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ABSTRACT 

 

The emission of light after the excitation source is switched off is known as 

phosphorescence. Phosphorescence occurs when suitable elements with active 

electronic configuration are doped into certain host materials. For an efficient 

phosphorescence emission (long after glow time and high intensity), both the dopant ion 

and the host material are critical. Strontium aluminates, such as SrAl2O4, SrAl4O7, 

SrAl12O19, have gained attention for the last two decades due to their phosphorescence 

behavior upon doping with rare earth elements such as Eu, and Dy. These 

phosphorescent materials are superior to other materials of this kind as they have long 

after glow times with high quantum efficiency; they are easy to produce with alternating 

methods and are low cost materials.  

The focus of this thesis is on the different stoichiometric compounds of strontium 

aluminates with the dopants Eu2+, Dy3+, and boron. Eu2+ introduces phosphorescence 

whereas Dy3+ is used to increase the after glow time. Boron on the other hand improves 

the crystallinity, and also the after glow time. The general aim of this thesis is to 

develop materials with long after glow duration i.e more than one hour. A modified 

version of the Pechini process is proposed in order to accomplish the objective. The 

proposed procedure is one step ahead from the previous studies as it is an easy, low-

temperature and low-cost method. Moreover, by the proposed method, strontium 

aluminate compounds can be incorporated with up to 30% boron without disturbing the 

crystal lattice and hence without lowering the crystallinity. These advantages are also 

verified experimentally. 
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ÖZET 

 

Fosforesans tahrik kaynağı kapalı olduğunda ışık yayınımının halen devam etmesi 

durumuna verilen genel addır. Fosforesans, aktif elektronik konfigürasyona sahip uygun 

elementlerin uygun kristal yapılı malzeme içerisine katkılandırılmasıyla meydana gelir. 

Verimli bir fosforesans yayınımı için (uzun yayınım süresi ve yüksek ışık şiddeti) hem 

katkılandırma iyonu hem de matris malzemesi önem taşır. SrAl2O4, SrAl4O7, SrAl12O19, 

gibi stronsiyum alüminatlar fosforesans özellikleri nedeniyle geçtiğimiz 20 sene 

içerisinde dikkat çekmişlerdir. Bu malzemeler uzun süreli yayınımları, yüksek kuantum 

verimlilikleri, kolay imal edilebilirlikleri ve düşük maliyetleri nedeniyle diğer 

malzemelerden daha ön plana çıkmışlardır. 

Bu tezin odağı değişik stokiyometrik oranlardaki stronsiyum alüminat bileşiklerini 

Eu2+, Dy3+ ve boron ile katkılandırılmasıyla elde etmektir. Eu2+ malzemeye fosforesans 

özelliğini katarken, Dy3+ yayınım süresini artırıcı rol oynar. Boron ise kristal yapıyı 

teşvik eder ve yayınım süresini artırır. Bu tezin genel amacı ise yayınım süresi yüksek 

(bir saatten fazla) fosforesans malzemeler geliştirmektir. Bu amaçla, orijinal Pechini 

süreci üzerinde değişiklikler yapılmış ve yeni bir metod önerilmiştir. Önerilen bu metod 

kolay uygulanışı, düşük sıcaklıkları gerektirmesi ve maliyetinin düşük olması nedeniyle 

önceki çalışmalardan daha verimlidir. Ayrıca bu metotla stronsiyum alüminat 

bileşiklerine %30’a kadar boron katkılandırılabilmektedir. Bahsedilen bu avantajlar 

deneysel çalışmalarla ispatlanmıştır.   
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CHAPTER 1. INTRODUCTION 

 

 

 

 

When the water of oceans or seas is disturbed during the night, sometimes it is 

possible to see blue-green sparkles. These colorful lights make scuba diving an 

attractive sport during the night. The light is due to bioluminescent planktons named 

noctiluca scintillans, which stands for “night lights”. When the plankton population is 

large enough, a continuous glow can be observed. Although commonly known as 

phosphorescent water, the term is a misnomer since the light is produced chemically in 

short bursts. 

Nature is full of self-luminescent living organisms and noctiluca scintillans are 

only one of them. As it is the case in many other discoveries in science, humans have 

been trying to imitate the luminescence behavior of self-luminescent organisms for 

many years. Obviously, luminescence becomes important when it is observed at night. 

Thus, producing “night lights” has been one of the main focuses of manmade 

luminescent materials.  

The concept of extended glowing in the dark is known as phosphorescence. To be 

more specific, while luminescence is a general term for the emission of radiation in the 

visible part of the electromagnetic spectrum, the emission of light after the excitation 

source is switched off is known as phosphorescence. Phosphorescence is identical to 

fluorescence except that fluorescence (FL) is the “finite” emission (i.e. ms to ns 

lifetime) after excitation by an external source, while phosphorescence is the afterglow 

extending many timescales over the FL lifetime. 

Fluorescent materials find major application areas in fluorescent lightning via 

fluorescent lamps (ultraviolet to visible), display devices via cathode ray tubes (electron 
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impact to visible), and scintillators (X-Rays and γ-Rays to visible). The delayed 

emission and hence phosphorescent materials (phosphors) find use in luminous paints, 

clocks and watches, emergency lightning, exit signs etc. In fact, whenever there is no 

source of light but still light is needed, phosphors serve the purpose well. 

There are many materials that are used as phosphors, and new materials with 

phosphorescent activity are being discovered regularly. Phosphorescence occurs when 

suitable elements with active electronic configuration are doped into certain host 

materials. For an efficient phosphorescence emission (long after glow time and high 

intensity), both the dopant ion and the host material are critical. The host material is 

important, since it defines the environment of the dopant ion, and determines the 

physical behavior of the material to external disturbances. On the other hand, the dopant 

ion will determine the color of the emission and also the time of the after glow by 

introducing or shifting the position of trap states in the forbidden energy band gap of the 

material.  

The following are some of the widely used inorganic phosphor materials: simple 

oxides such as CaO, ZnO, Y2O3; silicates such as CaSiO3, Ba2SiO4, BaMg2Si2O7; 

phosphates such as YPO4, CaP2O6, SrP2O7; borates such as YBO3, CaB2O4, SrB4O7; 

aluminates such as LiAlO2, YAlO3, MgAl2O4, CaAl2O4, BaAl2O4, CaAl4O7, Y4Al2O9, 

BaMgAl10O17; molybdates and tungstates such as CaMo4 and Sr3WO6; halides such as 

CaCl2, SrF2, ZnF2; sulfates such as CaSO4, SrSO4, ZnS-type sulfides and CaS-type 

sulfides. There are many different dopant ions, which are incorporated into different 

host materials. Some of the widely used dopant ions are Bi3+, Cd2+, Cu+, Ga3+, S, Er3+, 

Pb2+. 

Host lattices, strontium aluminates, such as SrAl2O4, SrAl4O7, SrAl12O19, and the 

dopants Eu2+, Dy3+, and boron are being used for phosphorescent materials for the last 

two decades. They have several advantages such as they have long after glow times 

with high quantum efficiency; they are easy to produce with alternative methods and are 

low cost materials. The focus of this thesis is on the different stoichiometric compounds 

of strontium aluminates with the dopants Eu2+, Dy3+, and boron. The general aim on the 

other hand is to develop materials with long after glow times, i.e more than one hour, 

which requires a clearer understanding of the relationship between the atomic and 

electronic structure with the optical properties. 
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1.1. Literature Review 

 

Rare earth (Eu, Dy) doped strontium aluminates, SrAl2O4 (SA), SrAl4O7 (SA2), 

SrAl12O19 (SA6), Sr3Al2O6 (S3A) are new and efficient phosphorescent materials that 

have gained attention for the past twenty years due to being able to replace the use of 

sulfide phosphors that are doped with radioactive materials and used in luminous 

watches, clocks, paints, emergency exit signs, etc. [1,2]. Other non-radioactive element 

doped phosphorescent materials such as ZnS:Cu do not luminesce with as high intensity 

and length of afterglow desirable for these applications[2,3]. The addition of Eu in its 

trivalent state generates only fluorescence, whereas the reduction of Eu3+ to Eu2+ 

enables phosphorescence [4,5]. Thanks to the reduction, Eu2+ could also replace Sr2+ in 

the crystal lattice, while preserving local charge neutrality. Dy3+ is known to extend the 

phosphorescence time. Boron, usually added to the system as a flux for processing by 

solid-state reactions, has also been reported to extend the phosphorescence time [4,6,7].  

There are several possible routes for synthesizing the strontium aluminate 

compounds. The conventional method is the solid-state reaction, in which a mixture of 

the SrO and Al2O3 compounds are solidified from their liquid states. According to the 

phase equilibrium diagram of the SrO-Al2O3 system [8], which can be seen in Figure 

1.1, these reactions require temperatures of 1750˚C to 1950˚C.  

 

Figure 1.1 Binary phase diagram of SrO-Al2O3 showing stoichiometric 
compounds of strontium aluminates 

SrO Al2O3 
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S
A

2 

S
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S
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In this method, SrCO3 and Al2O3 are used as the starting materials. Europium is 

added to the system as Eu2O3. The chemical reactions rely on the diffusion of atoms or 

ions, and thus high temperatures are necessary to enable the diffusion. Usually, before 

the calcination process at high temperatures, ball milling is performed under either wet 

or dry ambient to distribute the powders homogeneously. Adding boron as a flux agent 

to the system in the form of H3BO3 or B2O3 could reduce the calcination temperature 

down to 1300˚C, but not any lower due to the decomposition of SrCO3 at 1258˚C [9-

14]. 

Lower temperature methods exist to ease the production of strontium aluminate 

compounds. There are several methods proposed by different groups. These include the 

microwave route [15], sol-gel method [16], combustion synthesis method [17,18], citric 

acid precursor route [19], and spray dryer method [20]. Among these, Tang et al. 

reported the successful production of SA:Eu,Dy by sol-gel processing, comparing their 

results to a reference material obtained by solid-state reaction, as well as to the JCPDS 

data. However, their XRD spectra show additional peaks that indicate the presence of 

additional phases in their sol-gel synthesized powders. In addition, the crystallinity of 

their powders is low, although they have used temperatures as high as 1400˚C. 

