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Abstract

The characteristics of the wireless communication channels are usually time-

varying, where the quality of the received signal changes rapidly over time within

a few packet transmissions. The time-variability of the wireless channel is due to

noise, fading, interference and mobility. An important artifact of these effects is the

bursty packet losses observed at the link layer, and multimedia applications such as

voice over IP and video-on-demand require resiliency against packet losses.

Channel diversity is a well-known technique to alleviate the effects of time-

variable wireless channels. In this thesis, we aim to apply link-layer diversity for

resilient multimedia transmissions in IEEE 802.11 wireless networks. IEEE 802.11

wireless local area networks (WLANs) have widespread deployment in enterprises,

public areas and homes.

In many cases, a mobile user has the option of connecting to one of several 802.11

access point (APs). Unlike the standard operation where a mobile user is connected

to a single AP for the duration of a session, we consider the case where a user is

connected to all available APs in the vicinity. This type of operation requires a

new multi-access control (MAC) protocol, where the user has to decide to which

AP the packet is forwarded. The selection of the AP for each packet is performed

in our proposed MAC protocol based on the most recent channel observation and

the collected long-term statistics of packet loss and burstiness, where the aim is to

maximize the probability of successful transmission of each packet. Our analysis

of the long-term channel statistics such as burst length and packet error rate also

show that these parameters depend on the user load, channel coherence time and

the number of users in the network. The proposed MAC protocol is analyzed using

Qualnet network simulator, and it is shown that our proposed protocol can improve

the efficiency of the system approximately by up to %25 over the standard 802.11

protocol where each user is associated with the AP that has the maximum received

signal strength.
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Özet

Kablosuz haberleşme kanalları zamanla deg̃işen bir özellig̃e sahiptir ve bu deg̃işim

kanal üzerinde bir çok paketin iletimi boyunca devam eder. Kablosuz kanalların bu

özellig̃i, alıcıda oluşan gürültü, çoklu sönümleme, dig̃er kullanıcılardan kaynaklanan

girişim ve kullanıcıların hareketlilig̃ine bag̃lıdır. Bu özellikler veri katmanında patla-

malı bir şekilde gerçekleşen paket kayıplarına neden olmaktadır ve kablusuz uygula-

malar özellikle çoklu-ortam uygulamaları bu hatalara karşı bir esneklik içermektedir.

Kanal çeşitleme yöntemi zamanla deg̃işen kanalların etkilerini önlemede sıkça

kullanılan bir tekniktir. Bu tezde IEEE 802.11 ag̃larında esnek çoklu ortam uygu-

lamaları için veri katmanında çeşitleme yöntemini uygulamayı amaçladık.

Çog̃u durumda bir kullanıcı birden fazla erişim noktasına aynı anda bag̃lı olmak-

tadır. Genel standardta kullanıcı bütün iletişim boyunca sadece bir erişim noktasına

bag̃lı kalır. Genel standardtan farklı olarak, bu tezde kullanıcıların etrafında bulu-

nan birden çok erişim noktasına bag̃lı kaldıg̃ı durumu göze aldık. Bu tür bir iletişim,

hangi erişim noktasına iletim yapılacag̃ını belirten yeni bir MAC protokolünün uygu-

lanmasını gerektirmektedir. Erişim noktasının seçimi, en son gözlenen kanal duru-

muna ve kanalın patlama uzunlug̃u ve paket hata oranı gibi uzun dönem istatis-

tiklerine bakılarak verilir. Buradaki amaç ise başarılı iletim olasılıg̃ını maksimum

yapmaktır. Yaptıg̃ımız analizler, uzun dönem kanal özelliklerinin, kullanıcının trafik

miktarına, kanalın uyum zamanına ve sistemdeki kullanıcı sayısına göre deg̃iştig̃ini

göstermektedir. Önerilen MAC protokolü Qualnet simulasyon programı ile analiz

edildi ve önerilen MAC protokolünün standard uygulamaya göre sistem verimlilig̃ini

%25 oranına kadar geliştirebildig̃i gösterilmiştir.
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Chapter 1

Introduction

1.1 Motivation

Wireless channels have time-varying characteristics where signal quality changes

rapidly in time. There are mainly five causes that make the wireless transmission

complex: noise at the receiver, caused by electronics and thermal energy; attenuation

caused by distance between receiver and transmitter and obstacles; interference

from other transmitter; multipath [1] caused by atmospheric ducting, ionospheric

reflection and refraction from such as buildings and user mobility which causes rapid

changes in channels. These properties cause packet loss and delay. Many studies

show that these packet errors occur in bursts in which two or more consecutive

packets are dropped [2].

In many cases, a mobile user has the option of connecting to one of several 802.11

access points (APs), which forward packets between users in different wireless local

area networks (WLANs), each using an independent channel. Users may split their

traffic among all available APs, based on the channel burstiness, transmission rates

and required application resilience. Such traffic splitting in the Internet among

different Internet Service Providers (ISPs) is called multihoming and it was first

proposed in [3].
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Loss resilience is an important requirement in the design of indoor WLANs

infrastructure. To cover a large area multiple APs are deployed and in common

implementations stations (STAs) scan the wireless channel to find and associate

with the AP which has the highest signal strength. In current WLANs, a station

sends and receives data only via the AP which it is associated with. The stations

switch to another AP if only the signal strength decays and several degradations

occur. The transmission rate (often called the PHY rate) is also selected based on

the signal strength. The PHY selects a higher rate if the signal strength is good

and reduces the rate if the signal strength decays.

Among wireless applications multimedia applications such as video transmission

and voice over IP applications have become very popular. These applications re-

quire resiliency against errors that occur in bursts. In many cases this resiliency is

provided by source coding. Source adds redundancy in coding process to provide

the necessary resiliency.

In this thesis we propose an efficient MAC protocol to distribute the traffic among

APs in order to minimize redundancy and delay. In our protocol, the source keeps

on transmitting packets until at least K packets are received by the destination

then the original data can be successfully recovered. Due to channel errors and

collisions the source needs to transmit more than K packets, N ≥ K. We focus

on the multihoming case where users split their traffic among available APs. In

our protocol, each packet selection is based on the probability of successful packet

transmission on each channel.

1.2 Objectives

One objective in this thesis is to find an efficient packet forwarding MAC protocol

for multihomed users in WLANs. In this MAC protocol for each packet, the channel

which has the highest probability of success is selected according to the long-term

channel statistics and the outcome of the most recent transmission. Our splitting

policy is made dynamically during all packet transmissions. We call our MAC

protocol Multihomed Medium Access Control (MH-MAC).
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Without any encoding/decoding process in this thesis, we assume that a source

transmits N packets to a destination until the destination receives K packets suc-

cessfully. If the destination receives K packets, the transmission is successful. Our

performance parameters are efficiency, which compares the amount of redundancy

and delay that is the difference of time between the time that the first packet is

received and the time that the last packet is received. We compere MH-MAC with

fixed path scheme which is the standard case where users associate with only one

AP during all transmissions and there is no a splitting policy in terms of these

performance parameters.

1.3 Contributions and Thesis Organization

Our main contributions in this thesis can be summarized as follows:

• The effects of the coherence time of the wireless channel, network traffic and

the number of users on burst length and error rate are exploited.

• A new MAC protocol for multihomed users is developed.

• A realistic multi-user scenario is considered and two main problems that occur

in multi-user case namely collision and delay due to other user transmission

are defined and solutions to these problems are found.

The organization of the thesis is as follows. In Chapter 2, a general introduction

and background of the problem are given with related works. In Chapter 3, the

channel model and packet loss models are introduced. The effect of three parameters,

load, number of users and usage of RTS/CTS on burst length and packet error rate

are investigated. By exploiting them, a more efficient protocol can be designed.

In Chapter 4, we introduce a new MAC protocol for our problem. An analytical

model is defined for this MAC protocol. Two main problems in multi-user case are

explained and we propose solutions to these problems. In Chapter 5, we present

simulation results for various scenarios and parameters to show the performance

3



of our MAC protocol. Chapter 6 explains the simulation environment and our

simulation network simulator, Qualnet. Chapter 7 concludes the thesis.
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Chapter 2

Background

2.1 IEEE 802.11 Architecture

An 802.11 wireless local area network (WLAN) is based on a cellular architecture

where the system is divided into cells namely Basic Service Set (BSS) where each

cell is controlled by a base station called access point (AP) as seen in Figure 2.1.

Multiple BSSs form a Extended Service Set (ESS) and ESS is connected to Dis-

tributed System that connects APs to different networks.

