FAST, COMPACT AND SECURE IMPLEMENTATION OF

RSA ON DEDICATED HARDWARE

by

ERSIN OKSUZOGLU

Submitted to the Graduate School of Engineering and
Natural Sciences in partial fulfillment of
the requirements for the degree of

Master of Science

Sabanct University

June 2008

FAST, COMPACT AND SECURE IMPLEMENTATION OF

RSA ON DEDICATED HARDWARE

APPROVED BY:

Associate Prof. Dr. Erkay Savas:

(Thesis Advisor)

Associate Prof. Dr. Albert Levi:

Assistant Prof. Dr. Tlker Hamzaoglu:

Assistant Prof. Dr. Ayhan Bozkurt:

Post Doc. Thomas Pedersen:

DATE OF APPROVAL.:

il

ABSTRACT

RSA is the most popular Public Key Cryptosystem (PKC) and is heavily used
today. PKC comes into play, when two parties, who have previously never met, want to
create a secure channel between them. The core operation in RSA is modular
multiplication, which requires lots of computational power especially when the
operands are longer than 1024-bits. Although today’s powerful PC’s can easily handle
one RSA operation in a fraction of a second, small devices such as PDA’s, cell phones,
smart cards, etc. have limited computational power, thus there is a need for dedicated
hardware which is specially designed to meet the demand of this heavy calculation.
Additionally, web servers, which thousands of users can access at the same time, need
to perform many PKC operations in a very short time and this can create a performance
bottleneck. Special algorithms implemented on dedicated hardware can take advantage
of true massive parallelism and high utilization of the data path resulting in high
efficiency in terms of both power and execution time while keeping the chip cost low.
We will use the “Montgomery Modular Multiplication” algorithm in our
implementation, which is considered one of the most efficient multiplication schemes,
and has many applications in PKC.

In the first part of the thesis, our “2048-bit Radix-4 based Modular Multiplier”
design is introduced and compared with the conventional radix-2 modular multipliers of
previous works. Our implementation for 2048-bit modular multiplication features up to
82% shorter execution time with 33% increase in the area over the conventional radix-2
designs and can achieve 132 MHz on a Xilinx xc2v6000 FPGA. The proposed
multiplier has one of the fastest execution times in terms of /atency and performs better
than (37% better) our reference radix-2 design in terms of time-area product. The results
are similar in the ASIC case where we implement our design for UMC 0.18 pm
technology.

In the second part, a fast, efficient, and parameterized modular multiplier and a
secure exponentiation circuit intended for inexpensive FPGAs are presented. The design
utilizes hardwired block multipliers as the main functional unit and Block-RAM as
storage unit for the operands. The adopted design methodology allows adjusting the
number of multipliers, the radix used in the multipliers, and number of words to meet

the system requirements such as available resources, precision and timing constraints.

il

The deployed method is based on the Montgomery modular multiplication algorithm
and the architecture utilizes a pipelining technique that allows concurrent operation of
hardwired multipliers. Our design completes 1020-bit and 2040-bit modular
multiplications” in 7.62 us and 27.0 us respectively with approximately the same device
usage on Xilinx Spartan-3E 500. The multiplier uses a moderate amount of system
resources while achieving the best area-time product in literature. 2040-bit modular
exponentiation engine easily fits into Xilinx Spartan-3E 500; moreover the
exponentiation circuit withstands known side channel attacks with an insignificant
overhead in area and execution time. The upper limit on the operand precision is
dictated only by the available Block-RAM to accommodate the operands within the
FPGA. This design is also compared to the first one, considering the relative advantages

and disadvantages of each circuit.

* With a multiplication engine that utilizes half of the device (i.e. which use 10 multipliers)

v

OZET

RSA, giinlimiizde en sik kullanilan Ag¢ik Anahtarli Sifreleme (AAS) tiiriidiir.
Daha o6nce hi¢ karsilasmamis iki tarafin birbirleri arasinda gilivenli bir iletisim kanali
olusturabilmesi i¢in AAS sistemleri kullanilir. RSA’de en temel islem modiiler carpim
islemidir ve Ozellikle kullanilan anahtar 1024 bitten uzunsa, bu islem ¢ok yogun bir
hesaplama giicii gerektirir. Giiniimiiziin kisisel bilgisayarlar1 birkag RSA islemini bir
saniyeden kisa bir zamanda bitirebilirken, avugi¢i bilgisayarlari, cep telefonlar1 ve smart
kart gibi az islem giiciine sahip ortamlarda, bu yiiksek hesap giicli gerektiren iglem i¢in
kullanilacak ilave donanima ihtiya¢ vardir. Buna ek olarak binlerce kisinin ayni anda
erisim isteyebilecegi web servis saglayicilarinda, bu islem, bir performans darbogazi
olarak goriinebilir. Donanim i¢in gelistirilen bazi1 6zel algoritmalar sayesinde ¢ok biiyiik
Ol¢ekte paralel hesaplamalar yapilabilir ve boylece donanimin kullanim orani artirilarak
hem enerji harcamasi diisiiriiliir, hem de toplam islem zamani kisaltilir. Bu amagla, en
verimli modiiler ¢arpim islemlerinden biri olarak bilinen ve bircok AAS alaninda
kullanilan “Montgomery Modiiler Carpim” algoritmasini kullanacagiz.

Ilk olarak “2048-bitlik ve 4 tabaninda ¢alisan Modiiler Carpim” dizaynini
anlatacagiz ve bunu daha onceki ¢alismalarda sik¢a kullanilan 2 tabanindaki modiiler
carpim devreleriyle karsilastiracagiz. Bizim devrenin, diger devreleri simule etmek igin
yaptigimiz referans devreye gore calisma hizinin % 82 arttigini ve bunu sadece
%33’lik bir alan artisiyla gerceklestirdigini gordiik. Ayrica, Xilinx xc2v6000
FPGA’inde 132 MHz’de g¢alisan bu devre, referans dizayna gore %37’lere varan
oranlarda, zaman alan ¢arpimini azaltti. Benzer kazanimlari, UMC 0,18 um teknolojisi
i¢cin sentezlenen devre ile de elde ettik.

Ikinci boliimde ise nispeten ucuz FPGA’lere uygun, hizli, parametrik ve yan
kanal ataklarina kars1 dayanikli bir modiiler ¢carpim devresini ve bir {is alma devresini
sunuyoruz. Bu dizayn, FPGA iizerinde bulunan ¢arpim birimlerini ve blok RAM’i
kullanacak sekilde gelistirildi. Dizaynimizda carpim islemi i¢in kullanilan bilesenlerin
taban1 (radixi), ¢arpim iinitelerinin sayis1 ve toplam word sayist parametrik olarak
istenen Ozelliklere gore ayarlanabilir. Mimari yapida pipelining teknigini kullandik ve
bu bize yiiksek frekanslarda, ayni anda bir¢ok c¢arpim islemini yapma 06zelligi
kazandirdi. Dizaynimiz 1020-bitlik ve 2040-bitlik modiiler ¢arpim islemlerini Xilinx
Spartan-3E 500 FPGA'’i lizerinde sirastyla 7,62 us ve 27,0 us’de bitirmektedir ve bu

Olgiimler FPGA’de bulunan carpim birimlerinin sadece yarist kullanilarak elde
edilmistir. Dizanimiz daha 6nceki devrelerle karsilastirildiginda en diisiik alan zaman
carpimini elde etti. Ayrica 2040-bitlik iis alma devresinin Xilinx Spartan-3E 500 ¢ipine
kolaylikla sigabilecegini gordiik. Kullandigimiz iis alma devresi, bilinen tiim yan kanal
ataklarina karst korumali bir sekilde dizayn edildi ve bu koruma ¢ok ufak bir ek
donanim getirilerek basarildi. Us alma devresi, islemde kullanilan sayilar blok RAM’e
s1gdig siirece her biiyiikliikteki say1 icin kullanilabilir. Bu dizanimiz ayrica ilk dizaynla

da avantaj ve dezavantajlari agisindan karsilastirildi.

vi

Dedicated to my family...

vil

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Associate Prof. Dr. Erkay Savas, for his
never-ending support and patience. His trust on my success encouraged me through the
hard times during this project, helped me finish my thesis in time. We have spent long
hours together to solve some problems, when I almost gave up hope. His energy has
given me enough power to handle the difficulties I encountered in my master years. I
really appreciate his advices and guidance concerning this thesis.

Throughout my master years, I am proud to be supported by TUBITAK, so that I
can have more time to work on my project. The financial support provided by
TUBITAK helped me very much.

Finally and most importantly, I want to thank my family, who always supported
and encouraged me from the very beginning. With their high motivation and positive
attitude to my academic life, I have succeeded in finishing my Master of Science degree

on such a great university.

viii

Table of Contents

List of Terms and SYMDOIScccuiiiiiiiiiiiiieiieie et Xi
LSt OF FIGUIES ...ttt ettt ettt et e st eebeeeaaeenbeesnbeenseas xiil
LSt OF TADIES ..ottt et et Xiv
1 Background INnformation............cccueeriieiiiieiieiieeieeeieeeece et 1
1.1 Asymmetrical Cryptographyc.ccccveeeuieriieiieeiiieiieeieeieeeeeeree e eree e 1
1.1.1 Euler’s Totient FUNCHONcceeiuiriiiniiiiieieseeeeescee e 2
1.1.2 Fermat’s Little TheOremcccceoeriiiriiiniiienieieeeseeceee e 2

1.1.3 RSA Alorithm BasiCs.......cccccuirriiiiiiiiieiieiieesie ettt 3
1.1.4 The Visualization of RSAc..ccociiiiiniiiiieeee e 3

LIS RSA SEUP..coiiiiiieeteeeee ettt e 4
1.1.6© An RSA EXaAMPIC...oooiiiiiiiiiieiicieeeeete ettt 5
1.1.7 Modular EXponentiationccceeeieeriienieeiieeniieeieenieeieenieesveeieesneeenens 5
1.1.8 Modular MUultipliCation..........ccueeruierieeriieniieeieeriie ettt 6

1.2 Side Channel Attacks and Countermeasures............coceveeveerieneenereeneenueneennes 7
1.2.1 Simple Power Analysis Attack (SPA)cccooiriiriiiniininicicecceeee 8
1.2.2 TImMing AtACKS ..eooueiiiieiiiieiiee ettt 8

1.2.3 Fault Injection Attacks.........cccouieiiiiiiiiiieieeieeeeeee e 8
1.2.4 Differential Power Analysis Attack (DPA)cccoooiiiiiiiiiiiiiieeeee 9

1.3 Dedicated Hardware BasiCsccceevvuieiieniiiniieiiieieee e 11
L30T ASICS ettt ettt sttt sttt et ne e 11
1.3.2 FPGA ettt ettt sttt ae s 12

