-blocks; for the first tree (c), R(c) = 30,(b,a),R(b,a)=37.83, (c,d),R(c,d)=26.6

for the second tree R(e)=25, (f), R(f)=50, (e), R(f)=25, (g), R(g)=50

Now we will sort each block for each tree without repeating any components.

c-d-b-a, e-g-f (e-f-g) are our two R-chains and these chains can be used to

find R-blocks. By the same manner the S-chains will be obtained as c-b-a-d, e-f-g

after this transformation from forest type precedence constraints to parallel chain

precedence constraints, the blocking procedure mentioned in 3 can be applied to these

chains.

This procedure can be described as follows:

Step1) Blocking procedure for forest type precedence constraints:

Step1.1):

Obtain a chain for each leaf node of the precedence graph. (This chain is the

path from the root to the leaf node)

 i) Form a set of leaf nodes LN whose elements are without any successors.

22

 ii) If LN =∅ all chains are obtained. Go to step 2. Otherwise, add a new chain

for each element i of LN .

 iii) For each chain C i , Current node CN =node i

 iv) Add CN to beginning of C i .

 v) Update CN as immediate predecessor of CN

 If CN is null chain is obtained remove i from LN and go to ii.

 Otherwise go to iv.

Step1.2):

After we obtain one chain for each leaf node, we form a single R-chain and a

single S-chain for the chains that are rooted from the same node.

i) put the chains that have same root into the same set

ii) For each chain in each set find *
1RI such that if we partition a chain into

two parts RI1 and RI 2 , *
1RI has min R-value among all possible RI1 .

Remove *
1RI from the chain and continue this process with the new

chain until chain is empty.

iii) If all the chain in all sets is blocked according to R-value go to (iv).

Otherwise go to (ii).

iv) For each chain in each set find *
1SI such that if we partition a chain into

two parts SI1 and SI 2 , *
1SI has min S-value among all possible SI1 .

Remove *
1SI from the chain and continue this process with the new

chain until chain is empty. If all the chain in all sets is blocked

according to S-value go to (v).

v) In each set, sort the blocks in a ascending order respect to the R and S

value. Some items appear more than once within R-permutation and S-

permutation. If we delete these repetitions in each permutation only the

first appearance remains and, we come up with two permutations for

each set. These permutations become our new R-chains and S chains.

Step1.3)

R-chains and S-chains are used to form R-blocks and S-blocks

respectively. When we sort these blocks according to R-value and S-value we

obtained a single R-permutation and a single S-permutation for whole system.

23

Step2) Obtaining the intersection set

kU = First k components of permutation S

 1+−knV = First n-k+1 elements of permutation R.

 Add node i to AI such that i in the set 1+−∩ knk VU and i has no predecessor.

Until this point we form the intersection and available item set that contains the items

that have no predecessor in intersection set. Because in both permutations a successor

i always come after its predecessor j , if the i is in intersection set then j is also in

intersection set.

Step 3) Selection from intersection

Selection from AI

In this part we use the following selection methods to choose component from the

intersection when there are multiple components in the intersection and we compare

these selection methods in the results part.

i) min c/p, choose the component that has the minimum c/p value.

ii) random selection, choose the component randomly.

iii) minimum of total index value (MI)

Now we will describe another selection method. Let the index of an item i in the

permutation R be ia and the index of i in permutation S be ib then in the set AI we

select *i such that

)min{()(*
ii baMII += | }AIi∈ .

If there is a solution that provides Chiu’s both conditions C1 and C2 then the

selection method min of sum of index in βα and will give us the optimal solution.

Let’s assume a procedure δ satisfies C1 and C2 then R-value of any block is

less than or equal R-value of the blocks that comes after it. Because if R
~

-ratio of a

block iB is greater than R-value of jB it implies that R-value of iB is greater than R-

value of jB . If R-value of jB is the smallest then R- index of first item of block jB in

β is also smallest. It is similar for the S-index inα . So if there is a solution that

satisfies C1 and C2 then the chosen item has min sum of index.

3.4.2. A Greedy Approach by Defining a New Merit Value

Intuitively, if the number of needed successes is less than the number of

needed failures then we should give more weight to test the components that is likely

24

to be functioning and less costly.(sorting according to c/p). Otherwise c/q can be the

dominating permutation. . We define the following merit value for each item to use

this intuition.

