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Abstract 
Recent advance of technology gave birth to tools such as microarray chips. The use of 

microarray chips enabled the scientists to measure the amount of protein production from 

their genes in a cell, known as the gene expression data. The classification of cell samples by 

means of their gene expression data is a hot research area. The data used for the analysis is 

massive and therefore the features, i.e., the genes, must be reduced to a reasonable level due 

to the computational cost of experiments and the possibility of misleading irrelevant genes. 

Therefore, usually, the analysis based on the classification of cell samples includes a feature 

subset selection phase. This thesis aims to develop a tool that can be used during the feature 

subset selection phase of such analyses. Three novel algorithms are proposed for the gene 

selection problem based on basic association rule mining. The first algorithm starts with fuzzy 

partitioning of the gene expression data and discovers highly confident IF-THEN rules that 

enable the classification of sample tissues. The second algorithm search the possible IF-

THEN rules based on a heuristic pruning approach which is based on the beam search 

algorithm. Finally, the third algorithm focuses on the hierarchical information carried through 

gene expressions by constructing decision trees based on different performance measures. We 

found satisfactory results in Leukemia Dataset. In addition, in colon cancer dataset, algorithm 

that is based on construction of decision trees showed good performance. 
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Özet 
Teknolojideki son gelişmeler, mikroarray çipleri gibi araçların ortaya çıkmasına önayak 

olmuştur. Mikroarray çipleri sayesinde bilim insanları, hücredeki genlerden ne kadar miktarda 

protein üretildiğini ölçme imkanı bulmuşlardır, ölçülen veriler gen ifade verisi olarak 

adlandırılmaktadır. Gen ifade verisi kullanılarak hücre örneklerinin sınıflandırılması, güncel 

bir araştırma konusudur. Bu alanda kullanılan veri, çok büyük ölçeklidir; bu nedenle 

özellikler –genler- sınıflandırma için gerekli ve yeterli sayıya düşürülmelidir. Bu bağlamda, 

mikroarray gen ifade verileri üzerinde yapılan hücre sınıflandırması çalışmaları özünde bir 

“özellik altkümesi seçimi” problemi barındırmaktadır. Yapılan çalışmanın amacı, kanserli ve 

sağlıklı hücre örneklerini, en az sayıda özelliği –geni- kullanarak, başarılı bir şeklide 

sınıflandırabilecek bir araç geliştirmektir. Çalışmada iki yeni algoritma geliştirilmiştir. 

Birincisi, verinin bulanık kümelendirilmesinin ardından, bulanık kümelerin oluşturduğu yeni 

veride yüksek güvenilirlikli EĞER-İSE kurallarını tümünü arama yaklaşımıyla keşfeden bir 

algoritmadır. İkincisi ise, birincinin prensipleriyle, veri üzerinde, tümünü arama yönteminden 

ziyade, ışın arama algoritması ile kural keşfeden bir algoritmadır. Son algoritma ise 

özelliklerin –genlerin- taşıdığı hiyerarşik yapıdaki bilgiye odaklanmaktadır. Bu hedefle karar 

ağaçları oluşturmada farklı başarı ölçütleri kullanılmıştır. Lösemi veri kümesinde başarılı 

sonuçlar elde edilmiş, karar ağacı temelli algoritmada ise kolon kanseri veri kümesi ile 

başarılı sonuçlara ulaşılmıştır. 
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 CHAPTER 1 

 

INTRODUCTION 

 
 
Since the discovery of DNA structure, the mechanics of life has been revealed to the 

exploration of humanity. The new era began with the completion of the human genome map 

in 2003. From DNA sequences to complex protein structures, massive information is carried 

through nucleotides, which make up the alphabet of the language of life. 

The massive information carried through biological molecules is analyzed with the 

tools of applied mathematics, data mining, artificial intelligence and statistics. The study of 

biological problems with the help of these tools includes “computational biology” and 

“bioinformatics”. Briefly speaking, the science of developing algorithms with these tools is 

referred to as “computational biology” and the utilization of these algorithms in order to attain 

new biological knowledge is referred to as “bioinformatics”. 

Supervised classification has a significant role in computational biology and 

bioinformatics research. It is basically the act of classifying a new sample in order to acquire 

certain information about it based on historical data. As an approach to the solution of the 

classification problem, the “machine learning” concepts have been used. The information 

attained by the past samples is learned by the help of computers. When there are significantly 

many features associated with each sample, it is crucial to determine which features actually 

affect the classification, i.e., the determination of the class label. Too many features might 

convey irrelevant or redundant information, whereas lack of features might lead to bias during 

the classification task. Both cases imply high misclassification rates. Hence, determining the 

subset of features to perform the classification task is crucial and referred to as the “feature 

subset selection” problem.  Accurate classification can be achieved with minimum number of 

features (i.e., with minimum measurement cost) by determining the subset of features that are 

relevant and necessary. 
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Recent advance of technology gave birth to tools such as microarray chips. The use of 

microarray chips enabled the scientists to measure the amount of protein production from 

their genes in a cell known as the gene expression data. The classification of cell samples by 

the help of their gene expression data is currently a hot research area. The information 

obtained from the microarray chips include the information about the amount of proteins that 

are transcribed from the genes (referred to as the expression levels of the genes), and the 

variation in its level among the cells might be due to the cells typology, i.e., the class labels 

such as healthy, cancer, etc. The data collected for gene expression level analysis is massive 

and therefore the features, i.e., the genes, must be reduced to a reasonable level due to the 

computational cost of experiments and the possibility of misleading irrelevant genes. 

Therefore, usually, the analysis based on the classification of cell samples includes a feature 

subset selection phase. 

Three novel algorithms are proposed for the gene selection problem based on basic 

association rule mining. The first algorithm starts with fuzzy partitioning of the gene 

expression data and discovers highly confident IF-THEN rules that enable the classification of 

sample tissues. The second algorithm search the possible IF-THEN rules based on a heuristic 

pruning approach which is based on the beam search algorithm. Finally, the third algorithm 

focuses on the hierarchical information carried through gene expressions by constructing 

decision trees based on different performance measures. 

In Chapter 2, a review of relevant literature regarding the feature subset selection 

problem and the methods used in the proposed algorithms is presented. In Chapter 3, 

algorithms that are used for feature selection and colon cancer data classification are 

proposed. Implementation of the proposed algorithms on colon cancer dataset is given in 

Chapter 4. Chapter 5 will include conclusions and future work. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 
In this chapter we will provide the relevant literature regarding both the problem area and the 

methods that will be utilized in the proposed algorithms. First we will briefly discuss the 

microarray experiments and the feature subset problems for the readers who might not be 

familiar with either of the fields. Later, the literature regarding the association rule mining, the 

decision trees and beam search will be presented since they are the concepts that are utilized 

in the algorithms that are proposed in this thesis.   

 

2.1. Brief Review of Biology and Microarray Experiments 

 

Proteins are organic molecules that play role in every biological mechanism in a living 

organism. They make up cells, produce energy, enable oxidation, digestion etc. in molecular 

level. In addition, proteins carry the characteristics of the species that they belong to. Proteins 

are made up from amino acids and are produced under the management of the 

deoxyribonucleic acid (DNA). DNA, manages the production of proteins by the help of the 

sequence information it carries. DNA is basically a chain made up of four nucleotides, namely 

A (adenine), C (cytosine), G (guanine) and T (thymine). It has a double helix structure in 

which two strands of nucleotides are bonded with each other. Each nucleotide type can make 

bonds with a specific nucleotide type at the opposite strand, (A with T and G with C), which 

enables the sequence information to be carried through transcription phase. That is to say, 

given one of the strands, one can determine the sequence of the other strand easily. This 

sequential information is carried through several steps that were described under the term of 

“central dogma of molecular biology” [1]. 

Central dogma begins with the transcription of the sequence information on a DNA 

sequence to mRNA (Messenger Ribonucleic Acid), which is also made up from four 
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nucleotides like the DNA (only difference is Uracil replaces Thymine in the case of RNA’s), 

and is constructed according to the alignment of DNA. Nucleotides are the tiles that construct 

the alignment information.  

After the sequence information is transcribed from DNA to mRNA, which can pass 

through nucleus membrane, the information is carried to the ribosome where the proteins are 

synthesized. This is referred to as the translation step where the amino acids are combined to 

produce proteins. Every sequence of a triple of nucleotide, referred to as codon, represents a 

specific amino acid. Considering the fact that the alphabet of DNA consists of 4 letters (A, C, 

G, T), a codon can represent 43=64 different amino acids. However, in cells 20 standard 

amino acids are available for protein production which allows several codons to code each 

amino acid. Furthermore there are also specialized codons such as the start codon and the stop 

codon which informs the ribosome to start or stop the production process. 

Amino acids that are going to take place in the structure of the protein are carried to 

the ribosome by the transfer RNAs (tRNAs) which combine amino acids according to the 

sequence information originated at the DNA and carried by mRNA. tRNAs that can make 

bonds with the nucleotide triples on mRNA are aligned, i.e., the amino acids that are carried 

by those tRNAs come together to produce the protein (Figure 2.1). 

 

.  

Figure 2.1 Central dogma framework: from DNA to protein 
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Those regions of DNA which are encoding potentially functional products are referred 

to as the genes. Note that, even though DNA is a very long chain of nucleotides (e.g., human 

genome is about 3 billion base pair long), only a small portion (about 2%) of it actually is 

coding proteins. The process of producing a biologically functional molecule by transcription 

of genes is known as the expression of a gene, and the amount of the product is referred to as 

the expression levels of genes. As discussed earlier, the expression level data has invaluable 

information and recently became a significant tool in biological research areas such as 

development of better diagnostic tools, drug identification, etc. Measurement of gene 

expression levels can be in different steps of protein production. Amount of mRNA or the 

amount of protein translated from mRNAs can be measured. The measurement instrument is 

referred to as the microarray chips (or shortly microarrays) and the process is referred to as 

the microarray experiments.  

Microarray experiments enable scientist to measure protein transcription levels of 

thousands of genes simultaneously. Cell samples are taken; their mRNA is purified and 

labeled by fluorescent material using real time polymerase chain reaction (PCR). Next, the 

microarray is prepared for the experiment: on each spot of the microarray, there are identical 

copies of every gene’s single stranded DNA structure. Microarray is combined with labeled 

mRNA samples which originate from different cell types. Afterwards, microarray is washed. 

Following the washing phase, only the mRNA that can synthesize with DNA strands on the 

spots is left on the microarray. What is left on the microarray reflects the amount of 

transcription of proteins from the DNA strand initially located on the microarray. Later the 

microarray is processed by the computer and expression levels of every gene spotted on the 

microarray is taken as output. The obtained expression level refers to the amount of 

transcription of information from DNA to mRNA. 

There are three types of microarrays according to the material that is spotted on. DNA, 

cDNA and oligonucleotides can de spotted on the microarrays for the hybridization with 

fluorescent mRNA of the instances. Note that the oligonucleotides are short single stranded 

DNAs and are widely used for microarray experiments. 

Microarray experiments are used for various research objectives. Firstly, they are used 

in order to identifying the set of “differentially expressed” genes due to different cell types. 

Another research area is the exploration of gene sets that behave similarly among the samples 

(gene expression patterns) [2]. Single Nucleotide Polymorphisms (SNP) identification is also 

a research field where analyses based on microarray experiments is utilized [3]. The genetic 
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variation between the individuals of the same species is explained with the presence of SNPs. 

During evolution, a single nucleotide in DNA strand differs and this differentiation passes to 

next generation. Studies on SNP data aim to detect subset of SNPs that are associated with 

genetic diseases related to mutation. DNA Binding Sites are also discovered by the help of 

microarray experiments. In order to detect locations where protein-DNA interactions take 

place, i.e. binding sites, are also studied by microarray analysis. 

 

2.2. Feature Subset Selection 

 
Feature subset selection problem deals with the process of selecting the most relevant 

features in classification problems in order to attain accurate classification. The data set 

tabulated in Table 2.1 will be used as an example that demonstrates the effect of the feature 

subset selection on accurate classification. Data yields the people’s choices on privacy 

concern in the internet and contains four features [4]. 

Table 2.1 Instance data on choice of privacy concern 
 

age 

annual 
income 

(money unit) 
Hours spent online per 

week 
no. of e-mail 

accounts 
privacy 
concern 

26 90 20 4 yes 
51 135 10 2 no 
29 89 10 3 yes 
45 120 15 3 yes 
31 95 20 5 yes 
25 55 25 5 yes 
37 100 10 1 no 
41 65 8 2 no 
26 85 12 1 no 

 

Based on the information retrieved from four features, it is not clear to determine how 

different features affect people’s concern on privacy. Figure 2. is the scatter plot of the data 

represented by only the first three features. The red triangles represent people with privacy 

concern and the blue squares represent people with no concern. It can be observed from the 

figure that the classification criterion is not clear and the relation of the features with the 

outcome cannot be stated geometrically. 
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Figure 2.2 Scatter plot on instance data with 3 features 
 

In Figure 2..3, the data points are plotted only on two axes: number of e-mail accounts 

and number of hours spent online per week. By considering only these features, the 

classification of the sample data points can be achieved by partitioning them by the red line 

on the graph. By eliminating two redundant features and only dealing with the features that 

are relevant, accurate classification can be achieved intuitively. 

 
Figure 2.3 Scatter plot of the example data using two features 

 

There is a wide range of feature selection algorithms which are applied in various real 

life problems such as customer relationship management [5], recommendation systems for 

web marketing [6], image analysis [7] as well as microarray gene expression analysis [8]. In 

the literature these approaches are mainly classified as filters, wrappers and embedded 

methods. A very good literature review of the problem can be found in [9]. 
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Filter methods include utilize some statistics based on the distributions of values of 

features, such as entropy, correlation, etc during the feature selection process. Best feature 

subsets that have highest performance measures based on these statistics are selected in order 

to perform classification [10]. In the filter methods the learning stage begins after the feature 

subset is composed. 

A widely used measure for filtering the set of features is correlation. Investigating the 

linear relationships between two variables is the essence of correlation. Both the correlation 

between class labels and the feature and the correlation within selected features is a point of 

interest. If this measure is used, the features that are irrelevant can be eliminated and the 

features with less correlation among each others can be selected. Hall [11] states that the 

elements of a good feature subset must be highly correlated with class labels and minimally 

correlated with each other. He used this premise and proposed a filtering method and 

conducted an experimental analysis in order to explore its performance with respect to the 

classification accuracy. The algorithms that utilized the proposed filtering methodology 

outperform those that use Naïve Bayes Algorithm and other procedures as C4.5 (tree 

generation algorithm that uses impurity when constructing the decision tree) [12] and ID3 (a 

primitive version of C4.5 introduced by Quinlan in 1986 [13] where decision tree is 

constructed by entropy value of features on the test instances) without correlation based 

feature selection.  

One of the most famous feature selection algorithm is the RELIEF Algorithm, which 

has been firstly introduced by Kenji and Rendell [14]. For each feature the algorithm 

randomly selects m instances. For each instance, the nearest miss (the nearest instance which 

is not in the same class) and the nearest hit (the nearest instance which is in the same class) 

are determined. Next, the difference between the distance of nearest miss to the instance and 

the distance of the nearest hit to the instance is calculated. The average value of the m 

differences that will be calculated for each one of the m randomly selected instances is a 

measure of the selected feature’s ability to distinguish the instances that have different class 

labels and are near to each other and referred to as the RELIEF measure. The features that 

have high RELIEF values are selected as significant features.  

Many algorithms derived from RELIEF measure are proposed in the literature. 

Notably, the Relief-F is introduced Kononenko’s study [15] which can deal with multiclass 

and incomplete data. Relief-F deals with nearest k-hits and k-misses, that is to say, instead of 

dealing with only the nearest instance with the same and different class labels, this algorithm 
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determines k-instances that is nearest to the selected instance. Average of distances to the hits 

and misses are taken. The parameter k ensures the handling of noise in the data [16]. In 

addition, the missing data issue is solved by making a probabilistic estimation on the missing 

value.  

Introduced by Almuallim and Dietterich [17], FOCUS algorithm firstly handles each 

feature individually, then adds features to construct pairs, triples, etc., according to the 

impurity measure which can be defined as the performance metric that measures how well the 

selected feature can partition the instances in a way that each partition is composed of 

instances with the same class. 

Another measure group that is used in filter methods includes metrics based on 

entropy. Entropy measures the randomness of the distributions of feature values. It is 

calculated as in Equation (2.1) where c represents the number of classes, and x represents the 

discrete random variable. 

),(log)()( 2
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0
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i
ii xpxpxEntropy ∑

−
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−=        (2.1) 

As the entropy of a feature decreases, it is more likely that this feature is more 

successful in classification task. In their paper, Liu et. al. [18] introduce a feature selection 

scheme that filters the features with higher entropy scores. Another performance measure 

derived from entropy is the Mutual Information [9].  Mutual information determines how 

much variable x is dependent to the target label y by Equation (2.2). In  Equation (2.2), p(X) 

and p(Y) represent probability distribution functions and p(X,Y) represents joint probability 

distribution function of variable X and Y. Mutual information proposes the amount of 

knowledge we have about a variable by knowing another variable that is dependent to it. 
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Another approach for the feature subset selection problem is the wrapper approach. 

Wrappers are defined as black box structures that select the features according to the learning 

algorithm itself. The key logic behind the wrapper algorithms is the fact that the aim of 

feature selection is improving the classification accuracy so why not determine the features 

that yields best classification algorithm but use other measures such as correlation, entropy, 

etc. As the selected feature sets are constructed, their performances are measured by training 

and testing the classification algorithm on selected feature subset.  
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In wrappers, three main issues arise when constructing the whole algorithm: how to 

search the feature space, how to guide the search by the help of performance measure, and 

which performance measure to use in the predictor or the classification algorithm. In order to 

select the features to be tested, heuristics based on randomized or nonrandomized procedures 

can be used.  

Kohavi and John [19] introduce an extensive study on wrapper approaches for feature 

selection. Their experiments analyze the impact of search strategy and the learning algorithm 

on the selection of feature subsets. Liu and Setiono [20] introduce a probabilistic wrapper 

approach that is based on the Las Vegas Algorithm. This algorithm randomly selects a 

constant number of features and applies the classification algorithm in order to identify the 

performance of the feature subset. Those that are in the feature subset with the minimum error 

rate are selected as the significant features. They used C4.5 which is a decision tree generation 

method and ID3 for the learning. They measure the accuracy by testing on artificial datasets, 

and focus on the computational time. The primary issue on the computational time of the 

algorithm was reported to be the complexity of the learning algorithm.  

Following this study, many algorithms that use meta-heuristics for search procedures 

have been developed. Zhang and Sun used Tabu Search which is an intelligent randomized 

search procedure that prevents the entrapment in local optima by tracking a tabu list that 

records the moves that will lead to the worse solution sets or to the solution sets discovered 

before [21]. 

