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ABSTRACT

Since security has been a growing concern in recent years, the field of biomet-

rics has gained popularity and became an active research area. Beside new identity

authentication and recognition methods, protection against theft of biometric data

and potential privacy loss are current directions in biometric systems research.

Biometric traits which are used for verification can be grouped into two: phys-

ical and behavioral traits. Physical traits such as fingerprints and iris patterns are

characteristics that do not undergo major changes over time. On the other hand,

behavioral traits such as voice, signature, and gait are more variable; they are there-

fore more suitable to lower security applications. Behavioral traits such as voice and

signature also have the advantage of being able to generate numerous different bio-

metric templates of the same modality (e.g. different pass-phrases or signatures),

in order to provide cancelability of the biometric template and to prevent cross-

matching of different databases.

In this thesis, we present three new biometric verification systems based mainly

on voice modality. First, we propose a text-dependent (TD) system where acoustic

features are extracted from individual frames of the utterances, after they are aligned

via phonetic HMMs. Data from 163 speakers from the TIDIGITS database are

employed for this work and the best equal error rate (EER) is reported as 0.49% for

6-digit user passwords.

Second, a text-independent (TI) speaker verification method is implemented

inspired by the feature extraction method utilized for our text-dependent system.

Our proposed TI system depends on creating speaker specific phoneme codebooks.

Once phoneme codebooks are created on the enrollment stage using HMM alignment

and segmentation to extract discriminative user information, test utterances are

verified by calculating the total dissimilarity/distance to the claimed codebook. For

benchmarking, a GMM-based TI system is implemented as a baseline. The results

of the proposed TD system (0.22% EER for 7-digit passwords) is superior compared

to the GMM-based system (0.31% EER for 7-digit sequences) whereas the proposed

TI system yields worse results (5.79% EER for 7-digit sequences) using the data of

163 people from the TIDIGITS database .



Finally, we introduce a new implementation of the multi-biometric template

framework of Yanikoglu and Kholmatov [12], using fingerprint and voice modalities.

In this framework, two biometric data are fused at the template level to create a

multi-biometric template, in order to increase template security and privacy. The

current work aims to also provide cancelability by exploiting the behavioral aspect

of the voice modality.
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ÖZET

Güvenlik konusu günümüzde giderek artan bir endişe olduğundan biyometrik

araştırmalar daha da önem kazanmıştır. Biyometrik konusundaki güncel çalışmalar

yeni kimlik doğrulama tekniklerinin yanı sıra, biyometrik verilerin hırsızlığına ve

bu verilerden veya verilerin tutulduğu veritabanlarından kişisel bilgilerin ortaya

çıkarılmasına karşı önlemler üzerine yoğunlaşmıştır.

Kimlik tanımlama için kullanılan biyometrik özellikler iki gruba ayrılabilir:

fiziksel ve davranışsal özellikler. Parmakizi ve iris örüntüleri gibi fiziksel özellikler

zaman içerisinde çok fazla değişmeyen özelliklerdir. Öte yandan ses, imza, yürüyüş

gibi davranışsal özellikler daha değişken bir yapıda olup aşırı güvenlik gerektirmeyen

sistemler için daha uygundurlar. Ses ve imza gibi davranışsal özellikler diğer biy-

ometrik özelliklere nazaran söylenilen kelimenin ya da atılan imzanın değişmesi ile

aynı özelliği kullanarak farklı şablonlar oluşturabilme avantajına sahiptirler. Farklı

uygulamalarda farklı şablonlar kullanılması, veritabanların karşılaştırılarak kullanıcı

hakkında bilgi çıkarılmasını önleyebilecek önemli bir etkendir.

Bu tez kapsamında, ses kullanarak üç farklı biyometrik sistem sunulmuştur.

İlk olarak fonem bazlı Saklı Markov Modeller (SSM) yardımıyla hizalanmış işitsel

parolalardan akustik öznitelikler çıkarılarak metin bağımlı bir sistem önerilmiştir.

TIDIGITS veritabanına ait 163 kişinin 6 haneli işitsel parolaları kullanılmış ve en

iyi Eşit Hata Oranı (EHO) %0.49 olarak hesaplanmıştır.

İkinci olarak, bir önceki bölümde anlatılan öznitelik çıkarma yönteminden esin-

lenerek tasarlanmış bir metin bağımsız konuşmacı tanıma sistemi gerçeklenmiştir.

Önerilen bu metin bağımsız sistem konuşmacı fonem çizelgelerinden faydalanmak-

tadır. Eğitim için kullanılan işitsel parolaların fonem bazlı SMM yardımıyla hiza-

lanıp konuşmacılar arasındaki farkı en fazla gözetebilecek özniteliklerin çıkarılması

ile her konuşmacı için fonem çizelgeleri hazırlanmıştır. Sınama aşamasında ise

sınanacak işitsel parola ile iddia edilen kişinin fonem çizelgesi arasındaki toplam

uzaklığa bakılmaktadır. Karşılaştırma için Karma-Gaus-Modelleri (KGM) kullanan

bir metin bağımsız konuşmacı tanıma sistemi gerçeklenmiştir. Önerilen metin bağımlı

sistemin sonuçları (7 haneli işitsel parolalar için %0.22 EHO) KGM tabanlı sisteme

(7 haneli işitsel parolalar için %0.31 EHO) göre daha iyidir. Öte yandan TIDIGITS

veritabanına ait 163 konuşmacının bilgileriyle oluşturulup önerilen metin bağımsız



sistem (7 haneli işitsel parolalar için %5.79 EHO) karşılaştırılan diğer iki sisteme

göre kötü performans sergilemiştir.

Son olarak Yanıkoğlu ve Kholmatov [12] tarafından önerilen çoklu biyometrik

şablon çerçevesine ses ve parmakizi kullanarak yeni bir örnek sunulmuştur. Bu

çerçevede iki biyometrik veri şablon seviyesinde birleştirilerek şablon güvenliği ve

mahremiyetinin artırılması amaçlanır. Bu çalışmada davranışsal bir biyometrik olan

ses verilerinin kullanılması ile, var olan çerçeveye şablonun iptal edilebilmesi özelliği

eklenmiştir.
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CHAPTER 1

INTRODUCTION

Due to increasing security concerns, person identification and verification have

gained significance over the last years. Identification or verification of a claimed

identity can be based on 3 major themes: “what you have”, “what you know” or

“who you are”. Historically, the first two themes have been the main methods of

authentication. Electronic identification cards are also commonly used as tokens in

entering secure areas. Similarly, a credit card and its pin number form a simple

example of the fusion of the two themes. Systems that are based on the theme

of “who you are” are classified as biometric systems. Biometric systems utilizes

pre-recorded physical (e.g. iris, fingerprint and hand shape) or behavioral (e.g.

signature, voice and gait) traits of a person for later authentication.

The main characteristics distinguishing different biometric modalities include

universality (whether everyone has that trait); measurability (whether that biomet-

ric can be easily measured); stability (whether the trait changes significantly over

time); forgeability (whether someone else can easily forge your biometric trait); and

whether the biometric can be changed at will (whether the person can change his

own trait to hide his identity). In these regards, physical traits stand out as they

are quite universal, mostly stable, hard to forge and changeable at will. Some other

physiological biometrics and most behavioral biometrics are more varying, either

due to ageing or other reasons such as stress. However they may be better suited

for a particular security application (e.g. online banking over the phone).

A major concern with the use of biometric technologies is the fear that they

can be used to track people if biometric databases are misused. A related concern

is that once compromised, a physiological biometric (e.g. fingerprint) cannot be

canceled (one cannot get a new fingerprint). The privacy and cancelability concerns

lead researches to find new solutions, often combining cryptography and biometrics

in recent years [35, 2, 18, 12].

In this thesis, we present biometric authentication systems based mainly on

voice modality. Voice has certain advantages over other biometrics, in particular

acceptability of its use for identity authentication, as well as its suitability for certain



tasks such as telephone banking. A further advantage of voice is that it provides a

cancelable biometric within text-dependent speaker verification systems.

In voice verification systems, different levels of information can be extracted

from a speech sample of a user. As summarized by Day and Nandi [41], lexical and

syntactic features of voice such as language and sentence construction are at the

highest level. These features are highly dependent on the spoken text, however very

costly computationally. In order to extract high level features, automatic speech

recognition tools need to be utilized first. After extracting the words uttered in

a given speech sample, lexical or syntactic analysis can be done as described by

Day and Nandi [41]. This means, in order to extract high-level features, additional

calculations are needed after lower level features are extracted first. At the lower

levels, there are prosodic features like intonation, stress and rhythm of speech. These

features also depend on the spoken text, but also on how the text is uttered. Next,

there are the phonetic features based on the sound of the syllables which also vary

according to the uttered text. Lastly, low level acoustic features can be extracted

to acquire information about the generation of the voice by the speaker and these

are considered to be text independent [41].

Verification systems based on voice are divided into two main groups: text-

dependent (TD) and text-independent (TI) systems. During enrollment to a text-

dependent system, the speaker is asked to repeat a fixed text which is considered

to be his/her password. Then, a user specific template or model is constructed

from the collected reference samples of the spoken password. In authentication, the

utterance is compared with the template of the claimed identity. If the similarity

is above a certain predefined threshold, the utterance is accepted and the user is

verified. In text-independent systems, mostly low levels of information from spectral

analysis is used for identification or verification since higher levels of features are

mainly dependent on the text. Thus, TI systems require longer training sessions and

varying voice samples to include all sounds for all possible voice combinations to

create statistical speaker models whereas a fewer repetitions of the spoken password

are enough to create a template or a model in TD systems. For a TI system,

the statistical speaker models are created from the phonemes extracted from the

collected data. Then, during the testing phase, a voice sample is compared with

the text-independent user-specific model and the speaker is verified according to the

similarity scores.

An important factor which determines the success of a voice verification sys-

tem is the duration and the scope of the training and testing sessions. As mentioned

above, longer training sessions by using numerous utterances results in better de-

scription of the templates in TD systems or speaker models in TI systems. Similarly,

longer test utterances provide better verification performance for both TI and TD

2



systems: the longer the utterance, the more information can be extracted from the

voice sample.

While comparing speaker identification or verification systems the database

size is also an important factor to evaluate the reliability of the system. Larger

databases provide more confidence in the reported results. Therefore, when com-

paring performances of different systems, one should consider the size of the database

used in order to have a fair opinion on the performances of the compared systems.

Generally, public databases such as TIDIGITS, YOHO or NIST are used for bench-

marking different algorithms in speaker identification or verification.

