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Abstract

Let D and G be arbitrary Stein manifolds, E ⊂ D and F ⊂ G compact sets,

and X = (E × G) ∪ (D × F ). Under certain general hypothesis it is proved that a

function f on X which is separately analytic, i.e. for which f(z, w) is analytic in

z in D for any �xed w ∈ F and analytic in w in G for any �xed z ∈ E, extends to
an analytic function in some open neighbourhood X̃ of X.



HER DE���KENE GÖRE ANAL�T�K FONKS�YONLAR VE HARTOGS

TEOREM�N�N GENELLE�T�RMELER�

Nalan Ta³yanar

Matematik, Yüksek Lisans Tezi, 2009

Tez Dan�³man�: Vyacheslav Zakharyuta

Anahtar Kelimeler: De§i³kene göre analitik, çoklu potansiyel teorisi, analitik

fonksiyonlar uzay�, Hartogs Teoremi.

Özet

D ve G Stein manifoldlar�, E ⊂ D ve F ⊂ G kompakt kümeler, ve X = (E ×
G) ∪ (D × F ) olsun. Belirlenmi³ bir hipotez alt�nda, X kümesi üzerinde tan�ml�,

de§i³kene göre analitik (w ∈ F sabit tutuldu§unda, z de§i³kenine göre D'de anal-
itik ve z ∈ E sabit tutuldu§unda, w de§i³kenine göre G'de analitik) bir f fonksiy-

onunun, X kümesinin aç�k bir kom³ulu§unda analitik bir fonksiyona geni³letilebile-

ce§i ispatlanm�³t�r.
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CHAPTER 1

INTRODUCTION

Classical theorem of Hartogs' [2] (cf. also [3]) asserts that a function de�ned in

a domain D ⊂ Cn and having the property that it is analytic with respect to

each variable when the remaining variables are held constant is then analytic in

D. Hukuhara [4] raised the question of whether the following strengthening of

Hartogs' theorem holds.

Problem 1: Let D and G be Stein manifolds. Characterize those compact sets

E ⊂ D having the property that every function f(z, w) which is de�ned on D×G

and analytic in z in D for every �xed w ∈ G and analytic in w in G for every �xed

z ∈ E is then analytic in D × G.

This problem was solved in [16], [20], and [19]. Zakharyuta obtained the solu-

tion as a consequence of a general theorem in [23]. And we will give the solution

to this problem as a corollary in Chapter 5.

Siciak in [17] posed and partially solved the following general problem.

Problem 2: Let D and G be Stein manifolds and E ⊂ D and F ⊂ G. Give

conditions on E and F so that each function which is separately analytic on

X = (E×G)∪(D×F ) extends to a function analytic in some open neighbourhood

of X.

In Chapter 5 as a main Theorem 5.1.1 we will present a complete solution to

Problem 2 which was proved by Zakharyuta in [23].

The basis of our considerations is comprised of the methods of extremal plurisub-

harmonic functions (cf. [17], [24], [21]). Su�cient information about relative ex-

tremal functions can be found in Chapter 4.
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We will introduce a method for construction of bases that is based on Hilbert

methods which have been applied to spaces of analytic functions in Chapter 2.

Moreover, information about spaces of analytic functions will be represented in

Chapter 3.
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CHAPTER 2

SOME INFORMATION ON FUNCTIONAL ANALYSIS

In this chapter, we will mention some preliminary concepts about functional anal-

ysis. In section 2.1, locally convex space will be introduced ([9]) and de�nition of

a nuclear space will be given.

In section 2.2, Hilbert scales will be introduced ([8], [10]) and some theorems

that construct a common basis for pairs of Hilbert spaces will be discussed [22].

2.1 Locally Convex Spaces

Let X be a non-empty set. We will de�ne a topology on X as a system τ of subsets

of X which has the properties:

1. X and ∅ are open.

2. The union of every collection of open sets is open.

3. The intersection of any two open sets is open.

The elements of τ are called open sets. A topological space (X, τ) is a set X with

a topology τ .

A topological space X is called a Hausdor� space if for each distinct pair x, y

in X there exist disjoint open sets Ux and Uy with x ∈ Ux and y ∈ Uy. Later on,

we will assume the topological spaces to be Hausdor�.

By a topological vector space, we will mean a F-vector space E with a topology

τ for which addition + : E×E → E and scalar multiplication · : F×E → E are

continuous in τ .
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A collection τ ′ ⊂ τ is a base for τ if every member of τ that is, every open set

is a union of members of τ ′. A collection γ of neighbourhoods of a point x ∈ X

is a local base at x if every neighbourhood of x contains a member of γ. In the

vector space context, the term local base will always mean a local base at 0.

De�nition 2.1.1. A topological vector space E, is called a locally convex space if

there is a local base B whose members are convex.

A locally convex topology, on a F-vector space E, is a topology τ on E for which

(E, τ) is a locally convex space.

We now introduce a special class of locally convex spaces which will be impor-

tant to us.

De�nition 2.1.2. Let E and F be Banach spaces and A : E → F be a linear map.

If there exist sequences (λj)j∈N in E ′ and (βj)j∈N in F such that
∑

j∈N ‖λj‖‖βj‖ <

∞, so that

Ax =
∑
j∈N

λj(x)βj for all x ∈ E, (2.1)

then A is called a nuclear operator. And (2.1) is said to be a nuclear representation

of A.

Let E be a locally convex space and p be a semi-norm on E. A norm is de�ned

on the quotient space E/Np by ‖x+Np‖p := p(x), whereNp = {x ∈ E : p(x) = 0}.

The space Ep :=
(
Ê/Np, ‖‖p

)
is called the local Banach space for the semi-norm p.

We have ‖ιp(x)‖p = p(x), for all x ∈ E, where ιp is the canonical map, ιp : E → Ep,

ιp(x) := x + Np. Note that if p and q are semi-norms on E with q ≥ p, then the

identity map on E induces a continuous linear map ιpq : Eq → Ep between the local

Banach spaces determined by the relation ιpq ◦ ιp = ιq. Now, if for each continuous

semi-norm p on E there exists a continuous semi-norm q satisfying q ≥ p, so that

ιpq : Eq → Ep is nuclear, then E is called a nuclear space. For example, A(Ω),

C∞(Ω).

We shall say that a topological vector space X is imbedded in a topological

vector space Y , if there exists an injective linear continuous mapping i : X −→ Y .
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We denote this imbedding by X ↪→ Y . In addition, a bounded linear operator

T : V → W between normed spaces V andW is said to be a compact or completely

continuous operator, if it maps every set bounded in the norm of V to a set

relatively compact in W .

2.2 Hilbert Pairs and Scales

Lemma 2.2.1. (see e.g. [21]) Let H0, H1 be a pair of Hilbert spaces with a linear

dense compact embedding H1 ↪→ H0. Then there exists a system {ek} ⊂ H1 which

is a common orthogonal basis in H1 and H0 such that

‖ek‖H0 = 1, µk = µk(H0, H1) := ‖ek‖H1 ↑ ∞. (2.2)

Proof. Let H0, H1 be a pair of Hilbert spaces. De�ne the operator J : H1 ↪→ H0

as Jx ≡ x for any x ∈ H1. Then J is a linear dense compact imbedding.

