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ABSTRACT 

 

This thesis investigates diagnosis strategies for k-out-of–n systems 

under precedence constraints. A k-out-of-n system consists of n independent 

components whose working probabilities of are known in advance. The system itself 

functions if at least k components function.  The true state of the system is determined 

by the sequentially inspection of these components. This inspection is costly and the 

cost of inspection for each component is also known. This study aims to minimize 

expected cost of determining true state of such a system when there are forest type 

precedence constraints. Optimal inspection strategies are already known  for series 

and parallel systems. In this study, modifications of these strategies are proposed for 

k-out-of-n systems. Numerical results are presented to evaluate and compare the 

proposed strategies 
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ÖZET 

Bu tez n’in k’lısı (k-out-of-n) sistemlerde öncelik kısıtları oduğu zaman, 

tanılama stratejilerini araştırmaktadır. n’in k’lısı sistemler, çalışma olasılıkları 

önceden belli n tane bağımsız bileşenden oluşurlar. Sistemin kendisi eğer en az k tane 

bileşen çalışırsa çalışır. Sistemin gerçek durumu bileşenlerinin sırayla test edilmesiyle 

tespit edilir.Bu test işleminin bir maliyeti vardır ve her bileşenin testinin maliyeti de 

önceden bilinir. Bu çalışma n’in k’lısı bir sistemde koru (forest) tipi öncelik kısıtları 

varken, sistemin gerçek durumunu belirlemenin beklenen maliyetini asgariye 

düşürmeyi amaçlamaktadır. Seri ve paralel sistemler için en iyi test stratejileri zaten 

bilinmektedir. Bu çalışmada seri ve parallel sistemler için bulunan bu en iyi stratejiler 

n’in k’lısı sistemlere uygulanmak için değiştirilmiştir. Önerilen stratejilerin 

performanslarını hesaplamak ve karşılaştırmak için sayısal sonuçlar sunulmuştur. 
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1. INTRODUCTION 

The problem of minimizing the expected cost of identifying true state of a 

system is encountered in many practical situations. The system consists of 

components which are either faulty or working. The system state is determined by the 

states of the components and the components should be tested individually until the 

state of the system is determined. This testing procedure is usually costly or time 

consuming and determining the sequence of testing that minimizes the expected cost 

is an important problem and it has been an important research area for several years. 

 The testing problems arise in many applications [17] including the design of 

interactive expert systems, reliability analysis of coherent systems, classification of 

pattern vectors[9], file screening/searching applications [5], manufacturing 

applications such as testing of machines before shipment, testing of manufacturing 

operations [1,10], design of screening procedures[1], wafer probe testing in electrical 

engineering [4]), best value, or satisficing search algorithms in artificial intelligence 

[16]), testing incoming patients against some rare but dangerous disease [18], 

organization and criterion of an applied research project [13], and in quiz shows 

choosing the right order of the quiz categories. 

  In this study, we focus on testing k-out-of-n systems. In these types of 

problems, the system is functional if at least k of n components are functional and 

system functionality only depends on the number of working and faulty components. 

This property is specific to k-out-of-n systems and for more general systems the 

system state may depend on the functionalities of the individual components in a 

more complicated manner. Typically, this dependency can be described by a 

monotone Boolean function.  

In some applications, it is not possible to execute the tests for the components 

in any order. There may be precedence constraints among the tests due to physical, 

logical or technological reasons. The precedence constraints could also arise as a 

result of process analysis. The precedence constraints, like in other applications such 

as scheduling, can naturally be described by an acyclic directed graph. In this directed 

graph, the nodes correspond to the components or tests and an arc (i,j) means that 

component j cannot tested if component i has not been tested yet. . These precedence 
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constraints increase the complexity of testing problem a lot.  The common types of 

precedence constraints that have been studied in the literature are parallel chain 

precedence constraints [2] and the forest type precedence constraints [1]. We 

encounter the precedence constraints in many practical situations. For example, one 

wants to detect a rare disease through a series of tests but some certain tests should 

use the results of some other tests. The sequence of testing is restricted by the 

precedence constraints in this situation. 

The k-out-of-n problems are studied very well in the literature. A strategy S 

for k-out-of-n problems is naturally represented by a binary decision tree see e.g. [17]. 

An optimal strategy for k-out-of-n problems, in which there are no precedence 

constraints, can be generated in polynomial time. The special cases 1-out-of-n and n-

out-of-n with forest type precedence constraints have also been solved optimally 

[6,7]. In [15] Simone and Kadane state the optimal conditions, which a strategy 

should provide, under general precedence constraints, but they do not give any 

algorithm to obtain such an optimal strategy. In [20] np hardness of n-out-of-n 

problem under the general precedence constraints has been proven. For none of the 

special precedence graphs, the general k-out-of-n problem has been solved optimally 

yet. Usually the solutions for testing problem under precedence constraints are based 

on reduction of the precedence graph [1,2]. Reduction of precedence graph means the 

partitioning of the precedence graph into subgraphs such that there is no violated 

precedence constraints when we order the subgraphs according to special 

permutations of components. 

In this study, we propose solution methods for testing of k-out-of-n systems 

with forest type precedence constraints which generalize parallel chain precedence 

constraints. We apply two different reduction algorithms whose results are the same. 

The first reduction algorithm is proposed for forest type precedence constraints by 

Garey[1], and is used for 1-out-of-n and n-out-of-n systems. This reduction technique 

has not been used in the solution of general k-out-of-n systems under the forest type 

precedence constraints. The second reduction algorithm which is used for parallel 

chain precedence constraints is proposed by Chiu et al [1]. We use this reduction 

technique for forest type precedence constraints by making some modifications. After 

reduction of the precedence constraints, we use Ben-Dov’s optimal algorithm [3] 

which is for k-out-of-n systems without precedence constraints. Ben Dov’s algorithm 

is based on finding a set such that testing a random element of this set will give 
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optimal strategy. But under the precedence constraints the random selection does not 

give optimal solution anymore. Therefore we evaluate different selection methods 

from this set. Moreover we also evaluate strategies that are permutations of the 

components and we improve these permutations by applying simulated annealing 

method. As far as we know these are the first numerical results for k-out-of-n systems 

with forest type precedence constraints.  

The remainder of the thesis can be outlined as follows. In chapter 2, we will 

formally define the problem and we will give details about different types of testing 

problems. A review of the literature on k out of n systems is also included in that 

chapter. In chapter 3, we will describe the commonly used testing strategies and 

modification of these strategies for k-out of-n problems with forest type precedence 

constraints. In chapter 4, we will give computational results of simulations and 

present a comparison of algorithms. In chapter 5, we will provide some concluding 

remarks and future research directions. 
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2. PROBLEM DESCRIPTION AND LITERATURE REVIEW 

2.1. Problem description 

Let’s consider a system that consists of n components whose functionalities 

are not known yet. The component set of the system is N={ }nttt ,...,, 21  where  xi  

describes the functionality of component ti as follows:t, 







=

otherwise

functionalistif
x

i

i

0

1
 

A state vector of the system x = ),...,,( 21 nxxx  is a boolean vector whose ith 

element shows the functionality of component i and the system functionality is 

characterized by the following function:   

 







=
otherwise

xf
0

 xstate systemat  workingissystemtheif1
)(       

In order to determine whether the system is working or not, we should learn 

the states of the components (not necessarily all of them) one by one.  Initially, we do 

not know the states of the components but we have a prior working probability of 

each component. We should test a subset of the components to obtain the system’s 

actual state. The testing procedure continues until the state of the system is 

determined. It is assumed that states of the components are independent random 

variables. Testing of each component is usually costly or time consuming; as such 

determining the sequence of testing is a vital issue to minimize the expected cost of 

determining true state of whole system. An inspection strategy S is a rule that 

specifies which component will be tested next, when we know the states of the 

already inspected components. So, an optimal inspection strategy is the one which has 

minimum total expected time or cost among all strategies. 

  In order to develop algorithms that produce good strategies, typically one 

should make use of the special structure of the system function and/or data. In certain 

applications, there are precedence constraints among the components. These 

constraints essentially state that, certain components are available for inspection if 

other certain components are inspected before. This situation generally can naturally 
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be described by an acyclic directed graph. Each arc from node i  to node j  means 

component j  cannot be tested before component i . [17].  

