
TANDEM APPROACH FOR INFORMATION FUSION IN AUDIO

VISUAL SPEECH RECOGNITION

by

HARUN KARABALKAN

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

February 2009



TANDEM APPROACH FOR INFORMATION FUSION IN AUDIO VISUAL

SPEECH RECOGNITION

APPROVED BY
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Keywords: speech recognition, audiovisual, multimodality

Abstract

Speech is the most frequently preferred medium for humans to interact with their

environment making it an ideal instrument for human-computer interfaces. How-

ever, for the speech recognition systems to be more prevalent in real life applica-

tions, high recognition accuracy together with speaker independency and robustness

to hostile conditions is necessary.

One of the main preoccupation for speech recognition systems is acoustic noise.

Audio Visual Speech Recognition systems intend to overcome the noise problem

utilizing visual speech information generally extracted from the face or in partic-

ular the lip region. Visual speech information is known to be a complementary

source for speech perception and is not impacted by acoustic noise. This advantage

brings in two additional issues into the task which are visual feature extraction and

information fusion.

There is extensive research on both issues but an admissable level of success has

not been reached yet. This work concentrates on the issue of information fusion

and proposes a novel methodology. The aim of the proposed technique is to deploy

a preliminary decision stage at frame level as an initial stage and feed the Hidden

Markov Model with the output posterior probabilities as in tandem HMM approach.

First, classification is performed for each modality separately. Sequentially, the

individual classifiers of each modality are combined to obtain posterior probability



vectors corresponding to each speech frame. The purpose of using a preliminary

stage is to integrate acoustic and visual data for maximum class separability. Hidden

Markov Models are employed as the second stage of modelling because of their ability

to handle temporal evolutions of data.

The proposed approach is investigated in a speaker independent scenario for digit

recognition with the existence of diverse levels of car noise. The method is compared

with a principal information fusion framework in audio visual speech recognition

which is Multiple Stream Hidden Markov Models (MSHMM). The results on M2VTS

database show that the novel method achieves resembling performance with less

processing time as compared to MSHMM.
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GÖRSEL-İŞİTSEL KONUŞMA TANIMA’DA ARDIŞIK VERİ KAYNAŞTIRMA

YAKLAŞIMI

HARUN KARABALKAN

EE, Yüksek Lisans Tezi, 2009

Tez Danışmanı: Hakan Erdoğan

Anahtar Kelimeler: konuşma tanıma, görsel-işitsel, çok kiplilik

Özet

İnsanların çevresiyle etkileşiminde en çok tercih ettiği araçların başında ses ve

konuşma gelir. Bu durum, konuşma tanıma sistemlerini gelecekteki insan-bilgisayar

arayüzlerinin vazgeçilmez bir parçası haline getirmektedir. Ancak, konuşma tanıma

sistemlerinin gerçek hayatta uygulanabilir olması için çevresel gürültüden etkilen-

meden yüksek tanıma oranlarına ulaşabilir olması gerekmektedir. Görsel-İşitsel

Konuşma Tanıma Sistemleri, işitsel gürültünün olumsuz etkilerini en aza indirge-

mek için dudak hareketlerinden elde edilen görsel konuşma bilgisini kullanmak-

tadır. Görsel bilginin sisteme dahil edilmesinin sebebi, konuşma tanımada görsel

bilginin işitsel bilgiyi bütünleyici bir bilgi kaynağı olması ve işitsel gürültüden etk-

ilenmemesidir. Bu avantaj ile birlikte sistem tasarımı açısından iki yeni husus ortaya

çıkmaktadır. Hususlardan ilki, görsel öznitelik çıkarımı, diğeri ise görsel ve işitsel bil-

ginin kaynaştırılmasıdır. Bu çalışma, görsel ve işitsel bilginin kaynaştırılması prob-

lemine odaklanmakta ve özgün bir görsel-işitsel konuşma tanıma sistemi önermektedir.

Önerilen yöntemde, her iki bilgi akımı için ayrı ayrı sınıflandırıcılar eğitilmekte

ve daha sonra bu sınıflandırıcılar bir birleştirici sınıflandırıcısı ile birleştirilmektedir.

Böylece, görsel ve işitsel bilgi kaynaştırılmış olmaktadır. Birleştirici sınıflandırıcısının

çıktısı olan sonsal olasılık vektörleri ise Saklı Markov Modelleri için gözlem vektörleri

olarak kullanılmaktadır.



Önerilen yaklaşım ile tasarlanan kişiden bağımsız rakam tanıma sistemi, değişen

seviyelerde araba gürültüsünün mevcut olduğu koşullarda test edilmektedir. Yeni

yöntem, şu ana dek önerilmiş en başarılı görsel-işitsel konuşma tanıma sistem-

lerinden biri olarak kabul edilen Çok Akımlı Saklı Markov Modeli (ÇASMM) ile

tanıma oranı ve hız açısından karşılaştırılmaktadır. Deneysel sonuçlar göstermektedir

ki, yeni yöntem daha az işlem yükuÿle ÇASMM yöntemine yakın tanıma oranlarına

ulaşmaktadır.
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Chapter 1

Introduction

1.1 Motivation

Speech is the most frequently preferred medium for humans to interact with their

environment. Hence, speech recognition systems are promising candidates for future

human-computer interfaces. However, for a real life application, speech recognition

technology must offer high recognition accuracy as well as high degree of robustness

against all kinds of degrading circumstances. The main difficulty for a prosperous

speech recognition system is the acoustic noise which is almost always present in

real life applications.

Although, some speech recognition systems exhibit high recognition rates in

situations where there is no acoustic noise, their performances degrade dramatically

with decreasing Signal-to-Noise Ratio (SNR). A solution to the problem lies in

the psychophysics of human perception of speech. It is demonstrated by McGurk

that humans integrate visual speech information generally obtained from the lip

region with the acoustic information in order to recognize speech [1]. McGurk’s

work also claims that visual speech information is not a secondary source for speech

perception, instead it is complementary to acoustic information. This phenomenon

gives the motivation to include visual information in speech recognition systems

especially when the recognition systems are impacted by environmental noise.

On the other hand, the idea of using visual speech information brings in two

additional issues to speech recognition. First issue is to discover the most appro-

priate visual feature extraction scheme. Second issue is to determine the visual

information integration procedure. To date, there is no such visual feature that

has found common acceptance as the most appropriate feature set but there are

1



some techniques that most of the work is concentrated on. Beyond that, fusion

of the information from the two modalities remains as the main focus of improve-

ment. Researchers intuitively propose statistical information fusion methodologies

for audio visual speech recognition but their performances have not yet reached an

admissable level. This work intends to contribute to such progress of information

fusion for audio visual speech recognition systems proposing a novel methodology

which is fast and easy to implement.

Information fusion methods in audio visual speech recognition can be categorized

in three main groups. The first group is Feature Fusion or Early Fusion in which

the features from the two modalities are concatenated to form a combined feature

vector and the combined feature vector is fed into a Hidden Markov Model (HMM)

as an observation. The second group is Decision Fusion or Late Fusion in which

the features from different streams are separately modelled with HMMs and a final

decision is made by combining the decisions according to a designated rule. The

third group is Model Fusion in which the features from the two modalities are

modelled in a parallel structure with HMM. The primary model fusion technique

is Multiple Stream Hidden Markov Model (MSHMM) with more advanced versions

such as Product HMM, Factorial HMM and Coupled HMM. A novel framework

is proposed in this thesis as the fourth category of audio visual information fusion

techniques, named Tandem Fusion. The novel approach has grounds both in Feature

Fusion and Decision Fusion and is based on employing a preliminary decision stage

before HMM training.

1.2 Literature Review

The benefit of visual information for speech recognition is first investigated by Sumby

and Pollack who conducted speech intelligibility tests with and without visual infor-

mation and compared the two cases [2]. McGurk demonstrated that incorrect visual

information can cause humans to perceive the true utterance wrong and concluded

that visual information is in fact complementary to the acoustic information [1].

This phenomenon is called the McGurk Effect.

McGurk effect has been the primary motivation for audio visual speech recog-

nition research introducing the visual feature extraction and the information fusion

2



issues into the problem. The information fusion problem is addressed in many works,

this thesis being one. Petajan was the first to create an audio visual speech recogni-

tion system [3]. In that first system, visual information is used to select one of the

best two candidates from the audio based recognizer to give the final decision for

the spoken word. Tomlinson et. al. [4] focused on the problem of information fusion

in terms of feature concatenation where the feature vectors from the two streams

are concatenated to train a single HMM. Tomlinson observed improved performance

compared to the audio-only speech recognition systems [4]. Since the concatenation

of the two feature vectors results in a high dimensional feature vector, Potamianos

et. al. [5] applied Linear Discriminant Analysis to the combined feature vectors for

dimensionality reduction before feeding the feature vectors to the HMMs.