Another random search algorithm is the genetic algorithm, which is widely applied 

also as a wrapper approach in feature subset selection problem. Every iteration, a new set of 

chromosomes is identified via reproduction and mutation processes, which mimic natural 

evolution. The chromosomes represent a feature subset and the fitness function score is the 

classification accuracy attained by using those features. The chromosomes that have better 

fitness function scores are allowed to reproduce and pass to the next generation and the 

chromosomes that have worst scores are eliminated from the gene pool. As it is the case with 

genetic algorithms, the drawbacks of wrapper approaches can be stated as the greater 

computational time to perform the measurement of the feature set’s classification accuracy 

and the model’s proneness to overfitting [9]. 

Randomized search algorithms that are applied with wrappers are widely used for 

cancer classification of microarray datasets as well. Randomized search based selection 

algorithms rely on the fact that the measures in selection of feature subsets do not support 
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monotonicity assumption. Therefore search of every possible subset is required in order to 

obtain the optimal feature subset. Since, it is infeasible to do this, clever search algorithms 

that are based on randomness are applied in a wide range of studies. 

Yang and Honavar [22] apply genetic algorithm on searching for the best feature 

subsets and perform induction with artificial neural networks. Artificial neural network that is 

constructed with selected features from genetic algorithm outperforms the network 

constructed by the whole features. Another application of genetic algorithms, introduced by 

Vafaie and DeJong, yield better results when compared to sequential backward selection. 

They used genetic algorithms to select feature subsets and evaluate their fitness scores by 

their rule induction algorithm stated in the paper. They state that using genetic algorithms 

reduces the computational time when compared to sequential search procedures [23]. Handels 

and Ross [24], utilizes genetic algorithm in order to find the best subset of features that 

classifies skin tumor from images. By using k-nearest neighbor for the classification accuracy 

measure, the performance of the chromosomes is evaluated. Their results show that features 

obtained by genetic algorithm outperform the subsets obtained by greedy search and 

heuristics. Liu et. al. [25] applied genetic algorithm as the feature search procedure, and used 

SVM method for predicting the classes. By experimenting the classification results of the test 

instances, SVM provides measuring the performance of features that are selected. Their 

algorithm was run on microarray dataset to perform cancer classification. Their results show 

that from different random seeds, different subsets that make almost accurate classification of 

instances can be evaluated. 

One of recent studies that use genetic algorithms in feature subset selection is used on 

microarray data for cancer classification. Kucukural et. al. [26] used genetic algorithms in 

order to discover the feature subset with minimum elements. Their genetic algorithm initially 

creates generations i.e. feature subsets, and measure their classification performance by 

classifying test instances using SVM. Through this step, genes are weighted according to their 

occurrence and classification score of the subsets they belong. Afterwards these weights are 

used in order to create a new generation series, applying roulette wheeling approach by 

weights evaluated. This enabled the algorithm to choose one gene (feature) at multiple times, 

thus decreasing the number of features selected for the subset, in the chromosome 

construction phase. 

Finally, a third approach to the feature selection problem is classified as the embedded 

methods in which the classification is performed simultaneously with the feature selection 
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phase. In these approaches the classification phase can’t be separated from the selection phase 

which was possible in wrapper algorithms. Artificial neural networks and association rule 

mining are mostly applied embedded methods for feature selection in microarray data. Bloom 

et al. constructed a ANN based framework that combines gene expression data of different 

types (cDNA and oligonucleotide arrays). Their results show that it is possible to make a 

system that accurately classifies tumor instances that are taken from different parts of the 

organism (i.e. breast, colon, ovary etc.) [27]. 

A study reviewing some techniques for feature subset selection for cancer 

classification came from Li et. al. [28]. They questioned the effectiveness of filter methods 

and tested symmetrical uncertainty based filter algorithms with SVM, Naïve Bayes and C4.5 

in classification phase. They concluded that filters are not efficient on microarray data. Liu et. 

al. also studied microarray data, they [29] used normalized mutual information which is 

derived from entropy, and minimized entropy among genes. They concluded that their method 

was strong in classification, but weak in detecting the genes that play role in cancer formation.  

 

2.3. Association Rule Mining 

 
In this thesis we will propose two algorithms for the subset selection and the classification 

problem for microarray data. One of the algorithms will utilize the association rule mining 

concept. Association rule mining is used in order to infer frequent relationships between 

feature behaviors. In the literature, various algorithms are introduced in order to reduce the 

computational time while gaining more powerful association rules [30]. The concept was 

firstly used to investigate consumers’ behaviors in retail market. The aim was to detect 

consuming habits by analyzing transactions. Every product was named as an item and every 

transaction belonging to a single consumer was named as an instance. Basic concepts and the 

terminology relating to the rule discovery in association mining are as follows; 

• Item set: The set of items selected to construct a rule is an item set. A k item set refers 

to an item set that have k items. 

• Antecedent: In general the rules have IF-THEN structures. The antecedent of a rule 

represents the condition in it, i.e., the IF part.  

• Consequent: Consequents are observed if antecedent occurs with estimated confidence 

of the rule. It is the part that follows “THEN” in the rule. 
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• Support: Support is the frequency of occurrence of an item in the instance set. It can 

be represented as the number or the percentage of instances containing the item.  

Creighton and Hannah [31] introduced market basket analysis as a rule generation 

concept to investigate genomic data. In the context of microarray datasets, where the 

variables (i.e., gene expressions) are continuous, items can be the high (or low) 

expression levels of a gene in the gene set. Every instance represents a transaction, in 

which highly expressed genes are identified.  An item with high support means that it 

is frequently seen in the instance set and its presence might be characteristic for the 

class that the support is evaluated. The support of an item set is calculated as number 

of instances in which all of the items can be observed simultaneously.  

• Confidence: Confidence is the percentage of occurrence of the consequent if the 

antecedent is observed. The greater the confidence, the more powerful the rule is.  

In order to determine the association rules, firstly, the item sets with support values 

above a certain threshold level should be discovered. Later, the rules with high confidence are 

determined based on the discovered item sets. There are three basic approaches for 

discovering the item sets that have support values above the threshold, namely, A priori, 

Sampling and Partitioning. A priori is based on the simple assumption that as new items are 

added to the item sets their support can’t increase. This approach apply breadth-first search 

and count the items for support calculation. Sampling detects association rules by searching 

through random sets of instances. On the other hand, Partitioning divides the dataset into 

partitions and search for association rules soon to be combined with association rules 

evaluated from other partitions. These algorithms also use breadth-first search strategy, but 

rather than counting the supports of item sets, they detect intersection of item sets that belong 

to different partitions/random instance sets. For a basic survey on discovering association rule 

we refer the reader to Hipp et. al.[32].  

Introduced by Agrawal et. al. in 1994 [33], A Priori Algorithm aims to find rules of 

pre-determined size. Procedure is based on the following hypothesis: “all subsets of an item 

set that has a high support level must also have a high support level”. At each iteration, 

algorithm takes (i-1) sized item sets that have (i-2) item sets in common and constructs a 

candidate item set by combining them. A priori algorithm applies breadth-first strategy to 

search through possible item sets. That is to say, in order to discover a k-item set, all of the (k-

1)-item sets should be discovered in this approach. 
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A sampling algorithm is presented by Toivonnen [34] in which without considering all 

of the instances in the instance set, only a few representative instances are utilized in order to 

discover the item set. The sampling algorithm is combined with other searching procedures to 

discover association rules such as a priori or ECLAT [35] that applies different support count 

strategies. In sampling approach, random instances are drawn and association rules are 

derived from this instance subset. 

Partitioning algorithm reduces computational time by partitioning the set of instances 

into subsets. This also reduces the CPU overhead [36]. Other than the computational benefits, 

by considering every partition as different states, association rules can be generated in an 

easier way, without looking at each instance, association rules are generated from different 

partitions are combined –intersection of these sets are determined- in order to discover 

association rules that represent the whole instance set. Similar to the a priori based algorithms, 

partition algorithms also use breadth-first strategy to discover item sets. That is to say, in 

order to discover a k-item set, all of the k-1-item sets should be discovered.  

Once an item set is discovered after a searching phase, the support of the discovered 

item set should be computed. The easiest way in terms of application, yet the most 

computationally expensive way is to count the occurrence of item sets in the set of instances 

i.e., transactions. 

In a priori based algorithms, the list of instances –transactions- are used for support 

calculation. Whereas, in some algorithms, such as the ECLAT [35], the list of transaction 

identifiers (tidlist) structure is used that is constructed as the transposed version of the 

instance set. Using this approach is an advantage in datasets that have few number of 

instances and large number of items. In this algorithm rather than counting the support of item 

sets, intersection of item sets that are representative in instances are used to discover 

association rules. For each item, the set of transactions that include the item is determined and 

kept in the tidlist. This methodology uses set of intersections in order to compute the support 

for item sets. As the two item sets are combined, it is possible to compute the support of new 

subset by defining the intersection of tidlists of the two combined item sets [32]. One of the 

main benefits of using tidlists is the low computational requirements: simply detecting 

intersection of any (k-1) subsets to reach the support of k-item set. That means, all instance 

set is not scanned during the support calculation process. 

Partition algorithm also uses tidlist structure to find the support of frequent item sets, 

as it also benefits from the intersections of item sets of partitions when discovering item sets 
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representing the whole instance set. After detecting frequent item sets in the partitions of the 

instance set, supports for these items are computed through the whole instance set by 

determining the intersection of item sets.  

ECLAT starts with single items and continues constructing item sets in a depth-first 

manner. New item sets are discovered until an infrequent item set is discovered. When an 

infrequent item set is discovered, as the depth search strategy offers, the algorithm returns to 

the earlier levels of the tree and continues constructing item sets in the same fashion. ECLAT 

uses the same search strategy as the A Priori Algorithm of Agrawal [33], whereas the 

determination of support is different. The novel part of this algorithm is computation of the 

support by transforming transactions into tidlists. After this transformation, it is possible to 

determine the supports by using the intersection of item subsets. Zaki states that ECLAT 

performs better than A Priori Based Algorithms proposed by Agrawal and Partition 

Algorithms. In addition, Borgelt points ECLAT’s efficiency; however it is stated that this 

algorithm needs a lot more memory than other algorithms. 

We have introduced the basic concepts and approaches regarding association rule 

mining. In the literature there are various algorithms that explore association rules in large 

databases like the microarray data. Top-k Covering Rules Algorithm, which is introduced by 

Cong et. al. [37], finds the most successful k rule groups that are found in every partition of 

the dataset. Algorithm starts with removing infrequent items. In order to proceed to search for 

rules, a data matrix in which rows are vectors indicating each item’s presence in instances is 

constructed. Before the depth first search, in every row, rule groups for each row are 

determined. A rule group covers all the possible subset of items that are common in the given 

instance set. During the depth first search, in order to evaluate the rule group for the visited 

node, that is to say, compute support and confidence easily, transposed tables are used. This 

algorithm does not mine rules in the whole dataset. In order to conduct association rule 

mining, genes are filtered according to entropy score or the genes and then discretized. 

Another algorithm is the FARMER [38]. In this algorithm, data is handled as rows 

representing instances. FARMER also focuses on rule groups rather than constructing 

association rules. Items are first discretized for rule mining procedure. FARMER mines 

association rules according to instance enumeration e.g. finding common genes in an instance 

set that is represented as a node in the search tree. On this tree FARMER conducts a depth-

first search. 
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Other studies include CLOSET algorithm [39] and its various derivations. In 

CLOSET, instead of mining all frequent item sets (item sets with supports above the desired 

threshold), this algorithm mines all frequent closed item sets (largest item sets with supports 

above the desired threshold). In order to conduct the searching phase, the algorithm uses FP-

Trees (a prefix tree to store the items dataset) which compress data for efficiency increase. 

Another algorithm named CHARM [40] searches both the item space, i.e. the instances that 

are covered by given item set, and the instance space, i.e. the items that are common in given 

instance set. 

In the literature there are rare studies that focus on classification based on the 

association rule mining algorithms. Without conducting any discretization on the data, 

Georgii et. al.’s algorithm [41] mines association rules, as the separation mechanism of the 

rule includes hyperplanes that minimizes the classification error.  

Note that, none of these methods initialize the data with fuzzy partitioning and usually 

discretize the data to turn it into a data structure more like market transaction databases, 

which in every transaction items are listed if they are bought from the market. This situation 

limits the validity of the discovered rules. 

 

2.4. Fuzzy Association Rule Mining 

 

Dubios et. al. [42] provide a detailed study on the use of fuzzy logic in association rule 

mining. They discuss some primal issues e.g. calculation of support and confidence, in fuzzy 

logic basis and compare the methods that have been used earlier in the literature. Even though 

they point that using different approaches seems to make no difference in mining association 

rules, it is left as an open question for further investigation. 

A study for association rule mining in a database containing fuzzy features comes 

from Hong et. al. [43]. On the basis of a priori, without starting the mining of association 

rules, they eliminate the features that are not frequent (i.e. with not satisfactory support). The 

way support is calculated is based on the membership degrees, as the membership degrees are 

summed in order to determine the support of a feature. To calculate the support of a feature 

set, the membership of a feature set to an instance is computed as the minimum of the 

membership degrees of the features in the set. 
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De Cock [44] focuses on the methods used to define support and confidence in 

association rule mining. They classify the relevance of a rule with an instance from positive 

instance to non-negative instance. They introduce four quality measures that are derived from 

the outcomes of previous classification in crisp sets. Then, they implement the proposed 

measures to fuzzy sets. They concluded that the most powerful quality measures, however, 

are stated as support and confidence. 

Wai-Ho et. al. [45] studied the change in databases over time with a fuzzy association 

rule mining perspective. Their proposed framework takes the supports of confidences of the 

association rules of databases that are constructed in different times. The change in support 

and confidence of these association rules are observed by linguistic variables i.e. with fuzzy 

sets. They partition the change in rules as “highly decrease”, “fairly decrease” or “more or 

less the same” etc. and use membership functions to determine the support of each label. 

Another approach proposed is to build fuzzy decision trees to analyze the change in 

association rules.  

Sudkamp [46] introduces performance measures based on the relevance of instances to 

the rules. Instances are classified as “examples”, “counterexamples” and “irrelevant 

examples”. He states that instances can be defined by association rules “to a degree” if fuzzy 

rules are used. To determine the relevance of a rule to an instance, it has been found that 

product is the unique T-norm. 

Xiang-Rong et. al. [47] introduces a study which mines association rules from 

microarray gene expression data. They propose FIS-tree mining algorithm, which determines 

rules from the microarray data under different experimental conditions. They use different 

data structures e.g. BSC-Tree which is claimed to be a compression format for mining 

procedures, and state that their mining algorithm outperforms A Priori and Partitioning. 

Another study comes from Kaya and Alhajj [48], which searches for association rules 

using genetic algorithm framework. They use market transaction data and construct 

chromosomes that represent centroids for all features to be partitioned to fuzzy sets.  

Becquet et. al. [49] take initial steps towards association rule mining in gene 

expression data. In their paper, association rule mining is used to determine co-regulated gene 

expression patterns. They used SAGE data, which stands for “serial analysis of gene 

expression”. Their motivation was to detect genes that are definitely related to the biological 

state that is being investigated, while they claim that other algorithms were not able to do this. 
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Their proposed algorithm is an unsupervised learning technique, that is to say, biological state 

-i.e. outcome- information is not inserted into the algorithm. Their rule prototype is as 

follows: “IF gene x and gene y have significantly high level of expression, THEN gene z has 

high level of expression”. In order to precede mining association rules, they conduct 

discretization techniques. Following this step, the binary matrix representing over expression 

of genes, are transferred to AC-Miner software used to discover association rule mining. 

The usage of fuzzy association rule mining for classification (prediction) is studied in 

Yuanchen et. al. [50]. They applied A Priori algorithm to generate fuzzy association rules on 

the data that is fuzzy partitioned in previous steps. However, they do not use microarray 

datasets and the datasets include very few features. Their findings are promising and they 

claim that their method outperforms C4.5 (explained later in the chapter) and SVM (support 

vector machine). Icev et. al. [51] introduces distance-based association rule mining algorithm 

to determine gene expression patterns based on protein binding sites. The algorithm extends 

previous research on protein motifs by taking into account the distances between protein 

motifs when constructing association rules. This contribution improves the accuracy when 

compared to APriori Algorithm. Rodriguez et. al. [52], improves the classic A Priori 

algorithm by using pruning structures and different data structures, and reduce the time 

needed to discover item sets. 

  

2.5. Beam Search 

 

First beam search algorithm was reported as HARPY [53] which was used for speech 

recognition. Ow and Morton [54] give an extensive study on the application of beam search 

on scheduling problems, where each path in the search tree corresponds to a candidate 

schedule of jobs. Following Lowerre, beam search has been widely used in speech recognition 

(Ney, Mergel, 1987[55]), (Alleva, Hwang, 1993[56]), (Nguyen, Schwartz, 1999[57]). In many 

algorithms related to feature selection, beam search is counted under different type of search 

strategies, as an alternative to branch & bound, sequential selection/elimination and random 

search. Carlson et. al. [58] used beam search for identifying potential protein binding sites. 

They claim that limiting the search space to most relevant gene sequences (candidate 

solutions) enables the algorithm to use more complex and computationally costly objective 

functions that give more accurate information on sequences i.e. paths in the search tree.  
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2.6. Classification and Regression Trees – CART 

 

Decision trees are widely used in classification problems due to their effectiveness, 

relative ease to implement and understand their outcomes [59]. Decision trees handle the 

features in a hierarchical way. At each node a feature is selected to conduct the classification. 

The partitioned instances are carried through the paths in the tree to be partitioned by the 

features that are selected in the lower levels of the decision tree. Decision tree starts with a 

single node. The number of partitions generated by the feature selected for the starting node 

determines the number of child nodes for the next level of the decision tree. The growth of a 

decision tree that is used for classification terminates when there is no use of adding a new 

node under any leaf of the tree. 

Introduced by Breiman in 1984 [60], classification and regression trees approach is based 

on partitioning the instance set into two subsets at each level of the regression tree. CART 

uses its own measure for selecting optimal node which is most successful to divide the data 

into two most homogenous parts. The details of this algorithm will be presented later in 

Chapter 4. Also in other performance measures, at each node, the feature and the splitting 

point -i.e. data is divided as the instances that are less and greater than this value- that reduces 

entropy i.e. impurity the most are determined. As a consequence, at each node, it is possible to 

reduce “impurity” maximally. Mostly used impurity measures are as follows: 
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where p(i|t) at node t is the portion of instances that is labeled as class i and c is the 

number of classes. 

In order to make a comparison of the impurity of the child and parent node, the change in 

impurity measure should be checked. In order to determine the goodness of the chosen feature 

and the split, delta is calculated. Optimal feature is selected when maximum decrease in 

impurity -i.e. delta is maximum- is reached. Delta is calculated as follows: 
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where N(vj) is the number of instances belonging to child node vj, I(.) is the impurity 

function and k  is the n umber of child nodes. 

Decision trees are widely used in machine learning applications. Yoon et. al.  [61] use 

decision trees for recommender systems for internet marketing. They introduce a study for a 

recommender system for users during web-shopping. They use decision trees in order to 

generate association rules on the buying behaviour of the selected customers and apply this 

tree structure to test customers.  

Another application is on the usage of CART in medicine. Nelson et. al.  [62] used the 

CART™ software in order to construct classification trees for determining risk groups of 

patients. They conclude with rules that identify risks by thresholding attributes that are 

selected for the construction of regression trees. 