Min ((c/p)*(k/ (n-k+1)), (c/ (1-p))*((n-k+1)/k))

As we can see from the formula as k increases the weight of (c/(1-p)) will also

increase and the algorithm is favor of (c/(1-p)). As k decreases the weight of (c/p) will

increase and the algorithm give more importance to testing component which has min

(c/p).

The strategies that we mentioned so far can be represented by a binary

decision tree. Although it is an effective way to use intersection algorithm to find a

good inspection procedure, it is not easy to represent a solution in its entirety and to

calculate its expected cost. As we mentioned before a strategy for k-out-of-n testing

problem can be indicated by a binary decision tree. The size of the binary decision

tree can be exponential in k and n. The number of nodes in a binary decision tree can

be given by the following recursion.














>

=

+−−+−

=

nkiff

kifs

iknNknN

knN 0

)1,1(),1(

),(

We assign 1 to nodes that we want to count. For example if we assign 1 to

i we count only internal nodes. If we count all of the nodes we assign 1 to i , fands .

The size of binary decision tree for some (n,k) pairs are given in the following table:

Table 3-1. Size of Binary Decision Tree for Different (n,k) Pairs

 n,k 7 8 9 10

20 232.559 406.979 587.859 705.431

40 10.759.231 36.312.407 104.902.511 262.256.279

60 872.541.559 5.889.655.529 34.683.527.009 180.354.340.451

80 3.599.158.127 30.142.949.321 221.048.295.027 1.436.813.917.681

100 20.471.735.855 222.630.127.433 2.127.354.551.035 18.082.513.683.805

As we can see from the table, the tree grows exponentially and this does not

depend on the strategy that we use.

Since the total number of vertices in the binary decision tree is)2(nΩ any

method which explicitly generates the binary decision tree requires exponential time

25

and memory. Ming-Feng et al [4] show that the binary decision tree that describes the

Intersection algorithm can be represented by the block-walking representation, which

is of size)(2nO and can be computed in time)(2nO .

Definition 3.4.1: For any vertex v in a binary decision tree, define its tested unit set

TU (v) to be the set of units tested along the path from the root to v, including v.

Definition 3.4.2: For any vertex v in a binary decision tree, define its tested state TS

(v) to be an ordered pair (ji,) where i and j are the number of fault-free and faulty

units tested along the path from the root to v, excluding v. If all the vertices with the

same test state have the same test unit then the testing procedure can be simplified to a

block walking representation. They prove that if the items are labeled according to

ascending order of S value and if we take the item that has min label in 1+−∩ knk VU

the solution can be designated by a block walking method. The cost in block walking

model can be obtained in a bottom-up fashion by iteratively computing expected cost

at each grid point.















+

+−=

=

−+ otherwiseCC

knjif

kiif

jiC

jiJİ ,,

10

0

),(

 +

+

−

+

+ ++= 1,,,1,,, ** jijijiJİjiji CQRCPRCRC

 +

+

−

+

− ++= 1,,,1,, ** jijijijiji CQLCPLCLC

Where, =jiCR , cost of item in the right side of grid point (ji,)

 =jiPR , Probability of item in the right side of grid point (ji,)

 jiQR , =1- jiPR ,

Although Block walking method can be used instead of binary decision tree for

the representation of some optimal strategies, it is not always possible to represent any

optimal strategy with a block walking diagram if there are precedence constraints. In

the following example this situation is illustrated in detail.

Example 3.3

The system consists of the following components with the costs and

probabilities,

},,,,{ edcbaS =

26

1,1,1,4,8 ===== edcba CCCCC

1.0,5.0,5.0,5.0,5.0 ===== edcba ppppp

and following precedence graph is given.

Figure 3.4. Parallel Chain Precedence Graph for Example 3.3

We searched all solution space with enumeration and we obtained the

unique optimal strategy represented by the decision tree shown in the Figure

3.5

Figure 3.5. A Binary Decision Tree for 2-out-of-5 System

In this figure we label two nodes which have the same state, (1, 2). If the

tested unit (TU) for each node that has the same state is equal then we can reflect this

binary decision tree with block walking method. But in our example TU of the

labeled node in the left is {c,d,a,b}and TU of the labeled node in the right is {c,d,e,a}.

because these two sets are not equal, we cannot represent this tree with a block

walking method.