2 Radix-4 Implementation of 2048 bit Modular Multiplication on ASIC................. 14
2 BN 103 5 11411 o SRR 14
2.1.1 Bo0Oth RECOAING ...ccovviieiiieeiiiece et 14

2.2 ATCRITECIUTE...c..eiiiiieiiieee ettt et 16

X

2.3 Theoretical Analysis of Performance...........ccccceeevveeiiieeciieniiiecie e 20

B 4 1111 ST TSR 21
2.5 CONCIUSION. ...ttt sttt et et et esaeenaeeneesaeenneas 24
Parametric, Secure and Compact Implementation of RSA on FGPA 25

3.1 CIOS MEthOd ...ttt e 26
3.2 The Multiplication ENGINecccccieiiieiiieriieiiecie ettt 27
32,1 DeSI@N CrIteria...ccveieeiieiieriieeiieriieeteeeieeeteeeeeereeseeeeseesseesnseeseessseenseennnes 28
3.2.2 Implementation DetailsS.........ccceeiieeiieiiieiiieiieeieeeecie e 29
3.2.3 Parametric DeSI@N.......ccoiiiiieiiieiieeiiecie ettt 30

3.3 Simulation RESUILSc.ooiiiiiiiiiiiieeceee e 31
3.4 Synthesis RESUILS.......ccoiiiiiiieiieie et 32
3.4.1 Setup and Synthesis Configuration............cecceeeeueerierciienieeiieenieeieeieeene 32
342 Synthesis RESUILSccccoeciiiiiiiiiiiie e 33

3.5 Performance ANalySisccccccieriiiiiieniieiiienie ettt 34
3.6 Compatibility Problemscccceeiiieiiiiiiieiiieiieeie et 38
3.7 Conclusion and Future Workcccceeiiiiiiiiiiiiie e 39
Summary of CONtrIDULIONS.c..eevviiiiiiiriieiene ettt 41

FN] 0153 T L SRS U SRR PRSPPI 43
RETETEINCES. ...ttt st st 44

YV VvV VYV V vV V V V Y

Y

List of Terms and Symbols

- -6
ps: micro seconds: 10™ seconds.

ASIC: Application Specific Integrated Circuit: Type of hardware that is
manufactured to realize specific calculations (It cannot be reprogrammed).

Block RAM: The type of storage in an FPGA, that has write, read and address
ports and write enable input. Only one “data word” can be requested and/or can
be written in one clock cycle.

C: Ciphertext: Encrypted message.

CIOS: Coarsely Integrated Operand Scanning: A multi-precision multiplication
algorithm

CPA: Carry Propagate Adder.
CRA: Carry Ripple Adder

CRT: Chinese Remainder Theorem: A technique that can be used to speed up
modular exponentiation.

CSA: Carry Save Adder.
d: Private key.
DPA: Differential Power Analysis.

DSP48: Data path element present in advanced FPGAs, that is capable of fast
multiplication and addition. (Digital Signal Processor)

DSS: Digital Signature Standard
e : Public key.
ECC: Elliptic Curve Cryptography

FPGA: Field Programmable Gate Array: Type of hardware that has some
memory and LUT’s that can be re-programmed by a computer.

Gate: Basic building blocks of ASIC’s.

LUT: Look up Tables: Logic functions in a circuit are mapped to FPGA’s
SRAM based programmable storage units.

m: Plaintext: Numerical representation of the message to be encrypted.

xi

YV V V VY V¥V

A\

MM: Montgomery Multiplier.

ms: mili-seconds: 10~ seconds.

n: (p.q) Modulus for multiplications in RSA or bit length of the modulus
P, q: Large primes (512 bit or longer)

PE: Processing Element (The unit structure which the circuit is built upon) or
total number of Processing Elements

PKC: Public Key Cryptosystem.

Prime Numbers: Positive integers that can be divisible by only itself and one
without remainders.

Radix: Base of a number.

Register: Storage unit that can read or written synchronously both in ASIC’s
and FPGA’s.

RSA: A PKC algorithm found by Rivest, Shamir and Adleman in 1978.

s: Total number of words (such as two 17-bit words)

Slice: Basic building blocks of an FPGA, which consists of two LUT’s, two flip-

flops and two carry chains.
SPA: Simple Power Analysis.

SRAM: Static Random Access Memory: Type of storage that is made of four
transistors and does not need a refresh signal.

w: Bit length of a single word (e.g. 17-bit words)

®(n) : Count of the numbers which are relatively prime to n. (Euler’s Totient
Function)

Xil

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

List of Figures

Visual Depiction Of RSA........ooiiiiieeeeeeeeeeeee e 4
N-ReSIAUE FOTM ..o 7
A hree-bit CSA ..ottt 17
Carry Propagate Adder.......c.cooviiiiiiieiieecie et 18
Radix-2 Montgomery MUltiplier.........ccccveervieeiiieeiiee e 18
Radix-4 Montgomery MUltiplier...........coocieiiiiiiiiiiiniieiee e 19
Execution Graph of The Parallelized CIOS algorithm..........cccccocevvevinnencn. 29
The Structure of a Processing Elementccocoeeviieiiiniiienienieeieeieeene 30
Waveform of One Stream..........coocveiiiiiiiiiiiiiiice e 43

xiii

List of Tables

Table 1. BOOth RECOAINGccuviiiiiiieiiiecieeee et 15
Table 2. Time Complexities for One 2048-bit Modular Multiplication............c..c......... 20
Table 3. Xilinx Synthesis Tool (XST) Synthesis Results..........c.ccceevueriienciiinienieenens 21
Table 4. Overall Speed Comparison for 2048 bit modular multiplication 22
Table 5. The Time Area Products for FPGA designs........cccccveevvieeciieeniiieniieeciee e 23
Table 6. The Time Area Products for ASIC designsccccoceevervineenieniineenienicneenens 23
Table 7. Clock Cycles Required for One Multiplication (radix=2"7")cc.cooo.... 31
Table 8. Utilization Ratios (%0) ...cc.eeecvieeiiieeiie ettt e ens 32
Table 9. Synthesis Results for Multiplication COre..........c.eeveerieeriienieeniienieeieeeveeeeens 33
Table 10. Time Area Productscc.ooiiiiiiiiiiiieieee e 33
Table 11. Synthesis Results for 1020-bit exponentiation Circuit........c..ceeeeveerveneruennen. 34
Table 12. TIMe COMPLEXILICS.....ecevieriieiiieiierie ettt eeete et ete et e seae et e sereebeessneeseens 35
Table 13. Execution Times for 1024-bit modular multiplicationccceevveeevrennnnns 36
Table 14. Execution Engine Performance: 1024-bit Exponentiation Results 37
Table 15. Time-Area products normalized to proposed implementation........................ 38
Table 16. The Required Clock Cycles for Compatible Versionscccceceeerueerveennnnns 39

X1V

Algorithm
Algorithm
Algorithm
Algorithm

Algorithm

w N

List of Algorithms

Binary Exponentiation (left to right) ... 5
Radix-2 Montgomery Multiplication..... 6
Montgomery Powering Ladder...ieeeeeeenneeneee, 9
Radix-4 Montgomery MultiplicatioN.......... 16
CIOS Montgomery Multiplication ..., 27

XV

1 Background Information

We can explain the term “cryptology” as the science of keeping data secret by
preventing unauthorized access. Nowadays, as the Internet and the technology are
evolving at a fascinating rate, cryptology plays a crucial role in many areas in our lives
like accessing our bank account online, registering our courses, using credit cards and
so on. It is so integrated that many of us are not even aware.

We can divide the cryptology into two parts: Symmetrical and asymmetrical.
Former has only one key, which is used in both encryption and decryption. Its main
application is ciphering large volumes of data, whereas the latter has two distinct keys,
(one key for encryption, the other for decryption) and is used for key exchange and
digital signature. Asymmetric Key Cryptosystems are also called Public Key
Cryptosystems (PKC).

The functions used in the asymmetrical cryptology depend on the “Number
Theory”, which is the branch of pure mathematics related with the properties of
numbers in general, and integers in particular, and also other problems that occur from
their study. The mathematical background of the algorithms will be explained while
giving the details of the important functions.

At first, we will lay out the basic properties of asymmetrical cryptography and
its main uses. In the following section, the side channel attacks (the attacks related not
to the algorithm but to the implementation) and their countermeasures will be discussed.

In the last part of this section, we will compare two dominant hardware platforms.
1.1 Asymmetrical Cryptography

The problem of common key delivery and management among communicating
parties is the main use of asymmetrical cryptography (which is also called Public Key
Cryptosystem [PKC]). Moreover, PKC’s can be used for digital signature. There are

mainly six algorithms (or methods) that are commonly used in PKC:

e RSA[1]
e Diffie-Hellman [12]

e Elliptic Curve Cryptography (ECC) [13]
e El-Gamal [27]

e Digital Signature Standard (DSS) [28]

e Paillier [29]

In all PKC’s, there are two keys, one public key (known by anybody) and one
private key (only known by the owner). Public keys are used to encrypt messages and
verifying the signatures; on the other hand, private keys are used to decrypt the
ciphertext and sign messages.

Private and public keys are related to each other; however one cannot derive the
private key by knowing only the public key in the practical computation limits for
adequate key lengths. PKCs are similar to one way functions, where anyone can
encrypt a message (or verify a signature), but no one can decrypt a message (or sign a

message) without the related private key.
1.1.1 Euler’s Totient Function

In Number Theory, the Euler’s Totient of a positive integer # is defined to be the
number of positive integers less than or equal to # that are co-prime to n. The function is

calculated as follows:

o(n) = nﬂ(l —%)

pln

For instance:

1 1 2 4
<1>(45)—45><<1—§><1—§>—45 x§x§—24

1.1.2 Fermat’s Little Theorem
Fermat's Little Theorem states that if p is a prime number, then for any integer a,
(a” — a) will be evenly divisible by p.

@’ = a (mod p)

We work in (mod #n) for the base and (mod ®(»)) for the exponent and so we can

generalize Fermat’s Little Theorem using Euler’s Totient Function:

2

a®™ =1 (mod n) (where n and a is relatively prime)

1.1.3 RSA Algorithm Basics

Rivest, Shamir and Adleman implemented a novel scheme for key exchange in
1978 [1]. It depends on the “Integer Factorization Problem” which is hard to solve if the
bit length of the operands is adequately large’. We introduce three well-known
characters in the cryptology world to describe RSA: Alice, Bob and Eve. Alice and Bob
want to communicate through a common channel, which is wire-tapped by Eve. We will
assume that Eve is a passive adversary who can see every message going through the
channel; however she is unable to alter it. Alice and Bob have to share a secret key to
encrypt the data they are sending via symmetrical cryptography; therefore, at first they

have to exchange the common key using this channel.