AP AP

STA

STA
Basic Service 

Set (BSS)

Extended Servise Set (ESS)

Distributed System (DS)

Figure 2.1: 802.11 Architecture
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802.x standards define the Medium Access Control (MAC) and Physical Layer

(PHY). MAC performs the fragmentation, retransmission, acknowledges and how a

station accesses to channel. MAC layer defines two different access method: Dis-

tributed Coordination Function (DCF) and Point Coordination Function (PCF).

2.1.1 Distributed Coordination Function

Distributed Coordination Function is based on basically Carrier Sense Multiple Ac-

cess with Collision Avoidance (CSMA/CA). CSMA/CA works as follows: A station

that wants to transmit first senses the channel, if the medium is busy it defers its

transmission. If the medium is free for a specified time called Distributed Inter

Frame Space (DIFS) then the station is allowed to transmit. If there is no collision

and channel errors, the receiver sends an acknowledgement frame (ACK) that indi-

cates the transmission is successful. If there is collision or unsuccessful transmission

due to the channel errors then the station retransmits the packet until it gets an

ACK or drops after a number of retransmissions.

In order to reduce the probability of collision between two stations that can

not hear each other, the standard defines virtual carrier sense mechanism. In this

mechanism, a station willing to transmit a packet, first transmits a short control

packet called Request to Send (RTS), which includes source and destination address

and the duration of the transaction. If the medium is free the destination station

responds with a response control packet Clear to Send (CTS) which includes the

same duration information. Then, all stations received RTS or CTS set their vir-

tual carrier sense indicator called Network Allocation Vector (NAV) for the given

duration then the stations use this information when sensing the medium.

2.1.2 Backoff Algorithm

Backoff is a well known method to resolve the contention between stations willing to

access to medium. The method requires for each station to choose a random number

between 0 and a given number and wait until this number of slots are available before

accessing to the medium. Figure 2.2 shows the access mechanism.

6



Figure 2.2: Access Method

The short interframe space (SIFS) is the shortest interval time followed by the

slot time. The priority interframe space (PIFS) is equal to SIFS plus one slot time.

The DIFS is equal to the SIFS plus two slots times.

2.1.3 Management Controls

Seven MAC frame types are dedicated to management control in WLANs.

• Beacon Frame: It is used to identify an AP. The access point periodically

sends a beacon frame to announce its presence and relay information, such

as time stamp and service set identifier (SSID). Stations continually scan all

802.11 radio channels and listen to beacons as the basis for choosing which

access point is best to associate with.

• Authentication Frame: An authentication frame is used to authenticate

with an AP before the station proceeds to associate with the wireless network.

• Deauthentication Frame: A station sends a deauthentication frame to the

AP which it is currently authenticated with if it wishes to terminate secure

communications.

• Association request Frame: : A station sends an association request

frame to associate with an AP. The frame includes information regarding the

7



association, such as association ID and supported data rates.

• Reassociation request Frame: : If a station disassociates with the current

AP and finds a new AP to associates with, it sends reassociation request frame

to the new AP.

• Reassociation response Frame: : An access point sends a reassociation

response frame containing an acceptance or rejection notice to the station

requesting reassociation. The frame includes information regarding the asso-

ciation, such as association ID and supported data rates.

• Disassociation Frame: : A station sends a disassociation frame to the AP

that it currently associates with, if it wishes to terminate the association

2.2 Path Diversity

Path diversity is a transmission technique that sends data packets over two or more

paths (channels) in a packet-based network. The paths may contain one or multiple

sources. Several research studies have been devoted to improving the reliability and

performance of networks especially the Internet by using disjoint communication

channels between source and destination. In the literature, there are two main

proposals to increase the performance of the Internet. First approach is multihoming

and the other one is overlay networks. Overlay networks refer to a virtual network

that includes overlay nodes as in Figure 2.3. Overlay nodes cooperate with each

other to send a packet to any destination. These nodes form an overlay network.

It is possible to find a different path from the current path if the current path fails

[3],[4],[5].

Application layer and physical layer approaches of path diversity are compared

by Laneman et al. [7]. In [8],[9] Wang et al. and in [10] Zimmermann et al. show the

benefits of path diversity in wireless ad hoc networks. Another work for wireless ad

hoc networks is done by Jain and Das [11]. In [11], the authors develop an anycast

mechanism at the link layer to exploit the path diversity by choosing the best next

hop. An information theoretical point of path diversity are studied in [12],[13],[14].
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Overlay 
nodes

Network 1

Network 2

Figure 2.3: Overlay Networks

Path diversity has been used with coding techniques to combat the packet losses.

Especially,the works done in [15],[16],[17],[18] for video application use and explain

path diversity with coding.

The works in [20] by Golubchik et al. and in [21] by Abdouni et al. are most

related to our work. They follow a similar approach for coding data and channel

model. However they do not have a transmission strategy with as we propose in

this thesis. In addition, their performance metrics are different. Another related

work to ours is proposed in [22]. Tsirigos and Haas consider multiple channels in

ad hoc wireless scenarios and their strategy is to maximize throughput by using

diversity coding. They try to maximize the packet success probability but their

transmission strategy is not based on packet by packet splitting policy that we

use in our work. The work by Vergetis et al [23] is another work related to ours.

They consider a probabilistic transmission splitting policy. Their main objective is

to develop path diversity policy that is easy to implement. They argue that if all

channels are equal the benefits of path diversity can be provided. However we do not

consider that all channels are equal in this work. We show that to get the benefits

of path diversity the packets should be transmitted over those channels where the

unsuccessful transmission probability is the least.

9



Streaming 
Server

Node 

Node

Client

Figure 2.4: Path Diversity

2.2.1 The Benefits of Path Diversity

There are many reasons described below to use multipath diversiy :

• Reduce burst length and improve the quality of the delivered data

; Wireless channel has bursty characteristics. A large number of consecutive

packet losses , burstiness, not only causes significant degradation in signal

quality but also obstructs correcting packet losses with error correction codes.

Multipath diversity can decrease burst length of channel and improve the

quality of transmission.

• Increase throughput ; Sending data over multiple paths increases amount

of aggregated bandwidth and thus increases the throughput.

• Adapt network variation ; Transmission may take too much time especially

for multimedia application. During the transmission network conditions may

change. However not all paths experience the same changes such as losses or

congestion. Thus with path diversity, one can easily adapt channel changes.

• Decrease delay ; Sending data over multiple paths decreases delay which is

important to real-time application by decreasing burst length of channel.
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• Security ; An attacker can attack any node in the network. Sending data by

using multipath diversity increases security because of decreasing the proba-

bility of attacking to a node over the multiple paths [24], [25].

It is important to resolve the following issues;

• During transmission some paths may contain bottleneck links. It should be

determined that how many paths are needed for efficient transmission.

• Another issue is that one should decide on what kind of an error correcting

codes should be used and one should decide effect of the redundant information

on the transmission.

• The important concept is that how many packets should be transmitted over

a path. This is important for quality of service and delay consideration.

2.2.2 Multihoming

Traditionally most networks have only one connection to the Internet [26]. To

achieve required redundancy and to mitigate the channel effects it is possible to

connect to the Internet over more than one connection. Multihoming refers to a

kind of path diversity where a network has multiple connections to Internet. The

internet protocol versions Ipv6 and Ipv4 can use multihome but multihoming is

not yet a standard [27]. Multihoming future came back in 1980s but it was not

used for the Internet widely. However, today multi-homed networks take place of a

single network [28],[29]. While Internet traffic engineering and techniques increase

multi-homed network is deployed widely [30],[31],[32].

There are many works on multi-homed networks in literature. Many of them are

interested on path selection which is a critical part for multihomed users because it is

difficult to decide which path is available or better than other path at a transmission

time. In [34], the authors propose an active measurement for path selection. They

try to modify stream control transmission protocol (SCTP) to support real time

applications. In [34], the authors present an algorithm for delay-sensitive packets

over multiple burst loss channels. They drive the packet loss ratio when Forward
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Figure 2.5: Multihoming

Error Correction (FEC) is used and they develop a dynamic programming to strip

traffic optimally for FEC.

Other path selection algorithms for multihomed networks are proposed in [35],[36],

[37]. A comparison study for multihomed mobile hotspot is done in [36]. The au-

thors in [35] compare two different distribution schemes. While first scheme assumes

no a priori knowledge of network change the second scheme knows the priori knowl-

edge of the changes. In [38], they try to find the best available paths for a real-time

application. They develop an improved transport layer protocol namely stream con-

trol transmission protocol (SCTP) called WiSE (Wireless SCTP Extension). WiSE

is interested in congestion and channel losses. The main idea is to develop a new

congestion control and multihoming feature to optimize resource utilizations.