Adjoudani and Benoit et. al. [6] and Teissier et. al. [7] compared the decision

fusion and the feature fusion techniques to conclude that decision fusion achieves

higher recognition accuracy. Both Adjoudani and Teissier trained audio-only and

video-only HMMs and then linearly combined the log-likelihoods of the two streams

adjusting weights for each.

Multiple Stream HMM, in which the two streams are independently modelled,

is investigated by Dupont for audio visual speech recognition. This paper reports

the superior performance of MSHMM compared to both feature fusion and decision

techniques [8]. MSHMM is accepted as one of the most successful audio visual in-

formation fusion methodologies [8, 9]. A drawback of MSHMM is the restriction of

the audio and visual streams to be state synchronous so that a transition from a

state to another takes place at the same time. This is not a desirable situation since

the visual information can sometimes precede the acoustic information, i.e., the lip

movement can occur before the speech is produced. Product HMM (PHMM), which

is an extension of MSHMM, allows state asynchrony between the two streams forcing

the streams to be synchronous at the phoneme boundaries [10]. There are also more

advanced HMMs utilized in audio visual speech recognition which include Factorial

HMM (FHMM) and the Coupled HMM (CHMM). In FHMM, the audio and visual

states are independent of each other, but they jointly model the likelihood of the au-

diovisual observation vector, and hence become correlated indirectly [9]. In CHMM,

the likelihoods of the audio and visual observation vectors are modeled independent

3



of each other, but each of the audio and visual states are conditioned jointly by the

previous set of audio and visual states [11]. The performances of MSHMM, PHMM,

FHMM and CHMM are compared by Nefian [9]. The results in that work showed

that PHMM and FHMM do not improve the recognition rate compared to MSHMM

and CHMM outperforms MSHMM by absolute 2% approximately.

A novel information fusion framework is proposed in this work which is based

on tandem feature extraction method of Hermansky [12]. The idea of tandem fea-

ture extraction is driven from the idea of Hybrid HMM. The conventional HMMs

generate observations from a Gaussian Mixture distribution but there is some work

that replaces Gaussian Mixture Model (GMM) by a more discriminative model tak-

ing the name Hybrid HMM. To date, Neural Networks (NN) and Support Vector

Machines (SVM) are used in hybrid HMM structures. A hybrid NN/HMM sys-

tem showed superior performance compared to a conventional HMM system in [13].

However, it is stated by Bourlard, Morgan and their partners in Wernicke Project,

that hybrid approaches employing neural networks are computationally very ex-

pensive and traning neural network parameters for speech recognition in standard

workstations is very impractical, nearly impossible [14]. Similar to NN/HMM hy-

brid system, SVM/HMM hybrid architecture is proposed and analysed for several

acoustic speech recognition tasks by Ganapathiraju in a series of papers [15, 16, 17]

reporting improved performance of the hybrid system compared to a conventional

HMM system.

Garcia-Moral compared the performance of a neural network based hybrid sys-

tem with an SVM based hybrid system and concluded that they exhibit resembling

performance [18]. Gordan et. al. [19] and Krüger et. al. [20] implemented an

SVM/HMM hybrid method for visual speech recognition referencing Ganapathi-

raju’s work. The idea of hybrid SVM/HMM is also applied to audio visual speech

recognition by Gurban et. al. [21] where one-versus-rest SVMs are trained for each

modality and the outputs of the two modalities are combined with the product rule.

Deficiency of GMM in hybrid approaches led Hermansky et. al. [12] to com-

bine NN processing with GMM modelling. Hermansky used NN to obtain posterior

probabilities and the posterior probabilities are fed into a conventional HMM to

report 50% improvement compared to the baseline system. The idea is that the
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classifier posteriors are more discriminative features as compared to regular features

for HMMs. The approach employing a classification stage before the HMM stage

is named as the Tandem Approach. Hagen and Morris made a comprehensive anal-

ysis of the tandem approach by testing it on multistream audio data and declared

that the tandem approach performs better than the conventional HMM systems.

In their work, a stream corresponded to a different audio feature set [22]. The

posterior probabilities from each stream are concatenated by means of Principal

Component Analysis (PCA) and the concatenated posterior probability vectors are

used as observations for the GMM based HMM system.

1.3 Contributions

This work extends the idea of tandem approach in single modality tasks to audio

visual speech recognition task, proposing a novel methodology for information fusion

to improve recognition performance. The new method is investigated in a speaker

independent scenario for digit recognition with the existence of diverse levels of car

noise. Its performance is compared with the performance of Multiple Stream Hidden

Markov Models in terms of accuracy and processing speed to conclude that the new

approach achieves a resembling performance with less processing time.

1.4 Outline

This thesis is organized in five chapters including the Introduction chapter. In Chap-

ter 2, audio and visual feature extraction techniques and Hidden Markov Modelling

are discussed. The proposed audio visual information fusion framework and the con-

ventional information fusion methods are described in Chapter 3. The experimental

results are investigated in Chapter 4. Finally, the conclusions and future work are

expressed in Chapter 5.
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Chapter 2

Background

Automatic Speech Recognition (ASR) systems with single data stream consist of

two main stages diagrammed in Figure 2.1. First stage is the signal analysis stage

in which the input signal is converted to a sequence of feature vectors. The input

signal can either be acoustic or visual. There are various audio and visual feature

extraction techniques proposed in the literature. The most common methods will

be discussed and their performances will be compared in this work. The second

stage of ASR systems is the modelling stage in which a model is trained for each

specified class using the feature vectors in the training dataset. Hidden Markov

Models (HMM) have been the primary tool for speech modelling since their first

application to speech recognition by Baker [23] and Jelinek [24]. A class in HMM

can be a word or a phoneme which is the basic structural unit that distinguishes

meaning. The words in the dataset used in this study, digits in French from zero to

nine, and their phonetic contents are given in Table 2.1 (phonetic contents of French

digits are provided by Guillaume Gravier).

The organization of the chapter is as follows: In section 2.1.2, audio feature

extraction procedure and the most common audio feature extraction techniques are

introduced. Visual feature extraction procedure and the most common visual feature

extraction techniques are described in section 2.2. Section 2.3 is the final section

Figure 2.1: Single Stream ASR Framework

6



Word Phonemes

zero z e R 0

un U

deux d 2

trois t R w a

quatre k a t R

cinq s U k

six s i s

sept s E t

huit H i t

neuf n 9 f

Table 2.1: The Phonetic Contents of the Words in the Dataset (%)

covering a brief introduction to Hidden Markov Models.

2.1 Audio Feature Extraction

The first step in a statistical speech recognition system is to convert speech waveform

into a stream of feature vectors. Feature vectors are parametric representations of

speech to classify different acoustic units. Audio feature extraction can be analysed

in three stages. First stage is the windowing stage in which the speech signal is

divided into short time segments called frames to carry out short-time analysis of

speech. In the second stage, the static features are extracted from each speech

frame. In the last stage, dynamic features are extracted using the static features of

the consecutive frames to model the dynamic nature of the speech signal.

2.1.1 Windowing

Since speech is a dynamic signal, the analysis is carried on short time segments

called frames. The frame duration has to be chosen such that the set of parameters

representing that segment are almost constant throughout the segment. The typical

frame length is 25ms and overlapping frames are extracted at a frame rate of 10ms.

Windows are overlapped to deal with window artifacts. Extracting a short time

7



(a)

(b)

Figure 2.2: Rectangular window vs. Hamming window

segment is equivalent to applying sharp rectangular window to the signal but since

the Fourier Transform of a rectangular signal is sinc function, its spectrum has a

curved main lobe and large amount of ripple in the stop band which introduces

spectral distortion. Hamming window is used instead in almost all recognition

systems because it has a flatter pass band, and less ripple in the stop band compared

to the rectangular window as can be seen in Figure 2.2. The Hamming window

function is

w(n) = 0.53836 − 0.46164 cos(
2π n

N − 1
), (2.1)

where N is the total number of samples in a window and 0 ≤ n ≤ N − 1.

2.1.2 Audio Feature Extraction Methods

Three of the most commonly preferred audio feature types in the literature are

Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Predictive (PLP)

Coefficients and Advanced Front End (AFE). MFCC, which is issued as standard

8



Figure 2.3: MFCC Extraction Scheme

audio feature for speech processing by European Telecommunications Standard In-

stitute (ETSI) in 2000 [25], is the most popular among the three. AFE is also an

ETSI standard which is an extended version of MFCC employing a noise reduction

scheme [26]. PLP, although not issued as a standard feature type, is a competing

feature against MFCC and can perform better depending on the application. All

three feature types are described and experimantally analysed in this work. The

best performing feature type on our database is selected to be used as the audio

feature in the audio visual scenario.

Mel Frequency Cepstral Coefficients

Cepstral analysis is a way of representing the spectral envelope of a speech frame

by performing a transform to the logarithm of the power spectrum. This concept

was first introduced by Bogert et al. [27] in 1963 and it provides the information to

discriminate between different phonetic units. Mel Frequency Cepstral Coefficients

(MFCC) are derived by cepstral analysis. The MFCC feature extraction scheme is

diagrammed in Figure 2.3.

