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Abstract

Let K (x) be a rational function field, which is a finite separable extension of the

rational function field K (z). In the first part of the thesis, we have studied the number

of ramified places of K (x) in K (x) /K (z). Then we have given a formula for the

ramification index and the different exponent in the extension F (x) over a function

field F , where x satisfies an equation f (x) = z for some z ∈ F and separable polynomial

f (x) ∈ K [x]. In fact, this generalizes the well-known formulas for Kummer and Artin-

Schreier extensions.



RASYONEL FONKSİYON CİSİM GENİŞLEMELERİNDEKİ DALLANMALAR
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Tez Danışmanı: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: Fonksiyon cisimleri, fonksiyon cisimlerin genişlemeleri, dallanma

indexi, fark kuvveti

Özet

K (x) ve K (z) rasyonel fonksiyon cisimleri olsun; öyle ki K (x), K (z) üzerinde

ayrışabilir bir cisim genişlemesidir. Öncelikle, K (x)’in, K (x) /K (z) genişlemesindeki

dallanmış yerlerin sayısına bakılmıştır. Daha sonra, ayrışabilir bir polinom olan f (x) ∈
K [x] ve bir fonksiyon cismi olan F ’in bir elamanı z için f (x) = z denkliği ile tanımlı

F (x)/F genişlemesi ele alınmıştır. Bu cisim genişlemelerindeki dallanma indexleri ve

fark kuvvetleri için formüller verilmiştir. Aslında; verilen bu formüller Kummer ve

Artin-Scheier genişlemeleri için verilen bilindik formüllerin bir genelleştirilmesidir.



to Mithat and Saniye Anbar



Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Henning Stichtenoth for

his motivation, guidance and encouragement throughout this thesis.

I am also very grateful to my family for their motivation and support throughout

my whole life.
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vii



Table of Contents

Abstract iv
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Introduction

Throughout this thesis, K denotes an algebraically closed field.

LetK (x) be a rational function field and z = f(x)
g(x)
∈ K (x)\K , where f (x) and g (x)

have no common factors. Then K (x) is an algebraic extension over the rational func-
tion field K (z). In the case of charK = p > 0, we assume that not both of f (x) and
g (x) lie in K [xp] so that K (x) /K (z) is a finite separable extension.

Let n ∈ Z, n > 1

Question: For which values i ∈ Z, can we find z ∈ K (x) such that K (x) has
exactly i ramified places in K (x) /K (z) and [K (x) : K (z)] = n ?In the first part of
this thesis, we give some basic definitions and facts to use in the following chapters
to answer that question. In chapter 2, we answer the question for z ∈ K [x] and any
characteristic and in chapter 3, we try to give an answer for z ∈ K (x) and charK = 0.

Let F ′ be an extension of a function field F such that F ′ = F (x), where x satisfies
the equation z = xn for n ≥ 2 with gcd (n, p) = 1 in the case of p = charK > 0, or
z = xp − x, where p = charK > 0 for some z ∈ F . These cases are well-known special
types of galois extensions, which are called Kummer extensions and Artin-Schreier
extensions, respectively. For these cases, there are explicit formulas to compute the
ramification index and the different exponent of a place of F as follows:

Let P ∈ PF , P ′ ∈ PF ′ with P ′ | P and vP denote the valuation function corre-
sponding to P . For z = xn,

e (P ′ | P ) =
n

rP
and d (P ′ | P ) =

n

rP
− 1,

where rP = gcd {vP (z) , n}. For z = xp − x, P is ramified if and only if mP > 0 and
in that case

e (P ′ | P ) = p and d (P ′ | P ) = (p− 1) (mP + 1) ,

where mP is defined by

mP :=


m

,if there exists y ∈ F satisfying

vP (z − (yp − y)) = −m < 0 with gcd (m, p) = 1.

−1 ,if vP (z − (yp − y)) ≥ 0 for some y ∈ F .

 .

In the last chapter, we derive these formulas by using the results of chapter 2 and
chapter 3 with Abhyankar Lemma. Moreover, we generalize these formulas to some
other examples.
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1

Preliminaries

Let K (x) be a rational function field and z = f(x)
g(x)
∈ K (x) \ K. Then K (x) is an

algebraic extension of K (z). The question is whether we can find z ∈ K (x) such that
[K (x) : K (z)] = n and K (x) /K (z) has exactly i ∈ N ramified places for given n ∈ N,
where n ≥ 2. We try to answer this question. But before that we give some facts,
which we are going to use in the following chapters.

Definition 1.1. Let F ′/F be an algebraic extension of function fields and P be a
place of F .
(a) An extension P ′ of P in F ′ is said to be tamely ramified (resp. wildly ramified) if
e (P ′ | P ) > 1 and the characteristic ofK does not divide e (P ′ | P ) (resp. characteristic
of K divides e (P ′ | P )).
(b) P is said to be totally ramified in F ′/F if there exists only one place P ′ of F ′ which
lies over P such that e (P ′ | P ) = [F ′ : F ].

Lemma 1.2 (Strict Triangle Inequality). Let v be a discrete valuation of F/K and let
x, y ∈ F with v (x) 6= v (y). Then

v (x+ y) = min {v (x) , v (y)} .

Theorem 1.3 (Fundamental Equality). Let F ′/K ′ be a finite extension of F/K. Let
P be a place of F/K and P1, . . ., Pm be all the places of F ′/K ′ lying over P . Let
ei := e (Pi | P ) denote the ramification index and fi := f (Pi | P ) denote the relative
degree of Pi | P . Then we have

[F ′ : F ] =
m∑
i=1

eifi.

Corollary 1.4. Let K (x) be a rational function field and z = f(x)
g(x)
∈ K (x) \K such

that f (x) and g (x) have no common factor. Then K (x) is a finite extension field of
K (z) of degree

[K (x) : K (z)] = max {deg g (x) , deg f (x)} .

2



Proof. Let z = f(x)
g(x)

=
∏
p
ei
i (x)∏
q
ej
j (x)

for some irreducible polynomials pi (x), qj (x) ∈ K (x)

and some ei, ej ∈ Z+. [K (x) : K (z)] =
[
K (x) : K

(
1
z

)]
, since K (z) = K

(
1
z

)
. If

deg f (x) < deg g (x), then consider 1
z
. So, without loss of generality, assume that

deg f (x) ≥ deg g (x). Let Q0 denote the zero of z in K (z). Then the places of K (x)
lying over Q0 are the places corresponding to the irreducible factors of f (x) with
e (Ppi | Q0) = ei and f (Ppi | Q0) = deg pi (x), where Ppi denotes the place of K (x)
corresponding to pi (x). So, by Fundamental Equality

[K (x) : K (z)] =
∑

eifi =
∑

ei deg pi (x)

= deg f (x) = max {deg g (x) , deg f (x)} .

Throughout this thesis, we will assume that K is an algebraically closed field and

K (x) /K (z) is a finite separable extension; i.e. if z = f(x)
g(x)

, then not both of the

polynomials f (x) and g (x) lie in K [xp] in the case of charK = p > 0. Since K is
an algebraically closed field, an irreducible polynomial of K [x] is of the form x − a,
for some a ∈ K. Also, there is one to one correspondence between the irreducible
polynomials of K [x] and the places of K (x) except the pole of x. So, let Pa (resp. Qa)
denote the place of K (x)(resp. K (z)) corresponding to the polynomial x − a (resp.
z − a) and P∞ (resp. Q∞) denote the pole of x (resp. z).

Definition 1.5. Let K (x) be a rational function field. Then for a given n ∈ N, we
define

T n :=

 i ∈ Z | there exists z ∈ K [x] such that [K (x) : K (z)] = n and

there exist exactly i ramified places of K (x) in K (x) /K (z)



Sn :=

 i ∈ Z | there exists z ∈ K (x) such that [K (x) : K (z)] = n and

there exist exactly i ramified places of K (x) in K (x) /K (z)

 .

Our aim is to determine T n (resp. Sn) in chapter 2 (resp. chapter 3). However,
we will give some more facts before that.

Theorem 1.6 (Hurwitz Genus Formula). Let F/K be a function field of genus g and
F ′/F be a finite separable extension. Let K ′ denote the constant field of F ′ and g′

denote the genus of F ′/K ′. Then we have

2g′ − 2 =
[F ′ : F ]

[K ′ : K]
(2g − 2) + deg Diff (F ′/F ) ,

where Diff (F ′/F ) denotes the different of F ′/F .

Corollary 1.7. Let K (x) be a rational function field and z = f(x)
g(x)
∈ K (x) such

that K (x) /K (z) is separable. Then deg Diff (K (x) /K (z)) = 2n − 2 , where n =
[K (x) : K (z)].

3



Definition 1.8. Let F ′/F be an algebraic extension of function fields. F ′/F is said to
be ramified (resp. unramified) if at least one place P of F is ramified in F ′/F (resp.
if all places of F are unramified in F ′/F ).

Theorem 1.9 (Dedekind’s Different Theorem). Let F ′/F be a finite separable exten-
sion where F/K (resp. F ′/K ′) is a function field with constant field K (resp. K ′). Let
Q be a place of F and P be a place of F ′ lying over Q. Then we have

(a) d (P | Q) ≥ e (P | Q)− 1
(b) d (P | Q) = e (P | Q)− 1⇔ e (P | Q) is not divisible by charK.

Corollary 1.10. With the notation as above, then P | Q is ramified if and only if
d (P | Q) ≥ 1; i.e. P ≤ Diff (K (x) /K (z)).

Corollary 1.11. Let F/K (x) be a finite separable extension of the rational function
field, having K as a full constant field and [F : K (x)] = n ≥ 2. Then F/K (x) is
ramified.

Proof. Proof: Let g denote the genus of F . Since K (x) is a rational function field,
genus of K (x) is 0 and since F/K (x) is a finite separable extension, by Hurwitz Genus
Formula

2g − 2 = [F : K (x)] (−2) + deg Diff (F/K (x))

= n (−2) + deg Diff (F/K (x))

⇒ deg Diff (F/K (x)) = 2g + 2 (n− 1) > 2g ≥ 0

⇒ deg Diff (F/K (x)) > 0.

Hence, there exists P ∈ PF such that P ≤ Diff (F/K (x)). So, P is ramified in
F/K (x), by Dedekind’s Different Theorem.

Theorem 1.12. Suppose F ′ = F (x) is a finite separable extension of a function field
F with [F ′ : F ] = n. Let Q be a place of F such that the minimal polynomial ϕ (T ) of
x over F has coefficients in OQ, where OQ is the valuation ring corresponding to the
place Q, and let P be a place of F ′ lying over Q. Then d (P | Q) ≤ vP (ϕ′ (x)), where
ϕ′ denotes the derivative of ϕ.

Theorem 1.13. Let F ′/F be a finite separable extension of function fields and P ∈ PF ,
P ′ ∈ PF ′ with P ′ | P . Suppose that P ′ | P is totally ramified; i.e. e (P ′ | P ) =
[F ′ : F ] = n. Let x ∈ F ′ be a P ′-prime element and ϕ (T ) ∈ F [T ] be the minimal
polynomial of x over F . Then d (P ′ | P ) = vP ′ (ϕ

′ (x)), where vP ′ denote the discrete
valuation function corresponding to P ′.

Proposition 1.14 (Transitivity of the Different). Let F ′′/F ′, F ′/F be function field
extensions and P ′′ ∈ PF ′′, P

′ ∈ PF ′, P ∈ PF with P ′′ | P ′ | P . Then

d (P ′′ | P ) = e (P ′′ | P ) d (P ′ | P ) + d (P ′′ | P ′) .

4



Definition 1.15. Suppose that p (x), q (x) ∈ K [x] such that

p (x) = amx
m + am−1x

m−1 + · · ·+ a1x+ a0

and
q (x) = bnx

n + bn−1x
n−1 + · · ·+ b1x+ b0.

where am,bn 6= 0 and m, n ∈ Z. Then the resultant of p (x) and q (x), denoted by
R (p (x) , q (x)), is defined as the (m+ n)× (m+ n) determinant:

am am−1 · · · · · · a1 a0 · · · · · · 0 0

0 am · · · · · · a2 a1 · · · · · · 0 0
. . .

. . .

0 0 · · · · · · am am−1 · · · · · · a1 a0

bn bn−1 · · · · · · b1 b0 · · · · · · 0 0
. . .

. . .

0 0 · · · · · · bn bn−1 · · · · · · b0 0

0 0 · · · · · · 0 bn · · · · · · b1 b0



Definition 1.16. Let p (x) = xn+an−1x
n−1 + · · ·+a1x+a0 ∈ K [x] with deg p (x) ≥ 2.

Then the discriminant of p (x), denoted by D (p (x)), is defined by

D (p (x)) = (−1)
1
2
n(n−1)R (p (x) , p′ (x)) ,

where p′ (x) denotes the derivative of p (x).

Lemma 1.17. Let p (x), q (x) ∈ K [x]. Then R (p (x) , q (x)) = 0 if and only if p (x)
and q (x) have a common root.

Hence D (p (x)) = 0 for p (x) ∈ K [x] with deg p (x) ≥ 2 if and only if p (x) has a
factor with multiplicity greater than 1.

Theorem 1.18 (Abhyankar Lemma). Let F ′/F be finite separable extension of func-
tion fields. Suppose that F ′ = F1F2, where F1 and F2 are intermediate fields F ⊆ F1,
F2 ⊆ F ′. Let P ′ ∈ PF ′ and P ∈ PF such that P ′ | P and set Pi := Fi ∩ P ′ for i = 1,
2. Assume that at least one of the extensions P1 | P or P2 | P is tame. Then

e (P ′ | P ) = lcm {e (P1|P ) , e (P2 | P )} .

5



2

Ramified Places of K(x) in K(x)/K(z) for z ∈ K[x]

In this chapter, we will investigate T n, where T n is the set consisting of integers i
for which we can find z ∈ K [x] such that [K (x) : K (z)] = n and K (x) has ex-
actly i ramified places in K (x) /K (z). Let z = f (x) be a monic polynomial of K [x]
with deg f (x) = n, where n ≥ 2. Then K (x) is a field extension of K (z) with
[K (x) : K (z)] = n and ϕ (T ) = f (T ) − z is the minimal polynomial of x over K (z).
We assume that ϕ′ (T ) = f ′ (T ) 6= 0 in order that K (x) /K (z) is a separable exten-
sion. So, we always take a monic polynomial f (x) ∈ K [x] \ K [xp], where K is an
algebraically closed field.