1.1.4 The Visualization of RSA

e Alice has a safe and its key. She sends the safe unlocked to Bob, but keeps
the key.

e Bob generates the common key (using a random number generator) to be
used in the symmetrical cryptography and puts it into the safe and locks it.

e Bob sends the “locked safe” back to Alice.

e Alice (using the key of the safe) unlocks the safe and gets the hold of the
common key (which is generated by Bob).

e As they have the same secret key, they can communicate by a symmetrical

cipher using that key.

Figure 1 depicts each step of this communication.

" Today’s most common use is 1024 bits.

Encrypt

Decrypt

Common 2.
Key

Figure 1. Visual Depiction of RSA

1.1.5 RSA Setup

For k bit security level, following operations must be carried out by Alice:

e Find two distinct (k/2) bit long prime numbers (p, q)
e Calculate n=p.q
e Calculate Euler’s Totient Function ®(n)= (p-1)(g-1)
e Generate a random number e (e<n), which is relatively prime to ®(n); in
other words, GCD" (®(n), e) must be 1.
o e is the public key.
e The multiplicative inverse of e in mod ®(n) gives out private key, d, which
is calculated by “Extended Euclidian Algorithm”:
o d=e' mod O(n)

After these computations Alice sends {e, n} to Bob and keeps d.

* . .
Greatest Common Divisor

1.1.6 An RSA Example
Alice has to perform the following calculations:

e p=13 and g=11 (randomly choose two prime numbers)

e n=p.q=143

o D(n)=(p-1)(g-1)=12 x 10=120.

e ¢=7, (randomly chosen) check GCD(120,7)=1

¢! (mod 120) = d = 103 (calculated by Extended Euclidian Algorithm)

Then Alice sends {e=7, n=143} to Bob.

Bob has a secret message m=111 (m<n). He must calculate C=m" (mod n)
C=111"= 45 (mod 143).

Bob sends “C=45" to Alice. Alice decrypts the message using her private key d:
457=45'"% = 111 (mod 143)

1.1.7 Modular Exponentiation

As the previous example indicates, RSA is based on modular exponentiation.
However, if we try to perform an exponentiation operation of a large number by just
successive multiplying, it can take years to calculate for large exponents. Instead, we

can use “Binary Exponentiation” (or Square and Multiply algorithm):

Algorithm 1: Binary Exponentiation (left to right)

Inputs: m—>base, e—2>exponent (ex-1,€x-2,...,€1,€0)2
Output: result
1. result€l
2. for i=k-1 to 0 do
a. result€result * result
b. if (e;==1) then result€result*m

3. return result.

The above algorithm is valid both in this normal form and in modular arithmetic

form. However, Algorithm 1 has some weaknesses against side channel attacks and

timing attacks (see Section 1.2), therefore we must use a more secure algorithm. As the
steps 2.a and 2.b in Algorithm 1 indicate, the core operation in modular exponentiation

is modular multiplication.
1.1.8 Modular Multiplication
We can compute modular multiplication by the following operations:

e Ordinary multiplication (or Shift and Add Method)

e Trial division to find the remainder.

This technique is acceptable for one or two multiplications; however the loops in
RSA will be iterated thousands of times; therefore, we need a better algorithm to solve
this problem.

Modular multiplication is the most time consuming operation in RSA and entails
prohibitively expensive multiplication and subsequent division operation; and thus is
also very demanding on hardware resources. Montgomery Multiplication (MM)
algorithm [2] enables these costly operations to be performed easily and efficiently both
in hardware and software because it replaces the time-consuming division operation in
the reduction phase with simple shift operations. The method consists of repeated
additions and shifting; therefore it is well-suited for hardware implementations. The

Montgomery Multiplication algorithm for radix-2 is given in Algorithm 2.

Algorithm 2: Radix-2 Montgomery Multiplication

INPUT: X = Multiplicand, (Xk_l,xk_2,...,X1,XO)2, X<N
Y = Multiplier, Y<N
N 0Odd modulus

OUTPUT: MM (X,Y,N)=R = X.Y.2™® (mod N) where
k = bit length of N.

1.R € 0;

2. for 1 from 0 to k-1:
a. if X;=1, then R€R+Y;
b. if R is odd, then R€R+N;
c. R&ER/2

3.1if (R>N) then R€&R-N;

4. return R

Montgomery multiplication is not efficient when we perform only a few
multiplications, because MM operates in N-residue class. The normal form and the N-

residue form are mapped to each other by a one-to-one function (Figure 2).

Normal Form .
ormatro N-residue Form

A A
B Multiply with 2%
MM(X, 22X N) B
c c
D D
= Divide by 2*
E

Figure 2. N-Residue Form

To convert the operands to N-residue form, we have to calculate MM(X, 2%, N)
= X.2" = X at first. Now, we can use X and its multiples in Montgomery loop; because
MM(X, X, N)= X2 After the last iteration, we have to use MM one more time to
convert the result from N-residue form to normal form by multiplying with one, i.e.
MM(R, 1, N)=R. There are two extra multiplications in one exponentiation, and as the
number of iterations in RSA loop is very large (>512), these additional multiplications

will be negligible for practical purposes.

1.2 Side Channel Attacks and Countermeasures

Although the RSA algorithm with certain key sizes is considered safe in the
mathematical sense, straightforward implementations of modular exponentiation on
hardware (and also software) may have vulnerabilities that can lead the attackers to
recover the secret key easily. All implementations (on both hardware and software)
have some unintentional, yet observable outputs (through side-channels), which may
compromise the desired security level substantially. Therefore, we have to mask the
side-channel information such as the variations in the power consumption of the device
and execution time of the algorithm that depend on the secret key. We also have to

prevent the faulty outputs or so-called safe-errors that can be easily induced by spikes in

the input voltage or any other facile means. Below are the known attacks and their

countermeasures:
1.2.1 Simple Power Analysis Attack (SPA)

In the binary exponentiation algorithm (Algorithm 1), there are two operations
(square and multiply) with different power characteristics. In most hardware
implementations, squaring consumes less power than multiplying; therefore, by
analyzing the instantaneous power consumption of the device, an attacker can deduce
the secret key even in a single run. Therefore, we have to choose an algorithm that has a

more regular execution pattern than the ordinary square and multiply method.
1.2.2 Timing Attacks

We can make Algorithm 1, resistant against SPA attacks by squaring and
multiplying in each step regardless of the exponent (using different variables) and in the
next iteration, we have to select the correct variable according to the exponent, therefore
in case of having 0-bit in the exponent, we have performed one dummy multiplication
(we will use the outcome of the squaring operation only). This method is called
“Square-and-multiply-always” algorithm. However, when Chinese Remainder Theorem
(CRT) is used for faster execution times, there will be compare and subtract steps
(which is comparing message m with secret primes “p and ¢”) at the beginning of the
algorithm. By finding three distinct m values, (m;< p < m; < g < m3) (The execution
time will be largest for ms); the attacker can find the ranges of the secret primes (i.e. p

and ¢g). A brute force search in these ranges can be used to factorize n.
1.2.3 Fault Injection Attacks

Square-and-multiply-always algorithm simply masks the Hamming weight of
the exponent. However, this method cannot resist against the so-called “C and M safe-
error” attacks depicted in [20], which are based on faults inflicted on dummy
multiplications and used memory locations respectively, which do not change the final
outcome. This allows the attacker to distinguish the dummy operations and

consequently obtain the secret key bits.

Algorithm 3: Montgomery Powering Ladder

Inputs: m = input message,

d = (d¢-1,...,dp) exponent.
Output: C=m"
1. Ro€1
2. Ri€m

3. for i=t-1 to O
a.if (di==1)
Ro€RoR: Ri€ (R1)”* //in parallel
b. else
Ri€RiRg Ro€ (Ro)® //in parallel

4. return Rg

An efficient countermeasure to these attacks is to use the “Montgomery
Powering Ladder” algorithm (Algorithm 3) proposed in [20]. This algorithm
additionally provides parallelism for hardware implementations and is highly regular. A
fault induced in any step of the algorithm escalates to the end of the execution which
always produces an incorrect result; therefore the attacker cannot find any relation to the
secret exponent.

Many techniques can be employed to prevent outputting faulty results. As the
errors induced by C and M safe-error attacks are completely at random, running the
algorithm twice and checking the equality of the two results can easily prevent these
attacks. Another method is after the calculation of m® = C (mod n), checking whether
C°= m (mod n), where e and d are public and private keys respectively, however both
methods are costly. In case a countermeasure is needed, the extra check proposed in

[23] can be incorporated to the data path with virtually no cost.
1.2.4 Differential Power Analysis Attack (DPA)

If a cipher algorithm is deterministic, an attacker uses the implementation as an
encryption oracle and encrypts as many messages as possible. Statistical analysis of the
differences in the power traces sampled for different input messages may reveal secret
exponent “d”. In “the doubling attack” which is explained by Yen et al [21], the
implementation can be broken in only two runs (one with input message m, other one

with m?).

A well-accepted countermeasure is to embed randomness into the algorithm so

that the power traces of each run will be different, even if the same input values are

used. There are three kinds of randomization methods that can be used in modular

exponentiation m‘= C (mod n):

(1)

(2)

(3)

Message Blinding: We choose a random variable » < n and calculate 7 (mod n)

and multiply this with C’:

(Cxr)? (mod n) = C? x r*! = m x r (mod n).

At the end of exponentiation, we can get the ciphertext C back by multiplying it
with 1" (mod n). The multiplicative inverse of the random value r has to be
computed on the fly, which is naturally costly and undesirable from the

implementation point of view.

Modulus Blinding: The modulus 7 is multiplied by some random variable » (here
r around 2'° is enough for practical purposes) and all exponentiation operation is
carried out in mod (n x r) [23]. We need to reduce the result to (mod #) at the end
of the calculation. In this method, we need to compute additional variables’,

which makes this method time costly.

Exponent Blinding: We can add random multiples of ®(») to the exponent before
the main computation. At the end of the exponentiation, there is no need for
correction since m*"*™ = m? (mod n); therefore, this method of blinding costs
considerably less than the other methods. For all practical purposes a 17-bit
random number (the word size used in this implementation) r is sufficient

resulting in (1/sx100) percent overhead, where s is the number of words in the

exponent d.

There is another type of attack where all precautions to prevent side channel

attacks, except for modulus blinding, fail. When the input message is selected as

m = (n-1), there will be two intermediate results (see [21]) depending on the related bit

* ciphertext

" For 2N < n < 2N, we need to calculate both 2*N (mod r) and -(19)" mod 2~, and 2*¥"** (mod n) and

~(no)" mod

2% wherer is a 16-bit integer for the Montgomery multiplication.

10

of the exponent: 1° and (n-1)". The instantaneous power graph of a single run will
immediately shows two distinct characteristics for these two possible outputs; therefore,
as a simple countermeasure, we propose to halt the calculation if the input message is

selected as (n-1), which is easy to check.