2.3 Error Resilience

Many wireless standards based on IEEE 802.11 standards perform some physical

layer adaptation which employs mostly coding techniques for error detection. Also

these standards use re-transmission function to recover the packet loss. However for

some real-time application re-transmission based recovery is not viable option due to

delay sensitivity of real-time application. In the literature, there has been significant
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previous work on error control, recovery, and concealment techniques that discuss

different approaches to increase the quality of real-time applications such as forward

error correction (FEC) [39] or error concealment algorithm [40].

2.3.1 Forward Error Correction

Forward error correction (FEC) is a method for error control and recovery for data

transmission where the receiver has the capability to detect and correct fewer than

a predetermined number or bits or symbols corrupted by transmission errors [41].

FEC is accomplished by adding redundancy to the transmitted data using a prede-

termined algorithm. Adding redundancy with FEC coding reduces data bandwidth

of the channel since a portion of the channel bandwidth is used for parity bits of the

FEC code. FEC techniques, however, are indispensable for channels with high error

rates, e.g. wireless channels. The two main categories of FEC are block coding and

convolutional coding. Block codes operate on fixed-size blocks of bits or symbols of

predetermined size, while convolutional codes consider bit or symbol streams. Block

and convolutional codes are frequently combined in concatenated coding schemes in

which the convolutional code does most of the work and the block code detects any

errors made by the convolutional decoder.

2.3.2 Diversity Coding

Diversity coding is an error control based approach. It is introduced for selfhealing

and fault-tolerance in digital communication networks [42]. The scheme achieves

nearly instantaneous recovery from channel errors. Channel errors are treated as

an erasure channel problem. Recovery from channel errors is done at the receiver

side. There is no need for a feedback channel if there is only a single destination.

In the proposed scheme, the information bits are divided into N data channels

in which the data is sent in parallel. M extra channels are added in order to

recover from any M channel failures out of N + M channels. M extra channels

are used for transmitting the parity bits which are constructed from information

bits by linear transformations. This is called M -for-N diversity coding. However

we do not use any real diversity coding. In our transmitting process, the source
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keeps on transmitting packets (N packets) until the destination receives K packets

successfully. When the destination receives K packets then original data can be

recovered.

2.4 Wireless Channel Model

The propagation characteristics of wireless channels vary according to the type of

the communication system. Terrestrial and cellular wireless communications can be

given as systems having different propagation characteristics. In terrestrial com-

munication, propagation is point to point and only channel noise is added to the

received signal. This type of communication systems are modeled with additive

white gaussian noise (AWGN) channel model where zero mean noise having a Gaus-

sian distribution is added to the signal, [43]. On the other hand, cellular systems

have multiple propagation paths due to the obstructing materials in the environ-

ment. Multipath propagation causes fading in the received signal. Fading is divided

as slow fading and fast fading. Slow fading is the result of large reflectors and

diffracting objects along the transmission path, [43]. However, fast fading is the

rapid variation of signal levels when the receiver moves in short distances, [41].

In a typical multipath environment, the envelope of the received signal is repre-

sented with Rayleigh distribution where received instantaneous signal to noise ratio

(SNR), γ, is distributed exponentially with probability density function, [43];

p(γ) =
1

γ0

exp(− γ

γ0

) (2.1)

where γ0 is the average SNR.

2.4.1 Gilbert-Elliot Model

Rayleigh fading channel can be represented by using Markov models. A classical

approach is two-state Gilbert-Elliott model in [44], [45]. In this model, the channel

can be at one of two states at a time. One state shows erroneous case (bad state),

while the other shows free of error case (good state). The probability of being in

a state is called steady state probability, and moving from one state to the other
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is called transition probabilities. The objective of the Gilbert-Elliott model is to

calculate steady state and transition probabilities depending on the movement speed

of the mobile receiver and calculate bit-error rates occurring at each state. In this

thesis we use Gilbert model as our channel model.

2.4.2 Finite State Markov Channel Model

Gilbert-Elliot model is a useful model to an extent, because it does not consider

interim conditions of the channel. That means the channel does not behave always

as good or bad. Therefore, finite state Markov channel (FSMC) model is used for

more exact representation of the channel. FSMC is considered in the works, [46],

[47] where the general objective is the same as the Gilbert-Elliott channel model.

However when number of states increases complexity of Markov chain also increases.

The FSMC models for fading typically model amplitude variations only. A de-

tailed FSMC model for Rayleigh fading was developed in [47]. In this model the time

varing SNR γ lies in the range 0 ≤ γ ≤ ∞. The FSMC model discretizes this fading

range into regions so that the jth region Rj is defined as Rj = {γ : Aj ≤ γ < Aj+1}.
This model assumes that γ stays within the same region over time interval T and

can only transit to the same region or adjacent regions at time T + 1. Thus, given

that the channel is in state Rj at time T , at the next time the channel can only

transition to Rj−1, Rj, Rj+1 and the transition probabilities between regions are

derived in [47] as

pj,j+1 =
Lj+1T

πj

, pj,j−1 =
LjT

πj

, pj,j = 1− pj,j+1 − pj,j−1 (2.2)

Where Lj is the level crossing rate at Aj and πj is the steady-state distribution.
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Chapter 3

Burst Length and Error Rate of

Loss Process

3.1 Long-Term Channel Characteristics

Links between communicating nodes are wireless channels. Wireless channels are

frequently exposed to bursts of errors due to noise, fading/shadowing effects, inter-

ference, etc. The channels are usually not memoryless, which means errors on the

channel are correlated. So the assumption that packet losses are independent is not

appropriate. Packet losses occur in bursts and many of these bursty errors are on

the order of ten packets.

In any transmission opportunity, a successful packet transmission has a proba-

bility. This probability depends on transmission rate, channel conditions such as

fading and noise, collision and mobility. These factors are modeled as a finite state

Markov chains in [47],[48] and transitions between states of different packet loss rate

occur according to transition probabilities. The studies done in [46],[47],[48] show

that packet losses occur in burst and to model this kind of error requires multi-state

Markov model. Willing et al. in [49] show an experimental results over 2.4 GHz

802.11b radios and their results show that packet errors are bursty. Koksal et al. in

[51] present a similar work that shows packet error characteristics and packet error

process have a long-term dependency.

We consider a typical network scenario where there are more than one nodes
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transmitting and we showed unlike others works that long-term channel characteris-

tics mainly depend on number of nodes transmitting, usage of RTS/CTS and node

load (traffic). To show the changes of the characteristics with the number of active

nodes, traffic and usage of RTS/CTS, we run simulation. In this simulation, there

are 10 nodes transmitting to an AP, the maximum distance between the AP and a

station is 100 meters and the minimum distance is 50 meters, coherence time is 20

ms, retransmission function is disabled, all nodes use CBR application with 1500

bytes fixed packet size, channel are Rayleigh fading channel. We run the simulation

for three different seed values. Error burst length and packet error rate are averaged

over 10000 packets and only the results of one node are shown. Our simulations

are performed in Qualnet network modeler [57]. Simulation environment is shown

is Figure 3.1.

Figure 3.1: Simulation Environment

3.2 Number of Nodes and Burst Length

In a typical WLAN there are many users transmitting. If the number of users

increases channel access delay in the network increases. Channel access delay is
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the delay that is the total time for a station contending for a channel to wait be-

fore the contention is successful. Burst length depends on this delay in the net-

work. For example, let STAi represents the lost of packet i sent by STA. Then,

P (STAi+k|STAi) for k ≥ 0, represents the auto-conditional loss probability that

the (i + k)th packet is lost, given that ith packet is lost in the same packet stream.

When the delay is taken into account, this auto-conditional loss probability will not

be realistic because channel correlation will decay due to the delay and the mem-

oryless property of the channel will fail. The delay is not only due to number of

users but also control packets, carrier sensing and hand-off, etc. The change of burst

length with the number of users is shown in Figure 3.2. As expected as the number

of users increase delay will increase. At this time the channel is not correlated any

more and burst length diminishes.
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Figure 3.2: Error Burst Length via Number of Nodes

RTS/CTS function is enabled in this simulation. Nodes transmit 10000 packets

at a rate of 250 packets per second. Mean burst length is the number of packets

lost in a burst of two or more consecutive packets divided by the number of occurs
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Figure 3.3: Packet Error Rate via Number of Nodes

of bursty case. Mean packet error rate is the number of packets lost divided by the

total number of packets sent.

Figure 3.3 shows the packet error rate of the channel for the node. The longest

burst length occurs when 11 Mbps PHY rate is used because higher data rate causes

more packet losses. The smallest burst length is at 2 Mbps. While burst length de-

creases packet error rate increases. This is due to mainly the RTS and less probably

data collision. Figure 3.4 shows the delay that time difference between the first

packet access time to the channel and the last packet access time to the channel.