Lemma 2.1. Let K (x) be a rational function field and z = f (x) ∈ K [x] with
deg f (x) = n ≥ 2. Then the ramified places of K (x) in K (x) /K (z) are the pole
P∞ of x and the places corresponding to the zeros of the derivative of f (x).

Proof. Let Q∞ ∈ PK(z) denote the pole of z and let vP∞ and vQ∞ denote the valuation
functions at x =∞ and z =∞, respectively. Then

vP∞ (z) = e (P∞ | Q∞) vQ∞ (z) = −e (P∞ | Q∞)

and
vP∞ (z) = vP∞ (f (x)) = − deg f (x) = −n

⇒ e (P∞ | Q∞) = n ≥ 2; i.e. P∞ is totally ramified. Hence, P∞ is the only place lying
over Q∞.

Let P be a place of K (x) corresponding to x− a and Q be the place of K (z) such
that Q ⊆ P ; i.e. Q is the place corresponding to z − f (a) = f (x) − f (a). Then
ϕ (T ) = f (T )− z is the minimal polynomial of x over K (z). Since the coefficients of
f (T ) lies in K, ϕ (T ) ∈ OQ [T ]; i.e. x is integral over OQ, for all Q ∈ PK(z) \ {Q∞}.By
theorem 1.12,

d (P | Q) ≤ vP (ϕ′ (x)) = vP (f ′ (x)) = 0, for all a such that x− a - f ′ (x)

⇒ d (P | Q) = 0, for all a such that x− a - f ′ (x) .

Therefore, a place corresponding x− a, which is not a divisor of f ′ (x), is unramified.
Now, let x − a be a divisor of f ′ (x). Then x − a | f (x) − f (a) and x − a |

(f (x)− f (a))′ = f ′ (x); i.e. f (x) − f (a) = (x− a)2 g (x), for some g (x) ∈ K [x].
Hence,

2 ≤ vP (f (x)− f (a)) = e (P | Q) vQ (f (x)− f (a)) = e (P | Q) .

So, a place corresponding to x− a, which is a divisor of f ′ (x), is ramified.

6



Corollary 2.2. Let n ∈ Z, with n ≥ 2. Then T n ⊆ {1, 2, · · · , n}. More precisely, if
z = f (x) ∈ K [x] with deg f (x) = n, then K (x) /K (z) has exactly i ramified places if
and only if f ′ (x) has i− 1 distinct roots.

Corollary 2.3. Let K (x) be a rational function field and z = f (x) ∈ K [x] with
deg f (x) = n ≥ 2. Suppose K (x) has only one ramified place P in K (x) /K (z).
Then P is the pole P∞ of x and P is wildly ramified.

Proof. By lemma 2.1, we know that e (P∞ | Q∞) = n ≥ 2. Hence, the only ramified
place of K (x) is P∞. By Hurwitz Genus Formula,

d (P∞ | Q∞) = deg Diff (F/K (x)) = 2n− 2 ≥ n, since n ≥ 2

⇒ d (P∞ | Q∞) ≥ e (P∞ | Q∞) .

So, P∞ | Q∞ is wildly ramified by Dedekind’s Different Theorem.

Corollary 2.4. Let K (x) be a rational function field. If 1 ∈ T n, then p | n, where
n = [K (x) : K (z)] and p = charK.

Proof. Suppose 1 ∈ T n. Then the ramified place of K (x) is the pole P∞ of x, which
is wildly ramified by corollary 2.3. Hence, charK | e (P∞ | Q∞), where e (P∞ | Q∞) =
n.

So, if p - n, then T n ⊆ {2, · · · , n}.

Corollary 2.5. If p | n, then 1 ∈ T n.

Proof. 1 ∈ T n if and only if K (x) has only one ramified place in K (x) /K (z). Let
z = f (x) = xn + x. Then f ′ (x) = 1; i.e. f ′ (x) has no zero. So, the pole of x is the
only ramified place of K (x).

Corollary 2.6. If p - n, then 2 ∈ T n.

Proof. Let z = f (x) = xn. Then f ′ (x) = nxn−1. Since p - n and n ≥ 2, 0 is the only
zero of f ′ (x) . So, all the ramified places of K (x) in K (x) /K (z) are the pole and the
zero of x.

Lemma 2.7 (charK = p > 0). Let z = f (x) = g (x) + h (x) be a polynomial over K

of degree n, where g (x) =
∑
p-i
aix

i and h (x) =
∑
p|j
bjx

j. Let P∞ denote the pole of x in

K (x) and Q∞ denote the pole of z in K (z). Then d (P∞ | Q∞) = 2n−{deg g (x) + 1}.

7



Proof. Without loss of generality, we can assume that the constant term of f (x) is 0 so
that all i, j ≥ 1. Let ϕ (T ) be the minimal polynomial of 1

x
over K (z). By lemma 2.1,

we know that P∞ is totally ramified. Hence, d (P∞ | Q∞) = vP∞
(
ϕ′
(

1
x

))
, by Theorem

1.13. So, we will first find ϕ (T ) to compute d (P∞ | Q∞). Since K (x) = K
(

1
x

)
,[

K

(
1

x

)
: K (z)

]
= [K (x) : K (z)] = n.

Therefore, degϕ (T ) =
[
K
(

1
x

)
: K (z)

]
= n.

z = g (x) + h (x) =
∑
p-i

aix
i +
∑
p|j

bjx
j.

Multiply both sides of the equality by 1
zxn

. Then we have

1

xn
=

1

z

∑
p-i

ai
1

xn−i
+

1

z

∑
p|j

bj
1

xn−j

⇒ 1

xn
− 1

z

∑
p-i

ai
1

xn−i
− 1

z

∑
p|j

bj
1

xn−j
= 0.

Let γ (T ) = T n− 1
z

∑
p-i
aiT

n−i− 1
z

∑
p|j
bjT

n−j ∈ K (z) [T ]. Then we have seen that γ
(

1
x

)
= 0.

Since deg γ (T ) = n, ϕ (T ) = γ (T ). Hence,

ϕ′ (T ) = nT n−1 − 1

z

∑
p-i

ai (n− i)T n−i−1 − 1

z

∑
p|j

bj (n− j)T n−j−1.

Case(i): if p | n, then p | n− j and p - n− i. Hence,

ϕ′ (T ) = −1

z

∑
p-i

ai (n− i)T n−i−1.

Then

vP∞

(
ϕ′
(

1

x

))
= vP∞

−1

z

∑
p-i

ai (n− i)
1

xn−i−1


= vP∞

(
1

z

)
+ vP∞

∑
p-i

ai (n− i)
1

xn−i−1


= deg f (x) + min

p-i, ai 6=0
{n− i− 1} (by Strict Triangle Inequality)

= n+ (n− deg g (x)− 1)

= 2n− {deg g (x) + 1} .

Case(ii): if p - n, then

ϕ′ (T ) = nT n−1 − 1

z

∑
p-i

ai (n− i)T n−i−1 − 1

z

∑
p|j

bj (n− j)T n−j−1.

8



Then

vP∞

(
ϕ′
(

1

x

))

= vP∞

n 1

xn−1
− 1

z

∑
p-i

ai (n− i)
1

xn−i−1
− 1

z

∑
p|j

bj (n− j) 1

xn−j−1


= vP∞

(
1

z

)
+ vP∞

nz 1

xn−1
−
∑
p-i

ai (n− i)
1

xn−i−1
−
∑
p|j

bj (n− j) 1

xn−j−1


= vP∞

(
1

z

)
+ vP∞

(
1

xn

)
+ vP∞

nzx−∑
p-i

ai (n− i)xi+1 −
∑
p|j

bj (n− j)xj+1


Now, we first compute

nzx−
∑
p-i

ai (n− i)xi+1 −
∑
p|j

bj (n− j)xj+1

= n

∑
p-i

aix
i +
∑
p|j

bjx
j

x−
∑
p-i

ai (n− i)xi+1 −
∑
p|j

bj (n− j)xj+1

= n
∑
p-i

aix
i+1 + n

∑
p|j

bjx
j+1 −

∑
p-i

ai (n− i)xi+1 −
∑
p|j

bj (n− j)xj+1

=
∑
p-i

ai (n− (n− i))xi+1 −
∑
p|j

bj (n− (n− j))xj+1

=
∑
p-i

aiix
i+1 −

∑
p|j

bjjx
j+1

=
∑
p-i

aiix
i+1.

Hence,

vP∞

nzx−∑
p-i

ai (n− i)xi+1 −
∑
p|j

bj (n− j)xj+1


= vP∞

∑
p-i

aiix
i+1

 = min
p-i, ai 6=0

{−i− 1} (by Strict Triangle Inequality)

= − (deg g (x) + 1) .

So,

vP∞

(
ϕ′
(

1

x

))
= vP∞

(
1

z

)
+ vP∞

(
1

xn

)
− (deg g (x) + 1)

= n+ n− (deg g (x) + 1)

= 2n− (deg g (x) + 1) .
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When charK = 0, then K (x) /K (z) is tame.
Therefore, d (P∞ | Q∞) = e (P∞ | Q∞)− 1 = n− 1.

Claim 2.8. Let K (x) /K (z) be defined as before. Then there is no place P of K (x)
such that d (P | Q) = p− 1, where Q is the place of K (z) lying under P .

Proof. If charK = 0, then d (P | Q) 6= −1. Because, d (P | Q) is a non-negative integer.
So, assume that charK = p > 0 and d (P | Q) = p− 1. If P is tamely ramified, then
d (P | Q) = e (P | Q)− 1 by Dedekind’s Different Theorem. Hence, e (P | Q) = p. But
p can not divide the ramification index, since P is tamely ramified. So, P must be
wildly ramified; i.e. p | e (P | Q). Then, by Dedekind’s Different Theorem, d (P | Q) ≥
e (P | Q) =⇒ e (P | Q) ≤ p−1; i.e. p - e (P | Q). Hence, both cases are impossible.

Proposition 2.9. Let K (x) be a rational function field and z = f (x) ∈ K [x] with

deg f (x) = n ≥ 2 and let f ′ (x) =
∏

for some i

(x− ci)di, where ci’s are different roots of

f ′ (x) and di’s are positive integers. Then d
(
Pci | Qf(ci)

)
= di, where Pci is the place

of K (x) corresponding to x − ci and Qf(ci) is the place of K (z) lying under Pci; i.e.
the place corresponding to z − f (ci).

Proof. Since K is an algebraically closed field, for all P ∈ PK(x) degP = 1. So, by
Hurwitz Genus Formula

deg Diff (K (x) /K (z)) = deg
∑
P |Q

d (P | Q)P

=
∑

P |Q,P 6=P∞

d (P | Q) + d (P∞ | Q∞) = 2n− 2

=⇒
∑

P |Q,P 6=P∞

d (P | Q) = (2n− 2)− d (P∞ | Q∞)

= (2n− 2)− (2n− (deg g (x) + 1))

= deg g (x)− 1 = deg f ′ (x) .

The minimal polynomial of x overK (z) is ϕ (T ) = f (T )−z. Since f (T ) has coefficients
in K and P∞ is the only place of K (x) lying over Q∞, x is integral over OQ for all
Q ∈ PK(z) \ Q∞, where OQ is the valuation ring corresponding to the place Q. By
theorem 1.12

d
(
Pci | Qf(ci)

)
≤ vPci (ϕ′ (x)) = vPci (ϕ′ (f ′ (x))) = di.

So, ∑
i

d
(
Pci | Qf(ci)

)
≤
∑
i

di = deg f ′ (x) =⇒ d
(
Pci | Qf(ci)

)
= di, for all i.

Corollary 2.10. Let K (x) /K (z) be defined as before with z = f (x). Then f ′ (x) can
not contain a factor x− α with multiplicity p− 1.
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Proof. Let Pα denote the place of K (x) corresponding to the factor x−α and Q denote
the place of K (z) lying under Pα. d (Pα | Q) is equal to multiplicity of x−α in f ′ (x),
by proposition 2.9. But d (Pα | Q) 6= p− 1, by claim 2.8. So, f ′ (x) can not contain a
factor with multiplicity p− 1.

Now, we investigate T n for charK = 2. Before giving the general condition, we are
going to give some simple examples.

Example 2.11 (charK = 2). In this example, P∞ (resp. Q∞) denotes the pole of
x (resp. the pole of z) and Pα (resp. Qα) denotes the place of K (x) (resp. K (z))
corresponding to the factor x− α (resp. z − α).

Let n = 2,then deg f ′ (x) = 0.
Since p | n, 1 ∈ T 2, by corollary 2.5. and since deg f ′ (x) = 0, T 2 = {1}, by corollary
2.2.

Let n = 3, then deg f ′ (x) = 2.
1 /∈ T 3 and 2 ∈ T 3, since 2 - 3, by corollary 2.4 and 2.6.
3 /∈ T 3: 3 ∈ T n if and only if f ′ (x) has two distinct zeros. Then f ′ (x) must have a
factor with multiplicity 1 = p− 1. But, this is impossible, by corollary 2.10.
Hence, T 3 = {2}.

Let n = 4, then deg f ′ (x) ≤ 2.
1 ∈ T 4, since p | n.
2 ∈ T 4: Let z = f (x) = x4 + x3. Then f ′ (x) = x2. So, the ramified places of
K (x) are P∞ and P0, which lie Q∞ and Q0 with e (P∞ | Q∞) = 4, e (P0 | Q0) = 3,
d (P∞ | Q∞) = 4 and d (P0 | Q0) = 2.
3 /∈ T 4: Since f ′ (x) can not have a factor with multiplicity 1.
4 /∈ T 4: K (x) can have at most deg f ′ (x) + 1 ≤ 3 ramified places.
Hence, T 4 = {1, 2}.

Let n = 5, then deg f ′ (x) = 4.
1 /∈ T 5 and 2 ∈ T 5, since 2 - 5.
3 ∈ T 5: Let z = f (x) = x5 + x3 = x3 (x+ 1)2, then f ′ (x) = x4 + x2 = x2 (x+ 1)2.
So, the ramified places of K (x) are P∞, P0 and P1 which lie over Q∞ and Q0 with
e (P∞ | Q∞) = 5, e (P0 | Q0) = 3, e (P1 | Q0) = 2, d (P∞ | Q∞) = 4 and d (P0 | Q0) =
d (P1 | Q0) = 2.
4, 5 /∈ T5: Otherwise, f ′ (x) has a factor with multiplicity 1.
Hence, T 5 = {2, 3}.