Moreover, the XRD spectrum of the SA6 powders synthesized by Singh et al. via 

combustion showed that some of the peaks had just emerged at 500˚C, suggesting that 

further firing was necessary at higher temperatures in order to reduce the amorphous 

phase content.  

The Pechini process has been used since the 1960’s to produce ceramic powders 

at low temperatures, due to being a cost-effective and more efficient process compared 

to the conventional solid-state method. The Pechini process is a solution polymerization 

technique, in which crystallization occurs with metal ions chelated by organic acids 

[21]. The metal ions, which are attracted to the relatively negatively charged zones of 

organic acids, are trapped by polyesterification of those organic acids with the addition 

of polyhydroxyl alcohols. The metal ions are well dispersed in solution; by reducing the 

distance between metal ions, it becomes easier to produce a homogenous, single-phase 

material at lower temperatures, compared to the conventional solid state method.  
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1.2. Objective  

 

 

In this thesis our aim is to develop phosphorescent materials with long after glow 

times and high emission intensity. As reviewed in the previous chapter, there are several 

proposed methods for this process. However as discussed above, the previously 

proposed methods have several disadvantages such as long processing times, high-

temperature needs, complicated procedures and relatively high cost solutions. In order 

to overcome these difficulties we propose an enhanced synthesis process, which is a 

modified version of the Pechini method. The proposed method is not only cost-effective 

but also very simple to apply. The other advantage of the proposed method is that, it is a 

low temperature method.  

As for the materials used in this study, strontium aluminates, such as SrAl2O4, 

SrAl4O7, SrAl12O19, were selected as the host lattices. Also, Eu2+, Dy3+, and boron were 

used as the dopants. This is due to the fact that the combination of these host and 

dopants are superior to other materials used for phosphorescence purposes as they have 

long after glow times with high quantum efficiency; they are easy to produce with 

alternative methods and are low cost materials. The focus of this thesis is on the 

different stoichiometric compounds of strontium aluminates with the dopants Eu2+, 

Dy3+, and boron. 

Because the overall goal is to understand the mechanisms of extended 

phosphorescence, determining the synthesis of a suitable model material was merely the 

first step leading to investigating the structure-property relationship. Characterization of 

the material enabled us to start modeling the electronic and atomic structure features 

that controlled the extent of afterglow. Conventional characterization techniques could 

be used to obtain phase composition information. However, elucidating the role of 

boron in the host crystal structure required the development of ELNES fingerprinting 

techniques. 
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CHAPTER 2. THEORY 

 

 

 

 

In this chapter, the background and basic theory on the electronic transitions, 

luminescence phenomena and the band structure of materials are presented in detail. 

 

 

2.1. Electronic Energy Levels and Transitions 

 

 

To start from the beginning, electronic transitions within a given atom can give 

rise to color through the emission of light. The atomic emission of sodium is a well 

known example of the yellow color of the flame of this elemental compound. The 

ground level electronic configuration of Na is 1s22s22p63s1, and the outermost electron 

is the 3s1 electron. The ground state of this valence electron has two closely spaced 

energy levels above it, one at 2.105 eV and the other one 2.103 eV above the 3s1 level. 

The corresponding wavelengths of light of these energies are 589.1 and 589.6 nm, 

where the longer wavelength corresponds to the lower energy emission shown in Figure 

2.1. These wavelengths of light emitted from excited sodium atoms at about 590 nm, 

correspond to the yellow part of the visible light spectrum. Thus, when a sodium-

containing material is heated in a flame so that 3s1 electrons are excited to the 3p levels, 

the electrons can then return to the ground state while emitting yellow light. This type 

of emission is a simple model, where only the excitation of the valence electrons is 

necessary to produce the emission colors. However, when the valence electrons of 
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isolated atoms combine with another atom to form chemical bonds, the ground state 

energy of the atom is lowered, and much more energy is required to promote them to 

excited states. In many compounds, the outermost electrons are stabilized by chemical 

bonding in this manner, requiring energy in the UV region for excitation. No visible 

color is associated with absorption and emission from these materials, but still they do 

absorb UV light. One exception is compounds containing transition metals with 

incomplete d-shells. The excitation of these valence electrons can fall in the visible 

region of the spectrum, and these compounds can have different colors. This is also true 

for compounds containing transition metal impurity ions.  

 

 

 

 

 

Figure 2.1 The electronic energy levels of Na showing the transitions, which 
correspond to yellow color in the visible region. 

All electronic energy levels are sensitive to their environment. An ion in the 

electrical potential field in a crystal (i.e., in a crystal field) has different energy levels 

from that of the free ion. Because a dopant ion interacts with the crystal field of its host 

lattice, de-excitation of the host electrons can give rise to observable colors, thus 

providing information on the electronic configuration of the ion itself. An example to 

this phenomenon is ruby. When Al2O3 is doped with Cr3+ to replace Al3+ in the 

structure, the changes in the crystal field engender the absorption of violet and yellow-

green light. Thus ruby appears red due to the subtractive cause of color [22].  

In an isolated atom, the electrons occupy a ladder of sharp energy levels. If 

another atom approaches the first, the outer electron clouds will interact, and the result 

is that the single energy level will split up into two, one at a higher energy and one at a 

lower energy, as can be seen in Figure 2.2. Four atoms will give four energy levels. This 

process can be continued indefinitely. As each atom adds to the cluster, the number of 

energy levels in the high energy and low energy groups increase. At the same time, the 

spacing between the energy levels in each group decreases. Ultimately, when a large 

number of atoms are brought together, as in a solid, the energy levels in both the high 

3p 

3p 

3s ground state 

excited states 
2.105 eV 

2.103 eV 
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energy and low energy groups become very close and they are named as energy bands 

[23]. 

 

 

 

 

 

 

 

 

Figure 2.2 The formation of energy band. (a) Isolated atom (b) Energy levels in a 
diatomic molecule. (c,d) Energy levels of multi atoms 

The details of the band structure of a crystal depend upon both the geometry of 

the structure and the degree of interaction of the electron energy levels. When the 

interaction is large, typically for the outer orbitals of closely spaced, large atoms, the 

bands are broad. When the interaction is less, such as the case for the inner electron 

orbitals of atoms, which are further apart, the width of each band is rather narrow. The 

electrons in the solid fill the bands from the lowest energy to the highest [23].  

Insulators have an empty upper energy band, while the lower energy band is 

completely occupied by electrons (Figure 2.3a). Moreover, the energy gap between the 

top of the filled band and the bottom of the empty band is quite large. The filled energy 

band is called the valence band (VB) and the empty energy band is called the 

conduction band (CB). The energy difference between the top of the valence band and 

the bottom of the conduction band is called the band gap [23].  

Intrinsic semiconductors have a similar band picture to insulators except that the 

separation of the empty and filled energy bands is small (see Figure 2.3.b). The band 

gap must be such that some electrons have enough energy to be transferred from the top 

of the valence band to the bottom of the conduction band at room temperature. Each 

electron transferred will leave behind a vacancy in the valence band. These vacancies 

behave as positively charged electrons. They are named as holes. Therefore, each time 

band 1 

band 2 

1 atom 2 atoms 4 atoms many atoms 

(a) (b)    (c) (d) 
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an electron is removed from the valence band and transferred to the conduction band, 

two mobile species are created; an electron and a hole [23].  

Metals are defined as materials in which the uppermost energy band is only partly 

filled which can be found in Figure 2.3.c. The highest energy attained by electrons in 

this band is called the Fermi Energy. 

 

 

 

 

 

 

 

(a)               (b)        (c)  

Figure 2.3 Schematic illustration of the energy bands in (a) an insulator, (b) an intrinsic 
semiconductor and (c) a metal.  

 

 

2.2. Luminescence – Theory and Classes 

 

 

In this section, a short theory of luminescence will be presented, building on the 

previously mentioned band theory of atoms, molecules and solids. Also, the 

classification of luminescence processes will be given.  

 

2.2.1. Theory of Luminescence 

Luminescence is the general term describing the emission of electromagnetic 

radiation in the visible region of electromagnetic spectrum by relatively cool bodies, as 

opposed to incandescence, which applies to light emission from hot bodies [24, 25]. The 

emission is usually independent of the nature of the excitation, which is the pre-
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requisite to the emission, and lies in a region where the substance is non-absorbing. The 

emission of radiation results when a material adjusts itself from an excited to a ground 

state. Luminescence from inorganic solids is normally dominated by extrinsic factors 

such as impurities, defects, and excited states of isolated atoms and ions. Impurities or 

defects in structure responsible for emissions are named activators. The electronic states 

involved in the luminescence due to impurities can be either the energy levels of the 

impurity ion perturbed by the crystal field or the band structure of the crystal disturbed 

by the impurity. Transitions may be divided into two as radiative transitions and non-

radiative transitions.  

Radiative Transitions: Luminescence may involve radiative electronic transitions 

emitting a photon, when an electron drops from an upper to the lower energy level of 

either intrinsic band state or impurity levels. Radiative transitions may be of different 

types: (i) Transitions between intrinsic band and impurity state, which may occur 

between a deep impurity level and one of the bands (i.e. CB to acceptor or to donor to 

VB) with momentum conservation even in indirect gap materials. (ii) Band-to-band 

transitions involving free electrons and holes. Such transitions usually occur in direct-

gap materials, such as II-VI compounds, between the CB and the VB with conservation 

of momentum. In case of indirect gap materials, phonon emission is likely to occur (see 

Figure 2.4). (iii) Transitions between donor (activator) and acceptor (co-activator) 

levels. Activator atoms occupy Group II cation lattice sites and behave as deep acceptor 

levels below the CB edge. (iv) Transitions occurring within the impurity (luminescent) 

center without ionization. The electron is not excited from the center to transition to the 

CB; instead it returns to the ground state exhibiting a narrow spectrum characteristic of 

an atomic transition.  