Neither the optimal strategies nor many of other strategies can be represented

by block walking method under the precedence constraints. Because of this, it is an

important problem to evaluate performance of a strategy when we ar study on large

instances. It is not possible to compute the expected cost of a strategy that cannot be

27

represented by a block walking diagram in a reasonable time. On the other hand it is

possible to calculate expected cost of a permutation strategy in time)(2nO .

Permutation strategies are the fixed sequence of components that we determine at the

beginning of testing procedure and that do not depend on the results of the previous

inspections if the system state is not determined yet. If the system state cannot be

determined after inspecting a set of components, the next component to inspect next is

the next component in the permutation. Let’s construct the following matrix with

entries jiC , showing, the expected value of remaining cost to determine the state of k-

out-of-n system if the i of (i+j) inspected components are fault –free.

01,10,1

,1,

0,1

,01,00,0

....

......

..........

.......

....

−+−+−

−−−

kknkn

kknkkn

k

CC

CC

C

CCC

jiC , can be calculated by the following recursion

otherwise 0

1 and if *)(1*)()(,111,11

,



 +−<<−++

=
++++++++ knikjCapCapaC

C
jijijijiji

ji

where =)(iaC Cost of thi item in permutationω and =)(iap Probability of thi item

inω .

 It is easy to see that for the base cases kiC , and
jknC ,1+−
 the expected value of

remaining cost is zero, since we obtain the state of the system. So it is

computationally easy to compute the expected cost of permutation strategies.

3.4.3. Permutation Solutions

Let us denote by RI the remaining items that have not been tested yet and by

AI the items that have not been tested yet and that are available to test according to

the precedence constraints. The following procedure gives us a feasible solution for

the k-out-of-n systems with any type precedence constraints.

-Find all it such that AIt i ∈

-choose *
it such that *

it has min c/p value (in this step we also used c value

instead of c/p) among all it .

28

3.4.4. Improving Permutation Solutions

Our initial experiments showed that the permutation solutions are inferior to

the intersection solutions. In order to find out whether the permutation solutions can

be improved easily, we used a simple hill climbing algorithm on the initial

permutation solutions.

Hill climbing algorithm is a simple local search algorithm. It takes an initial

solution and searches for the neighbors of this solution. Then, it compares the

objective function value of the current solution with the objective function value of

the neighborhood solution which has the best objective function value. If the objective

function value of the neighborhood solution is better than the objective function value

of the current solution, the algorithm moves the neighborhood solution automatically.

Otherwise the algorithm terminates.

We obtained our initial permutation solutions by using pc / and c values.

After we obtained an initial solution, we just tried to improve it by using hill

climbing. We generated all the neighborhoods by the following generation method.

We interchanged each component i in ω with the components which come after i .

Each permutation which was obtained with a single swap operation of two

components forms a new permutation strategy. We only did feasible swapping

operations which do not violate precedence constraints.

29

4. COMPUTATIONAL RESULTS

The algorithms that we presented in the previous chapter are coded in C#

language. In this chapter we perform the evaluation of the strategies by experimenting

them with different randomly generated instances with different parameters. We

compare each approach with others in terms of the expected cost for each instance.

We apply 8 different approaches to random instances. These can be summarized as

follows:

• Permutation c/p: At each step we test the component, which has no parent in

the precedence graph and has minimum c/p value. It gives a permutation

strategy that will be denoted by (perm,c/p)

• Permutation c: At each step we test the component which has no parent in the

precedence graph and minimum c value. It gives a permutation strategy that

will be denoted by (perm,c)

• Minimum merit value: We choose the component which has no parent and

which has minimum merit value (Min ((c/p)*(k/ (n-k+1)), (c/ (1-p))*((n-

k+1)/k)). It does not necessarily give permutation strategies. (min merit)

• Local search with the initial solution obtained from permutation c/p (c/p, LS):

It gives a permutation strategy.

• Local search with the initial solution obtained from permutation c (c, LS): It

gives a permutation strategy.