As the number of nodes increases the channel access delay also increases. The least

delay occurs with 11 Mbps as expected.
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Figure 3.4: Channel Access Delay via Number of Nodes

3.3 User Load and Burst Length

The other effect that changes burst length is node load. Node load depends on

the packet size and packet inter-arrival time. If inter-arrival time is low, the load

is high. For example let packet size be 1000 bytes and inter-arrival time is 1 mil-

lisecond. Then, the load is 8 Mbps. If inter-arrival time increases the number of

packet sent a particular interval decreases. When this case is considered for burst

length calculation for high inter-arrival time the number of packet in a bursty period

decreases and burst length also will decrease. Node load is changed only by inter-

arrival time. To show the effect of only inter-arrival time on burst length, there is

only one transmitting node. Figure 3.5 shows burst length.

While burst length increases with decreasing inter-arrival time, packet error rate

shows a slight decreasing as in Figure 3.6. Changes in burst length depend on

channel coherence time. If the coherence time is longer than inter-arrival time, many

consecutive packet will be effected by same coherence time and this will increase

burst length. Otherwise, the consecutive packets will not effected in the same way
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Figure 3.5: Error Burst Length via Node Load
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Figure 3.6: Packet Error Rate via Node Load
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by the channel and burst length will decrease.
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Figure 3.7: Channel Access Delay via Node Load

Figure 3.7 shows the access delay of the node. As the inter-arrival time decreases,

load increases, delay to access channel reduces. The highest access delay occurs with

the least data rate, 2Mbps.

3.4 Burst Length without RTS

RTS control packets effect burst length and packet error rate due to delay and

collision. When RTS is used there is a delay due to control packets transmission.

As shown in Figure 3.8 burst length decreases with RTS due to this delay. Without

RTS much less delay occurs and burst length decreases more slowly because delay

is less without RTS than with RTS. In this simulation for both cases, with and

without RTS/CTS, the data rate is 11 Mbps.

However without RTS more collisions occur and this increases packet error rate

as shown in Figure 3.9.
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Figure 3.8: Error Burst Length with RTS
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Figure 3.9: Packet Error Rate with RTS
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The channel access delay is less with without RTS than with RTS. This is due to

an extra delay for RTS/CTS packets transmissions. This delay is shown in Figure

3.10.
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Figure 3.10: Channel Access Delay with RTS
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Chapter 4

Multihoming with a New MAC

Protocol

4.1 System Model

4.1.1 Source Model

We consider a system where (STAs) need to transmit K packets successfully to a

destination with CBR application or multimedia application such as VBR or video

transmission. When the destination receives K packets, the source transmits N

packets by splitting among available APs. If K packets are received successfully by

the destination the original information can be recovered. The efficiency of splitting

policy is given as R = K/N .

4.1.2 Packet Loss and Channel Model

When a real time application and recovery of corrupted packets are dealt together

retransmission is not a viable option in some real-time application. A delayed packet

is not preferred for multimedia applications and therefore we assume that MAC layer

retransmission functionality is disabled similar to the previous work e.g [2]. Our

MH-MAC protocol replaces the original retransmission functionality for multihomed

networks.

In [2], the authors proposed Markov based model at the packet level and byte
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level. Although [50] outlines the inadequacy of the two states Markov chain for GSM

based networks, [48] and [2] showed that two-state Markov model is adequate for

the bursty 802.11b packet loss process. Khayam et al. in [2] performed a real-world

experiments with single AP and three STAs and they found the transition proba-

bility of two-state Markov chain with Gilbert model and UDP transport protocol.

Also they showed that the channels are bursty as shown in table 4.1. UDP protocol

is more appropriate for multimedia application since TCP transport protocol causes

unnecessary end-to-end retransmission.

Table 4.1: Burst Length and Error Rate of packet level Markov model for 802.11b
protocol stack

Bit rate (Mbps) α β Error rate p Burst Length b

2 0.3529 0.999 0.0002 1.5454
5.5 0.6836 0.820 0.3614 3.1606
11 0.8966 0.376 0.8576 9.6712

We use the Gilbert model in Figure 4.1 which is a well known model that captures

the bursty nature of channels and is simple enough for a computational analysis. In

good (bad) state of the Gilbert model probability of correct transmission is PG = 1

(PB = 0). The packet losses occur in bursts. Transition probabilities between good

state and bad state depend on mean burst length and mean packet error rate of

channels. The transition probability matrix is defined as follows:

P =




β 1− β

1− α α




The steady state probability of being in state G is:

πG =
1− α

1− α + 1− β
(4.1)

Transition probabilities α and β are related to mean loss rate and mean burst

length as follows:
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β = 1− (
p

b(1− p)
) α = 1− 1

b
(4.2)

Where b and p are mean burst length and mean error rate of packet losses

respectively.

4.2 Problem Definition

The source should transmit K packets to the destination successfully. Until K

packets are received, the source needs to send more than K packets (N ≥ K) where

N is total number of packets sent by the source until K packets are received. Assume

that there are I channels available from a specific source to the destination and each

packet out of N packets is transmitted over among I channel that has the highest

success probability.

max[Pr(success transmission for packet k among I channel)] (4.3)

Our objective is to find the best channel in terms of success probability before

each packet transmission. By maximizing success probability we also try to increase

the efficiency.
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In [23], the authors have considered a similar objective. However there is an

important difference between our objective and the objective in [23]. The authors

in [23] use (N, K) coding technique to ensure a probability of successful message

delivery greater than or equal to Pmin. They try to deliver at least K out of N

packets. This means that the idea in [23] has a probabilistic manner and it does not

guarantee that all K packets are successfully received. On the other hand, according

to our policy successful transmission of all K packets is guaranteed because our

policy continues to transmit packet until K packets are received.

Also the authors in [23] offer a deterministic traffic splitting policy which is

not computationally efficient. According to their policy each packet is sent by a

predefined schedule. If there are C channels in the system, there are CN policies

where N is the length of the frame to be sent. However in our algorithm there

is no a predefined policy. In our policy, each channel is selected before a packet

transmission dynamically. Additionally, according to [23] channel diversity yields

substantial benefits mostly when channel are approximately equivalent. However in

our policy channel can be quite different from each other.

4.2.1 MH-MAC Theory

In this section we propose a new MAC protocol for multihomed users in a bursty

wireless channel. Our MAC protocol is based on a dynamic policy where the best

channel is selected for each packet based on the outcome of the previous transmis-

sion. Multihomed MAC policy can also be considered as an enhancement of the

MAC layer retransmission functionally in 802.11 when stations multihome.

The basic idea behind Multihomed MAC (MH-MAC) is as follows: At first

station does not know the instantaneous channel condition but it has long-term

channel characteristics which can be derived from Gilbert model for each channel i.

Additionally, the station keeps track of the time and outcome of the last transmission

over channel i, for i = 1, , , , , I. Let ti be the last transmission opportunity when

the channel i was used. Also let sti = {G,B} be the state or the outcome of the last

transmission observed at time ti. Then, the station calculates the probability that
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the current transmission over channel i at time t is successful given the knowledge

of the outcome of the last transmission as follows:

Pr(success at time t on channel i|sti) = p
(t−ti)
stiG

(4.4)

Where p
(n)
sG is the n step transition probability from state s to state G and it

can be calculated from two-state Markov process:

P n =




p
(n)
GG p

(n)
GB

p
(n)
BG p

(n)
BB




=
1

1− α + 1− β




1− α 1− β

1− α 1− β




+
(α + β − 1)n

1− α + 1− β




1− β −(1− β)

−(1− α) 1− α




MH-MAC chooses channel i∗ at time t for which (4.4) is the maximum and

updates t∗i = t, i∗ = i and sti according to the outcome of the transmission. The

iteration concludes when all K packets are successfully transmitted.

4.2.2 MH-MAC Step by Step

In this section a description of our protocol with an example is given step by step .

Step 1 : Initialization

All nodes aim to transmit their K packets to a destination as in Figure 4.2. In
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Figure 4.2: An Example Scenario

this example figure, there are three STAa and two APs. STA1, STA2 and STA3 will

implement CBR, VoIP and video applications respectively.

Nodes transmit their packets to destination over AP1 and AP2 that are con-

nected to the destination by wired as in Figure 4.2. STAs connect to APs by

wireless. We assume that wired links capacities and queues buffer of the nodes are

large enough to prevent any losses due to wired links and buffer overflows. This

means that all errors occur in wireless channels.

At the beginning of communication, the station should find the other stations

or AP in order to communicate the AP or the station in an infrastructure BSS.