 

 

 

 

 

 

Figure 2.4 Transitions from conduction to valence band for (a) direct gap and (b) 
indirect gap materials 
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Non-radiative Transitions: Several possible mechanisms leading to non-radiative 

transitions, competing with the radiative ones, and adversely affecting the luminescence 

efficiency, can be described as: (i) Generation of phonons due to thermal vibrations. (ii) 

Recombination at surface states, dislocations, grain boundaries, pores etc., by losing the 

excess energy through step-wise transitions, so called cascade-process, between 

narrowly spaced levels existing throughout the forbidden energy gap in the crystal 

joining CB and VB, emitting one single phonon at each step. (iii) All the defects sites 

may not act as recombination centers to allow the carriers to recombine radiatively. (iv) 

Auger process, in which the energy lost by the captured carrier excites another nearby 

carrier in the crystal and may give rise to non-radiative loss of energy. The other 

carriers can return to a lower energy state by multiple phonon emission.  

Every luminescence process consists essentially of three stages: (i) the excitation 

or absorption, (ii) storage of excitation energy which determines the average duration of 

luminescence following the removal of the excitation source, (iii) the emission. It may 

be noted that if the luminescence exists for ~10-8 seconds, which is the life time of the 

atoms in the excited state, or less this is termed “fluorescence” whereas the delayed 

luminescence is called “phosphorescence”. 

The absorption of energy in an insulator occurs by the following possible 

processes: (i) excitation of crystal vibrations (lattice absorption), (ii) formation of 

excitons (electron in the CB paired with a hole in the VB), (iii) excitation of electrons 

across gap from VB to CB (intrinsic absorption), (iv) excitation of the impurities and 

structural defects present in the solid from ground states to their excited states, etc. 

A plot of absorption coefficient vs. energy gives rise to the absorption spectrum of 

the material, which relates to the transitions corresponding to the creation of a free hole 

and a free electron. In an idealized absorption spectrum, there is a cut off at the 

minimum energy corresponding to the band gap for the transition between the VB and 

the CB. The corresponding wavelength is called the “absorption edge” of the host 

lattice. The typical absorption and emission spectra can be seen in Figure 2.5. The 

electronic states originating from impurities and structural defects, and responsible for 

luminescence emission, contribute optical absorption bands on the long wavelength side 

of the fundamental absorption edge of a perfect crystal.  
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Figure 2.5 Representative (a) absorption and (b) emission edge spectra. 

The position of the activator and co-activator levels in the forbidden energy gap 

region, and the energy transitions involving radiative emission can be represented 

basically in terms of three general models that are summarized in Figure 2.6. 

 

 

 

 

 

 

 

 

Figure 2.6 Transitions involving radiative emission. (a) defect band transition of Schön-
Klasens model (b) defect band transition of Lambe-Klick model (c) donor-acceptor pair 

transition of Prener-Williams Model 

The Schön-Klasens model (see Figure 2.6.a) describes luminescence as a result of 

radiative recombination of an electron from the CB with a localized acceptor above the 

VB. The Lambe-Klick model (see Figure 2.6.a) describes the luminescent transition of a 

free hole recombining with a trapped electron at a level below the CB. The Prener-

Williams (see Figure 2.6.c) accounts for a localized radiative association of activator 
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and co-activator. Although these simple models are good assumptions, they are not 

always complete for an understanding of the nature of luminescence centers and 

radiative transitions. 

 

2.2.2. Classes of Luminescence  

Depending on the type of the excitation process, it is customary to classify 

luminescence into several groups. Photoluminescence (excitation by photons), 

cathodoluminescence (by cathode rays or energetic electrons), electroluminescence (by 

an electric field), triboluminescence (subject to mechanical forces, i.e. grinding), 

chemiluminescence (by utilizing chemical reaction energy) are types of luminescence 

processes. However, in thermoluminescence, the heat of irradiation is not an excitation 

agent but only a stimulant [24].  

Photoluminescence: Photoluminescence (PL) is a very useful tool in examining 

excitation transport in molecular solids, regular crystals or disordered system, and is a 

well established technique to study optical properties and electronic structure of 

semiconductors. The spectral features from PL measurements can provide valuable 

information concerning the type of defects and impurities in semiconductors, while the 

overall PL intensity is determined by the quantum efficiency of the material together 

with surface recombination velocity.  

Fluorescence (FL), as a type of PL, refers to the instantaneous emission of 

radiation after the excitation by some other external radiation. The radiation emitted has 

a longer wavelength (lower energy) than the exciting radiation. The “missing energy” is 

lost via non-radiative transitions, which increase lattice vibrations, resulting in a heating 

of the material.  

Phosphorescence, which is another type of photoluminescence, is the delayed 

emission of radiation, but is otherwise identical to fluorescence. The delay can vary 

milliseconds to hours or days. In this phenomenon, the absorbed energy can be thought 

of as stored in a reservoir from which it slowly leaks.  

Cathodoluminescence: In a luminescent material, the type of 

cathodoluminescence (CL) emission observed is more or less the same as that of PL, the 

only difference lies in the excitation mechanism since photon absorption will not excite 
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luminescence unless it lies in the absorption region of the material, whereas the electron 

absorption is strong irrespective of their energy. Many crystalline phosphors which are 

not luminescent under photo-excitation exhibit emission under the excitation by 

energetic electrons and the whole crystal lattice is strongly disturbed, and even electrons 

of the inner atomic shells of the luminescent centers are excited.  

Thermoluminescence: The phenomenon of thermoluminescence (TL) has become 

an established and as a sensitive technique for observing changes in defect 

concentrations in phosphorescent materials. Defects in an insulating solid usually form 

electron trapping states, within the forbidden energy gap, whose densities can be 

monitored by TL observations to as low as 1010 per cm3. For obtaining TL emission 

from a phosphorescent material, the material is first heated to the maximum temperature 

to clean all the electron-hole trapping levels and cooled to very low temperatures. The 

material is then excited/irradiated at this low temperature, at which the traps to be 

investigated do not lose their electrons/holes. The energy of excitation/irradiation 

should be larger than the energy gap of the material. After the material has been 

irradiated for a few minutes, it is heated with a uniform rate. The electrons/holes, which 

have been trapped during excitation start getting released involving radiative emission 

giving rise to TL. Thermal energy stimulates the carriers to cross the potential barriers 

of these traps and, in the process, allow them to move to the suitable recombination 

center that contains a hole or an electron resulting in the emission of light called TL. 

The pattern of luminescence output vs. temperature is called TL (or glow) curve. 

When trapping levels are located at a fixed energy ET below the CB (electron 

traps) or above the VB (hole traps) a single maximum exists in the glow curve. In case 

the traps are distributed in separate groups at different depths, the TL curve constitutes 

more than one maximum, such as the spectra shown in Figure 2.7. Each of these 

maxima represents a particular set of trapping levels. Knowing the temperature of 

maximum TL, the trap depth can be calculated. Since one can detect photons with high 

efficiency, TL, which is the result of excitation using ionizing radiation, can act as a 

sensitive technique for radiation dosimetry, an the TL intensity peak is directly related 

to the total radiation dose.  



15 

 

 

Figure 2.7 Schematic representation of a thermoluminescence curve 

 

Electroluminescence: Electroluminescence (EL) is caused by excitation by an 

electric field. The emission characteristics of EL are similar to those observed in PL.  

 

 

2.3. Phosphors and Theory of Phosphorescence 

 

 

As mentioned previously, phosphors are materials, which convert radiation of one 

wavelength to radiation of another wavelength, the conversion being from a higher 

energy to a lower energy. They are widely used in, for example, fluorescent lamps 

(ultraviolet to visible), TV (electron impact to visible) and scintillators (X-Rays and γ-

Rays to visible) [23, 25].  

Phosphorescence is the emission of light from triplet-excited states, in which the 

electron in the excited orbital has the same spin orientation (i.e. parallel) as the ground-

state electron. Transitions to the ground state are forbidden in such a situation. 

Fluorescence is the emission light from singlet-excited states, in which the electron in 
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the excited orbital has a spin of opposite sign (i.e. anti-parallel) to the second electron 

remaining in the ground-state orbital. Return to the ground state in this case is spin-

allowed and occurs rapidly by the emission of a photon. Figure 2.8 shows the singlet 

and triplet spin states. The unpaired electrons of an excited molecule can either have 

their spins anti-parallel or parallel. The states with anti-parallel spins have spin quantum 

number S = 0 and are called singlets after their multiplicity. The states with parallel 

spins have S = 1 and are called triplets, and they tend to have lower energies than the 

singlets. The ground state is always a singlet. 

 

 

 

 

 

 

Figure 2.8 The possible spin states of a molecule 

Processes taking place between the absorption and emission of light are usually 

shown on a Jablonski Diagram, which can be seen in Figure 2.9. In the diagram the 

electronic singlet states S
0
, S

1 
and S

2 
along with three vibrational energy levels are 

shown. Here S0 stands for the ground singlet state, and it represents the lowest 

vibrational level of the molecule. At room temperature, the higher vibrational energy 

levels are in general not populated (less than 1% according to Boltzmann statistics). The 

magnitude of the absorbed energy (hυA in Figure 2.9) decides which vibrational level of 

S1 (or S2) becomes populated. This process is very fast and occurs within 10-15 s. In the 

next 10-12 s the molecule relaxes to the lowest vibrational level of S1, a process called 

internal conversion (IC). Since emission typically occurs after 10-9 s the molecule is 

fully relaxed at the time of emission. Hence, as a rule, emission occurs from the lowest 

vibrational level of S
1 

(Kasha’s rule), and the fluorescence spectrum is generally 

independent of the excitation wavelength. After emission (hv
F 

in Figure 2.9) the 

molecule returns to the ground state, possibly after vibrational relaxation. This 

completes the simplest case of fluorescence: excitation, internal conversion, emission 

and relaxation. Apart from FL, phosphorescence may also take place. In order for this to 
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occur, after the excitation, when the electron is undergoing relaxation to the lowest 

possible vibrational level (S1), intersystem crossing takes place and the spin state 

changes from a singlet (in this case S1) to a triplet (T1) that has a lower energy. This 

conversion would occur due to spin-orbit coupling. After such a nonradiative internal 

conversion, the triplet-to-ground state transition occurs, and this kind of emission is 

called phosphorescence [24].  

 

 

 

 

 

 

Figure 2.9 The Jablonski Diagram 

As depicted in Figure 2.9, phosphorescence is generally shifted to longer 

wavelengths relative to FL. Transition from the T1 to the singlet ground state is 

forbidden, and as a result, the rate constants for triplet emission are several orders of 

magnitude smaller than those of fluorescence. Also, the T1 � S0 transition has a long 

radiative lifetime, because of the low transition probability. 