Now, we are ready to give the general case for charK = 2:

Lemma 2.12 (charK = 2). Let K (x) be a rational function field and n ∈ Z, n ≥ 2.
Then

T n = {1, 2, . . . , k} , if n = 2k

and
T n = {2, . . . , k} , if n = 2k − 1.

11



Proof. If n = 2k, then 1 ∈ T n, by corollary 2.5.
If n = 2k − 1, then 1 /∈ T n, by corollary 2.4.

s ∈ T n, if s ≤ k: s ∈ T n if and only if f ′ (x) has s − 1 distinct zeros, i.e. f ′ (x) is
of the form

f ′ (x) = (x+ α1)
e1 (x+ α2)

e2 . . .
(
x+ α(s−1)

)e(s−1) ,

where αi’s are distinct elements of K and ei’s are positive even integers so that f ′ (x)
has an antiderivative. Then ramified places of K (x) are P∞ and Pαi ’s, where Pαi ’s
denote the places corresponding to the factor (x− αi)’s, lying above the places Q∞
and Qf(αi) with d (P∞ | Q∞) = 2k−

∑
ei

1≤i≤s−1

and d
(
Pαi | Qf(αi)

)
= ei.

s /∈ T n, if s ≥ k+ 1: If s ∈ T n, then f ′ (x) must have s−1 distinct zeros; i.e. f ′ (x)
must contain more than k − 1 factors. Since deg f ′ (x) ≤ 2k − 2, f ′ (x) must have a
factor with multiplicity 1. But, f ′ (x) can not contain a factor with multiplicity p− 1,
by corollary 2.10.

Now, we are going to investigate T n for charK = 3. Again before giving the general
condition, we will give some examples.

Example 2.13 (charK = 3). In this example, P∞ (resp. Q∞) denotes the pole of
x (resp. the pole of z) and Pα (resp. Qα) denotes the place of K (x) (resp. K (z))
corresponding to the factor x− α (resp. z − α).

Let n = 2, then deg f ′ (x) = 1.
1 /∈ T 2 and 2 ∈ T 2, because 3 - 2.
Hence, T 2 = {2}.

Let n = 3, then deg f ′ (x) ≤ 1.
1 ∈ T 3, since p | n.
2 ∈ T 3: Let z = f (x) = x3 + x2 = x2 (x+ 1). Then f ′ (x) = 2x. So, ramified places of
K (x) are P∞ and P0, which lie over Q∞ and Q0 with e (P∞ | Q∞) = 3, e (P0 | Q0) = 2,
d (P∞ | Q∞) = 3 and d (P0 | Q0) = 1.
3 /∈ T 3:Since deg f ′ (x) ≤ 1, f ′ (x) can have at most one zero.
Hence, T 3 = {1, 2}.

Let n = 4, then deg f ′ (x) = 3.
1 /∈ T 4 and 2 ∈ T 4, because 3 - 4.
3 /∈ T 4: 3 ∈ T 4 if and only if f ′ (x) has 2 distinct roots. Since deg f ′ (x) = 3, one of
the zeros must have multiplicity 2. But this is a contradiction to corollary 2.10.
4 ∈ T 4: Let f ′ (x) = x3 +x. Since no exponent of x is congruent to −1 modulo 3, f ′ (x)
has an antiderivative and since gcd (f ′ (x) ,f ′′ (x)) = 1, f ′ (x) has no multiple root; i.e.
f ′ (x) has 3 distinct zeros, say α1, α2, and α3. Then the ramified places of K (x) are
P∞, Pα1 , Pα2 and Pα3 lying above the places Q∞, Qf(α1), Qf(α2)

and Q
f(α3)

, respectively,

with e (P∞ | Q∞) = 4, e
(
Pαi | Qf(αi)

)
= 2, d (P∞ | Q∞) = 3, d

(
Pαi | Qf(αi)

)
= 1.

Hence, T 4 = {2, 4}.
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Now, we can state the lemma which gives the set T n in the case of charK = 3.

Lemma 2.14 (charK = 3). Let K (x) be a rational function field and n ∈ Z, n ≥ 2.
Then

(i) T n = {1, 2, . . . , n− 1} , if 3 | n
(ii) T n = {2, . . . , n− 2, n} , if 3 - n.

Proof. Let P∞ (resp. Q∞) denote the pole of x (resp. the pole of z) and Pα (resp. Qα)
denote the place of K (x) (resp. K (z)) corresponding to the factor x−α (resp. z−α).

(i) Suppose 3 | n , say n = 3k for some k ∈ Z. Then deg f ′ (x) ≤ 3k − 2.
1 ∈ T n, since 3 | n.
3l ∈ T n, 1 ≤ l ≤ k − 1: 3l ∈ T n if and only if f ′ (x) has 3l − 1 distinct zeros. Let

f ′ (x) = x3
(
x3l−2 + 1

)
= x3l+1 + x3,

Since 3l + 1 ≡ 1 6= −1 (mod 3) and 3 ≡ 0 6= −1 (mod 3), f ′ (x) has an antiderivative

and since
(
x3l−2 + 1

)′
= x3l−3; i.e. gcd

(
x3l−2 + 1, x3l−3

)
= 1, x3l−2 + 1 has no multiple

roots. Therefore, f ′ (x) has 3l − 1 distinct zeros.
3l + 1 ∈ T n, 1 ≤ l ≤ k − 1: Let

f ′ (x) = x3l + x+ 1.

Since 3l ≡ 0 6= −1 (mod 3), 1 6= −1 (mod 3), f ′ (x) has an antiderivative. Also,
f ′′ (x) = 1 implies that gcd (f ′ (x) ,f ′′ (x)) = 1. Therefore f ′ (x) has 3l distinct zeros.
3l + 2 ∈ T n, 0 ≤ l ≤ k − 1: Let

f ′ (x) = x3l+1 + 1.

Since 3l + 1 ≡ 1 6= −1 (mod 3), f ′ (x) has an antiderivative and since f ′′ (x) = x3l,
gcd (f ′ (x) ,f ′′ (x)) = 1. So, f ′ (x) have 3l + 1 distinct zeros.
Notice that n /∈ T n, since deg f ′ (x) ≤ n− 2.
Hence, T n = {1, 2, . . . , n− 1}.

(ii) Suppose 3 - n. Then either n = 3k + 1 or n = 3k + 2, for some k ∈ Z.
Since 3 - n, 1 /∈ Tn.

If n = 3k + 1, then deg f ′ (x) = 3k
3l ∈ T n, 1 ≤ l ≤ k − 1 : If l ≥ 2, then let

f ′ (x) = x3(k−l) (x+ α)3 (x3(l−1) + x+ 1
)

= x3k + α3x3k−3 + x3k−3l+4 + x3k−3l+3 + α3x3k−3l+1 + α3x3k−3l,

where 0 6= α ∈ K is not a zero of x3l−3 + x + 1(we can find such α, since K is an
algebraically closed field; i.e. K is infinite). Since 3k ≡ 3k − 3 ≡ 3k − 3l + 3 ≡
3k − 3l ≡ 0 6= −1 (mod 3), and 3k − 3l + 4 ≡ 3k − 3l + 1 ≡ 1 6= −1 (mod 3), f ′ (x)
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has an antiderivative and since
(
x3(l−1) + x+ 1

)′
= 1, x3(l−1) +x+ 1 has 3l− 3 distinct

zeros. So, f ′ (x) have 3l − 1 distinct zeros.
If l = 1, then let

f ′ (x) = x3(k−1) (x+ 1)3 = x3k + x3k−3.

Then f ′ (x) has 2 = 3l − 1 distinct zeros.
3l + 1 ∈ T n, 1 ≤ l ≤ k: Let

f ′ (x) = x3(k−l)+1
(
x3l−1 + 1

)
= x3k + x3(k−l)+1.

Since 3k ≡ 0 6= −1 (mod 3), and 3 (k − l) + 1 ≡ 1 6= −1 (mod 3), f ′ (x) has an an-

tiderivative and since gcd
(
x3l−1 + 1, 2x3l−2

)
= 1, where 2x3l−2 =

(
x3l−1 + 1

)′
, x3l−1+1

has 3l − 1 distinct zeros. So, f ′ (x) has 3l distinct zeros.
3l + 2 ∈ T n, 0 ≤ l ≤ k − 1: Let

f ′ (x) = x3(k−l) (x3l + x+ 1
)

= x3k + x3(k−l)+1 + x3(k−l).

Since 3k ≡ 3 (k − l) ≡ 0 6= −1 (mod 3) and 3 (k − l) + 1 ≡ 1 6= −1 (mod 3), f ′ (x)

has an antiderivative. Since
(
x3l + x+ 1

)′
= 1, x3l + x+ 1 has 3l distinct zeros. Then

f ′ (x) have 3l + 1 distinct zeros.

If n = 3k + 2, then deg f ′ (x) = 3k + 1.
3l ∈ T n, 1 ≤ l ≤ k : Let

f ′ (x) = x3(k−l+1)
(
x3l−2 + 1

)
= x3k+1 + x3(k−l+1).

Since 3k + 1 ≡ 1 6= −1 (mod 3) and 3 (k − l + 1) ≡ 0 6= −1 (mod 3), f ′ (x) has an

antiderivative.
(
x3l−2 + 1

)′
= x3(l−1). Then gcd

(
x3l−2 + 1, x3(l−1)

)
= 1, giving that

x3l−2 + 1 has 3l − 2 distinct zeros. So, f ′ (x) has 3l − 1 distinct zeros.
3l + 1 ∈ T n, 1 ≤ l ≤ k − 1: Let

f ′ (x) = x3(k−l) (x+ α)3 (x3l−2 + 1
)

= x3k+1 + α3x3k−2 + x3(k−l+1) + α3x3(k−l),

where 0 6= α ∈ K is not a zero of x3l−2 + 1. Since 3 (k − l + 1) ≡ 3 (k − l) ≡ 0 6=
−1 (mod 3), and 3k + 1 ≡ 3k − 2 ≡ 1 6= −1 (mod 3), f ′ (x) has an antiderivative and

since
(
x3l−2 + 1

)′
= x3(l−1), x3l−2 + 1 has 3l − 2 distinct zeros. Hence, f ′ (x) have 3l

distinct zeros.
3l + 2 ∈ T n, 0 ≤ l ≤ k: Let

f ′ (x) = x3(k−l)+1
(
x3l + x2 + 1

)
= x3k+1 + x3(k−l+1) + x3(k−l)+1.

3 (k − l + 1) ≡ 0 6= −1 (mod 3), and 3k + 1 ≡ 3 (k − l) + 1 ≡ 1 6= −1 (mod 3). Also,

x3l + x2 + 1 has 3l distinct zeros since gcd
(
x3l + x2 + 1,

(
x3l + x2 + 1

)′)
= 1, where(

x3l + x2 + 1
)′

= 2x. So, f ′ (x) has an antiderivative having 3l + 1 distinct zeros.
Notice that n−1 /∈ T n. If n−1 ∈ T n, then f ′ (x) would have n−2 distinct zeros, where
deg f ′ (x) = n − 1. This implies that f ′ (x) had to have a factor with a multiplicity
2 = p− 1. But this is a contradiction to corollary 2.10.
Hence, T n = {2, . . . , n− 2, n}.
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From now on, let p denote a prime number, where p ≥ 5.

Claim 2.15. If charK = 0, or charK = p > n, then K (x) /K (z) is tame; i.e. there
is no place of K (x), which is wildly ramified in K (x) /K (z).

Proof. Suppose there is a place P ofK (x) such that P is wildly ramified inK (x) /K (z).
Then charK | e (P | Q), where Q is the place lying under P . But, by Fundamental
Equality, e (P | Q) ≤ n < p.

Claim 2.16. Let charK = 0, or charK = p > n. Then T n = {2, . . . , n− 1, n}.

Proof. Since K (x) /K (z) is tame, 1 /∈ T n, by corollary 2.3.
l ∈ T n, 2 ≤ l ≤ n: l ∈ T n if and only if f ′ (x) have l − 1 distinct zeros. Let

f ′ (x) = xn−l+1
(
xl−2 + 1

)
= xn−1 + xn−l+1.

Since charK = 0, or charK = p > n, f ′ (x) has an antiderivative. Also, xl−2 + 1 has

l − 2 distinct zeros, since gcd
(
xl−2 + 1,

(
xl−2 + 1

)′)
= 1. Hence, f ′ (x) have l − 1

distinct zeros.

Claim 2.17. Let n = p = charK, then T p = {1, . . . , p− 1}.

Proof. 1 ∈ T p, since n = p.
l ∈ T p, 2 ≤ l ≤ p− 1: l ∈ T p if and only if f ′ (x) have l − 1 distinct zeros. Let

f ′ (x) = xp−l
(
xl−2 + 1

)
= xp−2 + xp−l.

Since p − 2, p − l 6= −1 (mod p), f ′ (x) has an antiderivative and since l − 2 6=
0 (mod p), xl−2 + 1 has l − 2 distinct zeros. Hence, f ′ (x) have l − 1 distinct zeros.
p /∈ T p: Since deg f ′ (x) ≤ p− 2, f ′ (x) can have at most p− 2 distinct zeros.

Lemma 2.18. Let n = p+ 1, where p = charK, then T p+1 = {2, 4, 5, . . . , p+ 1}.

Proof. 1 /∈ T p+1 and 2 ∈ T p+1, since p - p+ 1.
3 /∈ T p+1: Suppose 3 ∈ T p+1. Then f ′ (x) must have 2 distinct factors. Without loss

of generality, say one of them is x. Then f ′ (x) is of the form f ′ (x) = (x+ α)k xp−k,
where α ∈ K× and 1 ≤ k ≤ p− 1, i.e.

f ′ (x) = (x+ α)k xp−k =

(
k∑
l=0

(
k

l

)
αk−lxl

)
xp−k =

k∑
l=0

(
k

l

)
αk−lxp−(k−l).

The coefficient of xp−1 must be zero so that f ′ (x) can have an antiderivative. Since
p − (k − l) = p − 1 ⇐⇒ l = k − 1, the coefficient of xp−1 =

(
k
k−1

)
α = kα = 0. This

implies that α = 0, since 1 ≤ k ≤ p− 1, which is a contradiction to α ∈ K×.
l ∈ T p+1; 4 ≤ l ≤ p+ 1: Let

f ′ (x) = xp−l+2
(
xl−2 + 1

)
= xp + xp−l+2.
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p− l+ 2 6= −1 (mod p), since 4 ≤ l ≤ n = p+ 1. So, f ′ (x) has an antiderivative. Also
l − 2 6= 0 (mod p), since 2 ≤ l − 2 ≤ p − 1; i.e. xl−2 + 1 has l − 2 distinct zeros since

gcd
(
xl−2 + 1, (l − 2)xl−3

)
= 1, where (l − 2)xl−3 =

(
xl−2 + 1

)′
. Therefore, f ′ (x)

have l − 1 distinct zeros.