Beside speaker verification systems (text-dependent in Chapter 3 and text-

independent in Chapter 4), we present an implementation of a multi-biometric

framework that combines voice and fingerprint, in Chapter 5. Combinations of

biometric traits are preferred due the following reasons: their lower error rates, in-

creased privacy and cancelability if one of the biometrics is a behavioral trait like

voice. Using multiple biometric modalities has been shown to decrease error rates

by providing additional useful information to the classifier. Fusion of any behavioral

or physiological traits can occur in various levels. Different features can be used by a

single system at the feature, template or decision level [9]. For this work, voice and

fingerprint, are fused at the template level and both biometric features are combined

to be used by a single verifier. The second gain obtained by combining multiple bio-

metrics at the template level is privacy. In summary, privacy is increased since the

combined template do not reveal individual biometrics. Finally, changing spoken

password in a text-dependent speaker verification scenario adds cancelability to the

combined biometric template.

The remainder of the thesis is as follows. After an introduction to Hidden

Markov Models in Chapter 2, we present a new method for text-dependent speaker

verification through extraction of fixed-length feature vectors from utterances, in

Chapter 3. The system is faster and uses less memory as compared to the con-

ventional HMM-based approach, while having state-the-art results. In our system,

we only use a single set of speaker-independent monophone HMM models. This

set is used for alignment, whereas for the conventional HMM-based approach, an

adapted HMM set for each speaker is constructed in addition to a speaker inde-

pendent HMM set (also called universal background model in that context). This

requires much higher amount of memory as compared to the proposed approach.

In addition, during testing only a single HMM alignment is required as compared

to two HMM alignments using a universal background model and a speaker model

for the conventional approach. Thus, verification is also faster with the approach

introduced in this thesis.

In Chapter 4, we propose a text-independent speaker verification system using

3



phoneme codebooks. These codebooks are generated by aligning the enrollment

utterances using phonetic HMMs and creating MFCC-based fixed-length feature

vectors to represent each phoneme. Through creating phoneme codebooks, we tried

to extract discriminative speaker information at the phoneme level. However the

results of this chapter is not in par with state-the-art TI verification results.

In Chapter 5, we introduce a new implementation of the multi-biometric

template framework of Yanikoglu and Kholmatov [12], using fingerprint and voice

modalities. In this framework, two biometric data are fused at the template level

to create a combined, multi-biometric template, in order to increase both security

and privacy of the system. In addition to the first implementation of this frame-

work, which used two fingerprints and showed increases in both security and privacy,

the implementation presented here also provides cancelability. Cancelability of the

multi-biometric template is achieved by changing the pass-phrase uttered by the

speaker, since the generated voice minutiae depends on the pass-phrase comprised

of a unique sequence of phonemes.

Finally, in the last chapter, our contribution on the literature of speaker veri-

fication and multi-biometric template generation is summarized and some possible

extensions are given.

4



CHAPTER 2

Hidden Markov Models

The hidden Markov model is a statistical model used for modeling an underly-

ing Markov process whose states are hidden to the outside, but observable through

the associated outcomes. The model consists of a finite set of hidden states, where

the state transitions are controlled by the transition probabilities. Furthermore; in

any state, there is also a probability distribution for emitting a certain outcome. It is

only the outcome or the observations which are visible externally, and the challenge

is to predict the state sequence of the process which are “hidden” to the outside;

hence the name hidden Markov model.

An HMM can be fully characterized by [48]:

(1) The number of states in the model, N. Most of the time there

is some physical significance attached to the set of states of the

model even though the they are hidden. The states are denoted

by S = {S1, S2, S3...SN} and the state at time t as qt.

(2) The number of distinct observation symbols per state, M. Obser-

vation symbols corresponds to the physical outcome (e.g. LPC

or MFCC vectors as speech features) of the system being mod-

eled. The observations can belong to a discrete alphabet or the

set of real vectors. In case of MFCC vectors for voice data, the

set of possible observations are the set of real vectors. For the

case of a discrete alphabet, M is the discrete alphabet size and

individual symbols are denoted as V = {v1, v2, v3...vM} for an

observation sequence O = {O1, O2, O3...Ot}. Here, O1 and O2

can be the same observation symbol vk.

(3) The state transition probabilities among hidden states A={aij}

where

aij = P (qt+1 = Sj|qt = Si for 1 ≤ i, j ≤ N .

(4) The observation probability distribution in state j for the emis-

sion of a visible observation vk, B={bjk} where



bjk = P (vk(t)|qt = Sj) for 1 ≤ j ≤ N and 1 ≤ k ≤ M for a

discrete alphabet of outcomes.

(5) The initial state distribution π = P (q1 = Si) for 1 ≤ i ≤ N .

In order to generate a hidden Markov model, the parameters described above

need to be calculated from training examples. In a Markov model, the state is

directly visible to the observer, and therefore the state transition probabilities are

the only parameters. In a hidden Markov model, the state is not directly visible,

but observations (e.g. voice feature vectors) affected by the states are. Therefore,

observation probabilities need to be calculated as well. At the end, the trained

model can be used to estimate the most likely state sequence, or the probability

that the observations were generated by that model.

HMMs are widely used in pattern recognition applications such as speech,

handwriting, and gesture recognition, as well as bioinformatics. In case of speech

recognition, observable parameters would be speech feature vectors (LPC, MFCC,

etc) of an incoming utterance and the hidden states would be the associated phonemes.

Figure 2.1 below shows the state transition diagram of a simple HMM. There

are only two states S1 and S2 and two possible observations V1 and V2. As described

above, aij shows the transition probabilities from state i to state j. Moreover, bjk

shows observation probabilities for observing outcome k from state j.

Figure 2.1: States (S1, S2) and observations (V1, V2) are illustrated by ellipses where
the state transition and observation probabilities are illustrated by arrows.
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There are three central issues associated with HMMs given the form and pa-

rameters described above. The first problem is referred as the likelihood computa-

tion problem [45]. It constitutes the computation of the probability of a particular

output P (O|λ) given the observation sequence O = {O1, O2, O3...Ot} and the model

λ = (A,B, π). This problem mainly addresses the case if there are multiple models

to choose from for a given observation. An example scenario would be to choose

the most likely speaker-dependent model for a set of feature vectors which belong

to a test pass-phrase. To solve this problem, forward algorithm [29] or backward

algorithm [26] can be employed.

The second problem is referred as the decoding problem [45] and constitutes

finding the most likely sequence of hidden states Q = {q1, q2, q3...qt} that could have

generated an output sequence O = {O1, O2, O3...Ot} given the model λ = (A,B, π)

and the output. The solution to this problem helps to find the corresponding

phonemes or words for each feature vector in a given speech sample for a speech

recognition scenario. To solve this problem, Viterbi algorithm is employed whose

details can be found in [19].

The third and the most difficult problem is referred as the learning problem

[45] and constitutes the estimation of model parameters λ = (A,B, π) to maxi-

mize P (O|λ) given the observations. In fact, given any finite observation sequence

there is no optimal way of estimating these parameters. As a practical solution, it-

erative approaches such as Baum-Welch or Expectation-Maximization methods are

employed to locally maximize P (O|λ). This problem constitutes the training session

of a word-based or phoneme-based HMM to be employed in a speech recognition

system. After the parameters are optimized, the likelihood of a test sequence of

feature vectors to a word or phoneme model can be easily calculated. The details

of the algorithms can be found in [27, 8]. The details of aforementioned algorithms

are not given in this chapter since the theoretical background of these algorithms

are beyond the scope of this work.
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CHAPTER 3

Text-Dependent Speaker Verification

In this chapter, we present a novel text-dependent speaker verification sys-

tem. For text-dependent verification systems, features from multiple utterances of

the users are compared with the features extracted from the test utterance. Here,

temporal information plays an important role since the sequence of extracted fea-

tures from the utterance determines the decision of verification. For the proposed

verification system, acoustic features are extracted from individual frames and ut-

terances are aligned via phonetic HMMs both for enrollment and verification. After

the alignment, fixed-length feature vectors are extracted from the utterances de-

pending the uttered text independent of the time it takes to utter that text. For

enrollment, every user in the database is assigned a 6-digit password and reference

vectors are extracted from utterances of these unique user passwords in order to

acquire speaker statistics. For verification, the test vector extracted from the test

utterance is fed into a previously trained classifier. Bayesian classifier and a linear

classifier in conjunction with Principal Component are used to verify a test utterance

for this work.

3.1 Previous Work

Diversity of text-dependent systems mainly arises from the types of extracted

voice features and speaker template/model creating schemes. In general, hidden

Markov models (HMM) and Dynamic Time Warping (DTW) are used for the align-

ment of utterances [42, 14]. Bellagarda et al introduced a text-dependent system

by using singular value decomposition for spectral content matching and DTW for

temporal alignment of the utterances [23]. For every user, 4 utterances were used

as reference, 4 utterances were used genuine and 2 utterances from impostors who

were given access to the original enrollment pass-phrases of the claimed speaker. In

addition to that, impostors tried to mimic genuine users by changing accent and

intonation. On a private database of 93 people (48 genuine, 45 impostor), their

result show an EER around 4%.



Yegnanarayana employed difference features such as pitch and duration, along

with other well known spectral features such as Mel-Frequency Cepstral Coefficients

(MFCC) to construct a TD speaker verification system [13]. DTW was used for

utterance matching and error rate is reported to be under 5% for a private database

of 30 speakers where all users uttered the same text according to the claimed id

from a limited pool of sentences.

Ramasubramanian et al proposed an MFCC-based TD speaker verification

system where multiple word templates were created for each speaker. For testing,

a variable text (sequence of digits) was prompted to speakers on different testing

sessions and is aligned via dynamic programming. This means, the text was known

to forgers for the proposes text-dependent speaker verification system. The success

rate was reported to increase with the number of templates for the same word where

the results were given for 1 to 5 templates per digit. In particular, authors found

that when using the TIDIGITS database (100 people), the best error rate was under

0.1% when using 5 templates per digit. However, part of this low error rate was due

to cohort normalization, which was done by scaling the test utterance score with

the best matching impostor in the database. Therefore, the task here was more

like identification which increases the success of this closed-set speaker verification

system [54].