A comparison study of different classification methods were introduced by Wu et. al.  

[63], where classification and regression trees was also tested as one of the methods. In their 

paper, Wu et. al. combined boosting with CART, where boosting means random selection of 

instances according to their outcome of classification, that is to say, if a instance has been 

classified correctly by previous nodes, the new instance set is less likely include the classified 

instance. This study is conducted on ovarian cancer mass spectrometry data, and the results 

found show that constructed CART algorithm combined with boosting can be as powerful as 

SVM classifier. 

One of the issues that is often regarded as a problem of regression and decision trees is the 

over fitting issue. There are two basic errors that can be defined when constructing a decision 

tree structure. Training error refers to the degree of misclassification while the algorithm is 

being trained with the historical data. Whereas, the generalization error, i.e., the test error, is 

the misclassification error of the testing data, which is not utilized through the learning phase. 

Hence generalization error is the expected error of misclassified testing instances during the 

future usage.  

It is important to handle the issue of over fitting in order to reach high generalization 

error. In one sense, over fitting means that the features selected for classification are too 

specific and takes into consideration only the necessary information required to correctly 

classify the training instances. In order to reduce over fitting, pruning should be performed. 
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Pruning strategies incorporate the elimination of nodes that are relatively unnecessary by 

means of information gain, which is based on the contribution in the impurity decrease of the 

parent node. 

 

2.7. Decision Trees vs. Association Rules 

 

When an association rule is generated, the instance set is being partitioned 

simultaneously by all of the features involved in the item set. On the other hand, in a 

regression tree structure, there is a hierarchical sequence of features that lead to a 

classification of the instance set. The use of the features in the classification stage differs in 

the two approaches. Therefore, the two approaches have different ways of handling the search 

for set of features. Rule mining procedures perform an enumeration on the features that would 

satisfy desired support and confidence thresholds. However, decision trees make a sequential 

search on the features, and select the best features only according to the instances that are 

represented in the current node. Every path in a decision tree corresponds to a hierarchical 

rule structure i.e. there are multiple if-then rules embedded in each other. 
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CHAPTER 3 

 

PROBLEM DEFINITION AND PROPOSED ALGORITHMS 

 
In this chapter we will first present the mathematical structure of the feature subset selection 

problem. Next, the three algorithms that are proposed in this thesis for the feature subset 

selection problem will be introduced. Two of these algorithms aim to find association rules 

based on the fuzzy set theory. The first one of these algorithms will be referred to as the 

Fuzzy Association Rule Mining (F-ARM) based on exhaustive search and the second 

algorithm also performs association rule mining on the fuzzy partitioned data but will employ 

a filtered beam search. Finally the third algorithm which is based on the classification and 

regression trees (CART) will also be presented in this chapter, which discovers hierarchical 

rule structures based on the decision trees.  

 

3.1. Problem Definition 

 

The main objective of the feature subset selection problem is to maximize the predictive 

accuracy of the classification while minimizing the number of features used for the 

classification task. 

X : Set of features 

n : Number of features 

G(.) : Function evaluating the classification performance of the selected feature 

subset. 

 

if x is selected in the feature subset, from set of all features 

otherwise 
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Without any constraints added, the feature subset selected problem can be modeled as 

follows: 
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3.2. Algorithm for Fuzzy Association Rule Mining (F-ARM) 

 

The F-ARM algorithm aims to discover all fuzzy item sets that satisfy a predetermined 

threshold support level, with the highest possible confidence. The proposed search strategy is 

breadth-first, i.e., the algorithm first searches all of the possible item sets that can be 

generated from all parent item sets that have the same number of elements. The pruning 

strategy for mining is a priori based. That is to say if an item set does not have a support 

value above the support threshold, any item set that includes that set will be treated as 

unsatisfactory support level.  

Fuzzy Partitioning 
 

In order to mine association rules from data for classification purposes one should first 

partition the data into clusters. However, it is difficult to strictly label an instance in the data, 

when the instance is near the boundary of data clusters. Hence, rather than arbitrarily 

assigning such instances to clusters, a weighting procedure which represents the degree of 

belonging to clusters would be a better representation of the reality. In this thesis we utilized 

the Fuzzy C-Means clustering algorithm developed by Bezdek [64]. The FCM algorithm is 

similar to the well-known k-means clustering procedure which is adapted to the context of 

fuzzy set theory. In this theory, an instance is a member of every possible cluster with certain 

“membership degrees”.  

The algorithm tries to minimize the cost function derived from the dissimilarity between 

data points and cluster centers. The cost function is as follows: 
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where vector θ represents cluster centers, uij represents the membership degree of point i 

to cluster j, q is the fuzzification parameter representing the compactness of the clusters; d(i,j) 
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function returns the distance between i and j. As constraints, the properties of the membership 

degrees are integrated to the model. 

The fuzzification parameter determines the membership degree boundaries. As q 

decreases to 1 (q>1), the algorithm resembles traditional k-means clustering algorithm. FCM 

assumes that the total membership degrees of an instance for each cluster is 1 and the total 

membership degrees of a cluster for each instance must be strictly greater than zero and 

strictly less than total number of instances.  

In order to determine the cluster center, coordinates that minimize the cost function, 

gradient of J(U, θ) with respect to θ is taken. Since the solution cannot be stated in closed 

form [65], an iteration based procedure is applied to converge to the minimum value of the 

cost function.  

At each iteration, as the cluster centers are updated, J(U, θ) is recalculated according to 

the revised membership degrees based on new cluster centers. It is important to note that 

fuzzy clustering gives information about the degree of belonging to the clusters of any point. 

It is however more computationally costly than hard clustering procedures. 

Membership degrees, i.e., uij, of each instance, to each cluster are computed via the FCM 

algorithm. After the fuzzy clustering phase, rule generation step begins. In this phase, 

instances belonging to the same class are searched. Our approach uses a fast search strategy to 

generate rules with higher support. For a predetermined threshold for membership levels, our 

search strategy finds rules that have maximum confidence and are above a predetermined 

support threshold. 

Since the data is clustered with fuzzy sets, we need to define our support and confidence 

measures for the the fuzzy partitioned data. In this algorithm we stick to the definition of 

support, and directly apply it to fuzzy membership values. The support of an item i in class c 

is the sum of all the membership degrees of instances in class c to item i. Equation (3.1) 

explains the computing, m is the number of instances that belong to class c, ut,i represents the 

membership degree of instance t to item i.  

∑
=

=
m

t
tiucis

1

),(
        (3.1) 

Note that, one should decide the ANDing operator that will be used when computing the 

support of item sets with more than one item. There are various different t-norms available in 

fuzzy set and logic literature for this purpose. A commonly used one is the min operator. 



 25

Briefly speaking, if an instance belongs to the item i to a degree of a, and item j to a degree of 

b; then that instance belongs to item set (i AND j) to a degree of min{a,b}. Equation (3.2) 

gives the calculation for the support of an item set, where X refers to the item set. 
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The F-ARM algorithm has two input parameters; namely, the support_threshold and the 

number_of_output_rules. The first input parameter, namely, the support_threshold is a 

determinant of the number and the size of the discovered item sets, which defines the support 

level under which an item set is not worth to discover, even if it is highly confident. The value 

of this parameter is closely related with the desired rule structure. However, as the most 

representative items are important for discovering rules that define the whole class label, it is 

important to keep the support_threshold as high as possible, which also brings advantages for 

less computing. The second parameter, namely, the number_of_output_rules defines the 

number of rules that will be selected from all discovered rules at the end, which will be 

utilized in order to conduct the classification task. These rules will be the most confident ones 

among all discovered association rules. 

The rule structure that is discovered by this algorithm is as follows: the antecedent being 

the item set discovered and the consequent is the class label of which the item set is mined 

e.g. IF items a AND b, THEN class label c. Therefore, in order to determine the confidence of 

the item sets, as the definition proposes, we need to compute the support of the item set in the 

instance sets defined by other class labels. Equation (3.3) represents the calculation of 

confidence of an item set under a specific class label c1, where C represents the set of all class 

labels. 
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Our algorithm separately mines instance sets under the same class label. However, when 

computing the confidence, the algorithm determines the support of the item sets in other 

instance sets. After running F-ARM in every instance subset with a different class label, the 

algorithm outputs number_of_output_rules number of rules for each class label defined in the 

instance set. The decision of the test instance’s class label is again based on the fuzzy set 

theory. This decision is made along two dimensions: the first one is the membership degree of 

the test instance to the item set, i.e., the antecedent of the rule; the second one, the confidence 
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of the rule. The membership degree of the test instance is computed in ANDing approach; we 

take the minimum of the membership degrees of the test instance to the items that belong to 

the antecedent of the rule. Equation (3.4) explains the determination of the membership 

degree tru -the membership to test instance t to the rule r, where X represents the set of items 

that construct the antecedent part of the rule. 

}|{min Xiuu tiitr ∈=        (3.4) 

The second dimension is the confidence of the rule. Confidence simply measures the 

fraction where the rule is observed in the whole instance set. Therefore we treat confidence as 

a possibility measure, define the expected membership of the test instance to the testing rule 

as follows: 

),(_ 1cXCuuE trtr =        (3.5) 

where X is the antecedent item set, c1 is the consequent of the rule. 

The discovered rules of the same class are connected to each other with the logical 

operator OR. Therefore, since we have used the MIN function to compute the degree of 

logical relation AND, this time we take the maximum (MAX) of the expected degree of the 

membership of the test instance to determine the degree of membership of the test instance to 

the instance set that is mined. R is the set of all rules that is selected to define class c1. 

}|_{max
1

RruEu trrtc
∈=       (3.6) 

 The general framework of the algorithm can be given in Figure 3.1 

 

 

 

 

 

 

 

 

 

Algorithm for Fuzzy Association Rule Mining 
Step 1 Fuzzy partitioning the data 

  
Convert gene expression profiles to variables (items) 
 representing high and low gene expression 

Step 2 Compute support of every item 
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  Add membership degrees of each instance 
Step 3 Prune items with unsatisfactory support 

  
As in A Priori Assumption they can never make up 
 satisfactory item sets 

Step 4 
Construct all possible item sets by combining item sets from 
 previous level and items left from initial pruning 

  Perform breadth-first search by inserting items into item sets 
Step 5 Determine the support of produced item sets 

  Sum of minimum of membership degrees of each instance 
Step 6 Prune item sets with unsatisfactory support 

  Support values less than input parameter threshold_support 
Step 7 Determine the confidences of rules derived from item sets 

  

Store number_of_output_rules item sets with maximum 
confidence (delete item sets with lower confidence from previous 
iterations, if necessary) 

Step 8 Return to Step 4 

  
Terminate if no item sets with support higher than 
threshold_support could be discovered  
Figure 3.1 General Framework for Algorithm F-ARM 

 

The Algorithm starts with a pre-processing step. All training instances are applied the 

fuzzy c-means algorithm on each gene and the fuzzy partitioned items are generated. Every 

gene is represented by two items referring to low and high gene expression. According to this 

membership data, support for each item is calculated. Items with support value above 

threshold_support are selected for the construction of the search tree. Since the A Priori 

assumption is accepted, any item with lower support cannot make up item sets with 

satisfactory support (i.e. greater than threshold_support).  

After that, item sets with 2 items are generated. The supports of these item sets are 

calculated by (3.2). If an item set has support value lower than threshold_support, this item 

set is omitted from the construction of larger item sets. The confidence of the rules that 

include discovered item set as the antecedent is calculated as in (3.3). In order to determine 

confidence, the support of the item set in other instance subsets with different class labels 

should be computed. Item sets that are included in maximum confident rules are stored in a 

vector which can keep the number_of_output_rules number of item sets. 

Item sets that are discovered in the previous iteration are combined with items that have 

support values above threshold_support i.e. initially pruned. Their supports and confidence of 

rules are calculated. As stated in previous paragraph, if any rule with discovered item set has a 

confidence value higher than confidence, the minimum confident rule item set stored in the 
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vector, the item set with the minimum confidence is taken out of the vector, and the 

discovered item set is inserted. This procedure continues until the most confident item set 

discovered has less confidence than the confidence of the minimum confident rule item set 

stored in the vector. Consequently, the number of rules stored in the vector never changes, as 

any rule is inserted, another rule s taken out. The algorithm iterates in this fashion until no 

item set can be discovered with support value above threshold_support. 

An Example on Algorithm F-ARM 
 

Data for F-ARM has 10 items (i.e. 5 genes) and 6 instances Table 3.1. 

Table 3.1 Data set for counter example on F-ARM 
 

   instances 
   cancer cancer cancer normal normal normal 

It
em

s 

0 0.8 0.6 0.4 0.4 0.3 0.3 
1 0.2 0.4 0.6 0.6 0.7 0.7 
2 0.4 0.1 0.6 0.6 0.8 0.3 
3 0.6 0.9 0.4 0.4 0.2 0.7 
4 0.2 0.2 0.3 0.4 0.3 0.2 
5 0.8 0.8 0.7 0.6 0.7 0.8 
6 0.4 0.6 0.8 0.3 0.4 0.4 
7 0.6 0.4 0.2 0.7 0.6 0.6 
8 0.5 0.8 0.6 0.2 0.2 0.3 
9 0.5 0.2 0.4 0.8 0.8 0.7 

 

Mining cancer data: 

Set threshold_support=1.8 

Set number_of_ouput_rules=2 

1. Calculate fuzzy support for each item. 

s(0,C)= 0.8+0.6+0.4=1.8 

s(1,C)=0.2+0.4+0.4=1.2 

s(2,C)=1.1; s(3,C)=1.9; s(4,C)=0.7; s(5,C)=2.3; 

 s(6,C)=1.8; s(7,C)=1.2; s(8,C)=1.9; s(9,C)=1.1 

2. For selected threshold, determine the items that have fuzzy  

supports greater than or equal to the threshold_support. 

The items above threshold are {0, 3, 5, 6, 8}. 

3. Construct the item sets (Table 3.2)  
Table 3.2 Constructed item sets with 2 items 
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  0 3 5 6 8 
0 X (0,3) (0,5) (0,6) (0,8)
3 X X (3,5) (3,6) (3,8)
5 X X X (5,6) (5,8)
6 X X X X (6,8)
8 X X X X X 

 

4. Calculate the fuzzy support of the constructed item sets and eliminate the ones that  

have support less than the support-threshold. Determine the support of an item set 

using  

Min operator as the t-norm. Take the item sets that have support  

greater than or equal to the threshold_support for the next iterations. 

S((0,3),C)=Min{0.8,0.6}+Min{0.6,0.9}+Min{0.4,0.4}=1.6 

S((0,5),C)=1.8; S((0,6),C)=1.4; S((0,8),C)=1.5; S((3,5),C)=1.8;  

S((3,6),C)=1.4; S((3,8),C)=1.7; S((5,6),C)=1.7; S((5,8),C)=1.9; S((6,8),C)=1.6. 

The item sets above threshold are {(0,5); (3,5); (5,8)} 

5. Calculate the confidence of the item sets that are above the threshold 
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6. Record the most 2 confident rules with respect to their confidence levels. 

The confident rules are {(5,8), 0.7307; (0,5), 0.6428} 

7. Construct the item sets 
Table 3.3 New item sets with 3 items 

 
 (0,5) (3,5) (5,8) 
0 X (0,3,5) (0,5,8)
3 (0,3,5) X (3,5,8)
5 X X X 
6 (0,5,6) (3,5,6) (5,6,8)
8 (0,5,8) (3,5,8) X 

 

8. Calculate the support for the item sets 

S((0,3,5),C)=1.6; S((0,5,8),C)=1.5; S((3,5,8),C)=1.7;  

S((0,5,6),C)=1.0; S((3,5,6),C)=1.4; S((5,6,8),C)=1.6. 

9. No item sets are identified that have a support level greater than  
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or equal to the threshold_support.  

Therefore the most confident two rules discovered up to this point are as follows: 

IF item 0 AND item 5, THEN cancer; with confidence 0.6428. 

IF item 5 AND item 8, THEN cancer with confidence 0.7307. 

Similarly, mining the data regarding to the normal instances yields: 

IF item 1 AND item 5 AND item 7 AND item 9, THEN NORMAL with  

confidence 0.75. 

These rules can be used to classify an instance that has an unknown label.  

Consider the instance tabulated in the following table; 
Table 3.4 Test Instance Vector 

 
 

 

 

 

 

 

 

 

Rule 1: IF item 0 AND item 5, THEN cancer; with confidence 0.6428. 

u11=min{0.2, 0.7}=0.2 

E_u11=0.2*0.6428=0.1285. 

Rule 2: IF item 5 AND item 8, THEN cancer with confidence 0.7307. 

u12=min{0.7, 0.2}=0.2 

E_u12=0.2*0.7307=0.1461. 

Membership of the test instance 1 to class CANCER: 

u1C=max{0.1285, 0.1461}=0.1485. 

Rule 3: 

IF item 1 AND item 5 AND item 7 AND item 9, THEN NORMAL with  

confidence 0.75. 

u13=min{0.8, 0.7,0.6,0.8}=0.6 

E_u13=0.6*0.75=0.45. 

Membership of the test instance 1 to class NORMAL: 

u1C=max{0.45}=0.45 

    
test 

instance

Ite
m

s 

0 0.2 
1 0.8 
2 0.6 
3 0.4 
4 0.3 
5 0.7 
6 0.4 
7 0.6 
8 0.2 
9 0.8 
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. 

Based on these figures, one can conclude that the test instance is  

more NORMAL than CANCER.  

3.3. Filtered Beam Search with Child Width for Association Rule Mining 

 
The second algorithm presented is very much alike the fist algorithm F-ARM. However in 

this case, rather than an exhaustive search on every possible item set, a greedy pruning 

strategy will be adopted when mining the item sets. 

Filtered beam search is a special case of branch and bound algorithms. Instead of 

performing and enumeration, i.e., searching every possible solution, by selecting the most 

promising ones generated from that node, beam search limits the number of generated 

solutions from a specific node. As determining which nodes should be eliminated is costly, 

filtered beam search, firstly filters possible solutions according to a local and less 

computational costly evaluation function, and then selects beam width number of nodes 

according to a global evaluation function in order to continue iterations i.e. enlarging the 

search tree. 

As proposed by Aktürk and Kılıç [66], our next algorithm searches for association rules 

by conducting a beam search tree with child-width constraints. As the name implies, child-

width brings limits to the number of generated nodes from each parent node. 

