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ABSTRACT

DISTRIBUTED DETECTION ALGORITHMS FOR PARALLEL AND
HIERARCHICAL WIRELESS SENSOR NETWORKS

Wireless Sensor Networks (WSNs) have recently attracted a lot of attention in various
potential applications in military, health, environment and commerce due to their
detection, processing and communication capabilities. In this thesis, we consider
distributed detection problem for both parallel and hierarchical topology in which sensor
decisions are sent over non-ideal wireless channels. We first investigate optimal fusion
rules in Neyman-Pearson sense for all considered network configuration. We then,
suggest suboptimal fusion rules to decrease computational complexity of the optimal
fusion rules. Thirdly, multi-bit distributed detection is investigated both analytically and
numerically to increase the detection performance. Finally, we propose fusion center
diversity by employing multiple antennas at the fusion center to improve the detection
performance of the network and derive optimum fusion rules accordingly. Simulation
results suggest that fusion center diversity increases the probability of detection for a

given constant false alarm probability.
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OZET

PARALEL VE HiYERARSIK TELSiZ DUYARGA AGLARI iCiN DAGITIK
SEZIMLEME ALGORITMALARI

Telsiz Duyarga Aglar1 (TDA), sezileme, bilgi isleme ve haberlesme kabiliyetleri
sayesinde, askeri, saglik, cevre ve ticari alanlardaki olas1 uygulamalaryla ilgi
gormektedir. Bu tezde, TDAlardaki duyargalarin kararlarim1 ideal olmayan telsiz
kanallardan ilettikleri dagitik sezimle problemini, paralel ve hiyerarsik toplojiye sahip
aglar icin inceledik. Ilk olarak ilgilenilen topolojiler icin en iyi tiimlestirme kurallarini
Neyman-Pearson sezimleme kriteri altinda inceledik. Daha sonra, en iyi kurallarin
islemsel karmasikligini azaltmak icin alt-en iyi alt1 tiimlestirme kurallar1 énerdik. Ugiincii
olarak sezim basariminmi artirmak i¢in ¢oklu-bit kullanilarak yapilan dagitik sezimleme
analitik ve niimerik olarak incelendi. Son olarak, sezimleme basarimini artirmak igin
tiimlestirme merkezinde ¢oklu anten kullanan tiimlestirme merkezi ¢esitlemesini onerdik
ve bunun i¢in en iyl tiimlestirme kuralini tiirettik. Benzetim sonuglar1 tiimlestirme
merkezi gesitlemesinin verilen sabit yanlis hata olasilig1 i¢in sezimleme olasiligini

artirdigin1 géstermektedir.
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1. INTRODUCTION

1.1 Wireless Sensor Networks

Sensors with different sizes and capabilities are being used in military, health or daily life
applications. Developments in network protocols, new methods in wireless
communications, micro level production and the advances in microprocessor design
triggered the research in the area of wireless sensor networks (WSN) [1]. A Wireless
Sensor Network consists of a large number of small, cheap and low powered units,
namely: sensors. Sensors in network are positioned densely in or around the target
phenomenon in a random manner and they collaboratively try to get information about
the interested phenomenon. WSN has some features that distinct them from conventional
wireless networks [1];

e  WSN may have much more nodes compared to ordinary wireless network.

e Sensor node density is very high in WSNs (20 nodes/m’)

e Some of the sensors may not operate after deployed

e WSNs hardware capabilities are restricted; for example, they have low battery

power, memory and processor capacity.
e WSNs have no static topology based on identification no (ID)

e Sensor nodes have to use broadcast while communicating.

WSNs begin to operate after deployment to interested region and sensor nodes in network

begin to collect information about the environment to sink. There are some metrics for



evaluating the performance of a WSN [2]. These metrics are flexibility, robustness,
security, communication, computation, time synchronization, size, cost and power.
Actually almost all metrics points the importance of decreasing power consumption of
the WSN.
Each sensor in WSN has the capability to sense, process and communicate. This leads
to many interesting potential applications [2]. These applications can be grouped as
e Environmental Applications
o Detection and informing of a natural disaster or forest fire
o To collect information about air pollution
o Monitoring natural life
e Health Applications
o Distant-monitoring of physical data of humans
o Tracking the medication of patients
o Tracking patients and doctors in a facility
e Commercial applications
o Security issues
o Tracking kids by their families
o Car tracking and detecting
e Military Applications
o Battlefield surveillance
o Expedition of an unknown area
o Detecting position and velocity of target
o Being informed about nuclear, biological and chemical attack.
In all scenarios, each unit in the WSN sends its observations, collected from the
environment, to another unit capable of fusing this information which is called fusion
center. Local sensor nodes can transmit their observations without processing or every
local sensor node makes a hard decision relies on its observation, and these decisions are
huddled together in the fusion center; these are called Central Detection and Distributed
Detection respectively [3]. Transmission of raw data is too demanding. Due to obligation
of sending too much data, too much power and bandwidth is consumed by local sensor

nodes and this is a performance decreasing issue according to the performance evaluation



criteria. Also many of the local sensor nodes will send same data; this will cause
excessive information in the fusion center. Due to these reasons distributed detection in

WSNs is pretty effective.

1.2 Distributed Detection in Wireless Sensor Networks

Distributed Detection is a cooperative detection scheme that many detectors join together
to make a final decision between two or more hypotheses. Therefore; we can have
distributed detection model as a fusion center have to make the final decision and other
detectors send their decision to the fusion center via communication link. To avoid
wasting bandwidth, these detectors should quantize their observations first and then send
their decisions to the fusion center. Main problem in distributed detection is to design
fusion and detection rules in global fusion center and the other detectors, namely local
sensor nodes. Optimal fusion rule which joins information coming from local sensor
nodes at the fusion center is derived in [4] and the optimality of the likelihood ratio test
(LRT) in local sensor nodes and fusion center under conditional independence
assumption is shown in [5] under Neyman-Pearson criterion. A Bayesian approach for
distributed detection of a phenomenon is investigated in [6]. Obtaining optimality of LRT
does not explain how to find an optimum threshold for local sensor nodes. In distributed
detection systems local sensor nodes does not behave like isolated detection systems,
their performance jointly affect the system performance so, person by person
optimization approach, where one local sensor node optimizes its decision rule while
other nodes’ and fusion center’s fusion rule is fixed, is used . If local sensor nodes have
dependent observations, fusion rules become difficult to solve and they do not turn into
LRT [7]. Up to now most of the works in literature assumes error free communication but
finally Thomopoulos and Zhang analyzed the case of distributed detection with non-ideal
channel. In this thesis, distributed detection problem in WSN under fading channels is
investigated; optimum and suboptimum fusion rules are derived for different cases and

performance of these fusion rules is given via numerical simulations.