For any x ∈ H1, y ∈ H0 the adjoint operator J∗ : H0 → H1 is de�ned as

〈Jx, y〉H0 = 〈x, J∗y〉H1

Now, de�ne A := J∗J . Then, A is self-adjoint since, A∗ = (J∗J)∗ = J∗J = A. If

both x and y are elements of H1, then since x = Jx,

〈x, y〉H0 = 〈Jx, y〉H0 = 〈Jx, Jy〉H0 = 〈x, J∗Jy〉H1 = 〈x,Ay〉H1 = 〈Ax, y〉H1 ,

where the last equality follows since A is self-adjoint.

A is compact since it is the superposition of a continuous and compact operator.

Also, since 〈x, y〉H0 = 〈Ax, y〉H1 , for any x ∈ H1, 〈Ax, x〉H1 ≥ 0 as 〈Ax, x〉H1 = 0 if

and only if x = 0.

Therefore, A is a compact, self-adjoint, strictly positively de�ned operator.

Hence there exists a complete orthonormalized sequence of eigenvectors {gk}:

Agk = λkgk, k ∈ N, λk > 0, λk → 0.

Take the sequence of eigenvalues λk ↓ 0. Then,

〈gk, gj〉H0 = 〈Agk, gj〉H1 = 〈λkgk, gj〉 = λkδkj.
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Thus, ‖gk‖H0 =
√
λk, ‖gk‖H1 = 1 and {gk} is a common orthogonal basis in H1 and

H0. To renormalize this system, let ek := 1√
λk
gk. Clearly, {ek} is also a common

orthogonal basis in H1 and H0 such that

‖ek‖H0 = 1, ‖ek‖H1 = µk = µk(H0, H1) ↑ ∞ as k →∞ (2.3)

where µk = 1√
λk
.

De�nition 2.2.1. A family of Banach spaces Xα, α0 ≤ α ≤ β0 is called a scale of

Banach spaces if for arbitrary α0 ≤ α < β ≤ α1, the following conditions are met:

(i) Xβ ↪→ Xα,

(ii) ||x||Xγ ≤ C(α, β, γ)(||x||Xα)1−τ(γ)(||x||Xβ)τ(γ) with τ(γ) = γ−α
β−α , α < γ < β

for any x ∈ Xβ.

Let Hα = H1−α
0 Hα

1 , α ∈ (−∞,∞), be a Hilbert scale generated by Hilbert

spaces with dense imbedding H1 ↪→ H0 ([8], [10]). If this imbedding is compact,

then the scale {Hα} can be described transparently, since in this case there is a

common orthogonal basis {ek} for H0 and H1, normalized in H0 and enumerated by

non-decreasing of norms in H1 as in (2.3). Using this basis the scale is determined

by the norms

||x||Hα :=
(∑
k∈N

|ζk|2µ2α
k

)1/2

, x =
∑
k∈N

ζkek. (2.4)

In the case α ≥ 0 the space Hα consists of x ∈ H0 with �nite norm (2.4) while in

the case α < 0 the space Hα is the completion of H0 by the norm (2.4).

Lemma 2.2.2. Let H be a Hilbert space densely and completely continuously em-

bedded in a Banach space X. Then there are Hilbert spaces H0 and H̃0 with con-

tinuous imbeddings

H̃0 ↪→ X ↪→ H0

such that there exists a common orthogonal basis {en} in the spaces H, H0 and H̃0

which satis�es the conditions

‖en‖H0 = 1, ‖en‖H = µn, ‖en‖H̃0
≤ Cn2
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where {µn} is any nondecreasing sequence of positive numbers and C is a positive

constant.

Proof. With the help of the natural embedding into H, put the functional x∗ ∈ X∗

(where X∗ is the dual space of X) into correspondence with the element x′ ∈ H

such that x∗(x) = (x, x′)H for x ∈ H. Then we obtain the triple of spaces

X ′ ↪→ H ↪→ X

By a result of Raimi (cf. [14]), there exist an orthogonal basis {gn} in H and a

numerical sequence hn ↓ 0 such that

‖gn‖X′ ≤
1

hn
, |(gn, x)| ≤ hn‖x‖X′ , x ∈ X ′.

Now set en = µn gn, where µn = n
hn
. Then the Hilbert spaces H0 and H̃0 are

obtained as the completion of H with respect to the Hilbert norms

(∑
|(en, x)|2

)1/2
= ‖x‖H0 ,

(∑
|(en, x)|2n2

)1/2
= ‖x‖H̃0

.

Clearly, these are the spaces sought.
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CHAPTER 3

SPACES OF ANALYTIC FUNCTIONS

In this chapter we will de�ne Stein manifolds following [3], then introduce spaces

of analytic functions.

3.1 Stein Manifolds

A Hausdor� topological space Ω is called a manifold of dimension n if any point

in Ω has a neighborhood which is homeomorphic to an open set in Rn.

De�nition 3.1.1. A manifold Ω (of dimension 2n) is called a complex analytic

manifold (of complex dimension n) if there is a given family F of homeomorphisms

κ, called complex analytic coordinate systems, of open sets Ωκ ⊂ Ω on open sets

Ω̃κ ⊂ Cn such that

(i) If κ and κ′ ∈ F , then the mapping

κ′κ−1 : κ(Ωκ ∩ Ωκ′) −→ κ′(Ωκ ∩ Ωκ′)

de�nes an analytic mapping,

(ii) ∪κ∈FΩκ = Ω,

(iii) If κ0 is a homeomorphism of an open set Ωκ0 ⊂ Ω onto an open set in Cn

and the mapping κκ−1
0 : κ0(Ωκ ∩Ωκ0) −→ κ(Ωκ ∩Ωκ0) and its inverse are analytic

for every κ ∈ F , then κ0 ∈ F .

In fact, the condition (iii) is in a way super�uous. For if F satis�es (i) and (ii),

we can extend F in one and only one way to a family F ′ satisfying (i), (ii), (iii).
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Indeed, the only such family F ′ is the set of all mappings satisfying the condition

(iii) relative to F . A complex analytic structure can thus be de�ned by an arbitrary

family F satisfying (i) and (ii), but if the condition (iii) is dropped, there are

many families de�ning the same structure. Such a family is called a complete set

of complex analytic coordinate systems, and two such sets are equivalent if they

de�ne the same structure.

We say that n complex valued functions (z1, ..., zn) de�ned in a neighborhood

of a point w ∈ Ω are a local coordinate system at w if they de�ne a mapping of

a neighbourhood of w into Cn which is a coordinate system in the sense de�ned

above.

De�nition 3.1.2. A closed subset V of a complex analytic manifold Ω of dimen-

sion n is called an analytic submanifold of dimension m if for each v ∈ V , there

exist a neighborhood U of v and local coordinates f1, ..., fn such that U ∩ V = {z ∈

U : fm+1(z) = ... = fn(z) = 0}.