 

 

 

 

 

 

 

Algorithm Beam Search with Child Width Constraint 
Step 1 Fuzzy partitioning the data 
Step 2 Compute support of every item 
Step 3 Prune items with unsatisfactory support 
Step 4 Set items with satisfactory support as the initial item set to be enlarged 
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Step 5 Generate potential child nodes by enlarging each item set with 1 additional item 

  Step 6 
filter item sets that have average support threshold_support 
 calculate support of filtered item sets 

  Step 7 Take parent nodes with no potential children emanating, into solution set 
  Step 8 If there are no potential children left from filtering, TERMINATE algorithm 

  Step 9 

If size of potential children are below beam_width, 
Update  beam_width as 
min {child_width*number of parent nodes, size of potential children} 

  
Step 
10 

take beam_width number of item sets in a way that at most child_width number of 
item sets can be taken from a parent node. Deterine them as the new parent nodes 

Step 
11 Return to Step 5 

 
Figure 3.2 Steps for filtered beam search with child-width constraint 

 
Algorithm Beam Search with Child-width Constraint 
Initialization 
support={}; 
candidate_parents={}; 
support_parents={}; 
parents={}; 
selected={}; 
beam_width; 
child_width; 
number_of_instances; 
number_of_children={}; 
confidence={}; 
indexes={0}; 
solutions={}; 
End initialization 
For each item 
 Compute support(item) 
 If support(item) ≥ minsup 
  Insert item into selected 
              End If 
End 
Parents=selected 
While iterations 
 For each item set in parents 
  index=0; 
  For each item in selected  
   Combine (item set+item) = item set 
                                           Compute average support of the item set 

If average_support(item set) ≥ threshold_support 
    Insert (item set) into candidate_parents 
    index=index+1; 
    Compute support (item set) 
    Insert support (item set) into support_candidate  
   End 
  End 
  If index==0 
   Insert parents(item set) into solution 
  Insert [index + indexes(size(indexes)] into indexes 

End 
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If size(support_candidate)>0  
For each item set in candidate_parents 

   Compute average_confidence(item set) 
   Insert average_confidence(item set) into confidence 

End 
If size(confidence) < beam_width 

beam_width=min{child_width*number of parent nodes, size of potential children} 
End 
For i=1: length(parent_support) 

   children(i)=0; 
End 
index=0; 
Clear parents, support_parent,  
While index < beam_width 

  Determine item set with maximum average confidence in confidence 
  Determine parent of item set using indexes 

number_of_children(parent(item set))= number_of_children(parent(item 
set))+1 

  If number_of_children(parent(item set)) < child-width 
   Insert candidate_parents (item set) into parents; 
   Insert support_candidate(support(item set)) into parents; 
  End 
  Erase item set from candidate_parents; 
  Erase support(item set) from support_candidate 
  Erase average_confidence(item set) from confidence 
  Modify number_of_children according to item set erase 

End 
Clear candidate_parents 
Clear support_candidate 
Clear confidence 
Clear children 
Clear number_of_children 

End If 
End While 

 
Figure 3.3 Algorithm Filtered Beam Search with Child-width Constraint 

 
In this algorithm we have used the tools for measuring the talent of association rules we 

applied in algorithm F-ARM. All nodes emanating from the parent node are firstly 

determined. Then, according to our evaluation of average support –which is computationally 

less costly compared to other measures (support and confidence) due to not passing the data- 

nodes that have average support less than threshold_support are filtered out.  

Lower bound and upper bound for the fuzzy support of an item set 

Definitions: Let X be an item set and i be an item where Xjji ∈∀≠ , . S(X) and s(i) 

represent the previously calculated supports for item set X and item i. The number of 

instances that are used for support calculation is n. 

Let membership degrees of item set X be nXXX uuu ,...,, 21 and the membership degrees of 

item i be niii uuu ,...,, 21  . 
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Proposition 1: The lowerbound for the value of the support of the union of item set X and 

item i is: 
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The above inequality is infeasible, since the highest value of a membership degree is 1. 

Proposition 2: The upperbound for the value of the union of item set X and item i is: 
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The above equation is infeasible since left hand size is always positive. The situation 

holds for ∑∑
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From all left (potential) nodes emanating from all parent nodes in the same level of the 

search tree, beam-width number of nodes should be selected to be the new parent nodes. This 

selection is done according to the confidence of the rules whose antecedent is the item sets to 

be selected. Beam-width number of item sets from which generated rules has the maximum 

confidence is chosen according to “child-width” constraint. This constraint prevents selecting 

child nodes which are mostly emanating from the same parent node. The application of this 

constraint is as follows: if only there are less than the child-width number of children nodes 

emanating from its parent node, a child can be selected as a child node. As the selection is 

done, and all the children nodes are determined, the children nodes that are generated from the 

same parent node do not exceed child-width. 

As the final step of the beam search algorithm, the last step of F-ARM algorithm has been 

directly utilized into beam search algorithm. The most confident rules are selected to conduct 

the classification of the testing instance. The number of the rules selected is determined by the 

parameter number_of_output_rules. 

 

 

3.4. Decision Tree Construction for Classification 

  
Another rule generation scheme is the hierarchical construction of features for the 

classification of the data. Decision trees are mostly applied in data mining for classification 

problems. In spite of the threat of overfitting, Slonim [59] points out the simplicity of logic 

behind the construction of decision trees complex structures can be modeled easily by 

decision trees. In order to apply decision tree structure to microarray data, Classification and 

Regression Trees [60] is used. CART constructs a decision tree, in which each node 

represents a gene with a split value. For each node, the gene that is most successful in splitting 

the data in two most possible homogeneous partitions is selected, and two branches of nodes 



 36

represent the partitioned instance subsets. Algorithm iteratively “grows” the tree until every 

path in the tree refers to a decision rule which concludes with a homogeneous instance subset. 

For each node, each gene is tested with its optimal split point. For all the values that the 

gene is taken, the optimal split point that divides the values set into the two most 

homogeneous must be determined. In this study, candidate split values are calculated as the 

arithmetic average of all the two consecutive values. The decision for the best split is done 

when the performance evaluation function takes current node t and split value s as parameters 

(3.7). L and R indicate the left and right branches of the current node. PL and PR represent the 

fraction of instances that belongs to the left and the right branch respectively. For each class 

j<=m, the function adds the difference of the fraction of instances that belongs to right and 

left branches. 

∑
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)|()|(2)|(     (3.7)  

Another performance measure for the best split is selected to focus on impurity. For 

choosing the gene that most homogenously partitions, the data is determined by entropy. Jin 

and Agrawal [67] used entropy to select split value for the decision tree construction. Their 

approach focuses on the change on the entropy and looks for the feature and split value that 

the most decreases impurity.  
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Algorithm CART 
Initialize 
 Split_values={} 
 Genes={} 
 Samples_node=All samples in dataset (as a vector) 
 Samples_level={} 
 Dummy={} 
End Initialize 
[gene, split, left_samples, right_samples]= find_optimal_splitting (Samples_node) 
Insert left_samples into Samples_level 
Insert right_samples into Samples_level 
Insert gene into genes 
Insert split into Split_values 
Clear Samples_node 
While Samples_level≠{} 

If all vectors in Samples_level include samples of the same class 
Samples_level={} 

 else 
  For each vector in Samples_level 
   Samples_node= vector in Samples_level 

[gene, split, left_samples, right_samples]= find_optimal_splitting(Samples_node) 
Insert left_samples into Dummy 
Insert right_samples into Dummy 
Insert gene into genes 
Insert split into Split_values 

  End 
  Clear Samples_level 
  Samples_level=Dummy 
  Clear Dummy 
 End 
End while 
Function find_optimal_splitting 
 For each gene that has not been used in any node so far 
  For any average value of two successive samples in Samples_node 
   Compute performance_measure; 
  End 
 End 
 Find the gene and the split value with optimal maximum performance_measure:  

gene, split; 
 For each sample in Samples_node 
  If expression data (gene, sample) < split 
   Assign sample to left_samples; 
  Else 
   Assign sample to right_samples; 
 End 
End Function 
 
  

Figure 3.4 Algorithm CART 
 

For the 2-class case, before the splitting of the instance, entropy is calculated as in (3.8), 

after the splitting feature splits the instances, the left and right branch instances are 

determined. In order to find the decrease in impurity by splitting a node, the entropy of the left 

branch and the right branch is multiplied by their fractions (PL and PR) respectively, and 
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subtracted from the entropy before splitting (3.9). The feature and the split value that 

maximizes this decrease is selected at the current node. 

)|((log*)|()|((log*)|()|( 222121 tCPtCPtCPtCPtsEntropy −−=   (3.8) 

)|(*)|(*)|()|(_ RRLL tsEntropyPtsEntropyPtsEntropytsDecreaseI −−=  (3.9) 
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CHAPTER 4 

 

EXPERIMENTAL ANALYSIS 

 
In order to test the performance of the proposed algorithms both in terms of accuracy and 

computational time an experimental analysis is conducted. For this purpose we utilized three 

different data sets. These are the publicly available Colon Cancer Data*, Leukemia Data† and 

the well known Iris Data. First we will provide the detail of the data sets, later we will present 

the results of the experimental analysis.  

 

4.1. The Colon Cancer Dataset  

 

The colon cancer dataset is composed of 22 normal and 40 cancer instances, with 2000 

genes that are determined to be significantly differentially expressed between the normal and 

cancer classes. This dataset was first introduced in the paper by Alon et. al. [68], where they 

examined the correlation among genes, and utilized a clustering algorithm on the data. In 

addition, their data included 6500 genes which were reduced to 2000 in the following studies. 

Their clustering scheme misclassified 8 instances which was explained by the tissue 

composition of the misclassified instance. Li et. al. [79] used genetic algorithms with a k-nn 

classifier to measure the performance of the chromosome. They misclassified only 1 test 

instance, when 40 of the instances were used for training while the rest was for testing. 

Another study conducted by Tan et. al., [80] used the C4.5 algorithm that implemented 

decision trees and reached 95% predictive accuracy. In their studies, Kucukural et. al. [26] 

reached 98.38% accuracy with ten fold cross validation and Guyon et. al. [8] misclassified 3 

test instances out of 31, by using the SVM classifier. 

                                                 
* Data is available in http://microarray.princeton.edu/oncology/affydata/index.html 
† Data is available in http://www.broad.mit.edu/cgi-
bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=43  
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4.2. The Leukemia Dataset 

 
Introduced by Golub et. al. in 1999 [69], this dataset consists of different instances that 

make up separate training and testing sets. The primary objective of the studies related to this 

dataset is the prediction of the testing instances’ type of acute leukemia as ALL (acute 

lymhoblastic leukemia) or AML (acute myeloid leukemia)‡. 

The training dataset includes 27 ALL and 11 AML bone narrow instances. The number of 

genes represented in the dataset is 7129. The testing dataset consists of 20 ALL and 14 AML 

instances. Golub et. al.’s study noted that the testing dataset includes a “broader collection of 

instances” than do the training instances. Golub et. al.’s method was able to classify the 

testing dataset with 100% accuracy using 50 genes. 

Jirapech-Umpai et. al. [70] investigated the classification performance of evolutionary 

algorithms on leukemia dataset. On one hand, their algorithm gave high training accuracy; on 

the other hand, it gave poor performance with the testing dataset. They found 68% at the best 

case, reaching 98% accuracy in the training phase. 

Another study, Yuhang et. al. [71], compared many different feature selection and 

classifier construction methods, and to find 100% accuracy for the leukemia dataset using 5 

genes. Bø et. al. [72] investigated the performance of their feature selection methodology on 

leukemia dataset. The prediction accuracy of 2-fold validation scheme stays around 96% as 

the number of features selected are more than 30 genes. Guyon et. al. [8] claimed that the 

training set and the testing set is significantly different than each other, resulting difference in 

training leave-1-out and testing accuracy. Their best result was a 100% accurate classification 

of testing instances with 16 genes. 

4.3. The Iris Flower Dataset with Noise 

 
Introduced by Fisher [73] in 1936, the iris flower dataset is one of the primer datasets 

in the pattern classification literature§. It includes 4 features represented with positive real 

numbers, which carry information on 150 instances. The instances belong to 3 classes: setosa, 

versicolor, and virginica. The structure in this dataset is different, that is to say, the ratio of the 

number of instances to the number of features is much higher than the ratio in the microarray 

                                                 
‡ Data is available in http://www.broad.mit.edu/cgi-
bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=43  
§ Data is available in http://en.wikipedia.org/wiki/Iris_flower_data_set 
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datasets (0.031 in colon dataset, 37.5 in iris dataset). However, most microarray datasets carry 

information of two classes, often normal and tumor; thus, linear simple classification methods 

may be successful to obtain higher prediction accuracies. As the scatter diagrams of paired 

features in Figure 4.1 reveal, it is not possible to separate the data with a single classifier line 

or labeling the feature’s value as “high” or “low”. As Ben-Hur [74] states, “setosa” labeled 

instances can be separated from the others with a single line, whereas, the other labeled 

instances cannot be linearly separable, showing high overlapping.  

 
Figure 4.1 Scatter plots of the Iris Flower Dataset** 

 
 

Tsang et. al. [75] reached high accuracies with their algorithm that used features 

named petal length and petal width. Mylonas et. al. [76] used k-nn classifier when 

constructing a hierarchical clustering structure, and found 82% accuracy for iris flower 

dataset. Another study came from Ahmandian et. al. [77] which reached 97% testing accuracy 

in iris flower dataset. They eliminated the phase of feature subset selection and applied multi-

objective optimization principles to evolutionary computing. 

In order to test F-ARM about choosing only the relevant features, that is to say, to 

conduct a successful feature subset selection, randomly distributed 46 features were added to 

the 4-featured iris flower dataset, resulting in a dataset with 4 relevant features out of 50. 

                                                 
** Figure retrieved from http://upload.wikimedia.org/wikipedia/commons/e/ea/Anderson%27s_Iris_data_set.png  
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4.4. Algorithm F-ARM – Algorithm for Fuzzy Association Rule Mining 

 

Fuzzy Partitioning 
 

In order to apply the fast search of association rules, the colon cancer dataset is first 

fuzzified by fuzzy partitioning. The expression levels of each gene are partitioned into two 

fuzzy sets, representing high and low expression levels. Once the expression of a gene is 

partitioned, the gene is represented in the fuzzy data as two “items”. 

For fuzzy partitioning of every gene, the general framework for fuzzy clustering 

introduced in methodology section is applied. Application is done with the fuzzy c-means 

clustering function of MATLAB. Three different fuzzification parameters are used, namely 

1.2, 2 and 2.8. Note that, 2 is widely used as the fuzzification parameter in the literature[78]. 

To increase the effect of fuzzification, the fuzzzification parameter 2.8 is selected for further 

operations. Figure 4.2 shows the effect of fuzzification on the membership degrees of 

instances.  

 
Figure 4.2 Effect of the fuzzification parameter on membership degrees of the same data (taken from 

colon cancer dataset) 
 

Note that, the clusters converge to a “crisp” set structure if the fuzzification parameter 

is close to 1 and as the fuzzification parameter increases, membership degrees are more 

“fuzzified” which means that the membership degrees are more prone to have membership 

degrees with lower differences among them. 

When mining association rules, using the fuzzy partitioning data with a low 

fuzzification parameter can provide the discovery of a higher number of association rules than 
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using partitioning data with other fuzzification parameters. However, as the membership 

degrees are less sensitive to the distances to the cluster centers, it is more likely that the 

partitioning is prone to risks. With a high fuzzification parameter, it is less likely to discover 

item sets with a satisfactory level of support and confidence. On the other hand, using a fuzzy 

partitioning data with a high fuzzification parameter is more appropriate for obtaining the 

worst case membership degrees. 

Changing the ANDing Operator 
 
 

Taking the product of the elements as the ANDing operator may be expected to 

increase classification accuracy. The main reason is that multiplication carries the information 

of every term that is involved; i.e. every element of the multiplication affects the outcome 

without any specific requirement.  

Changing the ANDing operator firstly affects the support values of discovered 

itemsets. That is to say, the support levels obtained by multiplication are always lower than 

levels obtained by taking minimum. Following is the proof of this proposition: 

 Proposition 3: 

Let nxxxx ,...,,, 321  be the membership degrees for itemset { }nI ,...,3,2,1= . 

Since 10 ≤≤ ix  Ii∈∀  

{ }iIi
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i
i xx

∈
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≤∏ min
1

 

Proof: 

Let minx  be the minimum membership degree of the item set I, and the remaining 

elements of the itemset is represented as { }IxxyxyyK ii ∈≠== ,,| min . 
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1
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 dividing both sides by minx  will yield 

1
1

1
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−

=

n

i
iy  which holds for every 10 ≤≤ iy . 

Implementation on Colon Cancer Dataset 
 

Fuzzy c-means clustering was applied to the colon cancer dataset to create 2 fuzzy 

clusters from each gene. After fuzzification, data with every gene represented with two items, 
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instances with the same class labels are investigated separately for association rule mining. 

That is to say, for each class label which are normal class --represented with 22 instances-- 

and cancer class --represented with 40 instances-- membership degrees for every gene are 

ready to be mined for association rules. 

For each test instance, we omitted each instance as the test instance and conducted 

fuzzy clustering on the expression data without the test instance. Then for each different class, 

we mined for rules that are maximally confident within that class. Figure 4.3 and Figure 4.4 

represent the results of the initial runs of F-ARM. The first 40 test instances are cancer type 

and the following 22 instances are normal type. Different lines represent final memberships of 

test instances to the cancer class and normal class. Figure 4.3 shows memberships of test 

instances when mining cancer and normal classes separately and simultaneously. Predicting 

the label of the test instance is done by taking the label to which the test instance has the 

maximum membership. By this method, the calculated prediction of F-ARM with 

support_threshold 0.9, number_of_output_rules 1, and fuzzification parameter 2.8 on test 

instances with leave-1-out validation scheme yields 0.742 accuracy, a worse result when 

compared to those in the literature. 

support threshold=0.9, number of output rules=1, 
fuzzification=2.8, F-ARM
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Figure 4.3 Results of F-ARM with given parameters 
 

When the number of output rules increases to 5, the total prediction accuracy 

decreases to 0.677, memberships can be observed in Figure 4.4. When 

number_of_output_rules are selected as 3, prediction accuracy becomes 0.709.  
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support threshold=0.9, number of output rules=5, 
fuzzification=2.8, F-ARM
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Figure 4.4 Results of F-ARM with given parameters 
 

 
Prediction accuracy results evaluated by using different parameters can be seen in 

Table 4.1. 

 
 

Table 4.1 Results evaluated with different parameter settings 
 

fuzzification 
parameter=2.8 

number_of_output_rules 
1 3 5 

threshold_support 0.9 0.742 0.709 0.677 
0.95 0.661 0.581 0.565 

 
When multiplication is used as the ANDing operator, prediction accuracy results 

evaluated by using different parameters can be seen in Table 4.2. 
 