The process of finding an AP is scanning. There are two kinds of scanning; active

and passive scanning. In passive scanning, APs send beacon frames in a particular

interval, 200 ms in our work, that are frames that have control information and are

transmitted in each channels and help a wireless station to identify nearby wireless

AP. Beacon frames also contain AP address. Nodes know the AP address and

the channel index that AP uses by using this information. The stations use the

knowledge of AP address and the channel index of the APs when switching among

the APs.
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Step 2 : Training Phase

After all stations receive beacon from the APs then, only one node starts its

training phase while other nodes remain silent. In the training phase, the nodes

send 5000 training packets to each channel to measure the burst length and error

rate of the loss process of each channel according to the application that the node

implements. The value of 5000 packets is enough for a good estimation for burst

length and packet error rate calculation. We observed that if the number of packets

used in training is less than 5000 then estimation of mean burst length and packet

error rate will not be well enough. If we use more than 5000 packets for training,

training process will start to be costly. Actually the number of training packets

depends on the channel coherence time. As the coherence time increases the more

training packets should be used to get more information about the channel.

If a node is willing to implement CBR application then it transmits 5000 fixed size

CBR packets that the node will send during the actual transmission to each channel

or if the node implements video transmission, the node sends 5000 video packets for

measuring the long-term channel characteristics because the characteristics of burst

length and packet error rate depend on what kind of packets and applications that

the nodes use. Training phase duration for a node depends on mainly data rate,

user traffic, number of training packets, packet size and usage of RTS/CTS. If a

node generates 10000 packets at a rate of 250 packets per second with a size of 1500

bytes then it transmits at data rate of 11 Mbps with RTS/CTS control packets,

the duration takes approximately 40 seconds. Characteristics of packets of CBR

application and video application are quite different. A node can not send different

kinds of packets from actual information packets in the training phase. That is why

we send same kind of packets as original packets for training.

To measure the long-term channel statistics 802.11k amendment gives a practical

opportunity [53]. WLAN Radio Measurements enable STAs to observe and gather

data on radio link performance and on the radio environment. A STA may choose

to make measurements locally, request a measurement from another STA, or may

be requested by another STA to make one or more measurements and return the

results. Radio Measurement data is made available to STA management and upper
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protocol layers where it may be used for a range of applications. The request and

report measurements are as follows:

• Beacon ; Enables a STA to request from another STA a list of APs it can

receive on a specified channel or channels.

• Frame ; Returns a picture of all the channel traffic and a count of all the

frames received at the measuring STA.

• Channel Load ; Returns the channel utilization measurement.

• STA statistics ; Returns groups of values for STA counters and for BSS

Average Access Delay. RTS, ACK success count, retry and failed count etc.

• Link Measurement ;Provides measurements of the RF characteristics of a

STA to STA link. This measurement indicates the instantaneous quality of a

link.

If training phase finishes for an AP (channel), nodes switch to the other AP (to

other channel) by using the AP address that the node gets from beacon frames at

the beginning of the communication.

Step 3: Beginning of MH-MAC

After each node ends up the training phase for each channel, the nodes know

the mean burst length and mean error rate of the loss process of the channels. Now,

without loss of generality let us assume that the state of channels before first packet

transmission is bad state (B). A node transmits its first packet over the channel that

has the highest p
(1)
BG probability. After the node receives the outcome of the first

transmission it follows the step 4 below.

Step 4: Process of MH-MAC

After the outcome of the first packet transmission is observed, now the node

should determine the channel that has the highest probability of successful trans-

mission for second packet transmission. The second packet transmission is a new
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transmission opportunity to transmit. If the first packet was transmitted over chan-

nel 1 (to AP1) then t1 = 1, (p
(1)
B1G ≥ p

(1)
B2G), otherwise t1 = 0. If the node transmitted

its first packet over channel 2 (to AP2) then t2 = 1, otherwise t2 = 0. New transmis-

sion opportunity (t) is a slot in which a single packet is transmitted and this slot is

determined in the next section. Let us assume that the first transmission occurred

over channel 1 and the outcome of the transmission is good (success, G). This

means that t1 = 1 and t2 = 0. The node now calculates the transition probabilities,

p
(1)
GG and p

(2)
BG for channel 1 and channel 2 respectively. n-step size of channel 1 is 1

because last transmission was done over that channel (t− t1 = 1, t− t2=2) and new

transmission opportunity, t = 2, at the second transmission time and we assumed

that the outcome of the first packet is G, and the state of second channel is B.

Every node calculates the transition probability in the transition matrix by using

the mean burst length and mean packet error rate measured in the training phase

for every packet transmission. However burst length and packet error rate depend

on the number of users and user traffic in the network as explained in Section 3.

Due to the this fact, user needs to update the burst length and the packet error rate

of each channel during the all transmissions. This updating process is important.

Updating the mean burst length and mean packet error rate provides more realistic

and accurate results of transition probability in Markov chain because long-term

channel statistics change with time due to the network conditions. However up-

dating brings costs. These costs are computational complexity and delay. If the

updating occurs frequently, for example every 10 packet, this provides better results

but also brings more cost. With these information we update the mean burst length

and mean packet error rate after every 100 packets transmission.

When a new user attempts to associate with an AP, the user should know the

channel statistics. The new user goes to Step 2 and during its training phase the

other users remain silence.

Step 5: Switching AP

Switching to a new AP that is different from the current AP only occurs when

the transition probability from state s to state G, p
(n)
sG , is higher for the new AP
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than for the current AP. This means that the new channel is better. For example,

let us assume that in Step 3 p
(2)
BG is higher than p

(1)
GG, then the node decides to switch

to AP2 (to channel 2). In this process firstly the node deassociates/deauthenticates

with the current AP (AP1) by sending deauthentication and disassociation frames

to the current AP and associates/authenticates with the new AP (AP2) by sending

reassociation and reauthentication frames to the new AP. Then the second packet

is transmitted over channel 2. If p
(1)
GG is higher than p

(2)
BG the node stays in the

same channel and with the same AP (AP1). While switching to a new AP, there

will be delay due to exchange of association and authentication frames. This delay

reduces the correlation of channel. The problem is explained in the next section.

We assume a 25 ms fixed delay when a node changes AP [52]. In [52] the authors

show that stations can connect to multiple accessible wireless networks by using a

single wireless card and the switching delay between APs in on the order of 25 ms.

802.11r amendment provides a fast and secure hand-off for switching APs [54].

This amendment specifies fast Basic Service Set (BSS) transitions between access

points. Under the amendment procedure minimal connectivity loss of under 50 ms

and application disruption can be achieved. In current standard, the Authentication

Server and the mobile station would have agreed upon one set of Pairwise Master

Keys (PMK) to provide authentication. This PMK is then distributed to the AP.

Both the STA and AP would use this PMK to mutually authenticate each other.

The aim of the amendment is to ensure that most of the authentication processes are

performed before the station actually begins switching. Based on the current draft,

the recommended method to generate the PMK (IEEE 802.1X) will be done once

the station joins the network. The PMK is sent to all the APs that are authenticated

in the subnet. Hence, when a station roams across APs, the PMK is assumed to be

present.

Step 6: Final Process

Finally, all nodes that use MH-MAC in the network follow the same procedures

above. If a node is successful to transmit all K packets to the destination the

transmission is successfully done otherwise, the nodes goes to Step 4 and the process
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keeps on until the destination receives K packets from the node.

4.2.3 Pseudocode for MH-MAC

In this section, to understand the MH-MAC algorithm a pseudocode is given below.

for i = 1 to I do

while k ≤ 5000 do

Send training packet k to APi

if Outcome of packet k=B then

array[k]=1

else

array[k]=0

end if

k ← k + 1

end while

Calculate mean burst length and mean packet error rate

while k ≤ 5000 do

if array[k]=1 and array[k+1]=1 then

A bursty case occured

NumberofOccurofBurstCase + +

for i = k to 5000 do

if array[i]=0 then

Stop. Burst Case Finished

lengthofBurstyCase = lengthofBurstyCase + (i− k + 1)

end if

end for

k ← i

end if

if array[k-1]=0 and array[k]=1 and array[k+1]=0 then

No bursty Error

SingleError = SingleError + 1
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end if

end while

Mean Burst Length = lengthofBurstyCase/NumberofOccurofBurstCase

Mean Packet Error Rate =

(SingleError + lengthofBurstyCase)/5000

if Training finishes for channel i then

i ← i + 1

end if

end for

print Training Phase finished

while number of received packets ≥ K do

New Transmission opportunity ← New Transmission opportunity + 1

print Update Mean Burst Length and Mean Packet Error Rate for every

AP after every 100 packets transmissions

if New Transmission opportunity = 100 then

Updating Starts

Go to Training phase to calculate Burst Length and Packet Error rate

end if

if New Transmission opportunity (t) = 1 then

for i = 1 to I do

Calculates P 1
BG for each APi and find max [ P 1

BiG
]

end for

Transmit first packet to APimax that has the max [ P 1
BiG

]

end if

for i = 1 to I do

Calculate P t−ti
stiG

if P n
siG

= max[P n
siG

] then

NextChannel ← i

ti ← New Transmission opportunity

end if

end for
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Transmit packet to APi

if outcome=B then

sti = B

else

sti = G

number of received packet ← number of received packet + 1

end if

end while

4.3 MH-MAC for Multi-User Case

The theory behind MH-MAC protocol should be modified when we consider a net-

work in which many users transmit any kind of application such as multimedia or

CBR. In this case basically delay and collision problems occur. In this section, we

try to understand the effects of these problems on our protocol and then we find

solutions for these problems.