1.3 Scope and Contribution of Thesis

This thesis scope is as follows:

Chapter 2 will give brief information about distributed detection in wireless sensor
networks with paralell topology considering Rayleigh faded communication channels.
Optimum and sub-optimum fusion rules are given and and their detection performance
evaluation for a given constant average channel SNR and constant false alarm probability
are shown via numerical simulations.

In chapter 3 we will analyze binary distributed detection strategies in wireless sensor
networks with hierarchical topology. We derived the optimum and suboptimum fusion
rules for cases channel state information (CSI) or only channel statistics (CS) is available
at the fusion center. We derive probability distribution function of fusion statistics
assuming CS is available at the fusion center. We give the detection performance of
derived fusion rules for constant signal to noise ratio (SNR) and for constant false alarm
rate.

In chapter 4, multi-bit decision case is investigated for both parallel and hierarchical
topology. 2-bit decision case is described as an example; fusion rules are derived for this
2-bit case and their performance evaluations are given via numerical simulations.

In chapter 5 we explore the effects of receive diversity at fusion center on the detection
performance for parallel topology. We model the communication between local sensor
nodes and fusion center as multiple input multiple output (MIMO) communication and
derive the optimum fusion rule. For different number of antennas and local sensor nodes
detection performance is given for constant average SNR and false alarm rate at fusion
center.

We conclude and give possible future work in chapter 6.



2. PARALLEL DISTRIBUTED DETECTON for WIRELESS SENSOR
NETWORKS UNDER FADING CHANNELS

Distributed detection problem, as mentioned before, in wireless sensor networks was
investigated with Bayes and Neyman-Pearson (N-P) methods in [3], [6] and [7]
comprehensively. However, in all of these works, the fading effect of the channel during
local decision transmission to the fusion center was not considered in the fusion during
detection. Chen et al [9] proposed a parallel distributed detection method based on
Neyman-Pearson considering fading effect of the channel. They derived the likelihood
ratio test (LRT) based optimum fusion rule and suboptimum fusion rules by simplifying
the optimum one. Bahceci et al [10] proposed a method to find optimum threshold at the
fusion center for a desired false alarm probability for parallel network topology. In this
chapter, N-P based distributed detection under fading channels is recalled for parallel
WNSs. The rest of the chapter is organized as follows: fusion rules based on channel state
information (CSI) is investigated in section 2.1 and fusion rules when only channel

statistics (CS) is available are derived in section 2.2.

2.1 Fusion Rules When Channel State Information is Available

In this section, parallel distributed detection with fading channel based on N-P decision
criterion is summarized which is analyzed in mere details in [10]. Figure 2.1 has the
conventional schema of parallel distributed detection in wireless sensor networks. Two

hypotheses are assumed for detection, which are null hypothesis (no phenomenon- H,))

and the other is alternative hypothesis (phenomenon-#,). §; , stands for local sensor



nodes, z; shows the observation of ™ sensor and there is a wireless channel between
local sensor nodes and fusion center. 4, is the Rayleigh distributed channel gain between
the j/ local sensor node, x; is the binary phase shift keying (BPSK) modulated signal
which can take the values of -1 or 1 if local sensor decision u; is 0 or 1 respectively.n; is

the additive white Gaussian noise with zero mean and variance of o, and r; shows the

signal coming from the local sensor.

H,/H, Phenomenon

Figure 2.1 Parallel Distributed Detection Schema

2.1.1 Optimum Fusion Rule for Wireless Sensor Networks with Parallel Topology

According to Neyman Pearson under the conditional independence assumption, the

optimal detection rule in fusion centre is as follows,
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defined as a type of likelihood ratio test. In (2.1) PD/ and P, are detection and false alarm
probability of /" local sensor node and can be expressed as
P, =Pr(u, =1|H,)

’ 22
P, =Pr(u; =1|H,) 22

J

and r, shows the signal coming from the local sensor and represented as,

r,=hx;+n, (2.3)

2.1.2 Sub-Optimum Fusion Rules for Wireless Sensor Networks with Parallel

Topology

Optimum fusion rule has the best detection performance for parallel topology as stated in

[9] however it needs performance indices ( £, and P, ) and channel state information.

Therefore, some sub-optimum fusion rules are driven by analyzing low and high SNR
behaviors of optimum fusion rule. For high SNRs we can re-express the optimal fusion

rule as

[ i [ 24)



Since we are dealing with high-SNR channels we can conclude o — 0 therefore

L2nh

e ° > 1 when the simplifications done we can obtain

1-F, P,
AhighSNR (r) = z ) logLI—Pl ]"‘ Z log{P’ ] (2.5)

szgn(rj)

This fusion rule is so called Chair-Varshney rule in [4] and does not need channel state
information, it only use performance indices of local sensor nodes for detection but it
has poor performance for low channel SNR’s. When low-SNR case analyzed we should

rewrite the optimum fusion as

A(r)=]1— o (2.6)

. . T2
To examine low SNR region we can assume o° —> oo ande ° —>1. Therefore we can
2r;h;

use first order Taylor series expansion e 7 =~ (1 =2r;h, / 0'2) in (2.6) we get

2.7)

Taking logarithm of both sides and letting o> —> o0 as in [9] we have

Ao (1) =2(B, =P, iy, (2.8)

J=1

When all performance indices assumed to be same (2.8) becomes



Aye (r) =D by, (2.9)

This fusion rule is in the form of maximum ratio combining (MRC) and it needs only
channel state information as prior information. Although, Chair-Varshney rule has
significantly bad performance for low SNR case, it requires only performance indices
which are fixed, but MRC fusion rule needs instantaneous prior information about

channel’s gain; it should be noted as a power consuming issue.

2.2 Fusion Rules When Only Channel Statistics is Available

A WSN has very limited energy and bandwidth therefore it is not preferable trying to
estimate channel gain at each transmission. Therefore, in this section, we try to derive
fusion rules that use only channel statistics at the expense of small performance

degradation.

2.2.1 Optimum Fusion Rule with Channel Statistics for Wireless Sensor Networks

with Parallel Topology

First of all we have to write likelihood as

N | H
A(r):f(r‘Hl):Hf(r]| 1) (210)
Sl Hy) f(’”_,-|H0)
Assuming unit power Rayleigh namely
f(h)=2he" h >0 (2.11)



and additive white Gaussian noise in the receiver under hypothesis H, we can obtain

F(r1H) = p(x11,) £ (],

Xj

=B, f(r, ], =1)+ (1=, ) £ (1], = 1) (2.12)

2 2
;i (“’1)

=2—O-e_ﬁ 1+[PDJ‘ —Q(arj)}/garje 2

f (r]. |H 1 ) can be obtained using P, instead of b, and LRT based fusion rule become

”’.f)z
N 1+| B, —Q\ar, \/garl.e 2
ACS(r):H |: - ( ):| : ar/-)z

: 1+[PFj —Q(arj)}ﬂar_ie 2

(2.13)

J

where a = 1/(0'\/1 +207 ) )

One can see that this fusion rule which is called LRTCS in [14] only requires channel

statistics and probability of detection and false alarm of the local sensors.