Subramanya et al proposed a text-dependent system using the likelihood ratio

test by comparing global and adapted user-specific HMMs [10]. They obtained user-

specific HMMs from global models of digit utterances using discriminative learning

approaches. In order to verify a test utterance Subramanya et al. calculated likeli-

hood scores of both global HMMs and user-specific HMMs derived from the global

models. Here, the global models act like background models for the speaker verifi-

cation task. Moreover, a boosting procedure was applied and weighted word-level

likelihood scores were fused with utterance level scores. With this approach, some

words (digits in this case) had more discriminative power when the likelihood of ut-

terance models were calculated for the scenario that the impostors know the claimed

passwords. A portion of the YOHO corpus is used where they have achieved an EER

of 0.26% for 6 digit pass-phrases in comparison with the baseline likelihood ratio

test method which gives 0.63% EER.

Similarly, Liu et al proposed a system using segmental HMMs [60] whose states

were associated with sequences of acoustic feature vectors rather than individual

vectors to explore the role of dynamic information in TD systems . They obtained

a 44% reduction in false acceptance rate using the segmental model compared with

a conventional HMM on the YOHO corpus.
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3.2 Proposed Method

Text-dependent speaker verification assumes the existence of a pass-phrase.

In fact, often multiple utterances of the same pass-phrase is used to create the user

template. In this work, we use pass-phrases that consists of digit sequences. An

overview of the proposed verification system is illustrated in Figure 3.1.

Figure 3.1: System overview: The test utterance is compared with the reference
vectors of the claimed identity and accepted if their dissimilarity is low.

For enrollment and verification, the utterances are first aligned using a speaker-

independent HMM model of the claimed pass-phrase. Then fixed-length feature

vectors are extracted from the aligned utterances and dissimilarities of each reference

vector with the test vector is calculated. Using the distance scores to the reference

set, a classifier decide whether the the test utterance is genuine or forgery. Details

of the verification process are explained in the following subsections.

3.2.1 Feature Extraction

The features employed in speaker recognition systems should successfully be

able to define the vocal characteristics of the speaker and distinguish it from the

voices of other speakers. Short spectra of speech signals give information about

both the spoken words and the voice of the speaker. In particular, we use the Mel

frequency cepstral coefficients (MFCCs) features in this work. MFCCs utilize the
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logarithmic energies of the speech data after being filtered by nonuniform frequency

filters, in a manner similar to the human hearing system. Then, discrete cosine

transform is applied to the filtered speech data for further decorrelation of the spec-

tral features [52]. To extract the MFCC features, an utterance is divided into 30ms

frames with 10ms overlap and cepstral analysis is applied to each frame. As a result,

each 30ms frame is represented by a 12-dimensional vector < c1, ..., c12 > consisting

of MFCCs for this work. Beside MFCCs, another approach is to use linear pre-

diction coding (LPC) coefficients or a combination of LPC and MFC coefficients.

LPC analysis is based on the linear model of speech production and is very suitable

for speech analysis and synthesis purposes. However, we used MFCCs as features

to represent utterances since state-of-the-art automatic speaker recognition systems

are based on the spectral features [15].

The database used for this work was originally designed for speech recognition

and was not suitable for text-dependent speaker verification systems. In order to

obtain multiple sequences of the same password, we segmented the utterances in

the database into digits, using phonetic HMMs. Thus, the feature extraction in our

framework is preceded by the alignment of the utterances (references and query)

after extracting MFCC features from individual frames.

The alignment is done using an HMM of the spoken password of the claimed

identity. These pass-phrase models are formed by concatenating the HMMs of its

constituent phonemes. As an example, the hidden Markov model of the pass-phrase

“235798” is formed by concatenating the phoneme models of “t”, “uw”, “th” for “2”

and so on. The goal of aligning pass-phrases is to remove the silence frames and seg-

ment the utterance into the phonemes of the pass-phrase. At the end, corresponding

frames and phonemes are revealed with silences.

The phoneme models in turn are 3-state, monophone HMMs, constructed

for each phoneme found in the digits of the English language. They are speaker-

independent models, trained using a separate part of the database. The details

of the training process is described in section 2. Phonetic HMMs are commonly

used in speech recognition and 3-state monophone models are generally preferred to

model phoneme transitions. The alignment process is illustrated in Figure 3.2.

After the alignment, frames which correspond only to the middle state of each

phoneme are kept, while the remaining frames (those corresponding to the 1st and 3rd

states) are deleted. This is done to use only steady-state portions of each phone, and

eliminate the start and end states that are more affected by the neighbouring phones.

We then calculate the mean feature vector of cepstral coefficients for each phoneme.

After the calculations, each phoneme p is represented by a 12-dimensional mean

vector Fp. Using this method, fixed-length feature vectors can be extracted from

varying-length utterances consisting of the same digits. The concatenation of the
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Figure 3.2: Alignment with the global HMM: Previously trained 3-state phonetic
HMMs are used in aligning an utterance with the corresponding password model
(e.g. “ONE”), which consists of a sequence of the corresponding phoneme models
(e.g. “w”, “ah”, “n”).

mean vectors of the phonemes then forms the feature vector for the entire utterance.

Creation of fixed-length pass-phrase feature vectors is illustrated in Figure 3.3.

In our experimental setup, test utterances consist 4 or 6 digits (e.g. “2357981”).

Since digits in the English language is composed of three phonemes on average,

test utterances are composed of around 12 or 18 phonemes. This means, 12 or 18

phoneme vectors are extracted from each test utterance on average.

3.2.2 Enrollment

For speaker verification, it is necessary to go through a speaker specific enroll-

ment session. The purpose of the enrollment session is to create password references

for each speaker in the database. First, we randomly selected 4 or 6-digit passwords

(e.g. “235798”) for each speaker where each digit is used only once in a password to

make best use of the available data in the database. Then, artificial password feature

vectors are created for each speaker by segmenting and recombining the available

utterances in the enrollment set after MFCC based feature vectors are extracted

by the feature extraction method described in 3.2.1. We call this reference feature

set Pj for each speaker j to be compared during verification tests. This process is

illustrated in Figure 3.4.
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Figure 3.3: Derivation of the feature vector for the whole utterance: First and third
phases of the phonemes are discarded and the average of feature vector of the middle
phase frames are concatenated to obtain the feature vector.

Later, these reference feature vectors of a speaker are pairwise compared. and

similarity scores are calculated between each pair of vectors. Hence, if there are N

reference vectors for each speaker N(N−1) distances per speaker are calculated. To

find the similarity/distance between the feature vectors of two utterances, we used

the trimmed Euclidean distance metric [16]. In this metric, the Euclidean distance is

measured between two feature vectors after discarding the highest valued dimensions

of the difference vector, so that the remaining dimensions are more robust to certain

noise artifacts. We have used the same percentage (10%) of discarded dimensions,

as in [16]. Note here that the feature vectors are all the same length, regardless of

the length of the utterances, due to the feature extraction process.

Using these distances, the following statistics defining the variation among a

user’s reference templates are extracted, as in [5]:

• average of the nearest neighbor distances,

• average of the farthest neighbor distances,

• minimum of the average distance to all neighbors,

• average distance from reference vectors to the mean vector of the

reference feature set Pj

Average of the nearest neighbor distances may indicate how similar a reference

utterance to expect, given a query utterance. Average of the farthest neighbor
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Figure 3.4: The creation of artificial reference passwords: Parsed digit utterances
are concatenated to form reference password utterances and feature vectors are
extracted.

distances may indicate how far a reference utterance would be at most, given a query

utterance. By computing the minimum of the average distance to all neighbors, we

in fact designate the template utterance which is closest to all other references.

User’s reference features set Pj together with the calculated parameters are stored

to be used in the verification process.

3.2.3 Verification

For verification, the MFCC-based fixed-length feature vector is extracted from

the query utterance first. The query feature extraction is done as described in 3.2.1,

following the alignment with the corresponding global HMM model. This feature

vector is then compared with each reference utterance of the claimed identity, as

well as its mean reference vector.

As a result of the comparisons between the query and reference vectors, we

find the distances to the closest reference vector, the farthest reference vector, the

template reference vector (defined as the one having the smallest total distance to the

other reference utterances) and the mean reference vector (the mean of the reference

vectors). We use these four distances as input features for the final decision (accept
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or reject), after appropriate normalization. In this work, distances are normalized

by the corresponding averages of the reference set (e.g. averages of the nearest and

farthest neighbor distances of the reference utterances), as described in 3.2.2 and

previously used in [5]. Note that normalizing the measured distances eliminates the

need for user-dependent thresholds, so the final features were used in comparison to

a fixed, speaker-independent threshold. The verification process which is shown by

a box in Figure 3.1 is further illustrated in Figure 3.5.

Figure 3.5: Verification process: A 4-dimensional feature vector is extracted from
the MFCC-based test vector by calculating the distance to the closest reference
vector, the farthest reference vector, the template reference vector and the mean
vector of reference vector set of the claimed identity. This 4-dimensional feature
vector is later classified as genuine or forgery by a previously trained classifier.

For this work, we have experimented with two different classifiers that take as

input the normalized distances and return a decision on the query utterance. The

training set used to train the classifiers consists of normalized distances obtained

from 163 genuine utterances (1 from each user) and 7472 forgery utterances (1 from

each impostor in the same group of each claimed user), not used in the testing, as

described in Section 3.3.

One of the classifiers is a Bayes classifier assuming normal distributions for the

normalized distances, while the other is a linear classifier following Principal Compo-

nent Analysis (PCA) of the normalized distances. According to the Bayes theorem,

the test utterance should be assigned to the class (genuine or forgery) having the

largest posterior probability P(Ck|X), given the 4-dimensional normalized distance

vector, X, in order to minimize the probability of utterance misclassification. These

posterior probabilities are calculated as in Eq. 3.1:

P (Ck|X) =
P (X|Ck)P (Ck)

P (X)
(3.1)

where k denotes classes (either genuine or forgery).

Using the Bayes classifier, the prior probabilities of classes, P(Cg) for genuine

and P(Cf ) for forgery, are assumed to be equal since we do not know the exact
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statistics. Following this assumption, the discriminant function for the Bayesian

classifier further simplifies to g(X) = P (X|Cg) − P (X|Cf ) and class-conditional

probabilities P(X|Ck) needed to determine the decision boundaries were estimated

from the training set utterances.

With PCA, 4-dimensional feature vectors (normalized distances) are reduced

to 1-dimensional values by projecting them onto the eigenvector (principal compo-

nent) corresponding to the largest eigenvalue of the training set. Then, a threshold

value is found to separate the genuine and forgery utterances of the validation data.

This threshold is later used in classifying the test utterances after projecting the

4-dimensional feature vectors onto the same principal component. Details on PCA

can be found in [24].

