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Abstract

Let K () be a rational function field, which is a finite separable extension of the
rational function field K (z). In the first part of the thesis, we have studied the number
of ramified places of K (z) in K (z) /K (z). Then we have given a formula for the
ramification index and the different exponent in the extension F'(z) over a function
field F', where x satisfies an equation f () = z for some z € F' and separable polynomial
f(x) € K [z]. In fact, this generalizes the well-known formulas for Kummer and Artin-

Schreier extensions.



RASYONEL FONKSIYON CISIM GENISLEMELERINDEKI DALLANMALAR

Nurdagiil Anbar
Matematik, Yiksek Lisans Tezi, 2009

Tez Danigmani: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: Fonksiyon cisimleri, fonksiyon cisimlerin geniglemeleri, dallanma

indexi, fark kuvveti

Ozet

K (z) ve K (z) rasyonel fonksiyon cisimleri olsun; oyle ki K (z), K (2) iizerinde
ayrigabilir bir cisim geniglemesidir. Oncelikle, K (x)'in, K (z) /K (z) geniglemesindeki
dallanmug yerlerin sayisia bakilmigtir. Daha sonra, ayrigabilir bir polinom olan f (x) €
K [z] ve bir fonksiyon cismi olan F’in bir elamanm z i¢in f (x) = z denkligi ile tanimh
F(x)/F geniglemesi ele alimmigtir. Bu cisim geniglemelerindeki dallanma indexleri ve
fark kuvvetleri i¢in formiiller verilmistir. Aslinda; verilen bu formiiller Kummer ve

Artin-Scheier geniglemeleri icin verilen bilindik formiillerin bir genellegtirilmesidir.
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Introduction

Throughout this thesis, K denotes an algebraically closed field.

Let K (z) be arational function field and z = % € K (x)\K , where f (z) and g (2)
have no common factors. Then K (z) is an algebraic extension over the rational func-
tion field K (2). In the case of char K = p > 0, we assume that not both of f (z) and

g (z) lie in K [2P] so that K (x) /K (z) is a finite separable extension.

LetneZ,n>1

Question: For which values i € Z, can we find z € K (x) such that K (z) has
exactly ¢ ramified places in K (z) /K (z) and [K (z) : K (2)] = n 7In the first part of
this thesis, we give some basic definitions and facts to use in the following chapters
to answer that question. In chapter 2, we answer the question for z € K [z] and any
characteristic and in chapter 3, we try to give an answer for z € K (z) and char K = 0.

Let F’ be an extension of a function field F' such that F’ = F' (x), where z satisfies
the equation z = 2™ for n > 2 with ged (n, p) = 1 in the case of p = charK > 0, or
2z = aP — x, where p = char K > 0 for some z € F'. These cases are well-known special
types of galois extensions, which are called Kummer extensions and Artin-Schreier
extensions, respectively. For these cases, there are explicit formulas to compute the
ramification index and the different exponent of a place of F' as follows:

Let P € Pp, P’ € P with P’ | P and vp denote the valuation function corre-
sponding to P. For z = x™,

e(P'|P)="andd(P|P) =" 1,
rp rp

where rp = ged {vp (2), n}. For z = a? — z, P is ramified if and only if mp > 0 and
in that case
e(P'|P)=pandd(P"|P)=(p—1)(mp+1),

where mp is defined by

Jif there exists y € F' satistying
mp = vp(z— (y? —y)) = —m < 0 with ged (m, p) = 1.
-1 ifup(z—(y*—y)) >0 for some y € F .
In the last chapter, we derive these formulas by using the results of chapter 2 and

chapter 3 with Abhyankar Lemma. Moreover, we generalize these formulas to some
other examples.



Preliminaries

Let K (z) be a rational function field and z = % € K(x)\ K. Then K (z) is an
algebraic extension of K (z). The question is whether we can find z € K (z) such that
[K (z): K (2)] =nand K (z) /K (z) has exactly i € N ramified places for given n € N,
where n > 2. We try to answer this question. But before that we give some facts,
which we are going to use in the following chapters.

Definition 1.1. Let F'/F be an algebraic extension of function fields and P be a
place of F.

(@) An extension P’ of P in F’ is said to be tamely ramified (resp. wildly ramified) if
e (P’ | P) > 1 and the characteristic of K does not divide e (P’ | P) (resp. characteristic
of K divides e (P’ | P)).

(b) P is said to be totally ramified in F’/F if there exists only one place P’ of F’ which
lies over P such that e (P | P) = [F': F]|.

Lemma 1.2 (Strict Triangle Inequality). Let v be a discrete valuation of F/K and let
x,y € F withv(x) #v(y). Then

v(z+y)=min{v(z), v(y)}.

Theorem 1.3 (Fundamental Equality). Let F'/K' be a finite extension of F/K. Let
P be a place of F/K and Py, ..., P, be all the places of F'/K' lying over P. Let
e; := e(P; | P) denote the ramification index and f; := f (P;| P) denote the relative
degree of P; | P. Then we have

m

[F/i F] = Zezfz

=1

Corollary 1.4. Let K (z) be a rational function field and z = % € K (z)\ K such

that f (x) and g (x) have no common factor. Then K (z) is a finite extension field of
K (2) of degree

K (2) : K (2)] = max{deg g (z)  deg f ()}



Proof. Let z = % = gs T for some irreducible polynomials p; (x), ¢; (x) € K (x)
J

and some ¢;, e; € Z*. [K (z): K (2)] = [K (z): K (1)], since K (z) = K (). If
deg f (x) < degg(z), then consider l. So, without loss of generality, assume that
deg f (z) > degg (z). Let QQy denote the zero of z in K (z). Then the places of K (z)
lying over )y are the places corresponding to the irreducible factors of f(x) with

e(P, ) = e; and f (P, | Qo) = degp; (x), where P,, denotes the place of K (z)

correspondmg to p; (x). So, by Fundamental Equality

(K (z): K(2)] = Zeifi = Zei degp; ()
= deg f (z) = max{degg (z) deg f (z)} .

]

Throughout this thesis, we will assume that K is an algebralcally closed field and
K (z) /K (z) is a finite separable extension; i.e. if z = g(z then not both of the
polynomials f (z) and g (z) lie in K [2P] in the case of charK = p > 0. Since K is
an algebraically closed field, an irreducible polynomial of K [z] is of the form x — a,
for some a € K. Also, there is one to one correspondence between the irreducible
polynomials of K [z] and the places of K (z) except the pole of z. So, let P, (resp. Q)
denote the place of K (x)(resp. K (z)) corresponding to the polynomlal x — a (resp.
z —a) and P, (resp. Q) denote the pole of x (resp. z).

Definition 1.5. Let K (z) be a rational function field. Then for a given n € N, we
define

i € Z | there exists z € K [z] such that [K (z): K (2)] =n and
there exist exactly ¢ ramified places of K (z) in K (z) /K (2)

T, =

i € Z | there exists z € K (x) such that [K (x): K (2)] =n and
there exist exactly ¢ ramified places of K (z) in K (x) /K (z)

Our aim is to determine T, (resp. S,,) in chapter 2 (resp. chapter 3). However,
we will give some more facts before that.

Theorem 1.6 (Hurwitz Genus Formula). Let F'//K be a function field of genus g and
F'/F be a finite separable extension. Let K' denote the constant field of F' and ¢
denote the genus of F'/K'. Then we have

/.

2¢' — 2= [[[];/ ?] (29 — 2) + deg Diff (F'/ F)

where Diff (F'/F) denotes the different of F'/F.

Corollary 1.7. Let K (z) be a rational function field and z = Io) ¢ K (z) such

that K (x) /K (z) is separable. Then deg Diff (K (x) /K (z)) = 2ng(i) 2, where n =
(K (2) : K (2)].



Definition 1.8. Let F’/F be an algebraic extension of function fields. F’/F is said to
be ramified (resp. unramified) if at least one place P of F' is ramified in F'/F (resp.
if all places of F' are unramified in F”/F).

Theorem 1.9 (Dedekind’s Different Theorem). Let F'/F be a finite separable exten-
sion where F/K (resp. F'/K') is a function field with constant field K (resp. K'). Let
Q be a place of F and P be a place of F' lying over Q. Then we have

(@) d(P|Q)>e(P|Q) 1

(b) d(P|Q)=¢e(P|Q)—1<e(P|Q) is not divisible by charK.

Corollary 1.10. With the notation as above, then P | Q is ramified if and only if
d(P|Q)>1;ie P<Diff(K(x)/K(2)).

Corollary 1.11. Let F/K (x) be a finite separable extension of the rational function
field, having K as a full constant field and [F: K ()] = n > 2. Then F/K (z) is
ramified.

Proof. Proof: Let g denote the genus of F. Since K (z) is a rational function field,
genus of K (x) is 0 and since F'/K (x) is a finite separable extension, by Hurwitz Genus
Formula

20—2 = [F: K (x)](—2)+ degDiff (F/K (x))
= n(—2)+degDiff (F/K (z))
= degDiff (F/K (z)) =29+2(n—1) >29 >0
= degDiff (F/K (z)) > 0.

Hence, there exists P € Pp such that P < Diff (F/K (x)). So, P is ramified in
F/K (x), by Dedekind’s Different Theorem. O

Theorem 1.12. Suppose F' = F (x) is a finite separable extension of a function field
F with [F": F] =n. Let Q be a place of F' such that the minimal polynomial ¢ (T') of
x over F' has coefficients in Ogq, where Og 1is the valuation ring corresponding to the
place Q, and let P be a place of F' lying over Q. Then d (P | Q) < vp (¢’ (x)), where
¢’ denotes the derivative of .

Theorem 1.13. Let F'/F be a finite separable extension of function fields and P € Pp,
P € Pp with P' | P. Suppose that P' | P is totally ramified; i.e. e(P' | P) =
[F': F] = n. Let x € F' be a P'-prime element and ¢ (T') € F[T]| be the minimal
polynomial of © over F. Then d(P'| P) = vp (¢’ (x)), where vp: denote the discrete
valuation function corresponding to P’.

Proposition 1.14 (Transitivity of the Different). Let F”/F’', F'/F be function field
extensions and P" € Ppn, P' € Pp/, P € Pr with P" | P'| P. Then

d(P"| P)=e(P"|P)d(P'| P)+d(P"|P).



Definition 1.15. Suppose that p (z), ¢ (z) € K [z] such that
P (2) = apa™ + ap_12™ 4 arz + ag

and
q(x) = bpa™ + bp_12™ -+ b+ by.

where a,,,b, # 0 and m, n € Z. Then the resultant of p(z) and ¢(x), denoted by
R(p(z),q(x)), is defined as the (m +n) x (m + n) determinant:

Apy Q1 e e a ag e e O 0
O A, e e as ai e e O O
O O PR PR am am—]_ DY DY al a/o
by bp_i -+ - by by - - 0 0
0 0 bn bnfl bo 0
0 0 0 by by b

Definition 1.16. Let p (z) = 2" +a, 12" '+ -+ a1x+ay € K [z] with degp (z) > 2.
Then the discriminant of p (z), denoted by D (p(z)), is defined by

D(p(a) = (~1)"" DV R(p(x), p (2)),

where p’ (z) denotes the derivative of p (z).

Lemma 1.17. Let p(x), q(z) € K [x]. Then R(p(x),q(z)) = 0 if and only if p (z)
and q (x) have a common root.

Hence D (p(x)) = 0 for p(x) € K [z] with degp (x) > 2 if and only if p(z) has a
factor with multiplicity greater than 1.

Theorem 1.18 (Abhyankar Lemma). Let F'/F be finite separable extension of func-
tion fields. Suppose that F' = F\F,, where Fy and Fy are intermediate fields F' C Fy,
F, CF'. Let P' € Pp and P € Pp such that P' | P and set P, :== F;N\ P’ fori =1,
2. Assume that at least one of the extensions Py | P or Py | P is tame. Then

e(P'"| P)=lem{e(P|P), e(P | P)}.