• Selecting a component from (1+−∩ knk VU). The selected component has no

predecessor in the remaining components and it has min (c/p) (int, min(c/p)).

It does not necessarily give permutation solutions.

• Selecting a component randomly from (1+−∩ knk VU). The selected component

has no predecessor in the remaining components and it (int,rand) does not

necessarily give a permutation strategy.

• Selecting a component from (1+−∩ knk VU) the selected component has no

predecessor in remaining items and which has minimum sum of index (int,

MI). It does not necessarily give a permutation strategy

 In order to simulate the performance of the strategies, we generate random

problem instances. The fault-free probabilities are chosen randomly from uniform

30

distributions with parameters (0.01, 0.99), (0.25, 0.75), (0.5, 0.75), (0.75, 0.99). The

testing costs of the components are also generated randomly with uniform distribution

on (1, 99). For the experiments, we consider k-out-of-n systems with n=20, 40, 60,

80 and 100 components. For each value of n, k varies from 1 to n/2. We do not use k

values which are more than n/2 because these problems are the dual of the problems

that are already generated. For each (n,k) pair, we generate 10 random instances for

each probability distribution. In total, 40 random problems are generated for each

(n,k) pair. There are 150 different (n,k) pairs so altogether there are 6000 problem

instances.

We generate the precedence graphs randomly as follows. We assign each

component a random depth between 0 to (max.depth-1). The range for max depth is

from 1 to number of components and it is a user specified value. After we assign

depth of each component, we assign the depth of its immediate predecessor. This

depth is the next small assigned number as a depth. If there are more than one

component with the same depth, one of the components is chosen randomly as an

immediate predecessor.

 The strategies that are represented by binary decision tree could not be

evaluated for large (n, k) pairs. We could obtain the expected cost of diagnosing of all

(20, k) pairs under each strategy. For large values of n values, although it is possible

to compute the expected cost of the strategies which are represented by binary

decision trees only for small k values, we could evaluate the performance of

permutation solutions for all (n, k) values as described in the previous chapter. (n,k)

pairs, for which cost of the strategies which are represented by binary decision tree

could be computed, are shown in Table 4.1.

Table 4-1. (n,k) Pairs for Which We Computed Expected Cost of Binary Decision Tree Strategies

n=20 for all k values

n=40 K=1,2,3,4,5,6

n=60 k=1,2,3,4,5

n=80 k=1,2,3,4

n=100 K=1,2,3

31

number of best solutions according to strategies

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

k

n
u

m
b

e
r

o
f

b
e
s
t

s
o

lu
ti

o
n

s int,minc/p

int,Rand

int,MI

perm-c/p

perm,c

min merit

c/p LS

c-LS

Figure 4.1. Number of Best Solutions v.s Strategies

 In Figure 4.1 we show the number of instances for which different algorithms

provide the best solution for different k values when n=20.

Let us recall that we have 40 instances for each (n,k) pair. We obtain similar results

for other values of n and k. The results can be found in table form in the appendix. As

we can conclude from the Figure 4.1, generally the strategy that chooses the

component from the set (1+−∩ knk VU) according to the sum of minimum index

performs better than other strategies. More precisely, best solutions were given by this

strategy under the conditions n=20 and k from 1 to n/2. For k=1 all selection method

from (1+−∩ knk VU) gave the same result due to the fact that there is only one element

in intersection.

32

average cost according to strategies

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

k

a
v
e
ra

g
e
 c

o
s
t

int,minc/p

int,Rand

int,MI

perm-c/p

perm,c

min merit

c/p LS

c-LS

Figure 4.2. Average Cost v.s Strategies

 Figure 4.2 shows the average expected cost versus k value when n=20. The

average expected cost value increases as k increases as we expect. As we can see from

the figure the gap between the performances of the strategies also increases as k

increases. When k=1 the strategies using intersection algorithm is optimal. In addition

to these, for small k values permutation c/p is nearly gave the same expected cost

value with the intersection algorithms.

difference between permutationsolutions and

BDT solutions

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

0 2 4 6 8 10 12

k

p
e

rc
e

n
t

d
if

fe
re

n
c

e

Figure 4.3. Percent Difference Between Best of BDT and Best of Permutation Solutions