Table 4.2 Results evaluated with different parameter settings 
 

fuzzification 
parameter=2.8 

number_of_output_rules 
1 3 5 10 

threshold_support 0.8 0.5 0.581 0.613 0.71 
0.9 0.806 0.806 0.758  

 

Implementation on Leukemia Dataset 
 

Fuzzy c-means clustering was applied to the leukemia dataset to create 2 fuzzy 

clusters from each gene. F-ARM is run on the training dataset and memberships for each 

instance of the testing set is evaluated using the itemsets discovered by mining the training 

set. Due to memory limitations, the minimum function as the ANDing operator could only be 

run with threshold_support taken as 0.99; that is to say, taking 0.98 as threshold_support 

resulted with a “lack of memory” error which was declared with an exception in C++ 
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compiler. Memberships evaluated can be seen in Figure 4.5 and accuracy results can be seen 

in Table 4.3. 

support threshold=0.99, number of output rules=1, 
fuzzification=2.8, F-ARM
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Figure 4.5 Results of F-ARM with given parameters 
 

Table 4.3 Results evaluated with different parameter settings 
 

fuzzification 
parameter=2.8 

number_of_output_rules 
1 3 5 

threshold_support 0.99 0.5294 0.4412 0.4706 
 

When ANDing operator is changed to multiplication, the results evaluated with 

different threshold_support values can be seen in Figure 4.6, and accuracies are given in 

Table 4.4. 100% accuracy is reached with rules generated from 11 genes, when the number of 

output rules is 1 for each class. 

support threshold=0.95, number of output rules=1, 
fuzzification=2.8, F-ARM
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Figure 4.6 Results of F-ARM with given parameters 
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Table 4.4 Results evaluated with different parameter settings 
 

fuzzification 
parameter=2.8 

number_of_output_rules 
1 3 5 

threshold_support 0.95 1.00 1.00 1.00 
0.97 0.9706 1.00 1.00 

Implementation on Iris Flower Dataset with Noise 
Initially the fuzzification phase that was used for microarray data classification has 

been applied to the iris dataset with 50 features; that is to say, every feature of the iris dataset 

was applied fuzzy c-means algorithm and was separated to 2 fuzzy clusters. Leave-1-out 

validation scheme has been applied for accuracy calculations. When F-ARM is applied to this 

fuzzified data, the memberships appear as in Figure 4.7. This figure reveals that when 

considering the data having 2 labels, F-ARM is 82% accurate in labeling instances that are 

“setosa” and “non-setosa”. In addition, when “setosa” instances are taken out from the data 

and F-ARM is applied, accuracy is 94% when labeling “versicolor” and “virginica” instances. 

support threshold=0.5, number of output 
rules=1, fuzzification=2.8, F-ARM
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Figure 4.7 Results of F-ARM with given parameters 
 

support threshold=0.5, number of output rules=1, 
fuzzification=2.8, F-ARM
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Figure 4.8 Results of F-ARM with given parameters 
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Secondly, the data was clustered into 3 fuzzy clusters using fuzzy c-means, and F-

ARM was applied. Memberships for each class are evaluated with a single run of the 

algorithm. The memberships evaluated are shown in Figure 4.8. F-ARM selects relevant 

features that make up high confidence levels. In this data, F-ARM detected features “petal 

length” and “petal width” to conduct classification. 95.33% accuracy is determined with 2 

features of the iris flower data set. Note that experimental study has not been made in this 

dataset, because item sets that have support greater than threshold_support could not be 

evaluated with support threshold levels greater than 0.5 due to the randomness of the features 

other than the 4 features from the iris flower dataset. All experiments above have been 

conducted with computing the product, i.e. multiplication of membership degrees as the 

ANDing operator. 

 

4.5. Filtered Beam Search with Child-width Constraint for Association Rule 
Mining 

 

The same fuzzy partitioning scheme is conducted before the mining algorithm. We do 

not conduct any experiments on the iris dataset with noise because there is a much less 

number of features than on the other datasets to be tested. 

Implementation on Colon Cancer Dataset 
 

Leave-1-out validation scheme has been used to test the accuracy of the beam search 

algorithm. The parameter set for beam_width is {10, 20, 50, 100}, the parameter set for 

child_width is {2, 5, 10, 20}. The parameter set for the number of output rules to be chosen is 

(number_of_output_rules) {1, 3, 5, 10, 20}. Table 4. 5 gives accuracy ratios when support 

threshold is 0.9. The first and second coloumns represent whether the maximum of the 

memberships or the average of the memberships has been used for the computation of the 

final membership. ANDing operator is selected as minimum. 
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Table 4. 5 Results evaluated with different parameter settings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.9 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.9 

beam  
width 

child 
width 

number 
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec)

beam 
width

child
width

number 
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec)

10 2 1 0.435 0.435 1.105 50 2 1 0.452 0.452 1.112
10 2 3 0.565 0.516 1.105 50 2 3 0.565 0.532 1.115
10 2 5 0.581 0.468 1.105 50 2 5 0.581 0.468 1.116
10 2 10 0.613 0.532 1.126 50 2 10 0.613 0.532 1.120
10 2 20 0.581 0.532 1.118 50 2 20 0.597 0.565 1.123
10 5 1 0.435 0.435 1.107 50 5 1 0.435 0.435 1.115
10 5 3 0.565 0.516 1.124 50 5 3 0.565 0.532 1.115
10 5 5 0.581 0.468 1.116 50 5 5 0.581 0.468 1.119
10 5 10 0.597 0.516 1.116 50 5 10 0.613 0.532 1.120
10 5 20 0.581 0.532 1.116 50 5 20 0.613 0.581 1.125
10 10 1 0.435 0.435 1.114 50 10 1 0.435 0.435 1.115
10 10 3 0.565 0.516 1.116 50 10 3 0.565 0.516 1.117
10 10 5 0.581 0.468 1.113 50 10 5 0.581 0.468 1.118
10 10 10 0.597 0.516 1.115 50 10 10 0.613 0.532 1.123
10 10 20 0.581 0.532 1.119 50 10 20 0.613 0.581 1.127
10 20 1 0.435 0.435 1.109 50 20 1 0.435 0.435 1.115
10 20 3 0.565 0.516 1.112 50 20 3 0.565 0.516 1.116
10 20 5 0.581 0.468 1.112 50 20 5 0.581 0.468 1.118
10 20 10 0.597 0.516 1.114 50 20 10 0.613 0.532 1.131
10 20 20 0.581 0.532 1.118 50 20 20 0.613 0.581 1.126
20 2 1 0.435 0.435 1.108 100 2 1 0.452 0.452 1.122
20 2 3 0.565 0.532 1.109 100 2 3 0.565 0.516 1.123
20 2 5 0.581 0.468 1.110 100 2 5 0.581 0.468 1.125
20 2 10 0.629 0.548 1.113 100 2 10 0.613 0.532 1.128
20 2 20 0.597 0.581 1.116 100 2 20 0.597 0.565 1.132
20 5 1 0.435 0.435 1.110 100 5 1 0.452 0.452 1.126
20 5 3 0.565 0.516 1.113 100 5 3 0.565 0.532 1.128
20 5 5 0.581 0.468 1.114 100 5 5 0.581 0.468 1.129
20 5 10 0.613 0.532 1.117 100 5 10 0.597 0.516 1.132
20 5 20 0.613 0.565 1.119 100 5 20 0.613 0.565 1.135
20 10 1 0.435 0.435 1.108 100 10 1 0.452 0.452 1.126
20 10 3 0.565 0.516 1.110 100 10 3 0.565 0.532 1.128
20 10 5 0.581 0.468 1.111 100 10 5 0.581 0.468 1.130
20 10 10 0.613 0.532 1.115 100 10 10 0.597 0.516 1.167
20 10 20 0.613 0.565 1.116 100 10 20 0.613 0.565 1.135
20 20 1 0.435 0.435 1.108 100 20 1 0.452 0.452 1.126
20 20 3 0.565 0.516 1.110 100 20 3 0.565 0.516 1.133
20 20 5 0.581 0.468 1.111 100 20 5 0.581 0.468 1.132
20 20 10 0.613 0.532 1.114 100 20 10 0.597 0.516 1.133
20 20 20 0.613 0.565 1.116 100 20 20 0.613 0.565 1.197

 

Table 4.6 gives accuracy ratios when support threshold is 0.9. The first and second 

columns represent whether the maximum of the memberships or the average of the 
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memberships has been used for the computation of the final membership. ANDing operator is 

selected as multiplication.   

Table 4.6 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, 

support threshold=0.9 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, 

support threshold=0.9 

beam  
width 

child 
width 

number 
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec)

beam
 

width
child
width

number 
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec)

10 2 1 0.516 0.516 1.106 50 2 1 0.516 0.516 1.098
10 2 3 0.468 0.387 1.100 50 2 3 0.468 0.387 1.100
10 2 5 0.468 0.403 1.109 50 2 5 0.468 0.387 1.103
10 2 10 0.548 0.435 1.119 50 2 10 0.565 0.452 1.108
10 2 20 0.516 0.484 1.122 50 2 20 0.548 0.435 1.110
10 5 1 0.516 0.516 1.134 50 5 1 0.516 0.516 1.099
10 5 3 0.468 0.387 1.128 50 5 3 0.468 0.387 1.103
10 5 5 0.468 0.403 1.105 50 5 5 0.468 0.387 1.102
10 5 10 0.548 0.435 1.109 50 5 10 0.548 0.484 1.108
10 5 20 0.516 0.484 1.114 50 5 20 0.548 0.468 1.121
10 10 1 0.516 0.516 1.101 50 10 1 0.516 0.516 1.118
10 10 3 0.468 0.387 1.103 50 10 3 0.468 0.387 1.106
10 10 5 0.468 0.403 1.107 50 10 5 0.468 0.387 1.107
10 10 10 0.548 0.435 1.108 50 10 10 0.548 0.435 1.112
10 10 20 0.516 0.484 1.115 50 10 20 0.548 0.500 1.118
10 20 1 0.516 0.516 1.103 50 20 1 0.516 0.516 1.104
10 20 3 0.468 0.387 1.104 50 20 3 0.468 0.387 1.106
10 20 5 0.468 0.403 1.107 50 20 5 0.468 0.387 1.108
10 20 10 0.548 0.435 1.108 50 20 10 0.548 0.435 1.110
10 20 20 0.516 0.484 1.113 50 20 20 0.516 0.484 1.119
20 2 1 0.516 0.516 1.112 100 2 1 0.516 0.516 1.099
20 2 3 0.468 0.387 1.106 100 2 3 0.468 0.387 1.106
20 2 5 0.468 0.387 1.106 100 2 5 0.468 0.387 1.103
20 2 10 0.548 0.435 1.119 100 2 10 0.565 0.452 1.108
20 2 20 0.548 0.500 1.118 100 2 20 0.548 0.435 1.114
20 5 1 0.516 0.516 1.102 100 5 1 0.516 0.516 1.100
20 5 3 0.468 0.387 1.105 100 5 3 0.468 0.387 1.101
20 5 5 0.468 0.403 1.106 100 5 5 0.468 0.387 1.104
20 5 10 0.548 0.435 1.108 100 5 10 0.565 0.452 1.108
20 5 20 0.516 0.484 1.116 100 5 20 0.548 0.435 1.113
20 10 1 0.516 0.516 1.101 100 10 1 0.516 0.516 1.100
20 10 3 0.468 0.387 1.106 100 10 3 0.468 0.387 1.101
20 10 5 0.468 0.403 1.106 100 10 5 0.468 0.387 1.102
20 10 10 0.548 0.435 1.112 100 10 10 0.565 0.452 1.106
20 10 20 0.516 0.484 1.120 100 10 20 0.548 0.435 1.112
20 20 1 0.516 0.516 1.101 100 20 1 0.516 0.516 1.100
20 20 3 0.468 0.387 1.106 100 20 3 0.468 0.387 1.102
20 20 5 0.468 0.403 1.106 100 20 5 0.468 0.387 1.105
20 20 10 0.548 0.435 1.109 100 20 10 0.565 0.452 1.109
20 20 20 0.516 0.484 1.116 100 20 20 0.548 0.435 1.117
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Table 4.7 and Table 4.8  give accuracy ratios when support threshold is 0.8. The first 

and second columns represent whether the maximum of the memberships or the average of 

the memberships has been used for the computation of the final membership. ANDing 

operator is selected as minimum.   
Table 4.7 Results evaluated with different parameter settings 

 
colon cancer data, fuzzification parameter=2.8, 

ANDing operator=min,  
support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

beam  
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
 

width
child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time
 (sec) 

10 2 1 0.629 0.629 18.496 50 2 1 0.581 0.581 18.732
10 2 3 0.548 0.581 18.488 50 2 3 0.516 0.548 18.742
10 2 5 0.532 0.581 18.503 50 2 5 0.500 0.516 18.743
10 2 10 0.581 0.548 18.532 50 2 10 0.484 0.516 18.773
10 2 20 0.645 0.516 18.582 50 2 20 0.500 0.516 18.812
10 5 1 0.613 0.613 19.411 50 5 1 0.581 0.581 19.952
10 5 3 0.581 0.597 19.474 50 5 3 0.565 0.565 19.958
10 5 5 0.581 0.597 19.424 50 5 5 0.532 0.516 19.986
10 5 10 0.532 0.532 19.438 50 5 10 0.516 0.516 20.019
10 5 20 0.548 0.452 19.469 50 5 20 0.565 0.581 20.057
10 10 1 0.581 0.581 20.053 50 10 1 0.597 0.597 20.856
10 10 3 0.581 0.597 20.097 50 10 3 0.581 0.581 20.806
10 10 5 0.565 0.581 20.108 50 10 5 0.597 0.565 20.818
10 10 10 0.532 0.532 20.138 50 10 10 0.516 0.516 20.837
10 10 20 0.565 0.452 20.149 50 10 20 0.548 0.581 20.883
10 20 1 0.581 0.581 20.710 50 20 1 0.597 0.597 21.747
10 20 3 0.581 0.597 20.731 50 20 3 0.581 0.581 21.752
10 20 5 0.565 0.581 20.736 50 20 5 0.597 0.565 21.759
10 20 10 0.532 0.532 20.752 50 20 10 0.516 0.516 21.786
10 20 20 0.565 0.452 20.795 50 20 20 0.548 0.581 21.828
20 2 1 0.548 0.548 18.513 100 2 1 0.548 0.548 18.985
20 2 3 0.516 0.597 18.516 100 2 3 0.500 0.516 18.992
20 2 5 0.565 0.548 18.523 100 2 5 0.468 0.500 19.001
20 2 10 0.516 0.516 18.554 100 2 10 0.468 0.548 19.023
20 2 20 0.613 0.532 18.585 100 2 20 0.468 0.516 19.066
20 5 1 0.565 0.565 19.491 100 5 1 0.548 0.548 20.595
20 5 3 0.516 0.532 19.496 100 5 3 0.532 0.548 20.602
20 5 5 0.532 0.516 19.508 100 5 5 0.516 0.532 20.615
20 5 10 0.500 0.532 19.523 100 5 10 0.548 0.532 20.639
20 5 20 0.516 0.516 19.577 100 5 20 0.532 0.548 20.683
20 10 1 0.548 0.548 20.307 100 10 1 0.581 0.581 21.904
20 10 3 0.516 0.532 20.300 100 10 3 0.581 0.565 21.913
20 10 5 0.532 0.548 20.310 100 10 5 0.581 0.565 21.920
20 10 10 0.516 0.548 20.334 100 10 10 0.565 0.532 21.947
20 10 20 0.468 0.516 20.383 100 10 20 0.516 0.516 21.996
20 20 1 0.548 0.548 21.000 100 20 1 0.565 0.565 23.273
20 20 3 0.516 0.532 21.008 100 20 3 0.581 0.565 23.280
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Table 4.8 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

beam 
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time
(sec) 

beam
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time
(sec) 

20 20 5 0.532 0.548 21.011 100 20 5 0.581 0.565 23.292
20 20 10 0.516 0.548 21.059 100 20 10 0.581 0.548 23.314
20 20 20 0.468 0.516 21.091 100 20 20 0.532 0.532 23.363

 

Table 4.9 and table 4.10 give accuracy ratios when support threshold is 0.8. The first 

and second columns represent whether the maximum of the memberships or the average of 

the memberships has been used for the computation of the final membership. ANDing 

operator is selected as multiplication.   

Table 4.9 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

beam 
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time
(sec) 

beam
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time
(sec) 

10 2 1 0.484 0.484 10.591 50 2 1 0.484 0.484 10.622
10 2 3 0.581 0.565 10.594 50 2 3 0.581 0.565 10.648
10 2 5 0.645 0.613 10.611 50 2 5 0.645 0.613 10.671
10 2 10 0.645 0.613 10.675 50 2 10 0.629 0.597 10.736
10 2 20 0.677 0.548 10.804 50 2 20 0.629 0.581 10.863
10 5 1 0.484 0.484 10.745 50 5 1 0.484 0.484 10.842
10 5 3 0.581 0.565 10.767 50 5 3 0.581 0.565 10.868
10 5 5 0.645 0.613 10.787 50 5 5 0.645 0.613 10.891
10 5 10 0.645 0.613 10.816 50 5 10 0.629 0.597 10.955
10 5 20 0.677 0.548 10.966 50 5 20 0.613 0.581 11.083
10 10 1 0.484 0.484 10.862 50 10 1 0.484 0.484 11.034
10 10 3 0.581 0.565 10.890 50 10 3 0.581 0.565 11.060
10 10 5 0.645 0.613 10.913 50 10 5 0.645 0.613 11.082
10 10 10 0.645 0.613 10.977 50 10 10 0.629 0.597 11.145
10 10 20 0.677 0.548 11.108 50 10 20 0.613 0.581 11.272
10 20 1 0.484 0.484 10.948 50 20 1 0.484 0.484 11.177
10 20 3 0.581 0.565 10.976 50 20 3 0.581 0.565 11.203
10 20 5 0.645 0.613 11.002 50 20 5 0.645 0.613 11.224
10 20 10 0.645 0.613 11.063 50 20 10 0.629 0.597 11.286
10 20 20 0.677 0.548 11.185 50 20 20 0.613 0.581 11.413
20 2 1 0.484 0.484 10.571 100 2 1 0.484 0.484 10.709
20 2 3 0.581 0.565 10.593 100 2 3 0.581 0.565 10.737
20 2 5 0.645 0.613 10.625 100 2 5 0.645 0.613 10.758
20 2 10 0.629 0.597 10.684 100 2 10 0.629 0.597 10.826
20 2 20 0.629 0.597 10.807 100 2 20 0.629 0.581 10.949
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Table 4.10Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

beam 
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time
(sec) 

beam
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time
(sec) 

20 5 1 0.484 0.484 10.758 100 5 1 0.484 0.484 10.978
20 5 3 0.581 0.565 10.779 100 5 3 0.581 0.565 11.006
20 5 5 0.645 0.613 10.810 100 5 5 0.645 0.613 11.028
20 5 10 0.629 0.597 10.874 100 5 10 0.629 0.597 11.093
20 5 20 0.613 0.581 10.998 100 5 20 0.613 0.581 11.226
20 10 1 0.484 0.484 10.912 100 10 1 0.484 0.484 11.230
20 10 3 0.581 0.565 10.935 100 10 3 0.581 0.565 11.257
20 10 5 0.645 0.613 10.962 100 10 5 0.645 0.613 11.275
20 10 10 0.629 0.597 11.027 100 10 10 0.629 0.597 11.341
20 10 20 0.613 0.581 11.151 100 10 20 0.613 0.581 11.465
20 20 1 0.484 0.484 11.008 100 20 1 0.484 0.484 11.430
20 20 3 0.581 0.565 11.033 100 20 3 0.581 0.565 11.456
20 20 5 0.645 0.613 11.058 100 20 5 0.645 0.613 11.484
20 20 10 0.629 0.597 11.118 100 20 10 0.629 0.597 11.547
20 20 20 0.613 0.581 11.247 100 20 20 0.613 0.581 11.672

 

The results show the lack of classification performance of this algorithm when 

compared to F-ARM. This outcome may be related to the non-linearity between 

average_support values in the algorithm with the real average support levels of itemsets. This 

will be treated in the discussion section. Another factor that leads to these accuracy results 

may be the high number of output rules that are discovered by the beam search algorithm. 