For both fluorescence and phosphorescence, the Jablonski Diagram shows that 

absorption has a higher energy than the emission. This phenomenon is called a “Stokes 

shift” after George Gabriel Stokes who discovered this concept in 1852 [25].  
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2.4. Relating Structure to Optical Properties: Application of ELNES 

 

 

In the study of solid-state samples, electron energy loss spectroscopy (EELS) in 

the transmission electron microscope (TEM) provides a valuable method of quantitative 

nanoscale chemical analysis that may be combined with the results of energy dispersive 

X-Ray (EDX) analysis to enable elemental determination at a high lateral resolution for 

many elements. .However, additional insight into the chemical and structural properties 

associated with the atom undergoing excitation may be gained via both qualitative and 

semi-quantitative analysis of the electron energy-loss near-edge structure (ELNES) 

associated with each core-loss ionization edge. In certain cases, analysis of the ELNES 

could allow the determination of two features of significant interest: the site symmetry 

of the nearest neighbor coordination atoms in complex structures and the valence state 

of the atom that is undergoing excitation. This approach facilitates the rapid 

identification of unknown phases in complex microstructures, the semi-quantitative 

determination of atom site occupancies, as well as the determination of local bonding at 

interfaces and defects using spatially resolved ELNES measurements. In order to 

develop a methodology for the use of such techniques, it is necessary to perform 

measurements on reference compounds with known structural and chemical properties. 

For example, clay minerals and clay-sized materials can be difficult to characterize by 

other analytical techniques because of they are heterogeneous at the nanoscale. Such 

materials could be characterized down to nanoscale by the help of ELNES [1].  

Because ELNES is highly sensitive to the coordination symmetry of the ions 

present in the material, it was chosen specifically for this study on dopant effects on the 

electronic structure. In this thesis, ELNES is used as a tool to investigate firstly the 

homogeneity of the sample at the nanoscale. Moreover, since the ELNES could serve as 

a “fingerprint”, whereby small perturbations in the crystal field around the ions is 

reflected on the spectrum, this technique is well suited for investigating the effects of 

the rare earth dopants that are subject of this study, Eu, Dy, in addition to the 

incorporation of boron. In this section, first the theory behind ELNES will be introduced 
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followed by some examples showing what could be achieved with ELNES, as it is was 

used in this study.  

 

2.4.1. EELS vs. ELNES 

Electron energy-loss spectrometry (EELS) in the transmission electron 

microscope (TEM) involves the measurement of the energy imparted to a thin (≤ 200 

nm) specimen via the scattering losses of fast (≥ 100 keV) incident electrons. There are 

a number of ways in which the incident electrons interact with the specimen, giving rise 

to various features in the energy-loss spectrum. One of the most important of the 

possible energy-loss processes is atomic ionization, in which electrons are ejected from 

inner, or core, shells (i.e. the K-, L-, and M-shells, etc.) of atoms in the specimen. This 

process requires that the core electron undergoing excitation receives energy greater 

than or equal to the critical ionization energy, Ec, which is a function of the specific 

quantization energy level of the electron and is therefore uniquely defined for each atom 

and principal quantum number. That is, characteristic signals termed “ionization edges” 

appear in the spectrum at energy losses corresponding to Ec, thus identifying the 

presence of specific elements in the specimen. The edge intensity can be related directly 

and quantitatively to the amount of the element present. In addition to containing 

quantitative elemental information, the ionization edges have small intensity 

fluctuations, just above the edge onset, termed the energy-loss near-edge structure 

(ELNES). The ELNES has been found to be dependent on details of the local atomic 

environment such as coordination, valence and the type of the bonding. Measurement of 

such fine structure, understanding how it is related to the electronic structure and 

ultimately to materials properties can provide solutions to some previously unsolvable 

materials problem, where changes in bonding occur over small length scales. Thus, the 

main advantage of ELNES is the potential to examine changes in bonding with a spatial 

resolution at the nanometer lever and even approaching the level of interatomic 

spacings. In this way, not only could bonding in bulk materials be determined, but the 

changes in bonding at microscopic defects or nano-fabricated structures could also be 

examined [26,27].  

During the ionization process, the inner-shell electrons are provided with 

sufficient energy to overcome the attraction of the nucleus and, if they do not escape 
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completely from the material, they are excited to empty available electronic energy 

levels (or states). These unoccupied energy levels are a function of the overall electron 

energy distribution based on the bonding interaction between the atom and its 

neighbors, i.e. the way in which the host atom is bonded to neighboring atoms in the 

crystal lattice. Thus, upon ionization, the atom itself is transformed from a ground state 

configuration into an excited state with an empty state (or hole) in the core shell and the 

ejected core electron in a previously unoccupied energy level (which may or may not be 

bound to the atom). The possible energies imparted to the ejected electron are controlled 

by the distribution (in energy) of these unfilled states. The distribution of the ground 

state energy levels plus that of the unoccupied levels thus constitute the joint density of 

states (JDOS). It is the dipole transition between the two sets of states that is mapped by 

EELS. Thus, fluctuations in intensity on the ionization edge, the ELNES, are directly 

related to the distribution of unfilled electron states and can be interpreted in terms of 

the bonding state of the ionized atom.  

For the transition to be allowed, the change in the angular-momentum quantum 

number upon excitation (∆l) must be either -1 or +1. Thus, when considering the 

excitations from the 1s level or K shell (l = 0), the only significant transitions are to 

final states of p character (l = 1). L edges arise from transitions originating from the 

second atomic shell (n = 2). Transitions from the 2p level or L2,3 shell (l = 1) 

accordingly involves transitions to both s- (l = 0) and d-character (l = 2) final states. The 

L shell also has an L1 shell (2s states, l = 0), which sits closer to the nucleus than the L2 

and L3 shells, and its electrons can only be excited to a p state (l = 1), but not to a d state 

(l = 2), or to another s (l = 0) state. Table 2.1 shows the nomenclature and quantum 

numbers involved in the transitions for various EELS edges and Figure 2.10 is a 

schematic for the transitions [27].  
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Table 2.1 Nomencluture of the transitions that are taking place. 

 

 

 

Figure 2.10 Schematic of the transitions happening. 
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A typical EELS spectrum that is seen in Figure 2.11 displays the electron intensity 

as a function of energy loss and can be divided into several regions. The large zero-loss 

peak (ZLP) results from transmitted electrons that have undergone elastic and quasi-

elastic (mainly phonon) interactions, i.e., electrons that have undergone minimal energy. 

The region immediately following the ZLP and extending to energy losses of 50 eV, 

called the low-loss region, is an area of the spectrum dominated by plasmons. Plasmons 

can be described as resulting from the collective excitations of valence electrons. They 

can provide information about the dielectric function, valence electron densities, and in 

suitable cases, the phases present in alloys. Within the low-loss region are also found 

edges caused by transitions from outer shell electrons. Extending beyond the low-loss 

region in a spectrum from a thin sample is monotonically decreasing background, 

arising predominantly from plasmon and single electron excitations, on which are 

superimposed the core-loss edges. These features result from the interband transition of 

core electrons to unoccupied states. As mentioned above, this requires the energy 

transfer between the incident and a core electron to be greater than its binding energy 

[26,28]. 

 

Figure 2.11 A representative EELS spectrum showing (a) the zero loss peak and low-
loss region and (b) a core loss edge from the mineral gaudefroyite [26] 
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The core-loss edges usually take the form of a step, characterized by an abrupt 

increase in intensity that decreases with increasing energy loss. This feature can be seen 

in Figure 2.11.b. The sudden rise in intensity represents the ionization threshold, the 

energy of which approximately corresponds to the inner-shell binding energy and hence 

is characteristic of the element. Core-loss edges can be divided into two regions (Figure 

2.11.b), the ELNES, extending 30-50 eV above the edge onset, and the weaker extended 

electron-energy loss fine structure (EXELFS). The ELNES directly probes the 

unoccupied orbitals and therefore reflects the environment surrounding the excited atom 

and can provide information on bonding, valency, coordination and site symmetry [26].  

The basic ionization edges can be seen in Figure 2.12 [27]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Schematic of the basic shapes of ionization edges. (a) Saw-tooth shape, e.g. 
K-edges. (b) Delayed maximum, e.g. characteristic of L2,3-edges in 3rd period elements 

(Na to Cl), 4th period (Zn to Br) and M4,5-edges for 5th period elements. (c) White 
lines, e.g. transition metals and rare earths. (d) Plasmon-like e.g. M2,3 of 4th period 

elements (K to Ti). (e) Mixed, e.g. bound state plus delayed maximum. 

An alternative way to interpret the ELNES fine structure is to imagine that the 

excess energy (greater than Ec) of the core electron is carried by a wave emanating from 

the ionized atom. If this wave has only a few eV of excess energy, it undergoes multiple 

elastic scattering from the surrounding atoms. Interference between the outgoing wave 

and the scattered waves is responsible for the ELNES. This can be envisaged as 
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analogous to a diffraction pattern, but with the θ scale replaced by an energy scale. If 

the outgoing wave has even more excess energy (typically more than 50 eV above Ec), 

then it is less likely to undergo multiple scattering, and we can approximate the 

interaction as a single-scattering event. Such higher-energy scattering produces very 

small-scale oscillations in the post-edge spectrum termed extended energy-loss fine 

structure (EXELFS), which contains information about the positions of neighboring 

atoms around the ionized atom. Both EXELFS and ELNES can thus be envisaged as a 

continuum of electron scattering, with the arbitrary distinction that ELNES is confined 

to a few tens of eV past the ionizations edge onset. While ELNES arises from a more 

complex process than EXELFS, it is more widely used, because the ELNES is a more 

intense and more easily measurable signal. In the low-loss EEL spectrum (< ~10 eV) 

transitions are measured from the valence band to the conduction band and can thus 

observe the band gap region directly. In ELNES, however, only the unoccupied states 

(the conduction band) are characterized, and many empty states within the band gap 

might be observed as a pre-edge intensity [27]. 