Note that, the notion of a submanifold is local.

Ω is called countable at in�nity if there exists a countable family of compact

subsets {Ki : i ∈ N} such that each compact subset of Ω is contained in some Ki.

De�nition 3.1.3. A complex analytic manifold Ω of dimension n which is count-

able at in�nity is called Stein manifold if

(i) Ω is holomorphically convex, that is the A(Ω)-hull

K̂Ω :=
{
z ∈ Ω : |f(z)| ≤ sup

K
{|f | for all f ∈ A(Ω)}

}
is a compact subset of Ω for every compact subset K of Ω.

(ii) For given two points z1, z2 with z1 6= z2, there exists a function f ∈ A(Ω)

such that f(z1) 6= f(z2).

(iii) For every z ∈ Ω, there exist n analytic functions on Ω f1, ..., fn which form

a coordinate system at z.
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Due to the following theorem, a Stein manifold can be represented as a sub-

manifold of CN where N is su�ciently large.

Theorem 3.1.1. ([3]) Any Stein manifold of dimension n is isomorphic to an

analytic submanifold of C2n+1.

In the following de�nition and theorems (till the end of this section), we re-

quire all manifolds to be connected and countable at in�nity without making this

assumption explicitly in every statement. We shall say that a manifold Ω̃ is a

holomorphic extension of another manifold Ω if

(i) Ω is an open subset of Ω̃.

(ii) The analytic structure of Ω is induced by that in Ω̃.

(iii) For every f ∈ A(Ω) one can �nd f̃ ∈ A(Ω̃) such that f = f̃ in Ω.

Theorem 3.1.2. If Ω is a Stein manifold, and Ω̃ is a holomorphic extension of

Ω, then Ω = Ω̃.

Stein manifolds are maximal not only in the sense that they have no holomorphic

extensions, but also in the sense that, if one can �nd a holomorphic extension

which is a Stein manifold, it contains all natural holomorphic extensions:

Theorem 3.1.3. Let Ω1 and Ω2 be holomorphic extensions of Ω, and assume that

Ω1 is a Stein manifold and that functions in A(Ω2) give local coordinates everywhere

in Ω2 and separate points in Ω2. Then there is an analytic isomorphism ϕ of Ω2

into Ω1 which is the identity on Ω; and moreover, if Ω2 is a Stein manifold it is

an isomorphism onto Ω1.

Hence, there is, apart from isomorphisms, at most one holomorphic extension

of Ω which is a Stein manifold. When such an extension exists, it is called envelope

of holomorphy of Ω.

We shall now give a su�cient condition for the existence of an envelope of

holomorphy.
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De�nition 3.1.4. A complex manifold Ω of dimension n is called a Riemann

domain if analytic functions separate points in Ω and there is an analytic map

ϕ : Ω→ Cn

which is everwhere regular, that is, locally an isomorphism.

Theorem 3.1.4. Let D be a domain on a Stein manifold Ω. Then there exists

an envelope of holomorphy D̃ of the domain D, therewith D̃ is a Riemann domain

over Ω.

3.2 Spaces of Analytic Functions

Let Ω be a complex manifold. A(Ω) is the space of all analytic functions on Ω with

the topology of uniform convergence on compact subsets of Ω, i.e. with the locally

convex topology generated by semi-norms

|x|K := max{|x(z)| : z ∈ K} (3.1)

where K is any compact subset of Ω. If Ω is countable at in�nity, then A(Ω) is

a Fréchet space whose topology is given by the sequence of seminorms {|x|Ks}∞s=1

where Ks ⊂ intKs+1 and ∪sKs = Ω.

Let E be an arbitrary subset of Ω. By G(E) = GΩ(E), we denote the collection

of all open neighborhoods of E in Ω. For Df , Dg ∈ G(E), the functions f ∈ A(Df )

and g ∈ A(Dg) are said to be equivalent (f ∼ g) if there exists a D ∈ G(E) such

that D ⊂ Df ∩Dg and f ≡ g on D. A germ of analytic functions, brie�y (analytic)

germ, is an eqivalence class obtained by the relation ∼ . If x is a germ on E and

f ∈ x then we say that f represents the germ x. We denote by A(E) the locally

convex space of all germs on E endowed with the inductive limit topology

A(E) = lim indD∈G(E)A(D)

that is, the �nest topology on A(E) for which all natural mappings

JD,E : A(D) −→ A(E) , D ∈ G(E)

11



are continuous.

Let K be a compact set in Ω and J : A(K) −→ C(K) be the natural homomor-

phism of restriction. We denote by AC(K), the Banach space obtained by the

completion of J(A(K)) in C(K) according to the norm de�ned in (3.1).

3.2.1 Duality

Let Ω be a Stein manifold. Elements of conjugate space A′(Ω) = A(Ω)∗, that is

linear continuous functionals on A(Ω), are called analytic functionals (on Ω).

Analytic functionals have a signi�cant part in the investigation of structure of

analytic functions, especially in the basis problem.

If E is an arbitrary subset of Stein manifold Ω then the natural map

J∗ = J∗(E,Ω) : A(E)∗ → A′(Ω), (3.2)

that transforms a functional x∗ ∈ A(E)∗ to its restriction on A(Ω), is a linear

continuous map. In the case when E is a Runge set in Ω, that is A(Ω) is dense in

A(E), the map in (3.2) is an imbedding.

3.2.2 GKS- Duality

The following result, due to Grothendieck, Köthe, and Silva (see [1, 5, 7, 18]) allows

us to realize the space A(E)∗, for any set E ⊂ C, as the space of analytic functions

A(E∗) where E∗ := C \ E with the assumption that all germs of A(E) are equal

to zero at the point ∞ if ∞ ∈ E.

Theorem 3.2.1. For any set E ⊂ C there exists an isomorphism γ : A(E)∗ →

A(E∗) such that the following formula holds

x∗(x) =

∫
Γ

x′(ζ)x(ζ)dζ, x ∈ A(E),

where x′ = γ(x∗), Γ = Γ(x, x′) is a recti�able contour separating the singularities

of the analytic germs x and x∗.

In several complex variables, there is no similar universal representation of

A(E)∗ as a space of analytic functions.

12



3.2.3 The Dual Form of Cartan Theorem

Let M be a closed analytic submanifold of Stein manifold Ω. Then according to

Cartan theorem the restriction operator

R : A(Ω)→ A(M) : Rx = x|M, x ∈ A(Ω),

is a surjection. The adjoint operator R∗ : A(M)∗ → A(Ω)∗ maps any functional

ϕ ∈ A(M)∗ to ψ = ϕ◦R ∈ A(Ω)∗. Using the theorem about dual relation between

endomorphisms and monomorphisms we get the following dual version of Cartan

theorem:

Proposition 3.2.1. The adjoint operator R∗ : A(M)∗ → A(Ω)∗ of the restriction

operator R : A(Ω)→ A(M) is an isomorphic embedding.