For large values of (n,k) pairs, we were able to evaluate only permutation

strategies. In Figure 4.3, we compare the best permutation solutions with the best

33

binary decision solutions for n=20. When k is small, the difference between the

testing costs under the permutation strategy and the intersection algorithms is small,

but as k increases permutation solutions deteriorate.

percent difference between random selection

and Min Index

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

1 2 3 4 5 6 7 8 9 10

k

p
e
rc

e
n

t
d

if
fe

re
n

c
e

Figure 4.4. Percent Difference Between the Intersection Algorithm With Random Selection and

Intersection Algorithm With Min Index Selection Method

In order to predict range of difference of expected cost values under different

selections methods from (1+−∩ knk VU) we form the Figure 4.4. The comparison

between average cost under the random selection from the intersection and average

cost under the selection according to minimum index is presented in this figure. As

we conclude from the graph this difference is usually under 3%.

unif(0.01,0.99)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

k

n
u

m
b

e
r

o
f

b
e
s
t

s
o

lu
ti

o
n

int,minc/p

int,Rand

int,MI

perm-c/p

perm,c

min merit

c/p LS

c-LS

(a)

34

unif(0.25, 0.75)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

k

n
u

m
b

e
r

o
f

b
e
s
t

s
o

lu
ti

o
n

int,minc/p

int,Rand

int,MI

perm-c/p

perm,c

min merit

c/p LS

c-LS

(b)

(unif 0.5,0.75)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

k

n
u

m
b

e
r

o
f

b
e

s
t
s

o
lu

ti
o

n

int,minc/p

int,Rand

int,MI

perm-c/p

perm,c

min merit

c/p LS

c-LS

(c)

Unif(0.5,0.99)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

k

n
u

m
b

e
r

o
f

b
e
s
t

s
o

ti
o

n
s

int,minc/p

int,Rand

int,MI

perm-c/p

perm,c

min merit

c/p LS

c-LS

(d)

Figure 4.5. Number of Best Solutions v.s Strategies for Different Probability Distributions

 Now we examine the results in terms of the range of the probability values, In

Figure 4.5, we plot the number of best solutions with respect to k for different

probability distributions when there are 20 components. When pi’s are from (0.75,

0.99) we see that the performance of the random selection and sum of min index

selection are close to each other. The probabilities in these instances are closer to each

other, so the costs play an important role to construct the intersection. This leads to

few elements in the intersection and closer performance of different selection methods

35

Table 4-2. Percent Difference Between all Strategies and Intersection Algorithm With Random

Selection Method
n int,minc/p Int,Rand int,MI perm-

c/p
perm,c min

merit
c/p LS c-LS

20 0,72% 0,00% -0,31% 7,40% 12,23% 7,71% 6,35% 5,00%

40 0,82% 0,00% -0,81% 7,01% 14,34% 5,68% 6,24% 4,84%

60 0,46% 0,00% -0,46% 5,58% 12,27% 4,07% 4,96% 3,29%

80 0,31% 0,00% -0,22% 4,43% 11,71% 3,14% 3,82% 2,39%

100 0,26% 0,00% -0,23% 3,11% 11,45% 1,98% 2,99% 2,00%

In order to compare the algorithms among themselves with respect to the size of the

problem, we consider the algorithm that selects randomly from (1+−∩ knk VU) as a

benchmark. Table 4.2 indicates the percent difference of performance of all

algorithms from the performance selecting a random component from (1+−∩ knk VU).

We take this algorithm as a benchmark because the optimal algorithm that Ben-Dov

states when there are no precedence constraints tests a random component from the

intersection. The negative difference means a better performance than the benchmark

algorithm. Although we expect that the gap between performances of algorithms

increase as n increase we encounter with an opposite situation. These result can be a

conclusion of that we can only get data for small k values.

36

number of best solutions versus to n

0

5

10

15

20

25

30

35

40

20--2 40--2 60--2 80--2 100--2

(n,2)

n
u

m
b

e
r

o
f

b
e
s
t

s
o

lu
ti

o
n

s

int,minc/p

int,Rand

int,MI

(a)

number of best solution versus to n

0

5

10

15

20

25

30

35

40

20--3 40--3 60--3 80--3 100--3

(n,3)

n
u

m
b

e
r

o
f

b
e
s
t

s
o

lu
ti

o
n

int,minc/p

int,Rand

int,MI

(b)

Figure 4.6. Number of Best Solutions v.s to Different (n,k) Pairs.