First of all, the spectrum of a speech frame is obtained by applying a Fourier

Transform to the input signal. Secondly, the spectrum is segmented into critical

bands by applying a Mel-filterbank to the spectrum. The Mel-filterbank consists

of overlapping triangular filters with center frequencies in Mel-scale determined by

equation (2.2).

fmel = 2595 × log(1 + f/700) (2.2)

Figure 2.4 shows the mapping of original frequency to Mel scale. Mapping of the

original frequency axis to the Mel-scale is essential to model the nonlinear spectral

9



Figure 2.4: Mel frequency scale

resolution of human auditory system along the frequency axis. For instance, humans

can easily discriminate between tones of 200Hz and 250Hz, however they can not

discriminate between tones of 2000Hz and 2050Hz.

As the next step following the Mel-filterbank, the energy in each of the triangular

filter is calculated and consequently logarithm is applied to theses energy terms.

Finally, Discrete Cosine Transform (DCT) is performed on the log-energy terms as

if they are the samples of a time domain signal. The resulting DCT coefficients

are the MFCCs. Generally, 12 lowest order coefficients are used together with the

energy coefficient which add up to 13 static features for each speech frame. The

number of MFCCs used determines the precision to represent the spectra.

Perceptual Linear Predictive Coefficients

The perceptual linear predictive (PLP) coefficients, proposed by Hermansky et al.

[28], are derived by linear predictive analysis of a specially modified, short-term

speech spectrum. In PLP analysis, the speech spectrum is modified by a set of

transformations that are based on models of the human auditory system. To be

more precise, the following three concepts from the psychophysics of hearing are

applied to derive an auditory spectrum estimate:

• The critical-band spectral resolution
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• The equal-loudness curve

• The intensity-loudness power law.

The spectral resolution of human hearing is roughly linear up to 800Hz - 1000Hz

but it decreases with increasing frequency above this frequency range. PLP remaps

the frequency axis to the Bark scale [29] by the equation

Ω(ω) = 6 ln{w/1200π +
√

(w/1200)2 + 1}, (2.3)

where w is the original frequency and Ω(w) is the corresponding frequency in the

Bark-scale. The Bark-scaled spectrum is convolved with the power spectrum of

the critical band filter given in equation (2.4) to find the critical band spectrum

approximation.

Φ(ω) =






0 Ω < −1.3

102.5(Ω+0.5) −1.3 < Ω < −0.5

1 −0.5 < Ω < 0.5

10−1(Ω−0.5) 0.5 < Ω < 2.5

0 Ω > 2.5

(2.4)

Also, at conversational speech levels, human hearing is more sensitive to the

middle frequency range of the audible spectrum. PLP incorporates the effect of this

phenomenon by multiplying the critical-band spectrum by an equal loudness curve

defined by equation (2.5), that suppresses both the low and high frequency regions

relative to the midrange from 400 to 1200 Hz.

E(ω) =
(ω2 + 56.8 × 106)ω4

(ω2 + 6.3 × 106)(ω2 + 0.38 × 109)(ω6 + 9.58 × 1026)
(2.5)

In addition, there is a nonlinear relationship between the intensity of sound and

the perceived loudness. PLP approximates the power law of hearing by using a

cube-root amplitude compression of the loudness equalized, critical band spectrum

estimate using the equation.

L(ω) = I(ω)1/3, (2.6)

where L(ω) is the perceived loudness and I(ω) is the intensity of the sound.

Once auditory-like power spectrum is estimated after the three transformations

stated above, Inverse Discrete Fourier Transform (IDFT) is applied to the power
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spectrum. The outputs of the IDFT are used as inputs to a Linear Prediction

routine. Linear Prediction or Linear Predictive Coding (LPC) is a discrete time

signal analysis tool that estimates a future sample value of a signal by a linear

combination of the previous samples, mathematically defined by

x̂ =

p∑

i=1

aix[n − i], (2.7)

where x̂ is the estimate of the sample x[n] at time n, ai is i’th LPC coefficient

and p is the order of LPC, i.e., the number of previous samples used to estimate a

future sample value. The LPC coefficients are estimated to minimize the sum of the

squared error in a finite length speech frame mathematically expressed as

E =
∑N−1

i=1 e[n]2

=
∑N−1

i=1 (x[n] −
∑p

i=1 aix[n − i])2,
(2.8)

where N is total number of samples in the frame. LPC features can be used to obtain

an envelope to the spectrum of the input signal. The estimated LPC coefficients

are the PLP features. Optionally, LPC coefficients can be converted to cepstral

coefficients through cepstral analysis as explained in section 2.1.2 to get the PLP

features.

PLP coefficients are said to be more robust against the differences between train-

ing and testing data and they also seem to be more stable in terms of parametrization

settings against MFCC [30]. On the other hand MFCCs are considered to be more

effective for clean conditions.

Advanced Front End (AFE)

Advanced Front End (AFE) is an extended version of MFCC extraction which is

issued as an ETSI standard in 2002 [26]. In AFE, MFCC extraction is preceded by

a two-stage Wiener filtering for noise reduction which provides improved recognition

performance but also brings three times more computational load [31]. Noise reduc-

tion is an extensive research area in speech recognition and is beyond the scope of

this thesis. The details of two-stage Wiener filtering can be found in [32].
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2.1.3 Dynamic Information

Trajectory of parameters along the consecutive frames carry essential information

about the speech to be recognised. Thus, first and second derivatives in time which

are called delta coefficients and acceleration coefficients respectively, are extracted

from the static features. The delta coefficients are computed using the formula given

in equation 2.9 where dt is the delta coefficient at time t and ct+θ and ct−θ are the

corresponding static coefficients.

dt =

∑Θ
θ=1 θ(ct+θ − ct−θ)

2
∑Θ

θ=1 θ2
(2.9)

The value Θ is the number of consecutive frames over which the derivation is

applied with a reasonable value ranging from 2 to 5. Accelaration coefficients are

computed similarly by applying equation (2.9) to delta coefficients.

2.2 Visual Feature Extraction

As stated in Chapter 1, visual information is complementary to the acoustic infor-

mation for speech recognition and it is not impacted by acoustic noise. Hence, it

has the potential to boost the recognition performance of ASR systems. The idea

of utilizing the visual information brings in the visual feature extraction issue into

the speech recognition problem. Although there are no standardized techniques for

visual feature extraction as in the case of audio feature extraction, there are partic-

ular methods that most researchers concentrate on. Mainly, we can classify visual

feature extraction methods into three categories:

• Region (or appearance) based visual features

• Lip contour based visual features

• Combination of region and contour based visual features

Lip contour based visual features can further be divided into two categories:

• Geometric visual features

• Lip shape model visual features
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Geometric visual features are features giving information about the aperture of

the mouth such as width and height of the mouth, the aperture angle or the area

of the aperture. Visual features based on lip shape models are the parameters of

the parametric or statistical model of the lip contour. Both geometric and shape

model based visual features substantially rely on a preprocess which is the tracking

of lip movements. Unfortunately, only a minor deviation in tracking could result

in a major inaccuracy in recognition. On the other hand, appearance based visual

features do not necessitate such precision for recognition accuracy. This makes the

appearance based visual features preferrable in most audio-visual speech recognition

architectures.

Appearance based visual features rely on the pixel values, either grayscale or col-

ored, of the region of interest. However, the dimensionality constitutes a problem in

statistical analysis. Therefore, various transformations are used to obtain visual fea-

tures of admissible dimension. Dimensionality reduction does not only offer efficient

computation but also helps to reduce speaker dependency of the recognition sys-

tem due to the nature of these transformations. The transformations which will be

analysed in this work are Discrete Cosine Transform (DCT), Principal Component

Analysis (PCA) and Linear Discriminant Analysis (LDA).

2.2.1 Region of Interest (ROI) Extraction

Prior to feature extraction, a region of interest (ROI) has to be obtained which

directly affects the performance of the overall system. The ROI is typically a rect-

angle enclosing the mouth including the nose tip and the chin. In this study, lip

region is assumed to be in the lower 40% of the face vertically and central 50% of it

horizontally. The face is detected using Viola and Jones’s method of visual object

detection [33]. The correlation between the consecutive frames is used to fix the

central point of the mouth and suppress the interframe vibrations. An example face

image and the lip region extracted from that face image can be seen in Figure 2.5.

2.2.2 Visual Feature Extraction Methods

Three most commonly preferred appearance based visual feature extraction methods

are analysed in this work which are Discrete Cosine Transform (DCT), Principal
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Figure 2.5: Region of Interest Extraction

Component Analysis (PCA) and Linear Discriminant Analysis (LDA). All three

methods apply dimensionality reduction on the grayscale ROI to reduce the the

original dimension M (number of pixels) to L where L < M .