13



CHAPTER 4

SOME INFORMATION ON PLURIPOTENTIAL THEORY

In this chapter, we �rst present some fundamental properties of plurisubharmonic

functions. Then we de�ne the relative extremal function and give some elementary

properties of the function. For further study of plurisubharmonic functions the

reader can consult [6], [12], [11] and [25].

4.1 Plurisubharmonic Functions

Let z = (z1, . . . , zn) ∈ Cn. The two norms on Cn that we shall be using are the

Euclidean norm

‖z‖ =

( n∑
k=1

|zk|2
)1/2

and the maximum norm

|z| = max{|z1|, . . . , |zn|}.

Note that these norms are equivalent and |z| ≤ ‖z‖ ≤
√
n|z|.

Let a ∈ Cn and r > 0. The open polydisc, with center at a, and radius r, is the set

U(a, r) = {z ∈ Cn : |z − a| < r}.

Let Ω be an open subset of Cn , and let u : Ω −→ [−∞,∞) be an upper semicon-

tinuous function which is not identically −∞ on any connected component of Ω.

The function u is said to be plurisubharmonic if for each a ∈ Ω and b ∈ Cn, the

function λ 7−→ u(a + λb) is subharmonic or identically −∞ on every component

of the set {λ ∈ C : a+ λb ∈ Ω}. We denote by PSH(Ω) the set of all plurisubhar-

monic functions in Ω.

14



The following theorem can be taken as an equivalent de�nition of plurisubharmonic

functions.

Theorem 4.1.1. Let u : Ω −→ [−∞,∞) be upper semicontinuous and not identi-

cally −∞ on any connected component of Ω ⊂ Cn. Then u ∈ PSH(Ω) if and only

if for each a ∈ Ω and b ∈ Cn such that

{a+ λb : λ ∈ C, |λ| ≤ 1} ⊂ Ω,

we have

u(a) ≤ 1

2π

∫ 2π

0

u(a+ eitb)dt. (4.1)

It should be noted that plurisubharmonicity is a local property and we can

de�ne a plurisubharmonic function on a complex submanifold of Cn. Indeed, let

M be a complex submanifold of Cn. A function u : M → [−∞,∞) is said to be

plurisubharmonic on M if for each a ∈ M there exists a neighbourhood U of a

in Cn and a function ũ ∈ PSH(U) such that ũ|U ∩M = u. It is obvious that

most basic properties of plurisubharmonic functions de�ned on open subsets of

Cn can be easily transferred to the case of plurisubharmonic functions on complex

submanifolds.

Let Ω ⊂ Cn be open. If Ω 6= Cn, de�ne

Ωε := {z ∈ Ω : dist(z, ∂Ω) > ε}

for ε > 0. If Ω = Cn, we set Ωε = Cn. The following theorem is known as main

approximation theorem for plurisubharmonic functions.

Theorem 4.1.2. Let Ω be an open subset of Cn, and let u ∈ PSH(Ω). Then

there exists uε ∈ C∞ ∩ PSH(Ωε) such that uε decreases with decreasing ε, and

limε→0 uε(z) = u(z) for each z ∈ Ω.

Theorem 4.1.3. Let Ω be an open subset of Cn

(i) If u, v ∈ PSH(Ω) then max(u, v) ∈ PSH(Ω).
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(ii) The family PSH(Ω) is a convex cone, i.e. if α, β are non-negative numbers

and u, v ∈ PSH(Ω), then αu+ βv ∈ PSH(Ω).

(iii) If Ω is connected and {uj}j∈N ⊂ PSH(Ω) is a decreasing sequence then u =

limj→∞ uj ∈ PSH(Ω) or u ≡ −∞.

(iv) Let {uα}α∈A ⊂ PSH(Ω) be such that its upper envelope u = supα∈A uα

is locally bounded above. Then the upper semicontinuous regularization u∗(y) =

lim sup z→y
z∈Ω

u(z), y ∈ Ω is plurisubharmonic in Ω.

Proposition 4.1.1. Let Ω be a domain in Cn. Let V ⊂ Ω be an open subset. If

u ∈ PSH(Ω), v ∈ PSH(V ), and

lim sup
z→y

v(z) ≤ u(y), y ∈ ∂V ∩ Ω, (4.2)

then

w =

 max{u, v} in V

u in Ω \ V

is plurisubharmonic in Ω.

Proof. The boundary condition (4.2) on v ensures that w is upper semicontinuous

on Ω. By Theorem 4.1.3 (i) w satis�es the local submean inequality (4.1) at each

z ∈ V , and it does also when z ∈ Ω \ V since w ≥ u on Ω.

4.2 The Relative Extremal Functions

Let D be a Stein manifold of dimension n and E is a compact subset of D. The

relative extremal function for E in D is de�ned as

ω0(z) = ω0(D, E, z) = sup{u(z) : u ∈ PSH(D), u|E ≤ 0, u ≤ 1} (4.3)

Note that the function (ω0(z))∗ is plurisubharmonic in D. From now on we will

denote the upper semicontinuous regularization of ω0(z) by ω(z) = ω(D, E, z) and

the class of all functions u ∈ PSH(D) satisfying the inequalities u|E ≤ 0, u ≤ 1
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by P (E,D).

We also de�ne the functions

ω̃(z) = ω̃(D, E, z) = lim
s→∞

ω(Ds, E, z), z ∈ D, (4.4)

ω̃0(z) = ω̃0(D, E, z) = lim
s→∞

ω0(Ds, E, z), z ∈ D. (4.5)

where Ds is a sequence of open sets in D with Ds b Ds+1 and D = ∪∞1 Ds.

One of the main notions in our work is that of pluriregularity of compact sets in

Stein manifolds.

De�nition 4.2.1. A compact set E in a Stein manifold Ω is called pluriregular

with respect to its open neighbourhood D ⊂ Ω if ω(G,E, z) ≡ 0 on E for every

open neighbourhood E ⊂ G b D. A compact set E is called pluriregular if for any

its open neighborhood D the set E is pluriregular with respect to the holomorphic

hull D̃ of D, that is,

ω(D̃, E, z) ≡ 0, z ∈ E

If a compact set E is holomorphically convex in D, that is, ÊD = E, then it

is su�cient to verify the condition 4.2.1 in only one pseudoconvex neighbourhood

G b D of E.

De�nition 4.2.2. An open set D in a Stein manifold Ω is called pluriregular (or

hyperconvex) if there exists a function u ∈ PSH(D) such that u(z) < 0, z ∈ D

with limu(z) = 0 as z → ∂D.

De�nition 4.2.3. An open set D in a Stein manifold Ω is called strongly plurireg-

ular if there exists a pseudoconvex open neighbourhood G c D and a continuous

plurisubharmonic function u(z) in G such that D = {z ∈ G : u(z) < 0}. Such a

function u is called an exhaustion function for G.

The following monotonicity property of the relative extremal function is a direct

consequence of the de�nition.

Proposition 4.2.1. If E1 ⊂ E2 ⊂ D2 ⊂ D1, then the inequality

ω0(D1, E1, z) ≤ ω0(D2, E2, z)
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holds where both functions are de�ned.