1.3 Dedicated Hardware Basics

There are two dominant types of dedicated hardware in the market: ASICs and
FPGAs. The main difference between these two is re-programmability. ASICs
functionality, once manufactured, cannot be changed at all; however FPGAs can be re-
programmed many times. On the other hand, ASICs take the advantage of being fine
grained; therefore have a higher computation performance and lower power
consumption when compared to FPGAs.

Both hardware platforms have the technology metric, “the feature size* (like 90
nm or 65 nm). As the feature size shrinks, maximum possible frequency increases, the

power consumption and the cost of the chip decrease.

1.3.1 ASICs

ASIC is an integrated circuit (IC) customized for a particular use, rather than

general-purpose use. A typical ASIC generally may have the following components:

e 32-bit CPU (maybe 16-bit or 64-bit) = Central Processing Unit: The unit which
carries out sequential operations those are not “dense”.

¢ ROM - Read Only Memory: Non-volatile memory which is generally used to
store constants and conversation tables.

¢ RAM -> Random Access Memory: Volatile memory which holds the data
required by current operations.

e Flash Memory = Non-volatile memory, which can be written and read.

" For even exponents
" For odd exponents

* The minimum feature size is the width of the smallest line or gap that appears in the design.

11

e DSP - Digital Signal Processor: A unit that is specifically designed for

performing frequently used operations (like MAC™ operations)

The complexity of an ASIC is usually measured with the number of logic gates
it has (e.g. 10 k gates or 2 M gates). According to the number of gates, the ASICs can
be divided into groups like: VLSI (Very Large Scale Integration) or ULSI (Ultra Large
Scale Integration).

ASICs have two types of development procedures: Full-Custom versus Standard
Cell Library based designs. In full-custom designs, special acceleration and PAR (Place
and Route) methods can be applied on smaller scale (which can be layout level) for
better performance. In “Standard Cell Library” based designs, the functions in HDL'
code are directly mapped to predefined cells like AND2, OR4, NAND3, FF, etc. by
CAD tools.

1.3.2 FPGA

The basic building block of FPGAs is called slice. Each slice has two flip-flops
as storage units and two 4-input SRAM based LUTs* which can be programmed as
combinational functions, two independent fast carry chains, and MUXs among them
[18]. Each slice can assume the role of a LUT, shift register or distributed RAM. The
term “CLB" can be used for describing two or four slices. According to their

manufacturing purposes, FPGAs can have the following structures:

e Embedded processors (soft or hard): Some expensive operations can be
performed in hardware (by LUTs), while less complex and sequential operations
can be carried out by a general purpose CPU. The balance between hardware
and software will provide the best time area product according to the design
specifications.

e DSP units: Multiply and Accumulate (MAC) operation is frequently used in
DSP, therefore some FPGAs have dedicated blocks (e.g. DSP48 in Xilinx Virtex

4 Series) to perform multiplication and addition operations efficiently.

" Multiply and Accumulate

" Hardware Description Languages, such as Verilog and VHDL.
* Look Up Tables.

¥ Configurable Logic Block

12

Multipliers: While the adders can be implemented efficiently with LUTs which
utilize fast carry chains, the multiplication operation implemented by LUTs
performs poorly. Therefore many FPGAs have dedicated multiplication units
that support up to specified bit length (e.g. 17 bit unsigned operands).

Dual-port Block RAM (BRAM): As the distributed memory consumes slices,
which are one of the most important resources in FGPA designs; large portions
of data must be stored in Block-RAMs. Block-RAMs have synchronous write

and read ports which provide fast access times.

1.3.3 The Differences between ASICs and FPGA

The advantages of FPGA platform can be summarized as follows:

Field re-programmability: The implementation can be upgraded or changed
at any time without any cost. The user just needs to upload the new bit stream.
Shorter time-to-market: There is no need to deal with layouts, masks or other
manufacturing steps in FPGA designs.

No upfront NRE": The FGPA design flow is cost effective when small
volume of chips is needed.

Simpler design cycle: Automated software takes care of all design steps. (from

synthesis to PAR stage)

On the other hand, ASIC has beneficial properties like:

Full custom capability: ASICs are custom built circuits; therefore the
designers have the opportunity to optimize the implementation in terms of both
area and speed.

Higher raw internal clock speeds: ASIC implementation allows higher
frequencies, even if their feature size is the same with the FPGAs.

Lower unit costs: For very high volume productions, the cost per chip in
ASICs is lower than that of FPGAs.

Smaller form factor: The area utilization is higher in ASICs when compared
to FPGAs, because some sources have to be wasted in an FPGA, when the

circuit cannot exactly fit the board.

* .
non recurring expenses

13

2 Radix-4 Implementation of 2048 bit Modular
Multiplication on ASIC

Previous studies with pipelined approach* for modular multiplication ([6], [8],
[9], [11]) generally suffer from high latency because of the data dependency among
processing elements (PE) in ASIC implementations. Although their performance can be
adjusted by various parameters such as bit length of the words and number of PEs, they
have an upper speed bound on which adding more PEs have no beneficial effect.
Likewise, conventional radix-2 based non-pipelined organizations ([7], [10]) cannot be
optimized further than N clock cycles (bit length of the modulus); for instance, the
fastest implementation [10] needs N+ clock cycles. As speed being our primary
concern in this ASIC implementation, we focus on decreasing the total clock cycles
with radix-4 scheme, with minimal area. We lay out the synthesis results for both UMC

ASIC library and FPGA.

2.1 Algorithm

The MM can be used with different radices. Popular choices are radix-2, radix-4
and radix-8 [24]. In [25], it is shown that radix-4 would be a wise choice in terms of
speed and area. (Radix-2 is slow, and radix-8 is under-utilized). Higher radices than 8
need much more space and necessitate additional calculations, which reduce overall

efficiency and frequency.

2.1.1 Booth Recoding

We have to express the multiplier, X, in MM using a different representation,
known as Booth recoding [26], where the digits are {-2,-1, 0, 1, 2} for efficient radix-4
implementation (the multiple “3” is not used because it cannot be calculated easily by

shift and/or invert operations). The booth converter reads three consecutive bits of the

" The calculation is divided into simple stages that can be overlapped to speed up the operation.

14

multiplier, X, to decide which multiple of the multiplicand, Y, is going to be added. The

conversion (-2X; + X(i.1) + X{(i.2)) is shown in Table 1.

For instance, with Booth recoding technique, 27 = (011011), can expressed as:

(beginning from i = 1, and adding 2 to i in each iteration since base is 4):

e Fori=1:110=-1 (empty bit is assumed as 0 i.e. i.;) = 0)
e Fori=3:101=-1

e Fori=5:011=2

27 = (2,-1,-Doon

Xi | X1y | X2y | Output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 -2
1 0 1 -1
1 1 0 -1
1 1 1 0

Table 1. Booth Recoding

We can check the recoding as follows:

1x4°=-1
-1x4'=-4
2x4°=32

The result is 32-4-1 = 27.
2.1.2 Radix-4 Implementation

In radix-2 MM, we add the modulus N to the partial result R, if R is odd, and
shift right afterwards (Algorithm 2). In radix-4 MM, we must add multiples of N to
make the result divisible by four, because we need to shift R to the right twice. We have
four possible multiples (0, 1, 2, 3) of N and as these values are in radix-4 modular
arithmetic, we can rewrite these possibilities as (0, N, 2N, -N). Therefore, all the

multiples of N we need, are easy to handle in hardware by just shifting and/or bitwise

15

inverting. For signed calculations, “two’s complement form” is used, so we must add
one (using carry-in of the adders) for negative Y (-N does not need this correction since
it is an odd integer). The radix-4 MM algorithm, which is similar to the radix-4
multiplier in [25] is given in Algorithm 4.

As the numbers used in Algorithm 4 are signed, they have to be represented with
one bit more than N, i.e. k+1. At the end of calculation, negative results must be

converted by one last addition of V.

Algorithm 4: Radix-4 Montgomery Multiplication

INPUTS: N is odd modulus
X is multiplicand, X=(0,0,Xx-1,Xx2,..,%X1,%X0)2 < N, X_1=0
Y is multiplier, Y<N
{} is used for bitwise concatenation.

OUTPUT: MMr4 (X,Y,N)=R = X.Y.2 %) (mod N) (k=2048)
1. R € 0;
2. for i from 1 to k+1 step 2:

a. RER + Booth{X;, X(-1),X-2)}*Y

b. if ({R;,Re}+ {Ni,Ng})%4==0) then RE€R+N;

c. else if ({Ry,Ro}+{Np,0})%4==0) then RE€R+2N;
d. else if ({Ri,Rp}-{N;,Ng})%4==0) then R€R-N;
e. R€R/4

3. return R

2.2 Architecture
2.2.1 Carry-Save Adder (CSA)

We need a very fast yet small adder for the Montgomery modular multiplication
algorithm, as the addition will be the core operation that will be repeated millions of
times. Carry ripple adder can be used for smaller operands; whereas carry propagation
for larger numbers (like 1024 bit) will be a significant limitation on the whole circuit.
As we are adding to the same number R in each step of the algorithm, we can use carry
save adders as shown in Figure 3, whose longest combinational path is independent
from bit length of the operands. Overall critical path is just serially connected XOR
gates in the full adder. CSA takes three operands and reduces them to two and the result

is in redundant format. (i.e. sum and carry are calculated and stored separately):

16

X (3 bits) Y (3 bits) Z (3 bits)

A
Cin
Full Adder

S

1 -
Carry (4 bits) Sum (3 bits)

Figure 3. A three-bit CSA

2.2.2 Carry Propagate Adder (CPA)

At the end of each multiplication, we have to convert the result from redundant
form to normal form. As we cannot directly add these two 2048-bit integers (i.e. sum
and carry) in one clock cycle (due to hardware limitations), we have to divide this
process into sub additions. We used a 32-bit carry ripple adder (CRA) for 64 clock

cycles as shown in Figure 4.

The CPA has two 32-bit 64-to-1 MUX and one 2048-bit shift register. Two
2048-bit input registers (sum and carry) is part of the MM logic, not CPA; therefore we
only need one 2048 bit register for CPA.

17

-] carry [«— CRA (32-bit) |q--

1

|

1

1

E J—

! Bitwise OR

1

1

: ¥ A SR
: shift register >> ! [2047:2016]

| | mommmoo--- 1
| 1

Figure 4. Carry Propagate Adder”

In radix-2 implementation, we can add four possible values to partial product in

each iteration and these values are (0, N, Y, Y+N). One could pre-compute Y+N at first

* h 4
Sum Register Carry Register

2x1 MUX
Y O

Control
Unit
b

l v v ¥

32-bit 32-bit

64x1 MUX| |64x1 MUX CSA Unsigned
2x1 MUX
carry | sum N 0O
32-bit CRA 1
I A \ h 4 h 4 -w

Shift Register | ~5, | CSA Unsigned

carry | sum
@ [2049:1] L o1} |1l

[2049:1]
Figure 5. Radix-2 Montgomery Multiplier

*
Grey boxes are registers and [] is used for bitwise concatenation.