Some special precedence types we frequently encounter are forest and parallel 

chain type precedence constraints. In parallel chain precedence constraints, there are 

disjoint subsets mNNN ,...,, 21  of N where the precedence constraints exist only 

within each iN . In addition, within each chain there is only one feasible testing 

strategy [2].  Garey in [1] defines forest type precedence constraints as “In each 

precedence graph either no component has more than one immediate predecessor, or 

no task in that component has more than one immediate successor.” In other words, 

the precedence graph is a forest of in-trees and/or out-trees.  Forest type precedence 

constraints obviously generalize parallel chain type precedence constraints. In figure 

2.1, we see forest type and parallel chain type precedence constraints. 

 

 
 

         (a)                                                                                        ( b) 
Parallel chain precedence constraints                           Forest type precedence constraints 
 

Figure 2.1. Special Type Precedence Graph 
 
 

2.2. Problem Types 

2.2.1. Simple Series and Parallel Systems 

Simple series and parallel systems are elementary but common. A series 

system is functional if and only if all the components are functional. So we continue 

to inspect the components until we find a faulty one or until we test the all 

components. The state function of the system is, 

 

{ })(),...,(),(min)( 21 nxfxfxfxf =  Or nxxxxf ∧∧∧= ,...,)( 21  

On the other hand, for the parallel systems, one functional component is 

enough to conclude that whole system is working. So we continue to inspect until we 
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find a fault free component or until we test the all components. The state function of 

the system is, 

{ })(),...,(),(max)( 21 nxfxfxfxf =  Or nxxxxf ∨∨∨= ,...,)( 21  

Although these are simple systems, the results that are obtained for these 

special cases are the milestones for the testing literature. 

The basic and the simplest type of the testing problems are the simple series 

and simple parallel systems. A testing strategy for these problems corresponds to a 

permutation of components. For these systems, it is easy to find an optimal 

permutation. Let us define permutations τ and π as follows: 

)(

)(

)2(

)2(

)1(

)1( ...
n

n

p

C

p

C

p

C

τ

τ

τ

τ

τ

τ
≤≤≤  

)(

)(

)2(

)2(

)1(

)1( ...
n

n

q

C

q

C

q

C

π

π

π

π

π

π
≤≤≤  

Then it is easy to show that τ is optimal for simple parallel systems and π is 

optimal for simple series systems. [6,7] The expected costs of these strategies can be 

written as follows:. 

)()(
1

0
)(

1
)( ∏∑

−

==

=
i

k
k

n

i
i qCC τττ , where 1)0( =τq  

)()(
1

0
)(

1
)( ∏∑

−

==

=
i

k
k

n

i
i pCC πππ , where  1)0( =πp  

As Ünlüyurt states in [17] these strategies are very intuitive. For a parallel 

system the testing procedure ends when a working component is observed. So we are 

looking for a component which has minimum cost and maximum working probability. 

The component that provides these properties has minimum ( pc / ) ratio. The dual of 

this argument is valid for series systems. 

In [1] Garey found optimum solution of the simple series systems in which 

testing sequence must satisfy forest type precedence constraints. The Algorithm 

mentioned in his study can also be applied to simple parallel systems. His algorithm is 

based on some reduction techniques that turn the system with precedence constraints 

into one where there are no precedence constraints. Since the testing procedure comes 

to halt when a faulty component is found, the optimal solution is a permutation of 

components. The results of Garey are not only restricted with the positive costs. They 
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are also applicable for the negative costs (rewards). This algorithm will be described 

in detail later. 

 

2.2.2. k-out-of-n Systems 

These systems are the generalization of the 1-out-of-n (parallel) systems and 

n-out-of-n (serial) systems. The system is functional if at least k of its components are 

functional. So we continue inspection procedure until we find k fault free components 

or n-k+1 faulty components. The state function of the system can be described as 

follows: 







+−≥−++−+−

≥+++
=

1)1(...)1()1(0

...1
)(

21

21

knxxxif

kxxxif
xf

n

n  

While, testing strategies for the simple parallel and simple series systems are 

represented by permutations of components, in general, the strategies for k-out-of-n 

systems can be represented by a binary decision tree. In Figure 2.2, we see a binary 

decision tree for a 2-out-of-3 problem. 

 

 

Figure 2.2. A Binary Decision Tree 
 

 

Each node in the tree corresponds to a component. In the example, the root is 

indexed by the first component. This means testing starts with component 1. For each 

internal node in the binary decision tree, there are two outgoing arcs. So each internal 

node in the tree has two successors and leaf nodes have no successors. The two 

outgoing arcs from an internal node correspond to the result of the test of that node. 

Let us say the component associated with a node is it , then the right side successor of 

it is the component that we test next if we find that it  is working and the left side 

successor is the component that we test next if it  is faulty. The leaf nodes are 
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“success” or “fail” nodes that show the state of the system. There is a unique path 

from the root to each leaf node. If the leaf node is success node, then there are k right 

arcs and less than (n-k+1) left arcs and for the fail nodes there are (n-k+1) left arcs 

and less than k right arcs on the path from the root to that leaf node. On each path 

from root to a leaf node we can observe the state of each component on this path and 

we can find the cost and probability of the path. The cost can be calculated by 

summing up all the costs associated to nodes on this path and the probability can be 

calculated by multiplying ip s for the working state components and ip−1  for the 

faulty components. In this framework, we can calculate the expected cost by 

multiplying path cost with the path probability. By summing up all paths’ expected 

cost we will find the expected cost of our decision tree or expected cost of our testing 

strategy S.  

E (Cs) = )(*)( i
i

i pathCostpathP∑  

 j
ji

ii qppathP *)(
,
∏= , where node set i  corresponding to working components and 

node set j corresponding to faulty components. 

)( ipathCost =∑ iC  

Let us calculate the expected cost of binary decision tree in Figure 2.2 which is 

constructed for 2-out-of-3system. Let us assume the following data for the costs and 

probabilities of the components. 

8.0)(,5.0)(,4,0)(,4,8,5 321321 ====== tptptpCCC ttt  

There are 6 leaf nodes in the example so there are 6 paths. As an example let 

us calculate the cost of two leftmost  paths. 

=),,( 21 FttC 21 tt CC +   )1(*)1(),,( 2121 tt ppFttp −−= , 

 321321 ),,,( ttt CCCFtttC ++=    231321 *)1(*)1(),,,( ttt pppFtttp −−=  

The others can be calculated by the same manner. The total cost of this decision tree 

is. 
)1(*)(*)()(*)(*)(

)(*))(1(*)())(1(*))(1(*)(

313213131

213212121

tttttt

ttttt

ptpCCCtptpCC

tptpCCCtptpCC

−++++

+−+++−−+
 

36.1512.0*1748.0*93.0*173.0*13)( =+++=sEC  

 When there are no precedence constraints, Ben-Dov [3] obtains an optimal 

solution for the k-out-of-n problems, and the optimality of this solution is also proved 



9 
 

by Chang et al [4]. His strategy tests a random component which is in both first k 

elements of permutation τ and first n-k+1 elements of permutation π. 

 In [2], Chiu studies the sequential testing problem of the k-out-of-n systems 

with parallel type precedence constraints. They also give a sufficient optimality 

condition for the k-out-of-n problems with parallel chain precedence type. A reduction 

technique similar to Garey’s reduction technique is used to handle the precedence 

relation. After the precedence relation problem is handled, they use Ben Dov’s results, 

which are used for k-out-of-n systems for which there are no precedence constraints. 

2.2.3. Series-Parallel Systems (SPSs) 

An SPS is a specially structured network between two terminal nodes, called 

the source and sink. This system is functional if there is a path between source node 

and sink node. Simple parallel and simple series systems are special cases of general 

SPSs.  

 

 

                                  (a)                                           (b) 
Figure 2.3. Two Examples of SPSs 

                                                                                    
        

In Figure 2.3 a the state function is ))(( 4321 tttt ∨∧∨  

In Figure 2.3 b the state function is )(( 4321 tttt ∧∨∧ ) 

In this study we do not focus on SPSs. The results related to SPSs can be found in 

[19]. 