Proposition 4.2.2. Let Ω be an open set in Cn, and let E ⊂ Ω. Suppose that

M and m are two real numbers such that M > m. If u ∈ PSH(Ω) satis�es the

conditions

u ≤M on Ω and u ≤ m on E,

then

u ≤M(1 + ω)−mω.

Proof. Since the function
u−M
M −m

∈ PSH(Ω)

as an immediate consequence of the de�nition of the relative extremal function,

we have
u−M
M −m

≤ ω0(z) ≤ ω(z)

and this is equivalent to the desired estimate.

There follows an analog of the Hadamard theorem on three surfaces, which is

called also Two Constants Theorem for analytic functions.([17])

Proposition 4.2.3. Let D be a Stein manifold, E be compact set in D, and f ∈

A(D) with |f |E ≤M0 and |f |D ≤M1. Then

|f |Dα ≤ (M0)1−α(M1)α, α ∈ (0, 1),

where Dα = {z ∈ D : ω(D, E, z) < α}.

Proposition 4.2.4. Let Ω be a strongly pluriregular subset of Cn, and let E be a

compact subset of Ω. Suppose that {Ωj} is an increasing sequence of open subsets

of Ω such that Ω = ∪∞j=1Ωj and K ⊂ Ω1. Then

lim
j→∞

ω0(Ωj, E, z) = ω0(Ω, E, z) z ∈ Ω.
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Proof. Take a point z0 ∈ Ω. We may suppose, without loss of generality, that

E ∪ {z0} ⊂ Ω1. Let % < 0 be an exhaustion function (see De�nition 4.2.3) for Ω

such that % ≤ −1 on E.

Take ε ∈ (0, 1) such that %(z0) < −ε. There exists j0 ∈ N for which the open set

A = %−1((−∞,−ε)) is relatively compact in Ωj0 . Take u ∈ PSH(Ωj0) such that

u ≤ 1 on Ωj0 and u ≤ 0 on E. Then

v(z) =

 max{u(z)− ε, %(z)} z ∈ A

%(z) z ∈ Ω\A

de�nes a plurisubharmonic function; moreover, v|E ≤ 0 and v ≤ 1. Thus v(z0) ≤

ω0(z0). Since u was an arbitrary member of the family P(E,Ωj0), we have

ω0(Ωj0 , E, z0)− ε ≤ ω0(Ω, E, z0).

By proposition 4.2.1,

ω0(Ωj, E, z0)− ε ≤ ω0(Ω, E, z0) ≤ ω0(Ωj, E, z0)

for all j ≥ j0. As ε can be made arbitrarily small, the result follows.

Lemma 4.2.1. Let D be a Stein manifold and E be a compact set in D. Then for

any sequence of compact sets {Es} in D with Es+1 b Es

ω(D, Es, z) ↑ ω0(D, E, z), z ∈ D

where E = ∩∞1 Es.

Proof. Clearly, ω(D, E1, z) ≤ ω(D, E2, z) ≤ . . ., hence the limit exists. Set ψ(z) =

lims→∞ ω(D, Es, z). Since ω is a plurisubharmonic function in D with ω ≤ 1 and

ω|Es ≤ 0, hence ω|E ≤ 0; ω(D, Es, z) belongs to P (E,D). Then for some s, by

the de�nition of the relative extremal function we have ω(D, Es, z) ≤ ω0(D, E, z),

thus ψ(z) ≤ ω0(D, E, z).

Now we need to prove the other side of the inequality. Let u be an arbitrary

function in P (E,D). By the upper semicontinuity of u, given any ε > 0 the set

U = {z ∈ D : u(z) < ε} is an open neighbourhood of E and then there exists
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s0 = s0(ε) such that for each s ≥ s0, Es ⊂ U . Hence, if s ≥ s0 and z ∈ D the

function v(z) = u(z)−ε
1−ε becomes plurisubharmonic with v(z)|Es ≤ 0 and v(z) ≤ 1,

therefore, we have

u(z) ≤ (1− ε)ω0(D, Es, z) + ε

≤ (1− ε)ω(D, Es, z) + ε

Taking limits of both sides as s → ∞ and then as ε → 0, we obtain that u(z) ≤

ψ(z) for any u ∈ P (E,D), whence we have ω0(D, E, z) ≤ ψ(z) which proves the

desired equality.

4.3 Pluripolar Sets

In this section we will give the de�nition of pluripolarity of a set and consider some

properties of pluripolar sets.

De�nition 4.3.1. A set A is called pluripolar in an open set D in a Stein manifold

Ω if there exists a function ψ ∈ PSH(D) satisfying ψ(z) ≡ −∞ on A but ψ 6≡ −∞

on any connected component of D.

Lemma 4.3.1. Let Ej be pluripolar sets in D b Ω. Then the set E = ∪∞1 Ej is

also pluripolar in D.

Proof. Let ψj ∈ PSH(D) with ψj 6≡ −∞ on any connected component D′E of D

but with ψj ≡ −∞ on Ej. Take the increasing sequence of open sets {Ds} with

Ds b Ds+1 and D = ∪∞1 Ds. Now set

cj,s = sup{ψj(z) : z ∈ Ds}

In every connected component D′E of D there exists at least one point ak at which

ψj(ak) 6= −∞ for all j = 1, 2, . . .. Since in any coordinate neighborhood U ⊂ D′E
the functions ψj are subharmonic in the corresponding real local coordinates, the

set L = {z ∈ U : ψj(z) = −∞, j = 1, 2, . . .} has Lebesque measure zero in the

local coordinates. Therefore U\L = ∅. Now choose a sequence of positive numbers
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{βj} so that both of the series

∞∑
j=1

βj|cj,s|,
∑
j,k

βj|ψj(ak)|

converges. We will show that the series

∞∑
j=1

βj ψj(z)→ ψ(z) in D

where ψ ∈ PSH(D). For z ∈ Ds we can rewrite the above series as the sum of two

series ∑
βj cj,s −

∞∑
j=1

βj (cj,s − ψj(z))

where the �rst one converges by the assumption and the second one is a series of

nonnegative terms which converges in Ds. Also, ψ is plurisubharmonic in Ds since

it is the limit of the decreasing sequence of its partial sums, which are plurisubhar-

monic. But s was arbitrary, so the series converges inD to a function ψ ∈ PSH(D).

Moreover, ψ(z) = −∞ on E by construction and ψ(z) 6≡ −∞ on any component

D′E of D since ψ(ak) =
∑
βjψj(ak) 6= −∞ by the assumption.

Hence E is also a pluripolar set in D.

Lemma 4.3.2. Let D be a Stein manifold and E be a compact subset of D. Then

the following conditions are equivalent:

(i) ω(G, E, z) ≡ 1 in G for any open set G with E ⊂ G b D;

(ii) E is pluripolar in D.

Proof. (i)⇒(ii)Let G be an open pseudoconvex set with E ⊂ G b D. Take a

sequence of pluriregular compact sets {Es}, Es+1 b Es, E = ∩∞1 Es. Then by

Lemma 4.2.1, ω(D, Es, z) ↑ ω0(D, E, z); and by hypothesis

lim sup
ζ→z

ω0(G, E, ζ) = ω(G, E, z) ≡ 1.