Now, we consider the case n = p + k, where 2 ≤ k ≤ p − 1. But before that, we
continue with some examples.

Example 2.19. Let n = p+ 2, then deg f ′ (x) = p+ 1. Then
1 /∈ T p+2 and 2 ∈ T p+2, since p - p+ 2.
3 ∈ T p+2: Let

f ′ (x) = xp (x+ 1) = xp+1 + xp.

Since p + 1 ≡ 1 (mod p) and p ≡ 0 (mod p), f ′ (x) has an antiderivative, having 2
distinct roots.
4 ∈ T p+2: Let

f ′ (x) = xp−2 (x− 2)2 (x+ 1) = xp+1 − 3xp + 4xp−2.

Since p − 2 ≡ −2 6= −1 (mod p), p + 1 ≡ 1 (mod p) and p ≡ 0 (mod p), f ′ (x) has an
antiderivative. Notice that 2 6= −1, since p ≥ 5; i.e. f ′ (x) have 3 distinct zeros.
l ∈ T p+2; 5 ≤ l ≤ p+ 1: Let

f ′ (x) = xp−l+3
(
xl−2 + 1

)
= xp+1 + xp−l+3.

p − l + 3 ≡ −1 (mod p) ⇐⇒ l ≡ 4 (mod p), but 5 ≤ l ≤ n = p + 1. So, this is not
possible; i.e. f ′ (x) has an antiderivative. Also, l − 2 ≡ 0 (mod p) ⇐⇒ l = 2, since
l ≤ p + 1. But l ≥ 5. Hence, xl−2 + 1 has l − 2 distinct zeros. Therefore, f ′ (x) have
l − 1 distinct zeros.
p+ 2 ∈ T p+2: Let

f ′ (x) = xp+1 + 1.

Since gcd (f ′ (x) ,f ′′ (x)) = 1, f ′ (x) have p+ 1 distinct zeros.
Hence, T p+2 = {2, 3, . . . , p+ 2}.

Example 2.20. Let n = p+ 3, then deg f ′ (x) = p+ 2.
1 /∈ T p+3 and 2 ∈ T p+3, since p - p+ 3.
3 ∈ T p+3: Let

f ′ (x) = xp+1 (x+ 1) = xp+2 + xp+1.

Since p + 2 ≡ 2 (mod p) and p + 1 ≡ 1 (mod p), f ′ (x) has an antiderivative, having 2
distinct roots.
4 ∈ T p+3: Let

f ′ (x) = xp
(
x2 + 1

)
= xp+2 + xp.

Since p + 2 ≡ 2 (mod p) and p ≡ 0 (mod p), f ′ (x) has an antiderivative, having 3
distinct roots.
5 ∈ T p+3: 5 ∈ T p+3 if and only if f ′ (x) have 4 distinct zeros. Let
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f ′ (x) =
(
x3 + 1

)
(x+ α)p−1 ,

where α ∈ K×. Notice that gcd
(
x3 + 1, (x3 + 1)

′)
= 1, i.e. x3 +1 has 3 distinct roots.

Now, we will determine α ∈ K× so that the coefficient of xp−1 becomes zero.

f ′ (x) =
(
x3 + 1

)
(x+ α)p−1 =

(
x3 + 1

)(p−1∑
i=0

(
p− 1

i

)
αix(p−1)−i

)
=

(
x3 + 1

) (
xp−1 + (p− 1)αxp−2 + . . .+ αp−1

)
Then the coefficient of xp−1 = (p−1)(p−2)(p−3)

6
α3 + 1. Since K is algebraically closed, we

can solve this equation for α. But, we also want α not to be a root of x3 + 1; i.e. we

do not want α3 = −1 so that f ′ (x) has 4 distinct zeros. Since (p−1)(p−2)(p−3)
6

α3 + 1 = 0,

α3 = −1⇐⇒ (p−1)(p−2)(p−3)
6

= 1⇐⇒ p = 4, which is impossible.
l ∈ T p+3; 6 ≤ l ≤ p+ 1 (p ≥ 7): l ∈ Tp+3 if and only if f ′ (x) have l− 1 distinct zeros.
Let

f ′ (x) = xp−l+4
(
xl−2 + 1

)
= xp+2 + xp−l+4.

p− l + 4 ≡ −1 (mod p)⇐⇒ l ≡ 5 (mod p), but 6 ≤ l ≤ p+ 1. So, this is not possible;
i.e. p − l + 4 6= −1 (mod p) and p + 2 ≡ 2 6= −1, since p ≥ 7. So, f ′ (x) has an
antiderivative. Also, l − 2 6= 0 (mod p), since 4 ≤ l − 2 ≤ p − 1. Hence, xl−2 + 1 has
l − 2 distinct zeros. Therefore, f ′ (x) have l − 1 distinct zeros.
p+ 2 ∈ T p+3: Let

f ′ (x) = x2 (xp + x+ 1) = xp+2 + x3 + x2.

xp + x + 1 has p distinct zeros since (xp + x+ 1)′ = 1. Therefore, f ′ (x) has p + 1
distinct zeros.
p+ 3 ∈ T p+3: Let

f ′ (x) = xp+2 + 1.

Since gcd (f ′ (x) , f ′′ (x)) = 1,f ′ (x) has p+ 2 distinct zeros.
Hence, T p+3 = {2, 3, . . . , p+ 3}.

Now, we can give the general case.

Lemma 2.21. Let n = p+ k, where 2 ≤ k ≤ p− 1 and p ≥ 5, then

T n = {2, 3, . . . , n} .

Proof. Since 2 ≤ k ≤ p− 1, p - n. So, 1 /∈ T n and 2 ∈ T n.
l ∈ T n; 3 ≤ l ≤ k + 1 or k + 3 ≤ l ≤ p+ 1 or p+ 3 ≤ l ≤ p+ k: Let

f ′ (x) = xp+k−l+1
(
xl−2 + 1

)
= xp+k−1 + xp+k−l+1.

Then p + k − l + 1 ≡ −1 (mod p) ⇐⇒ l = k + 2. Also, p + k − 1 6= −1 (mod p),
because p + 2 ≤ p + k − 1 ≤ 2p − 2. Hence, f ′ (x) has an antiderivative. l − 2 ≡
0 (mod p) ⇐⇒ l = p + 2. So, l − 2 6= 0 (mod p); i.e., xl−2 + 1 has l − 2 distinct zeros
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because gcd
(
xl−2 + 1,

(
xl−2 + 1

)′)
= 1, which shows f ′ (x) have l − 1 distinct zeros.

k + 2 ∈ T n: f ′ (x) must have k + 1 distinct zeros. Let

f ′ (x) =
(
xk + 1

)
(x+ α)p−1 ,

where α ∈ K×. Now, we will determine α so that the coefficient of xp−1 becomes zero.

f ′ (x) =
(
xk + 1

)
(x+ α)p−1 =

(
xk + 1

)(p−1∑
i=0

(
p− 1

i

)
αix(p−1)−i

)
.

Then the coefficient of xp−1 =
(
p−1
k

)
αk + 1 = 0 ⇐⇒ αk = − 1

(p−1
k )

. Since K is alge-

braically closed, we can solve this equation for α. Now, we must show that α is not a
root of xk + 1. α is a root of

xk + 1⇐⇒ αk + 1 = 0⇐⇒ αk = −1⇐⇒
(
p− 1

k

)
= 1⇐⇒ p = k + 1.

If p 6= k + 1, then f ′ (x) has k + 1 distinct zeros.
If p = k + 1, then deg f ′ (x) = p + k − 1 = 2p − 2 and we want f ′ (x) has p distinct
zeros. Let

f ′ (x) =
(
x2 + 1

) (
xp−2 + α

)2
.

We can choose α ∈ K× so that x2 + 1 and xp−2 +α do not have a common zero. Then

f ′ (x) =
(
x2 + 1

) (
xp−2 + α

)2
= x2p−2 + x2p−4 + 2αxp + 2αxp−2 + α2x2 + α2.

Since 2p − 2 ≡ p − 2 ≡ −2 6= −1 (mod p), 2 6= −1 (mod p), p ≡ 0 6= −1 (mod p) and
2p− 4 ≡ −4 6= −1(since p ≥ 5), f ′ (x) has an antiderivative. Also, f ′ (x) has p = k+ 1
distinct zeros, since gcd

(
xp−2 + α, (xp−2 + α)

′)
= gcd

(
x2 + 1, (x2 + 1)

′)
= 1.

p+ 2 ∈ T n: If k 6= p− 1, then let

f ′ (x) = xk−1 (xp + x+ 1) = xp+k−1 + xk + xk−1.

Then k 6= −1 (mod p), and p + k − 1 ≡ k − 1 ≡ −1 (mod p) ⇐⇒ k ≡ 0 (mod p), but
k ≤ p− 1. So, f ′ (x) has an antiderivative.
If k = p− 1, then let

f ′ (x) = xk−1
(
xp + x2 + 1

)
= xp+k−1 + xk+1 + xk−1.

Then p + k − 1 ≡ k − 1 ≡ −2 (mod p) and k + 1 ≡ 0 (mod p). Also, xp + x + 1 and
xp + x2 + 1 have p distinct zeros since (xp + x+ 1)′ = 1 and (xp + x2 + 1)

′
= 2x. So,

in both cases, f ′ (x) has an antiderivative having p+ 1 distinct zeros.
Hence T n = {2, 3, . . . , n}.

Now, we are going to find T n for n > 2p and p - n, where p = charK ≥ 5. But, we
first start with an example.

Example 2.22. We will find T n for n = kp+ 1, where k ≥ 2 and p ≥ 5.
1 /∈ T n and 2 ∈ T n, since p - n.
3 ∈ T n: Let

f ′ (x) = x(k−1)p (x+ 1)p = xkp + x(k−1)p.
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Since k ≥ 2 , (k − 1) p ≥ p; i.e. f ′ (x) has zero as a root. Hence, f ′ (x) has 2 distinct
zeros.
l ∈ T n; 4 ≤ l ≤ p+ 1 or p+ 4 ≤ l ≤ 2p+ 1: f ′ (x) must have l − 1 distinct zeros. Let

f ′ (x) = xkp−l+2
(
xl−2 + 1

)
= xkp + xkp−l+2.

kp− l+ 2 ≡ −1 (mod p)⇐⇒ l = 3 or l = p+ 3. So, f ′ (x) has an antiderivative. Also,
l − 2 6= 0 (mod p), since 2 ≤ l − 2 ≤ p− 1 or p+ 2 ≤ l − 2 ≤ 2p− 1. So, xl−2 + 1 has
l − 2 distinct zeros. Hence, f ′ (x) has l − 1 distinct zeros.
p+ 2 ∈ T n: f ′ (x) must have p+ 1 distinct zeros. Let

f ′ (x) = x(k−1)p (xp + x+ 1) = xkp + x(k−1)p+1 + x(k−1)p.

Since kp ≡ (k − 1) p ≡ 0 6= −1 (mod p) and (k − 1) p + 1 ≡ 1 6= −1 (mod p), f ′ (x)
has an antiderivative. Since (xp + x+ 1)′ = 1, xp +x+ 1 has p distinct zeros, implying
that f ′ (x) have p+ 1 distinct zeros.
p+ 3 ∈ T n: f ′ (x) must have p+ 2 distinct zeros.
If k ≥ 3, then let

f ′ (x) = x(k−2)p (xp + x+ 1) (x+ 1)p

= xkp + x(k−1)p+1 + 2x(k−1)p + x(k−2)p+1 + x(k−2)p.

Since kp ≡ (k − 1) p ≡ (k − 2) p ≡ 0 (mod p) and (k − 1) p+ 1 ≡ 1 (mod p), f ′ (x) has
an antiderivative. Notice that −1 is not a root of xp + x+ 1. Hence, f ′ (x) have p+ 2
distinct zeros.
If k = 2, then n = 2p+ 1 and deg f ′ (x) = 2p. Let

f ′ (x) = xp−3
(
xi + α

) (
xj + β

) (
x2 − 1

)2
= x2p − 2x2p−2 + x2p−4 + αxp+j+1 − 2αxp+j−1 + αxp+j−3 + βxp+i+1

−2βxp+i−1 + βxp+i−3 + αβxp+1 − 2αβxp−1 + αβxp−3,

where i+ j = p− 1. Let i = 2, j = p− 3 and α = 1
2
, then

f ′ (x) = x2p − 3

2
x2p−2 +

1

2
x2p−6 + βxp+3 − 3

2
βxp+1 +

1

2
βxp−3.

If p 6= 5, then no exponent of x congruent to −1 modulo p; i.e. f ′ (x) has an antideriva-
tive. Also, x2 + 1

2
and x2−1 do not have a common zero and we can choose 0 6= β ∈ K

so that x2 + 1
2
, xp−3 +β and x2−1 do not have a common factor. Then f ′ (x) has p+ 2

distinct zeros.
If p = 5, then let

f ′ (x) = x
(
x3 + α

)2 (
x3 + β

)
= x10 + (2α + β)x7 +

(
α2 + 2αβ

)
x4 + α2βx.

If we choose α, β ∈ K× such that α 6= β and α2 + 2αβ = 0, then f ′ (x) has an
antiderivative having 7 = p+ 2 distinct zeros.
2p+ 2 ∈ T n, k ≥ 3 : f ′ (x) must have 2p+ 1 distinct zeros. Let

f ′ (x) = x(k−2)p
(
x2p + x+ 1

)
= xkp + x(k−2)p+1 + x(k−2)p.