This situation will also be investigated in the discussions section. 

Implementation on Leukemia Dataset 
 

Fuzzy c-means clustering was applied to the leukemia dataset to create 2 fuzzy 

clusters from each gene. Beam search algorithm is run on the training dataset and 

memberships for each instance of the testing set are evaluated using the itemsets discovered 

by mining the training set. The parameter set for beam_width is {10, 20, 50, 100, 250, 350}, 

the parameter set for child_width is {2, 5, 10, 20, 50, 70}. The parameter set for the number of 

output rules to be chosen is (number_of_output_rules) {1, 3, 5, 10, 20, 50}. 

Table 4.11, Table 4.12 and Table 4.13 give accuracy ratios when support threshold is 

0.9. The first and second columns represent whether the maximum of the memberships or the 
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average of the memberships has been used for the computation of the final membership. 

ANDing operator is selected as minimum.  

Table 4.11 Results evaluated with different parameter settings 
 

Leukemia data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.9 

Leukemia data, fuzzification parameter=2.8, ANDing 
operator=min,  

support threshold=0.9 

beam  
width 

child 
width 

number  
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam 
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

10 2 1 0.559 0.559 66.203 100 2 1 0.412 0.412 68.468 
10 2 3 0.559 0.559 65.875 100 2 3 0.412 0.412 68.578 
10 2 5 0.559 0.559 66.094 100 2 5 0.412 0.412 68.657 
10 2 10 0.588 0.588 66.437 100 2 10 0.412 0.588 68.859 
10 2 20 0.588 0.588 66.391 100 2 20 0.412 0.588 69.250 
10 2 50 0.588 0.588 67.547 100 2 50 0.588 0.588 70.453 
10 5 1 0.529 0.529 73.125 100 5 1 0.412 0.412 77.297 
10 5 3 0.529 0.529 73.578 100 5 3 0.412 0.412 77.375 
10 5 5 0.529 0.559 73.703 100 5 5 0.412 0.412 77.469 
10 5 10 0.588 0.588 73.094 100 5 10 0.412 0.412 77.703 
10 5 20 0.588 0.588 72.593 100 5 20 0.412 0.412 78.234 
10 5 50 0.588 0.588 73.016 100 5 50 0.412 0.412 79.594 
10 10 1 0.529 0.529 78.547 100 10 1 0.412 0.412 86.250 
10 10 3 0.529 0.529 78.547 100 10 3 0.412 0.412 86.375 
10 10 5 0.529 0.559 78.656 100 10 5 0.412 0.412 86.453 
10 10 10 0.588 0.588 79.062 100 10 10 0.412 0.412 86.703 
10 10 20 0.588 0.588 79.079 100 10 20 0.412 0.412 93.922 
10 10 50 0.588 0.588 79.343 100 10 50 0.412 0.412 89.188 
10 20 1 0.529 0.529 84.953 100 20 1 0.412 0.412 96.718 
10 20 3 0.529 0.529 84.969 100 20 3 0.412 0.412 96.766 
10 20 5 0.529 0.559 85.031 100 20 5 0.412 0.412 96.891 
10 20 10 0.588 0.588 85.125 100 20 10 0.412 0.412 97.109 
10 20 20 0.588 0.588 85.266 100 20 20 0.412 0.412 97.516 
10 20 50 0.588 0.588 85.625 100 20 50 0.412 0.412 99.015 
10 50 1 0.529 0.529 88.406 100 50 1 0.412 0.412 108.110
10 50 3 0.529 0.529 88.438 100 50 3 0.412 0.412 108.250
10 50 5 0.529 0.559 88.437 100 50 5 0.412 0.412 108.343
10 50 10 0.588 0.588 88.547 100 50 10 0.412 0.412 108.579
10 50 20 0.588 0.588 88.703 100 50 20 0.412 0.412 109.093
10 50 50 0.588 0.588 89.078 100 50 50 0.412 0.412 110.453
10 70 1 0.529 0.529 86.782 100 70 1 0.412 0.412 109.766
10 70 3 0.529 0.529 86.656 100 70 3 0.412 0.412 109.953
10 70 5 0.529 0.559 86.687 100 70 5 0.412 0.412 110.016
10 70 10 0.588 0.588 86.782 100 70 10 0.412 0.412 110.219
10 70 20 0.588 0.588 86.953 100 70 20 0.412 0.412 110.750
10 70 50 0.588 0.588 87.375 100 70 50 0.412 0.412 112.218
20 2 1 0.559 0.559 66.031 250 2 1 0.412 0.412 72.688 
20 2 3 0.559 0.559 66.078 250 2 3 0.412 0.412 72.797 
20 2 5 0.559 0.559 66.141 250 2 5 0.588 0.588 72.890 
20 2 10 0.441 0.588 66.265 250 2 10 0.588 0.588 73.078 
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Table 4.12 Results evaluated with different parameter settings 
 

Leukemia data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.9 

Leukemia data, fuzzification parameter=2.8, ANDing 
operator=min,  

support threshold=0.9 

beam  
width 

child 
width 

number  
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam 
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

20 2 20 0.588 0.588 66.438 250 2 20 0.588 0.588 73.485 
20 2 50 0.588 0.588 66.828 250 2 50 0.588 0.588 74.703 
20 5 1 0.559 0.559 72.641 250 5 1 0.412 0.412 86.000 
20 5 3 0.559 0.559 72.703 250 5 3 0.412 0.412 86.125 
20 5 5 0.559 0.559 72.734 250 5 5 0.412 0.412 86.234 
20 5 10 0.588 0.559 72.844 250 5 10 0.412 0.412 86.516 
20 5 20 0.588 0.588 73.109 250 5 20 0.588 0.412 86.937 
20 5 50 0.588 0.588 73.547 250 5 50 0.588 0.412 88.438 
20 10 1 0.559 0.559 79.078 250 10 1 0.676 0.676 100.484
20 10 3 0.559 0.559 79.203 250 10 3 0.676 0.676 100.578
20 10 5 0.559 0.559 79.204 250 10 5 0.676 0.676 100.672
20 10 10 0.588 0.559 79.359 250 10 10 0.676 0.676 100.953
20 10 20 0.588 0.588 79.594 250 10 20 0.676 0.676 101.516
20 10 50 0.588 0.588 80.062 250 10 50 0.676 0.676 103.109
20 20 1 0.559 0.559 85.985 250 20 1 0.676 0.676 118.250
20 20 3 0.559 0.559 86.046 250 20 3 0.676 0.676 118.360
20 20 5 0.559 0.559 86.125 250 20 5 0.676 0.676 118.484
20 20 10 0.588 0.559 86.266 250 20 10 0.676 0.676 118.735
20 20 20 0.588 0.588 86.469 250 20 20 0.676 0.676 119.281
20 20 50 0.588 0.588 86.906 250 20 50 0.676 0.676 120.875
20 50 1 0.559 0.559 90.375 250 50 1 0.676 0.676 143.922
20 50 3 0.559 0.559 90.391 250 50 3 0.676 0.676 144.015
20 50 5 0.559 0.559 90.453 250 50 5 0.676 0.676 144.172
20 50 10 0.588 0.559 90.594 250 50 10 0.676 0.676 144.469
20 50 20 0.588 0.588 90.812 250 50 20 0.676 0.676 144.984
20 50 50 0.588 0.588 91.297 250 50 50 0.676 0.676 146.547
20 70 1 0.559 0.559 89.094 250 70 1 0.676 0.676 151.250
20 70 3 0.559 0.559 89.156 250 70 3 0.676 0.676 151.360
20 70 5 0.559 0.559 89.219 250 70 5 0.676 0.676 151.468
20 70 10 0.588 0.559 89.328 250 70 10 0.676 0.676 151.735
20 70 20 0.588 0.588 89.625 250 70 20 0.676 0.676 152.265
20 70 50 0.588 0.588 90.015 250 70 50 0.676 0.676 153.922
50 2 1 0.412 0.412 67.032 350 2 1 0.647 0.647 75.438 
50 2 3 0.412 0.412 67.109 350 2 3 0.647 0.647 75.531 
50 2 5 0.412 0.412 67.203 350 2 5 0.647 0.618 75.625 
50 2 10 0.412 0.412 67.375 350 2 10 0.588 0.588 75.828 
50 2 20 0.588 0.588 67.781 350 2 20 0.588 0.588 76.266 
50 2 50 0.588 0.588 68.750 350 2 50 0.588 0.412 77.484 
50 5 1 0.412 0.412 74.469 350 5 1 0.412 0.412 91.641 
50 5 3 0.412 0.412 74.563 350 5 3 0.412 0.412 91.765 
50 5 5 0.412 0.412 74.672 350 5 5 0.412 0.412 91.876 
50 5 10 0.412 0.412 74.921 350 5 10 0.412 0.412 92.094 
50 5 20 0.412 0.412 75.375 350 5 20 0.412 0.412 92.641 
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Table 4.13 Results evaluated with different parameter settings 
 

Leukemia data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.9 

Leukemia data, fuzzification parameter=2.8, ANDing 
operator=min,  

support threshold=0.9 

beam  
width 

child 
width 

number  
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam 
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

50 5 50 0.412 0.412 76.672 350 5 50 0.412 0.412 94.124 
50 10 1 0.412 0.412 81.703 350 10 1 0.676 0.676 109.750
50 10 3 0.412 0.412 81.813 350 10 3 0.676 0.676 109.843
50 10 5 0.412 0.412 81.922 350 10 5 0.676 0.676 110.001
50 10 10 0.412 0.412 82.156 350 10 10 0.676 0.676 110.267
50 10 20 0.412 0.412 82.672 350 10 20 0.676 0.676 110.780
50 10 50 0.412 0.412 83.891 350 10 50 0.676 0.676 112.391
50 20 1 0.412 0.412 89.984 350 20 1 0.676 0.676 132.327
50 20 3 0.412 0.412 90.094 350 20 3 0.676 0.676 132.421
50 20 5 0.412 0.412 90.203 350 20 5 0.676 0.676 132.563
50 20 10 0.412 0.412 90.422 350 20 10 0.676 0.676 132.796
50 20 20 0.412 0.412 90.890 350 20 20 0.676 0.676 133.407
50 20 50 0.412 0.412 92.078 350 20 50 0.676 0.676 134.999
50 50 1 0.412 0.412 97.032 350 50 1 0.676 0.676 167.280
50 50 3 0.412 0.412 97.109 350 50 3 0.676 0.676 167.437
50 50 5 0.412 0.412 97.250 350 50 5 0.676 0.676 167.548
50 50 10 0.412 0.412 97.469 350 50 10 0.676 0.676 167.781
50 50 20 0.412 0.412 97.969 350 50 20 0.676 0.676 168.376
50 50 50 0.412 0.412 99.250 350 50 50 0.676 0.676 169.969
50 70 1 0.412 0.412 96.921 350 70 1 0.676 0.676 178.314
50 70 3 0.412 0.412 97.016 350 70 3 0.676 0.676 178.437
50 70 5 0.412 0.412 97.094 350 70 5 0.676 0.676 178.499
50 70 10 0.412 0.412 97.344 350 70 10 0.676 0.676 178.843
50 70 20 0.412 0.412 97.781 350 70 20 0.676 0.676 179.296
50 70 50 0.412 0.412 99.094 350 70 50 0.676 0.676 180.890

 

Table 4.14, Table 4.15 and table 4.16 give accuracy ratios when support threshold is 

0.9. The first and second columns represent whether the maximum of the memberships or the 

average of the memberships has been used for the computation of the final membership. 

ANDing operator is selected as multiplication.   
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Table 4.14 Results evaluated with different parameter settings 
 

Leukemia data, fuzzification parameter=2.8,  
ANDing operator=product, support threshold=0.9 

Leukemia data, fuzzification parameter=2.8,  
ANDing operator=product, support threshold=0.9 

beam  
width 

child 
width 

number  
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam 
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

10 2 1 0.588 0.588 48.239 100 2 1 0.588235 0.588235 49 
10 2 3 0.588 0.588 48.287 100 2 3 0.588235 0.588235 48.938 
10 2 5 0.588 0.588 48.302 100 2 5 0.588235 0.588235 49.187 
10 2 10 0.588 0.588 48.474 100 2 10 0.588235 0.588235 49.375 
10 2 20 0.588 0.588 48.958 100 2 20 0.588235 0.588235 49.782 
10 2 50 0.588 0.588 50.115 100 2 50 0.588235 0.588235 50.906 
10 5 1 0.588 0.588 51.521 100 5 1 0.588235 0.588235 53.406 
10 5 3 0.588 0.588 51.615 100 5 3 0.588235 0.588235 53.516 
10 5 5 0.588 0.588 51.756 100 5 5 0.588235 0.588235 53.547 
10 5 10 0.588 0.588 52.021 100 5 10 0.588235 0.588235 53.843 
10 5 20 0.588 0.588 52.412 100 5 20 0.588235 0.588235 54.11 
10 5 50 0.588 0.588 53.459 100 5 50 0.588235 0.588235 55.703 
10 10 1 0.588 0.588 54.756 100 10 1 0.588235 0.588235 58.094 
10 10 3 0.588 0.588 54.787 100 10 3 0.588235 0.588235 58.14 
10 10 5 0.588 0.588 54.944 100 10 5 0.588235 0.588235 58.172 
10 10 10 0.588 0.588 55.131 100 10 10 0.588235 0.588235 58.391 
10 10 20 0.588 0.588 55.584 100 10 20 0.588235 0.588235 58.781 
10 10 50 0.588 0.588 56.615 100 10 50 0.588235 0.588235 60.078 
10 20 1 0.588 0.588 57.929 100 20 1 0.382353 0.382353 63.516 
10 20 3 0.588 0.588 58.006 100 20 3 0.411765 0.382353 63.547 
10 20 5 0.588 0.588 58.116 100 20 5 0.411765 0.588235 63.656 
10 20 10 0.588 0.588 58.303 100 20 10 0.411765 0.411765 63.953 
10 20 20 0.588 0.588 58.741 100 20 20 0.588235 0.588235 64.406 
10 20 50 0.588 0.588 59.912 100 20 50 0.588235 0.588235 65.828 
10 50 1 0.588 0.588 59.382 100 50 1 0.382353 0.382353 69.141 
10 50 3 0.588 0.588 59.366 100 50 3 0.411765 0.411765 69.281 
10 50 5 0.588 0.588 59.397 100 50 5 0.411765 0.411765 69.422 
10 50 10 0.588 0.588 59.756 100 50 10 0.411765 0.411765 69.641 
10 50 20 0.588 0.588 60.163 100 50 20 0.588235 0.588235 70.094 
10 50 50 0.588 0.588 61.335 100 50 50 0.588235 0.588235 71.562 
10 70 1 0.588 0.588 58.459 100 70 1 0.382353 0.382353 69.828 
10 70 3 0.588 0.588 58.554 100 70 3 0.411765 0.411765 70 
10 70 5 0.588 0.588 58.631 100 70 5 0.411765 0.411765 70.156 
10 70 10 0.588 0.588 58.881 100 70 10 0.411765 0.411765 70.391 
10 70 20 0.588 0.588 59.288 100 70 20 0.588235 0.588235 70.859 
10 70 50 0.588 0.588 60.429 100 70 50 0.588235 0.588235 72.329 
20 2 1 0.588 0.588 48.297 250 2 1 0.588235 0.588235 50.328 
20 2 3 0.588 0.588 48.219 250 2 3 0.588235 0.588235 50.406 
20 2 5 0.588 0.588 48.453 250 2 5 0.588235 0.588235 50.375 
20 2 10 0.588 0.588 48.64 250 2 10 0.588235 0.588235 50.687 
20 2 20 0.588 0.588 49.032 250 2 20 0.588235 0.588235 51.11 
20 2 50 0.588 0.588 49.89 250 2 50 0.588235 0.588235 52.25 
20 5 1 0.588 0.588 51.781 250 5 1 0.588235 0.588235 56.5 
20 5 3 0.588 0.588 51.906 250 5 3 0.588235 0.588235 56.437 
20 5 5 0.588 0.588 51.969 250 5 5 0.588235 0.588235 56.657 
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Table 4.15 Results evaluated with different parameter settings 
 

Leukemia data, fuzzification parameter=2.8,  
ANDing operator=product, support threshold=0.9 

Leukemia data, fuzzification parameter=2.8,  
ANDing operator=product, support threshold=0.9 

beam  
width 

child 
width 

number  
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam 
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

20 5 10 0.588 0.588 52.094 250 5 10 0.588235 0.588235 56.89 
20 5 20 0.588 0.588 52.547 250 5 20 0.588235 0.588235 57.297 
20 5 50 0.588 0.588 53.781 250 5 50 0.588235 0.588235 58.609 
20 10 1 0.588 0.588 55.109 250 10 1 0.588235 0.588235 63.36 
20 10 3 0.588 0.588 55.204 250 10 3 0.588235 0.588235 63.406 
20 10 5 0.588 0.588 55.281 250 10 5 0.588235 0.588235 63.547 
20 10 10 0.588 0.588 55.375 250 10 10 0.588235 0.588235 71.154 
20 10 20 0.588 0.588 55.906 250 10 20 0.588235 0.588235 64.257 
20 10 50 0.588 0.588 57 250 10 50 0.588235 0.588235 65.507 
20 20 1 0.588 0.588 58.516 250 20 1 0.382353 0.382353 72.961 
20 20 3 0.588 0.588 58.593 250 20 3 0.411765 0.441176 73.086 
20 20 5 0.588 0.588 58.672 250 20 5 0.411765 0.588235 73.196 
20 20 10 0.588 0.588 58.875 250 20 10 0.411765 0.470588 73.477 
20 20 20 0.588 0.588 59.36 250 20 20 0.588235 0.588235 73.93 
20 20 50 0.588 0.588 60.375 250 20 50 0.588235 0.588235 75.414 
20 50 1 0.588 0.588 60.406 250 50 1 0.382353 0.382353 86.025 
20 50 3 0.588 0.588 60.484 250 50 3 0.411765 0.441176 85.994 
20 50 5 0.588 0.588 60.532 250 50 5 0.411765 0.441176 86.087 
20 50 10 0.588 0.588 60.796 250 50 10 0.411765 0.529412 86.447 
20 50 20 0.588 0.588 61.235 250 50 20 0.588235 0.588235 86.9 
20 50 50 0.588 0.588 62.297 250 50 50 0.588235 0.588235 88.322 
20 70 1 0.588 0.588 59.703 250 70 1 0.382353 0.382353 89.494 
20 70 3 0.588 0.588 59.719 250 70 3 0.411765 0.441176 89.525 
20 70 5 0.588 0.588 59.875 250 70 5 0.411765 0.441176 89.604 
20 70 10 0.588 0.588 60.125 250 70 10 0.411765 0.588235 89.994 
20 70 20 0.588 0.588 60.453 250 70 20 0.588235 0.588235 90.338 
20 70 50 0.588 0.588 61.578 250 70 50 0.588235 0.588235 91.822 
50 2 1 0.588 0.588 48.531 350 2 1 0.588235 0.588235 51.225 
50 2 3 0.588 0.588 48.625 350 2 3 0.588235 0.588235 51.287 
50 2 5 0.588 0.588 48.688 350 2 5 0.588235 0.588235 51.349 
50 2 10 0.588 0.588 48.765 350 2 10 0.588235 0.588235 51.412 
50 2 20 0.588 0.588 49.328 350 2 20 0.588235 0.588235 51.943 
50 2 50 0.588 0.588 50.438 350 2 50 0.588235 0.588235 53.099 
50 5 1 0.588 0.588 52.375 350 5 1 0.588235 0.588235 58.444 
50 5 3 0.588 0.588 52.312 350 5 3 0.588235 0.588235 58.554 
50 5 5 0.588 0.588 52.547 350 5 5 0.588235 0.588235 58.647 
50 5 10 0.588 0.588 52.781 350 5 10 0.588235 0.588235 58.834 
50 5 20 0.588 0.588 53.25 350 5 20 0.588235 0.588235 59.225 
50 5 50 0.588 0.588 54.547 350 5 50 0.588235 0.588235 60.616 
50 10 1 0.588 0.588 56.063 350 10 1 0.588235 0.588235 66.851 
50 10 3 0.588 0.588 56.125 350 10 3 0.588235 0.588235 66.992 
50 10 5 0.588 0.588 56.344 350 10 5 0.588235 0.588235 67.085 
50 10 10 0.588 0.588 56.578 350 10 10 0.588235 0.588235 67.305 
50 10 20 0.588 0.588 57.015 350 10 20 0.588235 0.588235 67.71 
50 10 50 0.588 0.588 58.422 350 10 50 0.588235 0.588235 69.101 
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Table 4.16 Results evaluated with different parameter settings 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Leukemia data, fuzzification parameter=2.8,  
ANDing operator=product, support threshold=0.9 