2.2.2 Sub-optimum Fusion Rule with Channel Statistics for Wireless Sensor

Networks with Parallel Topology

Again we will examine high and low SNR behavior of the optimum rule with CS. First

we analyze high-SNR behavior and we write the fusion rule in (2.13) as

(‘”;)2 (“’1)2
A (r)= Zlogl-’_[PDj _Q(a”_;)]\/garje:)z +Zlogl+[PD —Q(ar].)] 27Zar].eT
;j,»<0 l+|: .

P, —Q(arj)]\/garjeT 7, >0 l+[PF> —Q(arj)]x/garje 2

J

—_
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(o)

When 6> —>0 and a —> o, for r, <0 Q(arj)—)l and ar,e 2 |I>1; for r, >0,

(“’./ )2

Q(arj) —>0 and are * >1, consequently we obtain

1-P P
lim A, (r)=> log——"+ log—>= A, 50 (T) (2.15)
o0 r: <0 1- F; r;>0 PF]

We can see that for high SNR channels the optimum rule using only CS reduces to high
SNR approximation of optimum rule using CSI. This is a reasonable result because when

SNR is too high, the fading coefficient becomes unimportant to use during detection. For

low SNR namely o> — o0, a = 0. Using Taylor expansion

X x’ ’ 16
= | x——+ —~ +... :
Q(x) 2 2r * 2 2x4 2x4x8 ( )

Hence using {)iirgQ(arj) ~ 1/2—arj/\/27r and €\ & ~1+a’r] /2 we can conclude as in

[14]

lim A, (r)= ZN:(PDJ - P, N2rar, 2.17)

o~ —0 j:1

If we assume local sensors are identical we obtain equal gain combiner (EGC) like fusion

statistics

Ao (r) (2.18)

I
iPM=
o

~
Iy

11



In this chapter, we will compare the performance of the fusion rules derived in the
probability P, =0.5 and false alarm probability P. =0.05. All communications are
modulated by BPSK modulation, channels are subjected to unit power Rayleigh fading
taken as 5dB and receiver operating characteristic (ROC) curves are obtained for derived
fusion rules which are shown in Figure 2.2. It can be seen from figure, LRT has the best
performance and LRTCS slightly worse performance than LRT. It is interesting that for
this SNR, EGC outperforms both Chair-Varshney and MRC although it does not need

previous sections. For this experiment, there are 8 local sensors with the same detection
and AWGN therefore channel SNR is defined as /o . First, the average channel SNR is

2.3 Simulation Results
any prior information.
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Figure 2.2 ROC curves for different fusion rules with average channel SNR
there are 8 local sensors with P.



Probability of Detection

=0— | RTCS

=¥ MRC
EGC

=0~ Chair-Varshney

15 20

Figure 2.3 Global detection probability of different fusion rules as a function of SNR
when P, =0.01.

As a second experiment, detection probability at the fusion center as function of SNR is
obtained when the global false alarm probability is fixed at £, =0.01.Figure 2.3 shows
that for high-SNR regimes we can see that LRT, LRTCS and Chair-Varshney become
identical in detection performance which is consistent with our theoretical analysis. Also,
for low-SNR, MRC and EGC behave like LRT and LRTCS respectively. LRTCS fusion
rule outperforms suboptimum rules above 0dB SNR. Detection performance of EGC can

be considered most robust among suboptimum fusion rules.
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3. BINARY DISTRIBUTED DETECTION STRATEGIES in HIERARCHICAL
WIRELESS SENSOR NETWORKS

In previous chapter we have analyzed decision fusion techniques under Neyman-Pearson
criterion for noisy and Rayleigh faded WSN by considering parallel topology. However,
the parallel topology is not convenient for sensors with relatively small transmission
ranges. To increase the transmission range of the sensors, the hierarchical topology is
preferable in which the local sensors send their decisions to the local fusion centers called
cluster heads (CLH) and the cluster heads fuse these local sensor decisions and based on
these, they make their decisions accordingly to be sent to the global fusion center.
According to our knowledge, however, there is no work done in literature regarding to
the distributed detection and decision fusion problem for the hierarchically configured
WSN with fading and noise. To fill this gap, in this chapter, we develop the optimal and
sub-optimal distributed detection and fusion rules for the hierarchical topology and

investigate their performances through numerical simulations.

3.1 System Model

Two hypothesis, /, and H, must be considered while deciding whether a phenomenon

present or not at region of interest. Each local sensor node makes an observation from
environment, quantizes its observation to a value 0 or 1 and sends it to a cluster head
through wireless channel with BPSK modulation and cluster heads make decisions to
send to the global fusion center as depicted in Figure 3.1. Therefore, the signal received
by the cluster head “m” from j” sensor and by the global fusion center from m” cluster

head can be expressed respectively as:

14



r=h'x7 +n} G.1)

ym :gmsm +nm

x; and s, are the BPSK modulated signal which takes -1 and 1 values, n} and n, are the

additive white Gaussian noise sample with zero mean and o~ variance and uncorrelated

from channel to channel and 4} and g, are the Rayleigh distributed fading channel gain.

Since the variance is o and BPSK is used SNR of each channel is 1/c* assuming a unit

power Rayleigh fading channel. Performance of a local sensor node can be defined in

terms of false alarm and detection probabilities which are given respectively as

7 =l -1l o
Py =P(x) =1|H,)
This notation shows that the performance indexes of /" sensor connected to m™ cluster

head.

Phenomenon
Ho/H,

Fusion
Center

Figure 3.1 A wireless sensor network with hierarchical topology. Two cluster heads and

a global fusion center
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3.2 Fusion Rules Based on Channel State Information

When all performance indices namely detection and false alarm probability of local
sensor nodes, and channel state information (CSI) of channels from cluster heads to
global fusion center is known Likelihood Ratio Test (LRT) based optimum fusion rule is

given by [9].