19



Since (x2p + x+ 1)
′

= 1, x2p + x + 1 has 2p distinct zeros. Hence, f ′ (x) have 2p + 1
distinct zeros.
2p+ 3 ∈ T n: f ′ (x) must have 2p+ 2 distinct zeros. Let

f ′ (x) = x(k−2)p−3

(
x2 +

1

2

)(
x2p−3 + β

) (
x2 − 1

)2
= xkp − 3

2
xkp−2 +

1

2
xkp−6 + βx(k−2)p+3 − 3

2
βx(k−2)p+1 +

1

2
βx(k−2)p−3.

kp − 2, (k − 2) p + 3, (k − 2) p + 1, (k − 2) p − 3 6= −1 (mod p), and if p 6= 5, then
kp−6 6= −1 (mod p). Hence, no exponent of x is congruent to −1 modulo p; i.e. f ′ (x)
has an antiderivative. x2 + 1

2
and x2−1 do not have a common zero and we can choose

β ∈ K× so that x2 + 1
2
, x2p−3 + β and x2 − 1 do not have a common zero. Then f ′ (x)

have 2p+ 2 distinct zeros.
If p = 5 and k ≥ 4, then let

f ′ (x) = x(k−3)p
(
x2p + x+ 1

)
(x+ α)p

= xkp + αpx(k−1)p + x(k−2)p+1 + x(k−2)p + αpx(k−3)p+1 + αpx(k−3)p,

where 0 6= α ∈ K is not a root of x2p+1 + 1. Then no exponent of x is congruent to −1
modulo p. Hence, f ′ (x) has an antiderivative. Also, x2p + x + 1 has 2p distinct zeros
and 0 is a zero of f ′ (x) since k − 3 ≥ 1. So, f ′ (x) has 2p+ 2 distinct zeros.
If p = 5 and k = 3, then deg f ′ (x) = 15. Let

f ′ (x) =
(
x6 + 1

) (
x3 + α

)2 (
x3 + β

)
= x15 + (2α + β)x12 +

(
α2 + 2β + 1

)
x9 +

(
α2β + 2α + β

)
x6

+
(
α2 + 2αβ

)
x3 + α2β.

So, we can choose α and β with α, β 6= 0 and α 6= β such that the coefficient of
x9 = α2 + 2β + 1 becomes zero so that no exponent of x congruent to −1 modulo p;
i.e. f ′ (x) has an antiderivative having 12 = 2p+ 3 distinct zeros.
2p+ l ∈ T n; 4 ≤ l ≤ p: f ′ (x) must have 2p+ l − 1 distinct zeros. Let

f ′ (x) = x(k−2)p−l+2
(
x2p+l−2 + 1

)
= xkp + x(k−2)p−l+2.

(k − 2) p − l + 2 ≡ −1 (mod p) ⇐⇒ l = 3, since l ≤ p. But l ≥ 4; i.e. f ′ (x) has an
antiderivative. Since 4 ≤ l ≤ p, l − 2 6= 0 (mod p). Hence, x2p+l−2 + 1 has 2p + l − 2
distinct zeros. So, f ′ (x) has 2p+ l − 1 distinct zeros.
In general;
sp+ 1 ∈ T n; 2 ≤ s ≤ k: Let

f ′ (x) = x(k−s)p+1
(
xsp−1 + 1

)
= xkp + x(k−s)p+1.

Since (k − s) p + 1 6= −1 (mod p), f ′ (x) has an antiderivative. Also, xsp−1 + 1 has
sp− 1 distinct zeros, since sp− 1 6= 0 (mod p). So, f ′ (x) has sp distinct zeros.
sp+ 2 ∈ T n; 2 ≤ s ≤ k − 1: f ′ (x) must have sp+ 1 distinct zeros. Let

f ′ (x) = x(k−s)p (xsp + x+ 1) = xkp + x(k−s)p+1 + x(k−s)p.

Since (k − s) p and (k − s) p + 1 6= −1 (mod p), f ′ (x) has an antiderivative and since
(xsp + x+ 1)′ = 1, xsp + x + 1 has sp distinct zeros. Hence, f ′ (x) has sp + 1 distinct
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zeros.
sp+ 3 ∈ T n; 2 ≤ s ≤ k − 1: f ′ (x) must have sp+ 2 distinct zeros. Let

f ′ (x) = x(k−s)p−3

(
x2 +

1

2

)(
xsp−3 + β

) (
x2 − 1

)2
= xkp − 3

2
xkp−2 +

1

2
xkp−6 + βx(k−s)p+3 − 3

2
βx(k−s)p+1 +

1

2
βx(k−s)p−3.

kp−2, (k − 2) p+3, (k − 2) p+1, (k − 2) p−3 6= −1 (mod p), and kp−6 6= −1 (mod p)
if p 6= 5. Hence, if p 6= 5 no exponent of x is congruent to −1 modulo p; i.e. f ′ (x) has
an antiderivative with sp+ 2 distinct zeros.
If p = 5 and k ≥ s+ 2, then let

f ′ (x) = x(k−s−1)p (xsp + x+ 1) (x+ α)p

= xkp + αpx(k−1)p + x(k−s)p+1 + x(k−s)p + αpx(k−s−1)p+1 + αpx(k−s−1)p,

where 0 6= α ∈ K is not a root of xsp + x + 1. Then no power of x congruent to −1
modulo p; i.e. f ′ (x) has an antiderivative. Also, xsp + x + 1 has sp distinct zeros
implying that f ′ (x) have sp+ 2 distinct zeros.
If p = 5 and k = s+ 1, then deg f ′ (x) = 5 (s+ 1). Let

f ′ (x) = x
(
x(s−1)5 + 1

) (
x3 + α

)2 (
x3 + β

)
=(

x(s−1)5 + 1
) (
x10 + (2α + β)x7 +

(
α2 + 2αβ

)
x4 + α2βx

)
.

Then the coefficient of x whose exponent is congruent to −1 modulo p is equal to
α2 + 2αβ. Hence, we can choose α, β ∈ K× such that α 6= β, α2 + 2αβ = 0 and they
are not zeros of x(s−1)5 +1. Then, f ′ (x) has an antiderivative with 5s+2 distinct zeros.
sp + l ∈ T n; 2 ≤ s ≤ k − 1 and 4 ≤ l ≤ p: f ′ (x) must have sp + l − 1 distinct zeros.
Let

f ′ (x) = x(k−s)p−l+2
(
xsp+l−2 + 1

)
= xkp + x(k−s)p−l+2.

(k − s) p − l + 2 ≡ −1 (mod p) ⇐⇒ l = 3, since l ≤ p. But we have l ≥ 4; i.e.
(k − s) p − l + 2 6= −1 (mod p). So, f ′ (x) has an antiderivative. Since 4 ≤ l ≤ p,
l − 2 6= 0 (mod p). Then xsp+l−2 + 1 has sp + l − 2 distinct zeros. Hence, f ′ (x) have
sp+ l − 1 distinct zeros.
Therefore, T n = {2, 3, . . . , n}.

Lemma 2.23. Let n = kp+ t+ 1; 0 ≤ t ≤ p− 2 and k ≥ 2, then

T n = {2, 3, . . . , n} .

Proof. Since in example 2.22 we give the case when t = 0, we can assume that t ≥ 1.
Since p - n, 1 /∈ T n and 2 ∈ T n.
l ∈ T n; 3 ≤ l ≤ t+ 2 or t+ 4 ≤ l ≤ p: f ′ (x) must have l − 1 distinct zeros. Let

f ′ (x) = xkp+t−l+2
(
xl−2 + 1

)
= xkp+t + xkp+t−l+2.

kp+t−l+2 ≡ −1 (mod p)⇐⇒ l = t+3, since t, l ≤ p. So, f ′ (x) has an antiderivative.
Also, l − 2 6= 0 (mod p), since 1 ≤ l − 2 ≤ p− 2; i.e. xl−2 + 1 has l − 2 distinct zeros.
Hence, f ′ (x) has l − 1 distinct zeros.
t+ 3 ∈ T n: Let

f ′ (x) = x(k−1)p
(
xt + 1

)
(x+ α)p = xkp+t + xkp + αpx(k−1)p+t + αpx(k−1)p.
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Since t ≤ p − 2, kp + t and (k − 1) p + t can not be congruent to −1 modulo p. So,
f ′ (x) has an antiderivative. Since k ≥ 2 , (k − 1) p ≥ p; i.e. 0 is a root of f ′ (x). Also,
xt + 1 has t distinct zeros, because 1 ≤ t ≤ p− 2 =⇒ t 6= 0 (mod p). We can choose
α ∈ K× so that α is not a zero of xt + 1 . Hence, f ′ (x) has t+ 2 distinct zeros.
In general;
sp+ 1 ∈ T n; for 1 ≤ s ≤ k: Let

f ′ (x) = x(k−s)p+t+1
(
xsp−1 + 1

)
= xkp+t + x(k−s)p+t+1.

(k − s) p + t + 1 ≡ −1 (mod p) ⇐⇒ t = p− 2. Hence, f ′ (x) has an antiderivative for
1 ≤ t ≤ p − 3. Since xsp−1 + 1 has sp − 1 distinct zeros, f ′ (x) have sp distinct zeros.
If t = p− 2, then deg f ′ (x) = (k + 1) p− 2.
If k ≥ s+ 1, then let

f ′ (x) = x(k−s)p (xsp−2 + 1
)

(x+ α)p = x(k+1)p−2 + αpxkp−2 + x(k−s+1)p + αpx(k−s)p,

where 0 6= α ∈ K is not a zero of xsp−2 + 1. Since no exponent of x is congruent to −1
modulo p, f ′ (x) has an antiderivative and since sp − 2 ≡ −2 6= 0 (mod p), xsp−2 + 1
has sp− 2 distinct zeros. Hence, f ′ (x) have sp distinct zeros.
If k = s, then deg f ′ (x) = (s+ 1) p− 2. Let

f ′ (x) =
(
x(s−1)p+2 + 1

) (
xp−2 + α

)2
= x(s+1)p−2 + 2αxsp + αpx(s−1)p+2 + x2p−4 + 2αxp−2 + α2.

Since (s+ 1) p − 2 ≡ p − 2 ≡ −2 6= −1 (mod p), and (s− 1) p + 2 , 2p − 4 6=
−1 (mod p)(since p ≥ 5), f ′ (x) has an antiderivative having sp distinct zeros.
sp+ 2 ∈ T n, for 1 ≤ s ≤ k: Let

f ′ (x) = x(k−s)p+t (xsp + x+ 1) = xkp+t + x(k−s)p+t+1 + x(k−s)p+t.

(k − s) p + t 6= −1 (mod p) since 1 ≤ t ≤ p − 2. (k − s) p + t + 1 ≡ −1 (mod p) ⇐⇒
t = p − 2. Hence, f ′ (x) has an antiderivative for 1 ≤ t ≤ p − 3. Since xsp−1 + x + 1
has sp distinct zeros, f ′ (x) has sp+ 1 distinct zeros.
If t = p− 2, then let

f ′ (x) = x(k−s)p+t (xsp + x2 + 1
)

= xkp+t + x(k−s+1)p + x(k−s)p+t.

Then, f ′ (x) has an antiderivative, having sp+ 1 distinct zeros.
sp + l ∈ T n; 3 ≤ l ≤ t + 1 and 1 ≤ s ≤ k : f ′ (x) must have sp + l − 1 distinct zeros.
Let

f ′ (x) = x(k−s)p+t−l+2
(
xsp+l−2 + 1

)
= xkp+t + x(k−s)p+t−l+2.

(k − s) p+ t− l+ 2 ≡ −1 (mod p)⇐⇒ l = t+ 3, since 3 ≤ l ≤ t+ 1 and 2 ≤ t ≤ p− 2.
So, f ′ (x) has an antiderivative. Also, sp+ l − 2 6= 0 (mod p), since 1 ≤ l − 2 ≤ p− 3.
So, xsp+l−2 + 1 has sp+ l− 2 distinct zeros. Hence, f ′ (x) has sp+ l− 1 distinct zeros.
sp+ t+ 2 ∈ T n; 2 ≤ s ≤ k − 1: f ′ (x) must have sp+ t+ 1 distinct zeros. Let

f ′ (x) = x(k−s)p (xsp+t + 1
)

= xkp+t + x(k−s)p.

Since 1 ≤ t ≤ p− 2, sp+ t 6= 0 and f ′ (x) has sp+ t+ 1 distinct zeros.
sp+ t+ 3 ∈ T n; 1 ≤ s ≤ k− 1, t+ 3 ≤ p− 1: f ′ (x) must have sp+ t+ 2 distinct zeros.
If k ≥ s+ 2, then let

f ′ (x) = x(k−s−1)p
(
xsp+t + 1

)
(x+ α)p

= xkp+t + αpx(k−1)p+t + x(k−s)p + αpx(k−s−1)p.
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Since 1 ≤ t ≤ p− 2, kp+ t and (k − 1) p+ t can not be congruent to −1 (mod p). So,
f ′ (x) has an antiderivative. Since k ≥ s+2 , (k − s− 1) p ≥ p; i.e. 0 is a root of f ′ (x).
Also, xsp+t + 1 has sp+ t distinct zeros, because 1 ≤ t ≤ p− 2 =⇒ sp+ t 6= 0 (mod p).
If we choose α ∈ K× so that α is not a zero of xsp+t + 1, then f ′ (x) has sp + t + 2
distinct zeros.
If k = s+ 1, then deg f ′ (x) = (s+ 1) p+ t. Let

f ′ (x) = xp−(t+3)

(
xt+2 +

1

2

)(
xsp−(t+3) + β

) (
xt+2 − 1

)2
= x(s+1)p+t − 3

2
x(s+1)p−2 +

1

2
x(s+1)p−2t−6 + βxp+2t+3

−3

2
βxp+t+1 +

1

2
βxp−t−3,

where β ∈ K× such that xt+2+ 1
2
, xsp−(t+3)+β and xt+2−1 do not have a common zero.