Discrete Cosine Transform (DCT)

Discrete Cosine Transform (DCT) is widely used in visual feature extraction as well

as image compression. Potamianos et al. [34] was the first to use DCT in visual

speech recognition and concluded that DCT outperforms the lip contour based visual

features. DCT’s coherence is also analysed in other related work [35, 36] and its

popularity depends on three facts. First, DCT has a strong energy compaction

property so that most of the signal information is concentrated in a few low frequency

components. Second, it has a fast implementation which is an advantage in real

time processing. Third, it requires no training data. In this work, we perform two

dimensional DCT on the lip region image and pick L low frequency components and

use them as visual features.
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Figure 2.6: Principal Components for 2-dimensional Feature Set

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is mathematically defined as an orthogonal

linear transformation that transforms the data to a new coordinate system such

that the greatest variance by any projection of the data comes to lie on the first

coordinate called the first principal component, the second greatest variance on the

second coordinate, and so on. Figure 2.6 shows the principal components v1 and v2

for a two-dimensional feature set.

PCA can be used for dimensionality reduction by keeping lower-order princi-

pal components and ignoring higher-order ones. Such low-order components often

contain the most important aspects of the data.

Supposing the mouth ROI contains M number of pixels and there are N number

of video frames in the training set, a mean subtracted data matrix

X = [x1x2 · · ·xN ] − uh, h = [111 · · · 1]1× N (2.10)

is created where xi is the NM × 1 dimensional column vector with the grayscale

pixel values of mouth ROI in a frame and u is the NM ×1 dimensional mean vector

of the whole data. Next, the covariance matrix of mean subtracted data is calculated

by

C =
1

N
XXT . (2.11)
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An eigenvalue decomposition is applied to the covariance matrix by the formula

V −1CV = D, (2.12)

where V is the M × M square matrix with an eigenvector in each column and

D is a diagonal matrix containing the corresponding eigenvalues of eigenvectors.

Eigenvectors form an orthogonal basis for the data and the eigenvectors with higher

eigenvalues are the most informative. Dimensionality reduction is realized when

you keep the eigenvectors with high eigenvalues while ignoring the ones with low

eigenvalues. Say, the dimension is to be reduced to L where 1 ≤ L ≤ M , then L

eigenvectors with the highest corresponding eigenvalues are placed in columns of

the transformation matrix W of size M × L. Once the transformation matrix is

obtained, M dimensional feature vector xi can be re-expressed as an L dimensional

feature vector yi by the formula

yi = W T xi. (2.13)

The elements of yi are the coefficients of the orthogonal basis vectors.

Linear Discriminant Analysis (LDA)

PCA is an unsupervised technique to describe the data but it is not optimized

for class separability and there is no guarantee that the directions of maximum

variance will contain good features for dicrimination of classes. Linear Discriminant

Analysis (LDA), on the other hand, is a supervised technique seeking solutions for

the following questions:

• Which set of features best represent the class association?

• What is the best linear rule for class separation?

In the case of dimension reduction, LDA is not utilized for seeking a class sep-

aration rule but for selecting a feature set that best discriminates the data. This

is done by searching for basis vectors in the underlying feature space that are most

discriminant among classes.

Suppose an M dimensional feature space is to be projected onto an L dimensional

feature space where L << M through a projection matrix W of size M ×L. Using

the labeled training set, two measures are defined which are
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• within class scatter matrix given by

Sw =
c∑

j=1

Nj∑

i=1

(xj
i − µj)(x

j
i − µj)

T , (2.14)

where x
j
i is the i’th sample of class j, µj is the mean of class j, c is the number

of classes and Nj is the number of samples in class j, and

• between class scatter matrix given by

Sb =
c∑

j=1

(µj − µ)(µj − µ)T , (2.15)

where µ is the mean of all samples.

The aim is to minimize the within class scatter, Sw, and maximize the between

class scatter, Sb in the projected space, i.e., maximize the ratio

det(W T SbW )

det(W T SwW )
. (2.16)

If Sw is a nonsingular matrix, the ratio in equation 2.16 is maximized when

column vectors of the projection matrix, W , are the eigenvectors of

S−1
w Sb. (2.17)

The eigenvectors of the expression in equation (2.17) are obtained by eigenvalue

decomposition which is mathematically defined by the formula

V −1CV = D, (2.18)

where V is the square matrix with an eigenvector in each column, D is a diagonal

matrix containing the corresponding eigenvalues of eigenvectors and C = S−1
w ·

Sb. The eigenvectors are sorted in order of decreasing eigenvalue and L number

of eigenvectors are collected as columns of the projection matrix W . Once the

projection matrix is obtained, every M dimensional feature vector x can be projected

onto an L dimensional feature vector y according to the equation

y = W T x. (2.19)

There are two issues to consider in implementation of LDA on a M dimensional

feature space with c classes:
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• there are at most c− 1 nonzero eigenvectors, so the reduced dimension can be

maximum c − 1 and

• at least M samples are required for each class to guarantee that Sw does not

become singular.

Thus, usually other dimension reduction algorithms such as DCT or PCA are

applied prior to LDA in order to handle the restrictions stated above.

2.2.3 Dynamic Information and Synchronization

The dymanic information is extracted by means of delta and acceleration coefficients

as in the case of audio feature extraction in section 2.1.3. However, there is an

additional step to take in visual feature extraction which differs from audio feature

extraction.

In visual feature extraction, a feature vector is generated for each video frame.

Considering that the videos used in this work are 25fps, the visual features are ex-

tracted at a frequency of 25Hz. If the task is to train a visual-only speech recognition

system, feature vectors at 25Hz can be used both for training and testing. On the

other hand, for an audio visual speech recognition architecture, the sychronization

of the audio and visual feature vectors might be required depending on the audio

visual information fusion methodology. Therefore, after the calculation of the delta

and accelaration coefficients on 25Hz data, visual feature vectors are upsampled to

the frequency of audio feature vectors which is 100Hz by linear interpolation.

2.3 Hidden Markov Models

Once the speech signal is analysed and feature vectors are extracted, the next step is

to model the speech using the feature vectors. Hidden Markov Models (HMM) with

the ability to handle temporal evolutions in data have been the core framework

for speech modelling since their first application to speech recognition [24]. An

HMM is trained for each possible class using the feature vectors as observations.

The terms feature vector and observation can be used interchangeably in an HMM

context. A model corresponds to either a word or a phoneme depending on the

application. If a model is defined to be a word then word-HMM s are trained and
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if a model is defined to be a phoneme then phoneme-HMM s are trained. In this

section, the theory of Hidden Markov Models (HMM) will be introduced in the

context of isolated word recognition based on Rabiner’s tutorial on HMM’s [37] and

the HTK Book [38]. Isolated word recognition is the task to recognise a single word

from a set of possible words. Continuous speech recognition systems are established

by embedding word HMMs in a finite state word network.

2.3.1 Objective of Isolated Word Recognition

Before introducing the details of HMMs, it would be helpful to illustrate the scope

of modelling. The main objective of isolated word recognition is to find the most

probable word spoken according to the observations given. In mathematical terms,

given the observation sequence

O = o1,o2, ...,oT , (2.20)

with T number of observation vectors, the aim is to find

argmaxi{P (wi|O)}, (2.21)

where wi is the i’th vocabulary word. Since this probability is not directly com-

putable, using Bayes’ Rule it can be re-expressed as

P (wi|O) =
P (O|wi)P (wi)

P (O)
. (2.22)

Then, the problem is reduced to finding the likelihood P (O|wi) given the prior

probabilities of each word. Considering that a model Mi is built corresponding to

each word wi, this likelihood can also be stated as P (O|Mi).

Equation 2.22 clearly points out that making a decision is a matter of likelihood

calculation for each possible model.

2.3.2 Hidden Markov Models in Speech Recognition

HMM is a stochastic finite state machine which changes its state from state i to state

j once every time unit with a transition probability of aij and at each time t that

a state j is entered, an observation is generated by j’th state from the probability

distribution bj(ot). The following parameters define an HMM:
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Figure 2.7: 5-state HMM with Non-emitting Entry and Exit States

• N : Number of states,

• A = {aij} : Set of state transition probabilities from state i to state j,

• B = {bj(ot)} : Set of observation probability distributions in state j,

• Π = {πi} : Initial state distribution, i.e., the set of probabilities of state i

being the initial state.

In the context of speech recognition, a special type of HMM named left-to-right

HMM is favored with the following specifications:

• Only, transitions from a state to itself or to the following state is possible

• The entry and exit states are both unique and non-emmiting, i.e., they do not

generate any observations.

A five-state, left-to-right HMM topology is given in Figure 2.7.

The parameter N has to be determined a priori which is a kind of a regularization

parameter for HMMs. There is a tradeoff between too few states and too many

states. Too few states will be inadequate to model the structure of the data and too

many states will model the noise too.