The testing problem for simple series systems and simple parallel systems 

without precedence constraint and with forest type precedence constraints have been 

solved optimally. For the general precedence type the optimum solution has not been 

found yet. The k-out-of-n systems without precedence constraints have been solved 

[3], but when there is precedence constraints the optimum strategy has not been 

determined yet. In this study we focus on sequential testing problem of k-out-of-n 

systems with forest type precedence constraints. 
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3. SOLUTION METHODS 

In the previous chapter we mentioned some strategies that are used for the 

sequential testing problem of k-out-of-n system with certain precedence constraints. 

In this section we will analyze these algorithms in detail. As far as we know this is the 

first study for the k-out-of-n system with forest type precedence constraints. We will 

provide some numerical results for different strategies. The performance of 

permutation strategies is also compared to general binary decision tree solutions. We 

will use Ben-Dov’s intersection algorithm and Garey’s reduction algorithm together 

to find a good heuristic when there are forest type precedence constraints. We also 

modify Chiu’s algorithm for the forest type precedence constraints which is originally 

designed for parallel chain precedence constraints. 

3.1. An optimal algorithm for the series and parallel systems with forest type 
precedence graph. [1] 

 Garey provides some reduction rules that turn the precedence graph into a 

graph without any arcs. Essentially, the reduction rules combine certain nodes or 

delete some arcs in the precedence graph.  Eventually, we have a problem with no 

precedence constraints where permutation π is optimal.  The expected cost of a 

strategy S that inspects the components in the order 1,2,…,n  is as follows. 

∏∑
−

==

=
1

01

()(
i

j
j

n

i
i PCSC ) 

The following theorem is given for the comparison of expected cost of two 

neighborhood strategy.  

Theorem: Let’s define )( itR  as, )1/()( iii pCtR −=  where ip  can be used 

instead of (1- ip ) for the parallel systems and S 1 become a solution of series system 

such that S 1 = nttt ,...,, 21  .A neighborhood strategy S2 is obtained by changing the 

place of two adjacent components then )()( 12 SCSC <  if and only if )()( 1 ii tRtR <+ . 

This theorem shows that if we want to obtain an optimal solution for n-out-of-

n systems, we should inspect the components in ascending order according to R-

values. Since, if there is a solution in which the R-values are not in ascending order, 

we can decrease the expected cost of the strategy by simply interchanging 

components until they are in ascending order.  In order to use this theorem for the 



11 
 

problems with precedence constraints, the exchange should be feasible with respect to 

the precedence constraints. 

When there are precedence constraints, sometimes it is not possible to 

exchange the order of two tasks that are not in the correct order with respect to  R-

value, without violating the precedence constraints. In order to prevent violation of 

the precedence constraints, the precedence graph is reduced to independent block 

nodes each of which has a merit value. These blocks can be thought as single nodes. 

Within each block only one permutation is possible. Two reduction techniques for 

forest type precedence constraints and duals of these techniques are mentioned in this 

paper.  

First reduction theorem: 

Definition 3.1.1: A leaf node in precedence graph G is called “terminal”, and if a 

node is not “terminal” it is called “nonterminal”.    

Definition 3.1.2: If ( it , jt ) is a given precedence pair then it , is an “immediate 

predecessor” of jt . In other words, it  is a predecessor of jt and, there is no other 

components that is successors of  it  and predecessors of jt . In this situation jt is also 

called “immediate successors” of it . 

Definition 3.1.3: Minimal successors of it  is jt  if jt is an immediate successors of 

it and jt has minimum R-value among all other immediate successors of it .  

 Theorem 3.1.1: “For any given task ordering problem which has a solution, let it  be 

a nonterminal task which has only terminal successors. If jt is a minimal successors of 

it such that )()( ij tRtR ≤ and jt has no other immediate predecessors, then there is an 

optimal solution in which the subsequence, it , jt occurs.“ 

 By using this reduction theorem it , jt  can be thought as a single component. 

This means that ti and tj should be inspected consecutively. We encounter two 

problems when combining these two components as a single component. First one is 

finding merit value of this component and the second one is updating the precedence 

graph. 

Since, we find the ratio of inspection cost to the failing probability of 

component in merit value formula, in order to find the merit value of this new 
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component we should first consider inspection cost and fail probability of this new 

component. The expected inspection cost of this new component is jİi CPC *+  since 

we do not inspect component j  if the component i  is not working.  

The failing state of this new component occurs if at least one of the 

components is in fail state. Then the probability that this combined component 

functions is the product of the working probabilities of these two components. The R-

value for the combined component is the ratio of expected inspection cost to the 

failure probability which is 1- functioning probability. Then the R-value for the 

combined component can be written in the following way.   

=),( jiR =jiji QC ,, / jii CPC + /1-( ji pp ) where Qi,j=1-Pi,j and Pi,j=pipj 

After we obtain R-value of the new block we should update the precedence 

graph G. In order to update precedence graph, first we should delete arc between 

( ji tt , ) and add new arcs between this new node and each successors of it  and also 

between new node and each and predecessors it . 

The second reduction theorem: 

Let jt  be a terminal task having an immediate predecessor it  such 

that )()( ji tRtR < . In this situation we can update preceding graph G as the following 

manner. We delete the arcs between it  and jt  and we add arcs between predecessors 

of it  and node jt . 

As we can see intuitively, removing the arc between it  and jt  never violates 

the original precedence constraints if we sort the components in ascending order 

according to  

R-value. After we obtain block nodes, if we sort the blocks according to R-value the 

optimal solution for the simple series systems with forest type precedence constraint 

is found. 

By using these reduction techniques an optimal algorithm for an n-out-of n 

system can be constructed as follows: 

Step 0: Initially G’=G. 

Step 1: If there are no arcs in the reduced graph G’, then sort the components in a 

ascending order and output this order as an optimal solution and STOP. Otherwise go 

to step 2. 
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Step2: Find a node it  in G’, that has only terminal immediate successors 

. Let the minimal successors of node it  be node jt .  

Step2a: If )()( ji tRtR ≥ then add a new node ( ji tt , ) and update G’ 

and calculate R-values as explained above. Go to step1. 

  Step2b: Else, delete the arcs between it  and all immediate successors 

of it in G’, and then add arcs between the predecessors of it  and all successors of it . 

Go to step1. 

This reduction algorithm continues until there are no precedence constraints. 

In the final sorted form of components none of the precedence relation is violated. 

Since if the R-value of a component is less than the R-value of its predecessor, a new 

component is added to the graph such that the predecessor comes before its successor, 

otherwise; the predecessor comes before successors already because of its R-value. 

The dual of this problem is 1-out-of-n systems. The algorithm explained in this 

paper can be applied to 1-out-of-n systems with only changing R-value by S-value 

such that, 

iii pCtS /)( =   , and ))1(*)1((1/*)1(),( jiJiiji ppCpCttS −−−−+= . 

Example 3.1 

 Let us apply this algorithm to the following example. Fig 3.1.shows the forest 

type precedence graph for a system that consists of 7 components. 

 

 

Figure 3.1.Precedence Graph for Example 3.1 
 

 

The associated testing costs, probabilities and the R-ratios for the individual 

components are  as follows. 

7.0,15,8.0,10,8.0,5

5.0,10,5.0,15,9.0,5,7.0,10

======

========

ggffee

ddccbbaa

pCpCpC

pCpCpCpC
 

50)(,50)(,25)(,20)(,30)(,50)(,33.33)( ======= gRfReRdRcRbRaR  
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Since component b has minimal successor a which satisfies the condition R 

(a)<R(b), (b,a) forms a block with the R-value 37.83. Now c has only terminal 

successors and minimal successor of c is d. So (c,d) forms a block with the R-value 

26.6. Now (c,d ) has only one immediate successor (a,b) and R(a,b)>R(c,d). So, the 

first tree is partitioned into the blocks (a,b) and (c,d). Since component e has only 

terminal successors f and g which satisfies R (e)<R(f)=R(g), the second tree is 

partitioned into three blocks (e),(f),(g) with the R-values 25, 50, 50 respectively. The 

final R-permutation is (e,c,d,b,a,f,g) and also f and g can be exchanged since their 

ratios are the same.. 