(v|m,) _On=ga) ( ) ()
0/ _ Sy|H, R F, e 200 4 1-P, Je 202
Mg (v|#,) gL re arl (3-3)

P.e 2 +(1—PF )e 20°

y, is the received signal from m" cluster head, P, and P, are detection and false alarm

probabilities of the cluster heads and depends on fusion rules at the clusters centers, since
the optimum rule is observed it is assumed that the cluster heads have the information
about performance indexes of local sensor node nodes and the CSI of the channels. Log-

LRT based fusion rule at the clusters is given by

A" (r)=>1 - - d 3.4
)= 2l = 7o) o
PF’;’e 20° +(1—PF';7)e 20
Therefore P, and B in(3.3) are defined as
Km
P, =P(A"(r)>1, |H0)=P[Zy/(rj"’)>tm|Hoj
h (3.5)
P, =P(A"(r)>1, Hl)zp( ] w(r)>t, |H1}
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where r” =[r",nr",---,r; ]is the signal vector received by the m™ cluster head and

W(rj’”)is the log likelihood ratio (LLR) corresponding to the signal " which can be

expressed as

m

2 5 3.6
(-47) (r+i7) G.6)

. K . . . e
Since we have 2% different possible decision vectors u” =[u",---,ul ] for the m"

cluster head we can re-express (3.5) by using the total probability theorem as

o (3.7)

F o (tm) is cumulative distribution function (CDF) of the fusion rule at the m™ cluster

head given that sensor decision u vector equals to i”" realization of u”. Therefore, the
fusion rule becomes

(3.8)

m=1 [1_2’% IP(U — u:” |H0 )] FA’” (tm)e_ 202
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The terms, P(u =u; |H0)andP(u =u’|H, ), in (3.8) can be determined as

K?Yl

Pu=u"|H)) = H (PF@)HJ (I—Pg)l_uj

. m
Jj=lLu=u;

K, (3.9)
Pu=ul"|H))= H (P[;”_ )“,- (1-P )

J
. m
Jj=lLu=u;

Where u;is the j" element of decision vector u”, this optimum rule has the best

performance by means of detection but requires too much prior information about

channels and sensors. Some reduction should be done to form a simpler rule practically
applicable. If we define S, ={m:y,A <0}and S, ={m:y,A >0} and divide the fusion rule

by using this interval the fusion rule can be written as

P,e o +(1-P
ANy)=T]— ) === (=) (3.10)

"SSP e +(1—PFm)

i2yngm
In the high SNR regime (o° — 0) terms with e °° become greater than other terms so

fusion rule become as in [9].

}L 2105{%} (3.11)

1-P
0 1 0 Dm
AHighSNR = (}}in() log (A (v )) = z log ( P,

meS, 1-

To apply the high SNR approximation global fusion rule, the knowledge on 7, and P,

is needed. For simplicity, we assume also that SNR is high for the cluster head fusion.
This means that we can also apply the high SNR approximation of (3.4) and obtain a rule

similar to (3.11) which is known Chair-Varshney rule [4] in literature. Assuming all

sensors within each clusters are identical, i.e., P’ =P andP) =P, P, and P. are
J J m m

derived by using Chair-Varshney rule in [14] as
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K,, , ;
PFm = Zﬂ (Kl )pol(l_po)K

If (3.12)
PDm = Z (K;'1)p1i (l_pl)K B

i=K™"

where K" is the decision threshold of the m" cluster head in terms of number of sensors
and pg and p;"are the probabilities of a nonnegative cluster observation r;" under H, and

H, respectively which are given as [14]

1
W1, %75
Py =7t >

2 J1+20 3.13)

P ! |

m 1 Dm_E
P ==t >
2 J1+20

Similarly, to obtain a simplified global fusion rule, we can also consider low SNR regime

(i.e.0® - ). To do that, we can re-express the global fusion rule in (3.3) as

1-P Je =
AO(Y):ﬁ il D’”)e_zymgm (3.14)
el +(1—PFm )e o’

ov

v

m

To obtain a low SNR approximation of the global fusion rule, the first order Taylor

2y,8 2yn&
: N - : R 2
series approximation of e ° is employed as e z(l—L;g’”). Therefore, the
o

low-SNR global fusion can be obtained similar to [9]as

N
A?awSNR (y)= Z(an - PFm )gmym (3.15)

m=1
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If cluster heads are identical in terms of detection and false alarm probabilities, the global

fusion rule can be simplified further as

N
AloowSNR(y) = ngym (316)

m=1

which is equivalent up to a scale factor to the Maximum Ratio Combining (MRC) fusion
rule. Therefore, we do not need to know the detection and false alarm probabilities of the

cluster heads for the low-SNR fusion rule by assuming they are identical.

Parallel to this, fusion rule for m™ cluster with identical local sensor node nodes under

low-SNR can be determined in as

K

Alpwswr (r) = Zh;nr,m (3.17)

J=1

Hence, cluster heads do not also need to know performance indices of local sensor nodes
assuming they are identical, although the performance of the low-SNR fusion rule can be
analyzed analytically by deriving the probability distribution function of (3.17), if we

define

Q=h'r" (3.18)

Since we assume 4" is known to cluster heads we can write pdf of 7" as
F(rfpy b)) = By N (r, 07,07 )+ (1= By )N (., 07). (3.19)

Where N (x, 1,0’ ) denotes normal distribution with mean 2, ando” variance for the
random variable X . Therefore when h;” 1S known r].'” 1s a normal distributed random

variable with mean 2P k" — b and o’ variance. Then distribution of (3.18) becomes
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Sol@lpy i) =N (o280 — 1 1 o) (3.20)

Probability distribution of (3.17) can be derived convolving the (3.20) K, times for

channels in the cluster.

3.3 Fusion Rules with Known Channel Fading Statistics

Thus far, except high-SNR approximation the other two fusion rule uses channel state
information (CSI) to make a global decision, since obtaining CSI is a power consuming
issue and reducing power consumption is a crucial issue for WSN’s we will try to find a
fusion rule that uses only channel statistic (CS) namely probability density function of
channel gain. Channel fading statistics based fusion rule is given in [14] and if we rewrite

it for hierarchical scenario we have

(@)’
N 1+| P, —O(ay,) |N2ray,e *
AL (y)=>log 5. J ~ (3.21)

m=1

1+ [PFm - Q(aym)] \/ﬂayme E

%
2 2
O'«/O'g+0'

channel. The channel statistics based fusion rule at the cluster head is

in general a = and 207 is the mean square value of the g, CSI for m"

ar! :
J
2

1+[P1;”j —Q(ar;")]ﬂar;"e

Km
Al(r)= log (3.22)
=1

n 2
(@)

L+ B - Otar) N2zar'e 2

21



Therefore false alarm and detection probability at the cluster heads are given respectively

as

K.,
P, =P(AL(r)>1,|H,) :P[ZW“ (r)> tm|HOJ

Km
P(Zwm (r)>1, IHI]

(3.23)

B, =P(AlL(r)>1,|H,)

To obtain these probabilities we have to find the probability distribution of

m 2
(ar")

1+[ By - 0(ar™) N2zar”
v ()=log +[PD, O(ar; )}/_ﬂar_, e(mm)2

J

1+ [P;j - Q(ar;")}/zyzar;"e 2

and to achieve this distribution, we

first look at the following approximation.