Ramified Places of K(z) in K(z)/K(z) for z € K|[z]

In this chapter, we will investigate T',, where T, is the set consisting of integers ¢
for which we can find z € K [z] such that [K (z): K (z)] = n and K (z) has ex-
actly 7 ramified places in K (z) /K (2). Let z = f (z) be a monic polynomial of K [x]
with deg f () = n, where n > 2. Then K (x) is a field extension of K (z) with
(K (z): K(z)] =nand ¢(T) = f(T) — z is the minimal polynomial of x over K (z).
We assume that ¢’ (T') = f'(T') # 0 in order that K (z) /K (z) is a separable exten-
sion. So, we always take a monic polynomial f(z) € K [z] \ K [zP], where K is an
algebraically closed field.

Lemma 2.1. Let K (x) be a rational function field and = = f(x) € K [x] with
deg f () = n > 2. Then the ramified places of K (x) in K (z) /K (2) are the pole
P, of x and the places corresponding to the zeros of the derivative of f (z).

Proof. Let Qo € Pk(2) denote the pole of z and let vp, and vg_ denote the valuation
functions at x = oo and z = oo, respectively. Then

VP, (2) = € (P | Qoo) Vg, (2) = —€ (P | Qc0)
and
Py (2) = vp,, (f (z)) = —deg f () = —n
= e (Py | Q) = n > 2; ie. Py is totally ramified. Hence, P, is the only place lying

over (Quo.
Let P be a place of K (z) corresponding to x — a and @ be the place of K (z) such

that @ C P; ie. @ is the place corresponding to z — f(a) = f(z) — f(a). Then
¢ (T) = f(T) — z is the minimal polynomial of = over K (z). Since the coefficients of
f(T) liesin K, ¢ (T) € Og [T]; i.e. x is integral over Og, for all @ € Pg(.) \ {Q}.By
theorem 1.12,

d(P| Q) <wvp (¥ (x)=vp(f (x)) =0, for all a such that x —a t f' (x)
= d(P|Q)=0, for all a such that z —at f'(z).

Therefore, a place corresponding x — a, which is not a divisor of f’(x), is unramified.
Now, let x — a be a divisor of f'(z). Then z —a | f(x) — f(a) and z — a |
(f(2) = f(a)) = [ (2); ie. f(x)—[(a) = (x—a)’ g(x), for some g(z) € K [a].

Hence,

2<vp(f(z) = f(a) =e(P[Q)ug(f(z) = f(a)) =e(P|Q).

So, a place corresponding to x — a, which is a divisor of f’(x), is ramified. O

6



Corollary 2.2. Let n € Z, withn > 2. Then T,, C {1, 2, ---, n}. More precisely, if
z = f(z) € K [z] with deg f () = n, then K (z) /K (2) has exactly i ramified places if
and only if f' (z) has i — 1 distinct roots.

Corollary 2.3. Let K (z) be a rational function field and z = f(x) € K [z] with
deg f(z) = n > 2. Suppose K (z) has only one ramified place P in K (z)/K (z).
Then P is the pole Py of x and P s wildly ramified.

Proof. By lemma 2.1, we know that e (Py | Qx) = n > 2. Hence, the only ramified
place of K (z) is Pw. By Hurwitz Genus Formula,

d(Px | Q) = deg Diff (F/K (x)) = 2n — 2 > n, since n > 2

= d(Px | Qu) 2 € (Poo | Qo) -
So, Py | Qw is wildly ramified by Dedekind’s Different Theorem. O]

Corollary 2.4. Let K (z) be a rational function field. If 1 € T, then p | n, where
n=I[K(z): K(z)] and p = charK.

Proof. Suppose 1 € T,,. Then the ramified place of K (x) is the pole Py, of z, which
is wildly ramified by corollary 2.3. Hence, charK | e (P | Qw), Where € (P | Q) =
n. O

So, if p{n, then T',, C{2, ---, n}.

Corollary 2.5. Ifp|n, then 1 €T,,.

Proof. 1 € T, if and only if K (z) has only one ramified place in K (z) /K (z). Let
z= f(x) =2a"+x. Then f'(x) =1; ie. f'(x) has no zero. So, the pole of z is the
only ramified place of K (z). O

Corollary 2.6. Ifp{n, then2 € T,.

Proof. Let z = f(z) = 2™ Then f’(z) = nz""!. Since ptn and n > 2, 0 is the only
zero of f'(x) . So, all the ramified places of K (z) in K (x) /K (z) are the pole and the
zero of x. O

Lemma 2.7 (charK =p > 0). Let z = f(x) = g(x) + h(x) be a polynomial over K

of degree n, where g(x) =Y a;x" and h(x) = Y bja?. Let Py, denote the pole of x in
pfi pli

K (z) and Qo denote the pole of z in K (z). Then d (Px | Qu) = 2n—{degg (z) + 1}.



Proof. Without loss of generality, we can assume that the constant term of f (x) is 0 so
that all 4, j > 1. Let ¢ (T') be the minimal polynomial of 1 over K (z). By lemma 2.1,

we know that P, is totally ramified. Hence, d (Py | Qo) = vp,, (gp’ (%)), by Theorem
1.13. So, we will first find ¢ (T') to compute d (Px | Q). Since K (z) = K (1),

[K (1) : K(z)] = [K (2): K (2)] = n.

Therefore, deg (T) = [K (2) : K (2)] =n.

xT

z=g(x Zala: —|—Zb .

plj

Multiply both sides of the equality by . Then we have

pIJ
___Zalxn 1__2 T pn—j -
Pl
Lety(T) =T"— Za T —1%"b, " € K (2) [T]. Then we have seen that v (1) = 0.

plj

Since degy (T') =n, ¢ (T') = v (T). Hence,

o' (T) =nT™" 1——Za2 n—i)T" " 1——2() n—j)T" 71
pti pli

Case(4): if p | n, then p | n — j and p{n —i. Hence,

1 .
/ T - _ ; s Tn—z—l'
)= =22 w0

Then

1 1 1
/ . _ = . s

1 L1
= Up, (;) + Up, Zai (n —1i) pn—i1
pli
= deg f(x)+ p){mi]gé . {n —i—1} (by Strict Triangle Inequality)

= n+(n—degg(z)—1)
= 2n —{degg(x)+1}.

Case(42): if p{ n, then

o' (T) =nT™" 1——2% (n —i)T" " 1——26 (n — )T 71,

pli



Then

b ( 1
UPss TL—Z :Unzl__:: n_] xngl
plJ

’I’L—Z

1
xnzl Zb n=J —j—1

plj

1 1 A A
- - . ) S b _ o\ pdtl
vp, (z) +vp,, (:1:") +uvp, | nzx g a;(n—1i)x E i (n—j)x

pti plj

Now, we first compute

Hence,

So,

nzr — Zai (n —i) "t — ij (n —j) 27t

pti plJ
- Zalx + Zb ) | @ — Zai (n—id)x"™ — ij (n —j) 27t
plj pti plj
_ nzaz i+l an I Zai n— i)t — ij (n—j) P
plj plj

- Zain— n—i)) ! Zb n—(n—j))zt
pli pli

_ Zaﬂmiﬂ—zbﬂle
pti plj

— Zaiixi-i—l
pli

vp, | nzx — g a; (n —i)z — E b (n—j)a/t!

pti plj

= wvp, Zaiixiﬂ = mmlr;éo {—i— 1} (by Strict Triangle Inequality)
pfi '

= —(degg(z)+1).

P, (90' (%)) = wp, (%) + vp,, (x—ln — (degg(z) +1)

= n+n—(degg(z)+1)
= 2n— (degg(xz)+1).



When char K = 0, then K (z) /K (z) is tame.
Therefore, d (Py | Qo) = € (P | Qo) — 1 =n—1.

Claim 2.8. Let K (z) /K (z) be defined as before. Then there is no place P of K (x)
such that d (P | Q) = p — 1, where @ is the place of K (z) lying under P.

Proof. If char K = 0, then d (P | Q) # —1. Because, d (P | @) is a non-negative integer.
So, assume that charK =p >0 and d(P|Q)=p— 1. If P is tamely ramified, then
d(P|Q)=e(P|Q)—1by Dedekind’s Different Theorem. Hence, e (P | Q) = p. But
p can not divide the ramification index, since P is tamely ramified. So, P must be
wildly ramified; i.e. p | e (P | Q). Then, by Dedekind’s Different Theorem, d (P | Q) >
e(Pl|Q)=¢(P|Q)<p—1;ie. pte(P|Q). Hence, both cases are impossible. [

Proposition 2.9. Let K (x) be a rational function field and z = f(x) € K [x]| with
degf(z) =n>2andlet f'(z) = ][] (xz— cl-)di, where ¢;’s are different roots of

for some i
f'(x) and d;’s are positive integers. Then d (Pci | Qf(ci)) = d;, where P, is the place
of K () corresponding to x — ¢; and Qg (,) is the place of K (z) lying under P, i.e.
the place corresponding to z — f (¢;).

Proof. Since K is an algebraically closed field, for all P € Pg,) deg P = 1. So, by
Hurwitz Genus Formula

deg Diff (K (z) /K () = degd d(P| Q)P
PIQ
= > d(P|Q)+d(Px|Qu)=2n—2

P|Q,P#Poo

= ) dP[Q=0n-2)—d(Ps|Qx)
P|Q,P#Pso
= (2n—-2)—(2n - (degg(z) + 1))
= degg(z) —1=degf' (z).
The minimal polynomial of x over K (2)is ¢ (T') = f (T')—=z. Since f (T') has coefficients
in K and P is the only place of K () lying over Q«, x is integral over O for all

Q € Pk \ Qx, where Og is the valuation ring corresponding to the place Q). By
theorem 1.12

d (P,

Qren) < vr, (¢ (2) = vr, (¢ (f (2))) = di.
So,

Qf(ci)) < Zdz = deg f/ (l’) —d (Pa

> d(r, }

% %

Qf(ci)) = d;, for all i.

]

Corollary 2.10. Let K (z) /K (z) be defined as before with z = f (x). Then [’ (z) can
not contain a factor x — o with multiplicity p — 1.

10



Proof. Let P, denote the place of K (x) corresponding to the factor x —a and @) denote
the place of K (z) lying under P,. d (P, | @) is equal to multiplicity of  — a: in f’ (),
by proposition 2.9. But d (P, | Q) # p — 1, by claim 2.8. So, f’ (x) can not contain a
factor with multiplicity p — 1. O]

Now, we investigate T',, for char K = 2. Before giving the general condition, we are
going to give some simple examples.

Example 2.11 (charK = 2). In this example, P, (resp. () denotes the pole of
x (resp. the pole of z) and P, (resp. Q) denotes the place of K (z) (resp. K (z))
corresponding to the factor x — a (resp. z — «).

Let n = 2,then deg f'(x) = 0.
Since p | n, 1 € T, by corollary 2.5. and since deg f’ (z) =0, Ty = {1}, by corollary
2.2.

Let n = 3, then deg [’ (z) = 2.
1 ¢ T3 and 2 € T3, since 2t 3, by corollary 2.4 and 2.6.
3¢ Ts: 3€T, if and only if f’(x) has two distinct zeros. Then f’(x) must have a
factor with multiplicity 1 = p — 1. But, this is impossible, by corollary 2.10.
Hence, T's = {2}.

Let n = 4, then deg f' (z) < 2.
1 €Ty, since p | n.
2 €Ty Let 2 = f(x) = 2* + 2% Then f(x) = 22, So, the ramified places of
K (z) are Py and Py, which lie Qw and Qo with e (P | Q) = 4, e(Fo | Qo) = 3,
3 ¢ T, Since f'(z) can not have a factor with multiplicity 1.
4 ¢ T, K (x) can have at most deg f’' () + 1 < 3 ramified places.
Hence, Ty = {1, 2}.

Let n =5, then deg f' (z) = 4.
1¢ T5 and 2 € T, since 21 5.
3€Ts Let z= f(z) = 2% +2° = 2% (x + 1)%, then f'(z) = 2* + 2% = 22 (z + 1)°.
So, the ramified places of K (z) are P, Py and P; which lie over ), and ¢y with
e (P | Qo) =5, ¢ (Py | Qo) = 3, ¢(P1] Qo) = 2, d(Po | Q) = 4 and d(Py | Q) =
d (P | Qo) = 2.
4,5 ¢ Ts5: Otherwise, f' (x) has a factor with multiplicity 1.
Hence, T'5 = {2, 3}.