Therefore, by the theorem of Brelot-Cartan ([15],Chapter 3,Theorem 3.4.2) the

set {z ∈ G : ω0(G, E, z) < 1} has zero capacity (if G is considered to be a 2n-

dimensional real manifold). Consequently there exists a point aj in each connected
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component Gj of G such that ω0(G, E, aj) = 1. Now choose a sequence of positive

numbers {γs} so that
∑∞

s=1 γs =∞ and
∑∞

s=1 γs(1−ω(G, Es, z)) < ∞. Then the

function Ψ(z) =
∑∞

s=1 γs(ω(G, Es, z)−1) is plurisubharmonic in G as the sum of a

series with non-positive plurisubharmonic terms, and the condition on the second

series guarantees that Ψ(z) ≡ −∞ on E while Ψ(aj) 6= −∞. Thus E is pluripolar

in G.

(ii)⇒(i)Let G be an open set with E ⊂ G b D. Take an open set G ′ with G b

G ′ b D. Then by the hypothesis there exists a function Ψ ∈ PSH(D) such that

Ψ(z) ≡ −∞ on E and Ψ 6≡ −∞ on any connected component of D. Now we

consider a function

us(z) =
Ψ(z) + s

a+ s
z ∈ G, (4.6)

where a = sup{Ψ(z) : z ∈ G}. Clearly us ∈ PSH(G) and us ≤ ω(G, E, z) for

z ∈ G and for all s > |a|. Thus, taking a point ζ ∈ G such that Ψ(ζ) 6= −∞,

we obtain by (4.6) that ω(D, E, ζ) = 1. Since by the hypothesis we can �nd such

a point in every connected component of G we have ω(D, E, z) ≡ 1 in G by the

maximum principle.

Proposition 4.3.1. Let D be a Stein manifold and E a compact subset of D such

that E ∩ D′ is not pluripolar in D′ for any connected component D′ of D. Then

for any f ∈ A(D), f |E ≡ 0 implies that f ≡ 0 i.e. E is a set of uniqueness for

the class A(D).

Proof. Assume that there is a function f ∈ A(D) with f |E ≡ 0 but f 6≡ 0 in some

connected component D′. Then the function u(z) = ln |f(z)| is plurisubharmonic

in D′ and u ≡ −∞ on E ∩D′ but u(z) 6≡ −∞ in D′, i.e. E is pluripolar in D′.

Proposition 4.3.2. Let D be a strongly pluriregular open set on a Stein manifold

Ω and E ⊂ D be a pluriregular compact set. Then the function ω(D, E, z) extends

to a continuous plurisubharmonic function in an open set D′ c D.

Proof. Let D′ be a pseudoconvex open set with D b D′ b Ω and u ∈ C(D′) ∩

PSH(D′) such that D = {z ∈ D′ : u(z) < 0}. Take γ = − sup{u(z) : z ∈ E}.
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Then the function

v(z) =

 ω(D, E, z) z ∈ D

1 + 1
γ
u(z) z ∈ D′\D

is the desired extension.
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CHAPTER 5

SEPARATELY ANALYTIC FUNCTIONS

5.1 Separate Analyticity

De�nition 5.1.1. Let D and G be Stein manifolds and E ⊂ D, F ⊂ G. We shall

say that a function f(z, w) de�ned on the set X = (E×G)∪ (D×F ) is separately

analytic on X if it is analytic in z in D for each w ∈ F and analytic in w in G

for each z ∈ E.

The next theorem gives conditions on E and F providing an answer to Problem

2.

Theorem 5.1.1. Let D and G be Stein manifolds and E ⊂ D, F ⊂ G compact

sets with the property that ÊD and F̂G are pluriregular in D and G, respectively.

Let f(z, w) be a function separately analytic on the set X = (E × G) ∪ (D × F ).

Then the function f extends uniquely to a function f̃ which is analytic in the open

set

X̃ = {(z, w) ∈ (D × G) : ω(D, E, z) + ω(G, F, w) < 1}

containing X.

Theorem 5.1.1 will be obtained as a consequence of the following more general

result.

Theorem 5.1.2. Let D, G, E, F and X be as in Theorem 5.1.1, with E is not

pluripolar in each connected component of D. Let f(z, w) be a separately analytic

function on X = (E×G)∪ (D×F ) which is locally bounded on E×G. Then there
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is a function f̃ which is analytic in the open set

X̃ = {(z, w) ∈ (D × G) : ω̃(D, E, z) + ω(G, F, w) < 1}

and agrees with f on X∩X̃. The set X̃ is a neighbourhood of D×F and if, moreover

E satis�es the condition in Theorem 5.1.1 then X̃ is also a neighbourhood of X.

Proof. By Lemma 4.3.2 the hypothesis on E guarantees the existence of an open

set B with ÊD ⊂ B b D such that ω(B,E, z) 6≡ 1 in every connected component

of B.

Set K = ÊD, L = F̂G and choose two sequences of strongly pluriregular open

sets with smooth boundaries {D(s)} and {G(s)} such that

K ⊂ B b D(1) b . . . b D(s) b . . . b D, D = ∪∞s=1D(s), (5.1)

L ⊂ G(1) b . . . b G(s) b . . . b G, G = ∪∞s=1G(s), (5.2)

and also such that D(s) and G(s) have no connected components not intersecting

E and F , respectively. Then by construction, for any s we have

ω(D(s), E, z) 6≡ 1 (5.3)

in each connected component of D(s).

Now �x s ≥ 2 and consider the Hilbert space G1 of all functions x(w) analytic

in G(s) with �nite norm

‖x‖G1 =

(∫
G(s)

|x(w)|2 dσw
)1/2

where dσw is the volume element in G(s) with a �xed Hermitian metric on Ω ([3]).

And similarly construct the Hilbert space H1 for the domain D(s). These spaces

are related by continuous imbeddings

A(D(s)) ↪→ H1 ↪→ A(D(s)), A(G(s)) ↪→ G1 ↪→ A(G(s)). (5.4)

By a result of Pietsch [13], since A(L) is nuclear, there is a Hilbert space G0 with

continuous and dense imbeddings

A(L) ↪→ G0 ↪→ AC(L). (5.5)
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Then by Lemma 2.2.1 there is a common orthogonal basis {gl} in the spaces G1

and G0 satisfying

‖gl‖G0 = 1, ‖gl‖G1 = νl ↑ ∞ l ∈ N (5.6)

On the other hand, using Lemma 2.2.2 we choose two Hilbert spaces H0 and

H̃0 with continuous and dense imbeddings

H1 ↪→ A(D(s)) ↪→ H̃0 ↪→ AC(K) ↪→ H0 (5.7)

and such that there exists a common orthogonal basis {hk} for the spaces H1, H0

and H̃0 with

‖hk‖H0 = 1, ‖hk‖H1 = µk ↑ ∞, ‖hk‖H̃0
≤ Ck2 (5.8)

where C <∞.