3.3 Database

We used the TIDIGITS database which is originally constructed for speech

recognition of digits. The database consists of varying length sequences of digits

(e.g. “235798”), uttered by 326 speakers in the database (111 men, 114 women,

50 boys, and 51 girls). Each person utters 77 digit sequences, with length varying

between 1 and 7, for a total of 253 digits. Hence, each one of the 11 digits (0-9,

and “oh”) is uttered roughly 23 times (= 253/11) and at least 16 times by each

person. The TIDIGITS database contains a single data collection session whereas

some databases may contain multiple sessions distributed over time to form more

robust templates.

The database is originally designed for speech recognition and was not suit-

able for text-dependent speaker verification systems. In order to obtain multiple

sequences of the same password, as needed in a text-dependent speaker verification,

we segmented the utterances in the database into digits, using the previously de-

scribed HMMs. This resulted in 16 or more utterances of the same digit by each

user. Ten of each of these digits are used for enrollment (reference passwords), 5 for

verification (genuine and forgery tests) and 1 for training the classifiers.

Utterances from half of the speakers of each of the 4 groups (men, women,

boys, girls) are used to train the phonetic HMMs while the remaining 163 speakers

(56 men, 57 women, 25 boys, and 25 girls) are used in constructing the enrollment,

genuine and forgery sets described below. In fact, this 163 speaker subset is what we

refer to as the “database” throughout the thesis. The utterances from the remaining

speakers are used to train the phonetic HMMs.

To create the enrollment set, we randomly picked a 4 or 6-digit password

for each user in the database and created artificial utterances of this password by

combining segments of the constituent digits. A password here is a string of non-
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repeated digits, so as to best use the available data. After creating the enrollment

set, genuine test cases were created using the unused digits of the same user (5/16+).

As for forgery tests, two sets of tests were constructed according to password blind-

ness. For the password-blind tests (PB), forgery feature vectors are created by the

concatenation of random digit sequences of the forger (4 or 6-digits, matching the

length of the password to be forged) after feature extraction. Password-known tests

are conducted to simulate the scenario of a stolen password. Therefore, forgery ut-

terances are created using the same digit sequence as the claimed password for the

PK tests.

The enrollment set thus consists of a total of 1630 (10 utterances x 163 speak-

ers) reference passwords where each recorded digit is used only once. The genuine

test set contains 815 (5 utterances x 163 speakers) genuine passwords constructed

from genuine, segmented digit recordings. The forgery test set contains 7472(56x55

for men + 57x56 for women + 25x24 for boys + 25x24 for girls) forgery passwords

constructed from segmented digit recordings of other people. Here, each speaker

forges every other speaker in the same group (men/women/ boys/girls) with only

one utterance of the claimed password. In other words, each speaker is forged

by all the remaining speakers within the group once who knows his/her password.

Since there are only 5 utterances of each digit by each speaker in the verification

set, a recorded digit of a speaker is used multiple times for the creation of forgery

utterances whereas necessary digits are used only once for creating genuine test ut-

terances. Finally, the training set used for training classifiers contains a set of 163

genuine (constructed from unused digit samples of each user) and 7472 forgery ut-

terances (created from reference digits of other users that are not used in testing).

Thus, genuine or forgery utterances in training set are not used in testing, though

they do come from the same speaker set.

One may think that the artificial construction of the passwords does not result

in a realistic database with proper coarticulation of the consecutive digits. However,

removing the frames corresponding to the first and third states of monophone models

(as in our model) reduces the effect of coarticulation since those states are affected

by coarticulation the most. Hence, while coarticulation effects would exist with real

data (passwords uttered as a digit sequence), we believe that the results would be

largely unaffected. Artificial database creation is also used by other authors [54, 10].

3.4 Results

The performance evaluation of both speaker verification systems proposed in

this work is done by considering the false acceptance (FAR) and false rejection

(FRR) rates during the tests. FAR is calculated as the ratio of falsely verified
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impostor utterances to the total number of imposter tests and FRR is calculated as

the ratio of falsely rejected genuine utterances to the total number of genuine tests.

EER and HER indicate Equal Error rate (where FRR and FAR are made equal by

changing the acceptance threshold) the and Half Error Rate (average of FRR and

FAR, when EER cannot be obtained).

Separate tests are conducted according to password blindness where the forger

did not know the claimed password(PB and PK); the classification method (Bayes

and PCA); the password length (4 or 6 digit); and whether the forgers were selected

from the same group as the person being forged, or the whole population (same

group - SG or all groups - AG). As one can expect, the former (SG) is a more

challenging scenario.

Perfect verification results (0% EER) were achieved for the password-blind

(PB) scenario, with both classifiers and for both password lengths; therefore, we

only list the results for the more challenging password-known case in Table 3.1. The

results using PCA-based classifier (shown in bold) are the best, with 0.61% EER

for 6-digit passwords for the SG scenario and 0.39% for the AG scenario while the

HER rates for the Bayes classifier are higher.

Scenario
Bayes PCA

FRR FAR HER EER
6Digit & Same Group (SG) 1.47 0.12 0.80 0.61

6Digit & All Groups (AG) 1.47 0.05 0.76 0.39

4Digit & Same Group (SG) 1.60 0.62 1.11 1.10

4Digit & All Groups (AG) 1.22 0.30 0.76 0.63

Table 3.1: False Reject Rate, False Accept Rate, Half Error Rate and Equal Error
Rates are given for the password-known scenario and 4 or 6-digit passwords, for
different classification methods (Bayes, PCA) and whether the forger was selected
from the same group as the person being forged, or the whole population.

The DET figure showing how FAR And FRR changes with different acceptance

thresholds is shown in Figure 3.6, for the PCA method.

Further tests were done to see if the performance would improve, if we knew

the group (men/women/boys/girls) of the forged person. Note that this information

can be derived from a person’s age and gender which are public information. For

this case, separate classifiers were trained for each group, using as forgers other

people from the same group. In other words, if a man was being forged, we used

a classifier trained with only information coming from adult male subjects. The

results in Table 3.2 show that the error rates for men and women are very similar

(0.31 and 0.36%), while that of children (boys and girls groups) are almost twice

as much (0.73 and 0.98%). This can be explained as the younger groups showing
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Figure 3.6: DET curves for different password lengths, different forger source, using
the password-known scenario and the PCA-based classifier.

more variability in their utterances since the features used in this classification are

normalized distances to the reference set of the forged user. Overall, the average

EER given in Table 3.2 is slightly lower than the comparable result in Table 3.1

(0.49 vs 0.61%).

Group
Bayes PCA

FRR FAR HER EER
women(57) 0.70 0.09 0.40 0.31

men(56) 0.71 0.13 0.42 0.36

boy(25) 0.80 0.50 0.65 0.73

girls(25) 2.40 0.50 1.55 0.98

average(163) 0.98 0.23 0.61 0.49

Table 3.2: Error rates are given separately for each group, for the password-known
scenario, 6-digit passwords, and different classification methods (Bayes, PCA). For
these results, the classifiers are trained separately for each group.

3.5 Summary and Contributions

In this chapter, we presented a new method for text-dependent speaker ver-

ification. The system is faster and uses less memory as compared to the conven-

tional HMM-based approach. In our system, we only use a single set of speaker-

independent monophone HMM models. This set is used for alignment, whereas for
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the conventional HMM-based approach, an adapted HMM set for each speaker is

constructed in addition to a speaker independent HMM set (also called universal

background model in that context). This requires much higher amount of memory

as compared to the proposed approach. In addition, during testing only a single

HMM alignment is required as compared to two HMM alignments using a univer-

sal background model and a speaker model for the conventional approach. Thus,

verification is also faster with the approach introduced in this thesis.

The results from our system (0.61 and 0.39% EER) may be compared to the

results of Ramasubramanian et al. (under 0.1% EER) who have used the same

database under similar conditions [54]. They use multiple utterances of the same

digit to create digit templates which are used in verifying utterances of a known

digit sequence. However, their EER is lower through cohort normalization using a

closed-set verification scenario. In other words, the decision mechanism does not

only know about the similarity of the query utterance, but also the similarity of the

forgery utterances, which significantly improves verification performance.

Similarly, the results by Subramanya et al [10] who created a database suitable

for text-dependent verification from the original YOHO database may also be com-

pared to ours. However, their results of 0.26% should be compared to the average

of “men” and “women” groups (0.34%) in our work since “boys” and “girls” groups

do not exist in the YOHO database.
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CHAPTER 4

Text-Independent Speaker Verification

We have also implemented a text-independent speaker verification method

using the TIDIGITS database. Text-independent speaker verification systems are

designed to verify any query utterance without the information of the uttered words

or sentences. Many TI speaker verification methods have been proposed in litera-

ture. These methods mainly differ by their feature selection and speaker modeling

processes. Most popular approaches for speaker modeling are Gaussian mixture

models (GMM) and support vector machines (SVM), as well as their derivatives

and combinations. In addition, other techniques such as vector quantization (VQ)

and utterance level scoring have also been used [21, 61]. These issues are discussed

thoroughly in [46].

We implemented a text-independent speaker verification method using the

TIDIGITS database. Our proposed system depends on creating speaker specific

phoneme codebooks. Once phoneme codebooks are created on the enrollment stage

using HMM alignment and segmentation, test utterances are verified by calculat-

ing the total dissimilarity/distance to the claimed codebook. An overview of the

proposed verification system is illustrated in Figure 4.1.

Figure 4.1: System overview: The test utterance is compared with the phoneme
codebooks of the claimed identity and accepted if their dissimilarity is low.



For enrollment, we assume that transcriptions of the enrollment utterances

are available; in other words, we know the verbal information of the utterances.

This way, enrollment utterances are segmented via phoneme-based HMMs and vec-

tor codebooks are created. On the other hand, we do not make this assumption

in verification, since the task at hand is text-independent verification. Thus, query

utterances are not segmented via HMMs for verification since we cannot predict the

uttered words or sentences. Although this is possible via an automatic speech rec-

ognizer (ASR), the results would not be 100% correct and thus would be misleading

for the speaker verifier.

The results for the proposed text-independent speaker verification method is

compared with the most popular and successful approach which employs Gaussian

Mixture Models to model vocal characteristics of speakers. In order to make an

objective comparison with the previously described text-dependent system, new set

of tests are conducted using the same amount of enrollment and verification voice

data.

4.1 Previous Work

Although cepstral features are employed dominantly in literature, several other

features are also investigated. Day and Nandi proposed a TI speaker verification

system where different features such as linear prediction coefficients (LPC), percep-

tual linear prediction coefficients (PLP) and MFCC (acoustic, spectral, etc.) are

fused and the speaker verification is done via applying genetic programming meth-

ods [41]. Furthermore, the effects of dynamic features such as spectral delta features

with novel delta cepstral energies (DCE) on TI speaker verification is investigated

by Nostratighods et al [32]. Zheng et al, adopted the GMM-UBM approach for

proposing new features derived from the vocal source excitation and the vocal tract

system. This new feature is named wavelet octave coefficients of residues (WOCOR)

and is based on time-frequency analysis of the linear predictive residual signal [38].