Now, we are ready to give the general case for char K = 2:

Lemma 2.12 (charK = 2). Let K (z) be a rational function field and n € Z, n > 2.
Then

T,={1,2, ..., k}, ifn=2k

and

T,=1{2, ..., k},ifn=2k—1.
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Proof. If n =2k, then 1 € T',,, by corollary 2.5.
If n =2k —1, then 1 ¢ T, by corollary 2.4.

seT,, if s <k: seT,if and only if f'(z) has s — 1 distinct zeros, i.e. f'(x) is
of the form

fr@)=(+a) (x+a)?. .. (24 ae1) ",

where «;’s are distinct elements of K and e;’s are positive even integers so that f’(x)
has an antiderivative. Then ramified places of K (z) are P, and P, ’s, where P, s
denote the places corresponding to the factor (z — «;)’s, lying above the places Qo

and Qf(a,) With d (Ps | Qo) = 2k— > e; and d (Pai | Qf(ai)) =e¢;.

1<i<s—1

s¢T,, if s>k+1: If s €T,, then f'(z) must have s — 1 distinct zeros; i.e. f'(z)
must contain more than k — 1 factors. Since deg f'(z) < 2k — 2, f'(z) must have a
factor with multiplicity 1. But, f’ (x) can not contain a factor with multiplicity p — 1,
by corollary 2.10. O

Now, we are going to investigate T, for char K = 3. Again before giving the general
condition, we will give some examples.

Example 2.13 (charK = 3). In this example, P, (resp. () denotes the pole of
x (resp. the pole of z) and P, (resp. Q,) denotes the place of K (z) (resp. K (z))
corresponding to the factor x — a (resp. z — «).

Let n = 2, then deg f' (z) = 1.
1 ¢ Ty and 2 € Ty, because 3 1 2.
Hence, T's = {2}.

Let n = 3, then deg f' (z) < 1.
1 € T3, since p | n.
2€Ts: Let 2= f(x) =2+ 22 =2?(z +1). Then f’'(z) = 2z. So, ramified places of
K (x) are P, and Py, which lie over Q) and @y with e (Py | Q) = 3, e (Fo | Qo) = 2,
3 ¢ T3:Since deg f' (z) < 1, f'(x) can have at most one zero.
Hence, T3 = {1, 2}.

Let n = 4, then deg f' (z) = 3.
1¢ T, and 2 € Ty, because 3 1 4.
3¢ Ty 3€T,if and only if f' (z) has 2 distinct roots. Since deg f' (z) = 3, one of
the zeros must have multiplicity 2. But this is a contradiction to corollary 2.10.
4 € Ty: Let f'(x) = 2®+ 2. Since no exponent of x is congruent to —1 modulo 3, f' (z)
has an antiderivative and since ged (f' (x),f” (z)) = 1, f’ (x) has no multiple root; i.e.
/' (z) has 3 distinct zeros, say ai, as, and ag. Then the ramified places of K (z) are
Py, P,,, P,, and P,, lying above the places Q, Qf(a,), Qf<a2> and Qf(as), respectively,

with € (P | Q) =4, ¢ (Po, 1@, 1) =2, d(Po | Q) =3, (Pu, | Q) = 1.
Hence, Ty = {2, 4}.
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Now, we can state the lemma which gives the set T, in the case of char K = 3.

Lemma 2.14 (charK = 3). Let K (z) be a rational function field and n € Z, n > 2.
Then

)T, = {1,2, ...,n—1},if3|n
() T, = {2, ...,n—=2,n},if3tn.

Proof. Let P, (resp. Q) denote the pole of x (resp. the pole of z) and P, (resp. Q,)
denote the place of K (x) (resp. K (z)) corresponding to the factor x — « (resp. z — ).

(¢) Suppose 3 | n, say n = 3k for some k € Z. Then deg f' () < 3k — 2.
1 €T, since 3 | n.
3eT,, 1<I<k—1:3leT,if and only if f’ (z) has 3] — 1 distinct zeros. Let

f@) =a® (2% 4 1) = 28 4 2,
Since 3l +1 =1 %# —1 (mod 3) and 3 =0 # —1 (mod 3), f' () has an antiderivative
and since (2%72 + 1)/ =283 ie. ged (#¥72 + 1, 2%73) = 1, 272 4 1 has no multiple

roots. Therefore, f’'(x) has 3l — 1 distinct zeros.
l+1eT,,1<I<k—1: Let

fx)=a"+2+1

Since 3l = 0 # —1 (mod 3), 1 # —1 (mod 3), f'(z) has an antiderivative. Also,
f" (z) = 1 implies that ged (f' () ,f” (z)) = 1. Therefore f’ (x) has 3l distinct zeros.
3l+2eT,,0<I1<k—1: Let

ff(z) =23 4 1.

Since 3l +1 =1 # —1 (mod 3), f'(x) has an antiderivative and since f” (z) = 2%,
ged (f' (z),f" (x)) = 1. So, f' (x) have 3l + 1 distinct zeros.

Notice that n ¢ T, since deg f' (x) < n — 2.

Hence, T, = {1, 2, ..., n—1}.

(2¢) Suppose 3 1 n. Then either n = 3k + 1 or n = 3k + 2, for some k € Z.
Since 3tn, 1 ¢ T,.

If n =3k + 1, then deg f' (z) = 3k
3leT,, 1<I<k—1:1f]>2, then let

) = 3D (@2 +a) (%D 42 +1)
= g BB BB | BkoBIES L (3, 3k-BIHL | (03, 3k31

where 0 # o € K is not a zero of 2373 + x + 1(we can find such «, since K is an
algebraically closed field; i.e. K is infinite). Since 3k = 3k —3 =3k -3l + 3 =
3k—=3l=0# —1 (mod 3), and 3k —3l+4 =3k -3l+1=1# —1 (mod 3), f'(z)
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has an antiderivative and since (x?’(l*l) +x+ 1)/ =1, 2°0=Y 4 2+ 1 has 3] — 3 distinct
zeros. So, f'(x) have 3] — 1 distinct zeros.
If I =1, then let

f/ (ZL‘) _ IB(k—l) (:L’ + 1)3 _ $3k + xSk—B.

Then f’ (z) has 2 = 3l — 1 distinct zeros.
3A+1e€T,, 1 <1<k Let

J'(z) = 2PBDH (g1 1) = gk g g3l
Since 3k = 0 # —1 (mod 3), and 3(k—1) +1 =1 # —1 (mod 3), f'(z) has an an-
tiderivative and since ged (2371 + 1, 22%72) = 1, where 22% 72 = ( 2%~ + 1)/, 23141
has 3] — 1 distinct zeros. So, f’(z) has 3l distinct zeros.
3l+2€T,, 0<]<k-—1: Let

f(z) = 23D (x3l + x4+ 1) — 3k 4 g 30=DF1  3(k=)

Since 3k =3(k—1) =0+# —1 (mod 3) and 3(k—1)+1=1# —1 (mod 3), f' ()
has an antiderivative. Since ( 3+ + 1), =1, 2%’ + 2+ 1 has 3! distinct zeros. Then
f' (z) have 3] + 1 distinct zeros.

If n =3k + 2, then deg f' () = 3k + 1.
3 eT, 1<1<k: Let

' (z) = 3(k=1+1) (l,3l—2 + 1) = Akt B(hltD).

Since 3k +1 =1 # —1 (mod 3) and 3(k—1+1) =0 # —1 (mod 3), f'(z) has an
antiderivative. ( 32 4 1)’ = 230=D_ Then ged (x3l*2 +1, x3(l*1)) = 1, giving that
2372 + 1 has 3] — 2 distinct zeros. So, f’(x) has 3] — 1 distinct zeros.

Bl+1€T,, 1<I<k—1: Let

' (z) = 23D (z + a)3 ($3z—2 4 1) _ AR o 3g3k—2 4 B(k—lHD) Gl

where 0 # o € K is not a zero of 2372 + 1. Since 3(k—1+1) =3(k—1) =0 #
—1 (mod 3), and 3k +1 =3k —2=1%# —1 (mod 3), f' (z) has an antiderivative and
since (%72 4+ 1) = 230D, 232 41 has 3] — 2 distinct zeros. Hence, f'(z) have 3l
distinct zeros.

34+2e€T,, 01 <k Let

f (@) = 2¥ED+ (g3 4 g2 1) = gD 4 g3 | 3D
3(k—1+1)=0%# —1(mod 3),and 3k+1=3(k—1)+1=1%# —1 (mod 3). Also,
23 + 22 + 1 has 3l distinct zeros since ged <x3l + a2+ 1, (2% + 2%+ 1)’) = 1, where

(2% + 2% +1)" = 22. So, f'(v) has an antiderivative having 3! + 1 distinct zeros.
Notice that n—1 ¢ T,,. If n—1 € T',,, then f’ (z) would have n—2 distinct zeros, where
deg f' (z) = n — 1. This implies that f’(z) had to have a factor with a multiplicity
2 =p — 1. But this is a contradiction to corollary 2.10.

Hence, T, = {2, ..., n—2, n}. ]
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From now on, let p denote a prime number, where p > 5.

Claim 2.15. If charK = 0, or charK = p > n, then K (z) /K (z) is tame; i.e. there
is no place of K (x), which is wildly ramified in K (z) /K (z).

Proof. Suppose there is a place P of K (x) such that P is wildly ramified in K (x) /K (2).
Then charK | e (P | Q), where @ is the place lying under P. But, by Fundamental
Equality, e (P | Q) < n < p. O

Claim 2.16. Let charK =0, or charK =p >n. Then T,, ={2, ..., n—1, n}.

Proof. Since K (x) /K (z) is tame, 1 ¢ T, by corollary 2.3.
leT,,2<1<n:leT,ifand only if f’ (z) have [ — 1 distinct zeros. Let

f/ (.Z') _ $n—l+1 (.Z'l_2 + 1) — xn—l + x,n—l-i—l.
Since charK = 0, or charK = p > n, f'(z) has an antiderivative. Also, /=2 + 1 has

[ — 2 distinct zeros, since ged <xl’2 +1, ( o2+ 1)') = 1. Hence, f'(z) have | — 1
distinct zeros. ]

Claim 2.17. Let n = p = charK, then T, = {1, ..., p—1}.

Proof. 1€ T, since n = p.
leT,, 2<1<p-—1:1€T,if and only if f'(z) have [ — 1 distinct zeros. Let

fr@)=a"" (2! + 1) =aP 2+ 277"

Since p — 2, p — 1 # —1 (mod p), f'(x) has an antiderivative and since [ — 2 #
0 (mod p), 2'=2 + 1 has [ — 2 distinct zeros. Hence, f’(z) have [ — 1 distinct zeros.
p ¢ T, Since deg f' (z) < p —2, f'(z) can have at most p — 2 distinct zeros. O

Lemma 2.18. Let n = p+ 1, where p = charK, then T,11 ={2, 4,5, ..., p+1}.

Proof. 1 ¢ T4y and 2 € T4, since p{ p + 1.
3¢ T, 1: Suppose 3 € Tpyq. Then f’(z) must have 2 distinct factors. Without loss

of generality, say one of them is 2. Then f'(z) is of the form f’ (z) = (z + a)" aP~F,
where a € K* and 1 <k <p—1,ie.

o= e st = (3 (o) o3 (Bt

=0 1=0

The coefficient of zP~! must be zero so that f’(z) can have an antiderivative. Since
p—(k—1)=p—1<+=1=k—1, the coefficient of 27! = (,* Ja = ka = 0. This
implies that o = 0, since 1 < k < p — 1, which is a contradiction to o € K*.

leTp1;4<1<p+1: Let
fr(x) =aP™ 2 (2'2 + 1) = 2P + 2P 2

15



p—1+2%# —1(modp),since 4 <1 <n=p+1. So, f'(z) has an antiderivative. Also
[ —2#0 (mod p), since 2 <[ —2<p-—1;ie 272+ 1 has | — 2 distinct zeros since
ged (272 +1, (1—-2)2'3) = 1, where (I —2)23 = (2'72+ 1)/. Therefore, f'(x)
have [ — 1 distinct zeros. O

Now, we consider the case n = p + k, where 2 < k < p — 1. But before that, we
continue with some examples.