18

and then store it in a register, so using only one CSA array of 2048 bit would suffice.
Another approach (instead of one CSA array and one extra register of 2048 bit) is using
two CSA arrays and add N and Y on-the-fly, which turns out to be more efficient; as
depicted in Figure 5.

In radix-4 implementation, we need 12 pre-calculated numbers so storing all of
them will be redundant. (Four possibilities are from booth recoding of X (i.e. Y, 27V, -V,
-2Y) and three possibilities are from N (i.e. N, 2N, -N). Therefore we need to add these

numbers using two CSA’s like in the radix-2 case as shown in Figure 6.

I h 4
: . 5x1 MUX Booth Recoding
Sum Register Carry Register Y 0 .Y 2y -2Y'_ of X
|
B—
Control
¥- Unit
32-bit 32-bit .
64x1 MUX| |64x1 MUX CSA Signed
carry sum 4x1 MUX
1 N O -N 2N
32-bit CRA |
|Sh'ftR ist \ ESA; d o [3:2]) |[3:2]
ift Register |~ igne
carry sum
Correction
[1:0] q Carry |
to be added in
[2049 2] [1 ;0] the next cycle
[2049:2]

Figure 6. Radix-4 Montgomery Multiplier

In Figure 6, the CSA arrays are signed as the inputs can be negative. The carry-
in of the upper CSA is used for two’s complement of Y. Although the number from the
output of the second CSA is divisible by 4, we have to check two least significant bits
(LSB) of carry and sum registers in order not to lose information, because the output is
in redundant format. The possible values of the two LSB of the sum and carry registers
are ({00, 00}, {01, 11}, {11, 01}, {10, 10}). Except for the first one (00, 00), the
remaining cases need to be corrected by a carry that is going to be added in the next

clock cycle via the carry in of the lower CSA array.

19

2.3 Theoretical Analysis of Performance

We examine various designs synthesized for different technologies to compare

with ours. Each design offers a distinct solution to the same problem and has its own

advantages and disadvantages. We focus on modular multiplication performance and

Table 2 shows the number of clock cycles required for one 2048-bit modular

multiplication with different Montgomery multipliers.

Design Implementation Time Complexity Clock Cycles
Proposed Radix-4 N/2+(N/32)*1,5 1120
[14] Radix-2, pipelined N 2048
[10] Radix-2 N+1 2049
[11] Radix-2, pipelined N+3 2051
[7] Radix-2 N+2+N/32 2114
[8] Radix-2, pipelined” (N/(w1*p)). Max (p , N/w») 2124
N N N ~

o |t s |l s |2

[%] (2NS +1) + [%] +1,otherwise NS:g),

[9] Radix-2, pipelined | 2N +N/w-1 if N/'w+1 < (2p) ~4128
[15] Radix-2, pipelined 3*N 6144

Table 2. Time Complexities’ for One 2048-bit Modular Multiplication

For the design in [8], it is stated that 2048-bit modular multiplication takes 26,55

us with a 80 MHz clock, therefore we can deduce that the multiplier uses around 2124

cycles to compute one modular multiplication. In this architecture, the word-length of

the operands, X and Y, can be chosen separately (w; and wy).

Our radix-4 implementation and [7] uses CPA to convert numbers from

redundant format to non-redundant format. The radix-2 multiplier in [7] needs only one

addition with CPA; therefore the overhead is N/32. The architecture described in [10]

" For pipelined design, we try to find optimum values.

"

20

w is bit length of a word and p is the number of processing elements or pipeline stages (PE or NS)

does not need this conversion, but uses more registers to compensate. Our radix-4
design first converts the number (costing N/32 cycles) and checks whether the result is
negative. If, for instance, the result is negative, it adds N to result to bring it to the
desired range which is from 0 to (N-1). The result can be 50% percent negative on

average so the overhead will be (N/32)*1.5.

2.4 Synthesis

We implemented the design using “Verilog” HDL and verified with “ModelSim”
[30] simulation tool. We synthesized to both UMC 0.18 um Standard Cell Library and
Xilinx xc2v6000-6b1957 FPGA, which has following properties:

e Number of Slices: 33792
e Number of Slice Flip Flops: 67584
e Number of 4 input LUTs: 67584

To compare our radix-4 design with [7] and similar designs, we also
implemented a reference radix-2 core whose schematic is depicted in Figure 5. Both
radix-2 and radix-4 designs have been synthesized with area and speed priority to

consider time x area criterion (using execution time and slices) in FPGAs.

2048-bit (MM) | Slices Freq Ex. time (us) | Time x area
Radix-4 (speed) | 16657 132.4 8.47 140 905
Radix-4 (area) | 16549 90.9 12.34 203 904
Radix-2 (speed) | 12564 137.2 15.41 193 588
Radix-2 (area) | 10920 107.1 19.74 215 545

Table 3. Xilinx Synthesis Tool (XST) Synthesis Results"

We try to optimize both designs for a fair comparison. The synthesis results for
FPGA, illustrated in Table 3, show that our radix-4 core in comparison with radix-2

design has following features:

" As speed optimized cores have smaller time area product they are going to be used for comparison with

other designs

21

e The frequency decreases a negligible amount (3.6%), because we use

inverters along the critical path in radix-4 design.

e Execution time is shortened dramatically (by 82%), since the cycle count is

approximately halved, while keeping the frequency nearly the same.

e Time area product also improves by 37%, which is one of our main goals.

Design Technology Freq (MHz) Area Ex.Time (ps)
Proposed (radix-4) | Xilinx xc2v6000 132.4 16657 slices 8.47
Reference (radix-4) | UMC 0.18 um 80 158k gates 14.00

[6] AMIO5 fast [147 (T=6.8;w=128) | ~66k gates 14.90
Reference (radix-2) | Xilinx xc2v6000 137.2 12564 slices 15.41
[14]° Xilinx Virtex 2* (?) 129.1 (7222) slices 15.87

9] 0.5pm CMOS | 166 (T=6.0; w=64) | 85k gates 24.87
Reference (radix-2) | UMC 0.18 um 80 118k gates 26.43
[8] N/A 80 N/A 26.55

[10] Xilinx xc2v6000 70.6 23060 slices 29.02

[11] Xilinx xcv1000 ~52 (11k) slices 39.44

[7]1 (REDC) 0.65 pm SOG 50 (120k) gates 42.28
[15] Xilinx V812E-BG- ~96 (10960) ~64

Table 4. Overall Speed Comparison for 2048 bit modular multiplication

We compare performances of the multipliers in terms of execution time in Table

4. The area values in parenthesis are calculated with interpolation and are

overestimated, because only the area of the datapath is subject to change in case of

doubling the operands’ bit length, not the area of the control unit. As one cannot

estimate the area coverage of the datapath and control unit separately for each reference

design, we have to assume that the datapath dominates the whole circuit area for

comparison purposes.

Our radix-4 design has the lowest execution time in Table 4 and outperforms the

other designs by a great margin, although it does not have the highest frequency. Our

" The areas of [6,9] are calculated with the parameters given in Table 2.

" Excluding pre- computation unit: This design uses pre-computed values, but the pre-computation unit is

not included in the multiplier (it is a part of the exponentiation circuitry)

*[14] does not mention the model of the FGPA, therefore we assumed that Xilinx Vertex 2 series was

used.

22

UMC 0.18 pum implementation is also faster than other ASIC based designs. The
authors in [10] claim to have the fastest MM whose execution time is more than triple
of ours for the same technology.

Although Table 4 shows a general comparison among a wide range of designs, we
have to compare time area products of FGPA designs and ASIC designs separately. Not
all designs are synthesized to the same technology, therefore we cannot directly use
execution times, instead we can use “total clock cycles for one multiplication” as the

performance indicator.

Design Area (slices) | Clock Cycles Time x Area’
Reference (radix-2) 12564 2114 1.424
[10] 23060 2049 2.533
[11] 11000 2051 1.209
[14] 7222 2048 0.793
[15] 10960 6144 3.609
Purposed (Radix-4) 16657 1120 1.000

Table 5. The Time Area Products for FPGA designs

In Table 5 and Table 6, the proposed design and the other multipliers are
compared in terms of (area x time) metric. The design in [14] seems to have the
smallest time-area product in Table 5 ; but, as stated before, the pre-computation unit
which will consume considerable amount of hardware space is not included in the area.
Therefore, the proposed radix-4 design has one of the best (area x time) metric among

FPGA designs.

Design Technology | Area (k gates) Clock Cycles Time x Area
Proposed | UMC 0.18 pm 158 1120 1.000
[6] AMIOS fast 66 2128 0.794
[9] 0.5um CMOS 85 4128 1.983
I?reafdeirzflzc)e UMC 0.18 pm 118 2114 1.410
[7]1 (REDC) | 0.65 um SOG 120 2114 1.434

Table 6. The Time Area Products for ASIC designs

" Time area product is normalized to proposed design.

23

In Table 6, only [6] has a better time area product than ours. Our radix-4
implementation offers 41% decrease with respect to its radix-2 reference, which is a

similar case shown in Table 3.
2.5 Conclusion

We modified the well known radix-2 Montgomery multiplication (Algorithm 2) to
radix-4 scheme to decrease (time x area) product and obtained a significant reduction
(37% in FPGA and 41% in ASIC) in comparison to our radix-2 reference core. Our
radix-4 implementation for 2048 bit operands is the fastest among the other designs
given in the literature (both in execution time and total clock cycles). The main
advantage of the radix-4 scheme over radix-2 schemes is providing twice the
performance at the expense of placing bitwise inverters in the critical path. Using larger
MUXs and the necessity to convert negative numbers to positive at the end (3%
increase in clock cycles on average) are among the main disadvantages of the proposed
architecture, which are greatly compensated by the reduction in execution time and

(time x area) metric.

24

3 Parametric, Secure and Compact Implementation of

RSA on FGPA

One encryption or decryption operation in RSA, the first and most widely
deployed public key cryptosystem, requires the execution of thousands of modular
multiplications. The challenge is usually designing fast hardware multipliers to meet the
timing requirements of cryptographic applications, which cannot be attained with
software realizations on general-purpose processors. The endeavors toward designing
the fastest hardware multipliers are meaningful especially when the throughput is of a
concern (e.g. in server applications where thousands of cryptographic operations are
performed). In literature therefore, there is a plethora of reports of very fast
implementations of modular multipliers in hardware, which utilize considerable amount
of resources.