1 —x2/2

Q(x) = N e

x>3 (3.24)

Therefore ¢/ = xx/27rQ(x) +C (x) x >3 where C(x)is the correction term. Hence

C(x)=e™" - x\270(x) (3.25)
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Figure 3.2 Correction function C (x) and its approximation

Figure 3.2 shows C(x) which is the correction term and can be approximated partially by
a quadratic polynomial, and App’s in the figure shows the partial approximation of the

correction term , so ¥/ (r) is written for where x =ar

By -0(x) |[V27x
;/ng(x);—C(x)
70w [Varx
| V220 (x)+C(x) |
_x\/ﬂng’_ +C(x)
x\/EPF'j +C(x)

1+

7 (r_]f" ) =log

(3.26)

v, (r")=log

Since correction function is approximated by quadratic polynomial C (x) =ax’+fx+y,

(3.26) turns into
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N2 P +ax’ + fx+y
xN27 P! +ax’ + Bx+ g

v
e s =

(3.27)

and where the optimal values of coefficients of «,p, 7 are obtained for intervals (0,1],

(1,2] and (2,3] and tabulated in Table 3.1.

Table 3.1 Coefficients of quadratic approximations of C(x) for different intervals

(0.1]

(12]

(2.3]

0.4353 0.1664 0.02439
-1.221 -0.681 -0.1409
0.9977 0.7205 0.2047

After collecting the terms in (3.27) together and changing xinto ar we get a quadratic

equation and the roots are

—(\/gpé'j +f-e'e (Vax Py +,B))i
[ o]

r, = (3.28)
v 20{(6%‘ - l)a
The distribution of y (r) can be found using the formula in [15].
/(r)
=) ———— 3.29
fl‘//cs (l/lcs) Zk:‘dV/CT /dr ( )

r=n

An approximation of Q function will be used to find solutions of ., =g(r).

Coefficients are derived by collecting the terms of equation (3.27). The probability
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distribution of (r)is found from (3.29),and f, (r) can be found by

convolving

this pdf K times since they are i.i.d when o, is same for every channel. To obtain

Jy (r) we have to know f,(r); but because of Neyman-Pearson assumption we do not

know the prior probabilities of Hy and H; therefore conditional pdfs fw (r|H0) and

Jy (r|H1)can be calculated from £ (r|H0)and £ (r|H1) they are given in [14]

I

6(202] x| 1+ P = 0(ar) | \/gar_;"e(a’ff’)

o

ﬁ(”P%)Zm

2
2 m
L (ar7")
20

f (r|H1 ) — me( ] X l+[Pl;’; —Q(arj’”)}/gak;"eT

- (3.30)

The accuracy of this method is tested by a simulation experiment that the results can be

seen in figure.

fy,(w[Ho)

Wes

Figure 3.3 Probability Density Function of y_ (r) for P, =0.05 and P, =0.5 under H,
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In this experiment there is one local sensor node which sends its decision to the fusion

center and fusion center calculates the y (r) value and the pdf is obtained from this
simulation using “hist” comment MATLAB. False alarm (F,7) and detection

probabilities ( P,”) are chosen 0.05 and 0.5 respectively and the SNR (l/ o’ ) is 5dB by

J

assuming unit power Rayleigh fading. The figure shows that our approximation is valid.

In the high SNR regime lim @ — o and fusion rule with channel statistics turn into

o"—0

Chair-Varshney fusion rule and it can be seen easily by rewriting the fusion rule as

(@)’

1 _ 2 2
32 0)- 3 tog| LI m0) [ omne

2
mesy _ (ar,)

1+ P, ~0Olay,) [N2nay,e 2

(3.31)

(av,, )’

1+| P

. —Oay,) |N2may,e
+Zlog = =
meS; r

(@)’
1+ B, —O(ay,,)

] N2ray,e *

(@)’

If meS, when a >  QO(ay,) —land >1 and if meS, Oay,)—>0

ay,e

(av,)

ay,e > 1 therefore we can conclude

1-P, P, o
One can realize that high-SNR approximation for LRTCS (3.32) is same with high-SNR
approximation for LRT (3.11) which means when SNR is decreased difference between

detection performances of fusion rules decrease.
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In the low high SNR regime when lim a —0 setting Q(ay,)~1/2-ay, /~27 and

O~ —®0

(aym)2
e 2 =~l+(ay,)’ /2 we can achieve EGC fusion rule as in [14]

1 N
AJ(y) WZym (3.33)
m=1

3.4 Performance Evaluation

In this section, we compare the performances of the proposed optimal and sub-optimal
global fusion rules through numerical simulations. Throughout our discussion, we
consider a hierarchical WSN with 2 clusters and each cluster head communicates with 4

local sensor node nodes, i.e., N=2, K;=K>=4, and we assume that sensors are identical in

terms of their false alarm and detection probabilities as P =0.05and P =0.5. We

first obtain the receiver operating characteristics (ROC) curves of the global fusion rules
as in Figure 3.4 for SNR of 5 dB. It can be seen from this figure that the optimal LRT
based global fusion rule considerably outperforms LRTCS, the high-SNR and low-SNR
approximations of fusion rules for various global false alarm probabilities. As one can
also realize from Figure 3.4, that the performance curve of the high-SNR fusion rule is

not drawn for all global false alarm rates since an integer threshold K which satisfies

(3.12) cannot be found for the false alarm probabilities less than 3x10™. Also, a notable
point is low-SNR approximation for LRTCS has better performance than low-SNR
approximation for LRT for 5dB SNR although it needs less prior information.
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Probability of False Alarm

5dB .There are 2 clusters and

Figure 3.4 ROC curves for different fusion rules for SNR

=0.05

m
PF,/

J

4 local sensor node in each cluster with ' =0.5,

Since low-SNR approximation resembles MRC one can think that it should have better

performance than EGC like high SNR approximation but MRC is preferable when there

is identical input into the multiple fading channels. When inputs of channels are not

identical it is not guaranteed to have better performance.
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Figure 3.5 Global detection probability of different fusion rules as a function of SNR
when P} =0.1.

Secondly, we set the global false probability P, as 0.1 and obtain the global detection

probabilities of the proposed fusion rules as a function of different SNR values as seen
in Figure 3.5. Again, the LRT shows the best performance whereas the high-SNR and
low-SNR approximations to LRT and LRTCS give satifactory results at low-noise and

high-noise regimes respectively as expected. Again, integer threshold K" could not be

found for SNR’s smaller than 2.5 dB high-SNR approximation.
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m

D;
various fusion rules. It can be seen from figure when LRTCS is used in CLHs global

Figure 3.6 ROC curves when fusion center uses LRT and cluster heads use various
For WSNs it is assumed that fusion center has no power limitation therefore optimal and
most power consuming rule LRT can be used in fusion center. Figure 3.6 shows the
detection performance when fusion center uses LRT and cluster heads (CLH) uses
detection performance is very close to optimal one. Also, for this 5 dB avarage SNR
scenario Low-SNR approximation for LRTCS has better performance than high SNR

fusion rules for SNR

cluster with
approximation.