1.21)(,5.12)(,5,6)(,20)(,30)(,5.5)(,4.14)( ======= gSfSeSdScSbSaS  

Since S(b)<S(a), we can delete the arc between b and a. Now c has three immediate 

successors and S(b)<S(c) so (c,b) is block with the S-value 

42.181.0*5.01/5.0*515 =−+ , now the minimum successors of (c,b) is a which 

satisfies R(a)<R(c,b). So (c,b,a) is a block with the S-value 

27.183.0*05.01/05.0*105.17 =−+ . Since S(c,b,a)< S(d), the first block is 

partitioned into two blocks (c,b,a) and (d) with the corresponding R-values 18.27 and 

20. Since S(e)<S(f)<S(g) the second tree is partitioned into three S-blocks (e),(f),(g) 

with the S-values 6.5, 12,5, 21,1 respectively. The final S-permutation is 

(e,f,c,b,a,d,g).  

3.2. An optimal algorithm for k-out-of-n Systems without precedence 
Constraints 

The optimum algorithm for k-out-of-n systems without precedence graph is 

stated by Ben-Dov. The optimum testing procedure proposed in [3] is as following. 

 Let us define two sets by utilizing the permutations τ andπ defined before. 

We take the first i elements of permutation τ and the first i  elements of permutation 

π  for defining the sets U i  and Vi, respectively. 

 

{ }ijjU i ≤≤= 1|)(τ   

{ }ijjVi ≤≤= 1|)(π  

If we take the intersection of the sets 1+−knk VandU ( 1+−∩ knk VU  ) and 

inspect any of the elements in this set, we obtain an optimal strategy for k-out-of-n 

systems without precedence constraints. After we inspect the first component by using 
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intersection set, one of the two possible states for the inspected component may be 

observed. If the inspected component is faulty and if we do not reach a result for 

whole system, we will have a new system with the parameters k-out-of-(n-1). If the 

inspected item is fault-free then new system will be (k-1)-out-of-(n-1). We should 

continue to apply this procedure till we find the correct state of the  whole system. It 

is a surprising result that a randomly chosen component from the intersection leads us 

to an optimum strategy. In this point let’s dwell on this surprising result. As a result of 

the testing procedure, we can observe either a faulty system or a working system. 

Assume that we know the system is faulty and we would like to prove this by finding 

(n-k+1) faulty components. That means, we have to inspect at least (n-k+1) 

components. We can get (n-k+1) faulty component in the first (n-k+1) tests. At this 

juncture, the question as to which (n-k+1) components should be chosen comes to 

fore. We search for an item that has both low cost and high probability of not 

working. It is obvious that the optimum strategy for this search is the permutationπ . 

Even we obtain the result from first (n-k+1) tests we should inspect all of the 

components in 1+−knV  if the system is faulty. In the alternative case, when the system is 

working, we have to inspect at least k components. We should inspect all of the 

components in kU  for any optimal solution if we know that system is working. In 

short an optimal strategy should inspect all of the components in 1+−knV  so as to obtain 

a faulty system. In an attempt to obtain a fault-free system it should also inspect all 

components in kU . Obviously, if there is such an item that it is in both  kU  and 1+−knV  

then it should be tested within all optimal sequences. 

Because there are k components in kU  and (n-k+1) components in 1+−knV , the 

set 1+−∩ knk VU  cannot be null. Any component in the set  1+−∩ knk VU  will be 

inspected in this optimal strategy. In addition, the working probability of an item and 

cost of inspection of an item do not depend on the sequence of item in the strategy, 

hence the randomly chosen item from 1+−∩ knk VU  will be used in the optimal 

strategy. 
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3.3. A Heuristic Solution for k-out-of-n Systems With Parallel Chain 
Precedence Constraint 

Chiu [2] claims that the intersection algorithm proposed by Ben-Dov can be 

used to find a good solution under the parallel chain precedence constraints. They also 

give a sufficient condition for the strategies to be optimal for k-out-of-n systems with 

parallel chain precedence constraints. They do not evaluate performance of their 

algorithm numerically and they do not provide any selection method when there are 

more than one component in the intersection. Actually they use the same logic with 

Garey and the blocks obtained from these two reduction algorithms are the same. 

Now we describe the algorithm in Chiu 2 in detail. 

Let I become an ordered set of components such that I = ( jiii ,...,, 21 ). Let us 

assume we are testing the components in the order induced by I and we stop as soon 

as we find a faulty component (simple series case).Then the R-value of I can be 

calculated as follows:  

∏

∏

=

−

=

−

+++

=
j

k
i

j

k
İiii

k

Jki

p

CpCpC

IR

1

1

1

1

*...*

)(
211

  

As we said before, we can use the same reason in simple parallel systems. 

Let’s define S-value of I as follows: 

 

∏

∏

=

=

−

+++

=
j

k
i

j

k
iiiİ

k

k

q

qCqC

IS

1

1

1

....*

)(
211

 

Because we have two types of merit values (S-value and R-value) for a block, 

the precedence graph G can be partitioned into two type blocks according to S-value 

and R-value by using the following procedure 

Blocking (reduction) procedure 

Definition 3.3.1: A “chain” is the precedence constraint which only gives a 

unique inspection order. In the reduction procedure a chain is partitioned into two 

parts 21 , II . Let *
1I becomes 1I such that *

1I has min R-value among all possible 1I and 

1I is not empty. *
1I is obtained as a first R-block for that chain. After removing the 

first R-block, we obtain a new chain. If this new chain is empty, blocking is complete 
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for that chain; otherwise the procedure is applied to this new chain. The blocking 

procedure continues until all the chains are partitioned into blocks. For the S-blocks 

the same proceeding is done except, only S-value is used instead of R-value. After 

blocking is complete, we obtain R-blocks and S-blocks; each has R-probability and S-

probability, R-cost and S-cost. There is no precedence relation between these blocks. 

Because of there are no precedence constraints between blocks, the intersection 

algorithm can be used for these blocks. Fig 3.2 shows a system with two parallel 

chain precedence constraints; let us obtain R-blocks and S blocks from these chains. 

Example 3.2 

 

 

Figure 3.2. Parallel Chain Precedence Constraints for Example 3.2 
 

 

6.0,5.0,8.0,4.0,25.0,5.0

12,1,7,6,5,10
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So our first block is (a,b,c) with the R-value 13.94 

57.16
6.0*5.0*8.01

12*5.0*8.01*8.07
),,(

,13
5.0*8.01

1*8.07
),(,35
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+
===
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 T 

The second chain is partitioned into two R-blocks, (d,e) and (f) with the R-

values 13 and 30 respectively. As a result we obtain the R-permutation as (d,e,a,b,c,f). 

93,21
6.0*75.0*5.01

6*75.05*5.010
),,(

,20
75.0*5.01

5.0*510
),(,20

5.0

10
)(
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===

cbaS

baSaS
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The first chain is partitioned into two S-blocks,(a,b) and (c) with the S-values 

20 and 21,93 

12.8
4.0*5.0*2.01

6*5.0*2.01*2.07
),,(

,8
5.0*2.01

1*2.07
),(,75.8

8,0

7
)(

=
−

++
=

=
−

+
===

fedS

edSdS

 

The S-blocks that are obtained from second chain are (d, e), (f) and final S 

permutation is (d, e, f, a, b, c). 

Chiu also gives the following sufficient condition for optimality for k-out-of-n 

problems with the parallel chain precedence constraints. Let’s define R
~

-ratio of a 

block ljN as )(min{
~

2IRRLJ = | }, 212 IINI lj =∅≠   and S
~

-ratio of a  block ljM as 

)(min{
~

2ISS lj = | }, 212 IIMI lj =∅≠ .  

“We say sequence α  satisfies condition C1 if the  S
~

 ratio of any block in the 

sequence is no less than the S-ratio of any block before it, which comes from a 

different chain. Similarly we say sequence β satisfies condition C2 if the R
~

-ratio of 

any block in the sequence is no less than the R-ratio of any block before it that comes 

from a different chain. The inspection procedure Ω∈σ (all inspection procedures) is 

optimal for the k -out-of-n system with parallel-chain precedence constraints under 

condition C1 and C2.” 