ASIC’s and FPGA’s are two commonly used hardware platforms for
cryptographic implementations where the latter becomes more and more popular
recently since it is reconfigurable and relatively easy to access from economical and
usability point of view. Therefore, some of the previous works utilize resource rich, but
relatively expensive FPGA devices to design fast multipliers. There is, however, a
paucity of interests in the implementation of multipliers on the smallest and the most
economically accessible FPGA devices such as Xilinx Spartan 3 series [18]. As our
dependency on public key operations is increasing at an impressive rate even on the
simplest devices such as car keys and identity cards, there is a great initiative to design
fast multipliers on the cheapest possible way; therefore Xilinx Spartan 3 FPGAs make
the products financially viable and shortens the time-to-market period.

As the security level provided by public key cryptosystems is directly related to
the bit length of the key and 1024-bit RSA is thought to be not providing adequate level
of security any more, RSA with 2048-bit (and longer) keys will be more and more

popular to meet the security challenge of the future. Therefore, there is a strong need to

25

implement multipliers with the longest key possible on the cheapest device without
sacrificing speed.

Koc et al. [5] proposed several algorithms to implement the Montgomery
multiplication operation in software. These algorithms also prove to be useful for
hardware implementations when fast block multipliers are available as in the case of
many FPGAs. Moreover, these multipliers can work in a pipelined fashion to take the
advantage massive parallelism, despite the fact that these software algorithms are
originally designed for a single multiplier that is available in general-purpose
processors.

Previous studies employing conventional radix-2 based non-pipelined
organizations [7, 10, 19] and pipelined approaches [6, 8, 9, 11, 15, 17] generally avoid
using multipliers which consume a considerable amount of chip space, and have a long
combinational delay. Instead, they perform multiplication by repeated addition through
carry-save adders (CSA). Although the repeated addition approach seems to be a
reasonable solution for ASIC realizations, the FPGA’s have a different inner structure
that allows us to implement alternative circuits. For instance, a recent work by Suzuki
[3] successfully utilizes powerful DSP macro cells available on an expensive FPGA
device to achieve the best time performance for multiplication and exponentiation
operations.

At first, we present the CIOS method [5] for Montgomery multiplication on
which we base our design in Section 3.1. In the following sections, we introduce our
architecture and explain the details of its inner workings and comment on the simulation
results. In Section 3.4, the results of synthesis are presented. In the next section, we
compare our circuit with previous realizations. Finally, we summarize the achievements

and contributions followed by a research plan for future in Section 3.6.
3.1 CIOS Method

While all of the multi-precision Montgomery multiplication algorithms in [5]
require the same number of word-level multiplications, the number of additions and
memory requirements slightly differ. The CIOS method seems to be the best choice for
hardware implementation since it has a regular execution pattern and needs only s+3
words (the least among the others) memory space where s is the number of words in one
operand. Likewise, Mclvor et al. [4] also conclude that the CIOS method, which is

given in Algorithm 5, provides the fastest timing results for FPGA implementations.

26

The operands and the modulus in Algorithm 5 are represented as arrays of words, e.g.

a = (as1, a2, ..., a1, Qo).

Algorithm 5: CIOS Montgomery Multiplication

Inputs: aj;, by: Operand words (w bits each)
ny: Words of the modulus (w bits each)
s: Number of words in the operands
2":=radix, C: carry, S: sum
ng ti= multiplicative inverse” of ng

{}= used for concatenation

Output: t[i]:= intermediate and final result, all words
of t are assigned to 0 at first.

for i=0 to s-1
1. Cc<O0
2. for j=0 to s-1
a. {C,S} € ty + a; x by +C
b. t; € S
{C,S} € t, + C
ts € S
ts1 € C
C €0
m € ty x (-ng ') mod 2"
{C, S} € tp + ng x m
for j=1 to s-1
a. {C, S} € t;y +ny xm+ C
b. ty.1 € S
10. {C, S} € t, + C
11. t; € S
12. t; € tgp + C

©O© 00 Jd o 0 d W

3.2 The Multiplication Engine

In this section, we outline our design criteria used in the implementation and

explain the implementation details.

* —
“Least significant word of inverse #” in mod 2" where 2" < n < 2"

27

3.2.1 Design Criteria

It is essential to lay out the design criteria to meet the challenges and

requirements of the application. These criteria are enumerated as follows:

(1) The design must be flexible to fit in both small and large FPGA’s efficiently
with adjustable number of processing elements.

(2) The bit-length of the words must be parametric so that the full performance of
multipliers is utilized.

(3) The design must be scalable to work with operands of virtually any length (e.g.
2048 bit, 4096 bit, etc.)

(4) 2048-bit exponentiation engine must easily fit into even a smallest FPGA with a
good timing performance.

(5) The implementation must resist against all side channel attacks with minimal
overhead.

(6) All hardwired multipliers must work at maximum possible frequency (They
should be instantiated as registered multipliers).

(7) All variables for operands must be kept in Block-RAM’s to ensure minimum
area consumption.

(8) The connection network must be simple yet effective.

As Algorithm 5 is specifically designed for software implementations, we need
to modify it for efficient computation in hardware by taking advantage of parallelization
through hardwired multipliers. The execution graph of Algorithm 5 modified for
pipelined computation is depicted in Figure 7. The circuit essentially consists of
processing elements (PEs, shown in Figure 8) which are responsible for executing a
single iteration” of the loops in Steps 2 and 9 of Algorithm 5. Once PE, generates the
first word of the intermediate result (i.e. the least significant word), the next processing
unit PE; concurrently starts the computation for the second iteration of the loop with the
values it obtains from PE,. When a PE finishes the computing one iteration, it is
immediately assigned to the next available iteration. The results of last PEs are kept in

dual port Block-RAM.

" Steps 2 and 9 of Algorithm 5 are performed together within the same PE.

28

3.2.2 Implementation Details

: _l
0 | :
! |
| |
1 .
| |
b |
1 .
| |
1 .
21 |
! :
. |
1 .. .
: > |
1 N, :
3, N
1
1
|
1
4 ! Dual Port
: RAM
:
1
5
\
Time (Cycles) L |

Figure 7. Execution Graph of The Parallelized CIOS algorithm

Before the execution of each iteration of the loop (at each increment of the loop

€99
l

counter ‘i), the value “m” must be calculated as shown in Step 7 in Algorithm 5. (The

value of “no’l ’

" 1s calculated offline (only one word) and fixed as long as the modulus
does not change). However, in the meanwhile, other PEs are still performing
multiplication operation, therefore to maintain a continuous data flow, we need to insert
FIFO buffers among the PEs and compensate for the time lost by the pre-calculation
step. After “m” is ready, there are two important steps remaining for execution: Steps
2.a (multiplication) and 9.a (reduction). These steps account for all computation burden

since they are word multiplications; the remaining steps are only initializations. Once

the value ¢; is calculated in Step 2.a, it can immediately be used in Step 9.a.

29

Figure 8. The Structure of a Processing Element

As only one word per cycle can be requested from each Block-RAM, only the
first PE directly receives data from Block-RAMs, and only the last PE writes words ¢, to
the Block-RAM. All PEs forward “used input variables” (a; and n;) and the sum to the
next PE to exploit data reuse and simplify connection network. Figure 8 shows the inner
structure of a processing element, which mainly consists of two multipliers, two adders

and six registers.
3.2.3 Parametric Design

We can adjust the multiplier to meet the application requirements or to utilize a
given FPGA device efficiently by changing the following three parameters at the

compile time:

(1) Number of PEs (PE): Total number of PEs is the main area vs. performance
trade-off metric. The proposed design must have at least two PEs, because the
first and last processing elements are hardwired to RAM. In other words, total
number of block multipliers must be at least four. The upper bound for PEs is
determined with the amount of hardwired multipliers of the target FPGA, which

is 10 in our case (i.e. 20 block multipliers in total).

30

(2) Radix (R): This parameter determines the bit length of the hardwired multipliers
and adders shown in Figure 8. As the radix closely relates to the maximum
combinational path delay in the adder design, it has a direct effect on the
frequency. This parameter must be adjustable to take full advantage of the block
multipliers in a given device to achieve the best timing performance.

(3) Number of Words (s): The radix and the number of words in each operand
together determine the bit-length of the operands; for instance, for 2048-bit
operands and radix=16, the number of words is 128. The number of words

determines also the depth of the Block-RAM.

3.3 Simulation Results

The clock cycles required for one multiplication heavily depends on the number
of PEs. More PEs result in faster designs as expected. However, the multiplier
utilization decreases when the number of PEs increases. Similarly, using longer words
also has a negative effect on the frequency due to longer carry chains in adders used in
PEs.

Table 7 shows the exact cycle count for one modular multiplication including
data load time from the Block-RAM. The multiplication circuit has the following

timings (see Figure 9 in Appendix for waveform):

o After start signal is asserted, it takes 9 cycles for the first PE to yield the first word
of the result.
e The number of clock cycles spent between the appearances of the first word of the

results in consecutive PEs 1s 9.

The Number of PEs

Bitlength-#words 2 4 5 6 8 10

4080 (240 words) 30256 | 15154 | 12139 | 10132 | 7630 | 6136

2040 (120 words) 7936 | 3994 | 3211 | 2692 | 2050 | 1672
1020 (60 words) 2176 | 1114 | 907 772 | 638 | 630
510 (30 words) 646 352 330 326 | 322 | 318

Table 7. Clock Cycles Required for One Multiplication (radix=2'7)

“The key length must be a multiple of 17 bits (because our multipliers are 17 bits long) and (s/PE) ratio

must be an integer to take the full advantage of block multipliers.

31

The overall cycle count can be approximated (with error margin less than 5%)

using the following formula:

sX(14+s)

CC =max ((14+s), (12+PE*9)) *(s/PE) = °E (for large s)

where CC, PE, and s stand for the total clock cycles, the number of processing
elements, and the number of words, respectively.

As indicated in [5], the CIOS method requires 2s°+s word multiplications. If
there were no data dependencies, the required clock cycles would be (2s°+s)/(2*PE).
The PE utilization is over 85% for 2040-bit or larger operands which can be seen in

Table 8.

The Number of PEs
Bitlength-words | 2 4 5 6 8 10
4080 (240 words) | 95.4 | 95.2 1 95.1 | 94.9 | 94.6 | 94.1
2040 (120 words) | 91.1 | 90.5 | 90.1 | 89.5 | 88.2 | 86.5
1020 (60 words) | 83.4 | 81.5|80.0 | 78.4 | 71.1 | 57.6
510 (30 words) | 70.8 | 65.0 | 55.5 | 46.8 | 35.5 | 28.8

Table 8. Utilization Ratios (%)

3.4 Synthesis Results

In this section, we provide the synthesis results summarizing the resource usage
and timing performance of the multiplier and exponentiation circuit for the target
device. We implemented our design using Verilog and simulated with ModelSim [30]

tool.
3.4.1 Setup and Synthesis Configuration

We use XST (Xilinx Synthesis Tool) from Xilinx ISE v9.1 package with
following optimizations:
(1) Register Balancing
(2) Equivalent register removal
(3) Optimization Effort: High
(4) Optimization Priority: Speed

(5) Maximum Fan-out: 17

32

The target device is Xilinx 3s500e-4FG320C whose properties are given in [18].
3.4.2 Synthesis Results

Table 9 shows the resource usage for different number of processing elements
from 2 to 10. As can be observed in the table, the resource usage is modest even for the

maximum configuration with the largest number of processing elements.