Example 2.19. Let n = p + 2, then deg f' () = p+ 1. Then
1¢ T, and 2 € Ty, since ptp+ 2.
3 € Tp+22 Let

f(z)=af (z+1) = 2P 4 2P

Since p+ 1 = 1 (mod p) and p = 0 (mod p), f'(x) has an antiderivative, having 2
distinct roots.
4 € Tp+23 Let

f(z) =aP % (z — 2)2 (z+1) = 2P — 32P 4 4272,

Since p—2 = -2 # —1 (mod p), p+ 1 =1 (mod p) and p = 0 (mod p), f' (x) has an
antiderivative. Notice that 2 # —1, since p > 5; i.e. f’ () have 3 distinct zeros.
leTyi0;5<1<p+1: Let

fr(x) =aP 3 (2172 + 1) = 2Pt 4 P,
p—1+3=—1(modp) <= 1=4 (modp), but 5 <1 <n=p+1. So, thisis not
possible; i.e. f’(x) has an antiderivative. Also, I —2 = 0 (mod p) <= | = 2, since
[ <p+1. Butl>5. Hence, /"2 + 1 has [ — 2 distinct zeros. Therefore, f’ (x) have

[ — 1 distinct zeros.
p+ 2 e Tp+21 Let

f(z) = 2Pt + 1.

Since ged (f' (x),f" (x)) =1, f' (z) have p + 1 distinct zeros.
Hence, T)0 =1{2,3, ..., p+2}.

Example 2.20. Let n = p + 3, then deg f' (z) = p + 2.
1¢ T, 3and 2 € T,.3, since p{p+ 3.
3 €T, Let

f(z) = 2Pt (z + 1) = 2P 4 2PT

Since p+2 =2 (mod p) and p+ 1 =1 (mod p), f' (x) has an antiderivative, having 2
distinct roots.
4€T, 3 Let

f(x) =af (22 +1) = 2" + 2P

Since p+ 2 = 2 (mod p) and p = 0 (mod p), f'(x) has an antiderivative, having 3
distinct roots.
5€T,y3: b€ T,ysif and only if f/ (z) have 4 distinct zeros. Let
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fla)=@"+1)(@z+a) ",

where a € K*. Notice that ged (2% + 1, (23 + 1)) =1, i.e. 2°+1 has 3 distinct roots.
Now, we will determine o € K so that the coefficient of 2P~! becomes zero.

i=0
= (@®+1) (@' +(p-1az" P+ ..+

f@) = @+1)@+a) = (@ +1) (Z (pZ 1)“)

Then the coefficient of 2P~! = (p_l)(p;woﬁ + 1. Since K is algebraically closed, we
can solve this equation for . But, we also want a not to be a root of z® + 1; i.e. we
do not want o® = —1 so that f (z) has 4 distinct zeros. Since E=NE@=2@=3 43 41 —
ad = -1 = w = 1 <= p = 4, which is impossible.
l€Tyi3;,6<I<p+1(p>T7): 1€ Tyyif and only if f'(x) have [ — 1 distinct zeros.
Let

f/ (.I') — xp*l+4 (513'172 + 1) — xp+2 + xp*l+4.
p—I1l+4=—1(modp) <= 1=5(modp), but 6 <1 <p+ 1. So, this is not possible;
ie. p—1+4+4+# —1 (mod p) and p+2 =2 # —1, since p > 7. So, f'(x) has an
antiderivative. Also, [ —2 # 0 (mod p), since 4 <1 —2 < p — 1. Hence, /=2 + 1 has
[ — 2 distinct zeros. Therefore, f’ (x) have [ — 1 distinct zeros.
p+ 2 c Tp+3: Let

fl(@)=2®@P+z+1)=aP" + 23 + 22

2P + z + 1 has p distinct zeros since (2P + 2 + 1) = 1. Therefore, f'(z) has p + 1
distinct zeros.
p+3 € Ty3: Let

f'(z) = 2P + 1.

Since ged (f' (z), f"(z)) = 1,f (z) has p + 2 distinct zeros.
Hence, T3 =12, 3, ..., p+3}.

Now, we can give the general case.

Lemma 2.21. Letn=p+k, where2 <k <p—1 andp > 5, then
T,=12,3, ...,n}.

Proof. Since2<k<p-—1,ptn. So,1¢ T, and 2 € T,,.
l€T;3<I<k+1lork+3<I<p+lorp+3<I<p+k: Let
f/ (27) :xp+kfl+1 (1'1724—1) :prrkfl +xp+kfl+1'

Thenp+k—1+1=—1(mod p) <=1 =k+2. Also,p+k—1%# —1 (mod p),
because p+2 < p+k —1 < 2p — 2. Hence, f'(x) has an antiderivative. [ — 2 =
0 (mod p) <=1 =p+2. So, | —2 # 0 (mod p); i.e., x'=2 + 1 has | — 2 distinct zeros
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because ged (xl_Q +1, (72 + 1)’) = 1, which shows f’(z) have | — 1 distinct zeros.
k+2¢e€T,: f (zr)must have k + 1 distinct zeros. Let

)= (=" +1) @+,

where o € K*. Now, we will determine « so that the coefficient of P! becomes zero.

f(@) = (@ + 1) (o)™ = (o 1) (i (" 1)04%@1“) |

=0

Then the coefficient of 2P~! = (pgl) " +1=0<«= o = — Since K is alge-

Ty
k

braically closed, we can solve this equation for a. Now, we must show that « is not a

root of z¥ + 1. « is a root of

xk+1<:>ak+120<:>ozk:—1<:>( "

) =l<<=p=Lk+ 1
If p#k+ 1, then f'(x) has k + 1 distinct zeros.
If p=Fk+1,thendegf (z) =p+k—1=2p—2 and we want f’(z) has p distinct
zeros. Let )
fx)=(2*+1) (2" +a)”.

We can choose a € K* so that 2 + 1 and 272 4+ o do not have a common zero. Then
)= (2"+1) (2" + 04)2 = 2?72 4 2?7 4 202”4 20272 + o*2? + o2

Since 2p —2=p—2= -2 # —1 (mod p), 2 # —1 (mod p), p =0 # —1 (mod p) and
2p —4 = —4 # —1(since p > 5), f’ (x) has an antiderivative. Also, ' (z) hasp =k +1
distinct zeros, since ged (xp_2 +a, (2P + oz)/) = ged (x2 +1, (2% + 1)’) =1.
p+2e€T,: If k#p—1, then let

fl(@) ="t (@ + o+ 1) = 2Pt 4o 4 2h L

Then k # —1 (mod p), and p+k—1=k—1= —1 (mod p) <= k = 0 (mod p), but
k <p—1. So, f'(x) has an antiderivative.
If k=p—1, then let

F(z) = " (xp 4+ 1) = pPthel gkl kT

Thenp+k—1=k—1= -2 (mod p) and k+1 =0 (mod p). Also, 2P + x + 1 and
a? + 2 + 1 have p distinct zeros since (27 + 2 + 1) = 1 and (27 + 22 + 1) = 2z. So,
in both cases, f’ (x) has an antiderivative having p + 1 distinct zeros.

Hence T, = {2, 3, ..., n}. ]

Now, we are going to find T, for n > 2p and p t n, where p = char K > 5. But, we
first start with an example.

Example 2.22. We will find T',, for n = kp + 1, where £ > 2 and p > 5.
1¢T, and 2 € T, since p { n.
3e€T,: Let

f'(x) = 2® VP (4 1)P = 2" 4 (VP
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Since k > 2, (k—1)p > p; i.e. f'(x) has zero as a root. Hence, f’(x) has 2 distinct
ZEr0S.
leT,;4<I<p+lorp+4<I01<2p+1: f'(x) must have [ — 1 distinct zeros. Let

f/ (IL’) — xkp—l—l—Q (l’l_2 + 1) — xkp + xkp—l—l—Q.

kp—1+2=—1(modp) <= 1l=3o0rl=p+3. So, f'(z) has an antiderivative. Also,
[ —2%#0 (modp),since2<l—2<p—lorp+2<1—-2<2p—1. So, 272+ 1 has
[ — 2 distinct zeros. Hence, f’(x) has [ — 1 distinct zeros.

p+2€T,: f'(x)must have p+ 1 distinct zeros. Let

f/ (LU) = Q;(kfl)P (;Up + o+ 1) — J:kp 4 x(k*l)p%»l + I(kil)p_

Since kp = (k—1)p=0# —1 (mod p) and (k—1)p+1=1+# —1 (mod p), f'(x)
has an antiderivative. Since (z? +z + 1) = 1, 22 + 2 + 1 has p distinct zeros, implying
that f’(z) have p + 1 distinct zeros.

p+3€T,: f'(x) must have p + 2 distinct zeros.

If k£ > 3, then let

fl@) = 2P (@ 4o 4 1) (z+ 1)
.ﬁEkp + I.(k’*l)P*H 4 Qx(kfl)p + :E(k*Q)PJFl + x(k*Q)p'

Since kp=(k—1)p=(k—2)p=0 (mod p) and (k—1)p+1=1 (mod p), f' (z) has
an antiderivative. Notice that —1 is not a root of 2 + x + 1. Hence, f’(x) have p + 2
distinct zeros.

If k=2, then n =2p+ 1 and deg f' (z) = 2p. Let

flx) = 2" (2" +a) (27 +8) (2 - 1)2
= g% — 202 4 P P TITL _ 20p P 4 qpPTIT3  Ga Pttt

—2BxPTL 4 B3 4 BaP Tt — 2a82P 7 + afaP 3,
where 1 +j =p — 1. Leti:2,j:p—3anda:%, then

3 1 3 1
f'(z) = 2% — 5:1721”*2 + 591;21’*6 + BaP™ — §ﬂwp“ + Eﬁa:p’g’.

If p # 5, then no exponent of x congruent to —1 modulo p; i.e. f'(x) has an antideriva-
tive. Also, z? +% and 22 — 1 do not have a common zero and we can choose 0 # 3 € K
so that 22 + %, 2?73+ 3 and 2% — 1 do not have a common factor. Then f’ (z) has p+ 2
distinct zeros.

If p=1>5, then let

() = =z (x3 + oz)2 (ms + ﬁ)
= 2+ (2a+ ) 2" + (® 4+ 2a8) 2* + o* B

If we choose o, 3 € K* such that a # 8 and a? + 2a8 = 0, then f’'(z) has an
antiderivative having 7 = p + 2 distinct zeros.
2p+2€T,, k>3: f'(r) must have 2p + 1 distinct zeros. Let

f/ (l’) — J;(k—Q)P (xQP + 1+ 1) — l'kp + $(k_2)p+1 + ﬂf(k_Q)p,

19



Since (22 +x +1) =1, 2% 4 = + 1 has 2p distinct zeros. Hence, f'(x) have 2p + 1
distinct zeros.
2p+3 € T,: f'(x) must have 2p + 2 distinct zeros. Let

f/ (Qf) _ x(k—2)p—3 (2?2 + %) (:L,Qp—S + ﬁ) (.172 . 1)2

_ gt Sz Lies g itempes 3 g aempn | Ly eaps
2 2 2 2

kp—2, (k—=2)p+3, (k—2)p+1, (k—2)p—3# —1 (mod p), and if p # 5, then
kp—6 # —1 (mod p). Hence, no exponent of x is congruent to —1 modulo p; i.e. f'(z)
has an antiderivative. 2%+ % and 22 — 1 do not have a common zero and we can choose
3 € K* so that 2% + %, 2?73 + 3 and 22 — 1 do not have a common zero. Then f’ (z)
have 2p 4 2 distinct zeros.