(s+ 1) p + t 6= −1 (mod p), since 1 ≤ t ≤ p − 4. (s+ 1) p − 2 ≡ −2 6= −1 (mod p).
(s+ 1) p − 2t − 6 ≡ −1 (mod p) ⇐⇒ 2t ≡ −5 (mod p) ⇐⇒ 2t = p − 5 since
2 ≤ 2t ≤ 2p−8. p+2t+3 ≡ −1 (mod p) and p−t−3 ≡ −1 (mod p)⇐⇒ t ≡ −2 (mod p)
but 1 ≤ t ≤ p− 4. Hence, if 2t 6= p− 5, then f ′ (x) has an antiderivative. Also, t+ 2,
sp − (t+ 3) 6= 0 (mod p), since t ≤ p − 4. Hence, xt+2 + 1

2
, xt+2 − 1 have t + 2 and

xsp−(t+3) + β has sp − (t+ 3) distinct zeros without having a common zero. Since
t+ 3 ≤ p− 1, p− (t+ 3) ≥ 1; i.e. 0 is a root of f ′ (x). So, f ′ (x) has sp+ t+ 2 distinct
zeros.
If 2t = p− 5, then let

f ′ (x) =
(
x(s−1)p+t+4 + 1

) (
x2t+3 + β

)2
= x(s+1)p+t + 2βxsp+t+2 + β2x(s−1)p+t+4 + x4t+6 + 2βx2t+3 + β2,

where β ∈ K× is not a root of x(s−1)p+t+4 + 1. Then no exponent of x is congruent
to −1 modulo p. Hence, f ′ (x) has an antiderivative. Since 2t + 3 = p − 2 and
t + 4 = p+3

2
6= 0 (mod p), f ′ (x) has [(s− 1) p+ t+ 4] + [2t+ 3] = sp + t + 2 distinct

zeros.
sp+ l ∈ T n; t+ 4 ≤ l ≤ p and 1 ≤ s ≤ k− 1: f ′ (x) must have sp+ l− 1 distinct zeros.
Let

f ′ (x) = x(k−s)p+t−l+2
(
xsp+l−2 + 1

)
= xkp+t + x(k−s)p+t−l+2.

(k − s) p + t − l + 2 6= −1 (mod p), since t + 4 ≤ l ≤ p and 1 ≤ t ≤ p − 5 =⇒ 4 ≤
l − t ≤ p − 6. So, f ′ (x) has an antiderivative. Also, sp + l − 2 6= 0 (mod p), since
t+ 4 ≤ l ≤ p =⇒ 3 ≤ l−2 ≤ p−2. So, xsp+l−2 + 1 has sp+ l−2 distinct zeros. Hence,
f ′ (x) have sp+ l − 1 distinct zeros.
Hence, T n = {2, 3, . . . , n}.

Corollary 2.24. Let K (x) be a rational function field and n ∈ Z, n ≥ 2. If p | n,
then T n = {1, 2, . . . , n− 1}, where p ≥ 5.

Proof. Since p | n, 1 ∈ T n and deg f ′ (x) ≤ n − 2. So, f ′ (x) can have at most n − 2
distinct zeros. Hence, n /∈ T n. We can write a polynomial g (x) with degree n− 1 and
whose derivative has l − 1 distinct zeros for 2 ≤ l ≤ n − 1. Let f (x) = xn + g (x).
Then f ′ (x) has l − 1 distinct zeros. So, l ∈ T n for 2 ≤ l ≤ n− 1.
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Now, let’s state what we have done so far as a theorem.

Theorem 2.25. Let K (x) be a rational function field and n ∈ Z, n ≥ 2. Then we
have:

(i) for charK = 0, T n = {2, . . . , n};
(ii) for charK = 2, T n = {1, 2, . . . , k}, if n = 2k and T n = { 2, . . . , k}, if

n = 2k − 1;
(iii) for charK = 3, T n = {1, . . . , n− 1} if 3 | n and T n = {2, . . . , n− 2, n} if

3 - n;
(vi) for charK = p ≥ 5, T n = {1, . . . , n− 1} if p | n and T n = {2, . . . , n} if

p - n and n 6= p+ 1.
If n = p+ 1, then T n = {2, 4, . . . , n}.
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3

Ramified Places of K(x) in K(x)/K(z) for z ∈ K(x)

In this chapter, we are going to investigate Sn for n ≥ 2 and charK = 0, where Sn is the
set consisting of integers i for which we can find z ∈ K (x) such that [K (x) : K (z)] = n
and K (x) has exactly i ramified places in K (x) /K (z).

K (x) /K (z) is a finite separable extension with

[K (x) : K (z)] = max {deg g (x) , deg f (x)} = n,

where z = f(x)
g(x)
∈ K (x) for some f (x), g (x) ∈ K [x] with gcd (f (x) ,g (x)) = 1. Since

charK = 0, K (x) /K (z) is a tame extension; i.e. there is no place of K (x) which
is wildly ramified in K (x) /K (z). Hence, 1 /∈ Sn. Then Sn ⊆ {2, · · · , 2n− 2},
by Hurwitz Genus Formula. Now, we try to find what Sn can be by looking at the
examples we are going to give.

Since K (x) /K (z) is tame, for all place P ∈ PK(x) we have d (P | Q) = e (P | Q)−1,
where Q is the place of K (z) lying under P . When charK = 0, we know from chapter 2
that {2, . . . , n} ⊆ Sn, since T n ⊆ Sn. So, we are going to give examples K (x) /K (z)
where K (x) has i ≥ n+ 1 ramified places.

Let z = f(x)
g(x)
∈ K (x) with gcd (f (x) ,g (x)) = 1 and deg f (x) > deg g (x). Then

e (P∞ | Q∞) = deg f (x)− deg g (x) = k > 0

and
d (P∞ | Q∞) = e (P∞ | Q∞)− 1 = k − 1,

where P∞ denote the pole of x in K (x) and Q∞ denote the pole of z in K (z). So,
K (x) can have at most 2n − (k + 1) ramified places in K (x) /K (z) other than P∞.
Suppose that g (x) has no multiple roots so that the only ramified place lying over
the pole of z in K (x) can be P∞. Let Q be the place of K (z) corresponding to the
polynomial z − c and P be a place of K (x) lying over Q. Also, let vQ and vP denote
corresponding valuation functions, respectively. Then

vP (z − c) = e (P | Q) vQ (z − c) = e (P | Q) .

Also,

vP (z − c) = vP

(
f (x)− cg (x)

g (x)

)
.

Hence, Q is ramified if and only if f (x)− cg (x) has a factor with multiplicity greater
than 1 and this holds if and only if D (f − cg) = 0, where D (f − cg) denotes the
discriminant of the polynomial f − cg.
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If n = 2, then deg Diff (K (x) /K (z)) = 2. So, S2 = T 2 = {2}.
If n = 3, then deg Diff (K (x) /K (z)) = 4. We know that T 3 = {2, 3} ⊆ S3.

We try to find z ∈ K (x) such that K (x) /K (z) has 4 ramified places. Ramification
index of each ramified place must be equal to 1, since deg Diff (K (x) /K (z)) = 4. Let

z = f(x)
g(x)

= x3+1
x

. The places lying over the pole Q∞ of z are the pole P∞ of x and the

zero P0 of x with e (P∞ | Q∞) = 2 and e (P0 | Q∞) = 1; i.e. there is only one ramified
place lying over Q∞. Since x3 + 1 has distinct roots, there is no ramified place of
K (x) lying over Q0; i.e. all ramified places of K (z), except the place lying over Q∞,
corresponds to the polynomial z − c, for some c ∈ K×. We find which values of c, the
place Qc is ramified.

z − c =
x3 + 1

x
− c =

x3 − cx+ 1

x
.

From above discussion, we know that Qc is ramified if and only if D (x3 − cx+ 1) = 0.

D
(
x3 − cx+ 1

)
= (−1)

1
2
3.2 detR

(
x3 − cx+ 1,

(
x3 − cx+ 1

)′)
= − detR

(
x3 − cx+ 1, 3x2 − c

)

= − det



1 0 −c 1 0

0 1 0 −c 1

3 0 −c 0 0

0 3 0 −c 0

0 0 3 0 −c


= 27− 4c3.

27 − 4c3 has 3 distinct roots, say ci for i = 1, 2 and 3. Then the places Qci of K (z)
are ramified in K (x) /K (z) with ramification index 1; i.e. K (z) has 4 ramified places
in K (x) /K (z). Hence, there are 4 ramified places of K (x) in K (x) /K (z).
So, S3 = {2, 3, 4}.

Before returning this example, we will give some more examples.

Example 3.1. Let n = 4. Then K (x) /K (z) can have at most 6 ramified places.

5 ∈ S4: Let z = x4+x
x+2

.Then

e (P∞ | Q∞) = 3 and d (P∞ | Q∞) = 2.

Hence, K (x) can have at most 4 other places which are ramified in K (x) /K (z) by
Hurwitz Genus Formula. Notice that there is only one ramified place lying over Q∞.
So, other ramified places must lie over the places Qc of K (z) corresponding to the
polynomial z + c, for some c ∈ K.

z + c =
x4 + (c+ 1)x+ 2c

x+ 2
.
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Then

R
(
x4 + (c+ 1)x+ 2c,

(
x4 + (c+ 1)x+ 2c

)′)
= R

(
x4 + (c+ 1)x+ 2c, 4x3 + c+ 1

)

= det



1 0 0 c+ 1 2c 0 0

0 1 0 0 c+ 1 2c 0

0 0 1 0 0 c+ 1 2c

4 0 0 c+ 1 0 0 0

0 4 0 0 c+ 1 0 0

0 0 4 0 0 c+ 1 0

0 0 0 4 0 0 c+ 1


= −27c4 + 1940c3 − 162c2 − 108c− 27.

D(x4 + (c+ 1)x + 2c) = 0 if and only if p (c) = −27c4 + 1940c3 − 162c2 − 108c − 27
= 0. Since the roots of p (c) are very complicated, to see that all roots are different we
look for the R (p (c) , p′ (c)), where p′ (c) = −108c3 + 5820c2 − 324c− 108.

R (p (c) , p′ (c)) = det



−27 1940 −162 −108 −27 0 0

0 −27 1940 −162 −108 −27 0

0 0 −27 1940 −162 −108 −27

−108 5820 −324 −108 0 0 0

0 −108 5820 −324 −108 0 0

0 0 −108 5820 −324 −108 0

0 0 0 −108 5820 −324 −108


= 8180 557 825 676 673 024.

Since R (p (c) , p′ (c)) 6= 0, p (c) has 4 distinct zeros. Hence, K (z) has 5 ramified places
in K (x) /K (z), which shows that K (x) has 5 ramified places in K (x) /K (z).

6 ∈ S4: Let z = x4+x
x2+2

. Then e (P∞ | Q∞) = 2 and d (P∞ | Q∞) = 1, implying that P∞
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is ramified in K (x) /K (z). Then z + c = x4+cx2+x+2c
x2+2

and

R
(
x4 + cx2 + x+ 2c, 4x3 + 2cx+ 1

)

= det



1 0 c 1 2c 0 0

0 1 0 c 1 2c 0

0 0 1 0 c 1 2c

4 0 2c 1 0 0 0

0 4 0 2c 1 0 0

0 0 4 0 2c 1 0

0 0 0 4 0 2c 1


= 32c5 − 512c4 + 2044c3 + 288c2 − 27.

The roots of the polynomial 32c5− 512c4 + 2044c3 + 288c2− 27 are 0.199 82, 8. 067 8±
0.988 52i and −0.167 74 ± 0.189 15i. Hence, K (x) has exactly 6 ramified places in
K (x) /K (z).
So, S4 = {2, 3, 4, 5, 6}.

Example 3.2. Let n = 5. Then K (x) /K (z) can have at most 8 ramified places.

6 ∈ S5: Let z = x5+x
x+2

. Then e (P∞ | Q∞) = 4 and d (P∞ | Q∞) = 3. Hence, K (x) can

have at most 5 other places which are ramified in K (x) /K (z). z + c = x5+(c+1)x+2c
x+2

and

R
(
x5 + (c+ 1)x+ 2c, 5x4 + c+ 1

)

= det



1 0 0 0 c+ 1 2c 0 0 0

0 1 0 0 0 c+ 1 2c 0 0

0 0 1 0 0 0 c+ 1 2c 0

0 0 0 1 0 0 0 c+ 1 2c

5 0 0 0 c+ 1 0 0 0 0

0 5 0 0 0 c+ 1 0 0 0

0 0 5 0 0 0 c+ 1 0 0

0 0 0 5 0 0 0 c+ 1 0

0 0 0 0 5 0 0 0 c+ 1


= 256c5 + 51 280c4 + 2560c3 + 2560c2 + 1280c+ 256.

Then the roots of the polynomial 256c5 + 51 280c4 + 2560c3 + 2560c2 + 1280c+ 256 are
−200. 26, −0.175 39 ± 0.120 88i and 0.150 55 ± 0.295 62i; i.e. it has 5 distinct roots.
Hence, K (x) has 6 ramified places in K (x) /K (z).
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7 ∈ S5: Let z = x5+x
x2+2

. Then e (P∞ | Q∞) = 3 and d (P∞ | Q∞) = 2. z+c = x5+cx2+x+2c
x2+2

and

R
(
x5 + cx2 + x+ 2c, 5x4 + 2cx+ 1

)

= det



1 0 0 c 1 2c 0 0 0

0 1 0 0 c 1 2c 0 0

0 0 1 0 0 c 1 2c 0

0 0 0 1 0 0 c 1 2c

5 0 0 2c 1 0 0 0 0

0 5 0 0 2c 1 0 0 0

0 0 5 0 0 2c 1 0 0

0 0 0 5 0 0 2c 1 0

0 0 0 0 5 0 0 2c 1


= 216c6 + 58 973c4 − 3200c2 + 256.

Then the roots of the polynomial 216c6 + 58 973c4 − 3200c2 + 256 are ±16. 525i,
−0.215 65± 0.139 19i and 0.215 65± 0.139 19i. Hence, K (x) has 7 ramified places.

8 ∈ S5: Let z = x5+x
x3+2

. Then e (P∞ | Q∞) = 2 and d (P∞ | Q∞) = 1. z+c = x5+cx3+x+2c
x3+2

and

R
(
x5 + cx3 + x+ 2c, 5x4 + 3cx2 + 1

)

= det



1 0 c 0 1 2c 0 0 0

0 1 0 c 0 1 2c 0 0

0 0 1 0 c 0 1 2c 0

0 0 0 1 0 c 0 1 2c

5 0 3c 0 1 0 0 0 0

0 5 0 3c 0 1 0 0 0

0 0 5 0 3c 0 1 0 0

0 0 0 5 0 3c 0 1 0

0 0 0 0 5 0 3c 0 1


= 432c7 − 3600c5 + 50 016c4 + 8000c3 − 128c2 + 256.

Then the roots of the polynomial are −5. 398 4, 2. 778 2±3. 737 8i, −0.235 57±0.176 60i
and 0.156 6± 0.184 02i. Hence, K (x) has 8 ramified places.
So, S5 = {2, 3, 4, 5, 6, 7, 8}.

29



Example 3.3. Let n = 6. Then K (x) /K (z) can have at most 10 ramified places.