Recently, the GMM employing a universal background model (UBM) with

MAP speaker adaptation has become the dominant approach in TI speaker verifi-

cation. UBM is also a GMM which serves as a background distribution of human

acoustic feature space. Current state-of-the art techniques are adopted from this

GMM-UBM method by proposing different adaptation and decision criteria to cre-

ate discriminative speaker models [51, 43, 40]. Several of these adaptation methods

are examined in [31]. Moreover, Nuisance attribute projection (NAP) and factor

analysis (FA) are also examined to provide improvements over the baseline GMM-

UBM method [11].

Beside GMMs, support vector machines are also quite powerful tools that are
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used for speaker verification. M.Liu et al proposed a system using SVMs together

with the features from the adoption of GMMs [30]. Wan and Renals proposed a

system based on sequence discriminant SVM and showed improvement with respect

to the well known GMM method [55]. Campbell et al modeled high-level features

from frequencies of phoneme n-grams in speaker conversation and fused them with

cepstral features to be used by SVMs [57].

4.2 GMM-based Speaker Verification

The GMM framework is a very successful method in the literature of text-

independent speaker verification. As a baseline, a GMM-based system is imple-

mented using the TIDIGITS database for this work.

4.2.1 Enrollment

The features employed in a text-independent speaker recognition systems

should also be able to define the vocal characteristics of the speaker and distin-

guish it from the voices of other speakers without employing the temporal infor-

mation in the uttered text. As described in the previous chapter, short spectra of

speech signals gives information about both the spoken words and the voice of the

speaker. We also used the Mel frequency cepstral coefficients (MFCCs) features for

text-independent speaker verification. First, MFCC features are extracted to repre-

sent each frame with a 12-D feature vector for both enrollment and verification as

described briefly in section 3.2.1.

For the GMM based method, all frames in the utterances of the enrollment

set are used to train the mixture of Gaussians to model the speakers in the database

unlike the segmentation process via HMMs. Generally speaking, an Ng component

Gaussian mixture for Nd dimensional input vectors has the following form:

P (x|M) =
Ng
∑

i=1

ai
1

(2π)Nd/2|Σi|1/2
× exp

(

−
1

2
(x − µi)

T Σ−1

i (x − µi)
)

(4.1)

where P(x|M) is the likelihood of an input vector x given the Gaussian mixture

model M. Nd equals 12 for our case since we extract 12-D MFCC features from

individual frames. The mixture model consists of a weighted sum over Ng Gaussian

densities, each parametrized by a mean vector µi and a covariance matrix Σi where

ai are the mixture weights. These weights are constrained to be non-negative and

sum up to one. Since the acoustic space is limited with digits in the English language

for this work, the number of mixtures, Ng, is chosen as 32. The parameters of a

Gaussian mixture model ai, µi and Σi for i=1...Ng are estimated using the maximum

likelihood criterion and the EM (expectation maximisation) algorithm [8]. All frames
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of utterances in the enrollment set are employed for this estimation process regardless

of the uttered text. Although it is usual to employ GMMs consisting of components

with diagonal covariance matrices, we employ GMMs with full covariance matrix

for better modeling.

For the GMM based method, each speaker is represented by a unique speaker

model consisting of density weights ai, density mean vectors µi, and covariance

matrices Σi where i = 1,...,32 after the enrollment process.

4.2.2 Verification

After individual GMMs are trained using the maximum likelihood criterion

to estimate the probability density functions P(xi|M) of the client speakers, the

probability P(X|M) that a test utterance X = x1, ..., xL is generated by the model

M is used as the utterance score where L is the number of frames in an utterance.

This probability for the entire utterance is estimated by the mean log-likelihood over

the sequence of frames that make up the whole utterance as follows:

S(X) = logP (X|M) =
1

L

L
∑

i=1

logP (xi|M) (4.2)

This utterance score is then used to make a decision by comparing it against

a threshold that has been fixed for a desired EER. An alternative approach would

be to generate a universal background model (UBM) and employ the log-likelihood

ratio test as a 2-class classification problem where the log-likelihood score of the

claimed model is compared to the world model. Here, the threshold is assumed to

be 1 so the utterances are verified if the log-likelihood scores of the claimed model

are higher than of the world model.

4.3 Proposed Method

4.3.1 Feature Extraction and Enrollment

As described in detail in Section 3.2.1, MFCCs are extracted from both en-

rollment and verification set utterances for the proposed system during the feature

extraction stage. However, utterances in the enrollment set are aligned with the

previously trained phonetic HMMs to segment the phonemes where the utterances

of the verification set are left unaligned.

After MFCC features are extracted and the utterances are aligned in the

enrollment set, these utterances are segmented into phonemes to create speaker

specific phoneme codebooks. These codebooks Ci consist of 12-dimensional phoneme

vectors Fp which are formed by taking the mean of the second state frames of

24



phoneme p from different utterances of user i. Formation of the phoneme vectors is

described in detail in Section 3.2.1.

Phoneme codebooks for all speakers in the database are formed from the enroll-

ment set utterances for the proposed TI system. Mean vectors are then calculated

for each phoneme cluster and the resulting vector Cpi is assigned as the centroid

to represent phoneme p of speaker i. At the end, the enrollment process is com-

plete yielding 20 x N (20 phonemes x N speakers) 12-D centroids representing each

phoneme of every speaker.

4.3.2 Verification

In order to verify a test utterance, MFCC based feature vectors are extracted

first from all frames of the utterance. Then, a difference vector D is calculated

by finding the nearest centroid for each frame vector in an utterance X of length L

from the codebook of the claimed speaker. The distance metric used is the Euclidean

distance without any modifications as explained in the previous chapter since the

phoneme vectors have only 12 dimensions. Calculation of the difference vector D is

shown below in equation 4.3.

D(l) = min
p∈P

√

√

√

√

12
∑

j=1

(Xl(j) − Cpi(j))
2 for ∀l ∈ L (4.3)

Here, the values in vector D are frame level distances in an utterance X. As the

next step, utterance level score is calculated by taking the trimmed L2-norm of the

difference vector D. This is done by calculating the Euclidean norm after discarding

the highest valued dimensions in the vector, so that the remaining dimensions are

more robust to certain noise artifacts. We have used the same percentage (10%) of

discarded dimensions, as in section 3.2.1.

4.4 Database

To test our proposed text-independent speaker verification system and com-

pare it with the baseline GMM-based system, we used the TIDIGITS database. The

database consists of uttered digit sequences and is originally constructed for speech

recognition. The details of the database are explained in Section 3.3.

For the implementation of the text-independent verification systems, the database

of 163 speakers is divided into two sets for enrollment and verification. Enrollment

set constitutes 1630 (10 utterances x 163 speakers) 3-digit and 1630 (10 utterances

x 163 speakers) 4-digit speech samples. Speaker codebooks for the proposed method

or GMM-based speaker models are created by using the frames of these utterances.

Moreover, the utterances are not repetitive in the verification set in order to have
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a fair distribution of existing phonemes for modeling speakers’ vocal characteris-

tics. In other words, original utterances of TIDIGITS database are employed for

the proposed and GMM-based text-independent speaker verification systems.

On the other hand, verification set consists of 815 (5 utterances x 163 speakers)

7-digit utterances. As in the text-dependent verification system, 5 utterances in

the verification set of each speaker are used only once for genuine attacks whereas

they are used multiple times in a random manner when claiming other speakers’

identities. Since the systems should be independent of text, there is no need to

segment and concatenate the existing utterances as it has been done for the text-

dependent system for the verification set.

4.5 Results

The performance evaluation of both text-independent speaker verification sys-

tems in this work is done by considering the false acceptance (FAR) and false rejec-

tion (FRR) rates during the tests. FAR is calculated as the ratio of falsely verified

impostor utterances to the total number of impostor tests and FRR is calculated as

the ratio of falsely rejected genuine utterances to the total number of genuine tests.

EER and HER indicate Equal Error rate (where FRR and FAR are made equal by

changing the acceptance threshold) the and Half Error Rate (average of FRR and

FAR, when EER cannot be obtained).

Separate tests are conducted according to the classification method (proposed

and baseline GMM method) and whether the forgers were selected from the same

group as the person being forged, or the whole population (same group - SG or all

groups - AG). As one can expect, the former (SG) is a more challenging scenario. For

comparison, previously described text-dependent system (for known password sce-

nario where the forger utters the same sequence of digits as in the claimed password)

is also implemented with identical enrollment and verification sets as employed for

the text-independent systems. For the results of the text-dependent system to be

used as a benchmark, PCA with a linear classifier is utilized for comparison tests.

The results for the GMM-based method with 0.61% EER are superior to our

proposed method for the text-independent verification case with 5.79% EER for

the SG scenario; however the proposed text-dependent system performs better with

0.38% EER for the password-known scenario in which the forger knows the claimed

password. For the AG scenario, again the GMM-based method with 0.31% EER

is superior to our proposed method for the text-independent verification case with

5.79% EER; however the text-dependent system performs even better with 0.22%

EER for the conditions described above. We list the results for both cases in Table

4.1.
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Scenario Same Group (SG) All Groups (AG)
TD-PCA 0.39 0.22
TI-GMM 0.62 0.31
TI-Proposed 5.79 3.56

Table 4.1: Equal error rates are given for different classification methods (TD-PCA,
TI-GMM, TI-Proposed) and whether the forger was selected from the same group
as the person being forged, or the whole population.

Utilization of time dependent information (e.g. sequence of uttered digits)

can be considered as the main strength of text-dependent verification systems as

well as the acoustic features independent of text. Uttering a different sequence of

digits than the enrolled pass-phrase ideally results in rejection of a genuine speaker

in text-dependent verification systems, thus the role of temporal information is sig-

nificant. For the case where the forger knows the password of the claimed speaker,

extracted features from the utterance are only compared with corresponding tem-

plates/references (e.g. concatenated phoneme vectors in our case) and the role of

the time dependent information is mainly reduced. Still, depending on the fea-

tures extracted from the utterance (e.g. delta-MFCC or delta-delta-MFCC) some

temporal information is used during verification. For the proposed text-dependent

verification system, only MFCC features are utilized to extract fixed-length feature

vectors and temporal information is discarded considerably. In this case, verification

decision is considered to be done solely by the acoustic nature of the uttered text

regardless of the length of the utterance. This is why our results for password-known

scenario of text-dependent speaker verification tests are comparable with the results

of text-independent verification tests.