Now, let G(s)
α = {w ∈ G(s) : ω(G(s), F, w) < α} for 0 < α < 1, be the sublevel

open sets. The continuity of the imbedding G1 ↪→ A(G(s)) implies that for any q,

0 < q < 1, there exists a constant Cq > 0 such that for any x ∈ G1 ↪→ A(G(s)),

|x|G(s)
q
≤ Cq ‖x‖G1 .

In particular,

|gl|G(s)
q
≤ Cq ‖gl‖G1 = Cq νl (5.9)

since ‖gl‖G1 = νl. The continuity of the imbedding G0 ↪→ AC(L) implies that, for

any x ∈ G0 ↪→ AC(L),

|x|L ≤ C ‖x‖G0 .

In particular,

|gl|L ≤ ‖gl‖G0 = C (5.10)

since ‖gl‖G0 = 1. For any α < 1 and ε > 0, we choose q with β := α/q < α + ε.

Then using Proposition 4.2.3 for gl and the relations (5.9), (5.10) we get,

|gl|G(s)
qβ
≤ (|gl|L)1−β (|gl|G(s)

q
)β ≤ C1−β (Cq νl)

β = C1−β Cβ
q ν

β
l
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Therefore

|gl|G(s)
α
≤ Nνα+ε

l , for all l ∈ N (5.11)

holds with a constant N = N(α, ε). In a similar way we can obtain the following

estimate for the common orthogonal basis {hk},

|hk|D(s−1)
α
≤ C ′ k2 (µk)

α, for all k ∈ N, (5.12)

where D(s)
α = {z ∈ D(s) : ω(D(s), E, z) < α} for 0 < α < 1.

It is known (see, e.g. [21]) that the asymptotic estimate

lnµk � k1/n, ln νk = k1/m, k →∞, (5.13)

where n and m are the dimensions of the spaces D and G.

Now �x z ∈ E. By the hypothesis of separate analyticity, the function ϕz(w) :=

f(z, w) belongs to the space A(G) ⊂ A(G(s)) ⊂ G1. Therefore it has an expansion

in terms of the basis {gl}:

f(z, w) =
∞∑
l=1

bl(z)gl(w), (5.14)

converging in the norm in G1. By the assumption of local boundedness of f on

E × G together with the orthogonality of the system, we derive the estimate for

the coe�cients bl(z):

|bl(z)| = 1

(νl)2

∣∣∣∣∫
G(s)

f(z, w) gl(w) dσw

∣∣∣∣ ≤ Cf
νl
, z ∈ E, l ∈ N (5.15)

The estimates (5.11), (5.15) and (5.13) imply that the series (5.14) converges uni-

formly on the set E × G(s−1)
α for 0 < α < 1.

For reasons of symmetry there is an expansion

f(z, w) =
∞∑
k=1

ak(w)hk(z), w ∈ F (5.16)

but since we are not assuming the local boundedness of f on D×F the bound on

the coe�cients may not be uniform in w. Still, we have the estimate, by Hölder's

Inequality:

|ak(w)| = 1

(µk)2

∣∣∣∣∫
D(s)

f(z, w)hk(z) dσz

∣∣∣∣ ≤ M(w)

µk
, w ∈ F, k ∈ N. (5.17)
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where M(w) <∞.

Below we show that this bound can be replaced by a uniform one.

Consider now a set of functionals {h∗k} ⊂ H∗0 , which constitutes the biorthogonal

system to the system hk, by the continuity of the imbedding H∗0 ↪→ AC(K)∗ there

exists a constant B such that

‖h∗k‖AC(K)∗ ≤ B ‖h∗k‖H∗0 = B <∞ (5.18)

where ‖h∗k‖H∗0 = 1 by (5.8). By Hahn-Banach Theorem, each of the functionals

h∗k extends with the same norm, from AC(K) to a linear functional h̃∗k ∈ B(E)∗.

Now, applying these functionals to the series (5.14) for any �xed w ∈ G(s−1), we

obtain an expansion

ak(w) = h∗k(f) =
∞∑
l=1

h∗k(bl(z))gl(w) =
∞∑
l=1

aklgl(w), w ∈ G(s−1), k ∈ N. (5.19)

By (5.15) and (5.18) we see that

|akl| = |h∗k(bl)| ≤ ‖h̃∗k‖B(E)∗‖bl‖B(E) ≤
C ′f
νl

(5.20)

It follows from (5.20) and (5.11) that the series (5.19) converges uniformly inside

the open set G(s). Thus each function ak(w) is also analytic in G(s), and since

G(s−1) b G(s)
α for some α with 0 < α < 1, we also have that

|ak(w)| ≤ C ′′(f) <∞, w ∈ G(s−1). (5.21)

Consider the sequence of functions

ψk =
ln |ak(w)|

ln(µk)
.

Since for each k the functions ak(w) are analytic in G(s−1), ψk are plurisubhar-

monic functions in G(s−1). Moreover, by (5.13) and (5.21)this sequence converges

uniformly in G(s−1), and on the other hand,

lim sup
k→∞

ψk(w) ≤ −1, w ∈ F.
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Then using Hartogs Lemma on sequences of plurisubharmonic functions, for any

ε > 0 there exists a number k0(ε) such that

ψk(w) < −1 + ε, k ≥ k0(ε), w ∈ F

This shows the existence of a constant C = C(ε) such that

|ak(w)| ≤ C(ε)

µ1−ε
k

, w ∈ F, k ∈ N. (5.22)

Applying Proposition 4.2.3 with (5.21) and (5.22) we get,

|ak(w)|G(s−1)
α
≤ C(f, ε)

µα−εk

, 0 < α < 1, k ∈ N. (5.23)

Consequently, we obtain a uniform estimate on the coe�cients of the series (5.16).

Combining this result together with (5.12) and (5.13) we conclude that the series

(5.16) converges uniformly inside the domain X̃s = ∪α∈(0,1)(D(s)
α × G(s−1)

1−α ). Thus

its sum de�nes a function ϕs(z, w) analytic in X̃s.

Furthermore, ϕs(z, w) = f(z, w) for all (z, w) ∈ (D(s) × F ) ∪ (E × G(s−1)).

Indeed, if (z, w) ∈ (D(s) × F ) then from the representation of f(z, w) as the series

(5.16) it follows. On the other hand, if (z, w) ∈ (E × G(s−1)) by the absolute and

uniform convergence of the series we obtain,

ϕs(z, w) =
∞∑
k=1

ak(w)hk(z) =
∑
k

(∑
l

akl gl(w)
)
hk(z)

=
∑
l

(∑
k

h∗k(bl(z))hk(z)
)
gl(w) =

∞∑
l=1

bl(z) gl(w) = f(z, w), (z, w) ∈ E × Gs−1

which gives the desired equality.