4. DISTRIBUTED DETECTION with MULTI-BIT DECISION in PARALLEL
and HIERARCHICAL WIRELESS SENSOR NETWORKS

So far, we analyzed fusion strategies when local sensor node and cluster heads quantized
their decision with one threshold namely their decisions are single-bit. In this chapter we
investigate fusion strategies using multi-bit decisions in both local sensor nodes and
cluster heads in WNS’s with hierarchical topology. Making multi-bit decisions improves
the detection performance because local sensor node and cluster heads sends much more
information to global fusion center compared to single-bit decision. We first give some
information about two-bit decision as an example of multi-bit decision and derive

optimum and suboptimum fusion rules for multi-bit decision.

4.1 Two-Bit Decision

In conventional one bit decision, decision makers (local sensor node and/or cluster head)
quantize its information about phenomenon after comparing a threshold. To make multi-
bit decision one needs 2" —1 threshold where M is the number of bits used for sending
decision. Therefore, for a 2 bit decision one needs three thresholds, and jth local sensor

Figure 2.1make the following decision

Az,)>t, > x, =[L1](H,)

t,>A(z,)> 1, >x, =[1,-1]
(4.1)
t,>A(z,)>t, >x, =[-11]

>A(z/)—>x =[-1,-1](H,)
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Where z;is the observation of local sensor node, ¢,’s are the thresholds and x ; is the

vector of BPSK modulated decisions and in general it has M elements. If observation is

greater than ¢, or smaller than 7, local sensor node decides H, or H, respectively but if

it is between these values local sensor node does not give a strict decision and sends

information about which phenomenon is more likely by comparing ,;. Performance

indices of local sensor node can be expressed as

=0
Il

P{A(z,)>1,|H,|

v
Il

0H,,

2v
=
Il

(4.2)

v Ju
I I
SRR
= >
o
\_/\/—\/

=

av
I

Where P. , P, , P, are the false alarm ,detection and miss probability respectively, P, is
the probability of deciding #H, when null hypothesis is true, F,, and F,, where

ie {O, l} are about which phenomenon is more likely conditioned on hypotheses.

4.2 Optimum Fusion Rule for Multi-bit Decision

In the next sections we will derive optimum fusion rules for WSNs with parallel and

hierarchical topology.
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4.2.1 Optimum Fusion Rule for Multi-bit Decision with Parallel Topology

In hierarchical topology, we can model local sensor nodes-cluster head and cluster heads-
fusion center connections as two cascade parallel network topology. Therefore in the first
step we will derive fusion rule for parallel topology and then we will achieve fusion rules
for hierarchical topology. For parallel topology in Figure 2.1 using Neyman-Pearson
lemma if we write the likelihood ratio based optimum fusion rule will be like in (3.3) we

get

Using conditionally independent assumption we can write
(J 1 ‘Hl’ j? J) zzf( ‘Hlaho) ( ‘Hl’ m)p(x?’x}|H1) (4.4)

Assuming channel gains and performance indices in (4.2) are known to global fusion

center previous equation becomes

Frf o)1) 1) = DN(r 1,0 2 \N(r! ko )+ By N(r 00 )N (1) ~hlo )4
’ 5
P Nt VN () Py N (1N (o) )

Where N (x, o’ ) denotes normal distribution with mean 2, ando” variance for the

random variable X . Therefore optimum global fusion rule is
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A(y) _ Z log 014,

J=1

20 20
PE,. e + B, Hy,©
—(r0+h‘?)2—(; 1) 7(,,0”1;?)27((; ! )2
2 2
+F)01H0j e 20 + f)]"j e 20

(4.6)

4.2.2 Optimum Fusion Rule for Multi-bit Decision with Hierarchical Topology

Since we explore the optimum rule for global fusion in hierarchical topology we have to

assume that cluster heads have the information of performance indices and channel state

information then fusion rule for m" cluster head will be in the same form with (4.6)

R
PD”’ e 202
J

2 2
*(’u”’l./) *(’2./*”2./)

2 2
o
*(’l./*hl./) *(’2./”12/)

+P" e 20°

10H,;

2 2
m_ pm m L pm
—(rlj +hlj) ’(’2/‘*’172/)

J

2 2
m ym m_ym
—(’u‘*'hlj) —(sz—hzj)

2 2
+POTHU e 20 + PA:,"j e 2o
~(rtynn ) (o) ~(rtynn ) (ot )
Pe 207 + Plf)"HOj e 27

2 2
m_ ym m o ym
_(rlj+hlj) —(sz+h2/)

m 207
+R)1H0j e

And optimum rule at the global fusion center will be
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(b)) {heh) (0eah) {vhreh)

A° (y) _ ﬁ:log +P01H,me : 2 : +PM,,,e 2202 : (4.8)
par (vh+en) ~(vh+en) (=g ) ~(n+en)
P e 20° + By, € 20°
() {shreh) (0l ) ~(hreh)
+B,y, € 20° +h e 20°

Optimum distributed detection in hierarchical topology can be done using (4.8) in global

fusion center and (4.7) in cluster heads.

4.3 Sub-Optimum Fusion Rule for Multi-bit Decision

Optimum fusion rules for cluster heads and global fusion center has the best detection
performance, on the other hand it needs all sensors performance indices and channel
gains. Therefore, we analyzed the asymptotic behavior of optimum fusion to achieve

simpler and applicable fusion rules.

4.3.1 Sub-Optimum Fusion Rule for Multi-bit Decision in Parallel Topology

Global fusion rule in (4.6) is optimum in detection performance but it is very complex
and needs very much prior information , we now try to simplify it by analyzing high and
low SNR behaviors.

For this purpose, we rewrite (4.6) as
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2 2 2

O o (e

B)je +ROHU +PO]HUe +f}4je
X 21 2110 42/} =280
0 I i T rerh; iy
r; <0,rj >0 >

(e 0'2 O'2
P.eo + P]OHOj +Po1H0je +PTje

J

0,0 5,171
21 h; +2r;h;

For high SNR namely o? — 0 the terms with ¢ ¢ dominates other terms and the

previous equation become

P,

AhighS/\’R (1‘): Z IOg P

F, POIHI- P10H1.
0 + Z logP—"+ Z logP—"+ Z logP—" (4.10)

1 0 1 0 1 0 1
751 <0 T, >0 Fy 1j<0,r;>0 01H;  1;>0.r;<0 10H,;

One can see that this rule is a modified version of Chair —Varshney [4] rule for 2-bit

decision. For low-SNR analysis of global fusion rule we start from

N o o
D; 10H,; . .
_ J 1 L J
A (r) - H 20! —2r0h0 —2r0h0 _olpt (4'1 1)
77 i 77 i
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—2r%%° 2]"0 0
Since low-SNR assumption requires o> — o we can write e © =~ {1—#] as first

order Taylor expansion, using P, =1-AR, -R, -B,and B, =1-R,, -FK, -F ,

(4.11) becomes

2rjlh;
(I_ROHU _B)IHU _PM‘/)+ROHU 1- O_z

070 070 171
o 1228 o, 1228 224)
N Y o " o o
A(r)= H (4.12)