 In Figure 4.6(a) and 4.6(b) we see the number of best solutions for k=3 and k=4

for different n values. As we say before the most of the best solutions is given by the

sum of min index selection method.

 We also compare the permutation strategies for the large values of (n,k). We

take permutation c/p as benchmark strategy. Because k values are small than the (n-

k+1) values, permutation c/p generally performs better than permutation c. We obtain

different improvement rates for different n values as a result of hill climbing.

Following table summarize this information. This table is obtained by taking average

of percent differences

37

Table 4-3. Percentage Difference Between all Permutation Strategies and Permutation
According to Ascending Order of c/p
n perm-

c/p
perm,c c/p LS c-LS

20 0,00% 4,77% -0,89% -1,95%

40 0,00% 4,53% -1,15% -2,79%

60 0,00% 3,29% -1,63% -3,87%

80 0,00% 3,68% -1,74% -3,69%

100 0,00% 3,29% -2,01% -4,15%

As a conclusion, the selection method sum of minimum index performs better

among the other algorithms. The permutation strategies show worse performance but

the expected costs are not much bigger from the expected costs that are obtained from

the intersection algorithm. Because finding a permutation solution is easy than finding

a binary decision tree solution, it is also reasonable to use permutation solutions for

testing problem.

38

5. CONCLUSION

In this thesis we study the k-out-of-n testing problem under forest type

precedence constraints. Our objective is to find a strategy that minimizes the expected

cost of diagnosing the system state which is functional if at least k of its component

are functional. In the literature k-out-of-n problem without precedence constraints is

solved optimally. The special cases, 1-out-of-n and n-out-of-n testing problems under

forest type precedence constraints are also solved optimally. For the parallel chain

precedence type which is a special type of forest type constraints, an optimality

condition is given and a heuristic method is suggested. The optimal inspection

strategy for the general k-out-of-n systems under forest the forest type precedence

constraints. The main contributions of this study can be summarized as follows.

• We modified some well known algorithms, which are already applied to more

special cases, to solve k-out-of-n systems under forest type precedence

constraints.

• We evaluate the performance of these algorithms for the small (n,k) pairs.

• We improve some permutation strategies by using hill climbing. For the large

size instances, we evaluate the performance of permutation strategies.

 Future research directions in this area may be as follows.

• Finding optimal strategy for k-out-of-n systems under both parallel chain

precedence constraints and forest type precedence constraints.

• Finding the optimal strategy for both special and general cases under general

precedence constraints.

• Finding the optimal permutation strategies for k-out-of-n systems under all of

parallel chain precedence constraints, forest type precedence constraints and

the general precedence constraints.

39

REFERENCES

[1]M.R. Garey, Optimal task sequencing with precedence constraints, Discrete Math.

4 (1973) 37-56

[2]S.Y. Chiu, L.A. Cox Jr., X. Sun, Optimal sequential inspections of reliability

systems subject to parallel chain precedence constraints, 1997 (personal

communication).

[3]Y]. Ben-Dov, Optimal testing procedures for special structures of coherent

systems, Manage. Sci.27(12) (1981) 1410-1420

[4]M.-F. Chang, W. Shi, W.K. Fuchs, Optimal diagnosis procedures for k-out-of-n

structures, IEEE Trans. Comput. 39(4) (1990) 559-564.

[5] J.Y. Halpern, Evaluating Boolean function with random variables, Internat. J.

Systems Sci. 5 (6) (1974) 545–553. [6] B. Alidaee, Optimal ordering policy of a

sequential model, J. Optim. Theory Appl. 83 (1994) 199-205.

[7] R.W. Butterworth, Some reliability fault-testing models, Oper. Res. 20(1972)

335-342.