4.3.1 Definition of Delay Problem

Basically delay problem occurs in multi-user scenario due to three main reasons.

1. Delay due to Switching

Switching delay occurs because of changing access point. Recall Figure 4.2 and

it is shown to understand switching delay problem clearly. In this figure there are

two APs and three station (STAs). This kind of delay occurs when a STA decides

that the probability of being in good state for next channel is greater than the

probability of being in good state for the current channel. For example, at time

t = 1 STA1 transmitted a packet to AP1 based on p
(n)
sG and after STA observed

the outcome of the transmission it observed that probability of being in good state

for AP2 is greater than probability of being in good state for AP1 at next packet
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transmission time, t = 2. Then STA1 decides to switch to AP2 to transmit the

next packet at time t = 2. After switching delay, channel 2 will not be the channel

observed right after time t = 1 if we assume that coherence time of the channel

is less than switching delay and the second channel will change. As indicated in

[55] the coherence time changes with mobile speed and at mobile speeds of 1 m/s

the coherence time is approximately 122.88 ms for a center frequency of 2.4 GHz.

This means that as mobile speed increases the coherence time will become smaller

and switching delay ( 25 ms) will be larger than the coherence time and decision

probabilities will not be realistic anymore.

It is obvious that if a station switches among channels frequently this brings

more delay and it causes the station makes false decision in terms of transition

probabilities. In theory of MH-MAC, we assume that next packet is transmitted

after the outcome of first packet is observed. However with delay the next packet

will not transmitted right after the first packet transmission finishes. The next

packet transmission time will expire and increase with delay. In calculation of the

transition probabilities, n-step size should be modified because there will not just

only one slot between the next packet transmission time (t) and the last packet

transmission time (ti) in n = t− ti. We calculate delay in terms of slots when giving

solution to the delay problem.

2. Delay due to control packets

The second reason that causes delay is the transmission of control packets. As

known, when control packets namely RTS, CTS and ACK are used, delay will occur

in order to transmit the control packets. This kind of delay also fails probability de-

cision as above. However, this delay can be neglected if the channels are slow fading

or if the channel coherence times do not change during a single packet transmission.

When stations are not mobile the coherence time is high and this means that the

delay due to the transmission of control packets does not effect probability decision.

3. Delay due to other transmission

The IEEE 802.11 MAC layer is responsible for a structured channel access
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scheme and is implemented using a Distributed Coordination Function based on

the (CSMA/CA) protocol. The CSMA/CA based MAC protocol of IEEE 802.11 is

designed to reduce the collisions due to multiple source transmitting simultaneously

on a shared channel. In a network employing the CSMA/CA MAC protocol, each

node with a packet to transmit first senses the channel to ascertain whether it is in

use. If the channel is sensed to be idle for an interval greater than the (DIFS), the

node proceeds with its transmission. If the channel is sensed as busy, the node defers

transmission till the end of the ongoing transmission. This delay can be estimated

according to [56]. In [56], the authors propose a analytical model to estimate the

channel access delay.

4.3.2 Solution to Delay Problem

We solved the delay problem as follows: If consecutive two packets are transmitted

within a coherence time, these two packet are affected almost equally by the channel.

If a delay mentioned previous section occurs then the next packet will not be within

the same coherence time like the first packet and the next packet will be affected

distinctly. We calculated channel coherence time in terms of packet transmission

time and a packet transmission time (PT) is defined as one slot time. Figure 4.3

shows the coherence time and packet time with slot.

In this example, consider that coherence time (CT) is 5 slots. Our MAC pro-

tocol keeps track of the transmission time of each packet and the delay that is the

difference between the next packet transmission time and the previous packet trans-

mission time. Formulary: Assume that a station transmitted a packet to the channel

at time t1. Then the station will transmit the next packet to the channel at time

t2. Delay (D) is:

D = t2− t1 (4.5)

In our motivation example, delay plus PT shown in Figure 4.3 is 7 slots. Delay

may be any kind of delay explained. This means that next packet will be transmitted

7 slots later after the outcome of the previous packet appears. If the delay is greater
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Packet Transmission Time + delay

Coherence Time, 5 slots

Packet Transmission Time, 1 slot

Figure 4.3: Coherence Time and Packet Transmission Time

than the coherence time the next packet step size n is calculated according to this

delay. For example, coherence time is 5 slots and the delay is 7 slots, in this case

the step size n is equal to b7
5
c = 1. (b(x)c) function rounds x to the nearest integer

less than x). This means that the next packet will not be within the same coherence

time as first packet and it will be affected in a different way from the previous packet

by the channel. A general formula for step size n is:

n = b D

CT
c (4.6)

4.3.3 Collision Problem

The second problem occurring in multi-user case is collision. Consider the example

shown in Figure 4.2. If two or more STAs decide to send their packets to the same

AP at the same time, there will be a collision. Assume that STA1 and STA2 decide

to send their packets to AP1 at the same transmission time. After transmitting the

packets, the packets will drop due to collision. Both of STAs will observe that the

channel is in bad state at the transmission time after the outcome of collided packets

is observed and this may be a improper observation. They may stay in same AP or

change their AP (channel) according to their transition probabilities, p
(n)
sG . Let us

assume that both stations transmit their packets to AP1 at different times and there

is no collision and both transmissions are successful. When the stations transmit

their next packets the stations calculates the transition probability from state G
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to state G, p
(n)
GG because the previous transmission is successful for both stations.

If there is a collision the stations will transmit their next packets according to the

transition probability from state B to state G, p
(n)
BG because the previous transmission

is unsuccessful due to the collision.

Shortly, collision makes STAs incorrect decision in terms of transition probabil-

ities. Collision also effects the long-term channel characteristic such as burst length

and packet error rate.

4.3.4 Solution to Collision Problem

To handle with collision problem we employ two approaches.

1-) First approach is to update the channel statistics. We need to update channel

statistics because network conditions change in terms of active nodes and user traffic.

If the number of active nodes and user traffic increase or decrease long-term channel

characteristics will be affected by this situation as shown in Chapter 3. By updating

mean packet error rate and mean burst length of the channels, we ensure to stay in

the correct steady state. Errors due to collision will be a part of long-term channel

statistics.

2-) In second approach collision problem can be assumed as a delay problem

explained in 4.3.1. Consider that STA1 and STA2 in Figure 4.2 transmit their

packets and the stations can know if a collision occurred or not. This means that

stations use a collision detection algorithm. With this information, the station

caused collision keeps their state and their last transmission opportunity,ti, same as

before collided packet transmission. For example, STA1 transmitted kth packet to

AP1 at time t = 1 and outcome of the transmission was good the station knows that

a collision did not occur. Assume that when the transmission of (k + 1)th packet at

time t = 2, there is a collision due to the transmission of STA2 at the same time.

(k+1)th packet is collided and it will drop. Both stations know that there is collision.

When the transmission of (k +2)th packet of STA1, STA1 keeps the outcome of last

transmission as state G because the outcome of last transmission (transmission of

packet kth) before collision is good and STA1 keeps the last transmission opportunity
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as t = 1. Transition probability for (k + 2)th packet is p
(t−1)
GG instead of p

(t−2)
BG where

t is the transmission time of (k + 2)th packet.
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Figure 4.4: Efficiency with and without Improvements

As seen in Figure 4.4, after the improvements are performed a significant im-

provement appears in the efficiency of a node. Delay is the least with MH-MAC

in which the improvements are performed. Delay without the improvements MH-

MAC is higher than the delay with fixed path scheme as shown in Figure 4.5. This

is due to the inaccurate transition decision in terms of transition probabilities lead

by collision. In this simulation all nodes have 10000 (K) CBR packets. RTS/CTS

mechanism is enabled, retransmission is disabled and data rate is 11 Mbps.
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Figure 4.5: Delay with and without Improvements

4.4 Extension to Different Transmission Rates

We assume in previous section that all channels have the same transmission rate.