So far we mentioned optimal strategies for the special types of testing 

problems. Namely, optimal strategies are known for simple series and parallel 

systems under forest type precedence constraints and for k-out-of-n systems with 

parallel chain precedence constraints a sufficient condition for optimality is known for 

the algorithm of Chiu et. al. In this study we focus on different strategies for k-out-of-

n systems with forest type precedence constraints. And we will compare different 

strategies in terms of their expected cost for randomly generated problem instances. 

Some of the strategies we will consider can be described by a permutation of the 

components while others can be described by a binary tree. Suppose the set of 

components is given by },...,,,{ 321 nttttS = . Then a binary tree for a k-out-of-n system 

can be built by the following recursion where ),( kSP  corresponds to the testing 

procedure for the system S which is functional if the at least k of its components are 

functional.. 
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For the recursive case, we choose component it  by the different strategies. In the 

following section we will deliberate on these different strategies. Although we use the 

intersection algorithm after we reduce the forest type precedence graph, we are not 

sure about optimality of the strategy due to the precedence constraints. Let us analyze 

this situation in the following example. Let’s consider a component set 

{ }54321 ,,,, tttttS =  and two different 3- out-of-5 systems, 21 SandS which are 

composed of these components.  

In system 1S  there are no precedence constraints. Let π andτ be the 

permutations according to ascending order of pCandqC //  respectively. Then the 

intersection of first k elements of permutation π and first (n-k+1) elements of τ is not 

empty. After we test a component from this set, the resulting system will be 2-out-of-

4 in the case the tested component is functioning or 3-out-of-4 system in the case the 

component fails. Let us assume the following data for the problem. 

58.2,2,4.2,6.2,2 54321 ===== CCCCC  

5.0,6.0,5.0,5.0,4.0 54321 ===== ppppp   

π = 25431 ,,,, ttttt  

τ = 25134 ,,,, ttttt  

Initially, we have k=3 and (n-k+1)=3 for this example.The intersection set is 

1+−∩ knk VU ={ }43 , tt . Regardless of which component we choose, if the resulting 

system is 2-out-of-4 then 1+−∩ knk VU  will not include any additional component, 

only the component we did not choose for inspection will be included in the new 

intersection. If the new system is 3-out-of-4 then, 1t  and the component we did not 

choose for inspection will be included in the new intersection. The additional 

component, 1t  in the new intersection does not depend on the component that was 

chosen for the inspection.  
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If there are precedence constraints and if there are more than one component 

in the intersection then it becomes important which component that we choose for the 

inspection. In accordance with the item that is chosen the new intersection set may 

change.  We can see this situation in the following example. We use the same data 

with the precedence constraints shown below. 

 

 

Figure 3.3. A Parallel Chain Precedence Graph 
 
 

After the blocking procedure is applied, the following blocks are obtained. 

Blocks that are obtained from R-values are  [ ]13 , tt  , [ ]42 , tt 5t  and blocks that are 

obtained from S-values are [ ] 54213 ,,,, ttttt . The ascending order of the blocks 

according to R and S values respectively are, [ ]13 , tt [ ]42 , tt 5t .and [ ]42 , tt , [ ]13 , tt , 5t .The 

set 1+−∩ knk VU  is obtained as{ }23 , tt . If we select 3t from this set and additionally if 

3t  is not functioning then the new intersection will be{ }2,1 tt . On the other hand, if we 

select 2t and also 2t is not functioning then new intersection will be{ }43 , tt . Although 

we obtain the same system after the first inspection, the next intersection and 

consequently the strategy may change according to the component that we choose 

from the intersection. As a result of this, Ben Dov’s algorithm is not always optimal 

for the k-out-of-n systems with precedence constraints. Because of this, we analyze 

the performance of different selection methods of the component from the 

intersection. We also modify the reduction technique used in [3] for the forest type 

precedence constraints. 

3.4. Strategies For k-out-of-n Problem Under The Forest Type Precedence 
Constraints 

Now we can mention some strategies that we apply to solve k-out-of-n-

problems with forest type precedence constraints 
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3.4.1. Using Intersection Algorithm 

In order to solve this problem, we can use Ben-Dov’s idea which chooses 

available items from intersection of two permutations. For the forest type precedence 

constraints we modify Chiu’s reduction algorithm and obtain the two permutations 

accordingly. For the reduction case, we can also use Garey’s Algorithm. In addition, 

we compare different selection methods if there are more than one component are 

available in the intersection set.In the next section we will analyze these strategies. 

In order to use intersection algorithm, first we should obtain the independent 

blocks. This is performed by modifying Chiu’s reduction algorithm. 

Let us first apply this procedure to the example given in Figure 3.1. 

The 4 chains for the leave nodes are as follows: 

c-b-a, c-d, e-f, e-g. 

The chain c-b-a is partitioned into the following S and R blocks. 

R(c)=30, 

11.327.0*9.0*5.01/9.0*5.0*105.0*515),,(

,81.315.0*9.01/5.0*515),(

=−++=

=−+=

abcR

bcR
 

the block with the minimum ratio is (c).  

So c is the first block for chain c-b-a , when we continue to apply blocking procedure 

we obtain the following blocks.  

R-blocks; for the first tree (c), R(c) = 30,(b,a),R(b,a)=37.83, (c,d),R(c,d)=26.6 

for the second tree R(e)=25, (f), R(f)=50, (e), R(f)=25, (g), R(g)=50 

Now we will sort each block for each tree without repeating any components. 

c-d-b-a,  e-g-f (e-f-g)  are our two R-chains and these chains can be used to 

find R-blocks. By the same manner the S-chains will be obtained as c-b-a-d, e-f-g 

after this transformation from forest type precedence constraints to parallel chain 

precedence constraints, the blocking procedure mentioned in 3 can be applied to these 

chains. 

This procedure can be described as follows: 

Step1) Blocking procedure for forest type precedence constraints: 

Step1.1):  

Obtain a chain for each leaf node of the precedence graph. (This chain is the 

path from the root to the leaf node) 

 i) Form a set of leaf nodes LN whose elements are without any successors. 
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 ii) If LN =∅  all chains are obtained. Go to step 2. Otherwise, add a new chain     

for each element i  of LN . 

 iii) For each chain C i , Current node CN =node i  

           iv) Add CN  to beginning of C i . 

 v) Update CN  as immediate predecessor of CN  

  If CN  is null chain is obtained remove i  from LN and go to ii. 

  Otherwise go to iv. 

Step1.2):  

After we obtain one chain for each leaf node, we form a single R-chain and a 

single S-chain for the chains that are rooted from the same node. 

i) put the chains that have same root into the same set 

ii) For each chain in each set find *
1RI  such that if we partition a chain into 

two parts RI1  and RI 2 , *
1RI  has min R-value among all possible RI1 . 

Remove *
1RI  from the chain and continue this process with the new 

chain until chain is empty.  

iii) If all the chain in all sets is blocked according to R-value go to (iv). 

Otherwise go to (ii). 

iv) For each chain in each set find *
1SI  such that if we partition a chain into 

two parts SI1  and SI 2 , *
1SI  has min S-value among all possible SI1 . 

Remove *
1SI  from the chain and continue this process with the new 

chain until chain is empty. If all the chain in all sets is blocked 

according to S-value go to (v). 

v) In each set, sort the blocks in a ascending order respect to the R and S 

value. Some items appear more than once within R-permutation and S-

permutation. If we delete these repetitions in each permutation only the 

first appearance remains and, we come up with two permutations for 

each set. These permutations become our new R-chains and S chains. 

Step1.3)  

R-chains and S-chains are used to form R-blocks and S-blocks 

respectively. When we sort these blocks according to R-value and S-value we 

obtained a single R-permutation and a single S-permutation for whole system. 
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Step2)  Obtaining the intersection set 

kU = First k components of permutation S 

 1+−knV = First n-k+1 elements of permutation R. 

  Add node i to AI  such that i in the set 1+−∩ knk VU  and i has no predecessor. 

Until this point we form the intersection and available item set that contains the items 

that have no predecessor in intersection set. Because in both permutations a successor 

i always come after its predecessor j , if the i is in intersection set then j is also in 

intersection set.  