Leukemia data, fuzzification parameter=2.8,  
ANDing operator=product, support threshold=0.9 

beam  
width 

child 
width 

number  
of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam 
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

50 20 1 0.588 0.588 60.328 350 20 1 0.382353 0.382353 79.259 
50 20 3 0.588 0.588 60.391 350 20 3 0.411765 0.441176 79.227 
50 20 5 0.588 0.588 60.469 350 20 5 0.588235 0.588235 79.337 
50 20 10 0.588 0.588 60.64 350 20 10 0.588235 0.588235 79.634 
50 20 20 0.588 0.588 61.157 350 20 20 0.588235 0.588235 80.133 
50 20 50 0.588 0.588 62.562 350 20 50 0.588235 0.588235 81.806 
50 50 1 0.588 0.588 63.609 350 50 1 0.382353 0.382353 96.87 
50 50 3 0.588 0.588 63.735 350 50 3 0.411765 0.441176 97.151 
50 50 5 0.588 0.588 63.812 350 50 5 0.588235 0.588235 97.073 
50 50 10 0.588 0.588 64.047 350 50 10 0.588235 0.588235 97.402 
50 50 20 0.588 0.588 64.5 350 50 20 0.588235 0.588235 97.917 
50 50 50 0.588 0.588 65.891 350 50 50 0.588235 0.588235 99.417 
50 70 1 0.588 0.588 63.469 350 70 1 0.382353 0.382353 102.308
50 70 3 0.588 0.588 63.578 350 70 3 0.411765 0.441176 102.495
50 70 5 0.588 0.588 63.672 350 70 5 0.588235 0.588235 102.418
50 70 10 0.588 0.588 63.921 350 70 10 0.588235 0.588235 102.87 
50 70 20 0.588 0.588 64.36 350 70 20 0.588235 0.588235 103.214
50 70 50 0.588 0.588 65.765 350 70 50 0.588235 0.588235 104.918

 

 Table 4.17, Table 4.18, Table 4.19, Table 4.20 and Table 4.21 give accuracy ratios 

when support threshold is 0.8. The first and second columns represent whether the maximum 

of the memberships or the average of the memberships has been used for the computation of 

the final membership. ANDing operator is selected as minimum.   

Table 4.17 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

beam  
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
 

width
child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
 (sec) 

10 2 1 0.588 0.588 1114.6 100 2 1 0.588 0.588 1125.2 
10 2 3 0.588 0.588 1113.7 100 2 3 0.588 0.588 1125.7 
10 2 5 0.588 0.588 1115.1 100 2 5 0.588 0.588 1125.3 
10 2 10 0.588 0.588 1116.5 100 2 10 0.588 0.588 1125.8 
10 2 20 0.588 0.588 1114.5 100 2 20 0.588 0.588 1126.4 
10 2 50 0.588 0.588 1114.9 100 2 50 0.588 0.588 1127.6 
10 5 1 0.588 0.588 1187.7 100 5 1 0.588 0.588 1215.2 
10 5 3 0.588 0.588 1188.1 100 5 3 0.588 0.588 1215.7 
10 5 5 0.588 0.588 1187.7 100 5 5 0.588 0.588 1215.4 
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Table 4.18 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

beam  
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
 

width
child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
 (sec) 

10 5 10 0.588 0.588 1188.0 100 5 10 0.588 0.588 1215.9 
10 5 20 0.588 0.588 1189.3 100 5 20 0.588 0.588 1217.2 
10 5 50 0.588 0.588 1189.7 100 5 50 0.588 0.588 1219.3 
10 10 1 0.588 0.588 1277.8 100 10 1 0.588 0.588 1325.4 
10 10 3 0.588 0.588 1280.5 100 10 3 0.588 0.588 1325.4 
10 10 5 0.588 0.588 1290.3 100 10 5 0.588 0.588 1325.9 
10 10 10 0.588 0.588 1278.9 100 10 10 0.588 0.588 1326.2 
10 10 20 0.588 0.588 1281.1 100 10 20 0.588 0.588 1326.6 
10 10 50 0.588 0.588 1279.9 100 10 50 0.588 0.588 1329.8 
10 20 1 0.588 0.588 1402.8 100 20 1 0.588 0.588 1482.1 
10 20 3 0.588 0.588 1402.3 100 20 3 0.588 0.588 1481.8 
10 20 5 0.588 0.588 1402.4 100 20 5 0.588 0.588 1471.94
10 20 10 0.588 0.588 1402.8 100 20 10 0.588 0.588 1472.64
10 20 20 0.588 0.588 1404.0 100 20 20 0.588 0.588 1473.52
10 20 50 0.588 0.588 1404.5 100 20 50 0.588 0.588 1476.08
10 50 1 0.588 0.588 1598.7 100 50 1 0.588 0.588 1754.19
10 50 3 0.588 0.588 1597.6 100 50 3 0.588 0.588 1752.23
10 50 5 0.588 0.588 1598.1 100 50 5 0.588 0.588 1751.92
10 50 10 0.588 0.588 1598.6 100 50 10 0.588 0.588 1754.36
10 50 20 0.588 0.588 1599.4 100 50 20 0.588 0.588 1754.77
10 50 50 0.588 0.588 1599.7 100 50 50 0.588 0.588 1756.16
10 70 1 0.588 0.588 1660.6 100 70 1 0.588 0.588 1860.8 
10 70 3 0.588 0.588 1660.0 100 70 3 0.588 0.588 1860.02
10 70 5 0.588 0.588 1660.0 100 70 5 0.588 0.588 1860.48
10 70 10 0.588 0.588 1660.3 100 70 10 0.588 0.588 1860.85
10 70 20 0.588 0.588 1660.8 100 70 20 0.588 0.588 1861.28
10 70 50 0.588 0.588 1662.2 100 70 50 0.588 0.588 1864.34
20 2 1 0.588 0.588 1115.6 250 2 1 0.588 0.588 1132.28
20 2 3 0.588 0.588 1115.2 250 2 3 0.588 0.588 1133.89
20 2 5 0.588 0.588 1115.0 250 2 5 0.588 0.588 1133.11
20 2 10 0.588 0.588 1116.0 250 2 10 0.588 0.588 1133.27
20 2 20 0.588 0.588 1116.6 250 2 20 0.588 0.588 1135.52
20 2 50 0.588 0.588 1117.6 250 2 50 0.588 0.588 1137.42
20 5 1 0.588 0.588 1189.4 250 5 1 0.588 0.588 1249.23
20 5 3 0.588 0.588 1190.2 250 5 3 0.588 0.588 1249.39
20 5 5 0.588 0.588 1190.2 250 5 5 0.588 0.588 1248.09
20 5 10 0.588 0.588 1190.5 250 5 10 0.588 0.588 1247.81
20 5 20 0.588 0.588 1191.0 250 5 20 0.588 0.588 1248.58
20 5 50 0.588 0.588 1192.3 250 5 50 0.588 0.588 1250.69
20 10 1 0.588 0.588 1282.1 250 10 1 0.588 0.588 1391.5 
20 10 3 0.588 0.588 1282.8 250 10 3 0.588 0.588 1391.59
20 10 5 0.588 0.588 1282.8 250 10 5 0.588 0.588 1391.66
20 10 10 0.588 0.588 1282.9 250 10 10 0.588 0.588 1391.76
20 10 20 0.588 0.588 1283.7 250 10 20 0.588 0.588 1392.47
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Table 4.19 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

beam  
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
 

width
child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
 (sec) 

20 10 50 0.588 0.588 1285.4 250 10 50 0.588 0.588 1395.3 
20 20 1 0.588 0.588 1410.9 250 20 1 0.588 0.588 1609.09
20 20 3 0.588 0.588 1410.9 250 20 3 0.588 0.588 1607.2 
20 20 5 0.588 0.588 1411.1 250 20 5 0.588 0.588 1607.26
20 20 10 0.588 0.588 1411.4 250 20 10 0.588 0.588 1608.09
20 20 20 0.588 0.588 1412.6 250 20 20 0.588 0.588 1608.48
20 20 50 0.588 0.588 1413.5 250 20 50 0.588 0.588 1610.5 
20 50 1 0.588 0.588 1615.5 250 50 1 0.588 0.588 2032.84
20 50 3 0.588 0.588 1616.1 250 50 3 0.588 0.588 2031.86
20 50 5 0.588 0.588 1616.8 250 50 5 0.588 0.588 2031.62
20 50 10 0.588 0.588 1616.9 250 50 10 0.588 0.588 2032.22
20 50 20 0.588 0.588 1617.3 250 50 20 0.588 0.588 2032.77
20 50 50 0.588 0.588 1618.8 250 50 50 0.588 0.588 2035.23
20 70 1 0.588 0.588 1683.5 250 70 1 0.588 0.588 2216.41
20 70 3 0.588 0.588 1683.3 250 70 3 0.588 0.588 2216.08
20 70 5 0.588 0.588 1683.8 250 70 5 0.588 0.588 2222.03
20 70 10 0.588 0.588 1684.5 250 70 10 0.588 0.588 2220.81
20 70 20 0.588 0.588 1684.4 250 70 20 0.588 0.588 2222.91
20 70 50 0.588 0.588 1685.9 250 70 50 0.588 0.588 2225.69
50 2 1 0.588 0.588 1118.8 350 2 1 0.588 0.588 1146.11
50 2 3 0.588 0.588 1118.6 350 2 3 0.588 0.588 1146.39
50 2 5 0.588 0.588 1118.6 350 2 5 0.588 0.588 1146.3 
50 2 10 0.588 0.588 1118.9 350 2 10 0.588 0.588 1147.3 
50 2 20 0.588 0.588 1119.1 350 2 20 0.588 0.588 1148.05
50 2 50 0.588 0.588 1120.9 350 2 50 0.588 0.588 1149.2 
50 5 1 0.588 0.588 1198.4 350 5 1 0.588 0.588 1277.55
50 5 3 0.588 0.588 1198.9 350 5 3 0.588 0.588 1279.28
50 5 5 0.588 0.588 1198.8 350 5 5 0.588 0.588 1279.5 
50 5 10 0.588 0.588 1198.8 350 5 10 0.588 0.588 1279.35
50 5 20 0.588 0.588 1199.6 350 5 20 0.588 0.588 1280.49
50 5 50 0.588 0.588 1202.2 350 5 50 0.588 0.588 1282.36
50 10 1 0.588 0.588 1298.5 350 10 1 0.588 0.588 1444.94
50 10 3 0.588 0.588 1298.3 350 10 3 0.588 0.588 1446.25
50 10 5 0.588 0.588 1298.7 350 10 5 0.588 0.588 1446.27
50 10 10 0.588 0.588 1299.2 350 10 10 0.588 0.588 1446.93
50 10 20 0.588 0.588 1300.4 350 10 20 0.588 0.588 1447.14
50 10 50 0.588 0.588 1302.5 350 10 50 0.588 0.588 1449.7 
50 20 1 0.588 0.588 1437.1 350 20 1 0.588 0.588 1703.88
50 20 3 0.588 0.588 1437.5 350 20 3 0.588 0.588 1703.22
50 20 5 0.588 0.588 1437.0 350 20 5 0.588 0.588 1703.62
50 20 10 0.588 0.588 1437.9 350 20 10 0.588 0.588 1703.91
50 20 20 0.588 0.588 1438.3 350 20 20 0.588 0.588 1705.49
50 20 50 0.588 0.588 1440.9 350 20 50 0.588 0.588 1707.86
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Table 4.20 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

beam  
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
 

width
child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
 (sec) 

50 50 1 0.588 0.588 1670.7 350 50 1 0.588 0.588 2223.8 
50 50 3 0.588 0.588 1671.0 350 50 3 0.588 0.588 2223.55
50 50 5 0.588 0.588 1671.5 350 50 5 0.588 0.588 2228.53
50 50 10 0.588 0.588 1671.3 350 50 10 0.588 0.588 2228.07
50 50 20 0.588 0.588 1672.8 350 50 20 0.588 0.588 2230.68
50 50 50 0.588 0.588 1674.9 350 50 50 0.588 0.588 2231.93
50 70 1 0.588 0.588 1753.4 350 70 1 0.588 0.588 2468.5 
50 70 3 0.588 0.588 1753.6 350 70 3 0.588 0.588 2464.09
50 70 5 0.588 0.588 1754.6 350 70 5 0.588 0.588 2458.08
50 70 10 0.588 0.588 1754.7 350 70 10 0.588 0.588 2459.99
50 70 20 0.588 0.588 1755.1 350 70 20 0.588 0.588 2458.59
50 70 50 0.588 0.588 1757.8 350 70 50 0.588 0.588 2462.14
20 50 20 0.588 0.588 1617.3 250 50 20 0.588 0.588 2032.77
20 50 50 0.588 0.588 1618.8 250 50 50 0.588 0.588 2035.23
20 70 1 0.588 0.588 1683.5 250 70 1 0.588 0.588 2216.41
20 70 3 0.588 0.588 1683.3 250 70 3 0.588 0.588 2216.08
20 70 5 0.588 0.588 1683.8 250 70 5 0.588 0.588 2222.03
20 70 10 0.588 0.588 1684.5 250 70 10 0.588 0.588 2220.81
20 70 20 0.588 0.588 1684.4 250 70 20 0.588 0.588 2222.91
20 70 50 0.588 0.588 1685.9 250 70 50 0.588 0.588 2225.69
50 2 1 0.588 0.588 1118.8 350 2 1 0.588 0.588 1146.11
50 2 3 0.588 0.588 1118.6 350 2 3 0.588 0.588 1146.39
50 2 5 0.588 0.588 1118.6 350 2 5 0.588 0.588 1146.3 
50 2 10 0.588 0.588 1118.9 350 2 10 0.588 0.588 1147.3 
50 2 20 0.588 0.588 1119.1 350 2 20 0.588 0.588 1148.05
50 2 50 0.588 0.588 1120.9 350 2 50 0.588 0.588 1149.2 
50 5 1 0.588 0.588 1198.4 350 5 1 0.588 0.588 1277.55
50 5 3 0.588 0.588 1198.9 350 5 3 0.588 0.588 1279.28
50 5 5 0.588 0.588 1198.8 350 5 5 0.588 0.588 1279.5 
50 5 10 0.588 0.588 1198.8 350 5 10 0.588 0.588 1279.35
50 5 20 0.588 0.588 1199.6 350 5 20 0.588 0.588 1280.49
50 5 50 0.588 0.588 1202.2 350 5 50 0.588 0.588 1282.36
50 10 1 0.588 0.588 1298.5 350 10 1 0.588 0.588 1444.94
50 10 3 0.588 0.588 1298.3 350 10 3 0.588 0.588 1446.25
50 10 5 0.588 0.588 1298.7 350 10 5 0.588 0.588 1446.27
50 10 10 0.588 0.588 1299.2 350 10 10 0.588 0.588 1446.93
50 10 20 0.588 0.588 1300.4 350 10 20 0.588 0.588 1447.14
50 10 50 0.588 0.588 1302.5 350 10 50 0.588 0.588 1449.7 
50 20 1 0.588 0.588 1437.1 350 20 1 0.588 0.588 1703.88
50 20 3 0.588 0.588 1437.5 350 20 3 0.588 0.588 1703.22
50 20 5 0.588 0.588 1437.0 350 20 5 0.588 0.588 1703.62
50 20 10 0.588 0.588 1437.9 350 20 10 0.588 0.588 1703.91
50 20 20 0.588 0.588 1438.3 350 20 20 0.588 0.588 1705.49
50 20 50 0.588 0.588 1440.9 350 20 50 0.588 0.588 1707.86
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Table 4.21 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=min,  
support threshold=0.8 

beam  
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
 

width
child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
 (sec) 

50 50 1 0.588 0.588 1670.7 350 50 1 0.588 0.588 2223.8 
50 50 3 0.588 0.588 1671.0 350 50 3 0.588 0.588 2223.55
50 50 5 0.588 0.588 1671.5 350 50 5 0.588 0.588 2228.53
50 50 10 0.588 0.588 1671.3 350 50 10 0.588 0.588 2228.07
50 50 20 0.588 0.588 1672.8 350 50 20 0.588 0.588 2230.68
50 50 50 0.588 0.588 1674.9 350 50 50 0.588 0.588 2231.93
50 70 1 0.588 0.588 1753.4 350 70 1 0.588 0.588 2468.5 
50 70 3 0.588 0.588 1753.6 350 70 3 0.588 0.588 2464.09
50 70 5 0.588 0.588 1754.6 350 70 5 0.588 0.588 2458.08
50 70 10 0.588 0.588 1754.7 350 70 10 0.588 0.588 2459.99
50 70 20 0.588 0.588 1755.1 350 70 20 0.588 0.588 2458.59
50 70 50 0.588 0.588 1757.8 350 70 50 0.588 0.588 2462.14

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.22, Table 4.23, Table 4.24 and Table 4.25 give accuracy ratios when support 

threshold is 0.8. The first and second columns represent whether the maximum of the 

memberships or the average of the memberships has been used for the computation of the 

final membership. ANDing operator is selected as the product.    