Further tests were done to see if the performance would improve, if we knew

the group (men/women/boys/girls) of the forged person. Note that this information

can be derived from a person’s age and gender which are public information. For

this case, separate classifiers were trained for each group, using as forgers other

people from the same group. In other words, if a man was being forged, we used

a classifier trained with only information coming from adult male subjects. The

results in Table 4.2 show that the error rates for men and women are much lower

that of children (boys and girls groups) for all cases.

4.6 Summary

In this chapter, we proposed a text-independent speaker verification system us-

ing phoneme codebooks. These codebooks are generated by aligning the enrollment

utterances using phonetic HMMs and creating MFCC-based fixed-length feature

vectors to represent each phoneme. For verification, we define a distance metric
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Group TD-PCA TI-GMM TI-Proposed
boys 0.65 0.82 8.80
girls 0.82 0.73 6.37
men 0.36 0.22 2.67
women 0.18 0.34 4.92

average 0.41 0.43 4.96

Table 4.2: Error rates are given separately for each group and different classification
methods (TD-PCA, TI-GMM, TI-Proposed). For these results, the classifiers are
trained separately for each group where the forgers belong to the group of the claimed
user.

measuring the total distance of a test utterance to the codebook normalized by the

length of the utterance. For benchmarking, a GMM-based text-independent veri-

fication system and the proposed text-dependent speaker verification in chapter 3

are implemented using the same enrollment and verification dataset. The results of

the text-dependent system (0.22% EER for the AG scenario) is superior to of the

GMM-based system (0.31% EER for the AG scenario) whereas the proposed text-

independent system yields worst results (5.79% EER for the AG scenario). Through

creating phoneme codebooks, we tried to extract discriminative speaker information

at the phoneme level;however, the results are not satisfactory. Instead of employing

deterministic models such as our approach, generation of discriminative probabilis-

tic models can yield better results. By using probabilistic models, no information

can be lost as it was in our approach where information from only certain frames

are utilized where the rest are neglected.
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CHAPTER 5

Creating Multi-biometric Templates Using Fingerprint and Voice

In this chapter, we introduce a new implementation of the multi-biometric

template framework of Yanikoglu and Kholmatov [12], using fingerprint and voice

modalities. In this framework, two biometric data are fused at the template level to

create a combined, multi-biometric template. The gain obtained through the com-

bination in the proposed scheme is three-fold: increase in template security and pri-

vacy, increase in system security and cancelability. The constructed multi-biometric

templates hide the constituent biometric data which is an important problem since

any improperly disclosed biometric data is subject to identity theft. Furthermore,

it is much less likely for the combined biometric template to reveal sensitive infor-

mation. The multi-biometric templates constructed using the proposed method are

also non-unique identifiers of the person, preventing cross-matching databases and

searching a database with latent fingerprints or other unique identifiers, raising pri-

vacy concerns [12]. The performance of the biometric system is also increased since

multiple biometrics are used in verification.

In the realization of this framework which is presented in this thesis, we use

fingerprint and voice modalities, such that the fingerprint data is hidden using a

voice pass-phrase. Fingerprint and voice are two of the most practical and commonly

accepted biometrics. Furthermore, changing the password in text-dependent voice

verification systems provides a cancelable biometric template.

The implementation of the multi-biometric template scheme provided in this

thesis thus improves on the previous implementation done using two fingerprints

by adding cancelability, as well as providing a new implementation supporting the

scheme.

5.1 Previous Work

In this section, we provide a brief summary of the previous work in the areas

of fingerprint verification as it relates to our work, and template security and privacy

work. Along with the previous chapters on voice modality, this section should

provide enough background to explain our proposed model.



5.1.1 Fingerprint Modality

Fingerprints have long been used for person verification and identification due

to their immutability and uniqueness. Minutiae-based verification approaches are

the most common, compared to ridge-based and correlation-based techniques [17].

The performance of minutiae-based fingerprint verification systems heavily depend

on the minutiae extraction process done before minutiae alignment. Minutiae ex-

traction is done using image processing operations that take advantage of the rich

information available in the ridge structure of a fingerprint. Minutiae alignment, on

the other hand, has to be done efficiently and should handle the non-linear defor-

mations present in fingerprints.

Jiang and Yau use local structure to find the correspondence between two

minutiae sets. They tested their method on a private database of 188 users and

achieved an EER under 1% [58]. Jain et al proposed an alignment based algorithm

were the ridge information is employed to align the minutiae sets and a bounding box

was proposed to match aligned minutiae [3]. Further improvements for this method

have been proposed by He et al where the EER is decreased from around 3-4% to 1-

2% in a database of 100 users [59]. Tico and Kuosmanen employed orientation field

information of the fingerprint pattern to create a fingerprint representation scheme

[34] and Ratha et al proposed a matching technique based on the graph represen-

tations of the query and template fingerprints, constructed using their respective

minutiae features [39].

5.1.2 Template Security and Privacy

Template security and privacy are main concerns in building biometric sys-

tems for numerous reasons. Protecting the biometric information against disclosure

of the biometric data itself, or other sensitive information, as well as preventing

cross-matching of databases is an active research area. Numerous architectures

have been proposed in recent years, aiming to protect biometric templates stored in

central repositories [20, 2, 37, 25]. Among those, fuzzy vault technique is one of the

most widely used method where points obtained from a biometric modality (e.g. fin-

gerprint) are stored with randomly generated chaff points [2]. A user has to provide

a certain number of minutiae points to unlock the vault created by the reference

fingerprints minutiae set given during the enrollment session. The scheme is based

on the difficulty of the polynomial reconstruction problem. There have been many

implementation of the Fuzzy Vault scheme using different biometric modalities such

as fingerprint [53, 50, 7], signature [4], as well as work showing the weaknesses of

the Fuzzy Vault scheme [6, 56].

Yanikoglu and Kholmatov proposed another method based on the idea of com-
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bining multiple biometrics in order to increase both privacy and security [12]. In the

given implementation of the general idea, minutiae points from two distinct fingers

of the same person were combined to create a multi-biometric template which is later

shown to be more unique, hence more privacy preserving. They also showed that

the system provides higher level of security as well, as it verifies both fingerprints.

In this chapter, an implementation of the multi-biometric template framework with

fingerprint and voice modalities is presented.

5.1.3 System Security

System security is another main concern in designing biometric systems beside

privacy protection. High security applications require very low error rates and uni-

modal biometric systems are not always satisfying in that regard, while multi-modal

biometric systems have proven to be useful in increasing the system security.

In literature, the combination of multiple biometrics mostly take place at

the matching score or decision level [47, 17]. Some examples of research in multi-

biometric systems are the following: Brunelli and Falavigna use the hyperbolic tan-

gent for normalization and weighted geometric average for fusion of voice and face

biometrics [44]. These modalities have also been fused by Ben-Yacoub et al by

considering several strategies such as support vector machines, tree classifiers and

multilayer perceptrons [49]. Kittler et al have experimented with fusion techniques

for face and voice on the matching score level [22]. Hong and Jain proposed an

identification system using face and fingerprint where the database is pruned via

face matching before fingerprint matching [28].

5.2 Proposed Method

For this work, we implemented the multi-biometric template framework [12]

using fingerprint and voice-modalities. Voice and fingerprint data of individuals are

fused at the template level by combining minutiae points obtained from fingerprints

with artificially constructed “minutiae“ points obtained from the utterance, as de-

scribed in the following subsections. We show that the system security is higher

compared to single biometric counterparts using only fingerprint or only voice.

5.2.1 Feature Extraction from Fingerprint

For fingerprints, minutiae points from the ridge endings and bifurcations on

the fingerprint pattern are used as features in our work. In literature, there are sev-

eral methods proposed for automatic minutiae extraction [1, 36], which commonly

follow well-known image enhancement, binarization and thinning steps. Automatic
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detection of minutiae points can sometimes result in missed or spurious minutiae.

Thus, minutiae points found through image processing operations are later verified

using various post-processing techniques [33] in some systems. After minutiae ex-

traction, finger print verification involves minutiae alignment and matching. In that

process, the challenges are caused by non-linear deformations of the fingerprint, as

well as missing and spurious minutiae.

Since the aim of this work is to build a multimodal biometric system with

information fusion at the template level, we preferred to utilize fingerprint images

with manually labeled minutiae points. This is done in order to reduce errors which

might arise from the minutiae extraction process. For template generation, the

minutiae points from users (roughly 30 minutiae points on average) are stored in

a 2-dimensional plane with their x and y coordinates as features. This process in

illustrated in Figure 5.1.

Figure 5.1: The minutiae points from fingerprints are extracted manually and stored
in a 2 dimensional plane with their x and y coordinates as features.

5.2.2 Feature Extraction from Voice

As described in previous chapters, short spectra of speech signals give infor-

mation about both the spoken words and the voice of the speaker. Therefore, we

use the Mel Frequency Cepstral Coefficients (MFCCs) as the voice features. The

feature extraction process explained in 3.2.1 is summarized below for convenience.

All utterances (reference or query) are first aligned using an HMM of the spo-

ken password of the claimed identity. These pass-phrase models are formed by con-

catenating the HMMs of its constituent phonemes. They are speaker-independent

models, trained using a separate part of the database. After the alignment, frames

which correspond only to the middle state of each phoneme are kept, while the re-

maining frames (those corresponding to the 1st and 3rd states) are deleted. This

is done to use only steady-state portions of each phone, and eliminate the start

and end states that are more affected by the neighboring phones. We then calcu-

late the mean feature vector of cepstral coefficients for each phoneme. After the
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calculations, each phoneme p is represented by a 12-dimensional mean vector Fp.

Using this method, fixed-length feature vectors are extracted from varying-length

utterances consisting of the same digits. Extraction of voice features is illustrated

in Figure 5.2. The concatenation of the mean vectors of the phonemes then forms

the feature vector for the entire utterance.

Figure 5.2: Alignment with 3-stage HMMs: Previously trained 3-stage phonetic
HMMs are used in aligning an utterance, to find the correspondence between indi-
vidual frames and phonemes. Phoneme 1-N indicate the phonemes that occur in
spoken password. Levels of gray (white-gray-dark gray) indicate the 3-stages within
a phoneme.