If p=>5and k > 4, then let

fa) = a9 P+ +1) (z+a)
D PP DL D b (34 | o (-

where 0 # o € K is not a root of 22’1 + 1. Then no exponent of z is congruent to —1
modulo p. Hence, f’ (x) has an antiderivative. Also, %" + x + 1 has 2p distinct zeros
and 0 is a zero of f’ () since k —3 > 1. So, f’ (z) has 2p + 2 distinct zeros.

If p=>5and k = 3, then deg f' () = 15. Let

@) = (@ +1) (@ +a) (@* + )
= 2P+ 2o+ 3) 2%+ (?+20+1) 2" + (®F+ 20+ 3) 2°
+ (cv2 + 2045) 2+ o2,

So, we can choose a and # with «, § # 0 and a # ( such that the coefficient of
2? = o + 283 + 1 becomes zero so that no exponent of x congruent to —1 modulo p;
i.e. f'(x) has an antiderivative having 12 = 2p + 3 distinct zeros.

2p+1€T,; 4 <1 <p: f (xr) must have 2p + [ — 1 distinct zeros. Let

fl ([E) _ x(k—2)p—l+2 ($2p+l—2 + 1) _ l,kp + l,(k:—Q)p—l—‘rQ.
(k—=2)p—1+2=—1(modp) <1 =3, since [ < p. But [ > 4;ie. f'(z)has an
antiderivative. Since 4 <1 < p, [ —2 # 0 (mod p). Hence, 222 + 1 has 2p +1 — 2
distinct zeros. So, f’(x) has 2p + [ — 1 distinct zeros.

In general;
sp+1eT,;2<s<k: Let

F () = (k=s)p+1 (xspfl + 1) — gk 4 p(k=s)pt1

Since (k—s)p+1 # —1 (mod p), f (z) has an antiderivative. Also, z*?~! + 1 has
sp — 1 distinct zeros, since sp — 1 # 0 (mod p). So, f' (x) has sp distinct zeros.
sp+2€T,;2<s<k—1: f (zr) must have sp + 1 distinct zeros. Let

f(x) = 2% 9P (2% 4 o 1) = 2" 4 k=Pt g (h=op,

Since (k — s)p and (k —s)p+ 1 # —1 (mod p), f'(x) has an antiderivative and since
(z? + 2+ 1) =1, 22 + £ + 1 has sp distinct zeros. Hence, f’ () has sp + 1 distinct
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Zeros.
sp+3€T,;2<s<k—1: f (zr) must have sp + 2 distinct zeros. Let

f/ (I) _ x(kz—s)p—3 <JI2 + %) (:L,sp—?) + ﬁ) (1;2 i 1)2

_ Ikp 3 kp 2 + 1xkp 6_,_51: s)p+3 ﬂx(k*S)erl + lﬂx(k*S)P*3
2" 2 2

kp—2, (k —2)p+3, (k—2)p+1, (k—2)p—3+# —1 (mod p), and kp—6 # —1 (mod p)

if p # 5. Hence, if p # 5 no exponent of z is congruent to —1 modulo p; i.e. f'(z) has

an antiderivative with sp + 2 distinct zeros.

If p=>5and k > s+ 2, then let

flz) = a* P @P ot 1) (2 +a)

P 4 qPg =P g g lhmsptl | p(k=s)p o (py(k=s=p+l Py (k=s—T)p
where 0 # a € K is not a root of Y + x + 1. Then no power of z congruent to —1
modulo p; i.e. f'(x) has an antiderivative. Also, 2 + x + 1 has sp distinct zeros
implying that f’ (z) have sp + 2 distinct zeros.
If p=>5and k =s+ 1, then deg f' () =5(s+1). Let

f/ (ZE) - (I(S_1)5 + 1) (Z'?) +Oé)2 (.%'3 +ﬁ) —
(675 +1) (21 + 2a + B) 2" + (o + 2a8) 2* + *Bz) .

Then the coefficient of x whose exponent is congruent to —1 modulo p is equal to
a? + 2a3. Hence, we can choose «, 3 € K* such that o # 3, o® + 2a3 = 0 and they
are not zeros of 2"V 4+ 1. Then, f' (z) has an antiderivative with 5s+ 2 distinct zeros.
sp+leT,;2<s<k—1and4<I[<p: f(r) must have sp+ [ — 1 distinct zeros.
Let

f/ (23) _ l,(k—s)p—l-i—? (xsp—i-l—Q + 1) _ .CIIkp + x(k—s)p—l-&—Z‘

(k—s)p—1+4+2 = —1 (mod p) <= | = 3, since | < p. But we have [ > 4; i.e.
(k—s)p—1+2%# —1 (mod p). So, f'(z) has an antiderivative. Since 4 < [ < p
[ —24#0 (mod p). Then x*?7=2 4+ 1 has sp + [ — 2 distinct zeros. Hence, f’ (x) hav
sp + [ — 1 distinct zeros.

Therefore, T, = {2, 3, ..., n}.

Lemma 2.23. Letn=kp+t+1;0<t<p—2and k > 2, then

T, =123, ....,n}.

Proof. Since in example 2.22 we give the case when ¢ = 0, we can assume that ¢ > 1.
Since ptn,1¢ T, and 2 € T,.
leT,;3<I<t+2ort+4<I[<p: f(z) must have [ — 1 distinct zeros. Let

f/ (I) — xkp+tfl+2 (1172 + 1) — xkp+t + xkp+t7l+2.

kp+t—I1+2 = —1 (mod p) <= | = t+3, since t, [ < p. So, f' () has an antiderivative.
Also, I — 2 # 0 (mod p), since 1 <1 —2<p—2;ie. 272+ 1 has [ — 2 distinct zeros.
Hence, f' (z) has [ — 1 distinct zeros.

t+3€T,: Let

f(z)= 2k=1p ($t + 1) (z + )P = 2"*t 4 2 4 oPy (k=Dp+t | po(k=1)p
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Since t < p—2, kp+t and (k—1)p+t can not be congruent to —1 modulo p. So,
/' (z) has an antiderivative. Since k > 2, (k — 1) p > p; i.e. 0 is a root of f'(x). Also,
x' + 1 has ¢ distinct zeros, because 1 <t < p—2 =t # 0 (mod p). We can choose
«a € K* so that a is not a zero of z* + 1 . Hence, f’ () has t + 2 distinct zeros.

In general;

sp+1e€T,; for1 <s<k: Let

f/ (l’) _ x(kfs)ertJrl (xspfl + 1) — xkart + x(kfs)p+t+1‘

(k—s)p+t+1=—1(modp) <=t =p—2. Hence, f'(z) has an antiderivative for
1 <t<p-3. Since 27! + 1 has sp — 1 distinct zeros, f’ (z) have sp distinct zeros.
Ift=p—2, thendeg f'(x)=(k+1)p—2.

If k> s+ 1, then let

f/ (;c) — p(k=s)p (xSpr + 1) (aj + a)P — p(kt1)p=2 + aPrkr=2 4 p(k=s+1)p + Osz(kfs)p,

where 0 # o € K is not a zero of 2?72 + 1. Since no exponent of x is congruent to —1
modulo p, f’(z) has an antiderivative and since sp — 2 = —2 # 0 (mod p), =72 + 1
has sp — 2 distinct zeros. Hence, f’(x) have sp distinct zeros.

If £ =s, then deg f' (z) = (s +1)p — 2. Let

Pl = @ @

pHIP=2 L 9qgsP 4 P (s—PH2 4 204 4 90 0p=2 | (2,

2

Since (s+1)p—2=p—-2 = -2 # —1 (mod p), and (s—1)p+2, 2p —4 #
—1 (mod p)(since p > 5), f' (z) has an antiderivative having sp distinct zeros.
sp+2€T,, for1 <s<k: Let

i (z) = g (F=s)p+t (2P +z+1) = ghptt o pk=s)ptttl 4 o (k—s)ptt,

(k—s)p+t# —1(modp)sincel <t <p—-2. (k—s)p+t+1=—1(mod p)
t = p— 2. Hence, f'(x) has an antiderivative for 1 < ¢ < p — 3. Since 2! + x + 1
has sp distinct zeros, f’ (z) has sp + 1 distinct zeros.

If t = p— 2, then let

F(z) = pk=s)p+t ($Sp 422+ 1) — ghott 4 pk=stl)p | o (k—s)p+t

Then, f’(x) has an antiderivative, having sp + 1 distinct zeros.
sp+leT,;3<I<t+1land1<s<k: f'(x) must have sp+ [ — 1 distinct zeros.
Let

f’ (x) _ $(k—s)p+t—l+2 (xsp+l—2 + 1) — ket + m(k—s)p+t—l+2.
(k—s)p+t—I14+2=—1(modp) <= 1l=1t+3,since3 <[ <t+land2<t<p-—2.
So, f'(x) has an antiderivative. Also, sp+ [ —2 # 0 (mod p), since 1 <[ —2 <p—3.
So, x*P*=2 41 has sp + [ — 2 distinct zeros. Hence, f’ (x) has sp+ [ — 1 distinct zeros.
sp+t+2€T,;2<s<k—1: f (z) must have sp + ¢ + 1 distinct zeros. Let

f/ (.CC) — x(kfs)p (xsp+t + 1) — xkp+t + x(kfs)p.

Since 1 <t <p—2,sp+t+#0and f (z) has sp+t+ 1 distinct zeros.
sp+t+3€T,;1<s<k—1,t+3<p—1: f'(x) must have sp+t+ 2 distinct zeros.
If £ > s+ 2, then let

f/ (SL’) _ x(kfsfl)p (xsert + 1) (l’ + a)p
gkttt L gppk=Dptt | (k=s)p 4 (o (k—s—1)p,
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Since 1 <t <p-—2, kp+tand (k—1)p+t can not be congruent to —1 (mod p). So,
/' (z) has an antiderivative. Since k > s+2, (k —s —1)p > p; i.e. 0is aroot of f' (z).
Also, 2P* + 1 has sp + t distinct zeros, because 1 <t < p—2 = sp+t # 0 (mod p).
If we choose @ € K* so that « is not a zero of 2" + 1, then f’(x) has sp + ¢ + 2
distinct zeros.

If k=s+1, thendeg f'(z)=(s+1)p+t. Let

_ 1 . )
f(x) = a? (t+3) (xt+2 + 5) (:c p—(t+3) —i—ﬁ) (xt+2 . 1)

§ (s+1)p—2 + 1

2 2
3 1
v p+t+1 - p—t—3
DB 2B,

x(s-‘rl)p-ﬁ-t . (s+1)p—2t—6 + ﬁxp+2t+3

where 8 € K* such that 22 +1, z~(#3) 4 3 and 22 —1 do not have a common zero.
(s+1)p+t+#—1(modp),sincel <t<p—4. (s+1)p—2=-2+# —1 (mod p).
(s+1)p—2t—6 = —1 (mod p) <= 2t = =5 (mod p) <= 2t = p — b since
2 <2t <2p-8. p+2t+3 = —1 (mod p) and p—t—3 = —1 (mod p) <=t = —2 (mod p)
but 1 <t < p—4. Hence, if 2t # p — 5, then f’(x) has an antiderivative. Also, t + 2,
sp — (t+3) # 0 (mod p), since t < p — 4. Hence, 22 + £, 22 — 1 have ¢ + 2 and
P~ (+3) 1 3 has sp — (t + 3) distinct zeros without having a common zero. Since
t+3<p—1,p—(t+3)>1;ie Oisarootof f'(z). So, f'(x) has sp+t+ 2 distinct
ZEros.

If 2t = p — 5, then let

f’ (x) _ (I(s—l)p+t+4+1) (I2t+3+ﬂ)2

x(s+1)p+t +2ﬁ$sp+t+2 +ﬁ2x(s—1)p+t+4+x4t+6 +2ﬁ$2t+3 +52,

where 3 € K* is not a root of z(*"YP¥+4 11 Then no exponent of z is congruent
to —1 modulo p. Hence, f’(z) has an antiderivative. Since 2t +3 = p — 2 and
t+4 =22 240 (mod p), f'(z) has [(s — 1)p+t+ 4]+ [2t + 3] = sp+ ¢ + 2 distinct
ZEeros.

spHleT;t+4<l<pand1<s<k-—1: f'(xr) must have sp+ [ — 1 distinct zeros.