As mentioned previously, ELNES excitation involves transitions from a localized 

atomic inner shell to unoccupied final states near the core of the excited atom (i.e. final 

state whose wave functions have appreciable amplitude at a position corresponding to 

the atomic site undergoing excitation). The presence of the core hole also serves to 

contract the spatial extent of molecular orbitals and to localize the excitation even more 

as the outer states see a nucleus with an effectively greater positive charge. 

ELNES could serve as a coordination fingerprint, because the general form of the 

ELNES is predominantly sensitive to the nearest neighbor coordination and hence the 

molecular orbital structure of the molecular unit present in the solid. The term 

“fingerprint” is used to emphasize that direct comparison with spectra from known 

standards is often all that is required for conclusive identification of the bonding state of 

a specific atom in the TEM specimen. Once the fingerprints are identified, then it is 

possible to fit these to the unknown spectrum, either directly or using a suitable 

algorithm, to determine semi-quantitatively, the proportions of various sites in a 

material. The lifetime of the core hole is much longer than the excitation process and so 

the outermost electron states, including the final state of the excitation process, would 

experience an attractive core hole potential. Generally, the core hole, an absence of an 

electron in an inner atomic level, behaves like an extra nuclear charge in the atom. This 
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extra positive charge may be shielded or screened by other electrons in the atom or solid 

(e.g. valence electrons), which could be re-distributed in response to the generation of 

the core hole and weaken its influence on outer lying electron states. However, overall 

this partially screened, positive, core hole potential would tend to bind outer electronic 

states more strongly, which would lead to a spatial contraction of the electron wave 

functions that are centered at the core hole site. This radial contraction would reduce the 

overlap of these excited-state wave functions with those wave functions centered on 

neighboring sites. Thus, the available final states in the presence of the core hole would 

(dependent on the degree of screening) become more sensitive to the short range 

environment of the excited atom. If an atom exists in two different environments in the 

lattice structure, then the ELNES is simply a linear superposition of the contributions 

from the two environments [27]. This site specificity has been demonstrated for solids 

containing atoms with a mixed coordination [29]. 

As an example of coordination fingerprinting, the basic features in the ELNES of 

MgO are determined primarily by the O sublattice and the cation arrangement simply 

adds some further fine features. In both MgO and MgAl2O4 the O sublattice has a FCC 

structure and so the O-K edges show very similar features which can be seen in Figure 

2.13 [30]. 

 

Figure 2.13 Comparison of the O-K edges for MgO, MgAl2O4 and alpha-Al2O3. 
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In their work, Gloter et al [29] have investigated the change in the O K-edge of 

the Ca2(Alx ,Fe1-x)2O5 compound as x is varied between 0 to 67%. Looking at the 

changes, they have tried to understand the mechanism of bonding. Another group, 

Scheu et al in their work [31], aimed to determine the electronic structure and bonding 

of a Cu||α -Al2O3 interface grown by molecular beam epitaxy. This was approached by 

a comparison of the interfacial Cu L2,3-, Al L2,3- and O K-edge ELNES with measured 

standards. 

In this present study, the need for using ELNES as a nanoscale characterization 

tool emerges from the fact that ELNES is very sensitive to changes in the crystal field. 

It is thus one of the most efficient ways to detect the structural perturbations of 

impurities and phase homogeneity. Phase homogeneity was an important factor in this 

study to model the electronic energy band diagram of the strontium aluminate 

compounds of interest. ELNES is also a useful tool in the quantitative detection of low 

weight elements (Z < 4), unlike EDX. Because we are interested in investigating the 

effects of boron, ELNES would be one of the few techniques suitable for analyzing the 

coordination changes, upon increasing the amount incorporated into the structure via 

changes in the B K-edges. The effect of dopants Eu and Dy could also be checked in 

terms of understanding the incorporation into the crystal structure, provided that the 

doping levels are above that sensible in ELNES. Also, the Al L2,3-edges have been used 

to confirm the octahedral coordination of the Al cations.  
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CHAPTER 3. EXPERIMENTAL 

 

 

 

 

In this chapter, the chemicals that were used during the experiments, the 

procedure as well as the characterization tools will be described. The procedure of both 

the original and the modified Pechini is given here. However, the discussion about the 

necessity of the modification of the original Pechini process is presented in Chapter 4. 

 

 

3.1. Chemicals 

 

 

The chemicals that were used during the experiments are summarized in Table 

3.1. 
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Table 3.1 Chemicals that were used for the experiments to obtain Strontium 
Aluminate Compounds 

Name Chemical 
Formula 

MW 

(g/mol) 

Supplier 
Structure 

Strontium nitrate 
anhydrous 

Sr(NO3)2 211,63 
Riedel de-

Haer 
 

Aluminium nitrate 
nonahydrate 

Al(NO3)3.9H2O 375,13 Merck 

 

Europium (III) 
nitrate 

hexahydrate 

Eu(NO3)3.6H2O 446,07 Fluka 

 

Dysprosium (III) 
nitrate 

pentahydrate 

Dy(NO3)3.5H2O 438,59 Fluka 

 

Boron oxide B2O3 69,62 Alfa Aesar  

Citric acid 
monohydrate 

C6H8O7 210,14 Merck 

 

Etyhlene glycol C2H6O2 62,07 Carlo Erba  

 

 

3.2. Procedure 

 

 

In this section, the procedure of two different but similar experiments is given. 

The procedure of the original Pechini process, which is being used since 1960’s, is 

presented before the modifications are explained in order to make a comparison 

between the two. The modified Pechini process is the base of this study and so it can be 

regarded as the main experimental procedure of this thesis.  

Dy 

OH OH 

Eu 
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3.2.1. Original Pechini Process 

The basic Pechini process is relatively simple and versatile procedure that is 

widely used as a method for synthesizing ceramic systems. Under continuous stirring, 

the chelating agent, citric acid (CA), is added to boiling distilled water, followed by 

addition of the nitrate precursors (Sr(NO3 )2, Al2 (NO3 )3.9H2O, Eu(NO3)3.6H2O, 

Dy(NO3)3.5H2O), according to the desired stoichiometric amount. When boron is added 

to the system, it is added as B2O3, and it is added to the distilled water after the nitrate 

precursors.  

The citric acid amount is determined according to 1 mole of CA per mole of metal 

ion in the target composition, e.g. 5 moles for SA2. After complete dissolution, heat 

treatment is performed in a box furnace at 250-300˚C to burn out the organics, 

dehydrate the solution and produce the amorphous precursor. A yellowish-orange 

smoke is observed, and as the last drops of the water is evaporated, a brownish yellow-

colored foam is left, i.e. the amorphous precursor. In order to produce the crystalline 

strontium aluminate compound, the precursor is heated to temperatures between 700-

1000˚C in an oxidizing environment. The strontium aluminate powders are obtained, 

after reduction at the same temperatures in a 96%N2 and 4%H2 forming gas 

environment. 

 

3.2.2. Modified Pechini Process 

Distilled water was taken into a beaker and was placed on a magnetic stirrer 

heater. The water was first boiled in order to get rid of the CO2 that had dissolved in the 

water. The temperature of the distilled water was then reduced to and maintained at 

80˚C. Strontium, aluminum, europium and dysprosium nitrate precursors were added to 

the water without a specific order according to the desired stoichiometric amounts, as 

listed in Table 3.2 to obtain 1 g of end–product. 
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Table 3.2 Amounts of the ingredients used in synthesizing SrAl4O7, SrAl12O19 
and SrAl2O4 doped with 1mol%Eu, 1mol%Dy and 10mol%B 

Ingredients SrAl4O7 SrAl12O19 SrAl2O4 

Sr(NO3)2 0,685032 g 0,295251 g 1,022500 g 

Al(NO3) 3.9H2O 4,857135 g 6,280322 g 3,624955 g 

Eu(NO3) 3.6H2O 0,014439 g 0,006223 g 0,021552 g 

Dy(NO3)3.5H2O 0,014197 g 0,006119 g 0,021191 g 

B2O3 0,011267 g 0,004856 g 0,016818 g 

CA 3,741163 g 4,192379 g 3,350506 g 

EG 1,004558 g 1,125716 g 0,899660 g 

 

B2O3 was added also to the solution. After complete dissolution, citric acid (CA) was 

added to the system, to achieve a 1:1 ratio of CA to total metal ions in the solution. 

Finally, the polyesterification agent, ethylene glycol (EG) was added, according to a 1:1 

ratio of EG to CA. The solution was heat treated in a box furnace at 80˚C until all of the 

water had completely evaporated, leaving behind an amorphous precursor that was 

white in color. The amorphous precursor was then heat treated in a box furnace in an 

oxidizing environment, where it was heated to 600˚C with a 5˚C/min heating rate and 

held for 2.5 hours. The heating was then ramped at a rate of 5 °C/min. to 900-1100˚C, 

with the precise temperature determined by the desired final strontium aluminate 

compound. Complete oxidation was determined to require 5 hours at the target 

treatment temperature. 

 

Figure 3.1 Schematic of the tube furnace used during the reduction process 

96%N2,  

4%H2 gas tank 

alumina boat phosphors 

tube furnace 
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Figure 3.2 Flow chart of synthesizing strontium aluminate compounds 

Afterwards, the furnace was slowly cooled to room temperature, and the powders 

were placed in an open alumina boat and reduced for 3 hours in a tube furnace in a 

forming gas (96%N2, 4%H2) atmosphere, at the same temperature as the oxidation 

stage. The schematic of the heating at the tube furnace is seen in Figure 3.1, whereas the 

flow chart of the procedure described above may be found in Figure 3.2.  

Various strontium aluminate compounds were synthesized via the mentioned 

experimental procedure. These are shown in Table 3.3. 

Table 3.3 Various strontium aluminate compounds were synthesized with the modified 
Pechini process 

 

This procedure resembled Tang et al.’s sol-gel method, which yielded multiphase 

SA compounds [12]. However, in the end, we had succeeded in synthesizing highly 

crystalline and single-phase strontium aluminate compounds with this method. 