Every emitting state corresponds to a segment of speech utterance. Usually 3-5

emitting states are used for phoneme-HMMs and 10-15 emitting states are used for

word-HMMs. If phoneme-HMMs are built, then a word-HMM can be constructed

by concatenation of appropriate phoneme-HMMs. Sequentially, continuous speech

recognizers can be established by concatenation of word-HMMs. The entry and exit

states serve for joining the HMMs.
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The output distribution can be variant depending on the application but for

speech recognition, generally Gaussian mixture densities are preferred. The mathe-

matical representation for a Gaussian mixture density is

bj(ot) =
M∑

m=1

cjm
1√

(2π)n|Σjm|
exp(−

1

2
(ot − µjm)Σ−1

jm(ot − µjm)), (2.23)

where M is the number of mixtures, n is the dimension of the observation vector

and µjm, Σjm, cjm are the mean, the covariance and the weight of mixture m of

state j.

2.3.3 Training Hidden Markov Models

Training an HMM is determining the parameter set λ = {A,B,Π}. For left-to-

right HMMs, the parameter Π is not relevant since the initial state is known to

be the non-emitting entry state. The parameter B for Gaussian mixture distri-

bution is equivalent to the parameters {µ,Σ, c} which are the means, covariances

and weights of the mixtures. The parameters A and B are estimated recursively

by the Baum-Welch Algorithm, also known as the Forward-Backward Algorithm.

Estimation procedure is based on two newly defined probabilities which are forward

and backward probabilities.

The forward probability αj(t), defined as the probability of observing first t

observation vectors and being in state j, can be recursively computed by

αj(t) =
N−1∑

i=2

[αi(t − 1)aij]bj(ot) (2.24)

with initial conditions

α1(1) = 1, (2.25)

αj(1) = a1jbj(o1), (2.26)

for 1 < j < N and the final condition

αN(T ) =
N−1∑

i=2

[αi(T )aiN ]. (2.27)

Notice here that from the definition of αj(t)

P (O|M) = αN(T ). (2.28)
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Similarly, the backward probability βi(t), defined as the probability of observing the

observation vectors from t+1 to T and being in state i, can be recursively computed

by

βi(t) =
N−1∑

j=2

aijbj(ot+1)βj(t + 1) (2.29)

with initial conditions

βi(T ) = aiN , (2.30)

for 1 < i < N and the final condition

β1(1) =
N−1∑

j=2

a1jbj(o1)βj(1). (2.31)

Multiplying the forward and backward probabilities, the probability of being in state

i at time t and in state j at time t + 1, ξt(i, j), is derived as

ξt(i, j) =
αi(t)aijbj(ot+1)βj(t + 1)

∑N
i=1

∑N
i=1 αi(t)aijbj(ot+1)βj(t + 1)

, (2.32)

and the probability of being in state i at time t, γi(t), is derived as

γi(t) =
N∑

j=1

ξt(i, j). (2.33)

Given the above definitions, the re-estimation formulae can be expressed as

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γi(t)

, (2.34)

µjm =

∑T
t=1 γjm(t)ot∑T
t=1 γjm(t)

, (2.35)

Σjm =

∑T
t=1 γjm(t)(ot − µjm)(ot − µjm)′

∑T
t=1 γjm(t)

, (2.36)

cjm =

∑T
t=1 γjm(t)

∑T
t=1 γj(t)

. (2.37)

Needless to say, the parameters to be estimated have to be initialized before the

re-estimation procedure. The initial estimates can be chosen such that

aij = 0.5 1 < i < N − 1, 2 < j < N, (2.38)
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µjm =
1

T

T∑

t=1

ot, (2.39)

Σjm =
1

T

T∑

t=1

(ot − µjm)(ot − µjm)′, (2.40)

cjm =
1

M
. (2.41)

2.3.4 Recognition with the Viterbi Algorithm

Once the models are established for each word, recognition can be performed based

on the model likelihoods. The likelihoods P (O|M) are calculated for each model

over the most likely state sequence. The most likely state sequence can be identified

using the Viterbi Algorithm.

In Viterbi Algorithm, for a given model M, φj(t) representing the maximum

likelihood of observing first t observation vectors and being in state j is recursively

computed by

φj(t) = max
i

{φi(t − 1)aijbj(ot)}, (2.42)

where

φ1(1) = 1, (2.43)

φj(1) = a1jbj(o1), (2.44)

for 1 < j < N which gives the best state sequence. Eventually, the likelihood

P (O|M) can be evaluated by

P (O|M) = φN(T ) = max
i

{φi(T )aiN} (2.45)

and the model with the highest likelihood is decided to be the word spoken.

As stated earlier, a continuous speech recognizer can be established by embedding

word HMMs in a finite state word network derived from a task grammar. The task

grammar specifies the possible sequence of words. The grammar used for digit

recognition in this work states that any digit can follow any other digit through the

sequence and there are 10 digits to recognize in total. The word network resulting

from the task grammar is diagrammed in Figure 2.8.
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Figure 2.8: Digit Recognition Word Network

25



Chapter 3

Audio Visual Information Fusion

As mentioned in Chapter 1, humans integrate visual speech information extracted

from the lip region with the acoustic information to recognize speech. McGurk was

the first to conduct experiments to analyse the bimodality of speech perception and

based on his experiments he concluded that visual information is not a secondary

source but a complementary one [1]. Besides, visual information is not affected

by the acoustic noise. All these lead to a theory that if discriminative visual in-

formation can be acquired and properly combined with the acoustic information,

the performance of speech recognizers can be boosted especially in situations where

there is acoustic noise. This is the main inspiration behind the Audio-Visual Speech

Recognition research. There are two additional subjects to consider in audio visual

speech recognition relative to audio speech recognition. First one is the visual fea-

ture extraction which is covered in section 2.2. The second one is the audio visual

information fusion. Researchers intuitively propose statistical information fusion

methodologies but their performances have not yet reached an admissable level.

This work intends to contribute to such progress of information fusion for audio

visual speech recognition systems.

In this chapter, the conventional information fusion techniques are presented in

section 3.1 and a novel appraoch to information fusion is proposed in section 3.2.

3.1 Conventional Information Fusion Techniques

Audio Visual Information fusion algorithms proposed to date can be classified into

three main groups:

• Feature Fusion (Early Fusion)
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Figure 3.1: Feature Fusion Architecture

• Decision Fusion (Late Fusion)

• Model Fusion.

3.1.1 Feature Fusion (Early Fusion)

Feature level fusion, also named Early Fusion, is perhaps the most primitive ap-

proach to information fusion for audio visual speech recognition (AVSR) in which

feature vectors from multiple streams are concatenated to form a combined feature

vector and this combined feature vector is fed into an HMM as an observation result-

ing in a single model for each word. Dimensionality reduction techniques of which

LDA is the most popular can be applied if the combined feature vector is oversized.

LDA as a feature reduction technique is analyzed in Chapter 2, hence it will not be

repeated here. The AVSR system architecture with feature concatenation is given

in Figure 3.1.

3.1.2 Decision Fusion (Late Fusion)

In decision fusion (or late fusion), observations from each data source are separately

modelled attaining posterior probabilities for each data stream. Subsequently, pos-

terior probabilities of each stream are combined to come up with a final decision.

Decision fusion architecture is given in Figure 3.2.

As explained in section 2.3, the likelihood of an observation sequence O extracted

from an utterance to be generated by a word model Mi, P (O|Mi), is evaluated for

each word model and the word with the highest posterior probability is determined
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Figure 3.2: Decision Fusion Architecture

to be the word spoken. This decision methodology is valid if there is only one

observation sequence and one model for a particular word. However, in a multi-

modal task, two observation sequences are extracted from an utterance and two

models are built corresponding to one word. An acoustic model Ma is trained with

acoustic feature vectors Oa and a visual model Mv is trained with visual feature

vectors Ov. Decision fusion aims to combine P (Oa|Mia) and P (Ov|Miv) to make

the final decision.

The likelihoods can be combined with some simple techniques such as multiplying

the likelihoods of each stream, summing them or taking the maximum. The list can

be extended but these simple techniques do not offer weighting of the two modalities

for different noise levels. A commonly used scheme which provides weighting of the

streams is

Ŵi = argmaxi=1:N{γa · log(P (Oa|Mia)) + γv · log(P (Ov|Miv))}, (3.1)

where Ŵi is the most likely word, N is the number of possible words and γa and

γv are weights of acoustic and visual weights respectively. The weights are adjusted

depending on the conditions.

Above, decision fusion is described for isolated word recognition. For contin-

uous word recognition, decision fusion may require enumerating all possible word

sequences which is not easy.
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Figure 3.3: Multiple Stream HMM Topology

3.1.3 Model Fusion

Model fusion algorithms integrate the information from the two streams during

the model building procedure. The principal model fusion architecture is Multiple

Stream Hidden Markov Models (MSHMM). MSHMMs model more than one stream

of observations in a parallel structure allowing independent likelihood calculation

for each stream. Its topology for a five state phone model is pictured in Figure 3.3.