Step 3) Selection from intersection  

Selection from AI   

In this part we use the following selection methods to choose component from the 

intersection when there are multiple components in the intersection and we compare 

these selection   methods in the results part. 

i) min c/p, choose the component that has the minimum c/p value. 

ii) random selection, choose the component randomly. 

iii) minimum of total index value (MI) 

Now we will describe another selection method. Let the index of an item i  in the 

permutation R be ia  and the index of  i  in permutation S be ib  then in the set AI  we 

select *i  such that  

)min{()(*
ii baMII += | }AIi∈ . 

If there is a solution that provides Chiu’s both conditions C1 and C2 then the 

selection method min of sum of index in  βα and  will give us the optimal solution. 

Let’s assume a procedure δ  satisfies C1 and C2 then R-value of any block is 

less than or equal R-value of the blocks that comes after it. Because if R
~

-ratio of a 

block iB  is greater than R-value of jB it implies that R-value of iB is greater than R-

value of jB . If R-value of jB  is the smallest then R- index of first item of block jB in 

β is also smallest. It is similar for the S-index inα . So if there is a solution that 

satisfies C1 and C2 then the chosen item has min sum of index.  

3.4.2. A Greedy Approach by Defining a New Merit Value 

Intuitively, if the number of needed successes is less than the number of 

needed failures then we should give more weight to test the components that is likely 
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to be functioning and less costly.(sorting according to c/p). Otherwise c/q can be the 

dominating permutation. . We define the following merit value for each item to use 

this intuition. 

Min ((c/p)*(k/ (n-k+1)), (c/ (1-p))*((n-k+1)/k)) 

As we can see from the formula as k increases the weight of (c/(1-p)) will also 

increase and the algorithm is favor of (c/(1-p)). As k decreases the weight of (c/p) will 

increase and the algorithm give more importance to testing component which has min 

(c/p). 

The strategies that we mentioned so far can be represented by a binary 

decision tree. Although it is an effective way to use intersection algorithm to find a 

good inspection procedure, it is not easy to represent a solution in its entirety and to 

calculate its expected cost. As we mentioned before a strategy for k-out-of-n testing 

problem can be indicated by a binary decision tree. The size of the binary decision 

tree can be exponential in k and n. The number of nodes in a binary decision tree can 

be given by the following recursion. 


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We assign 1 to nodes that we want to count. For example if we assign 1 to 

i we count only internal nodes. If we count all of the nodes we assign 1 to i , fands . 

The size of binary decision tree for some (n,k) pairs are given in the following table: 

 
 

Table 3-1. Size of Binary Decision Tree for Different (n,k) Pairs 

       n,k 7 8 9 10 

20 232.559 406.979 587.859 705.431 

40 10.759.231 36.312.407 104.902.511 262.256.279 

60 872.541.559 5.889.655.529 34.683.527.009 180.354.340.451 

80 3.599.158.127 30.142.949.321 221.048.295.027 1.436.813.917.681 

100 20.471.735.855 222.630.127.433 2.127.354.551.035 18.082.513.683.805 

 

As we can see from the table, the tree grows exponentially and this does not 

depend on the strategy that we use. 

Since the total number of vertices in the binary decision tree is )2( nΩ  any 

method which explicitly generates the binary decision tree requires exponential time 
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and memory. Ming-Feng et al [4] show that the binary decision tree that describes the 

Intersection algorithm can be represented by the block-walking representation, which 

is of size )( 2nO  and can be computed in time )( 2nO . 

Definition 3.4.1: For any vertex v in a binary decision tree, define its tested unit set 

TU (v) to be the set of units tested along the path from the root to v, including v. 

Definition 3.4.2: For any vertex v in a binary decision tree, define its tested state TS 

(v) to be an ordered pair ( ji, ) where i and j are the number of fault-free and faulty 

units tested along the path from the root to v, excluding v.  If all the vertices with the 

same test state have the same test unit then the testing procedure can be simplified to a 

block walking representation. They prove that if the items are labeled according to 

ascending order of S value and if we take the item that has min label in 1+−∩ knk VU  

the solution can be designated by a block walking method. The cost in block walking 

model can be obtained in a bottom-up fashion by iteratively computing expected cost 

at each grid point.  


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Where, =jiCR ,  cost of item in the right side of grid point ( ji, ) 

   =jiPR , Probability of item in the right side of grid point ( ji, ) 

 jiQR , =1- jiPR ,  

Although Block walking method can be used instead of binary decision tree for 

the representation of some optimal strategies, it is not always possible to represent any 

optimal strategy with a block walking diagram if there are precedence constraints. In 

the following example this situation is illustrated in detail. 

Example 3.3 

The system consists of the following components with the costs and 

probabilities, 

},,,,{ edcbaS =  
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1,1,1,4,8 ===== edcba CCCCC  

1.0,5.0,5.0,5.0,5.0 ===== edcba ppppp  

and following precedence graph is given.  

 

 

Figure 3.4. Parallel Chain Precedence Graph for Example 3.3 
 
 

We searched all solution space with enumeration and we obtained the 

unique optimal strategy represented by the decision tree shown in the Figure 

3.5 

 
Figure 3.5. A Binary Decision Tree for 2-out-of-5 System 

 
 

In this figure we label two nodes which have the same state, (1, 2). If the 

tested unit (TU) for each node that has the same state is equal then we can reflect this 

binary decision tree with block walking method. But in our example TU of the 

labeled node in the left is {c,d,a,b}and TU of the labeled node in the right is {c,d,e,a}. 

because these two sets are not equal, we cannot represent this tree with a block 

walking method. 

Neither the optimal strategies nor many of other strategies can be represented 

by block walking method under the precedence constraints. Because of this, it is an 

important problem to evaluate performance of a strategy when we ar study on large 

instances. It is not possible to compute the expected cost of a strategy that cannot be 
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represented by a block walking diagram in a reasonable time.  On the other hand it is 

possible to calculate expected cost of a permutation strategy in time )( 2nO  . 

Permutation strategies are the fixed sequence of components that we determine at the 

beginning of testing procedure and that do not depend on the results of the previous 

inspections if the system state is not determined yet. If the system state cannot be 

determined after inspecting a set of components, the next component to inspect next is 

the next component in the permutation. Let’s construct the following matrix with 

entries jiC ,  showing, the expected value of remaining cost to determine the state of k-

out-of-n system if the i of (i+j) inspected components are fault –free. 

 

01,10,1

,1,

0,1

,01,00,0

....
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..........
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jiC , can be calculated by the following recursion 

 
otherwise                                                                              0

1 and  if *)(1*)()( ,111,11

,



 +−<<−++

=
++++++++ knikjCapCapaC

C
jijijijiji

ji  

where =)( iaC Cost of thi item in permutationω  and =)( iap Probability of thi item 

inω . 

 It is easy to see that for the base cases kiC ,  and 
jknC ,1+−
 the expected value of 

remaining cost is zero, since we obtain the state of the system. So it is 

computationally easy to compute the expected cost of permutation strategies. 

3.4.3. Permutation Solutions 

Let us denote by RI the remaining items that have not been tested yet and by 

AI the items that have not been tested yet and that are available to test according to 

the precedence constraints. The following procedure gives us a feasible solution for 

the k-out-of-n systems with any type precedence constraints. 

-Find all it  such that AIt i ∈  

-choose *
it such that *

it has min c/p value (in this step we also used c value 

instead of c/p) among all it . 
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3.4.4. Improving Permutation Solutions 

Our initial experiments showed that the permutation solutions are inferior to 

the intersection solutions. In order to find out whether the permutation solutions can 

be improved easily, we used a simple hill climbing algorithm on the initial 

permutation solutions. 

Hill climbing algorithm is a simple local search algorithm. It takes an initial 

solution and searches for the neighbors of this solution. Then, it compares the 

objective function value of the current solution with the objective function value of 

the neighborhood solution which has the best objective function value. If the objective 

function value of the neighborhood solution is better than the objective function value 

of the current solution, the algorithm moves the neighborhood solution automatically. 

Otherwise the algorithm terminates. 

We obtained our initial permutation solutions by using pc / and c values.  

After we obtained an initial solution, we just tried to improve it by using hill 

climbing. We generated all the neighborhoods by the following generation method. 

We interchanged each component i  in ω  with the components which come after i . 