Let
7 (z) = p(F=s)pti—l+2 (xsp+l—2 + 1) _ gkt g (kes)pt—lt2

(k—s)p+t—1+2%# —1 (mod p),sincet+4<I<pand1<t<p-—-5=4<
l—t <p—06. So, f'(x) has an antiderivative. Also, sp+ 1 — 2 # 0 (mod p), since
t+4<1<p=3<1-2<p—2. So, z**=2 41 has sp+ 1 — 2 distinct zeros. Hence,
f' (z) have sp + [ — 1 distinct zeros.

Hence, T, = {2, 3, ..., n}. ]

Corollary 2.24. Let K () be a rational function field and n € Z, n > 2. If p | n,
then T, = {1, 2, ..., n— 1}, where p > 5.

Proof. Since p | n, 1 € T, and deg f' () < n — 2. So, f'(z) can have at most n — 2
distinct zeros. Hence, n ¢ T',,. We can write a polynomial g (x) with degree n — 1 and
whose derivative has [ — 1 distinct zeros for 2 <1 < n — 1. Let f(z) = 2" + g ().
Then f’(x) has [ — 1 distinct zeros. So, l € T, for 2 <1 <n—1. O
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Now, let’s state what we have done so far as a theorem.

Theorem 2.25. Let K (x) be a rational function field and n € Z, n > 2. Then we
have:

(2) for charK =0, T, ={2, ..., n};

(¢2) for charK =2, T, ={1,2, ..., k}, ifn =2k and T, = {2, ..., k}, if
n=2k—1;

(2¢2) for charK =3, T, ={1, ...,n—1} if3|nand T, ={2, ..., n—2, n} if
31n;

(vi) for charK =p>5 T, ={1, ...,n—1} ifp|nand T, = {2, ..., n} if
pfnandn#p+1.
Ifn=p+1, thenT, ={2,4, ..., n}.
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Ramified Places of K(z) in K(z)/K(z) for z € K(x)

In this chapter, we are going to investigate S,, for n > 2 and char K = 0, where S,, is the
set consisting of integers i for which we can find z € K (z) such that [K (z) : K (2)] =n
and K (z) has exactly ¢ ramified places in K (x) /K (2).

K (z) /K (2) is a finite separable extension with

[K (2) - K (2)] = max{degg (), deg f (z)} = n,

where z = % ¢ K (2) for some f (z), g (z) € K [z] with ged (f (z) .9 (z)) = 1. Since

9(z)
charK = 0, K (z) /K (z) is a tame extension; i.e. there is no place of K (z) which
is wildly ramified in K (z) /K (2). Hence, 1 ¢ S,,. Then S, C {2, ---, 2n — 2},

by Hurwitz Genus Formula. Now, we try to find what S,, can be by looking at the
examples we are going to give.

Since K (x) /K (z) is tame, for all place P € P, wehave d(P | Q) =e (P | Q)—1,
where @ is the place of K (z) lying under P. When char K = 0, we know from chapter 2
that {2, ..., n} C S, since T, C S,,. So, we are going to give examples K (z) /K (z)
where K (x) has i > n + 1 ramified places.

Let z = % € K (x) with ged (f (z),9 (z)) = 1 and deg f (z) > deg g (z). Then

€(Poo | Qo) = deg f (z) —degg(z) =k >0

and
d(Poo|Qoo):e(Poo|Qoo>_1:k_1a

where P, denote the pole of z in K (x) and Q) denote the pole of z in K (z). So,
K (z) can have at most 2n — (k + 1) ramified places in K (x) /K (z) other than P.
Suppose that ¢ (z) has no multiple roots so that the only ramified place lying over
the pole of z in K (x) can be P,. Let @ be the place of K (z) corresponding to the
polynomial z — ¢ and P be a place of K (x) lying over Q. Also, let vg and vp denote
corresponding valuation functions, respectively. Then

vp(z—c)=e(P|Q)vg(z—c)=e(P|Q).

Also,
f(x) —cg (w)>
vp(z—c¢)=vp | ——">].
plema=vr < g(z)
Hence, @ is ramified if and only if f (x) — cg (z) has a factor with multiplicity greater

than 1 and this holds if and only if D (f —cg) = 0, where D (f — cg) denotes the
discriminant of the polynomial f — cg.
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If n =2, then deg Diff (K (z) /K (2)) = 2. So, Sy =T = {2}.

If n = 3, then degDiff (K (z) /K (2)) = 4. We know that T3 = {2, 3} C Ss.
We try to find z € K (z) such that K (z) /K (z) has 4 ramified places. Ramification
index of each ramified place must be equal to 1, since deg Diff (K (z) /K (2)) = 4. Let

z = % = % The places lying over the pole ., of z are the pole P, of x and the

zero Py of x with e (P | Qx) = 2 and e (Fy | Q) = 1; i.e. there is only one ramified
place lying over (Qs. Since z® + 1 has distinct roots, there is no ramified place of
K (x) lying over Qo; i.e. all ramified places of K (z), except the place lying over @,
corresponds to the polynomial z — ¢, for some ¢ € K*. We find which values of ¢, the
place (). is ramified.

3+ 1 3 —cr+1
—Cc= — .

€T T

Z—C=

From above discussion, we know that Q.. is ramified if and only if D (2® — cz + 1) = 0.
D (x?’ —cx + 1) = (—1)%3'2 det R (933 —cx +1, (x3 —cx + 1)’)

= —detR(m3—cx+1, 31;2—0)

_1 0 — 1 0 ]

01 0 —c 1
= —det|3 0 — 0 0

03 0 — 0

(00 3 0 —c|
= 27 —4c’.

27 — 4¢® has 3 distinct roots, say ¢; for i = 1, 2 and 3. Then the places Q., of K (z)
are ramified in K (x) /K (z) with ramification index 1; i.e. K (z) has 4 ramified places
in K (z) /K (2). Hence, there are 4 ramified places of K (z) in K (z) /K (2).

So, S5 = {2, 3, 4}.

Before returning this example, we will give some more examples.

Example 3.1. Let n = 4. Then K (z) /K (z) can have at most 6 ramified places.
5€ 8, Let z = x;:;.Then

€(Py | Qo) =3 and d(Py | Q) = 2.

Hence, K (z) can have at most 4 other places which are ramified in K (z) /K (z) by
Hurwitz Genus Formula. Notice that there is only one ramified place lying over Q).
So, other ramified places must lie over the places Q. of K (z) corresponding to the
polynomial z + ¢, for some ¢ € K.

i+ (c+ 1)z +2¢

Fres T+ 2
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Then

R<x4+(c—|—1)x—|—20, (SC4+(C+1)55+20),>

= R(z'+ (c+1)x+2c 42’ +c+1)

= det

oSO O O bk~ o o =

S O =~ O o = O

S == O O = o o

c+1
0

0

c+1

0
0
4

2c
c+1
0
0
c+1
0
0

0
2c
c+1
0
0
c+1
0

0
0
c+1

= —27¢4 +1940¢3 — 162¢% — 108¢ — 27.

D(z* + (c+1)x + 2¢) = 0 if and only if p(c) = —27c* + 1940¢ — 162¢* — 108¢ — 27
= 0. Since the roots of p(c¢) are very complicated, to see that all roots are different we
look for the R (p(c), p’ (c)), where p’ (c¢) = —108¢* + 5820¢* — 324c¢ — 108.

[ 97 1940 —162
0 —27 1940
0 0 -27
R(p(c),p' (c)) = det | —108 5820 —324
0 —108 5820
0 0 —108
0 0 0
— 8180557825676 673 024.

—108
—162
1940
—108
—324
5820
—108

—27
—108
—162

0
—108
—324
2820

0 0 ]
—27 0
—-108 =27

0 0

0 0
—-108 0
—-324 —108 |

Since R (p(c), p' (¢)) # 0, p(c) has 4 distinct zeros. Hence, K (z) has 5 ramified places
in K (z) /K (2), which shows that K (z) has 5 ramified places in K (x) /K (z).
6 € Sy Let 2= 472 Then e (P | Qo) = 2 and d (P | Qo) = 1, implying that P,

x242"
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is ramified in K (x) /K (z). Then z + ¢ = _I4+cz:v;r2x+2c and

R(.CE4+C$2+.CE—|—26, 43:3—1—2033—1—1)

0 ¢ 1 2¢ 0 O

1
01 0 ¢ 1 2 0
00 1 0 ¢ 1 2
= det{ 4 0 2 1 0 0 0
04 0 2 1 0 0
00 4 0 22 1 0
I 00 0 4 0 2 1 |

= 32¢° — 512¢* + 2044 + 288¢% — 27.

The roots of the polynomial 32¢® — 512¢* + 2044¢3 + 288¢? — 27 are 0.19982, 8. 067 8 &
0.98852i and —0.16774 £ 0.18915i. Hence, K (z) has exactly 6 ramified places in
K (z) /K (2).

So, Sy = {2, 3, 4, 5, 6}.

Example 3.2. Let n = 5. Then K (z) /K (z) can have at most 8 ramified places.
6 € S5 Let 2 =242 Then ¢ (Pa | Qoo) = 4 and d (P | Qso) = 3. Hence, K () can

z+2
have at most 5 other places which are ramified in K (z) /K (z). z+c¢ = %

and

R(z°+ (c+ 1)z +2¢ bz +c+1)

2c 0 0 0
c+1 2¢c 0 0

0 c¢c+1 2c 0

0 0 c¢c+1 2¢
0 0 0 0
c+1 O 0 0

0 c¢c+1 0 0

0 0 c¢c+1 0

0 0 0 c+1_

—_
—_

= det

o O O o o o o o

o O O O o o O = o

o O ol o O O = o o

o Ul o O O = o o o
)

oo o o 4+ o o o “+
—_

= 256¢° 4+ 51 280¢* 4+ 2560¢ + 2560¢% + 1280¢ + 256.

Then the roots of the polynomial 256¢® + 51 280c* + 2560¢? + 25602 + 1280c + 256 are
—200.26, —0.17539 £ 0.12088¢ and 0.15055 % 0.29562¢; i.e. it has 5 distinct roots.
Hence, K (z) has 6 ramified places in K (x) /K (z).
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7 6(155: Let z = iiig Then e (P | Qo) =3 and d (P | Qo) = 2. 24+c = a:5+<;x22r2z+2c
an

R(a:5+cx2+a:—|—20, 5ZL‘4—|—2(ZZL‘+1)

0 ¢ 12 0 0 0]
0 c 1 2¢ 0 0
1 c 1 2 0
0 0 ¢ 1 2
0 2c 0 0 0 0
0
5
0
0

= o O

= det

= o O

0 2¢ 1 0 0 O
0 0 22 1 0 O
5 0 0 2 1 O
0 5 0 0 2 1

= 216¢° + 58973¢* — 32002 + 256.

o o o o ot o o O =
o o o o o o o = O

Then the roots of the polynomial 216c® + 58 973¢* — 3200c? + 256 are +16. 5254,
—0.21565 £ 0.13919¢ and 0.21565 4 0.139 19:. Hence, K (z) has 7 ramified places.

8 Ed,S'g,: Let z = izig Then e (P | Quo) =2 and d (Py | Quo) = 1. 2+c = 965+Cx5533:2r+20
an

R(:l:5+ca:3+:v+20, 524 + 3ca? + 1)

10 ¢ 0 1 22 0 0 0
01 0 ¢ 0 1 2 0 0
00 1 0 ¢ 0 1 2 0
00 0 1 0 ¢ 0 1 2
= det |50 3 0 1 0 0 0 0
05 0 3¢ 0 1 0 0 0
00 5 0 3¢ 0 1 0 0
00 0 5 0 3¢ 0 1 0
I 00 0 0 5 0 3¢ 0 1 |

= 432¢7 — 3600¢° + 50016¢* + 8000¢® — 128¢% + 256.