The states of MSHMM are tied states which means that the same states are

shared between the two streams. Therefore, state transition probabilities are the

same for both streams. Mathematically, MSHMMs differ from regular HMMs only

in observation probability distribution given by

bj(ot) =
∏

s={a,v}

[
M∑

m=1

cjsm
1√

(2π)n|Σjsm|
exp(−

1

2
(ost − µjm)Σ−1

jsm(ost − µjm))

]γs

(3.2)

for the two stream case where s = {a, v} represents the audio and visual streams

respectively and γs is the weight of the stream s. The rest of the parameters are the

same as the parameters of equation 2.23. In this work a facility called single-pass

retraining is utilized to train the MSHMM. Single-pass retraining is a mechanism for

mapping a set of models trained using one parametrisation into another set based on

a different parametrisation. This is done by computing the forward and backward

probabilities using the original models together with the original training data, but

then switching to the new training data to compute the parameter estimates for

the new set of models. Since the audio models are more reliable for clean data in

audio visual speech recognition; first, audio models are generated from the audio

stream. The visual models trained using single-pass retraining perform better than

29



the visual models trained using only the visual observations.

The MSHMM restricts the streams to be state synchronous so that a transition

from a state to another takes place at the same time. This is not a desirable situation

since the visual information can sometimes precede the acoustic information, i.e.,

the lip movement can occur before the speech is produced. Product HMM (PHMM),

which is an extension of MSHMM, allows state asynchrony between the two streams

forcing the streams to be synchronous at the model boundaries [10]. There are

also more advanced HMMs utilized in audio visual speech recognition which include

Factorial HMM (FHMM) and the Coupled HMM (CHMM). In FHMM, the audio

and visual states are independent of each other, but they jointly model the likelihood

of the audiovisual observation vector, and hence become correlated indirectly [9].

In CHMM, the likelihoods of the audio and visual observation vectors are modeled

independent of each other, but each of the audio and visual states are conditioned

jointly by the previous set of audio and visual states [11].

The performances of MSHMM, PHMM, FHMM and CHMM are analysed by

Nefian [9]. The results in that work showed that PHMM and FHMM do not improve

the recognition rate compared to MSHMM and CHMM outperforms MSHMM by 1-

2% . Investigating Nefian’s results; PHMM, FHMM and CHMM are not considered

in this study due to their implementation complexity.

3.2 Proposed Framework : Tandem Fusion

The Tandem Fusion Approach to information fusion in audio visual speech recog-

nition proposed in this work is founded on the tandem framework for audio speech

recognition first presented by Hermansky in 2000 [12]. In Hermansky’s system, a

neural network is trained to estimate the posterior probabilities of each frame for

each possible class where a class corresponded to a phoneme. The inputs to the

neural network were the MFCC features and the outputs were vectors of posterior

probabilities, with one element for each phoneme. The posterior probability vectors

were used as observations for a Gaussian-mixture-based HMM system. The results

demonstrated that the novel tandem approach improved the recognition accuracy

compared to the conventional HMM system where the MFCC features are directly

used as observations. In this study, Hermansky’s tandem approach is exploited to
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Figure 3.4: Tandem Fusion Architecture

propose a novel information fusion framework for audio visual speech recognition.

Tandem fusion framework with the block diagram in Figure 3.4, has grounds both

in feature fusion and decision fusion. It appears to be a kind of feature fusion scheme

since the information from the two modalities are fused prior to Hidden Markov

Modelling. On the other hand, it can be associated with decision fusion techniques

because it employs a preliminary decision stage for each modality separately before

information fusion. The intention of this approach is to provide more discriminative

observations for HMM utilizing both modalities maximally in changing conditions.

The tandem fusion framework can be divided into four main stages. The first

stage is feature extraction stage, the second stage is separate classification of each

stream at frame level, the third stage is classifier combining and the last stage is

modelling.

3.2.1 Training the System

As the first step of training, audio and visual feature vectors are obtained for each

speech frame on clean data with the techniques described in sections 2.1 and 2.2.

Training the First Level Classifiers

The next step following the feature extraction step is the training of individual

classifiers for each stream. In this study, Gaussian Mixture Models (GMM) are

utilized as individual classifiers. A GMM with 12 mixtures is trained for each

possible class in each stream where a class corresponded to a word in this case.

Assuming there are C number of classes in the dataset, C number of GMMs are
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trained for audio stream using audio feature vectors as inputs and C number of

GMMs are trained for visual stream using visual features as inputs.

A labelled training dataset is needed to train a GMM for each class but the

dataset used in this work is not labelled. The labels of the feature vectors are

obtained according to the results of an audio speech recognition system with MFCC

features since the audio only system achieves a recognition accuracy of 100% on

noise-free data. To assign a label to each speech vector, exact word boundaries has to

be known and these boundaries are determined by the Viterbi alignment procedure.

The Viterbi alignment procedure is a constrained Viterbi decoding process where

the correct word labels are known.

The probability distribution formula for GMM is given by the equation

p(x) =
M∑

m=1

cm
1

(2π)d/2|Σm|1/2
exp {−

1

2
(x − µm)TΣ−1

m (x − µm)}, (3.3)

where x is the d dimensional feature vector, M is the total number of mixtures

which is 12 in this case, cm is the m’th mixture weight, µm is the mean of mixture

m and Σm is the covariance matrix of mixture m. Different classifiers can be used

instead of GMM as individual classifiers, most popular examples being neural net-

works and support vector machines. GMMs are preferred to others in this work for

computational restrictions and for their common success in speech modelling.

Training the Combining Classifier

GMM training stage is followed by the classifier combining stage where the integra-

tion of the information from the two modalities is established. In this work, Linear

Discriminant Classifier (LDC) is chosen as the combining classifier. Support Vector

Machines and Neural Networks are also thought as alternatives but could not be

implemented due to computational insufficiencies. The results showed that LDC

fulfills the needs though. An LDC is trained for each noise level. The variation of

LDCs for different noise levels is obtained by using noisy data as the audio input.

The input vectors of the LDC are the output posterior probability vectors of the

GMM stage. The posterior probability of a feature vector for a given class (a class

corresponds to a word) is calculated by
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p(x|Ci) =
M∑

m=1

cim
1

(2π)d/2|Σim|1/2
exp {−

1

2
(x − µim)TΣ−1

im(x − µim)}, (3.4)

where Ci is the i’th class, x is the d dimensional feature vector, M is the total

number of mixtures which is 12 in this case, cim is the m’th mixture weight of class

i, µim is the mean of mixture m of class i and Σim is the covariance matrix of

mixture m of class i.

The values of p(x|Ci) for each class in a stream are gathered to form a C dimen-

sional posterior probability vector for each speech frame. C dimensional posterior

probability vector from the audio stream and the C dimensional posterior proba-

bility vector from the visual stream are concatenated to be the input for the LDC.

Note that the training dataset used for LDC training is different from the training

dataset used for GMM training. This separate training data is called held-out or

validation data in some studies.

LDC assumes that each class has a multivariate Gaussian distribution and all

classes share the same covariance matrix. Training the LDC is equivalent to finding

means for each class and the common covariance matrix. The common covariance

matrix is calculated the same way as within class scatter matrix is calculated for

LDA in section 2.2.2.

Once the means for every class and the common covariance matrix are acquired,

the next step is to extract observation vectors for HMMs which are the outputs of

the LDC stage. The dataset used for HMM training is the combination of the GMM

training dataset and the LDC training dataset. LDC’s discriminant function given

in equation (3.5) is evaluated for every speech frame and for every class to generate

a C dimensional observation vector for HMM.

gi(x) = −
1

2
(x − µi)

T Σ−1(x − µi) + ln (Pi). (3.5)

In equation (3.5), gi(x) is the discriminant function giving a scalar value, x is the

2C dimensional posterior probability vector from the GMM stage, µi is the mean of

class i, Σ is the common covariance matrix and Pi is the prior probability of class

i which is calculated as the ratio of the number of training examples belonging to

class i, to the number of total training examples.
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Training HMM

C dimensional observation vectors for every speech frame are used to train a regu-

lar single stream word HMM as the final stage of training. GMM-LDC sequential

stage serves for extracting more discriminative features compared to the unprocessed

audio features by taking advantage of both the idea of tandem approach and the

integration of visual information to the system. The GMM-LDC sequential stage

is followed by an HMM stage because the combining classifier generates posterior

probabilities at frame level and frame level decision is vulnerable to abrupt inter-

ferences whereas HMM as a state machine tolerates such interferences and handles

the temporal evolution of data well.

3.2.2 Testing Process

The main concept in the tandem fusion approach is extracting the most adequate

observations for class separability in HMMs. Every audio and visual feature vector

is processed through the GMM-LDC sequential stage to create audio-visual observa-

tion vectors for a regular HMM. First, the posterior probability of an audio feature

vector for a given class is calculated using equation (3.4). Repeating this for each

class and collecting the posterior probability values in a vector, a posterior probabil-

ity vector is formed corresponding to the audio feature vector. A similar procedure

is applied for the visual feature vector to generate a posterior probability vector

for the visual stream. The posterior probability vectors from the two streams are

concatenated to create the combined posterior probability vector which is the input

vector for LDC. Remember that there is an LDC trained for each noise level. Using

the appropriate LDC for the present noise condition, the discriminant function in

equation (3.5) is evaluated on the combined posterior probability vector for a given

class. Repeating this for each of C classes, a C dimensional audio-visual observation

vector is generated as the input to a single stream HMM. The rest is the standard

HMM procedure explained in Chapter 2.