7 ∈ S6: Let z = x6+x
x+2

. Then e (P∞ | Q∞) = 5 and d (P∞ | Q∞) = 4. Hence, K (x) can

have at most 6 other places which are ramified in K (x) /K (z). z + c = x6+(c+1)x+2c
x+2

and

R
(
x6 + (c+ 1)x+ 2c, 6x5 + c+ 1

)

= det



1 0 0 0 0 c+ 1 2c 0 0 0 0

0 1 0 0 0 0 c+ 1 2c 0 0 0

0 0 1 0 0 0 0 c+ 1 2c 0 0

0 0 0 1 0 0 0 0 c+ 1 2c 0

0 0 0 0 1 0 0 0 0 c+ 1 2c

6 0 0 0 0 c+ 1 0 0 0 0 0

0 6 0 0 0 0 c+ 1 0 0 0 0

0 0 6 0 0 0 0 c+ 1 0 0 0

0 0 0 6 0 0 0 0 c+ 1 0 0

0 0 0 0 6 0 0 0 0 c+ 1 0

0 0 0 0 0 6 0 0 0 0 c+ 1


= −3125c6 + 1474 242c5 − 46 875c4 − 62 500c3 − 46 875c2 − 18 750c− 3125.

Then roots of the polynomial are 0.457 67, 471. 73, −0.200 07 ± 0.102 85i and −1.
282 3× 10−2 − 0.302 27i. Hence, K (x) has 7 ramified places in K (x) /K (z).

8 ∈ S6: Let z = x6+x
x2+2

. Then e (P∞ | Q∞) = 4 and d (P∞ | Q∞) = 3. Hence, K (x) can

have at most 8 ramified places in K (x) /K (z). z + c = x6+cx2+x+2c
x2+2

and
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R
(
x6 + cx2 + x+ 2c, 6x5 + 2cx+ 1

)

= det



1 0 0 0 c 1 2c 0 0 0 0

0 1 0 0 0 c 1 2c 0 0 0

0 0 1 0 0 0 c 1 2c 0 0

0 0 0 1 0 0 0 c 1 2c 0

0 0 0 0 1 0 0 0 c 1 2c

6 0 0 0 2c 1 0 0 0 0 0

0 6 0 0 0 2c 1 0 0 0 0

0 0 6 0 0 0 2c 1 0 0 0

0 0 0 6 0 0 0 2c 1 0 0

0 0 0 0 6 0 0 0 2c 1 0

0 0 0 0 0 6 0 0 0 2c 1


= 2048c7 + 110 592c6 + 1492 736c5 − 172 800c4 + 45 000c2 − 3125.

Then the roots of the polynomial are 0.237 19, −27. 057±1. 727 1i, −0.238 52±0.109 26i
and 0.177 26 − 0.309 4i. Since all of them are distinct, K (x) has 8 ramified places in
K (x) /K (z).

9 ∈ S6: Let z = x6+x
x3+2

. Then e (P∞ | Q∞) = 3 and d (P∞ | Q∞) = 2. Hence, K (x) can

have at most 9 ramified places in K (x) /K (z). z + c = x6+cx3+x+2c
x3+2

and

R
(
x6 + cx3 + x+ 2c, 6x5 + 3cx2 + 1

)

= det



1 0 0 c 0 1 2c 0 0 0 0

0 1 0 0 c 0 1 2c 0 0 0

0 0 1 0 0 c 0 1 2c 0 0

0 0 0 1 0 0 c 0 1 2c 0

0 0 0 0 1 0 0 c 0 1 2c

6 0 0 3c 0 1 0 0 0 0 0

0 6 0 0 3c 0 1 0 0 0 0

0 0 6 0 0 3c 0 1 0 0 0

0 0 0 6 0 0 3c 0 1 0 0

0 0 0 0 6 0 0 3c 0 1 0

0 0 0 0 0 6 0 0 3c 0 1


= −2916c8 + 69 984c7 − 559 872c6 + 1492 884c5 + 2700c4 − 108 000c3 − 3125.
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Then the roots of the polynomial are 0.363 86, 7. 141 1, 9. 713 6 × 10−2 ± 0.237 77i,
−0.266 28± 0.129 77i and 8. 416 7± 0.641 14i. Hence, K (x) has 9 ramified places.

10 ∈ S6: Let z = x6+x
x4+2

. Then e (P∞ | Q∞) = 2 and d (P∞ | Q∞) = 1. Then z + c =
x6+cx4+x+2c

x4+2
and

R
(
x6 + cx4 + x+ 2c, 6x5 + 4cx3 + 1

)

= det



1 0 c 0 0 1 2c 0 0 0 0

0 1 0 c 0 0 1 2c 0 0 0

0 0 1 0 c 0 0 1 2c 0 0

0 0 0 1 0 c 0 0 1 2c 0

0 0 0 0 1 0 c 0 0 1 2c

6 0 4c 0 0 1 0 0 0 0 0

0 6 0 4c 0 0 1 0 0 0 0

0 0 6 0 4c 0 0 1 0 0 0

0 0 0 6 0 4c 0 0 1 0 0

0 0 0 0 6 0 4c 0 0 1 0

0 0 0 0 0 6 0 4c 0 0 1


= 8192c9 + 221 184c7 + 768c6 + 1492 884c5 + 259 200c4 − 3000c3 − 3125.

Since it has 9 distinct roots, namely 0.263 76, 5. 989 7× 10−2 ± 0.269 93i, 0.325 76± 3.
406 8i, −0.239 39 ± 3. 946 4i and −0.278 15 ± 0.161 15i, K (x) there are 10 ramified
places in K (x) /K (z).
So, S6 = {2, 3, 4, 5, 6, 7, 8, 9, 10}.

Now, we have enough examples to make the following conjecture.

Conjecture 3.4 (charK = 0). Let K (x) /K (z) be a function field extension of
[K (x) : K (z)] = n ≥ 3, where z = xn+x

xk+2
with 1 ≤ k ≤ n − 2 and let P∞ and Q∞

denote the pole of x and z in K (x) and K (z), respectively. Then K (x) has n + k
ramified places in K (x) /K (z). If P is a ramified place of K (x) other than P∞ and Q
is the place of K (z) lying under P , then d (P | Q) = 1 and d (P∞ | Q∞) = n− (k + 1).

Corollary 3.5 (charK = 0). Let K (x) be a rational function field. If conjecture 3.4
is true, then we can find z ∈ K (x) such that K (x) /K (z) has exactly i ramified place
for 2 ≤ i ≤ 2n− 2; i.e. Sn = {2, . . . , 2n− 2}.
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Now, we are going to investigate the rational function field extension K (x) /K (z),
where z = xn+1

x
to give a proof for a part of corollary 3.5. In fact, we have seen this

for n = 3 at the beginning of this chapter.

Example 3.6. Let z = x4+1
x
∈ K (x). There is only one ramified place lying over the

pole Q∞ of z, namely the pole P∞ of x with e (P∞ | Q∞) = 3 and d (P∞ | Q∞) = 2.

z + c = x4+cx+1
x

. Then

R
(
x4 + cx+ 1, 4x3 + c

)
= det



1 0 0 c 1 0 0

0 1 0 0 c 1 0

0 0 1 0 0 c 1

4 0 0 c 0 0 0

0 4 0 0 c 0 0

0 0 4 0 0 c 0

0 0 0 4 0 0 c


= −27c4 + 256 = (−1) 33c4 + 44.

Since −27c4 + 256 has 4 distinct roots, K (x) has 5 ramified places in K (x) /K (z).

Example 3.7. Let z = x5+1
x
∈ K (x). Then z + c = x5+cx+1

x
and

R
(
x5 + cx+ 1, 5x4 + c

)
= det



1 0 0 0 c 1 0 0 0

0 1 0 0 0 c 1 0 0

0 0 1 0 0 0 c 1 0

0 0 0 1 0 0 0 c 1

5 0 0 0 c 0 0 0 0

0 5 0 0 0 c 0 0 0

0 0 5 0 0 0 c 0 0

0 0 0 5 0 0 0 c 0

0 0 0 0 5 0 0 0 c


= 256c5 + 3125 = 44c5 + 55.

Hence, K (x) has 6 ramified places in K (x) /K (z).
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Example 3.8. Let z = x6+1
x
∈ K (x). Then z + c = x6+cx+1

x
and

R
(
x6 + cx+ 1, 6x5 + c

)
= det



1 0 0 0 0 c 1 0 0 0 0

0 1 0 0 0 0 c 1 0 0 0

0 0 1 0 0 0 0 c 1 0 0

0 0 0 1 0 0 0 0 c 1 0

0 0 0 0 1 0 0 0 0 c 1

6 0 0 0 0 c 0 0 0 0 0

0 6 0 0 0 0 c 0 0 0 0

0 0 6 0 0 0 0 c 0 0 0

0 0 0 6 0 0 0 0 c 0 0

0 0 0 0 6 0 0 0 0 c 0

0 0 0 0 0 6 0 0 0 0 c


= −3125c6 + 46 656 = (−1) 55c6 + 66.

Hence, K (x) has 7 ramified places in K (x) /K (z).

Now, we can give the general case.

Lemma 3.9. Let K (x) be a rational function field and z = xn+1
x
∈ K (x). Then

K (x) /K (z) is a function field extension with [K (x) : K (z)] = n, which has exactly
n+ 1 ramified places; i.e. n+ 1 ∈ Sn for all n ≥ 3.

Proof. Places of K (x) lying over the pole Q∞ of z are the pole P∞ of x and the zero
P0 of x with e (P∞ | Q∞) = n− 1 ≥ 2 and e (P0 | Q∞) = 1; i.e. the only ramified place
lying over Q∞ is P∞ with d (P∞ | Q∞) = n − 2. Then, by Hurwitz Genus Formula,
K (x) can have at most n ramified places other than P∞, which must lie over the places
of K (z) corresponding to some polynomial z + c for some c ∈ K. For z + c = xn+cx+1

x
,

R (xn + cx+ 1, nxn−1 + c)
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= det



1 0 · · · · · · 0 c 1 · · · · · · 0 0

0 1 · · · · · · 0 0 c · · · · · · 0 0
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...
...

...

0 0 · · · · · · 1 0 0 · · · · · · c 1

n 0 · · · · · · 0 c 0 · · · · · · 0 0

0 n · · · · · · 0 0 c · · · · · · 0 0
...

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...

0 0 · · · · · · n 0 0 · · · · · · c 0

0 0 · · · · · · 0 n 0 · · · · · · 0 c



= det



1 0 · · · · · · 0 c 1 · · · · · · 0 0

0 1 · · · · · · 0 0 c · · · · · · 0 0
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...
...

...

0 0 · · · · · · 1 0 0 · · · · · · c 1

0 0 · · · · · · 0 − (n− 1) c −n · · · · · · 0 0

0 0 · · · · · · 0 0 − (n− 1) c · · · · · · 0 0
...

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...

0 0 · · · · · · 0 0 0 · · · · · · − (n− 1) c −n

0 0 · · · · · · 0 n 0 · · · · · · 0 c



= det



− (n− 1) c −n · · · · · · 0 0

0 − (n− 1) c · · · · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · · · · − (n− 1) c −n

n 0 · · · · · · 0 c


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= (−1)n+1 n det



−n 0 · · · · · · 0 0

− (n− 1) c −n · · · · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · · · · −n 0

0 0 · · · · · · − (n− 1) c −n



+ (−1)n+n c det



− (n− 1) c −n · · · · · · 0 0

0 − (n− 1) c · · · · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · · · · − (n− 1) c −n

0 0 · · · · · · 0 − (n− 1) c



= (−1)n+1 n (−n)n−1 + c (− (n− 1) c)n−1 = nn + (−1)n−1 (n− 1)n−1 cn.

Hence, R (xn + cx+ 1, nxn−1 + c) has n distinct roots; i.e. K (z) has n + 1 ramified
places in K (x) /K (z). So, K (x) has n+ 1 ramified places K (x) /K (z).
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4

A Generalization of Kummer and Artin-Schreier Extensions

Let F ′ be an extension of a function field F such that F ′ = F (x), where x satisfies
the equation f (x) = z for some z ∈ F and f (x) ∈ K [x]. We can consider F ′

as a compositum of the fields F and K (x) over the rational function field K (z).
Throughout this chapter, we assume that F ′ is separable over K (z). Let P ∈ PF and
P ′ ∈ PF ′ such that P ′ | P and let Q := P ′ ∩K (z) and Q′ := P ′ ∩K (x). Suppose that
at least one of the extensions P | Q or Q′ | Q is tame. Then, by Abhyankar Lemma,

e (P ′ | Q) = lcm {e (P | Q) , e (Q′ | Q)} =
e (P | Q) .e (Q′ | Q)

gcd {e (P | Q) , e (Q′ | Q)}
.

Also, by transitivity of the ramification index,

e (P ′ | Q) = e (P ′ | P ) .e (P | Q) .

Hence,

e (P ′ | P ) =
e (Q′ | Q)

gcd {e (P | Q) , e (Q′ | Q)}
.

Example 4.1. Let F ′ = F (x), where z = xn for some z ∈ F and n ≥ 2 with
gcd (n, p) = 1 in the case of p = charK > 0. Then F ′ = F.K (x). All the ramified
places of K (x) in K (x) /K (z) are the pole P∞ and the zero P0 of x, which are totally
ramified. Since gcd (n, p) = 1, K (x) /K (z) is tame. Hence,

e (P∞ | Q∞) = e (P0 | Q0) = n

and
d (P∞ | Q∞) = d (P0 | Q0) = n− 1,

where Q∞ and Q0 denote the pole and the zero of z in K (z), respectively.
Let P ∈ PF such that P is not a pole or a zero of z; i.e. vP (z) = 0 and let

Q ∈ PK(z) such that P | Q. Since Q is unramified in K (x) /K (z), i.e. e (Q′ | Q) = 1,
where Q′ ∈ PK(x) such that P ′ | Q′ | Q. Hence,

e (P ′ | P ) =
e (Q′ | Q)

gcd {e (P | Q) , e (Q′ | Q)}
=

1

gcd {e (P | Q) , 1}
= 1.

So, if vP (z) = 0, then P is unramified in F ′, which gives d (P ′ | P ) = 0. Suppose that
P is a zero of z and let P ′ be a place of F ′ lying over P . Since the zero Q0 of z is totally
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ramified in K (x) /K (z); i.e. P0 is the only place of K (x) lying over Q0, P
′ | P0 | Q0

and since vP (z) = e (P | Q0) vQ0 (z) = e (P | Q0),

e (P ′ | P ) =
e (P0 | Q0)

gcd {e (P | Q0) , e (P0 | Q0)}
=

n

gcd {vP (z) , n}
.