Solution preparation in distilled water with Sr(NO3)2, Al(NO3)3, 
Eu(NO3)3, Dy(NO3)3, B2O3, CA and EG 

Slow drying of the solution at 80 °C 

Calcination of the powders at 900-1100 °C in air  

Reduction of the powders @ 900 – 1100 °C  

Decomposition of the organic molecules at 600 °C in air 

Pure 
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3.3. Characterization Tools 

 

 

To characterize the phase and chemical composition of the powders produced, as 

well as the optical properties, a variety of spectroscopy techniques were used. X-ray 

diffraction (XRD) (Bruker AXS Advance D8) with a Cu-Kα source revealed the initial 

details of phase purity and composition. However, the structural sensitivity limits were 

reached and higher spatial resolution was required. To this end, electron energy loss 

spectroscopy (EELS), energy loss near edge spectroscopy (ELNES), energy dispersive 

x-ray spectroscopy (EDS) measurements using a Vacuum Generators VG HB501UX 

dedicated scanning transmission electron microscope (STEM) operated in UHV at an 

accelerating voltage of 100 kV. This microscope has a cold field emission source and is 

equipped with an energy-dispersive X-ray spectrometer (Thermo Fischer Scientific, 

Noran System SIX) and an electron energy-loss spectrometer (Gatan UHV Enfina 

system). Finally, optical properties were also characterized by photoluminescence and 

phosphorescence spectroscopy using a HeCd laser (λex = 325nm, KIMMON) and a 

fluorescence-specific spectrometer (Ocean Optics USB2000-FLG) , while 

cathodoluminescence imaging enabled spatial and topographical correlation with phase 

and the corresponding optical properties, using a field emission scanning electron 

microscope (SEM) (Leo Supra 35VP). 



33 

 

 

 

 

 

 

 

CHAPTER 4. RESULTS AND DISCUSSIONS 

 

 

 

 

In order to investigate the relationship between processing, composition and phase 

stability, first two target strontium aluminate phases were chosen for study, SA2 and 

SA6. The ceramic powder processing that is described in the previous chapter is a 

modification of the relatively low-temperature Pechini method, in which the processing 

steps were adjusted to enable better control over the production of single phase 

compounds. Next, with the suitable processing procedure, the impact of dopant 

composition on the overall phase stability was investigated by varying the Eu2+ dopant 

concentration: 0, 0.33, 0.66, 1, and 5 mol%. Finally, we looked into the effect of boron 

concentration on the overall phase stability of the Eu and Dy co-doped phases. In this 

chapter, first, the necessity of the modification of the original Pechini process for 

strontium aluminate compounds is discussed. In addition, the results of the original and 

the modified Pechini process are presented with discussions. 

 

 

4.1. Pure Strontium Aluminate Compounds  

 

 

The first set of results is obtained with the powder X-Ray diffraction analysis 

(XRD) of the powders produced by the original Pechini method. These results revealed 

a mixture of different phases of strontium aluminates in a single sample, in addition to 

SrCO3. Figure 4.1 shows a typical spectrum from these powders, where the target 
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compound is pure SA2. The red lines show the JCPDS card peaks for the SA2 

compound. However, there were also peaks in the sample that did not match with the 

card lines, suggesting that the specimen did not consist of only a single phase of the SA2 

compound. 

 

Figure 4.1 XRD of the SA2 powders obtained via the original Pechini process. JCPDS 
card 25-1208 for SA2 is indicated by the vertical red lines. 

Preliminary studies were performed to characterize the electron density 

distribution of the ions, i.e. the crystal field, in the crystal lattice by Energy Loss Near 

Edge Strusctures (ELNES) with scanning transmission electron microscope (STEM). 

The Al L2,3-edge ELNES spectra shown in Figure 4.2 were collected from 

measurements of 3 different regions of the same sample, indicating that the sample were 

not single-phase. The fact that the samples did not consist of single phase was 

concluded from the changes in the characteristic edges observed. These results 

demonstrated that single-phase compounds were necessary for this study, because our 

goal was to construct a model for the electronic structure, in order to understand the 

mechanisms of phosphorescence persistence. Any variation in the lattice parameters due 

to multiple phases would introduce ambiguity in the relative positions of the allowed 

electronic energy levels, and consequently in the excitation and emission wavelengths 
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that are referenced to either the bottom of the conduction band or the top of the valence 

band. Moreover, the electron density around each ion is strongly influenced by the 

neighboring lattice ions, via both the coordination number and the bond strength. 

Minimizing variations in the electron density stemming from different ionic 

configurations in different phases would decrease the variation in ELNES spectra (see 

Figure 4.2), and enable elucidation of the nature of the electron traps as determined by 

ion interaction. 

 

 

(a) 

(b) 
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A

 

Figure 4.2 Variation in types of crystal structure in the same sample is apparent in the 
near-edge features of the ELNES spectra measured from 3 different particles. 

Several attempts were made to eliminate the SrCO3, which was thought to be the 

main problem leading to other phases. It appeared that during the removal of the organic 

components at temperatures around 250˚C, CO2 formed as a result of some combustion 

reactions. Sr2+ cations, which have a high affinity towards CO3, had reacted with the 

dissolved CO2 in the aqueous solution and as a result, precipitated as SrCO3. This 

precipitation changed the stoichiometry of the ingredients during crystallization.  

Thus, it is important to prevent the premature combustion of the precursor. To 

solve this problem, the Pechini process was modified, such that the water was 

evaporated while avoiding organic burnout, as described in Section 3.2.2 above. With 

the addition of the ethylene glycol (EG) as a polyesterification agent, the process 

yielded highly crystalline and single phase strontium aluminates doped with Eu and Dy.  

 

 

4.2. Dopant Added Strontium Aluminate Compounds 

 

 

In this section, the results are presented for the doping the strontium aluminate 

compounds with Eu, Dy, and B. 

(c) 
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4.2.1. SA2 Doped With Eu 

After the successful synthesis of the single phase, crystalline compounds of SA2 

verified by the XRD, the effect of rare-earth dopant concentration on the atomic and 

electronic structure of SA2 was studied by varying the Eu2+ concentration;0.33, 0.66, 1, 

and 5 mol%. The ELNES were inspected by STEM, which also showed that the crystal 

field around the ions had not changed significantly upon the addition of Eu2+, but only 

up to 1 mol%, above which the Eu2O3 phase was also observed. In an attempt to study 

the differences in the ELNES spectra, low concentrations of Eu dopant were 

investigated: 0.33 mol% Eu and 0.67 mol% Eu. Figure 4.3 shows the corresponding 

bright field and high angle annular dark field images of the 0.33 mol% Eu-doped SA2.  

In general, according to the 27 different measurements performed on both the 0.33 

mol% Eu and the 0.67 mol% Eu samples, Figure 4.4 and Figure 4.5 show that the Al 

L2,3-Edge and O K-Edges remained consistently the same. Because this was the case 

within the same sample as well as between samples of different doping amounts, these 

results suggested that the samples had maintained the phase purity, in spite of the 

dopants. This also suggests that the europium atoms have been incorporated into the 

crystal structure of the SA2, and the crystal field around oxygen and aluminum has not 

changed. However, it is also possible that these low concentrations were below the 

sensitivity level of the VG STEM.  

Figure 4.4 is showing the Al L2,3 edge ELNES for the 0.33 mol% Eu-doped SA2 

samples. The three different results are presented here, and they belong to different parts 

of the sample as indicated in Figure 4.3.  

Figure 4.5 is showing the O-K edge ELNES for the 0.33 mol% Eu-doped SA2 

samples and again, the results correspond to different parts of the powders.  
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Figure 4.3 (a) and (c) Bright field image, (b) and (d) high angle annular dark field 
image of 0.33 mol% Eu-doped SA2 as observed in the D-STEM  

 

(a) (b) 

(d) (c) 



39 

 

 

Figure 4.4 Al L2,3-Edge ELNES structure of 0.33 mol%Eu-doped SA2 measured from 
the (a) 01 point of the Figure 4.3.a (b) 02 point of the Figure 4.3.a (c) 07 point of the 

Figure 4.3.c 

(a) 

(b) 

(c) 
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Figure 4.5 O K-Edge ELNES structure of 0.33 mol% Eu-doped SA2 measured from the 
(a) 01 point of the Figure 4.3.a (b) 02 point of the Figure 4.3.a (c) 07 point of the Figure 

4.3.c 

(a) 

(b) 

(c) 
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Figure 4.7 is showing the Al L2,3 edge ELNES for the 0.67 mol% Eu-doped SA2 

samples. The three different results that are presented here belong to different locations 

of the samples as indicated in Figure 4.6. Similarly, Figure 4.8 is showing the O-K edge 

ELNES for the 0.67 mol% Eu-doped SA2 samples taken from the same locations shown 

in Figure 4.6.  

  

  

Figure 4.6 (a) and (c) Bright field image, (b) and (d) high angle annular dark field 
image of 0.67 mol% Eu-doped SA2 as observed in the D-STEM  

 

 

a b 

d c 
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Figure 4.7 Al L2,3-Edge ELNES structure of 0.67 mol% Eu-doped SA2 measured from 
the (a) 10 point of the Figure 4.6.a (b) 11 point of the Figure 4.6.c (c) 12 point of the 

Figure 4.6.c 

(a) 

(b) 

(c) 
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Figure 4.8 O K-Edge ELNES structure of 0.67 mol% Eu-doped SA2 measured from the 
(a) 10 point of the Figure 4.6.a (b) 11 point of the Figure 4.6.c (c) 12 point of the Figure 

4.6.c 

(a) 

(b) 

(c) 
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4.2.2. SA2 Doped With Eu and Dy 

The effect of rare-earth dopant concentration on the atomic and electronic 

structure of SA2 was studied by varying both the Eu2+ and Dy2+ concentrations: 0.33, 

0.66, and 1 mol%. The powders produced by the modified Pechini process with a 1 

mol% Eu2+ doping concentration had remained single-phase and with a high degree of 

crystallinity, as evidenced by the XRD spectra in Figure 4.9 for SA2 doped with 1 mol% 

Eu and 1 mol% Dy. Figure 4.9 shows that all the peaks of the JCPDS card of SA2 are 

well-matched for both the reduced and unreduced powders. 

 

Figure 4.9 XRD of reduced vs not-reduced SA2:1%Eu, 1%Dy powders that are 
obtained by the modified Pechini process. The red rod-like lines correspond to the 

JCPDS card 25-1208. (a) calcinated, unreduced powders (b) reduced powders. 