34



3.3 Computational Time Comparison of Tandem Fusion and MSHMM

The MSHMM and the tandem fusion approach will be compared in terms of recog-

nition accuracy and run time in Chapter 4. Additionally, the two frameworks are

compared in terms of computation time in this section.

3.3.1 Computation Time of Tandem Fusion

Tandem fusion approach has three stages to consider for computational load calcu-

lation; GMM stage, LDC stage and HMM stage. Consider a single speech frame

with dA dimensional audio feature vector and dV dimensional visual feature vector.

In the GMM stage, the posterior probability of the audio feature vector being in

class i is calculated by equation (3.4). The computational load of the term

cim
1

(2π)d/2|Σim|1/2
(3.6)

in equation (3.4) can be neglected since the terms are independent of the input

vector, hence are not repetitively calculated for each speech frame. The main com-

putational load comes from the calculation of the term

exp {−
1

2
(x − µim)TΣ−1

im(x − µim)}, (3.7)

where the covariance matrix Σim is diagonal. Assuming it takes T time units to

process the term in equation 3.7 for a scalar x, it would take dAT time units for a dA

dimensional x. This is repeated for M number of mixtures and C number classes

making a total of

CMdAT (3.8)

time units to calculate the posterior probability vector of a single audio feature

vector. Similarly,

CMdV T (3.9)

time units are needed for the visual posterior probability vector calculation. There-

fore, in total it takes

CMT (dA + dV ) (3.10)

time units to complete the GMM stage of the tandem fusion approach.
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In the LDC stage, equation (3.5) is implemented for each speech frame and

the dominant operation in this stage is also the calculation of the term 3.7. The

dimension of the input vector x is 2C where C is the number of classes in the dataset.

So, for a single speech frame, computation time is 2CT time units. Considering that

the discriminant function in equation (3.5) is evaluated for each C number of classes,

the LDC stage is terminated in

2C2T (3.11)

time units.

As stated in section 2.3, the decision of the word spoken is given according to the

likelihood computed by equation (2.45). In equation (2.45), aiN is a scalar value and

multiplication with a scalar value does not constitute much to the processing time,

hence it is neglected. The main processing load consists of recursive calculation of

φi(T ) by equation (2.42). The scalar multiplicatives φi(t − 1) and aij in equation

(2.42) can be neglected since the major processing load is the calculation of bj(t)

which is the probability distribution of a Gaussian mixture density for a state j in

equation (2.23). The computational load analysis for a Gaussian Mixture was done

for the GMM stage. Following a similar approach, for a single mixture of a state, the

operation time is CT time units. Considering that there are M number of mixtures

and N number states in a model and there are C number of models,

NMC2T (3.12)

time units are required for the HMM stage of the tandem fusion methodology.

Addition of equation (3.10), (3.11) and (3.12) gives the total computation time

of the whole tandem fusion procedure as

CMT (dA + dV ) + 2C2T + NMC2T. (3.13)

3.3.2 Computation Time of MSHMM

The computation time of the MSHMM system can be calculated very similar to

the regular HMM case but this time there are two Gaussian mixture distributions

with different observation vector dimensions, one for each stream as seen in equation

(3.2). Mathematically, equation (3.12) becomes

CNMT (dA + dV ) (3.14)
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for the MSHMM framework.

There are two reasons that make the value of equation (3.13) smaller than equa-

tion (3.14). First, the dimensions dA and dV are much bigger in value than C.

Second, GMM stage does not constitute much to the processing load because there

is a GMM for each class whereas there is a GMM for each state of a class in the

HMM.

The computational advantage of the tandem fusion approach against the MSHMM

would be more apparent with a numeric comparison for the scenario in this work.

There are C = 11 classes in the dataset, the audio feature vector is dA = 39 dimen-

sional, the visual feature vector is dV = 63 dimensional, the number of mixtures, M

of GMMs for all stages are 12 and HMMs with 10 emitting states are used. Eval-

uating equation (3.13) and (3.14) with these values, we arrive at 0.28 × 105T time

units for the tandem fusion approach and 1.35 × 105T time units for the MSHMM

respectively.
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Chapter 4

Experiments and Results

This chapter is dedicated to experimental analysis of the proposed method. The

experimental procedure is as follows: First, audio-only speech recognition systems

are trained and tested to observe the performances of different audio feature types

described in section 2.1. Second, visual-only speech recognition systems are trained

to observe the performances of different visual feature types described in section

2.2. Both word-HMMs and phoneme HMMs are investigated for the single stream

recognizers. Best performing audio and visual feature types are selected to be used

in audio visual speech recognition scenarios. Lastly, MSHMM based and tandem

fusion based audio visual speech recognition systems utilizing the previously selected

feature types and HMM topology are established. The MSHMM and the tandem

fusion approach are compared in terms of recognition accuracy and processing time.

The chapter is organized as follows: Section 4.1 describes the database used for

the experiments, section 4.2 lists the computational tools utilized and section 4.3

explains the noise addition procedure. The evaluation metric is given in section 4.4

and the HMM topology is presented in section 4.5. The results of Audio Speech

Recognition experiments, Visual Speech Recognition experiments and Audio Visual

Speech Recognition experiments are analysed in sections 4.6, 4.7 and 4.8 respectively.

4.1 Database

The experiments are conducted on M2VTS database [39] which consists of 5 different

video recordings for each 37 subjects at 5 different times. The recordings are head-

and-shoulder videos in an office environment with plain gray background. The

subjects count digits from 0 to 9 in order in French. The database is organized in
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5 tapes, each tape containing a single recording of each subject. The audio track

of the recordings are sampled at 48kHz with 16-bits PCM coding. The video track

has a frame rate of 25fps and 286x360 frame size.

4.2 Computational Tools

Various computational tools are used to conduct the experiments. Hidden Markov

Models are built with the HMM Toolkit (HTK) [38]. Audio features are also ex-

tracted using the built-in functions in HTK. Visual features are extracted in Matlab

whereas the lip regions are extracted from the face images with Visual C++ utiliz-

ing OpenCV. The Matlab Toolbox for Pattern Recognition (PRTools) and Voicebox

toolbox are used for GMM and LDC training in the tandem fusion approach.

4.3 Noise Addition

Car noise at SNRs ranging from 20dB to -5dB are artificially added to analyse the

performance of the recognition systems in noisy conditions. Noise addition is applied

according to ITU-T P.56 standard [40] with the software provided by ITU.

4.4 Evaluation Metric

The evaluation metric used for the performance of a speech recognition system is

the Recognition Accuracy as a percentage which is given by

A =
N − D − S − I

N
· 100% (4.1)

where N is the total number of labels in the test dataset, D is the number of

deletions, S is the number of substitutions and I is the number of insertions [38].

Since a label corresponds to a word (digit) in this case and the digits are counted

in order in M2VTS database, the correct label sequence for each recording is {zero-

one-two-three-four-five-six-seven-eight-nine}. Considering that one tape is used for

testing and there are 37 speakers, N has the value 370. A deletion example would

be {...-three-four-six-seven...}, a substitution example would be {...-three-nine-five-

six-...} and an insertion example would be {...-three-nine-four-five-...}.
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4.5 Hidden Markov Model Topology

Digit recognition is a limited vocabulary scenario where there are 11 words to dis-

criminate, 10 digits together with the silence/short pause. For limited vocabulary

tasks, either word HMMs or phoneme HMMs can be preferred. In this work, both

are tested to conclude that word HMMs suit better.

As stated in section 2.3, number of states is a regularization parameter for

HMMs. For this task, word HMMs are established with 10 emitting states and

phoneme HMMs are established with 3 emitting states. Considering that the words

in the database consist of 2-4 phonemes as shown in Table 2.1, a state in both

word-HMM and phoneme-HMM approximately corresponds to the same segment

of speech. The number of Gaussian mixtures for each state is also experimentally

determined to be 12 for both audio and visual streams.

4.6 Audio Speech Recognition Experiments

Three types of audio features described in section 2.1 are investigated in a single

modality speech recognition system. For all three, 12 static features are extracted

from a speech frame. Together with the energy of the frame, there are a total of

13 static features. Dynamic information is attained by calculating the delta and

acceleration coefficients over two neighbouring frames as described in section 2.1.3.

Eventually, 39 dimensional acoustic observation vectors are obtained. Frame lengths

are chosen to be 25ms and overlapping frames are extracted every 10ms. Four tapes

of the database are used for training and the last tape for testing. The results

are demonstrated for both word level and phoneme level modelling in Table 4.1.