Table 4.22 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

beam 
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

10 2 1 0.588 0.588 1019.58 100 2 1 0.588 0.588 900.749
10 2 3 0.588 0.588 1014.73 100 2 3 0.588 0.588 900.991
10 2 5 0.588 0.588 1016.71 100 2 5 0.588 0.588 900.852
10 2 10 0.588 0.588 1030.51 100 2 10 0.588 0.588 901.341
10 2 20 0.588 0.588 980.078 100 2 20 0.588 0.588 902.597
10 2 50 0.588 0.588 1008.33 100 2 50 0.588 0.588 906.646
10 5 1 0.588 0.588 1149.06 100 5 1 0.412 0.412 955.287
10 5 3 0.588 0.588 1576.66 100 5 3 0.412 0.588 954.353
10 5 5 0.588 0.588 997.095 100 5 5 0.412 0.588 954.893
10 5 10 0.588 0.588 935.969 100 5 10 0.412 0.588 953.874
10 5 20 0.588 0.588 936.905 100 5 20 0.412 0.588 957.359
10 5 50 0.588 0.588 939.634 100 5 50 0.412 0.588 959.679
10 10 1 0.588 0.588 987.465 100 10 1 0.588 0.588 1020.36
10 10 3 0.588 0.588 987.152 100 10 3 0.588 0.588 1021.39
10 10 5 0.588 0.588 987.402 100 10 5 0.588 0.588 1020.47
10 10 10 0.588 0.588 989.103 100 10 10 0.588 0.588 1373.15



 64

Table 4.23 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

beam 
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

10 10 20 0.588 0.588 1048.83 100 10 20 0.588 0.588 1514.03
10 10 50 0.588 0.588 1063.63 100 10 50 0.588 0.588 1518.75
10 20 1 0.588 0.588 1137.77 100 20 1 0.588 0.588 1648.98
10 20 3 0.588 0.588 1129.81 100 20 3 0.588 0.588 1649.53
10 20 5 0.588 0.588 1122.89 100 20 5 0.588 0.588 1651.55
10 20 10 0.588 0.588 1112.31 100 20 10 0.588 0.588 1605.7 
10 20 20 0.588 0.588 1118.94 100 20 20 0.588 0.588 1267.15
10 20 50 0.588 0.588 1106.43 100 20 50 0.588 0.588 1246.69
10 50 1 0.588 0.588 1247.81 100 50 1 0.588 0.588 1443.28
10 50 3 0.588 0.588 1227.6 100 50 3 0.588 0.588 1475.15
10 50 5 0.588 0.588 1178.81 100 50 5 0.588 0.588 1488.09
10 50 10 0.588 0.588 1166.87 100 50 10 0.588 0.588 1378.78
10 50 20 0.588 0.588 1168.8 100 50 20 0.588 0.588 1392.28
10 50 50 0.588 0.588 1171.55 100 50 50 0.588 0.588 1379.1 
10 70 1 0.588 0.588 1198.31 100 70 1 0.588 0.588 1427.57
10 70 3 0.588 0.588 1198.89 100 70 3 0.588 0.588 1424.28
10 70 5 0.588 0.588 1198.93 100 70 5 0.588 0.588 1422.19
10 70 10 0.588 0.588 1199.25 100 70 10 0.588 0.588 1426.07
10 70 20 0.588 0.588 1202.01 100 70 20 0.588 0.588 1422.98
10 70 50 0.588 0.588 1204.24 100 70 50 0.588 0.588 1428.5 
20 2 1 0.588 0.588 889.264 250 2 1 0.588 0.588 967.887
20 2 3 0.588 0.588 893.35 250 2 3 0.588 0.588 968.236
20 2 5 0.588 0.588 899.929 250 2 5 0.588 0.588 967.655
20 2 10 0.588 0.588 914.414 250 2 10 0.588 0.588 977.662
20 2 20 0.588 0.588 893.285 250 2 20 0.588 0.588 976.752
20 2 50 0.588 0.588 896.72 250 2 50 0.588 0.588 980.869
20 5 1 0.588 0.588 944.039 250 5 1 0.412 0.412 1035.7 
20 5 3 0.588 0.588 1036.96 250 5 3 0.412 0.588 1026.77
20 5 5 0.588 0.588 1070.35 250 5 5 0.412 0.588 1037.44
20 5 10 0.588 0.588 1035.14 250 5 10 0.412 0.588 1025.02
20 5 20 0.588 0.588 1032.35 250 5 20 0.412 0.588 1043.44
20 5 50 0.588 0.588 1043.49 250 5 50 0.412 0.588 1047.97
20 10 1 0.588 0.588 1098.97 250 10 1 0.412 0.412 1149.69
20 10 3 0.588 0.588 1109.14 250 10 3 0.412 0.412 1085.72
20 10 5 0.588 0.588 1045.49 250 10 5 0.412 0.588 1130.37
20 10 10 0.588 0.588 1073.69 250 10 10 0.412 0.588 1092.91
20 10 20 0.588 0.588 1309.55 250 10 20 0.412 0.588 1078.91
20 10 50 0.588 0.588 1081.68 250 10 50 0.412 0.588 1130.13
20 20 1 0.588 0.588 1162.33 250 20 1 0.412 0.412 1306.31
20 20 3 0.588 0.588 1280.4 250 20 3 0.412 0.588 1300.55
20 20 5 0.588 0.588 1580.53 250 20 5 0.412 0.588 1203.08
20 20 10 0.588 0.588 1580.69 250 20 10 0.412 0.588 1197.54
20 20 20 0.588 0.588 1580.71 250 20 20 0.412 0.588 1198.15
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Table 4.24 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

beam 
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

20 20 50 0.588 0.588 1588.33 250 20 50 0.412 0.588 1200.8 
20 50 1 0.588 0.588 1151.66 250 50 1 0.412 0.412 1454.31
20 50 3 0.588 0.588 1169.08 250 50 3 0.412 0.588 1446.17
20 50 5 0.588 0.588 1168.98 250 50 5 0.412 0.588 1446.44
20 50 10 0.588 0.588 1171.08 250 50 10 0.412 0.588 1450.03
20 50 20 0.588 0.588 1171.87 250 50 20 0.412 0.588 1447.91
20 50 50 0.588 0.588 1175.85 250 50 50 0.412 0.588 1452.15
20 70 1 0.588 0.588 1207.91 250 70 1 0.412 0.412 1555.07
20 70 3 0.588 0.588 1204.1 250 70 3 0.412 0.588 1551.39
20 70 5 0.588 0.588 1203.73 250 70 5 0.412 0.588 1551.12
20 70 10 0.588 0.588 1739.52 250 70 10 0.412 0.588 1552.09
20 70 20 0.588 0.588 1799.24 250 70 20 0.412 0.588 1553.8 
20 70 50 0.588 0.588 1805.07 250 70 50 0.412 0.588 1558 
50 2 1 0.588 0.588 1320.73 350 2 1 0.588 0.588 914.986
50 2 3 0.588 0.588 1321.04 350 2 3 0.588 0.588 914.95 
50 2 5 0.588 0.588 1321.26 350 2 5 0.588 0.588 914.322
50 2 10 0.588 0.588 1320.2 350 2 10 0.588 0.588 915.722
50 2 20 0.588 0.588 1104.62 350 2 20 0.588 0.588 920.722
50 2 50 0.588 0.588 1143.77 350 2 50 0.588 0.588 920.557
50 5 1 0.588 0.588 1094.44 350 5 1 0.412 0.412 990.91 
50 5 3 0.588 0.588 1136.98 350 5 3 0.412 0.588 991.035
50 5 5 0.588 0.588 989.019 350 5 5 0.412 0.588 991.749
50 5 10 0.588 0.588 985.658 350 5 10 0.412 0.588 992.196
50 5 20 0.588 0.588 1070.36 350 5 20 0.412 0.588 999.824
50 5 50 0.588 0.588 1218.65 350 5 50 0.412 0.588 1430.77
50 10 1 0.588 0.588 1313.07 350 10 1 0.412 0.412 1618.44
50 10 3 0.588 0.588 1212.98 350 10 3 0.412 0.412 1618.34
50 10 5 0.588 0.588 1306.12 350 10 5 0.412 0.588 1617.81
50 10 10 0.588 0.588 1016.53 350 10 10 0.412 0.588 1626.02
50 10 20 0.588 0.588 1110.07 350 10 20 0.412 0.588 1153.89
50 10 50 0.588 0.588 1176.27 350 10 50 0.412 0.588 1144.72
50 20 1 0.588 0.588 1618.45 350 20 1 0.412 0.412 1315.48
50 20 3 0.588 0.588 1612.95 350 20 3 0.412 0.412 1433.31
50 20 5 0.588 0.588 1678.43 350 20 5 0.412 0.588 1381.07
50 20 10 0.588 0.588 1709.17 350 20 10 0.412 0.588 1347.77
50 20 20 0.588 0.588 1530.54 350 20 20 0.412 0.588 1329.01
50 20 50 0.588 0.588 1201.44 350 20 50 0.412 0.588 1319.24
50 50 1 0.588 0.588 1301.16 350 50 1 0.412 0.412 1669.89
50 50 3 0.588 0.588 1264.84 350 50 3 0.412 0.412 1722.66
50 50 5 0.588 0.588 1271.56 350 50 5 0.412 0.412 1868.26
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Table 4.25 Results evaluated with different parameter settings 
 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

colon cancer data, fuzzification parameter=2.8, 
ANDing operator=product, support threshold=0.8 

beam 
width 

child 
width 

number 
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

beam
width

child
width

number
 of  

output 
rules 

accuracy 
when 

 max is 
used 

accuracy 
when  

average 
is used 

time 
(sec) 

50 50 10 0.588 0.588 1336.8 350 50 10 0.412 0.588 1776.52
50 50 20 0.588 0.588 1221.28 350 50 20 0.412 0.588 1777.21
50 50 50 0.588 0.588 1225.3 350 50 50 0.412 0.588 1750.55
50 70 1 0.588 0.588 1265.96 350 70 1 0.412 0.412 1869.68
50 70 3 0.588 0.588 1265.04 350 70 3 0.412 0.412 1749.7 
50 70 5 0.588 0.588 1264.82 350 70 5 0.412 0.412 1516.21
50 70 10 0.588 0.588 1264.95 350 70 10 0.412 0.588 1753.02
50 70 20 0.588 0.588 1266.66 350 70 20 0.412 0.588 1790.92
50 70 50 0.588 0.588 1269.81 350 70 50 0.412 0.588 1778 

 

Beam search is less successful than F-ARM in leukemia dataset as well as the colon 

cancer dataset. The reasons for this outcome may be the same as those are stated in the colon 

cancer dataset outcomes section. It can be observed that the results are mostly 0.588235. This 

is because the algorithm always finds the memberships for ALL test instances greater than 

AML test instances, resulting with the ratio 20/34 -i.e. the ratio of ALL test instances in the 

whole test instances set. 

4.6.  Algorithm CART 

 

Coding of the CART algorithm has been done in MATLAB. The result for the leave-

one-out validation of colon cancer data is shown in Table 4.26.  

When constructing nodes in the decision tree, the most successful gene that divides the 

data into two most homogeneous partitions must be determined. In order to measure the 

talents of genes, two different performance measures are tested. 

The effect of using two different performance measures can be seen in leave-1-out 

validation results. Before introducing the results it is possible to show the plotting of CART 

measure and entropy gain measure when CART measure improvement can be observed 

through the iterations of the algorithm, it is possible to observe that there are some deviations 

on the curve that represents entropy gain measure levels. These deviations cause the different 

decision tree structures therefore different accuracy results (Figure 4.9). 
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Figure 4.9 Comparison of CART measure and entropy gain 

Implementation on Colon Cancer Dataset 

Leave-1-out validation has been performed on colon cancer data. Accuracies can be 

seen in Table 4.26. 

Table 4.26 Results for Leave-1-out validation for CART 
 

performance metric used CART measure entropy gain 
Classification accuracy(%) 98.39 96.77 

 

In leave-1-out validation, for each test instance, a new decision tree is constructed. 

Different decision trees with two different measures for the same test instance can be 

observed in Figure 4.10. Numbers in nodes represent the label of gene in the dataset i.e. the 

row number. 

Decision tree structure with performance measure: CART measure Decision tree structure with performance measure: entropy gain

12 765

11 802

493

normalcancer

normal

normalcancer

cancer 1466 2

737

1671

normal

normal

normal cancercancer

 
Figure 4.10 Decision trees constructed with different performance measures for selecting nodes, trees for 

test instance 3: normal tissue. 
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Implementation on Leukemia Dataset 
 

CART was run on the training leukemia instance set, and the constructed single 

decision tree was tested on the testing leukemia instance set. Results are shown in Table 4.27. 

Table 4.27 Results for testing Leukemia Dataset 
 

performance metric used CART measure entropy gain 
Classification accuracy(%) 86.84 86.84 

 

The decision tree constructed includes only one node which is gene 4847 and the split 

point 994, the scatter plot of the expression levels of this gene can be observed in Figure 4.11.  

This single node is able to classify the training instance set with 100% accuracy, and can 

classify the testing instance set with 86.84% accuracy with both performance measures. Note 

that these results are less successful than those of F-ARM.  
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Figure 4.11 Expression level of the gene used in CART 
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CHAPTER 5 

 

DISCUSSION AND CONCLUSIONS 

 
 

This study focuses on association rule mining which has been initially constructed on market 

basket data, where each instance refers to a transaction. In this study we converted cell 

instances to instances and used fuzzy partitioning. Fuzzy c-means clustering the gene 

expression data enabled decreasing the risk of overfitting, and a different approach for the 

normalization of the data. 

5.1.  Algorithm F-ARM – Algorithm for Fuzzy Association Rule Mining 

 

Results obtained by F-ARM show different performances on different datasets. Figure 

4.3 and Figure 4.4 show the different memberships obtained by keeping the number of output 

rules 1, 3 and 5 respectively. All other parameters do not differ. It can be observed that as the 

number of rules that are used for classification increases, items that do not play role in the 

differentiation of two classes are more likely to occur in the rules in colon cancer dataset.  

In order to increase classification accuracy in colon cancer dataset, we have also 

conducted experiments with an initial pruning of the genes, leaving out first 200 and first 700 

successful genes, according to signal-to-noise ratio each gene’s expression levels. The results 

did not show any improvements, inferring the conclusion that individually invaluable genes 

play role in rule generation process. Also the risk of overfitting is investigated with changing 

the validation scheme into 5-fold. Results gave lower classification accuracies.  

The lack of memory problems are due to the APriori Rule Mining procedure. Using 

more advanced structures in coding and using different strategies for association rule mining, 

it may be possible to eliminate this problem or observing it in runs with lower support 

threshold levels. 
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It is a strong observation that F-ARM is much less successful in colon cancer dataset, 

when compared to Leukemia dataset. Also it can be observed that we could not make 

experiments on Leukemia Dataset with threshold_support levels as low as the experiments on 

Colon Cancer Dataset. This was because of the lack of memory problems. This is an evidence 

for the difference of the two datasets in their structure of the data. 

We investigated the structure of genes in colon cancer and leukemia datasets. The first 

study was conducted with the normalized data of colon cancer and Leukemia training 

Datasets. We put the two datasets in a scale from 0 to 100, and computed signal-to-noise ratio 

for every gene. The values for Leukemia data are always greater than the values of colon 

cancer when put in descending order (Figure 5.1). It can be concluded that genes in the 

Leukemia Dataset are individually more successful, which can be counted for the success of 

F-ARM in classifying Leukemia Testing Dataset. 

S2N ratio of datasets when put in descending 
order

0

0.5

1

1.5

2

1 662 1323 1984 2645 3306 3967 4628 5289 5950 6611

genesLeukemia Colon Cancer
 

Figure 5.1 S2N ratio values of the datasets 
 

Running F-ARM on the parameters 0.95 for threshold_support and 1 for 

number_of_output rules gave 100% accuracy, and Table 5.1 shows the genes that are 

involved in the rules discovered for classifying Leukemia testing Dataset. It can be concluded 

that rules generated are dominated by individually successful genes, however the genes that 

increase the confidence by using only a little portion of the instances are included in the 

itemset as long as the support of the itemset does not fall below the support threshold. 
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Table 5.1 Ranks of the genes discovered in F-ARM 
 

  

gene # of the 
items 

 discovered 

rank of the 
gene according
 to S2N ratio 

ALL 
2288 7 
6277 410 
7093 2507 

AML 

758 82 
2701 3281 
4050 355 
5435 6906 
5688 193 
6510 450 

 

5.2. Algorithm Beam Search 

 

The results evaluated with this algorithm in both of the datasets show lack of accuracy, 

which can be concluded that this algorithm needs serious improvements.  

An issue that should be investigated is the average_support which is used as an 

expected support measure of the itemsets that are to be discovered. The relation between this 

measure with the real support values is investigated statistically. The average of the difference 

between average_support and real support has an average of 0.204 and standard deviation of 

0.8786.  These parameters yield the 95% confidence interval as [-1.518,1.926]. This deviation 

may result with filtering out the itemsets that are relevant with the classification or the 

opposite. 

 

5.3. Algorithm CART 

 

The decision tree constructed by CART on Leukemia Dataset includes only one node. 

Gene # 4847 with splitting point 994 can classify Leukemia Training Dataset instances with 

100% accuracy, however is 86% accurate in classifying the Testing Instances. This gene is 

ranked as the third among all the genes according to S2N ratio. The rescaled expression levels 

of the first 3 genes of this ranking are shown in Figure 5.2. 
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Figure 5.2 The first 3 genes of S2N ranking in Leukemia Data 

 

Even gene# 2020 and gene# 3320 are more compact in expression levels – i.e. low 

standard deviations among same classes- the outlier instances are the reasons for not being 

selected by CART for decision tree construction. When these genes are used for the single 

nodes of decision tree construction, no improvement in the accuracy has been observed. 

Results are shown in Table 5.2. Results in accuracy did not change with the performance 

metric used. 

Table 5.2 Accuracy results of the first and second genes of S2N ranking 
 

Gene_used 2020 3220 
Classification accuracy(%) 86.84 84.21 

 

It is notable that in colon cancer dataset, the genes are of higher rank in the decision 

trees that are constructed according to CART metric. This may be related to the link between 

the CART metric and S2N metric. 

Different folding schemes can be used for experimenting the power of decision trees 

in classifying cell instances using gene expression data. In addition, different metrics for 

identifying the splitting gene can be defined; even these metrics could be related to the 

biological function of the genes. 

It can be observed that the beam search algorithm needs serious improvements, the 

average support calculation must be optimized in order to reduce the deviation from the real 

support values. 

Algorithm CART is evaluating hierarchical rules, which means that, every element in 

the decision tree is utilized with only a subset of the whole instance set. Yet the rules mined 
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by F-ARM and beam search do not have this kind of structure. Items that make up the rule do 

not have individual meaning, all the items can be utilized on the whole instance set.  

It must be considered that CART is a more stable algorithm evaluating good results 

with a reasonable amount of time. The results show that CART is at least 86% accurate on the 

whole experimented datasets. Even though F-ARM is more accurate in Leukemia dataset 

giving 100% accurate classification of testing instances, this algorithm is less accurate in 

colon cancer dataset. However, the opposite is valid for CART. The structure of the datasets 

may be the reason for these different accuracies in different algorithms.  

The computational time of the algorithms F-ARM and beam search grows 

exponentially with decreasing support threshold. However, it should be noted that, the 

computational times can be considered as short when compared to algorithms with high 

number of iterations. 
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