Each permutation which was obtained with a single swap operation of two 

components forms a new permutation strategy. We only did feasible swapping 

operations which do not violate precedence constraints. 
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4. COMPUTATIONAL RESULTS 

The algorithms that we presented in the previous chapter are coded in C# 

language. In this chapter we perform the evaluation of the strategies by experimenting 

them with different randomly generated instances with different parameters.  We 

compare each approach with others in terms of the expected cost for each instance. 

We apply 8 different approaches to random instances. These can be summarized as 

follows:  

• Permutation c/p: At each step we test the component, which has no parent in 

the precedence graph and has minimum c/p value. It gives  a permutation 

strategy that will be denoted by (perm,c/p) 

• Permutation c: At each step we test the component which has no parent in the 

precedence graph and minimum c value. It gives a permutation strategy that 

will be denoted by (perm,c) 

• Minimum merit value: We choose the component which has no parent and 

which has minimum merit value (Min ((c/p)*(k/ (n-k+1)), (c/ (1-p))*((n-

k+1)/k)). It does not necessarily give permutation strategies. (min merit)      

• Local search with the initial solution obtained from permutation c/p (c/p, LS): 

It gives a permutation strategy.  

• Local search with the initial solution obtained from permutation c (c, LS): It 

gives a permutation strategy. 

• Selecting a component from ( 1+−∩ knk VU ). The selected component has no 

predecessor in the remaining components and it has min (c/p) (int, min(c/p)). 

It does not necessarily give permutation solutions. 

• Selecting a component randomly from ( 1+−∩ knk VU ). The selected component 

has no predecessor in the remaining components and it (int,rand) does not 

necessarily give a permutation strategy. 

• Selecting a component from ( 1+−∩ knk VU ) the selected component has no 

predecessor in remaining items and which has minimum sum of index (int, 

MI). It does not necessarily give a permutation strategy 

 

 In order to simulate the performance of the strategies, we generate random 

problem instances. The fault-free probabilities are chosen randomly from uniform 
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distributions with parameters (0.01, 0.99), (0.25, 0.75), (0.5, 0.75), (0.75, 0.99). The 

testing costs of the components are also generated randomly with uniform distribution 

on (1, 99).  For the experiments, we consider k-out-of-n systems with n=20, 40, 60, 

80 and 100 components. For each value of n, k varies from 1 to n/2. We do not use k 

values which are more than n/2 because these problems are the dual of the problems 

that are already generated. For each (n,k) pair, we generate 10 random instances for 

each probability distribution. In total, 40 random problems are generated for each 

(n,k) pair. There are 150 different (n,k) pairs so altogether there are 6000 problem 

instances. 

We generate the precedence graphs randomly as follows. We assign each 

component a random depth between 0 to (max.depth-1). The range for max depth is 

from 1 to number of components and it is a user specified value. After we assign 

depth of each component, we assign the depth of its immediate predecessor. This 

depth is the next small assigned number as a depth. If there are more than one 

component with the same depth, one of the components is chosen randomly as an 

immediate predecessor. 

 The strategies that are represented by binary decision tree could not be 

evaluated for large (n, k) pairs. We could obtain the expected cost of diagnosing of all 

(20, k) pairs under each strategy. For large values of  n values, although it is possible 

to compute the expected cost  of the strategies which are represented by binary 

decision trees only for small k values, we could evaluate the performance of 

permutation solutions for all (n, k) values as described in the previous chapter. (n,k) 

pairs, for which cost of the strategies which are represented by binary decision tree 

could be computed, are shown in Table 4.1. 

 
Table 4-1. (n,k) Pairs for Which We Computed Expected Cost of Binary Decision Tree Strategies 

n=20 for all k values 

n=40 K=1,2,3,4,5,6 

n=60 k=1,2,3,4,5 

n=80 k=1,2,3,4 

n=100 K=1,2,3 
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Figure 4.1. Number of Best Solutions v.s Strategies 
 

 

 In Figure 4.1 we show the number of instances for which different algorithms 

provide the best solution for different k values when n=20. 

Let us recall that we have 40 instances for each (n,k) pair. We obtain similar results 

for other values of n and k.  The results can be found in table form in the appendix. As 

we can conclude from the Figure 4.1, generally the strategy that chooses the 

component from the set ( 1+−∩ knk VU ) according to the sum of minimum index 

performs better than other strategies. More precisely, best solutions were given by this 

strategy under the conditions n=20 and k from 1 to n/2. For k=1 all selection method 

from ( 1+−∩ knk VU ) gave the same result due to the fact that there is only one element 

in intersection. 
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Figure 4.2. Average Cost v.s Strategies 
 

 

 Figure 4.2 shows the average expected cost versus k value when n=20. The 

average expected cost value increases as k increases as we expect. As we can see from 

the figure the gap between the performances of the strategies also increases as k 

increases. When k=1 the strategies using intersection algorithm is optimal. In addition 

to these, for small k values permutation c/p is nearly gave the same expected cost 

value with the intersection algorithms. 
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Figure 4.3. Percent Difference Between Best of BDT and Best of Permutation Solutions 
 

 

For large values of (n,k) pairs, we were able to evaluate only permutation 

strategies. In Figure 4.3, we compare the best permutation solutions with the best 
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binary decision solutions for n=20. When k is small, the difference between the 

testing costs under the permutation strategy and the intersection algorithms is small, 

but as k increases permutation solutions deteriorate.  
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Figure 4.4. Percent Difference Between the Intersection Algorithm With Random Selection and 

Intersection Algorithm With Min Index Selection Method 
 
 

In order to predict range of difference of expected cost values under different 

selections methods from ( 1+−∩ knk VU ) we form the Figure 4.4. The comparison 

between average cost under the random selection from the intersection and average 

cost under the selection according to minimum index is presented in this figure.  As 

we conclude from the graph this difference is usually under 3%. 
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(d) 

Figure 4.5. Number of Best Solutions v.s Strategies for Different Probability Distributions 
                                                                                         
                                                                                                      
            Now we examine the results in terms of the range of the probability values, In 

Figure 4.5, we plot the number of best solutions with respect to k for different 

probability distributions when there are 20 components. When pi’s are from (0.75, 

0.99) we see that the performance of the random selection and sum of min index 

selection are close to each other. The probabilities in these instances are closer to each 

other, so the costs play an important role to construct the intersection. This leads to 

few elements in the intersection and closer performance of different selection methods 
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Table 4-2. Percent Difference Between all Strategies and Intersection Algorithm With Random 

Selection Method 
n int,minc/p Int,Rand int,MI perm-

c/p 
perm,c min 

merit 
c/p LS c-LS 

20 0,72% 0,00% -0,31% 7,40% 12,23% 7,71% 6,35% 5,00% 

40 0,82% 0,00% -0,81% 7,01% 14,34% 5,68% 6,24% 4,84% 

60 0,46% 0,00% -0,46% 5,58% 12,27% 4,07% 4,96% 3,29% 

80 0,31% 0,00% -0,22% 4,43% 11,71% 3,14% 3,82% 2,39% 

100 0,26% 0,00% -0,23% 3,11% 11,45% 1,98% 2,99% 2,00% 

 

 

In order to compare the algorithms among themselves with respect to the size of the 

problem, we consider the algorithm that selects randomly from ( 1+−∩ knk VU ) as a 

benchmark. Table 4.2 indicates the percent difference of performance of all 

algorithms from the performance selecting a random component from ( 1+−∩ knk VU ). 

We take this algorithm as a benchmark because the optimal algorithm that Ben-Dov 

states when there are no precedence constraints tests a random component from the 

intersection. The negative difference means a better performance than the benchmark 

algorithm. Although we expect that the gap between performances of algorithms 

increase as n increase we encounter with an opposite situation. These result can be a 

conclusion of that we can only get data for small k values. 
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(b) 

Figure 4.6. Number of Best Solutions v.s to Different (n,k) Pairs. 
 
 

          In Figure 4.6(a) and 4.6(b) we see the number of best solutions for k=3 and k=4 

for different n values. As we say before the most of the best solutions is given by the 

sum of min index selection method.  

           We also compare the permutation strategies for the large values of (n,k). We 

take permutation c/p as benchmark strategy. Because k values are small than the (n-

k+1) values, permutation c/p generally performs better than permutation c. We obtain 

different improvement rates for different n values as a result of hill climbing. 