Figures 4.1, 4.2 and 4.3 show that phoneme level accuracy is superior to word level

accuracy for MFCC and PLP and it is the opposite for AFE. Nevertheless, word

level recognition will be preferred for audio visual scenarios because visual features

perform significantly better in word level. Figure 4.4 exhibits that the performances

of MFCC and PLP are close to each other whereas AFE outperforms the former two

on account of its noise reduction scheme. Even so, AFE will not be used as the audio

feature in the following audio visual scenarios because of its heavy computational

load compared to MFCC and PLP. It is implemented to make a comparative analysis
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of the performances of the audio visual frameworks with noise reduction algorithms

since both methodologies aim to overcome the noise problem. Figure 4.4 denotes

that MFCC is to be selected as the best performing audio feature for this task.

Hence, MFCCs will be utilized in the audio visual speech recognition scenarios.

Noise Level MFCC PLP AFE

Word Phone Word Phone Word Phone

Clean 100.00 99.73 100.00 100.00 100.00 100.00

20dB 96.76 98.38 99.46 98.65 99.46 99.19

15dB 86.49 94.05 85.95 97.30 99.73 97.84

10dB 52.43 74.32 51.14 79.19 98.11 96.49

5dB 39.72 35.14 34.71 48.11 95.88 85.28

0dB 29.52 12.97 19.39 18.06 85.24 66.67

-5dB 0.00 5.68 0.00 9.41 70.00 47.71

Table 4.1: Acoustic ASR Accuracy (%)

4.7 Visual Speech Recognition Experiments

Similar to audio-only speech recognition experiments, visual-only speech recognition

systems are implemented to decide on which visual feature to use in audio visual

speech recognition. The preprocess of visual feature extraction is the lip region

extraction. Accordingly, face detector is applied to the videos and lip region is

extracted as the bottom 40% of the face region vertically and central 50% of it

horizontally. The resulting lip images are fixed to the size 48x64.

Two dimensional DCT, PCA and LDA are applied on gray scale images. Their

successes are analysed with different number of coefficients. As in the case of audio

features, both word level and phoneme level systems are tested. Training and testing

are carried on 25Hz data for the visual only recogniton. For all three cases, four

tapes of the database are used for training and the last tape for testing.

The outcomes of the visual speech recognition system with DCT features are

given in Table 4.2 and Figure 4.5. The letter T and S stand for triangle and square

respectively and they represent the triangular or square region in the upper left
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Figure 4.1: Acoustic ASR with MFCC
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Figure 4.2: Acoustic ASR with PLP
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Figure 4.3: Acoustic ASR with AFE
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Figure 4.4: Word-level Acoustic ASR with Different Features
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Figure 4.5: Visual ASR with DCT Features

corner of the DCT matrix. The coefficients within the specified region are used as

the static features. The delta and acceleration coefficients are derived as in the case

of audio feature extraction.

Number of DCT coefficients

6T 9S 10T 15T 16S 21T 25S 36S

Phone HMM 46.11 51.71 46.67 49.71 46.29 52.94 50.57 36.00

Word HMM 65.29 67.35 66.56 70.94 68.00 74.14 75.52 71.90

Table 4.2: Visual ASR with DCT Coefficients (%)

It can be observed from Figure 4.5 that 21 DCT coefficients extracted from the

upper left triangle of the DCT matrix would be a proper choice. A minor improve-

ment with 25 DCT coefficients can be disregarded with the gain of 12 features (4

static features, 4 delta features and 4 acceleration features).

Success rate of PCA as a visual feature is investigated by trying different number

of eigenvectors to create the PCA transformation matrix. The results are displayed

in Table 4.3 and Figure 4.6. According to the table, highest recognition accuracy is

reached with 20 eigenvectors.

LDA could not perform any better than random guess for this task, hence the
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HMM Type Number of Eigenvectors

5 10 15 20 25 30

Phone HMM 40.56 45.28 45.83 55.56 48.06 44.57

Word HMM 28.48 34.39 28.89 28.82 25.83 21.47

Table 4.3: Visual ASR with PCA Features(%)
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Figure 4.6: Visual ASR Accuracy with PCA Features

results are not provided. In theory, LDA is expected to perform better than PCA

since it seeks for a tranformation in the most discriminative sense. However, it is

stated that for the cases where the training dataset is small, PCA can outperform

LDA [41] which is probably the case here.

Assembling the outcomes of DCT and PCA, DCT is selected for the word level

audio visual speech recognition system.

4.8 Audio Visual Speech Recognition Experiments

Audio visual speech recognition experiments are carried out with MFCCs as the

audio features and DCT coefficients as the visual features. MFCCs are extracted as

39 dimensional vectors at a frequency of 100Hz. DCT coefficients are extracted as

63 dimensional vectors at a frequency of 25Hz. Since, both MSHMM and the tan-
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dem approach necessitates observation synchrony between the two streams, visual

observations are upsampled to 100Hz by linear interpolation. Due to interpolation,

recognition accuracy decreases at 100Hz compared to the recognition accuracy at

25Hz.

For the MSHMM case, three tapes are used for training the model. The trained

model is evaluated on the fourth tape with varying weights and the best performing

weights are determined for each SNR level according to the recognition accuracies.

Finally, the system is tested on tape-5 with the pre-determined weights. The weights

for each SNR level and the recognition accuracy of MSHMM system can be seen in

Table 4.4.

MSHMM Tandem

Noise Level Audio Weight Video Weight Accuracy Accuracy

Clean 1 0 100.00 99.44

20dB 1 0 99.72 95.28

15dB 0.9 0.1 95.28 93.06

10dB 0.6 0.4 83.61 84.17

5dB 0.3 0.7 70.00 68.61

0dB 0.2 0.8 54.29 48.53

-5dB 0 1 53.14 31.00

Table 4.4: Audio Visual ASR (%)

In the tandem system, three tapes are used to train Gaussian Mixture Models

with 12 mixtures for each data stream. Linear Discriminant Classifier is trained

with the fourth tape. A class corresponds to a word both for GMM and LDC. The

case where a class corresponds to a phoneme is also tried for the GMM and LDC

stages but the phoneme level classification did not perform as well as the word level

classification. Number of classes is 11 since there are 10 digits and an additional

class of silence/short pause. On this account, the dimension of the output vectors of

GMM are 11. Consequently, the inputs to the LDC stage are 22-dimensional vectors

and the outputs are again 11-dimensional posterior probability vectors. Once the

GMM-LDC stage is trained, posterior probability vectors are extracted as features

for the whole dataset. The 11-dimensional posterior probability vectors are treated
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as observations to single stream HMMs. HMMs are trained with the first four tapes

and tested on the last tape. The results of the tandem approach are recorded in

Table 4.4 indicating resembling performance with the MSHMM.

In addition to comparison of recognition accuracies, the two frameworks are

compared according to the processing times of their testing stages. The processing

times with HVite program in HTK running on Intel Xeon 2.0GHz processor are

given in Table 4.5.

MSHMM Tandem Fusion

129.978 31.112

Table 4.5: Processing Times (in seconds)

Figure 4.7 summarizes the main concept of this study. First of all, the dra-

matic performance degradation of MFCC based acoustic speech recognition system

is represented. Visual information, although not much competent as a single modal-

ity, supports the acoustic stream in audio visual speech recognition frameworks.

The proposed tandem approach shows compariable performance with the MSHMM

which is a promising indication for future studies. Since the weights are manually

assigned for each SNR level in MSHMM, there is a minimum limit for the recognition

accuracy which is obtained by giving zero weight to the acoustic stream. On the

other hand, no manual weight assignment is done in the tandem fusion approach,

hence the recognition accuracy of the proposed approach is lower than MSHMM in

very high noise levels. No matter which audio visual architecture is used, acous-

tic speech recogition systems employing AFE exhibits better performance with the

help of noise reduction. This situation approves that there is still much work to be

conducted in audio visual speech recognition research.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this study, a novel framework for audio visual information fusion which employs

a preliminary decision stage prior to Hidden Markov Modelling is proposed. In

the preliminary decision stage, the two data streams are separately modelled with

GMMs and then combined with LDC as the combining classifier. Classifier combi-

nation is claimed to be superior to feature fusion and decision fusion methods. The

reason is that the bimodal information is fused in a way to maximally discriminate

among different classes. Hidden Markov Modelling stage following the preliminary

decision fusion stage served for modelling the temporal evolutions in the data which

could not be realized with the frame level decision of the first stage.

The proposed approach is compared with the MSHMM which is argued to be the

principal audio visual information fusion framework [8]. The recognition accuracy

results for the two systems were comparable. Also, the tandem fusion approach had a

superiority to the MSHMM in run time. The tandem approach can be considered as

a promising candidate for information fusion in audio visual speech recognition due

to the fact that improved versions of it can be constructed using different singular

classifiers and combining classifiers.

5.2 Future Work

As future work, different singular classifiers and combining classifier can be analysed.

Especially, Neural Network (NN) as a singular classifier has the potential to be

superior to GMM if computational needs are fulfilled.
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Another future work is to test the novel method in large vocabulary tasks but

first an extensive database is needed which is one of the main drawbacks of audio

visual speech recognition research.
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