Similarly, let P is a pole of z,and let P ′ be a place of F ′ lying over P . Since the
pole Q∞ of z is totally ramified in K (x) /K (z), P ′ | P∞ | Q∞, and since vP (z) =
e (P | Q∞) vQ (z) = −e (P | Q∞),

e (P ′ | P ) =
e (P∞ | Q∞)

gcd {e (P | Q∞) , e (P∞ | Q∞)}
=

n

gcd {vP (z) , n}
.

When charK = p > 0, we have gcd (n, p) = 1; i.e. P ′ | P is tame. Hence,

d (P ′ | P ) = e (P ′ | P )− 1 =
n

gcd {vP (z) , n}
− 1.

Notice that gcd {e (P | Q) , 1} = gcd {vP (z) , 1}, when vP (z) = 0.

Now, let’s summarize what we have done in example 4.1.

Corollary 4.2. Let F ′ be an extension of function field F such that F ′ = F (x), where
x satisfies the equation z = xn for some z ∈ F , n ≥ 2 with gcd (n, p) = 1 in the case
of charK = p > 0. Let P ∈ PF and P ′ ∈ PF ′ be an extension of P . Then

e (P ′ | P ) =
n

rP
and d (P ′ | P ) =

n

rP
− 1,

where rP = gcd {vP (z) , n}.

Example 4.3 (charK = p > 0). Let f (T ) = T p
n
+an−1T

pn−1
+· · ·+a1T

p+a0T ∈ K [T ].
Then f (z + y) = f (z) + f (y) for z, y ∈ K. Now, let F ′ = F (x), where x satisfies
the equation f (x) = z for some z ∈ F and a0 6= 0 so that K (x) /K (z) is separable.
Suppose that for each P ∈ PF , there exists y ∈ F such that either vP (z − f (y)) ≥ 0
or vP (z − f (y)) = −m for some m ∈ Z with gcd (m, p) = 1. Since y ∈ F ,

F ′ = F (x− y) = F (x′) ,

where x′ = x− y. Also, let z′ = z − f (y). Then

z′ = z − f (y) = f (x)− f (y) = f (x− y) = f (x′) .

Let P ∈ PF such that there exists y ∈ F with vP (z − f (y)) ≥ 0 and P ′ ∈ PF ′ lying
over P . Then we can consider F ′ as a compositum of F and K (x′) over the field
K (z′), where x′ = x − y and z′ = f (x′). Let Q ∈ PK(z′) and Q′ ∈ PK(x′) such that
P ′ | P | Q and P ′ | Q′ | Q. K (x′) has only one ramified place in K (x′) /K (z′),
namely the pole P∞ of x′, which lies over the pole Q∞ of z′ and it is totally ramified;
i.e. e (P∞ | Q∞) = pn. Since vP (z′) ≥ 0, P does not lie over Q∞. Hence, e (Q′ | Q) = 1,
giving that e (P ′ | P ) = 1.
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Now, let P ∈ PF such that there exists y ∈ F with vP (z − f (y)) = −m for some
m ∈ Z+ with gcd (m, p) = 1 and P ′ ∈ PF ′ lying over P . By the same change of
variable, we can consider F ′ as a compositum of F and K (x′) over the field K (z′).
Since vP (z′) < 0, P is a pole of z′. So,we have P ′ | P | Q∞ and P ′ | P∞ | Q∞. Then

vP (z′) = e (P | Q∞) vQ (z′) = −e (P | Q∞) .

Since vP (z′) = −m and gcd (m, p) = 1,

e (P | Q∞) = m and d (P | Q∞) = m− 1.

Also, P | Q∞ is tame, since gcd (m, p) = 1. Hence,

e (P ′ | P ) =
e (P∞ | Q∞)

gcd {e (P | Q∞) , e (P∞ | Q∞)}
=

pn

gcd {m, pn}
= pn;

i.e. P is totally ramified in F ′/F . By Abhyankar Lemma,

e (P ′ | Q∞) = lcm {e (P | Q∞) , e (P∞ | Q∞)} = lcm {m, pn} = mpn.

Also, by transitivity of ramification index,

e (P ′ | Q∞) = e (P ′ | P∞) e (P∞ | Q∞) .

Since e (P∞ | Q∞) = pn,

e (P ′ | P∞) = m and d (P ′ | P∞) = m− 1.

Since P∞ is the only ramified place in K (x′) /K (z′), by Hurwitz Genus Formula,
d (P∞ | Q∞) = 2 (pn − 1).So, by transitivity of different,

d (P ′ | Q∞) = e (P ′ | P∞) d (P∞ | Q∞) + d (P ′ | P∞)

= 2mpn −m− 1

and
d (P ′ | Q∞) = e (P ′ | P ) d (P | Q∞) + d (P ′ | P )

=⇒ d (P ′ | P ) = (pn − 1) (m+ 1) .

Corollary 4.4 (charK = p > 0). Let F ′ be an extension of function field F such that

F ′ = F (x), where x satisfies the equation z = xp
n
+an−1x

pn−1
+· · ·+a1x

p+a0x for some
z ∈ F , where ai ∈ K for all i = 0, · · · , n− 1 with a0 6= 0. Suppose that for each place
P ∈ PF , there exists y ∈ F such that either vP (z − f (y)) ≥ 0 or vP (z − f (y)) = −m
for some m ∈ Z+ with gcd (m, p) = 1 and suppose that there exists at least one place
satisfying vP (z − f (y)) = −m. Then

(i) [F ′ : F ] = pn,
(ii) the places P ∈ PF , for which there exists y ∈ F with vP (z − f (y)) ≥ 0, are

unramified in F ′/F and
(iii) the places P ∈ PF , for which there exists y ∈ F with vP (z − f (y)) = −m,

are totally ramified and d (P ′ | P ) = (pn − 1) (m+ 1).

39



Remark 4.5. If n = 1, then for each place P ∈ PF there exists y ∈ F such that either
vP (z − f (y)) ≥ 0 or vP (z − f (y)) = −m for some m ∈ Z+ with gcd (m, p) = 1.

Proof. Suppose vP (z − f (y1)) = −lp, for some l ∈ Z+. Since vP is onto function,
there exists t ∈ F such that vP (t) = −l. Hence,

vP (z − f (y1)) = vP (tp) =⇒ vP

(
z − f (y1)

tp

)
= 0;

i.e. z−f(y1)
tp
∈ OP \ P , where OP is the valuation ring corresponding to vP and P is the

maximal ideal of OP . Then z−f(y1)
tp

(P ) 6= 0. Since OP/P is a perfect field, there exists

y2 ∈ OP such that z−f(y1)
tp

(P ) = (y2 (P ))p.

z − f (y1)

tp
(P ) = (y2 (P ))p

=⇒
(
z − f (y1)

tp
− yp2

)
(P ) = 0

=⇒ vP

(
z − f (y1)

tp
− yp2

)
> 0

=⇒ vP (tp) + vP

(
z − f (y1)

tp
− yp2

)
> vP (tp)

=⇒ vP (z − f (y1)− tpyp2) > vP (tp) = −lp,

where f (T ) = T p− T . Since z−f(y1)
tp

(P ) = (y2 (P ))p and vP

(
z−f(y1)

tp

)
= 0, vP (y2) = 0.

So,
vP (ty2) = vP (t) = −l > −lp.

Also, vP (z − (yp1 − y1)− tpyp2) > −lp. Hence,

vP (z − (yp1 − y1)− (tpyp2 − ty2)) ≥ min {vP (z − (yp1 − y1)− tpyp2) , vP (ty2)} > −lp.

Now, let y = y1 + ty2. Then

z − f (y) = z − ((y1 + ty2)
p − (y1 + ty2)) = z − (yp1 − y1)− (tpyp2 − ty2) .

Hence, vP (z − f (y)) > −lp.

Corollary 4.6 (charK = p > 0). Let F ′ be a extension of function field F such
that F ′ = F (x), where x satisfies the equation z = xp − x for some z ∈ F . Then
for each place P ∈ PF , there exists y ∈ F such that either vP (z − f (y)) ≥ 0 or
vP (z − f (y)) = −m for some m ∈ Z+ with gcd (m, p) = 1. Then

(i) the places P ∈ PF , for which there exists y ∈ F with vP (z − f (y)) ≥ 0, are
unramified in F ′/F and

(ii) the places P ∈ PF , for which there exists y ∈ F with vP (z − f (y)) = −m, are
totally ramified and d (P ′ | P ) = (p− 1) (m+ 1).

In fact, corrollary 4.2 and 4.6 are well-known formulas for Kummer and Artin-
Schreier extensions, respectively. Now, we are going to generaralize these formulas for
another extension.
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Example 4.7. Let F ′ be an extension of function field F such that F ′ = F (x), where
x satisfies the equation z = xn+1

x
for some z ∈ F and 2 < n ∈ Z. Let charK = p. In

the case of p > 0, suppose that p is an odd prime. Now, consider F ′ as a compositum
of the fields F and K (x) over the rational function field K (z). Let P ∈ PF , P ′ ∈ PF ′

with P ′ | P and vP , vP ′ denote the valuation function corresponding to P and P ′,
respectively.

Case(i): Suppose that p - n, n − 1. Let Q∞ denote the pole of z in K (z) and
vQ∞ denote the corresponding valuation function. Then Q∞ has 2 extensions in K (x),
namely the pole P∞ and the zero P0 of x with e (P∞ | Q∞) = n−1 and e (P0 | Q∞) = 1;
i.e. P∞ is the only ramified place lying overQ∞ with d (P∞ | Q∞) = n−2, since p - n−1.

Suppose that vP (z) < 0; i.e. P is a pole of z. Since P∞ and P0 are the only places
lying over Q∞ in K (x), either P ′ ∩K (x) = P∞ or P ′ ∩K (x) = P0. Say P ′ ∩K (x) =
P∞; i.e. vP ′ (x) < 0.

vP (z) = e (P | Q∞) vQ∞ (z) =⇒ e (P | Q∞) = −vP (z) .

Hence, by Abhyankar Lemma, we have

e (P ′ | P ) =
e (P∞ | Q∞)

gcd {e (P | Q∞) , e (P∞ | Q∞)}
=

n− 1

gcd {vP (z) , n− 1}
.

Since p - n− 1, p - e (P ′ | P ). Hence,

d (P ′ | P ) = e (P ′ | P )− 1.

Similarly, by Abhyankar Lemma, e (P ′ | P ) = 1 and d (P ′ | P ) = 0 when P ′ ∩K (x) =
P0.

Let Qc be the place of K (z) corresponding to the polynomial z+c, for some c ∈ K.
We have seen in chapter 3 that Qc is ramified in K (x) if and only if xn + cx + 1 has
multiple roots. This holds if and only if D (xn + cx+ 1) = nn+(−1)n−1 (n− 1)n−1 cn =
0. In other words, Qc is ramified in K (x) if and only if c is a root of the polynomial

r (x) = xn +
( −1
n−1

)n−1
nn. Since p - n, r (x) has n distinct roots. By Hurwitz Genus

Formula, each ramified place has different index 1. Since p 6= 2, each ramified place
has ramification index 2. Therefore, Qc has n− 1 extension in K (x), by Fundamental
Equality.

Say Pc := P ′∩K (x). If vP (z + c) > 0 for some c, which is a root of the polynomial
r (x), then either e (Pc | Qc) = 1 or 2, by above discussion. If e (Pc | Qc) = 1, then
e (P ′ | P ) = 1. If e (Pc | Qc) = 2, then

e (P ′ | P ) =
e (Pc | Qc)

gcd {e (P | Qc) , e (Pc | Qc)}
=

2

gcd {vP (z + c) , 2}
.

Hence, P ′ | P is ramified if and only if e (Pc | Qc) = 2 and vP (z + c) is not divisible by
2.

Now, let vP (z + c) < 0 for all c, which are the roots of r (x); i.e. Qc is unramified
in K (x). So, e (Pc | Qc) = 1. Then e (P ′ | P ) = 1.
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Case(ii): Suppose p | n. Let n = kpl, for some l ∈ Z+ with gcd (k, p) = 1. Then

z = xn+1
x

=
(xk+1)

pl

x
and D (xn + cx+ 1) = (−1)n−1 (n− 1)n−1 cn. So, Q∞ and Q0 are

all the ramified places of K (z) in K (x) /K (z). If P ′ | P is ramified, then P is a pole
or a zero of z.

Let vP (z) < 0 and vP ′ (x) < 0. Since p - n− 1, P∞ | Q∞ is tame. Then

e (P ′ | P ) =
n− 1

gcd {vP (z) , n− 1}
and d (P ′ | P ) = e (P ′ | P )− 1.

If vP ′ (x) ≥ 0, then e (P ′ | P ) = 1.
Since gcd (k, p) = 1, xk + 1 has k distinct roots. Let Pi denote the place of K (x)

corresponding to zeros of xk+1 for i = 1, · · · , k. Let vP (z) = m > 0 and gcd (m, p) = 1.
Then P is a zero of z. So, P ′ ∩K (x) = Pi for some 1 ≤ i ≤ k. Then e (Pi | Q0) = pl

and e (P | Q0) = vP (z) = m. Since p - m, P | Q0 is tame. Hence,

e (P ′ | P ) =
e (Pi | Q0)

gcd {e (P | Q0) , e (Pi | Q0)}
=

pl

gcd {m, pl}
= pl .

Case(iii): Suppose p | n − 1. Then D (xn + cx+ 1) = nn. Since D (xn + cx+ 1)
has no zeros, the only ramified place of K (x) in K (x) /K (z) is the pole of x with
e (P∞ | Q∞) = n− 1 and d (P∞ | Q∞) = 2 (n− 1), by Hurwitz Genus Formula. Hence,
if P is not a pole of z, then P ′ | P is unramified.

Let P be a pole of z; i.e. vP (z) < 0. If P ′ lies over the zero of x; i.e. vP ′ (x) ≥ 0,
then P ′ | P is unramified. Suppose vP ′ (x) < 0 and vP (z) = −m for some m ∈ Z+

with gcd (m, p) = 1 so that P | Q∞ is tame, since e (P | Q∞) = m. Then

e (P ′ | P ) =
e (P∞ | Q∞)

gcd {e (P | Q∞) , e (P∞ | Q∞)}
=

n− 1

gcd {vP (z) , n− 1}
.
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