The crystallinity can be seen in the SEM images presented in Figure 4.10. 

Visually, one can observe that, the secondary electron SEM images of the 1 mol% Eu, 1 

mol% Dy-doped amorphous SA2 show smooth and circular edges (see Figure 4.10.a), 

while the images that are taken after the calcination and reduction processes show 

sharper edges (see Figure 4.10.b). Also, it can be seen that the particle sizes of the 

powders are around 5-10 µm. 
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Figure 4.10 Secondary electron SEM images of 1%Eu, 1%Dy doped SA2 (a) 

amorphous (b) after calcination and reduction. 

A typical EELS spectrum of the 1 mol% Eu and 1 mol% Dy doped SA2 powders 

might be found in Figure 4.11. It can be seen that the band gap of this sample 

corresponds to 6-6.5 eV which is in agreement with literature [9].  

(a) 

(b) 

(b) 
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Figure 4.11 EELS spectrum of 1 mol% Eu, 1 mol% Dy doped SA2 

 

4.2.3. SA2 Doped With Eu, Dy and B: 

Figure 4.12 shows the XRD spectra of the 1 mol% Eu, 1 mol% Dy and 10 mol% 

B-doped SA2.  

 

Figure 4.12 XRD results of SA2:1%Eu, 1%Dy, and 10% B showing high crystallinity. 

The red vertical lines represent the JCPDS card #25-1208. 
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Compared with those in Figure 4.10, it can be seen that the crystallinity of SA2 

has increased with the addition of B. This was an expected result. Since boron is used as 

a flux in the solid-state reaction synthesis, it has been reported before that addition of 

boron to the system enhances the crystallinity. 

However, comparing the XRD of 10 mol% B-doped samples with those of 20 

mol% B (see Figure 4.13) and 30 mol% B (see Figure 4.14), it is seen that the 

crystallinity is further enhanced for increasing amounts of boron in the system. This is 

an interesting result that contradicts with what has been reported previously in the 

literature. To date, it has not been possible to dope the material with 30 mol% B, 

without disturbing the crystal lattice and introducing some amorphous phase to the 

system. Usually, it is believed that since boron is much smaller than aluminum, there is 

a certain amount that boron can replace aluminum in the structure. Thus, solid solutions 

could be expected only up to a certain limit. It was observed before that, after 20 mol% 

boron content, the amorphous regions appeared at around 20-40° 2θ [9]. However, with 

our proposed method, it is possible to incorporate 30 mol% B into the material without 

introducing any amorphous phase to the structure. This might be due to the fact that 

with our method, when the solution of ions is formed, the cations are distributed 

homogeneously in the distilled water, and this might be the reason for easier diffusion 

during calcination. 

Another consequence of increasing the boron content in the material is that, as the 

boron amount is increased, not only the crystallinity increases, but also there is a shift in 

the diffraction angles (2θ). This can be understood better via Figure 4.15, in which the 

10, 20 and 30 mol% B doped SA2:1 mol% Eu, 1 mol% Dy results are being compared. 
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Figure 4.13 XRD results of SA2:1%Eu, 1%Dy, and 20% B showing high 
crystallinity. The red vertical lines represent the JCPDS card 25-1208. 

 

Figure 4.14 XRD results of SA2:1%Eu, 1%Dy, and 30% B showing high crystallinity. 
The red vertical lines represent the JCPDS card #25-1208. 
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As it can be seen in Figure 4.15, the boron content in the material had increased 

from 10 to 20 and then to 30 mol%, while the 2θ values are increasing from 25.22 to 

25.49 and then to 25.58°.  

 

Figure 4.15 Comparison of the (a) 10%, (b) 20%, (c) 30% B doped SA2:1%Eu,1%Dy  

According to Bragg’s Law, the diffraction angle in the material is related to the d-

spacing in the materials and hence, the lattice parameter with the relation: 

θλ sin2dn =         (3.1) 

and d is related to the lattice parameter a with the relation: 

)( 222 lkh

a
d

++

=
       (3.2) 

Thus, as θ increases, sinθ increases as well. Since the wavelength of the x-ray 

source is fixed, then as sinθ increases, d has to decrease. Smaller d means that the lattice 

parameter gets smaller as well. The conclusion is that, the crystal lattice shrank with 

increasing boron content. Since XRD spectra did not show any amorphous features, this 

suggests that boron had been incorporated into the crystal lattice substitutionally, rather 

than interstitially. Moreover, since the crystal size shrank, one possible conclusion is 

that, since boron is much smaller than aluminum, it may have substituted onto an Al 

lattice site. Another conclusion is that, if boron entered the crystal lattice as an 

interstitial, than the result would probably be an increase in the crystal lattice size rather 

(a) 

(b) 

(c) 
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than shrinkage upon incorporation of 30% B. According to the XRD spectra, however, 

this does not seem probable.  

 

 

 

 

Figure 4.16 Secondary electron SEM images of (a) and (b) 1%Eu, 1%Dy, and 10%B 
doped SA2 (c) 1%Eu, 1%Dy, and 20%B doped SA2  
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In Figure 4.16, the secondary electron SEM images of the boron doped samples 

are seen. As a side observation, these images include rod-like structures that the samples 

without boron do not have. This can be seen by comparing Figures 4.10 and 4.15.  

 

4.2.4. SA6: Pure and Different Dopant Amounts 

Similar to the SA2 compounds, SA6 samples with different concentrations of Eu 

and Dy were synthesized. In Figure 4.17, the XRD spectra shows that this particular 

phase, SA6, was able to accommodate higher concentrations of Eu and Dy, while 

maintaining the single phase and high crystallinity character. Up to 5 mol% Eu, 5 mol% 

Dy-doped SA6 powders were synthesized successfully.  

 

Figure 4.17 XRD spectra of SA6 powders (a) Pure SA6 (b) 1 mol% Eu, 1 mol% Dy-
doped SA6 (c) 5 mol% Eu, 5 mol% Dy-doped SA6. The dots represent the JCPDS card 

No. 10-0066 

Using the cathodoluminescence detector on an FE-SEM, the luminescence 

behavior of the powders was examined for homogeneity of spatial distribution and for 

correlation to their topography. Figure 4.18 shows the cathodoluminescence and 

corresponding secondary electron images obtained. The images were acquired from 5 

mol% Eu doped and reduced samples of SA6. It can be seen in these images that the 

smooth surfaces, which were probably hydrated because of the hygroscopic tendency of 

strontium aluminate powders, did not luminesce, while the fractured surfaces 

a 

b 

c 
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luminesced strongly. As expected, the hygroscopic nature of the powders decreased 

their phosphorescence capabilities. 

 

 

Figure 4.18 (a) and (c) are formed with cathodoluminescence detector, while (b) and 
(d) correspond to the same part of the powder that they are placed next to, taken with 

secondary electron detector both as observed in the FE-SEM.  

The ELNES were also characterized of the SA6 powders. Figure 4.19 shows the 

bright and dark field images for the pure SA6 compounds, in which the O-K edge and 

(a) 

(c) 

(b) 

(d) 
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Al-L2,3 edge ELNES strongly resembled those shown in Figure 4.20 and Figure 4.21. 

That the ELNES remained the same in many measurements across the sample had 

indicated that the phase purity of the samples remained intact with the doping levels 

used, of 1 and 5 mol% Eu and Dy. To verify that the same phase was being 

characterized for each ELNES measurement, EDX measurements were performed from 

the same locations marked in Figure 4.19, to ascertain the Sr:Al ratio. Typical EDX 

spectra representative of these samples are shown in Figure 4.22. 

  

  

Figure 4.19 (a) and (c) Bright field image, (b) and (d) high angle annular dark field 
image of 5 mol% Eu and 5 mol% Dy-doped SA6 as observed in the D-STEM  

 

 

 

(a) (b) 

(c) (d) 
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Figure 4.20 Al L2,3-Edge ELNES structure of 5 mol% Eu, 5 mol% Dy-doped SA6 

measured from the (a) 06 point of the Figure 4.19.a (b) 07 point of the Figure 4.19.c.  

(a) 

(b) 
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Figure 4.21 O K-Edge ELNES structure of 5 mol% Eu, 5 mol%Dy-doped SA6 

measured from the (a) 06 point of the Figure 4.19.a (b) 07 point of the Figure 4.19.c.  

     

(a) 

(b) 
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Figure 4.22 (a) EDX measurement of pure SA6 from the 06 point of the Figure 4.19. (b) 

EDX measurement of pure SA6 from the 07 point of the Figure 4.19belonging to pure 
SA6. 

To study the optical behavior of the various powders, photoluminescence and 

phosphorescence measurements were carried out at room temperature using UV 

excitation of λex = 325nm. The luminescence spectra were collected using a 200 ms 

(a) 

(b) 



57 

 

integration time, while each phosphorescence spectrum was integrated for 20 seconds. 

Figure 4.23 shows the photoluminescence spectrum of SA6:Eu+3,Dy+3.  

 

Figure 4.23 Photoluminescence spectrum of SA6:Eu+3,Dy+3 

The main peaks had maxima at 432 nm and 519 nm, which corresponded to the 

emission peaks of SA6:Eu+3,Dy+3, as reported in the literature. The presence of other 

peaks suggested that there are other sources of emission. The peaks around 633 nm and 

667 nm corresponded to the emission from Eu+3 ions that have not been incorporated 

into the host crystal lattice. The other additional peaks may have stemmed from other 

charge states of the dopant ions.   

Figure 4.24 shows the phosphorescence spectrum of the SA6:Eu2+ compound. 

The emission peak with a maximum at 496 nm indicated that our sample was composed 

of the SrAl12O19:Eu+2 phase. Moreover, the presence of only one peak in the spectrum 

suggested two possible conclusions: the only emission was Eu+2 in the structure, and the 

only phase was SrAl12O19:Eu+2. 
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Figure 4.24 Phosphorescence spectrum of SA6:Eu2+. 