PE=2 | PE=4 | PE=5 | PE=6 | PE=8 | PE=10 | Total

Slices 679 | 1260 | 1553 | 1838 | 2435 3028 4656

FF 809 | 1505 | 1854 | 2199 | 2901 3602 9312

LUT 1180 | 2232 | 2760 | 3292 | 4353 5426 9312
Block RAM 4 4 4 4 4 4 20
Multiplier 4 8 10 12 16 20 20

Table 9. Synthesis Results for Multiplication Core”

For 1020-bit or longer operands, a multiplication engine with 4, 5 and 6 PEs
offer the lowest time-area product (Table 10). The 510-bit key is obsolete; however, we
included it for efficiency comparison. With 5 PEs per multiplication core, we can fit two

cores into the same FPGA, which takes full advantage of the parallelism in Algorithm 3.

The Number of PEs

Bitlength-words 2 4 5 6 8 10

4080 (240 words) | 1.1058 [1.0277 | 1.0147 | 1.0023 | 1.0000 | 1.0000

2040 (120 words) | 1.0891 | 1.0171 | 1.0078 | 1.0000 | 1.0089 | 1.0232
1020 (60 words) | 1.0526 | 1.0000 | 1.0035 | 1.0109 | 1.1068 | 1.3591
510 (30 words) |1.0000 | 1.0111 | 1.1684 | 1.366|1.7875|2.1952

Table 10. Time Area Products: The values are normalized to the smallest in the same

Tow.

* radix =2'7, =120 (2040 bit)

33

SPA protected* SPA+DPA Protected’
Slices 3799 (81 %) 3899 (83 %)
FF 4416 (47 %) 4493 (48 %)
LUT 6750 (72 %) 6931 (74 %)
Block Ram 14 (70 %) 16 (80 %)
Multipliers 20 (100 %) 20 (100 %)
Frequency 119 MHz 119 MHz
Clock Cycles (max) 929 519 946 127
Max Ex Time 7.81 ms 7.95 ms

Table 11. Synthesis Results for 1020-bit exponentiation circuit (radix = 2'” and s = 60)

The exponentiation circuit (5 PE x 2) with and without DPA countermeasure are
synthesized with speed optimization and the results are illustrated in Table 11. The area
consumption stays approximately the same for larger bit-lengths and so does the

frequency. Second circuit has a (1/sx100) percent cycle overhead due to DPA

protection.

3.5 Performance Analysis

3.5.1 Clock Cycle Comparison

In this section, we provide a comparative analysis of the proposed design with
respect to other designs synthesized for different FPGA technologies in literature. Table

12 shows the number of clock cycles required for one 1024-bit modular multiplication

via different Montgomery multipliers.

" Montgomery Powering Ladder (Algorithm 3) is used as SPA protection.

" Exponent blinding is used for DPA protection.

34

Design | Implementation Time Complexity Clock Cycles
[17] (R-2), pipelined* 2x (# multipliers+5) 134 (mult=62)
[19] Radix-4 NI2+(N/32)x1.5 560

Prop. R-2", pipelined max ((/4+s), (12+9PE))x(s/PE) 907 (PE=S5)
[14] R-2, pipelined N 1024
[10] Radix-2 N+1 1025
[11] R-2, pipelined N+3 1027
[71,[19] Radix-2 N+2+N/32 1058
[8] R-2, pipelined (N/(w; x PE)). max (PE , N/w3) 1062
[6] R-4, pipelined [ZN%] ([%] +1)+ 25 S U [%] > NS (w=;411,1](ij§=8)
[m] (2NS + 1) + H +1, otherwise
] R-2, pipelined 2N +N/w-1, if Nw+1 <2.PE ~2080
(N/PE)(N/w+1)+2(PE-1), otherwise (w=32,p=16)
[15] R-2, pipelined 3IxN 3072

Table 12. Time Complexities: N is the modulus bit-length and R stands for the radix.

In [19], we have two circuits, one is based on conventional radix-2

implementation which is designed to simulate [7] on the same FPGA device, the other

circuit is based on radix-4. Both designs use distributed RAM as the main storage

element and are non-pipelined. Although the design in [17] is the fastest in Table 12, it

cannot fit in our target FPGA, Xilinx Spartan 3E-500, in that configuration due to its

excessive use of multipliers.

3.5.2 Execution Time Comparison

Table 13 summarizes the resource usage and performance of various FPGA

designs and the proposed one. Although the proposed design is not the fastest circuit, its

execution speed outperforms many others; moreover, it performs the best in terms of

time area product.

* For pipelined designs, we select optimum (both for area and speed) values for w and p. (w is bit length

of'a word and PE (or NS) is the number of processing elements or pipeline stages)

35

Design Technology Freq (MHz) Area Ex. Time (us)
[17] Xilinx xc2v3000-6 90.11 N/A 1.49
[19] radix-4 Xilinx xc2v6000 132.4 8328 slices 4.23
Proposed Xilinx xc3s500e- 119 1553 slices + 762
(1020 bit) 4FG320C 10 multipliers
[14]" FPGA (?) 129.1 3611 slices 7.93
[19] radix-2 Xilinx xc2v6000 137.2 6282 slices 8.21
[10] Xilinx xc2v3000 75.23 11617 slices 13.45
[11] Xilinx xcv1000 ~55 5058 slices 18.67
[15] Xilinx V812E-BG-560 ~96 5706 slices 32.12

Table 13. Execution Times for 1024-bit modular multiplication

We do not have entire performance and area details concerning the

multiplication units in designs [3, 16, 17]; however, the exponentiation timings and

areas are available. Our exponentiation engine has DPA and SPA protection, which the

other designs lack and our execution time is fixed for a given bit-length.

" The authors in [14] use pre-computed values, but the pre-computation unit is not included in the

multiplier (it is a part of the exponentiation circuitry)

36

Design Technology Frequency Area Ex. Time (ms)

3937 slices +

[3] Xilinx xc4vfx-10sf363 | ~200/400° 1.71 (max)
17 DSP48
- 14334 slices +
[17] Xilinx xc2v3000-6 90.11 62 multipliers 2.33 (avg.)
Proposed e 3899 slices +
(1020 bit) Xilinx xc3s500e 119 20 multipliers 7.95 (max)
19
[.] Xilinx xc2v6000 132.4 8328 slices 8.66 (max)
radix-4
18247 slices+
o 0
[22] Xilinx xc3s4000 66 66 multipliers 11.1(?)
[16] Xilinx xc40250xv 45.66 6633 slices 11.95 (max)
1
[.9] Xilinx xc2v6000 137.2 6282 slices 16.8 (max)
radix-2

Table 14. Execution Engine Performance: 1024-bit Exponentiation Results

Our foremost design goal is not achieving the best timing but the best time-area
product on an inexpensive FPGA. This gap in performances can be attributed to the

following factors favoring the designs in [3] and [17]:

(1) More advanced (and expensive) FPGA,
(2) More resource usage,

(3) Higher clock frequency (favoring only [3]),
(4) Powerful DSP cells (favoring only [3]),

(5) Special acceleration techniques' used for exponentiation.

Considering that the proposed circuit is intended for a low-end device, the
achieved exponentiation speed, which is so far the record for a very low-price FPGA
device to best of our knowledge, and is satisfactory for many applications. In Table 13
and Table 14, the designs are mapped onto FPGA’s with different speed grades and
features; e.g., the multiplier in [3] uses built-in DSP cells, which are available neither in
our target device nor in many other FPGA devices. In this work, we try to use the
maximum potential available on one of the smallest FPGAs; therefore, the time-area

product is the vital criterion for us.

" The control unit is running at 200 MHz, while DSP48 cells (data path) are running at 400 MHz.

" [3] uses sliding window mechanism.

37

We cannot directly use execution times for comparison purposes (because of the
technological differences), instead we can use “total clock cycles required for one
modular multiplication” as the performance indicator. Table 15 shows that the proposed
design achieves the best {timexarea} metric, which is an indication of good design and

high utilization of the target device.

Design Area (slices) Clock Cycles Time x Area
[15] 5706 3072 12.607
[10] 11617 1025 8.564

[19] radix-2 6282 1058 4.780
[11] 5058 1027 3.736
[19] radix-4 8330 560 3.354
[14] 3611 1024 2.659
Proposed 15537 (3453) 9207 1.000 (2.223)

Table 15. Time-Area products normalized to proposed implementation

3.6 Compatibility Problems

As we use 17 bit x 17 bit multipliers in the design to take the full advantage of
given features of the FPGA chip, the implemented bit lengths are smaller than the
widely employed ones that are the powers of 2 (e.g. 512-bit, 1024-bit, 2048-bit, etc).
The security level provided by a 1020-bit implementation is approximately the same
with 1024-bit implementation, however there can be compatibility problems between
1024 and 1020 bit circuits in practical world (same case with 2048 bit and 2040-bit
implementations). Therefore, we also include a table (Table 16) showing the required
time for compatible versions of our implementations at the expense of some clock
cycles. The number of words in each compatible version is one more than the
previously mentioned designs; however, there will be no change in the frequency and

the area at all. The average slowdown ratio is 3.6 %.

" The hardwired multipliers (we use 10 multipliers here [only one multiplication engine]) are not included
in this area value. The value in parenthesis is the total area including the multipliers.

1 for 1024 bit multiplication

38

The Number of PEs

Bitlength -#words 2 4 5 6 8 10

4097 (241 words) | 30620 | 15440 | 12404 | 10380 | 7850 | 6332

2057 (121 words) | 8120 | 4130 | 3332 | 2800 | 2135 | 1736
1037 (61 words) | 2270 | 1175 956 810 | 648 | 644
527 (31 words) 695 369 344 340 | 332 | 332

Table 16. The Required Clock Cycles for Compatible Versions

3.7 Conclusion and Future Work

We designed a fast, efficient and parameterized multiplier and a secure
exponentiation circuit for simple FPGA devices in the price range of $2-9 US*. This
price range is at least one order of magnitude less than other devices used in previous
works, where the primary purpose is to achieve the fastest time in modular
exponentiation. It is true that time performance is always of an important concern;
however, the price of the device used for realization is also an issue in many
applications and there is not much work in this direction. We intended to fill this gap
with our design, which achieves the best time-area product to the best of our knowledge

in this category.