Jj=1 27"1]’11
] (I_ROHOJ. _RJIHO‘» _[)TJ )+ROHOJ (1_01-21

21’ 21’ 2r'h!
+P01H0j[1— 221}@/_[1_ 221]{1—25]

Taking logarithm of both sides we have

2r'h! 2r°h° |

N (PIOHOJ- _PIOHU )#4-(})01110]. _P()lH]j )#

lim A(r)=lim| >’ (4.13)
J

07,0 171 07,0 171
o —>® o —>® _l_i_(PT‘_PM.)(zrjhj +2rjhj_2rjhj 2rjhj]

o’ o’ o’ o

If we assume performance indices of local sensor nodes are same global fusion rule is

r°h° +Zr h (4.14)

Jj=1

lowSNR

4.3.2 Sub-Optimum Fusion Rule for Multi-bit Decision in Hierarchical Topology

Since we explore the asymptotic behavior of fusion rules we will assume high or low
SNR for all wireless channels in WSN. If high-SNR assumption is valid between local

sensor nodes and cluster heads fusion rule in m” cluster head will be
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m

OIHU 10H,,
Z & + Z & (4.15)

r]/ rz]<0 7“/ r]] ' Fj <0 rz >0 01H,; r]j >0 r» <0 10H,,;

h ghS’\R

Again fusion rule in global fusion center is

Al (¥)= 2 T LT > 1 Do 4.16)

) y <0 T, y ) >0 F, Vi <0} >0 01H,,, Ym >0) <0 10H,,

Assuming low-SNR for all channels in the WSN in m” cluster head fusion rule is given

as

Km
10 »SNR Z hl”; + Z rzr_r/l'h;j (4 17)
Jj=1

and low-SNR fusion rule in global fusion center

A Zymgm +Zymgm (4.18)

m=1

In this low-SNR case global fusion center and cluster head should use (4.17) and (4.18)

respectively to fuse the information came from previous component of network.

4.4 Optimum Fusion Rule for Multi-bit Decision only with Channel Statistics

Achieving channel gain information in a WSN spends precious resources as power, to

keep away from consuming power we in this section we try to
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4.4.1 Optimum Fusion Rule for Multi-bit Decision in Parallel Topology only with

Channel Statistics

As mentioned in section 3.3 to decrease the required prior information at the fusion
center we will try to obtain optimum fusion rule with CS. Likelihood ratio test in global

fusion center is

e
Where
7 |Hl.)=x[?zk;bp(x?,x;|Hi)f(rj°,r;‘x?,x}) ie{0,1} (4.20)
When x, x| are given r/,r; are independent therefore distribution becomes
St )= £ () £ () (4.21)

Pdf’s are given in [14] as

2 N v
e 2 | 127 ; e o 0 i/

f(r"k‘xf:il):«/ﬁ(uzaz) o /(1+202) oy/(1+20%)

(4.22)

Global fusion rule can be obtained putting(4.22),(4.21) and(4.20) in (4.19)
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N P A+(P,., +P AB+P, B*
Ags = log— (o, + o) o (4.23)
P ARy, + By, | AB+ P, B’
Where
A=1+27| ——— e 2 Q /
0',/(1+20'2) o (l+20'2)
- - (4.24)

Finally we can use a heuristic equal gain combiner like fusion rule when channel state

information is not available and it can be given as

N N
A (y)= er +er.1 (4.25)
m=1 m=1

4.4.2 Optimum Fusion Rule for Multi-bit Decision in Hierarchical Topology only
with Channel Statistics

Optimum cluster head fusion rule for cluster heads have only statistics information about

channel will be in the same form with (4.23)

N i 1 PyC+ (B, +Biy, |CD+ Py D’
= Og
© E T RC (R, + R, )CD+ BID?

0j

(4.26)
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Where

- - (4.27)

We can conclude that optimum performance without exact channel state information can

be achieved using (4.27) in cluster heads and following equation in global fusion center

o & P, A +(By,, +PF, )AB+P, B’ 42
cs _z 0g > 5 (4.28)
= P A +(P01H0m +R)1HOM)AB+PTMB
where
A=|1+27| ——1|¢ > 0
0',/(1+20'2) o (l+20'2)
- - (4.29).

Also, we can use our heuristic rule in also cluster heads to get a simple fusion rule as
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K, K,
AT ()= 87+ 2, (4.30)
J=1 j=1

In cluster heads and in global fusion center we can use

N N
A (V)= + 27 4.31)
m=1

m=l

4.5 Performance Evaluation

In this section we will give some numerical simulation results which show the detection
performance of derived fusion rules for multi-bit decision in local sensor nodes and
cluster heads. 2-bit decision is assumed for this simulation therefore transmission power
is divided by two for comparing single-bit decision strategies. 5dB average SNR is
assumed in simulations for single-bit which means 2 dB for 2-bit decision. Figure 4.1
shows 2-bit LRT has the best detection performance and 2-bit LRT, 2-bit LRTCS, and 2-
bit EGC outperforms single-bit LRT .Also for this scenario 2-bit high-SNR
approximation has worse performance than 2-bit low-SNR approximation for LRT since

the transmission power is halved SNR of per channel decreased 3 dB .
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Figure 4.1 ROC curves of 2-bit fusion rules when
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5. DISTRIBUTED DETECTION USING FUSION CENTER DIVERSITY

In this chapter, we model the communication between local sensor nodes and fusion
center as Multiple Input Multiple Output (MIMO) communication by deploying multiple
antennas at the receiver namely fusion center. Using the same amount of transmit power
WSN can achieve a better detection performance when the communication is more
reliable. This motivates our work and we derive the optimum fusion rules for fusion
center when CSI is available. We will analyze usage of MIMO in Distributed Detection
and derive optimum fusion rule for this scenario, and give some numerical simulations

and performance evaluation.

5.1 MIMO in Distributed Detection

MIMO is the use of multiple antennas at transmitter and receiver to improve
communication performance [16]. It improves performance by increasing the spectral
efficiency and link reliability. Communication channels in a WSN are not error free due
to fading and noise and this decreases the detection performance. Fig. 2 shows simplest
form of MIMO communication for WSN which includes 2 sensors and 2 antennas

deployed in fusion center.
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Figure 5.1 An example for MIMO communication in WSN

In Figure 5.1s,and s, are local sensor nodes and /;'s are gains corresponding to channel

between i sensor and j” antenna at the fusion center. For a M, transmitter and M,

receiver antenna MIMO system the received vector can be written as
r=Hx+n (5.1

ris the received signal vector, x is the BPSK modulated signal vector depends on the

decisions of the local sensor nodes, H is the M xM, channel gain matrix consisting

h;'s and n is the noise vector wheren,’s are AWGN sample with zero mean and
. .th .

variance o at the /" receiver antenna .