For any �xed w ∈ G(s−1)
α since E is a set of uniqueness for the class A(D) by

Proposition 4.3.1, the equality

f(z, w) = ϕs(z, w) = ϕs+1(z, w), z ∈ E,

implies ϕs(z, w) = ϕs+1(z, w) in D(s)
1−α. Therefore,

ϕs(z, w) = ϕs+1(z, w) (z, w) ∈ X̃s, s ∈ N
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Since, X̃ = ∪∞s=1X̃s by the de�nition of ω̃, there is an analytic function ϕ(z, w) in

X̃ agreeing with f(z, w) on X ∩ X̃.

By the pluriregularity of the set F̂G we have the inclusions F ⊂ G(s)
α for 0 <

α < 1, s ∈ N. Hence,

D(s)
α × F ⊂ D(s)

α × G
(s−1)
1−α , 0 < α < 1, s ∈ N. (5.24)

Furthermore, by the observation (5.3), D(s) = ∪α∈(0,1)D(s)
α , which together with

(5.24) implies that,

D × F ⊂ ∪∞s=1 ∪α∈(0,1) D(s)
α × F ⊂ ∪∞s=1 ∪α∈(0,1) D(s)

α × G
(s−1)
1−α = X̃.

If in addition, the compact set E satis�es the hypothesis of the theorem, i.e.

if ÊD is pluriregular, then E and F play symmetric roles, thus E × G ⊂ X̃, and

hence X ⊂ X̃.

Now, with the lemma below we show that the assumption about boundedness

of f can be removed.

Lemma 5.1.1. Let D and G be Stein manifolds and E ⊂ D, F ⊂ G compact sets

with the property that E is not pluripolar in each connected component of D and

F̂G is pluriregular in G. Let f(z, w) be a function separately analytic on the set

X = (E × G) ∪ (D × F ). Then there exists a function ϕ(z, w) analytic in an open

neighbourhood of the set D×F and agreeing with f(z, w) on D×F . In particular,

f(z, w) is locally bounded in D × F .

Proof. Let G1 be any open pseudoconvex neighbourhood of the compact set F with

G1 b G and such that every connected component of G1 intersects F . For each

m ∈ N we introduce the set

Em =
{
z ∈ E : sup

w∈G1

|f(z, w)| ≤ m
}

Since by hypothesis the function f is analytic in G for any �xed z ∈ E, we have

sup
{
|f(z, w)| : w ∈ G1

}
≤ C <∞ and so E = ∪∞1 Em, Em ⊂ Em+1 form = 1, 2, . . .
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By Lemma 4.3.1 there exists an m ∈ N such that the compact set Em is not

pluripolar in D. By the construction of Em the function f is locally bounded on

Em × G1. Thus all of the hypothesis of Theorem 5.1.2 are satis�ed if we put Em

and G1 in place of E and G, respectively. Therefore there exists a function ϕ(z, w)

on the set

Y = {(z, w) ∈ D × G1 : ω̃(D, Em, z) + ω(G1, F, w) < 1},

which is an open neighbourhood of D × F with ϕ(z, w) ≡ f(z, w) on D × F . In

particular, the local boundedness of f(z, w) on D × F has been proved.

Proof. (of Theorem 5.1.1) Observe that by the pluriregularity of the compact set

ÊD, the set E is not pluripolar in every connected component of D. Interchang-

ing the roles of D and E with G and F , Lemma 5.1.1 implies that f is locally

bounded on E × G. Then by applying Theorem 5.1.2 we complete the proof since

ω̃(D, E, z) = ω(D, E, z) by the hypothesis and X̃ is an open neighbourhood of

X.

Below, as a corollary we give the solution to Problem 1.

Corollary 5.1.1. Let D and G be Stein manifolds. Let E ⊂ D be a compact

set which is not pluripolar in every connected component of D. Let the function

f(z, w) be de�ned on D × G, analytic in z in D for every �xed w ∈ G, analytic in

w in G for every �xed z ∈ E. Then f(z, w) is analytic in D × G.

Proof. Without loss of generality we may assume that G is connected. Choose a

sequence of domains {Gs} with Gs b Gs+1 and G = ∪∞1 Gs such that Fs = Ḡs are

pluriregular compact sets. Applying Lemma 5.1.1, we see that f(z, w) extends

analytically to a neighbourhood of the set D× Fs and is analytic in D×Gs in the

variables (z, w). Since s is arbitrary it follows that f(z, w) is analytic in D×G.

It has been proved in [20] and [19] that the hypothesis on E is essential. If the

hypothesis is not satis�ed, there exists a function f(z, w) satisfying the hypothesis

of the corollary which is not analytic in D × G.
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De�nition 5.1.2. A Stein manifold D is called pluricopolar if ω(D, K, z) ≡ 0 in

D for any compact set K ⊂ D.

Corollary 5.1.2. If in the hypothesis of Theorem 5.1.1 at least one of the manifolds

D or G is pluricopolar, then f(z, w) extends to an analytic function ϕ(z, w) in

D × G.

Proof. Without loss of generality assume that D is copolar, i.e. ω(D, E, z) ≡ 0 for

all z ∈ D. Then,

X̃ =
{

(z, w) ∈ D × G : ω(G, F, w) < 1
}
⊃ D × G.

Therefore, X̃ = D × G.

Theorem 5.1.3. Let D and G be Stein manifolds at least one of which is pluri-

copolar. Let E be a compact set in D which is not pluripolar in any connected

component of D and F be a similar set in G. Then any separately analytic func-

tion f on X = (D × F ) ∪ (E × G) extends uniquely to a function analytic in

D × G.

For the proof of the theorem we give a stronger version of Theorem 5.1.2 which

has an analogous proof.

Lemma 5.1.2. Let D and G be Stein manifolds, and assume that E ⊂ D and

F ⊂ G are compact sets satisfying the hypothesis of Theorem 5.1.3. Let f(z, w) be

a separately analytic function on X = (D × F ) ∪ (E ×G) which is locally bounded

in E × G. Let

X̃ =
{

(z, w) ∈ D × G : ω̃(D, E, z) + ω̃(G, F, w) < 1
}
.

Then there exists a unique function ϕ ∈ A(X̃) which agrees with f on X ∩ X̃.

Proof. (of Theorem 5.1.3) Without loss of generality assume that D is pluricopolar.

Let Gs be a sequence of open sets as in (5.2). For �xed s, by a similar construction

as in the proof of Lemma 5.1.1 there exists a compact set E ′ ⊂ E which is not

pluripolar in every connected component of the set Gs and such that f is locally
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bounded on E ′ × Gs. Using Lemma 5.1.2 we obtain a function ϕs ∈ A(X̃s) which

agrees with f on X ∩ X̃s where

X̃s =
{

(z, w) ∈ D × Gs : ω̃(D, E ′, z) + ω̃(G, F, w) < 1
}
.

Since D is pluricopolar, we have ω̃(D, E ′, z) ≡ 0; on the other hand, ω̃(Gs, F, w) 6≡ 1

on any connected component of Gs. Therefore, X̃s = D×Gs. Finally, the function

ϕ ∈ A(D×G) de�ned by ϕ(z, w) = ϕs(z, w) for (z, w) ∈ X̃s is the desired function

which completes the proof of the theorem.
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