[8]P. Jedrzejowicz, Minimizing the average cost of testing coherent systems:

complexity and approximate algorithms, IEEE Trans. Reliab. R-32(1) (1983) 66-70

[9] L.A. Cox Jr., Y. Qiu, W. Kuehner, Heuristic least-cost computation of discrete

classification functions with uncertain argument values, Ann. Oper. Res. 21 (1989) 1–

21

[10] S.O. Duffuaa, A. Raouf, An optimal sequence in multicharacteristics inspection,

J. Optim. Theory Appl. 67 (1) (1990) 79–87.

[11] H.A. Simon, J.B. Kadane, Optimal problem-solving search: all-or-none solutions,

Arti7cial Intelligence 6 (1975) 235–247.

[12] J.B. Kadane, Quiz show problems, J. Math. Anal. Appl. 27 (1969) 609–623.

[13] W.B. Joyce, Organizations of unsuccessful R&D projects, IEEE Trans. Engrg.

Manage. EM-18 (2) (1971) 57–65.

[14] C.L. Monma, Sequencing with general precedence constraints, Discrete Appl.

Math. 3 (1981) 137–150.

[15] H.A. Simon, J.B. Kadane, Optimal problem-solving search: all-or-none solutions,

Artifcial Intelligence 6 (1975) 235–247.

[16] R. Greiner, Finding optimal derivation strategies in redundant knowledge bases,

Artificial Intelligence 50 (1990) 95–115

40

[17] Ünlüyurt T.,Sequential testing of complex systems: a review, Discrete Applied

Mathematics142 (2004) 189-205

.[18] D. Dubois, M.P. Wellman, B. D’Ambrosio, P. Smets (Eds.), Guess-and-verify

heuristics for reducing uncertainties in expert classification systems, uncertainty in

artificial intelligence, Proceedings of the Eighth Conference, Morgan Kaufman, Los

Altos,CA, 1992.

[19] Boros, E., Ünlüyurt, T., Sequential testing of series-parallel systems of small

depth, In: Computing Tools for Modeling, Optimization and Simulation, 39-74,

2000, Laguna and Velarde eds., Kluwer Academic Publishers, Boston.

[20] Reyck, B., Leus, R., R&D project scheduling when activities may fail, IIE

Transactions (2008) 40, 367–384

41

APPENDIX: NUMBER OF INSTANCES FOR WHICH EACH ALGORITHMS

PRODUCES BEST RESULTS

42

A-1 Number of instances for which algorithms produces best result n=40
k<=6(all strategies)

k int,minc/p int,Rand int,MI perm-
c/p

perm,c Min
merit

c/p LS c-LS

1 40 40 40 0 0 0 1 0

2 5 14 31 0 0 0 0 1

3 2 5 35 0 0 0 0 0

4 0 8 32 0 0 0 0 0

5 0 11 29 0 0 0 0 0

6 0 9 29 0 0 0 0 2

A-2 Number of instances for which algorithms produces best result n=60

k<=5(all strategies)

k int,minc/p int,Rand int,MI perm-

c/p
perm,c Min

merit
c/p LS c-LS

1 40 40 40 0 0 0 0 0

2 0 5 34 0 0 0 1 0

3 1 12 27 0 0 0 0 0

4 1 10 29 0 0 0 0 0

5 0 8 32 0 0 0 0 0

A-3 Number of instances for which algorithms produces best result n=80
k<=4(all strategies)

k int,minc/p int,Rand int,MI perm-

c/p
perm,c Min

merit
c/p LS c-LS

1 40 40 40 1 0 1 1 1

2 1 9 32 0 0 0 0 0

3 0 7 33 0 0 0 0 0

4 0 9 31 0 0 0 0 0

43

A4.

A-4 Number of instances for which algorithms produces best result n=100 k<=3(all strategies)

k int,minc/p int,Rand int,MI perm-
c/p

perm,c Min
merit

c/p LS c-LS

1 40 40 40 1 0 1 1 1

2 1 16 25 0 0 0 0 0

3 0 13 27 0 0 0 0 0

A-5. Number of instances for which algorithms produces best result n=40 k>6(permutation
strategies)

k perm-

c/p
perm,c c/p LS c-LS

7 2 0 6 34

8 5 0 11 29

9 3 0 11 29

10 14 0 21 20

11 8 0 14 26

12 6 0 11 30

13 9 0 16 27

14 4 0 12 28

15 5 0 10 30

16 10 0 14 27

17 4 0 16 24

18 6 0 10 32

19 3 0 13 29

20 4 1 20 20

A-6. Number of instances for which algorithms produces best result n=60 k>5(permutation