The photoluminescence measurements revealed important information about the 

electronic structure. SA2 samples doped with 1 mol% Eu, 1 mol% Dy and 10 mol% B 

emitted red after the visual inspection under the UV of 325nm. This usually indicated 

that Eu3+ has not been fully reduced to Eu2+, because the Eu3+ electron transition emits 

red. Inspection of the samples under UV excitation (265 nm “black light”) visually 

revealed a red glow, suggesting that the powders were not completely reduced due to a 

problem with the gases. However, when we turned off the UV source, the powders 

immediately started to phosphoresce green. Since red light has lower energy than green 

light, this was an interesting paradox, because energy should have been lost during de-

excitation of the electron. While performing the PL measurements on this sample, we 

saw that the luminescence spectra have sharp and high intensity peaks at the red region, 

as expected, and simultaneously some peaks in the blue-green region, of relatively 

lower intensity. The higher luminescence intensity in the red appeared to have 

dominated the green luminescence, and the powders appeared red. However, when the 

UV excitation source was shut off, phosphorescence was coming from the parts that had 

been reduced to Eu2+, from which green is emitted. Meanwhile no emission was coming 

from the Eu3+ regions, because they do not phosphoresce. This is a particularly 

important result, because it is clear evidence that phosphorescence only occurs when 

Eu3+ is reduced to Eu2+. Another conclusion about the state of the powders is that, the 
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reduction had not reached completion. Clearly, the reduction process needs to be 

improved to maximize the phosphorescence. A final conclusion is that, with the boron-

doped samples the phosphorescence brightness was dramatically enhanced, and green 

emission from the powders was observed for a time-scale on the order of an hour, even 

though the reduction was not complete. 
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CHAPTER 5. CONCLUSIONS 

 

 

 

 

In this study, the synthesis and characterization of phosphorescent strontium 

aluminates are studied. Basically, a synthesis process was proposed for strontium 

aluminate compounds with the dopants Eu2+ and Dy3+ and boron. The proposed method 

was one step ahead of previous studies as the application of the method was very easy, 

and the process cost was relatively low. Also, the demand for the lower temperature 

processing rendered the proposed procedure more cost-effective. The following are the 

specific contributions of this thesis: 

• The first achievement was to synthesize single phase and highly crystalline 

compounds of strontium aluminates doped with Eu2+ and Dy3+. The results were 

verified by XRD as well as ELNES. For the Eu2+-doped samples for SA2 showed 

that the crystal field around the ions had not changed with doping up to 0.67 

mol% Eu. This suggested that the crystal lattice of SA2 was not yet perturbed until 

a limit of 1 mol% Eu. 

 

• As the production method, the Pechini process was modified as the original 

Pechini process did not result in the expected single phase and crystalline 

products. The original Pechini process resulted in the formation of strontium 

carbonated in the structure, which did not decompose below ~1300˚C. Thus, 

without preventing the strontium carbonate formation, reducing the temperature 

would not be possible. Thanks to the modification in the Pechini process, 1000˚C 

was enough for a successful formation of the desired stoichiometric strontium 

aluminate compound. 
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• With the modified Pechini process, the synthesis method is an easy, low-

temperature and low-cost method which gains attention among other synthesis 

methods used by other groups.  

 

• Adding boron to the structure of strontium aluminates during the amorphous 

precursor preparation resulted in an increase in the crystallinity of the compounds 

as indicated by the peaks with higher intensities in the XRD. Boron was added to 

the system successfully up to 30 mol%, which is a new finding in literature. 

Previously, when boron was added to the system above 20%, amorphous regions 

were introduced to structure as verified by XRD. However, with the synthesis 

method that we use, we did not see any amorphous regions upon doping up to 30 

mol% of boron. This is important since we do not want to disturb the crystallinity 

of the material. Boron increases the time of the delayed emission and hence has an 

important role in the phosphorescence behavior of the strontium aluminate 

compounds.  

 

• Cathodoluminescence detector was used together with the SEM which showed 

that luminescence occurred from the rough surfaces of the samples. hygroscopic 

This is related to the tendency of the strontium aluminate powders. The hydration 

of the powders reduces their luminescence properties. 

 

• With the boron-doped samples the phosphorescence brightness was dramatically 

enhanced, and green emission from the powders was observed for a time-scale on 

the order of an hour, even though the reduction was not complete verified by PL 

measurements. It was also shown with the PL measurements that 

phosphorescence only occurred when Eu3+ was reduced to Eu2+ within the 

samples. 

 

• EELS showed that the band gap of the strontium aluminate powders that were 

produced with the modified Pechini process was 6-6.5 eV which is in agreement 

with literature.  
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• Finally, ELNES was demonstrated as a possible tool for characterizing the impact 

of the boron incorporation into the crystal lattice, bringing us one step closer to 

understanding the relationship between the atomic and electronic structure and the 

phosphorescence behavior. 
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CHAPTER 6.  SUGGESTIONS FOR FURTHER RESEARCH 

 

 

 

 

In this chapter, recommendations are presented in order to develop the current 

study further: 

• For the further studies, the synthesis experiments of strontium aluminates should be 

concentrating on SA6 instead of SA2. This is mainly because the SA6 compound can 

accommodate higher amounts of dopants into its structure without introducing any 

amorphous phase and disturbing the crystallinity. Since the main idea of these 

experiments was obtaining single phase and highly crystalline materials, any 

disturbances in the crystallinity should be eliminated and thus working with SA2 has 

been more difficult.  

 

• We had to conduct ELNES results on very low doping amounts in this study. 

ELNES obtained for the Eu-doped samples for SA2 showed that the crystal field 

around the ions had not changed with doping up to 0.67 mol% Eu. This result 

suggested that the crystal lattice of SA2 was not yet perturbed until a limit of 1 

mol% Eu. However, this doping amount is very low, and further doping amounts of 

up to 5 mol% Eu must be characterized by ELNES, as well as doping with up to 5 

mol% Dy. The addition of boron to the system may result in higher dopant 

accommodation in the SA2 phase, so higher dopant amounts of Eu and Dy along 

with boron addition must be tried. 

 

• With the addition of boron to the system, the crystallinity had increased, as indicated 

by the peaks with higher intensities in the XRD. The ELNES measurements must be 
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performed for samples doped with B up to the point where amorphous regions are 

observed in the XRD spectra.  

 

• The photoluminescence and phosphorescence measurements are only preliminary 

up to this moment. The system must be calibrated and more measurements must be 

performed in order to obtain comparable data. These measurements combined with 

visual inspection show clear evidence that phosphorescence only occurs when Eu3+ 

is reduced to Eu2+. Figure 6.1 shows the fluorescence spectrum of SA2 doped with 

1%Eu, 1%Dy and 30% B. The peak around 650 nm corresponds to red emission, 

which is known to come from Eu3+ as mentioned in Chapter 2. There are also peaks 

above 500 nm, which corresponds to the green emission. Visual inspection under 

UV of 254 nm showed that, during excitation, the color of emission was orange, and 

when the source was switched off the emission persisted in green. Thus, the 

powders fluoresce orange-red and phosphoresce green. The conclusion about the 

state of the powders is that, the reduction had not reached completion. Clearly, the 

reduction process needs to be improved to maximize the phosphorescence. A final 

conclusion is that, with the boron-doped samples, the phosphorescence brightness 

was significantly enhanced, and green emission from the powders was observed for 

a time-scale on the order of an hour, even though the reduction was not complete. 

 

Figure 6.1 Fluorescence spectrum of SA2:1%Eu,1%Dy,30%B. 

• The thermoluminescence measurements are in progress. Thus, combined with the 

photoluminescence measurements subtle changes in trap state energy levels must be 

investigated. 
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• In order to be used as a guide for the next-generation-experiments, energy dispersive 

x-ray spectroscopy (EDS) and energy-loss near-edge structure (ELNES) 

measurements of the standards Al2O3, Eu2O3, Dy2O3, SrO and the inspections will 

be mentioned here.  

The SrO particles were very unstable. The particles were observed to be 

evaporating under the beam very quickly. The Sr M4,5 (133eV) edge was tried to be 

seen with ELNES but this was not successful. Although EDS confirmed the presence of 

Sr and O elements (and only them), any Sr edge was not seen. Still, the O K (532eV) 

was measured successfully. The B2O3 standard was also tried to be measured. However, 

after three different solvent trials (water, ethanol, and acetone) it was not possible to see 

any particles with STEM. The B2O3 standard might be prepared now from its powder 

state without using any solvent. . 

The STEM bright and dark field images and the ELNES results for Al2O3 

particles can be seen in Figure 6.2 and Figure 6.3, respectively. These might be a 

starting point for the next generation experiment and measurements. 

 

  

Figure 6.2(a) Bright field image, (b) high angle annular dark field image of Al2O3 as 
observed in D-STEM 

(a) (b) 
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Figure 6.3 ELNES structures of SrO (a) Al L2,3-Edge measured from the 11 point of 

Figure 6.2.b (b) O K-Edge measured from 11 point of the Figure 6.2.b. 
 

The STEM bright and dark field images and the ELNES results for Dy2O3 

particles can be seen Figure 6.4 and Figure 6.5, respectively. 

  

Figure 6.4 (a) Bright field image, (b) high angle annular dark field image of Dy2O3 as 
observed in D-STEM 

(b) 

(a) 

(a) (b) 
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Figure 6.5 ELNES structures of Dy2O3 (a) Al L2,3-Edge measured from the 05 point of 

Figure 6.4.b(b) O K-Edge measured from 05 point of the Figure 6.4.b. 

The STEM bright and dark field images and the ELNES results for Eu2O3 

particles can be seen Figure 6.6 and Figure 6.7, respectively. 

  

Figure 6.6 (a) Bright field image, (b) high angle annular dark field image of Eu2O3 as 
observed in D-STEM 

(a) 

(b) 

(a) (b) 
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Figure 6.7 ELNES structures of Eu2O3 (a) Al L2,3-Edge measured from the 08 point of 
Figure 6.6.b(b) O K-Edge measured from 08 point of the Figure 6.6.b. 

The STEM bright and dark field images and the ELNES results for SrO particles 

can be seen Figure 6.8 and Figure 6.9, respectively. 

  

Figure 6.8 (a) Bright field image, (b) high angle annular dark field image of SrO as 
observed in D-STEM 

(a) 

(b) 

(a) (b) 
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Figure 6.9 O K-Edge ELNES structure of SrO measured from a point on Figure 6.8 
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