Optimum Likelihood Ratio Test (LRT) based fusion statistics is given as [9]

Alr)="F1—2 (5.2)

For a fusion center with M, receiver antennas, assuming r;’s are conditionally

independent when x;’s are given, fusion statistics in Eq.(5.2) become
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A( )_ Zx:f(rl|H1 ,x)f(r2|H1,x)...f(er |H1,x)p(x|Hl) 53
- Zf(r1|H0 ,x)f(r2|H0,x)...f(er |H0,x)p(x|H0) .

X

When performance indices and Channel State Information (CSI) available at fusion

center, distributions in Eq.(5.3) can be derived, as an example f (rl |H1)is obtained as

follows
wl u; -y ik u;+1
f(rl‘Hl,xl,xz,...,xMt): (PD,) (I_PD,-) N(rl; 1(—1)’ hj,l;anJ (5.4)
i=l,u=uy Jj=
2 M, u; l-u; & u;+1
f(y1|H1): = (PD[) (I_PDi) N(I’i, 1(_1) ‘ h_/',l;o-n]’ (55)
=1 i=l,u=u, Jj=

where u one realization of local sensor node is decision among 2™ possible ones and

u.is the decision of i” local sensor node. P, ’s are the detection probabilities of local
sensor nodes and N (x; ,u;a) denotes normal distribution with # mean and o standard
deviation with parameter x. Therefore optimum LRT fusion rule for M, local sensor

node and fusion center with M antennas is

(5.6)

5.2 Performance Evaluation

In this section, we compare the performances of the optimal global fusion rules for

MIMO and conventional LRT. Throughout our discussion, we assume that sensors are
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identical in terms of their false alarm and detection probabilities as

P. =0.05and P, =0.5. Since we normalize the average power of Rayleigh fading gains

to 1, the signal-to-noise ratio (SNR) is defined as
SNR(dB)=10log,, (Lz) (5.7)
o

We first obtain the Receiver Operating Characteristics (ROC) curves of the global fusion

center for the simplest cases when M,=2and M,k =1,2,3 cases that can be seen in

Figure 5.2 when SNR =0dB and total transmission power is kept same.

Probability of Detection

01 02 03 04 05 06 07 08 09 1
Probability of False Alarm

Figure 5.2 ROC curves for different scenarios with 2 sensors and 0 dB average SNR

Figure 5.2 shows that scenario with multiple antennas in the fusion center outperforms
the conventional scenario when global False Alarm probability smaller than 0.6 and after
0.8 MIMO schemes have the same detection performance with 2 sensors and 1 receiver
antenna case. Next, we explore the probability of detection behaviors of these different

scenarios as a function of average SNR of the wireless channel. Figure 5.3 shows the

detection probability of fusion when global false alarm probability is fixed at £, =0.1
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depending on SNR. It can be seen from Figure 5.3 deploying antennas at the fusion

center increases the performance more efficiently at low SNRs.

As the number of the local sensor nodes is increased global detection performance of
WSN using MIMO increases dramatically. Difference between system performances can
be seen in Figure 5.4. There are 8 local sensor nodes in this example and even deploying
one extra antenna at the fusion center remarkably increases the detection probability, but

deploying one more antenna makes only slight difference in system performance.
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Figure 5.3 Probability of Detection as a function of average channel SNR when the

global false alarm probability is fixed at £, =0.1
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Figure 5.5 Probability of Detection as a function of average channel SNR when the

global false alarm probability is fixed at P,



Again, Figure 5.5 shows the detection performance as a function of SNR (dB) for a WSN
with 8 local sensor nodes and global false alarm probability is fixed at P, =0.1.For 8
local sensor node case detection probability for same SNR increases remarkably, and
keeping the transmission power same (2 local sensor node case has 6 dB greater SNR) if
we compare 8 local sensor node case and 2 local sensor node case, we can see that 8 local

sensor node with multiple antenna outperforms 2 local sensor node case.
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6. CONCLUSION and FUTURE WORK

Wireless sensor networks have promising applications in medical, environmental,
commercial and military applications therefore it draws too much attention in recent
days. Detection is one of the major jobs to be performed by a WSN. Due to restriction of
communication sources such as power and bandwidth it is more convenient that a WSN
should use distributed detection. In this thesis, various distributed detection strategies are

investigated.

In the second chapter firstly distributed detection strategies under Neyman-Pearson
criteria in the literature is briefed. We have derived optimum and suboptimum fusion
rules when CSI or only CS is available at the fusion center. Numerical simulations are

done to investigate the performance of these fusion rules.

In the third chapter we have investigated detection problem of a phenomenon in wireless
sensor networks with hierarchical topology. We derived optimum and suboptimum rules
for this topology by analyzing the high and low SNR behavior of the optimum rule in
both knowing channel gains and knowing only the channel statistics. We have shown that
MRC and EGC is low SNR approximation for LRT and LRTCS and Chair-Varsney rule
is a high SNR approximation for LRT as in parallel topology. We also derived pdf for the
LRTCS with a proper approximation. As in previous works this work shows the fusion

rule which requires much prior information has better detection performance.
Multi-bit decisional distributed detection for WSNs that have hierarchical and parallel

topology is studied in chapter four. Again, optimum and sub-optimum fusion rules are

derived for both cases we have CSI or only CS at global fusion center and cluster heads.
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Also, a heuristic fusion rule like EGC based on our knowledge from previous chapter is
proposed. Performance of fusion rules are shown via numerical simulations. An
outstanding remark is, besides expected ones, our heuristic fusion rule which does not

need any prior information outperforms single-bit LRT too.

In the last chapter, the detection problem of a phenomenon with WSNs using multiple
antennas at the fusion center is analyzed. Optimum fusion rule is derived by modeling the
WSN as a MIMO system. Performance evaluation is done throughout numerical
simulations and it is shown that deploying multiple antennas at the receiver increases the
detection performance. Simulation results show us that if more than one antenna are
deployed in the fusion center, improvement in detection performance is inversely
proportional with average channel SNR. Beside that, we cannot obtain the same
performance improvement when we continue increase the number of antennas at the

fusion center.

For future work by letting cluster heads make their own observation from environment
fusion rules based on their own observations and signals coming from local sensor nodes
can be derived. Optimum rule for multi-bit decision with only CS can be analyzed for
low and high SNR assumptions, analysis can end up with a new fusion rule or it can
converge one of derived rules. Simplifying the optimum fusion rule proposed in the last
chapter and determining optimum number of antennas at the fusion center as a function

of number of local sensors can be interesting to research.
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