5.2.3 Multi-biometric Template Generation

The motivation behind combining fingerprint and voice is to hide fingerprint

data along with a voice pass-phrase and store the combined multi-biometric tem-

plate. In order to hide the fingerprint data along with a voice pass-phrase, both

features need to be combined in the same feature space. Since fingerprint features

are already in the Euclidean space, we transform the voice features into the same

space to create the multi-biometric templates. First, 12-dimensional mean vectors

of each phoneme are concatenated to form a feature vector F to represent the entire

pass-phrase after the voice feature extraction process. Therefore, the F vector of an

utterance with N phonemes is N × 12 dimensional. Next, the F vector representing

an utterance is binarized using a global threshold t of -3.5 for females and -1 for

males. The binarization process is done by assigning bits to each dimension of the

F vector according to its value (if the MFC coefficient is above the threshold, 1 is

assigned to that dimension). This way, every utterance is now represented with a
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bit string B with length N ×12. The t values are determined in order to have equal

number of 1 and 0 bits for all speakers. Binarization process is illustrated in the top

two rows of Figure 5.3.

Figure 5.3: Minutiae point generation from voice: mean feature vectors from the
previously aligned utterances are concatenated and binarized according to a prede-
termined threshold, then the bit string is divided into chunks of 8 bits to obtain the
artificial utterance points (Xi, Yi).

For using voice as a biometric, it is necessary to go through a speaker spe-

cific enrollment session. In this work, there is only one enrollment session where

10 utterances of the chosen password are collected from each user. The binary fea-

ture vectors Bi, generated from the reference utterances of a user, are combined

so as to obtain a single reference feature vector, by majority voting of the bits in

every dimension. This single feature vector represents the voice template of a single

speaker, dependent on the chosen password. This single reference feature vector is

also referred as the binary feature descriptor of the user.

Finally, to map the resulting binary voice template onto the 2-dimensional

space (the Euclidean space) of minutiae points, we followed a few different methods

with roughly similar results: in one, we divided each binary feature descriptor of

the users into groups of 16 and used each 16 bits to generate one point (X,Y) in the

Euclidean space. Of these 16 bits, 2 decimal numbers with values ranging from 0

to 255 are extracted from 8 bits each and mapped to a 2-dimensional point. The

reason for using 8 bits to represent a dimension in the Euclidean space is that all

the fingerprint minutiae data fall in a square frame of side-length 256. This way,
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when the artificially generated points from voice and fingerprint minutiae are fused

together, they cover the same region in the 2-dimensional Euclidean space.

As a second method, groups of 12 bits from the binary feature descriptors

of users are employed to create more points in the 2-D Euclidean space instead of

16. Originally, if points are created from 12 bits, they fall in a square frame with

side-length 64. This time, the points are scaled to fall inside a square frame with

a side-length of 256 to cover the same region with the fingerprint minutiae. The

process of creating artificial minutiae points is shown in the bottom row of Figure

5.3 above. The points created by grouping the bits of the binary descriptors of

the combined reference utterance or test utterances will be referred as the “voice

minutiae” of users from now on.

For this work, 6-digit pass-phrases are used. Since each digit in the English

language is composed of roughly 3 phonemes, 18 phonemes are present on average

in each pass-phrase. This means, roughly 18 12-dimensional feature vectors are ex-

tracted per utterance of a password. Thus, binary feature descriptors are composed

of 18 × 12 = 216 bits, yielding roughly 14 voice minutiae points per pass-phrase

if they are grouped by 16 bits (8 bits for 1 point). To complete the enrollment or

template generation phase, minutiae points extracted from the fingerprint (A) are

fused with the reference voice minutiae (B) of the user to form the multi-biometric

template (A+B) for the user, without any labels indicating the origin of the points.

Fusion of biometric data is illustrated in Figure 5.4.

Figure 5.4: Template level fusion of biometric data: Minutiae points from the fin-
gerprint and artificial points generated from voice are combined together in a user
template. The points are marked as to indicate the source biometric, but this infor-
mation is not stored in the database.
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5.2.4 Verification

When a user comes for authentication, he or she is authenticated using both

the fingerprint and voice modalities, in order. First, the fingerprint minutiae (A’) are

extracted and matched against the template (A+B) of the claimed user, consisting

of both fingerprint and voice minutiae. The automatic matching is done via a simple

matching algorithm finding the best alignment over all translations and rotations,

allowing for some elastic deformation of the fingerprint (accepting two points as

matching if they are within a small threshold in this alignment). After the alignment,

the matched points are deleted from the template, leaving non-matched points in

the template, resulting in (A+B-A’). Note that ideally these are only the points

generated from the utterance of the claimed user. Matching of the test fingerprint

is illustrated in Figure 5.5.

Figure 5.5: Illustration of the first phase of the verification, where the test fingerprint
is matched with the user template shown on the left. Matched points of the template
are marked with a cross and removed in the rightmost part of the figure.

Next, the test user provides the pass-phrase of the claimed user. If the pass-

phrase is unknown, it is guessed. The F’ vector representing the test utterance is

binarized using a global threshold t and the binary feature descriptor is divided into

chunks of 16 or 12 bits to be mapped to the Euclidean space, as described in the

previous sections, resulting in the second individual template (B’).

Notice that even a genuine utterance may have a small number of bits different

from that of the binary feature descriptor used in the stored template. Hence, the

matching of the voice minutiae with the remaining points in the template (A+B-

A’) cannot take place in Euclidean space because small variations may result in

unacceptable distances, depending on the position of the erroneous bit based on

which the voice minutiae was generated. If there is an erroneous bit in the most

significant bit of the x or y coordinate, that voice minutia will be far away from

the reference voice minutia in the Euclidean space. Thus, we carry the matching

of the test voice minutiae (B’) with the remaining points in the template (A+B-

A’), in the Hamming space. This way, a small number of bit errors caused by the

variations in the user’s voice feature will cost only a few (probably 1 or 2) bits in

Hamming space. To do this, all the remaining points in the template (A+B-A’) are
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mapped back to the Hamming space by inverting the mapping of the binary feature

descriptor onto the Euclidian space. In other words, we concatenate the x and y

coordinates of a voice minutiae point, after doing a decimal-to-binary conversion, to

obtain the 12 or 16 dimensional original feature from which the voice minutiae was

extracted. To be considered a match, the Hamming distance between two bit strings

should be less than or equal to a threshold (2-bit errors are accepted in this work for

16-bit strings and 1-bit errors are accepted for 12-bit strings). Then, matched voice

minutiae points are deleted from the template (A+B-A’-B’) of the claimed identity.

Matching of the test voice minutiae is illustrated in Figure 5.6.

Figure 5.6: Illustration of the second phase of the verification where the utterance
is matched with the remaining points in the user’s template. Matched points are
removed, showing here a successful match.

5.2.5 Matching Decision

We have used two score metrics for the verification decision in this work. One

is the same with the work of Yanikoglu and Kholmatov [12] and the second is a

slight variation of it.

For the first metric, which is the Jaccard index, we consider the overlap be-

tween the remaining points and the points in the second template (voice): the person

is authenticated if a high percentage of the points involved in the second phase of

the verification (remaining points from the template and the minutiae points of the

voice) is matched.

score = Jaccard ((A + B − A′) , B′) = 2 ×
|(A + B − A′) ∩ B′|

|(A + B − A′) + B′|
(5.1)
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In case A’ matches A perfectly and B’ matches B perfectly for this metric, the

resulting score with this metric is 1, showing a good match. If A’ was not successfully

matched, it would be reflected in the final score since many minutiae points would be

left unmatched, making the denominator large. If B’ was not successfully matched,

the numerator would be small.

As an alternative, we came up with a new score metric derived from the first

one described above. The key here is that since the number of voice minutiae to be

extracted from the test utterance is known, this information can be used to roughly

measure the independent performance of the voice matching process to increase the

overall success of the score metric. Note that we cannot measure the independent

performance of the voice matching precisely because we do not know exactly which

points on the Euclidean space are generated artificially from voice –just their count.

So the following derived score metric takes into account the fingerprint and voice

minutiae counts (A’ and B’ respectvely):

score′ =
|(A + B) ∩ A′|

|A|
+

|(A + B − A′) ∩ B′|

|B|
(5.2)

Thus, we basically combine the individual performances of fingerprint and

voice matching processes. If one of these matching processes perform poorly, the

overall score decreases linearly due to the addition of matching performances.

5.3 Database

We employed the TIDIGITS database as the utterance database for this work.

The database consists of uttered digit sequences and is originally constructed for

speech recognition. The details of the database are further explained in Section

3.3. Utterances of 100 (50 men, 50 women) speakers who are randomly chosen

among 113 (56 men, 57 women) speakers are processed for multi-biometric template

creation and matching.

In order to obtain multiple sequences of the same password, as needed in a

text-dependent speaker verification, we segmented the utterances of 100 speakers

in the database into digits, using the previously described HMMs. This resulted in

16 or more utterances of the same digit by each user. Ten of each of these digits

are used for enrollment (reference feature vectors extraction followed by reference

binary feature descriptor generation) and 5 for verification (test feature vectors

extraction followed by test binary feature descriptor generation for genuine and

forgery verification tests).

To create the enrollment set, we randomly picked a 6-digit password for each

user in the database and created artificial utterances of this password by combining

segments of the constituent digits. After creating the enrollment set, genuine test

38



cases were created using the unused digits of the same user (5/16+). For this

chapter, only password-known tests are conducted to simulate the scenario of a

stolen password. Therefore, forgery utterances are created using the same digit

sequence as the claimed password for the tests.

The enrollment set thus consists of a total of 1000 (10 utterances x 100 speak-

ers) reference passwords where each recorded digit is used only once. The gen-

uine test set contains 500 (5 utterances x 100 speakers) genuine passwords con-

structed from genuine, segmented digit recordings. The forgery test set contains

4900 (50x49x2 for men and women) forgery passwords constructed from segmented

digit recordings of other people. Here, each speaker forges every other speaker in

the same gender with only one utterance of the claimed password. In other words,

each speaker is forged by all the remaining speakers of the same gender who knows

his/her password.

The fingerprint database on the other hand consists of 200 fingerprints from

100 individuals (2 imprints per person). We matched each person with a randomly

chosen speaker from the utterance database, to link these two unrelated databases

and create a multi-biometric database. We then created 100 multi-biometric tem-

plates using one fingerprint of a person from the fingerprint database and the binary

feature descriptor obtained from the 10 reference feature vectors of the matching

person from the utterance database following the feature extraction processes. In

reference to the template, we will refer to these two unrelated people whose finger-

print and voice data are fused as the “user” from now on.