In this section we consider the case that channels transmit the packets with differ-

ent PHY rate. By selecting the channel which is most likely to have a successful

transmission the efficiency can be improved. In addition, when the available channel

differs in transmission rates, we can modify MH-MAC to select the most likely to

be successful and fastest channel in each transmission slot. Formally, we select the

channel, i , at time t as follows:

max[p
(t−ti)
stiG

ri] (4.7)

4.4.1 Rate Adaptation in MH-MAC

802.11b and other standards support to use different transmission rate during a

session. Transmission rates are selected based on the signal strength indicated.

This algorithm is called as auto rate fallback. The algorithm selects a higher rate

if the signal strength is good and cuts down the rate as the the signal strength

decays. In this thesis we do not use any kind of auto rate fallback algorithm. Our

rate adaptive algorithm bases on transition probabilities that determine the most
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likely to be successful and fastest channel. To adapt the rate adaptation all stations

need to know the mean burst length and mean packet error rate of channels for each

data rate,2 Mbps, 5.5 Mbps and 11 Mbps. Due to this fact, in the training phase,

a station sends 5000 training packets at every data rate to measure the long-term

channel characteristics at different rates. After training phase, the algorithm selects

the best channel as follows:

Recall Figure 4.2. Let st12,st15.5 and st111 be the channel states at 2 Mbps, 5.5

Mbps and 11 Mbps respectively and let st22,st25.5 and st211 be the channel states

for second channel. The algorithm finds the channel and rate according to below

formula.

max[p
(t−ti)
stiriG

] (4.8)

Assume that STA1 knows burst length and error rate for channel 1 and channel

2 for each transmission rate. Then, assume that for the first packet transmission,at

time t = 1, without loss of generality channel 1 has the highest success probability

at 11 Mbps. This means that p
(1)
st111G is maximum among the other probabilities.

Then, STA1 associates to AP1 and change its transmission rate to 11 Mbps. After

the packet transmission, assume that the outcome of the transmission is bad (un-

successful), then at time t = 2, the algorithm will try to find the highest transition

probability, p
(t−ti)
stiriG

. If the highest probability occurs with channel 2 at 5.5 Mbps

(p
(t−t1)
st15.5G is maximum)then the station associates to AP2 and changes its transmis-

sion rate from 11 Mbps to 5.5 Mbps. This iteration concludes until all K packets

are received successfully.
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Chapter 5

Performance Analysis

5.1 Simulation Model

In this chapter, we present the simulation results to evaluate the performance of

our new MAC protocol. The proposed MAC protocol is compared with fixed path

scheme where a station associates with only one AP during all packets transmis-

sion. Our performance metrics are efficiency and delay described below. Important

parameters of the simulation are as follows:

• N : Number of packets transmitted from the source node.

• K: Number of packets should be received by the destination node.

• η = K
N

: Efficiency.

• TD: Delay between the time at which the first packet received and the time

at which the last packet received.

• TC : Coherence time of a channel.

Our MAC protocol aims to transmit minimum number of redundant packets so

we compare our protocol in terms of efficiency. Each node counts the successfully

received ACK frames for a data transmission. If the number of received ACK frames

equals to K the node stops to transmit packets. Otherwise, it continues to send

packets until K packets are received. The other performance metric is delay. Delay
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is an important metric that shows quality of transmission especially for multimedia

applications. Data applications can tolerance delay but a delayed packet is not

preferred for multimedia application. All applications in our simulations, video,

voIP, VBR and CBR applications, use UDP. TCP is the standard transport-layer

protocol in the Internet. However, TCP is generally considered to be inappropriate

for delay-sensitive applications such as multimedia.

5.1.1 Scenario 1

At first, we test MH-MAC in a scenario that contains two APs that operates on 11

Mbps transmission rate and 8 transmitting nodes. Each node needs to send 20000

packets to a destination over APs. This means that K value is same for each node

and it equals to 20000. All nodes use Constant Bit Rate application (CBR). In

CBR, inter-arrival time of incoming packets is fixed and it does not change during

the packet transmission. In this simulation node traffic changes between 1 Mbps and

3 Mbps. Inter-arrival time is different for each node. Minimum distance between a

station and an AP is 30 meters and maximum distance is 120 meters.
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Figure 5.1: Comparison of MH-MAC with Fixed path via Efficiency
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Figure 5.1 shows the results for a simple network topology. It can be observed

from this result that MH-MAC outperforms fixed path scheme in terms of effi-

ciency. Efficiency is higher with MH-MAC because MH-MAC transmits less redun-

dant packets. On the other hand fixed path scheme needs more retransmissions to

receive K packets. Delay with fixed path is higher than with MH-MAC as shown

in Figure 5.2. This is also basically due to more retransmissions that occur in fixed

path scheme.
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Figure 5.2: Comparison of MH-MAC with Fixed path via Delay

5.1.2 Scenario 2

In this case we expand our network. The scenario contains three APs and 50 trans-

mitting nodes in a 300x300 meters area. Each AP uses an orthogonal channel.

Three orthogonal channels of 802.11b are used. Frequency of these channels are

2.412 GHz, 2.437 GHz and 2.462 GHz. All APs operate on 11 Mbps PHY rate.

Each node uses a CBR application with a different inter-arrival time and packet

size and K value is different for each node and it differs between 2000 packets and
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8000 packets randomly. Simulation results are averaged over three runs. Figure 5.3

shows an example scenario.

Figure 5.3: Scenario with 50 Nodes and Three APs

The result is shown in Figure 5.4 and Figure 5.5. In these figures, the results

are shown for only ten of 50 nodes. Mean burst length and mean packet error rate

of each channel for these ten nodes are shown in Table 5.1. In this table p1, p2,

p3 refer to packet error rate of channel 1, channel 2 and channel 3 respectively and

b1, b2, b3 refer to burst length of channel 1, channel 2 and channel 3 respectively.

As seen in the figures, MH-MAC has better results for a large network. Efficiency

improvement is different for each node. For some nodes with MH-MAC has much

better performance. These are the nodes that is farthermost nodes to the APs.

If a node is close to an AP, it uses mainly that AP during all packet course and

efficiency results for MH-MAC and fixed path gets similar for both proposals. Figure

5.5 shows the delay results for the same simulation. As similar to scenario 1, more

retransmissions occur in fixed path because in a bursty period of packet loss a node

that uses fixed path cannot avoid bursty error and this results in more unsuccessful

packet transmission.
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Figure 5.4: Efficiency with 50 Nodes
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Figure 5.5: Delay with 50 Nodes
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Table 5.1: Burst Length and Packet Error Rates of Channels

Node ID p1 b1 p2 b2 p3 b3

1 0.25 27.32 0.02 21.37 0.37 42.08
2 0.11 25.00 0.08 27.11 0.34 39.14
3 0.32 28.85 0.10 30.58 0.04 29.70
4 0.67 47.72 0.47 36.31 0.30 38.44
5 0.59 41.54 0.14 23.85 0.45 37.83
6 0.57 47.51 0.15 35.63 0.62 45.33
7 0.58 43.20 0.44 45.60 0.13 26.05
8 0.50 44.87 0.20 25.68 0.12 37.70
9 0.30 37.51 0.63 38.42 0.19 24.00
10 0.60 45.09 0.25 38.71 0.22 23.21

5.2 Multimedia Scenario

In this scenario, we simulate our protocol for a general network. In this network,

nodes implement CBR, variable bit rate (VBR) applications, video and voice over IP

(VoIP) transmissions. Distribution of inter-arrival time of VBR have uniform and

exponential distribution for this simulation with different mean. VoIP generates a

voice traffic that can be modeled with a simple two-state Markov chain. The chain

consists of an ON state of exponentially distributed duration with an average of 500

ms and an OFF state of 500 ms. This means that nodes transmit a voice packet

with a 0.5 probability. In addition, the voice application uses PCM encoding which

generates voice that has a packet size between 160 bytes and 200 bytes. Video traffic

is a soccer game that is ten-minute MPG video. The video traffic is characterized

with an average rate of about 0.64 Mbps and a peak rate of a little more than 4

Mbps. Network conditions are same as in Scenario 2.