strategies)

k perm-
c/p

perm,c c/p LS c-LS

6 5 0 12 28

7 5 0 14 26

8 10 0 20 20

9 3 0 13 27

10 4 0 8 32

11 5 0 11 29

12 1 0 3 37

13 3 0 10 31

14 6 0 14 26

15 4 0 16 24

16 4 0 17 23

17 3 0 11 29

44

18 2 0 12 28

19 4 0 12 28

20 6 0 13 27

21 2 0 8 32

22 3 0 8 32

23 2 0 7 33

24 1 0 10 30

25 4 0 11 29

26 4 0 7 33

27 3 0 9 31

28 2 0 10 30

29 0 0 9 31

30 2 0 16 24

A-7. Number of instances for which algorithms produces best result n=80 k>4(permutation

strategies)

k perm-
c/p

perm,c c/p LS c-LS

5 4 0 12 28

6 4 0 12 29

7 4 0 15 25

8 2 0 7 33

9 2 0 12 28

10 2 0 13 27

11 2 0 13 27

12 6 0 15 25

13 5 0 13 27

14 4 0 13 27

15 4 0 16 24

16 2 0 12 28

17 0 0 13 27

18 1 0 12 28

19 3 0 16 24

20 4 0 10 30

21 3 0 12 28

22 0 0 15 25

23 2 0 17 23

24 2 0 12 28

25 2 0 14 26

26 3 0 15 25

27 1 0 11 29

28 1 0 12 28

29 2 0 8 32

30 6 0 14 26

31 2 0 8 32

32 1 0 9 31

33 3 0 9 31

34 1 0 14 26

45

35 3 0 10 30

36 1 0 8 32

37 3 0 14 26

38 2 0 11 29

39 6 0 17 23

40 1 0 15 25

A-8. Number of instances for which algorithms produces best result n=100 k>3(permutation
strategies)

k perm-
c/p

perm,c c/p LS c-LS

4 7 0 16 25

5 2 0 11 29

6 5 0 9 31

7 5 0 11 29

8 2 0 13 27

9 4 0 16 24

10 3 0 12 28

11 2 0 14 26

12 2 0 14 27

13 6 0 13 27

14 3 0 8 32

15 3 0 9 31

16 3 0 10 30

17 1 0 14 26

18 3 0 11 29

19 1 0 14 26

20 2 0 16 24

21 4 0 15 25

22 6 0 17 23

23 1 0 8 32

24 2 0 15 25

25 1 0 14 26

26 2 0 19 21

27 1 0 10 30

28 3 0 18 22

29 1 0 10 30

30 3 0 18 22

31 3 0 12 28

32 1 0 13 27

33 1 0 13 27

34 2 0 14 26

35 4 0 16 24

36 2 0 10 30

37 2 0 13 27

38 2 0 11 29

39 0 0 10 30

46

40 16 0 7 17

41 1 0 10 30

42 0 0 8 32

43 0 0 10 30

44 3 0 8 32

45 1 0 9 31

46 2 0 13 27

47 3 0 14 26

48 3 0 12 28

49 0 0 11 29

50 1 0 12 28

	ACKNOWLEDGEMENTS
	ABSTRACT
	ÖZET
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	2. PROBLEM DESCRIPTION AND LITERATURE REVIEW
	2.1. Problem description
	2.2. Problem Types
	2.2.1. Simple Series and Parallel Systems
	2.2.2. k-out-of-n Systems
	2.2.3. Series-Parallel Systems (SPSs)

	3. SOLUTION METHODS
	3.1. An optimal algorithm for the series and parallel systems with forest type precedence graph. [1]
	3.2. An optimal algorithm for k-out-of-n Systems without precedence Constraints
	3.3. A Heuristic Solution for k-out-of-n Systems With Parallel Chain Precedence Constraint
	3.4. Strategies For k-out-of-n Problem Under The Forest Type Precedence Constraints
	3.4.1. Using Intersection Algorithm
	3.4.2. A Greedy Approach by Defining a New Merit Value
	3.4.3. Permutation Solutions
	3.4.4. Improving Permutation Solutions

	4. COMPUTATIONAL RESULTS
	5. CONCLUSION