Then the roots of the polynomial are —5.398 4, 2. 778 2+3. 737 8, —0.2355740.176 607
and 0.156 6 + 0.184 02i. Hence, K (x) has 8 ramified places.
So, S5 = {2, 3,4, 5, 6, 7, 8}.
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Example 3.3. Let n = 6. Then K (z) /K (z) can have at most 10 ramified places.
7€ Sg Let z =222 Then e (Py | Qoo) = 5 and d (Ps | Qso) = 4. Hence, K () can

z+2 7
have at most 6 other places which are ramified in K (x) /K (2). z+ ¢ = %

and

R(z%+ (c+ 1)z +2c 62° +c+1)

(10000 ¢+l 2 0 0 0 0 |
01000 0 c¢+1 2 0 0 0
00100 0 0 c¢4+1 2 0 0
00010 0 0 0 c+1 2 0
00001 0 0 0 0 c4+1 2
— det|60000c¢+1 0 0 0 0 0
06000 0 c¢c+1 0 0 0 0
00600 0 0 c¢41 0O 0 0
00060 0 0 0 c¢+1 0 0
00006 0 0 0 0 c+1 0
(00000 6 0 0 0 0 c+1

= —3125¢% + 1474 242¢° — 46 875¢* — 62500¢® — 46 875¢% — 18 750¢ — 3125.

Then roots of the polynomial are 0.45767, 471.73, —0.20007 £ 0.10285¢ and —1.
2823 x 1072 — 0.30227i. Hence, K (z) has 7 ramified places in K (z) /K ().

8 € Sg: Let z = izfg Then e (Py | Qo) = 4 and d (Py | @) = 3. Hence, K (x) can

have at most 8 ramified places in K (z) /K (2). 2+ ¢ = %j’;“c and
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R(m6+ca:2—|—m+20, 6m5+20x—|—1)

2c 0 0 0 O
1 2¢ 0 0 O
c 1 2¢ 0 0

0

o
—

— (@) =)
o

c 1 2¢

= o O O

2c

= o O O

= det

_ o O O

0
0
2c 0
1

o o O

1

0
0 0
0 0 Zc 0
0 0 0 2 1 O
6 0 0 0 2 1
0 6 0 0 0 Zc

= 2048¢" + 110592¢5 + 1492 736¢° — 172 800¢* + 45 000c* — 3125.

o o ] o o D [a] S o e} —
(@] (@) o] @] D (] e (@] (@) — (@]
(a] ] D [aw] (@) ] o — o ] e}
[\
o

o O O OO o o o o

0
0
0
0
0
1

Then the roots of the polynomial are 0.237 19, —27.057+1. 727 14, —0.238 52+0.109 261
and 0.17726 — 0.30944. Since all of them are distinct, K (z) has 8 ramified places in
K (x) /K (2).

9¢€ Sg: Let 2= ;21;‘ Then e (Py | Qo) = 3 and d (P | Q) = 2. Hence, K (z) can

have at most 9 ramified places in K (z) /K (2). z+ ¢ = %:2”2‘3 and

R (336 + ca® + x4 2¢, 62° 4 3ca? + 1)

(100 ¢ 0 12 0 0 0 0]
0100 ¢ 0 12 0 0 0
00100 ¢ 0 1 2 0 0
0001 00 ¢ 0 1 2 0
0000 1 00 ¢ 0 1 2
— det |6 003 0 1 0 0 0 0 0
06003 0 1 00 0 0
0060 03 0 1 00 0
0006 0 03 0 1 0 0
0000 6 0 03 0 1 0
(0000 06 003 0 1

= —2916¢% + 69984c” — 559 872¢% + 1492 884¢° + 2700¢* — 108 000> — 3125.
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Then the roots of the polynomial are 0.36386, 7.1411, 9.7136 x 1072 4 0.237 771,
—0.26628 £ 0.129 77i and 8.4167 & 0.641 144. Hence, K (x) has 9 ramified places.
10 € Sg: Let z = £ Then e (Py | Qo) = 2 and d (Ps | Qo) = 1. Then z + ¢ =

442"
28 +cxt+r+2c
442

and

R(xﬁ + et + 2 + 2¢, 62° + 4ea® + 1)

10 ¢ 0 0 1 2¢ 0 0 0 0
01 0 ¢ 0 0 1 2 0 0 0
001 0 ¢ 0 O 1 2¢ 0 0
000 1 0 ¢ 0 0 1 2 0
000 0 1 0 ¢ 0 0 1 2
= det | 6 0 4c 0O 0 1 0 0 0 0 O
06 0 4¢ 0 0 1 0 O O O
00 6 0 4¢ 0 0 1 0 0 O
00 0 6 0 4¢c 0 0 1 0 O
00 0 0 6 0 4 0 0 1 0
000 0 0 6 0 4 0 0 1 |

= 8192¢° + 221 184¢” + 768¢% + 1492 884¢° + 259 200¢* — 3000 — 3125.

Since it has 9 distinct roots, namely 0.263 76, 5.9897 x 1072 £ 0.269 931, 0.325 76 £ 3.
406 8i, —0.23939 + 3.9464i and —0.278 15 + 0.161 154, K () there are 10 ramified
places in K (z) /K (2).

So, S¢ ={2,3,4,5,6,7,8,9, 10}.

Now, we have enough examples to make the following conjecture.

Conjecture 3.4 (charK = 0). Let K (x)/K (z) be a function field extension of
[K () : K (2)] = n > 3, where z = %42 with 1 < k < n —2 and let Py and Q
denote the pole of z and z in K (z) and K (z), respectively. Then K (z) has n + k
ramified places in K (x) /K (z). If P is a ramified place of K (x) other than P,, and Q

is the place of K (z) lying under P, then d (P | Q) =1and d (P | Q) =n— (k+1).

Corollary 3.5 (charK = 0). Let K () be a rational function field. If conjecture 3.4
is true, then we can find z € K (x) such that K (x) /K (z) has exactly i ramified place
for2<i<2n-—2;ie S,={2, ..., 2n—2}.
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Now, we are going to investigate the rational function field extension K (x) /K (z),
where z = % to give a proof for a part of corollary 3.5. In fact, we have seen this

for n = 3 at the beginning of this chapter.

Example 3.6. Let z = % € K (x). There is only one ramified place lying over the
pole Qo of z, namely the pole P, of z with e(Py | Q) = 3 and d (Py | Qx) = 2.

4
z—l—c:%&”“. Then

R(m4+cx+1, 4m3+c) = det

o O O k=~ O O

S O bk~ O O = O

S == O O = O O

o

0
0
4

0

0

o o o = o O

C

= —27¢" 4256 = (—1) 33t + 4%,

Since —27¢* + 256 has 4 distinct roots, K (z) has 5 ramified places in K (z) /K (2).

Example 3.7. Let z = xZ—“ € K (x). Then z +c¢ =

—_

R(x5+cx—|—1, 5x4—i—c) = det

o o o o ot o o o

—_

o o o ot o o o

zoter+l
0 0 ¢
000
100
010
0 0 ¢
000
5 0 0
05 0
0 0 5

and

o o O O

o o O

= 256¢° + 3125 = 4*¢° + 5°.

Hence, K (z) has 6 ramified places in K (x) /K (z).
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Example 3.8. Let z = xZ—“ € K (x). Then z +c¢ = 2Otcatl o q

—
] (aw] (a] (@)
o
—
o

— e} [a) e}

o o o O
o

R(z°+cx+1,62°+¢c) = det

O
o o o O

o o o O

o
o @] o o
(@] (@) @] (@] (@) — o] (@] (@) @]

o] (@] (@) @] (@] D @] o] (@] (@) —
o] (@] (@) o] D (@) ] o] (@]

] (@] (@) (@) ] (@) ] o — (@) ]
] (@] D ] [aw] [a) o — (@] (@) =}
ew] D (@) ] (aw] (@] — ] (@] (@) e}
D (a] (@) ] (ew] o

] (a] [a) ]

] o [a)

[a] (a)

o o

o

= —3125¢° + 46656 = (—1)5°c® + 6°.

Hence, K () has 7 ramified places in K (z) /K (z).

Now, we can give the general case.

Lemma 3.9. Let K (z) be a rational function field and = = ** € K (z). Then
K (z) /K (2) is a function field extension with [K (x): K (2)] = n, which has exactly
n + 1 ramified places; i.e. n+ 1€ S, for alln > 3.

Proof. Places of K (z) lying over the pole Q) of z are the pole P, of x and the zero
Py of z with e (P | Qo) =n—12>2and e(Py | Q) = 1; i.e. the only ramified place
lying over Q is Ps With d(Pyx | Q) = n — 2. Then, by Hurwitz Genus Formula,
K (z) can have at most n ramified places other than P.,, which must lie over the places
of K (z) corresponding to some polynomial z + ¢ for some ¢ € K. For z + ¢ = %,
R(2" +cx+1, nz" ! +¢)
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= det

= det

[a)
|
—
S
|
—_
SN~—
)
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0 0
0 0
c 1
0 0
0 0
—(n—=1)c —n
0 c




—n 0 0 0
—(n—=1)¢c —n 0 0
= (—=1)""" ndet
0 0 —n 0
0 0 —(n=1)c —n
—(n=1)c -n 0 0
0 —(n—=1)c 0 0
+ (=1 cdet
0 0 —(n—=1)c —n
0 0 0 —(n—1)c

Hence, R (2" + cx + 1, nz"' + ¢) has n distinct roots; i.e. K (z) has n + 1 ramified
places in K (z) /K (2). So, K (x) has n + 1 ramified places K (z) /K (z). O
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A Generalization of Kummer and Artin-Schreier Extensions

Let F’ be an extension of a function field F' such that F’ = F (z), where = satisfies
the equation f(z) = z for some z € F and f(z) € K[z]. We can consider F’
as a compositum of the fields F' and K (x) over the rational function field K (z).
Throughout this chapter, we assume that F’ is separable over K (z). Let P € Pp and
P" € P such that P’ | P and let Q := PN K (z) and @' := P'N K (z). Suppose that
at least one of the extensions P | Q or @' | @ is tame. Then, by Abhyankar Lemma,

e(P'|Q)=lem{e(P|Q),e(Q | Q)}= gcde{t(jll \%)e (f (lc’ﬂ)@)} |

Also, by transitivity of the ramification index,
e(P'1Q)=e(P'|P)e(P|Q).

Hence,

e(@1Q)
ged{e(P|Q), (@ [Q)}

e(P'| P) =

Example 4.1. Let F' = F(z), where z = 2" for some z € F and n > 2 with
ged (n, p) = 1 in the case of p = charK > 0. Then F' = F.K (x). All the ramified
places of K (z) in K (z) /K (z) are the pole P,, and the zero Py of x, which are totally
ramified. Since ged (n, p) =1, K (z) /K (z) is tame. Hence,

e (P | Qx) =€ (Fo | Qo) =n

and
d(Pe | Qo) =d(Po | Qo) =n —1,

where o, and @)y denote the pole and the zero of z in K (z), respectively.

Let P € Pp such that P is not a pole or a zero of z; i.e. vp(z) = 0 and let
Q € Pg(:) such that P | Q. Since @ is unramified in K (z) /K (2), i.e. e(Q'| Q) =1,
where Q' € Pk (y) such that P’ | Q' | Q. Hence,

(@ 1Q) B 1 _
ged (e (P1Q), e(@ Q)  ged{e(P|Q), 1}

So, if vp (z) = 0, then P is unramified in F’, which gives d (P’ | P) = 0. Suppose that
P is a zero of z and let P’ be a place of F” lying over P. Since the zero (g of z is totally

1.

e(P'| P) =
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ramified in K () /K (2); i.e. Fy is the only place of K (x) lying over Qq, P’ | Py | Qo
and since vp (2) = e (P | Qo) vg, (2) = e (P | Qo),

e (P | Qo) _ n
ged{e(P|Qo), e(Po | Qo) ged{vp(z), n}

Similarly, let P is a pole of z,and let P’ be a place of F’ lying over P. Since the
pole Q. of z is totally ramified in K (x) /K (2), P' | Px | Qw, and since vp (z) =
(P | Qu) g (2) = —e(P | @),

e(P'| P)=

e (Poo | Qu) _ n
ged{e (P | Q) , e (P | Q) ged{vp (2), n}

When charK = p > 0, we have ged (n, p) = 1; i.e. P’ | P is tame. Hence,

e(P"| P) =

ged {vp (2), n} B

Notice that ged {e (P | Q), 1} = ged{vp (2), 1}, when vp (2) = 0.

d(P'|P)=¢(P|P)—1= 1.