Figure 5.6 and Figure 5.7 show the results of a node that uses the video traffic

in the multimedia scenario. The results are averaged over time. Each sample in the

Figures presents a session in which K packets are transmitted. The node selects a

K value between 2000 and 8000 packets. After a session finishes, it selects a random

K value again. Each sample has been run three times and the averaged results are

shown.
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Figure 5.6: Efficiency Comparision of MH-MAC with Fixed path in Multimedia
Scenario

Figure 5.6 shows that MH-MAC outperforms fixed path scheme for also multime-

dia application. Efficiency performance is significantly high for MH-MAC protocol.

Figure 5.7 shows that delay performance is also better with our protocol. This is

due to the fact that our protocol can switch between APs according to the transition

probabilities determined in Section 4.
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Figure 5.7: Delay Comparision of MH-MAC with Fixed path in Multimedia Scenario
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Figure 5.8 shows general results. In the results network efficiency and network

delay are considered. Network efficiency means that average efficiency determined

by all nodes transmitting until a particular time (50 seconds). Network delay is

the delay that is experienced by all nodes transmitting until a particular time (50

seconds).
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Figure 5.8: Network Efficiency

The network efficiency is averaged over every 50 second of simulation time. As

seen in Figure 5.8, network efficiency starts to increases after nearly 250 seconds.

This is due to the fact that after that time, all CBR applications finish and there

are only the nodes that transmit multimedia applications in the network. This

means that the number of nodes transmitting in the system starts to decrease as

the time passes. This increases the channel correlation and our protocol starts to

give better results. On the other hand network efficiency also increases with fixed

path scheme. This is due to the fact that less collisions occur and packet error

rate starts to decrease as the number of users is decreasing. Network delay with

MH-MAC is less than with fixed path scheme as in Figure 5.9. At 250 seconds all

CBR applications finish and delay decays for both proposal. However almost every

session, our protocol outperforms fixed path in terms of network delay.
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Figure 5.9: Network Delay

To see the results in detail, we run a different experiment. In this experiment

only one node uses MH-MAC protocol and the other nodes use fixed path scheme.

We compare the result with the scenario where the node uses fixed path and other

nodes use MH-MAC protocol.
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Figure 5.10: One Node Uses MH-MAC
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Efficiency of an arbitrary node decreases with MH-MAC when the number of

nodes increases. This is due to decreasing in channel correlation and collision. When

the node uses fixed path, efficiency decreases also because more collision occurs as

the number of nodes increases. However MH-MAC outperforms with fixed path

scheme in terms of efficiency and delay as shown in Figure 5.10 and Figure 5.11

respectively.
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Figure 5.11: One Node Uses MH-MAC

5.3 Throughput of MH-MAC

In this experiments we compare both proposals in terms of aggregated throughput.

The scenario for this simulation is same as scenario for multimedia.

As number of nodes increases total throughput for both proposal also increases as

expected. Saturated throughput occurs approximately with 10 transmitting nodes.

At this point the aggregated throughput with MH-MAC is 13.5 Mbps and it is nearly

12.22 Mbps with fixed path scheme. The main reason is that efficiency is higher

with MH-MAC and the delay with MH-MAC is less than with fixed path proposal.
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Chapter 6

Simulation Environment

6.1 Network Model in Qualnet

QUALNET [57] is a network simulation software, providing a comprehensive devel-

opment environment for the specification, simulation and performance analysis of

wired and wireless networks. In this chapter an overview of wireless simulation with

Qualnet is given and the models created to simulate our work are explained.

QualNet Developer is ultra high-fidelity network evaluation software that pre-

dicts wireless, wired and mixed-platform network and networking device perfor-

mance. This developer provide us to specify models in details, create any kind of

network scenarios and execute the simulation and analyze the results.

QualNet is a discrete-event simulator. In discrete-event simulation, a system is

modeled as it evolves over time by a representation in which the system state changes

instantaneously when an event occurs, where an event is defined as an instantaneous

occurrence that causes the system to change its state or to perform a specific action.

Examples of events are: arrival of a packet, a periodic alarm informing a routing

protocol to send out routing update to neighbors, etc. Examples of actions to take

when an event occurs are: sending a packet to an adjacent layer, updating state

variables, starting or restarting a timer, etc.

Each protocol operates at one of the layers of the stack. Protocols in QualNet

essentially operate as a finite state machine. The occurrence of an event corresponds

to a transition in the finite state machine. The interface between the layers is also
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Figure 6.1: Qualnet Modeler

event based. Each protocol can either create events that make it change its own state

(or perform some event handling), or create events that are processed by another

protocol. To pass data to, or request a service from, an adjacent layer, a protocol

creates an event for that layer.

Figure 6.1 shows the finite state machine representation of a protocol in QualNet.

At the heart of a protocol model is an Event Dispatcher, which consists of a Wait

For Event state and one or more Event Handler states (see Figure 6.1). In the Wait

For Event state, the protocol waits for an event to occur. When an event for the

protocol occurs, the protocol transitions to the Event Handler state corresponding

to that event (e.g., when Event 1 occurs, the protocol transitions to the Event

1 Handler state). In this Event Handler state, the protocol performs the actions

corresponding to the event, and then returns to the Wait For Event state. Actions
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performed in the Event Handler state may include updating the protocol state, or

scheduling other events, or both.

6.2 Communication Channel Model

The wireless communication channel in Qualnet is modeled by antenna gains, prop-

agation and transmission delay, signal-to-noise ratio, noise and interference. The

transmit power of station is 15 dBm (31 mW). To create a more realistic path loss

model, we use wall effects as in [58]. Multi wall (MW) is expressed as free space

added with MW effect, Mw. Formulary,

L(d) = Lfree + Mw (6.1)

Where Lfree = 20log10(d) + l0 and l0 is the path loss at 1 meter distance,

l0 = 40.22dB for a center frequency of 2.45GHz. The authors run a experimental

work and they showed that for medium wall (thickness (20,40] cm), attenuation due

to medium wall is approximately 4.2 dB. We use this result for Mw in our simulation.

6.3 Changes in Qualnet Source Code

Qualnet is implemented in C/C++. The necessary part of multiple AP scenarios in

our simulation are channel switch and AP deassociation/reassociation. These parts

were not implemented in Qualnet. We changed the source code to implement these

functions. Table 6.1 shows the function names used in our simulations.
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Table 6.1: Functions used in our simulation

Function Name Description

MacDot11ManagementMyReset To Disassociate from current AP
MacDot11MyChangeToChannel To change channel when associates

with a different AP
MacDot11MyJoin To associate a new AP

MacDot11MyJoinComplete To set IP address of destination AP
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Chapter 7

Conclusion and Future Works

In this thesis we proposed a new MAC protocol for multihomed user in WLANs. Our

protocol selects the AP that has the highest probability of successful transmission

before each packet transmission according to the outcome of the last transmission

and long-term channel statistics such as burst length of error process and packet

error rate. The proposed protocol switches between APs according to transitions

probabilities. These probabilities are determined from the channel model that is

modeled as a two-state Markov chain.

Unlike previous works, we showed that mean error burst length and mean packet

error rate of packet loss process depends on number of user in the system, channel

coherence time and the amount of node traffic. Additionally, in this thesis we defined

two issues that occur in a multi-user scenario. The first issue is a decreasing channel

correlation due to the delay and the second issue is collision. We presented solutions

to these problems and compared the protocol with and without the solutions to

understand the usefulness of the solutions. The results show that with the proposed

solution our protocol gives better performance.

We use iterative transmission scheme with multihoming. In this iterative trans-

mission scheme, destination needs to receive K packets successfully to recover the

original data and due to channel errors and collisions the source should send N

packets, N ≥ K. It is a well known fact that sending multiple copies of the same

packet over multiple channels increases packet delivery ratio. However, we do not

send multiple copies of the same packet since it causes delay that is not tolerable
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for multimedia application. Our first aim is to reduce the redundant data by mini-

mizing the total number of packets sent by the source. In another word, we aim to

maximize the efficiency, R = K/N . The other aim is to minimize the delay that the

time until K packets are received successfully.

We compared our MAC protocol with fixed path scheme that is the standard

proposal in which a node uses only one AP during all transmissions. Simulation

results have showed that our protocol outperforms fixed path scheme in terms of

efficiency (K/N) and the delay. This is basically due to the fact that our protocol

can switch between the channels and thus bursty effect of channels can be mitigated.

As a future work interference effect of channels may be investigated. Interference

may cause more packet error rate and delay. To find possible solution to this problem

is one of our future work. More state Markov chain can be used to model the packet

loss process and improvement and disadvantages of more than two state Markov

chain may be researched. One of the other future work is to test our MAC protocol

for fast fading channel.

It is important to reorder packets at the destination for video and voice applica-

tion. Investigating the reordering problem is our future work. Last future work is

to simulate rate adaptation algorithm defined in this thesis.
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