5.4 Results

The performance evaluation of the biometric verification system proposed in

this work is done by considering the false acceptance and false rejection rates of the

system. The verification tests are done using 3 different scenarios: In the first sce-

nario (FF), we tested the case where both the test fingerprint and the test utterance

is a forgery. Hence, we had 5 genuine tests (1 fingerprint x 5 utterances) and 49

forgeries (1 fingerprint x 49 utterances) for each user, generated by false fingerprints

and forgery utterances.

For the second scenario (FG), we tested the case where the fingerprint is a

forgery, but the utterance is genuine. This may be the situation where the forger

may have recorded a sample of the user whose voice is stored in the multi-biometric

template. Hence, the EER is calculated by comparing the results from 5 genuine

tests (1 fingerprint x 5 utterances) with 49 (49 fingerprints x 1 utterance randomly

chosen from the genuine utterances of the claimed user) forgery tests for each user,

generated by false fingerprint but genuine voice samples.
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For the last scenario (GF), we tested the case where the fingerprint is genuine,

but the utterance is forgery. This may be the situation where the forger may have

acquired a silicon fingerprint of the user whose biometric is stored in the multi-

biometric template. Hence, the EER is calculated by comparing the results from 5

genuine tests (1 fingerprint x 5 utterances) with 49 (1 fingerprint x 49 utterances)

forgery tests for each user, generated by genuine fingerprint but false utterances.

In addition to different test scenarios, further tests are conducted with different

bit string lengths for segmenting the binary feature descriptor generated from the

voice feature vectors of users. Moreover, all these tests are repeated for 2 different

score metrics. The results for this work can be seen in Table 5.1, 5.2 and 5.3 for

male users and female users separately for all 3 test scenarios and score metrics.

Gender
Original Score Metric Proposed Score Metric
12-bit 16-bit 12-bit 16-bit

Male (50) 4.50% 5.15% 3.90% 0.67%
Female (50) 3.05% 4.08% 1.32% 0.87%
Average (100) 3.78% 4.62% 2.61% 0.77%

Table 5.1: Scenario 1 (FF) - The results are given for the case where both the test
fingerprint and the test utterance is a forgery for the impostor attempts.

Gender
Original Score Metric Proposed Score Metric
12-bit 16-bit 12-bit 16-bit

Male (50) 23.50% 24.20% 10.40% 6.30%
Female (50) 17.20% 21.60% 3.90% 5.90%
Average (100) 20.35% 22.90% 7.15% 6.10%

Table 5.2: Scenario 2 (FG) - The results are given for the case where the fingerprint
is a forgery, but the utterance is genuine is a forgery for the impostor attempts.

Gender
Original Score Metric Proposed Score Metric
12-bit 16-bit 12-bit 16-bit

Male (50) 10.60% 8.70% 17.20% 12.70%
Female (50) 9.90% 9.80% 15.10% 12.80%
Average (100) 10.25% 9.25% 16.25% 12.75%

Table 5.3: Scenario 3 (GF) - The results are given for the case where the fingerprint
is genuine, but the utterance is forgery.

As can be see in Table 1, in a forgery attempt with a false fingerprint and

false utterance, the equal error rate is only 0.77% for the new score metric. This

rate increases to 6.1% when the attacker has access to the utterance of the user.

Notice that the case when the attacker has access to the fingerprint of the user, the

error rate significantly increases; however, even then about 87% of the attacks are
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repelled. For this case, the EER for the original score metric is 25% lower with

respect to the EER for the proposed score metric (12.75%).

For comparison, in our work for unimodal speaker verification system as de-

scribed in Chaper 3, average EER for men and women turns out to be 0,34% with

similar voice feature extraction algorithm for the same speaker database. The av-

erage results obtained for impostors with mismatched fingerprint and voice (0.77%)

for this work are not lower than the unimodal system counter to what was expected.

Employment of trained classifiers with multiple reference vectors in the feature ex-

traction stage for the proposed unimodal text-dependent verification system yields

better results than the proposed system using multi-biometric templates.

Furthermore, we have experimented with different quantization level and dif-

ferent partitioning of the data, as well as using PCA for projecting the 6-dimensional

parts of the feature vector into 2-dimension (x,y) with similar initial results. We are

experimenting with them further to obtain more reliable 2-dimensional features from

voice. For future work, we also plan to measure how the multi-biometric template

scheme preserves privacy, by calculating recall and precision rates for retrieving tem-

plates given only one of the biometric modalities, as previously done by Yanikoglu

and Kholmatov [12].

5.5 Summary and Contributions

In this chapter, we introduced a new implementation of the multi-biometric

template framework of Yanikoglu and Kholmatov [12], using fingerprint and voice

modalities. In this framework, two biometric data are fused at the template level to

create a combined, multi-biometric template, in order to increase both security and

privacy of the system, at the same time.

In addition to the first implementation of this framework, which used two

fingerprints and showed increases in both security and privacy, the implementa-

tion presented here also provides cancelability. Cancelability of the multi-biometric

template is achieved by changing the pass-phrase uttered by the speaker, since the

generated voice minutiae depends on the pass-phrase comprised of a unique sequence

of phonemes.

Our work for unimodal speaker verification system as described in Chapter 3

yields slightly better results (0.34% EER) in comparison with the multi-biometric

method introduced here (0.77% EER), for the same speaker database. However,

the results are close and the gain in privacy may be preferred to some loss in equal

error rate of the resulting system. Employment of trained classifiers with multiple

reference vectors in the feature extraction stage for the proposed unimodal text-

dependent verification system can be listed as reasons for this outcome.
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CHAPTER 6

Contributions and Future Work

In this thesis, we present three new biometric verification systems based mainly

on voice modality. First, we propose a text-dependent (TD) system where acoustic

features are extracted from individual frames of the utterances, after they are aligned

via speaker-independent, phonetic HMMs. Second, a text-independent (TI) speaker

verification method is implemented, inspired by the feature extraction method uti-

lized for our text-dependent system. Third, we introduce a new implementation

of the multi-biometric template framework of Yanikoglu and Kholmatov [12], using

fingerprint and voice modalities.

In the TD system presented in Chapter 3, we present a new method for

text-dependent speaker verification through extraction of fixed-length feature vec-

tors from utterances. The system is faster and uses less memory as compared to

the conventional HMM-based approach, while having state-of-the-art results. In our

system, we only use a single set of speaker-independent monophone HMM models.

This set is used for alignment, whereas for the conventional HMM-based approach,

an adapted HMM set for each speaker is constructed in addition to a speaker inde-

pendent HMM set (also called universal background model in that context). This

requires much higher amount of memory as compared to the proposed approach.

In addition, during testing only a single HMM alignment is required as compared

to two HMM alignments using a universal background model and a speaker model

for the conventional approach. Thus, verification is also faster with the approach

introduced in this thesis. The results from text-dependent verification system (0.61

and 0.39% EER) may be compared to the results of Ramasubramanian et al. (under

0.1% EER) who have used the same database under similar conditions [54]. They

use multiple utterances of the same digit to create digit templates which are used in

verifying utterances of a known digit sequence. However, their EER is lower through

cohort normalization using a closed-set verification scenario. In other words, the de-

cision mechanism does not only know about the similarity of the query utterance,

but also the similarity of the forgery utterances, which significantly improves veri-

fication performance. For future studies, delta coefficients of acoustic features can



be employed to include duration information of utterances. Besides, several other

features such as LPC and their combinations can also be used to decrease the EER

of the text-dependent system. Similarly, the results by Subramanya et al [10] who

created a database suitable for text-dependent verification from the original YOHO

database may also be compared to ours. However, their results of 0.26% should be

compared to the average of “men” and “women” groups (0.34%) in our work since

“boys” and “girls” groups do not exist in the YOHO database.

In Chapter 4, we propose a text-independent speaker verification system us-

ing phoneme codebooks. These codebooks are generated by aligning the enrollment

utterances using phonetic HMMs and creating MFCC-based fixed-length feature

vectors to represent each phoneme. For verification, we define a distance metric

measuring the total distance of a test utterance to the codebook normalized by

the length of the utterance. For benchmarking, a GMM-based text-independent

verification system and the proposed text-dependent speaker verification in chap-

ter 3 are implemented using the same enrollment and verification dataset. The

results of the text-dependent system (0.22% EER for the AG scenario) is superior

to that of the GMM-based system (0.31% EER for the AG scenario), whereas the

proposed text-independent system yields worst results (5.79% EER for the AG sce-

nario). Through creating phoneme codebooks, we tried to extract discriminative

speaker information at the phoneme level; however, the results are not very satisfac-

tory. Instead of employing deterministic models such as our approach, generation

of discriminative probabilistic models may yield better results. An alternative text-

independent system in the spirit of this work can be implemented by using a generic

phone recognizing HMM as a future direction. After the phone recognizer obtains

an alignment of frames to phonemes, a fixed-length feature vector representing the

utterance can be formed. Then as in the text-dependent method, simple distance-

based algorithms can be used for person recognition.

In Chapter 5, we introduce a new implementation of the multi-biometric

template framework of Yanikoglu and Kholmatov [12], using fingerprint and voice

modalities. In this framework, two biometric data are fused at the template level to

create a combined, multi-biometric template, in order to increase both security and

privacy of the system at the same time. In addition to the first implementation of

this framework, which used two fingerprints and showed increases in both security

and privacy, the implementation presented here also provides cancelability. Cance-

lability of the multi-biometric template is achieved by changing the pass-phrase ut-

tered by the speaker, since the generated voice minutiae depends on the pass-phrase

comprised of a unique sequence of phonemes. Our work for unimodal speaker verifi-

cation system as described in Chapter 3 yields slightly better results (0.34% EER)

in comparison with the multi-biometric method introduced here (0.77% EER), for
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the same speaker database. However, the results are close and the gain in privacy

may be preferred to some loss in equal error rate of the resulting system. Employ-

ment of trained classifiers with multiple reference vectors in the feature extraction

stage for the proposed unimodal text-dependent verification system can be listed

as reasons for this outcome. Furthermore, we have experimented with different

mapping techniques, including using PCA for projecting the MFCC coefficients into

2-dimension (x,y) with similar but slightly worse results. We are experimenting

with them further to obtain more reliable 2-dimensional features from voice with

high inter-class and low intra-class variation. Through more efficient mapping meth-

ods, larger amount data from MFCC coefficients can be saved and constructing more

discriminative multi-biometric templates can be possible. For future work, we also

plan to measure how the multi-biometric template scheme preserves privacy, by cal-

culating recall and precision rates for retrieving templates given only one of the

biometric modalities, as previously done by Yanikoglu and Kholmatov [12].
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