Following table summarize this information. This table is obtained by taking average 

of percent differences 
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Table 4-3. Percentage Difference Between  all Permutation Strategies and Permutation 
According to Ascending Order of c/p 
n perm-

c/p 
perm,c c/p LS c-LS 

20 0,00% 4,77% -0,89% -1,95% 

40 0,00% 4,53% -1,15% -2,79% 

60 0,00% 3,29% -1,63% -3,87% 

80 0,00% 3,68% -1,74% -3,69% 

100 0,00% 3,29% -2,01% -4,15% 

 

As a conclusion, the selection method sum of minimum index performs better 

among the other algorithms. The permutation strategies show worse performance but 

the expected costs are not much bigger from the expected costs that are obtained from 

the intersection algorithm. Because finding a permutation solution is easy than finding 

a binary decision tree solution, it is also reasonable to use permutation solutions for 

testing problem.  
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5. CONCLUSION 

 

In this thesis we study the k-out-of-n testing problem under forest type 

precedence constraints. Our objective is to find a strategy that minimizes the expected 

cost of diagnosing the system state which is functional if at least k of its component 

are functional. In the literature k-out-of-n problem without precedence constraints is 

solved optimally. The special cases, 1-out-of-n and n-out-of-n testing problems under 

forest type precedence constraints are also solved optimally. For the parallel chain 

precedence type which is a special type of forest type constraints, an optimality 

condition is given and a heuristic method is suggested. The optimal inspection 

strategy for the general k-out-of-n systems under forest the forest type precedence 

constraints. The main contributions of this study can be summarized as follows. 

• We modified some well known algorithms, which are already applied to more 

special cases, to solve k-out-of-n systems under forest type precedence 

constraints. 

• We evaluate the performance of these algorithms for the small (n,k) pairs. 

• We improve some permutation strategies by using hill climbing. For the large 

size instances, we evaluate the performance of permutation strategies.  

      Future research directions in this area may be as follows. 

• Finding optimal strategy for k-out-of-n systems under both parallel chain 

precedence constraints and forest type precedence constraints.  

• Finding the optimal strategy for both special and general cases under general 

precedence constraints. 

• Finding the optimal permutation strategies for k-out-of-n systems under all of 

parallel chain precedence constraints, forest type precedence constraints and 

the general precedence constraints. 
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APPENDIX: NUMBER OF INSTANCES FOR WHICH EACH ALGORITHMS 

PRODUCES BEST RESULTS 
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A-1 Number of instances for which algorithms produces best result n=40 
k<=6(all strategies) 

 
 

k int,minc/p int,Rand int,MI perm-
c/p 

perm,c Min 
merit 

c/p LS c-LS 

1 40 40 40 0 0 0 1 0 

2 5 14 31 0 0 0 0 1 

3 2 5 35 0 0 0 0 0 

4 0 8 32 0 0 0 0 0 

5 0 11 29 0 0 0 0 0 

6 0 9 29 0 0 0 0 2 

         

 

 

 

 
A-2 Number of instances for which algorithms produces best result n=60 

k<=5(all strategies) 
 

 
k int,minc/p int,Rand int,MI perm-

c/p 
perm,c Min 

merit 
c/p LS c-LS 

1 40 40 40 0 0 0 0 0 

2 0 5 34 0 0 0 1 0 

3 1 12 27 0 0 0 0 0 

4 1 10 29 0 0 0 0 0 

5 0 8 32 0 0 0 0 0 

 

 

 
 

A-3 Number of instances for which algorithms produces best result n=80 
k<=4(all strategies) 

 
k int,minc/p int,Rand int,MI perm-

c/p 
perm,c Min 

merit 
c/p LS c-LS 

1 40 40 40 1 0 1 1 1 

2 1 9 32 0 0 0 0 0 

3 0 7 33 0 0 0 0 0 

4 0 9 31 0 0 0 0 0 
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A4.  
 

A-4 Number of instances for which algorithms produces best result n=100 k<=3(all strategies) 
 

k int,minc/p int,Rand int,MI perm-
c/p 

perm,c Min 
merit 

c/p LS c-LS 

1 40 40 40 1 0 1 1 1 

2 1 16 25 0 0 0 0 0 

3 0 13 27 0 0 0 0 0 

 
 
 
 

A-5. Number of instances for which algorithms produces best result n=40 k>6(permutation 
strategies) 

 
k perm-

c/p 
perm,c c/p LS c-LS 

7 2 0 6 34 

8 5 0 11 29 

9 3 0 11 29 

10 14 0 21 20 

11 8 0 14 26 

12 6 0 11 30 

13 9 0 16 27 

14 4 0 12 28 

15 5 0 10 30 

16 10 0 14 27 

17 4 0 16 24 

18 6 0 10 32 

19 3 0 13 29 

20 4 1 20 20 

 

 

 
A-6. Number of instances for which algorithms produces best result n=60 k>5(permutation 

strategies) 
 

k perm-
c/p 

perm,c c/p LS c-LS 

6 5 0 12 28 

7 5 0 14 26 

8 10 0 20 20 

9 3 0 13 27 

10 4 0 8 32 

11 5 0 11 29 

12 1 0 3 37 

13 3 0 10 31 

14 6 0 14 26 

15 4 0 16 24 

16 4 0 17 23 

17 3 0 11 29 



44 
 

18 2 0 12 28 

19 4 0 12 28 

20 6 0 13 27 

21 2 0 8 32 

22 3 0 8 32 

23 2 0 7 33 

24 1 0 10 30 

25 4 0 11 29 

26 4 0 7 33 

27 3 0 9 31 

28 2 0 10 30 

29 0 0 9 31 

30 2 0 16 24 

 
A-7. Number of instances for which algorithms produces best result n=80 k>4(permutation 

strategies) 
 
 
 
 

k perm-
c/p 

perm,c c/p LS c-LS 

5 4 0 12 28 

6 4 0 12 29 

7 4 0 15 25 

8 2 0 7 33 

9 2 0 12 28 

10 2 0 13 27 

11 2 0 13 27 

12 6 0 15 25 

13 5 0 13 27 

14 4 0 13 27 

15 4 0 16 24 

16 2 0 12 28 

17 0 0 13 27 

18 1 0 12 28 

19 3 0 16 24 

20 4 0 10 30 

21 3 0 12 28 

22 0 0 15 25 

23 2 0 17 23 

24 2 0 12 28 

25 2 0 14 26 

26 3 0 15 25 

27 1 0 11 29 

28 1 0 12 28 

29 2 0 8 32 

30 6 0 14 26 

31 2 0 8 32 

32 1 0 9 31 

33 3 0 9 31 

34 1 0 14 26 



45 
 

35 3 0 10 30 

36 1 0 8 32 

37 3 0 14 26 

38 2 0 11 29 

39 6 0 17 23 

40 1 0 15 25 

 

A-8. Number of instances for which algorithms produces best result n=100 k>3(permutation 
strategies) 

 
 
 
 

k perm-
c/p 

perm,c c/p LS c-LS 

4 7 0 16 25 

5 2 0 11 29 

6 5 0 9 31 

7 5 0 11 29 

8 2 0 13 27 

9 4 0 16 24 

10 3 0 12 28 

11 2 0 14 26 

12 2 0 14 27 

13 6 0 13 27 

14 3 0 8 32 

15 3 0 9 31 

16 3 0 10 30 

17 1 0 14 26 

18 3 0 11 29 

19 1 0 14 26 

20 2 0 16 24 

21 4 0 15 25 

22 6 0 17 23 

23 1 0 8 32 

24 2 0 15 25 

25 1 0 14 26 

26 2 0 19 21 

27 1 0 10 30 

28 3 0 18 22 

29 1 0 10 30 

30 3 0 18 22 

31 3 0 12 28 

32 1 0 13 27 

33 1 0 13 27 

34 2 0 14 26 

35 4 0 16 24 

36 2 0 10 30 

37 2 0 13 27 

38 2 0 11 29 

39 0 0 10 30 



46 
 

40 16 0 7 17 

41 1 0 10 30 

42 0 0 8 32 

43 0 0 10 30 

44 3 0 8 32 

45 1 0 9 31 

46 2 0 13 27 

47 3 0 14 26 

48 3 0 12 28 

49 0 0 11 29 

50 1 0 12 28 
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