Our target technology, Xilinx Spartan 3E-500, is a cost effective solution in
many aspects, especially the use of the 90nm technology significantly reduces the die
size, cost and the total power consumption, while increasing the frequency, and
therefore it is one of the best choices for practical applications, where the manufacturing
cost is the primary concern.

The proposed multiplier is parametric, and therefore can be used for virtually
any bit-length, where the upper limit on precision is dictated only by the capacity of
Block-RAM available on the device!. However, since the most popular public key
cryptosystem nowadays is RSA, we focused on the designs with precisions of 1020-bit
and 2040-bit; the latter precision will be favored over the former in the near future due

to increased security concerns. Our design completes one 1020-bit and 2040-bit

" The prices are from the year 2006
http://www xilinx.com/products/silicon_solutions/fpgas/spartan_series/spartan3e_fpgas/index.htm

" The area and frequency of our circuit with longer operands stay approximately the same.

39

modular multiplications in 7.62 us and 27.0 us, respectively with approximately the
same device usage. The timing performance achieved for multiplication is either
comparable or superior to most of the other designs in the literature despite the low
resources available on the target device. In addition, our design has the lowest {time x
area} product among the other multipliers.

We have also achieved to fit the exponentiation circuit (additional control unit)
into the same device. Few designs in literature can outperform our design only by using
more resources, better and expensive devices, and acceleration techniques for
exponentiation. From practical point of view, our exponentiation circuit also resists
against all known side-channel attacks (namely SPA, DPA, fault attacks and (n-1)
attacks) with minimal overhead.

As future work, we plan to design an improved exponentiation circuit that
utilizes acceleration techniques such as the sliding window mechanism and bit encoding
schemes to reduce the total execution time of modular exponentiation. Moreover, we
will consider implementing our design to alternative FPGA’s such as Xilinx Spartan 3A

and 3AN series that have DSP units.

" With a multiplication engine that utilizes half of the device (i.e. 5 PEs which use 10 multipliers)

40

4 Summary of Contributions

In this thesis, we have presented two designs that have different goals. In the
first design, we tried to maximize the speed of 2048-bit modular multiplication for
hardware platforms. We adapted the well-known radix-2 Montgomery algorithm and

obtained following results with the use of radix-4:

» While the frequency of the circuit stayed approximately the same with respect to
our reference radix-2 core, the execution time for 2048-bit modular
multiplication improved significantly (82% reduction in FPGA implementation),
because the cycle count is approximately halved with the use of radix-4
datapath. Moreover, our circuit outperformed previous works significantly in
terms of execution time.

» A major improvement was also achieved in terms of time area product, which
decreased by 37% and 41% for FPGA and ASIC designs respectively in

comparison to the reference core.

In the second design, we optimized our circuit according to the resources on our
target FPGA, Xilinx Spartan 3E-500, which uses 90 nm technology. This technology is
advantageous over previous generations; because faster clock speeds can be obtained
while being cost effective. Our contribution in this design can be summarized as

follows:

» As the most popular PKC is RSA nowadays, we optimized our circuit for higher
bit-lengths (for operands greater than 512 bits). Our implementation can be used
in other PKC algorithms as is, except for ECC, (where a slight modification of
the design is needed) because ECC utilizes much shorter key lengths.

» We designed a high-speed multiplier and exponentiation circuit on an
inexpensive FPGA by utilizing its hardwired multipliers, which are becoming
more and more common in reconfigurable devices and we showed that 2040-bit

exponentiation circuit can easily fit on such FPGAs.

41

We provided an efficient modification of one of the best software algorithms for
Montgomery multiplication to take advantage of simultaneously operating
multipliers.

We showed that the {time x area} metric will shrink considerably by the use of
the dedicated multipliers on FPGA.

We arranged the multipliers in a pipelined fashion to increase the device
utilization and clock frequency. This arrangement also rendered a parametric
design that can be used to perform multiplications and exponentiations up to
virtually any bit-length as long as the memory resources sufficed.

We provided a parametric design for modular multiplier, which could be
implemented on an FPGA that has as low as four block multipliers where the
block size is also adjustable.

By the use of dual-port Block RAMs, we could overlap the phases of the
algorithm and therefore the execution was accelerated considerably, while
maintaining low area consumption.

We also implemented countermeasures to all known side-channel and fault-
induction attacks and demonstrated that they were affordable on a very modest

FPGA device.

42

Appendix

Figure 9. Waveform of One Stream

One Stream

170b1
Miaaf

\> Jtestitopimont/pipe[3]/pp_aralout | 02630

\> ftestfkopfmont/pipe[2]/pp_arafout | 19aed
\> ftest kap montpp_sonjout

\> frest{tapfmontpipe(1]fpp_arafout | 093F

\> frest topfmontpp_lkfout

a = Start to start time (9 cycles)

a+b

Time required to finish one iteration of loop 7 in Algorithm 5. (s + 3

cycle)

¢ = idle period of one multiplier

43

[10]

[11]

[12]

[13]

[14]

References

R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signature and Public-
key Cryptosystems, ” Comm. ACM, v01.2 1, pp. 120-126, 1978.

P. L. Montgomery, “Modular Multiplication without Trial Division,” Math. Computation, vol. 44,
pp.519-521, 1985.

D. Suzuki, “How to Maximize the Potential of FPGA resources for Modular Exponentiation”, CHES
2007, LNCS 4727, pp. 272-288, 2007

C. Mclvor, M. McLoone, J.V. McCanny. “FPGA Montgomery Multiplier Architectures - a
Comparison” in Field-Programmable Custom Computing Machines, 2004. FCCM 2004. 12th
Annual IEEE Symposium on Volume , Issue , Page(s): 279 — 282. April 2004

C. K. Koc, T. Acar, B.S. Kaliski: “Analyzing and Comparing Montgomery Multiplication
Algorithms”. IEEE Micro, Vol. 16, No. 3, pp. 26-33, June 1996.

L. A. Tawalbeh, “Radix-4 ASIC Design of a Scalable Montgomery Modular Multiplier using
Encoding Techniques”, Master Thesis, Oragon State University, USA 2000.

Y. S. Kim, W. S. Kang, and J. R. Choi, “Implementation of 1024-bit Modular Processor for RSA
Cryptosystem”, The Second IEEE Asia Pacific Conference on ASICs, 2000.

L. Batina, G. Muurling, “Montgomery in Practice: How to do it more efficiently in hardware”,

Cryptographers’ Track RSA Conference 2002, San Jose, USA

A. F. Tenca, and C. K. Koc, “A Scalable Architecture for Modular Multiplication based on
Montgomery’s Algorithm”, IEEE Transaction on Computers, vol.52 no.9, 2003

C. Mclvor, M. Mcloone, J. N. McCanny, A. Daly, W. Marnane, “Fast Montgomery Modular
Multiplication and RSA Cryptographic Processor Architectures”, 37th Annual Asilomar Conference

on Signals, Systems and Computers, California , 2003

A. Daly and W. Marnane, “Efficient Architectures for implementing Montgomery Modular
Multiplication and RSA Modular Exponentiation on Reconfigurable Logic”, in proc. of 10th
International symposium on FPGA'’s, 2002

W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans. Info. Theory, vol.
IT-22, Nov. 1976, pp. 644-54.

N. Koblitz, Elliptic curve cryptosystems, in Mathematics of Computation 48, pp. 203-209, 1987.

P. Fournaris, O. Koufopavlou, "A New RSA Encryption Architecture and Hardware Implementation
based on Optimized Montgomery Multiplication” in proceedings of 2005 IEEE International
Symposium on Circuits and Systems (ISCAS 2005), Kobe, May 23 -26, Japan, 2005.

44

[15] S. B. Ors, L. Batina, B. Preneel and J. Vandawalle, “Hardware Implementation of a Montgomery
Modular Multiplier in a Systolic Array”, International Parallel and Distributed processing

symposium (IPDPS ’03), 2003

[16] T. Blum, C. Paar, “High-Radix Montgomery Modular Exponentiation on Reconfigurable
Hardware”, IEEE Transaction on Computers 50(7), 759-764 (2001).

[17] S. H. Tang, K. S. Tsui, P. H. W. Leong, “Modular Exponentiation using Parallel Multipliers” , Proc
of the 2003 IEEE International Conference on Field Programmable Technology (FTP 2003), pp. 52-
59 (2003)

[18] Xilinx, Inc.: http://www.xilinx.com, “Xilinx Spartan 3E-500 Data Sheets”.

[19] E. Oksuzoglu, E. Savas, “A Fast and Efficient Hardware Implementation of 2048-bit Radix-4
Modular Multiplication Circuit for Public Key Cryptosystems”, submitted to JCSC, 2007

[20] M. Joye, S.M. Yen, “The Montgomery Powering Ladder”, Cryptographic Hardware and Embedded
Systems — CHES 2002, vol. 2523 of Lecture Notes in Computer Science, pp. 291-302, Springer-
Verlag, 2003

[21] S.M. Yen, W.C. Lien, S. Moon, and J. Ha, “Power Analysis by Exploiting Chosen Message and
Internal Collisions — Vulnerability of Checking Mechanism for RSA-Decryption”, Mycrypt 2005,
LNCS 3715, pp. 183-195, 2005

[22] N. Mentens, K. Sakiyama, L.Batina, I. Verbauwhede, B. Preneel, “FPGA-Oriented Secure Data
Path Design: Implementation of a Public Key Coprocessor”, 16th International Conference on Field

Programmable Logic and Applications (FPL 2006), IEEE, pp. 133-138, 2006.

[23] C. Giraud, “An RSA Implementation Resistant to Fault Attacks and to Simple Power Analysis”,
IEEE Trans. Computers, (55): 9, pages 1116-1120, 2006.

[24] A.F Tenca, G. Todorov and C.K. Koc, “High-radix Design of a Scalable Modular Multiplier,” in
Cryptographic Hardware and Embedded Systems - CHESS 2001, C.K Koc and C. Paar, Eds.2001,
Lecture Notes in Computer Science, No. 1717, pp. 186-206, Springer, Berlin, Germany

[25] L. A. Tawalbeh, A. F. Tenca and C. K. Koc, “A Radix-4 Design of a Scalable Modular Multiplier
with Recoding Techniques”: islab.oregonstate.edu/papers/j66radix.pdf, 2002

[26] A.D.Booth, “A Signed Binary Multiplication Technique,” Q.J.Mech. Appl. Math, Vol.4, no.2,
pp236-240, 1951

[27] T. ElGamal, "A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms",
IEEE Transactions on Information Theory, v. IT-31, n. 4, 1985, pp469-472 or CRYPTO 84, pp10—
18, Springer-Verlag

[28] NIST, “Digital Signature Stantard (DSS)”, FIPS PUB186-2, 2000.

[29] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes”,
Eurocrypt 1999, pp223-238.

[30] ModelSim Simulation Tool. Mentor Graphics Corporation, http://www.model.com/

45