Now, let’s summarize what we have done in example 4.1.

Corollary 4.2. Let F' be an extension of function field F' such that F' = F (x), where
x satisfies the equation z = x" for some z € F, n > 2 with ged (n, p) = 1 in the case
of charK =p > 0. Let P € Pp and P' € P be an extension of P. Then

e(P’]P):% and d(P' | P) = 2 —1,

rp

where rp = ged {vp (2), n}.

Example 4.3 (charK = p > 0). Let f (T) = T"" +a, """ +- - -4a,TP+aT € K [T].
Then f(z4+vy) = f(2)+ f(y) for z, y € K. Now, let F' = F (z), where z satisfies
the equation f(x) = z for some z € F' and ag # 0 so that K (x) /K (z) is separable.
Suppose that for each P € Pp, there exists y € F' such that either vp (2 — f (y)) > 0
or vp (z — f(y)) = —m for some m € Z with ged (m, p) = 1. Since y € F,

F'=F(z—y)=F(),
where 2’ = x — y. Also, let 2’ = z — f (y). Then
d=z—fy)=f@)-fly)=fle—y) =)

Let P € Pp such that there exists y € F with vp (2 — f(y)) > 0 and P’ € P lying
over P. Then we can consider F’ as a compositum of F' and K (z’) over the field
K (?'), where 2/ =z —y and 2’ = f(2'). Let Q € Pg.y and Q" € P,y such that
P | P|Qand P | Q | Q K(z') has only one ramified place in K (2) /K ('),
namely the pole P,, of z’, which lies over the pole @, of 2’ and it is totally ramified;
i.e. €(Px | Qo) = p™. Since vp (2') > 0, P does not lie over Q.. Hence, e (Q' | Q) =1,
giving that e (P' | P) = 1.
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Now, let P € Pp such that there exists y € F with vp (2 — f (y)) = —m for some
m € ZT with ged (m, p) = 1 and P’ € P lying over P. By the same change of
variable, we can consider F’ as a compositum of F' and K (z’) over the field K (2/).
Since vp (2') < 0, P is a pole of 2. So,we have P’ | P | Qu and P’ | Py | Q. Then

vp () = €(P | Qo) vg (2) = =€ (P | Qu) -
Since vp (2') = —m and ged (m, p) = 1,

e(P|Qx)=mand d(P|Qx)=m—1.
Also, P | Q« is tame, since ged (m, p) = 1. Hence,

e (P | Q) _ p" — "
ged{e (P | @), e (P | @)} ged{m, p"} ’

i.e. P is totally ramified in F’/F. By Abhyankar Lemma,
e (P Q) =lem{e (P | Q) , € (Po | Qoo)} = lem{m, p"} = mp".
Also, by transitivity of ramification index,
e(P'| Qu) =€ (P | P)e (P | Qo)
Since € (Py | Qo) = p",

e(P'| Px)=mand d(P'| Pyx)=m — 1.

e(P'| P)=

Since P, is the only ramified place in K (2') /K (2'), by Hurwitz Genus Formula,
d(Px | Qx) =2 (p™ — 1).So, by transitivity of different,

d(P'| Q) = e(P'|Px)d(Pu | Qo) +d(P'| Px)
2mp" —m — 1

and

d(P'| Qo) = e(P'| P)d(P | Qu) +d (P | P)
— d(P' | P)= ("~ 1) (m+1).

Corollary 4.4 (charK =p > 0). Let I’ be an extension of function field F' such that
F' = F (x), where x satisfies the equation z = xpn+an_1xpnfl+~ <4arxP+apx for some
z € F, where a; € K for alli =0, ---, n—1 with ag # 0. Suppose that for each place
P € Pp, there ezists y € F' such that either vp (z — f(y)) >0 orvp(z — f(y)) = —m
for some m € Z* with ged (m, p) = 1 and suppose that there exists at least one place
satisfying vp (z — f (y)) = —m. Then

(2) [F": F] =p",

(¢2) the places P € Pp, for which there exists y € F with vp (z — f (y)) > 0, are
unramified in F'/F and

(i¢2) the places P € Pp, for which there exists y € F with vp (z — f (y)) = —m,
are totally ramified and d (P'| P) = (p" — 1) (m + 1).
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Remark 4.5. If n = 1, then for each place P € P there exists y € F' such that either
vp(z—f(y)) >0orvp(z— f(y)) =—m for some m € Z* with ged (m, p) = 1.

Proof. Suppose vp (z — f(y1)) = —Ip, for some | € Z*. Since vp is onto function,
there exists ¢ € F' such that vp (t) = —I. Hence,

Z p—
vp (2= f (1)) = vp () = vp (%) =0;
ie. L(yl) € Op \ P, where Op is the valuation ring corresponding to vp and P is the
max1mal ideal of Op. Then = f ZJw) (py £ 0. Since Op/P is a perfect field, there exists
y» € Op such that ZW (P) = (y, (P))”.

L) (p) = g Py
(L) -0
v ( é(yl)—yg’)m

o @)+ vn (LU ) o)

vp (2 — f(y1) — tPy5) > vp (17) = —Ip,

el

where f (T) = TP —T. Since %ﬁyl) (P) = (y2 (P))" and vp (%ﬁ”“) =0, vp (y2) = 0.
So,

vp (tys) = vp (1) = =1 > —Ip.
Also, vp (z — (y] — y1) — tPyh) > —Ip. Hence,

vp (2 — (Y] —y1) — (tPys — tyz)) > min{vp (z — (47 —y1) — t7y5) , vp (ty2) } > —Ip.
Now, let y = y; + ty2. Then

2= fy) =2 ((n+1)" — (W +ty2) =2 — (W —y1) — ("5 — tya) .
Hence, vp (2 — f (y)) > —Ip. O

Corollary 4.6 (charK = p > 0). Let F' be a extension of function field F' such
that F' = F (z), where x satisfies the equation z = xP — x for some z € F. Then
for each place P € Pp, there exists y € F such that either vp(z — f(y)) > 0 or
vp(z— f(y)) = —m for some m € Z* with ged (m, p) = 1. Then

(¢) the places P € Pp, for which there exists y € F with vp(z — f(y)) > 0, are
unramified in F'/F and

(¢2) the places P € P, for which there exists y € F with vp (z — f (y)) = —m, are
totally ramified and d (P' | P) = (p—1)(m+1).

In fact, corrollary 4.2 and 4.6 are well-known formulas for Kummer and Artin-

Schreier extensions, respectively. Now, we are going to generaralize these formulas for
another extension.
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Example 4.7. Let I’ be an extension of function field F' such that F/ = F'(x), where
x satisfies the equation z = % for some z € F and 2 <n € Z. Let charK = p. In
the case of p > 0, suppose that p is an odd prime. Now, consider F’ as a compositum
of the fields F' and K (z) over the rational function field K (z). Let P € Pr, P' € P
with P’ | P and vp, vpr denote the valuation function corresponding to P and P’,
respectively.

Case(z): Suppose that p { n, n — 1. Let QQ« denote the pole of z in K (z) and
vg,, denote the corresponding valuation function. Then () has 2 extensions in K (z),
namely the pole P, and the zero Py of z with e (P | Q) =n—1and e (P | Q) = 1;
i.e. P isthe only ramified place lying over Q) with d (Py | Qo) = n—2, since p{ n—1.

Suppose that vp (z) < 0; i.e. P is a pole of z. Since P, and P, are the only places
lying over Q« in K (z), either PPN K (x) = Py, or PPNK (z) = By. Say PPN K (x) =
P ie vp () <0.

vp (2) = e(P | Qo) Vu (2) = € (P | Qo) = —vp (2).
Hence, by Abhyankar Lemma, we have

e(Po | Quo) _ n—1
ged{e (P | Qu), e (P | @)} ged{vp(2),n—1}

Since pfn —1, pte(P' | P). Hence,

e(P'| P) =

d(P'|P)=e(P'|P)-1.

Similarly, by Abhyankar Lemma, e (P’ | P) =1 and d(P' | P) =0 when PN K (x) =
B.

Let Q. be the place of K (z) corresponding to the polynomial z+ ¢, for some ¢ € K.
We have seen in chapter 3 that . is ramified in K (z) if and only if 2™ + cx + 1 has
multiple roots. This holds if and only if D (2" + cz + 1) = n"+(=1)""" (n — 1)" """ =
0. In other words, Q. is ramified in K (z) if and only if ¢ is a root of the polynomial
r(x) =a" + (n_—fl)n_l n™. Since p  n, r (z) has n distinct roots. By Hurwitz Genus
Formula, each ramified place has different index 1. Since p # 2, each ramified place
has ramification index 2. Therefore, (). has n — 1 extension in K (z), by Fundamental
Equality.

Say P.:= P'NK (x). If vp (2 + ¢) > 0 for some ¢, which is a root of the polynomial
r(z), then either e(P. | Q.) = 1 or 2, by above discussion. If e(P. | Q.) = 1, then
e(P'|P)=1.Ife(P.| Q.) =2, then

¢(P.] Q) _ 2
ged{e(P1Q). e (P [Q))  eed{up(z+0).2)

Hence, P’ | P is ramified if and only if e (P, | Q.) = 2 and vp (z + ¢) is not divisible by
2.

e(P'| P) =

Now, let vp (2 4 ¢) < 0 for all ¢, which are the roots of r (z); i.e. Q. is unramified
in K (z). So, e(P.|Q.) =1. Thene(P' | P)=1.
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Case(i): Suppose p | n. Let n = kp', for some [ € Z* with ged (k, p) = 1. Then
!

7=t = (x’u:) and D (2" +cz+1) = (=1)" " (n — 1)"" ¢". So, Qu and Qq are
all the ramified places of K (z) in K (x) /K (z). If P"| P is ramified, then P is a pole
or a zero of z.

Let vp (2) < 0 and vpr (x) < 0. Since ptn — 1, Py | Qo is tame. Then

n—1
ged{vp (2), n—1}

If vpr (x) > 0, then e (P | P) = 1.

Since ged (k, p) = 1, #¥ 4+ 1 has k distinct roots. Let P; denote the place of K ()
corresponding to zeros of x*+1fori =1, -+, k. Let vp (2) = m > 0 and ged (m, p) = 1.
Then P is a zero of 2. So, P"N K (z) = P; for some 1 < i < k. Then e (P; | Qy) = p'
and e (P | Qo) = vp (z) = m. Since p{m, P | Q is tame. Hence,

e(P; | Qo) _ I —
ged{e(P | Qo), e(F | Qo)}  ged{m, p'} '

e(P'| P)= and d(P'| P)=e(P'| P)— 1.

e(P'| P)=

Case(¢42): Suppose p | n — 1. Then D (2" 4+ cx + 1) = n". Since D (2™ + cz + 1)
has no zeros, the only ramified place of K (z) in K (z) /K (z) is the pole of x with
e(Py | Q) =n—1and d(Pyx | Q) = 2 (n — 1), by Hurwitz Genus Formula. Hence,
if P is not a pole of z, then P’ | P is unramified.

Let P be a pole of z; i.e. vp(z) < 0. If P’ lies over the zero of z; i.e. vp (z) > 0,

then P’ | P is unramified. Suppose vp: () < 0 and vp (2) = —m for some m € Z*
with ged (m, p) = 1 so that P | Q« is tame, since e (P | Q) = m. Then
Poo | Qoo —1
e (P/ | P) — e( ‘ Q ) . n

ged{e (P Qu), e(Pu | @)} ged{vp(z), n—1} "
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