
STABILITY AND IMPLEMENTATION OF MODEL BASED PREDICTIVE
NETWORKED CONTROL SYSTEM

By

OZAN MUTLUER

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

SABANCI UNIVERSITY

Summer 2009

 ii

STABILITY AND IMPLEMENTATION OF MODEL BASED PREDICTIVE
NETWORKED CONTROL SYSTEM

APPROVED BY:

AHMET ONAT

(Dissertation Advisor)

GÜLLÜ KIZILTAŞ

ÖZGÜR GÜRBÜZ

AYHAN BOZKURT

ALİ KOŞAR

DATE OF APPROVAL:

 iii

© Ozan Mutluer 2009

All Rights Reserved

 iv

ABSTRACT

Digital control systems that have computer nodes which communicate over a data loss

and random delay prone common network are called Networked Control System (NCS). In a

typical NCS, the sensor, controller and the actuator nodes reside in different computers and

communicate with each other over a network. Random delays and data loss of the

communication network can endanger the stability of the NCS and retransmission of data is

not feasible in control applications since it adds delay to the system.

The aim of this thesis is to verify that the distributed NCS method called Model Based

Predictive Networked Control System (MBPNCS) can be implemented using an observer and

that it can control an open loop unstable plant. MBPNCS compensates for missed and late

data by implementing an intelligent predictive control scheme based on a model of the plant.

MBPNCS does not use retransmission and does not guarantee timely delivery of data packets

to each computer node since this solution is not feasible on every control application and

every communication medium. Instead, MBPNCS offers a control solution that can work

under random network delay and data loss by the use of a predictive architecture that predicts

plant state estimates and respective control signals from actual plant states.

In this thesis, MBPNCS is described along with an introduction to a theoretical

stability criterion. This is followed by an implementation of MBPNCS with two different

plants. First, MBPNCS is implemented with an observer based DC motor plant to

demonstrate the system’s efficiency with an observer. Next, MBPNCS is implemented with

an inverted pendulum to demonstrate the system’s efficiency with an open loop unstable

plant. Finally, two separate MBPNCS’s are implemented over a common network to

demonstrate the systems efficiency and feasibility in industrial applications. The results show

that considerable improvement over performance is achieved with respect to an event based

networked control system.

 v

ÖZET

Veri kaybı ve rastgele gecikmelerin bulunduğu bir haberleşme ağı üzerinden, dağıtık

bir sistem ile kontrol uygulayan dijital kontrol sistemlerine ağ bağlantılı kontrol sistemleri

denir. Tipik bir ağ bağlantılı kontrol sistemi farklı bilgisayarlara yerleştirilmiş ve ağ

üzerinden haberleşen algılayıcı, kontrol ve eyleyici düğümünden oluşur. Tipik bir ağ

bağlantılı kontrol sistemi, veri kaybı ve rastgele gecikmeleri verileri tekrar gönderme yaparak

düzeltmeye çalışır. Ama tekrar gönderim, sistemdeki gecikmeyi artırır ve bu sistemin

kararlığını tehlikeye attığı için kontrol uygulamaları için elverişli değildir.

Bu araştırmada Modele Dayalı Öngörülü Ağ Baglantılı Kontrol Sistemi

(MODOAKOS) adı altında bir ağ bağlantılı kontrol sisteminin bir gözleyici ile çalışabileceği

ve açık döngüde kararsız bir sistemde kararlı olduğu gösterilmiştir. MODOAKOS sistemdeki

veri kaybı ve rastgele gecikmeleri, tesisin modelini kullanarak hesapladığı tahmini tesis

durumları sayesinde telafi eder. MODOAKOS veri tekrar gönderimi yapmaz ve verinin

zamanında düğümlere ulaşmasını beklemez çünkü bu çözüm endüstride kullanılan her

haberleşme ağı için elverişli olmaz. Bunun yerine MODOAKOS veri kaybı ve rastgele

gecikmenin olabileceği her haberleşme ağı üzerinden çalışabilen bir çözüm sunar ve bunu

akıllı öngörü algoritması sayesinde başarır.

Bu tezde öncelikle MODOAKOS tanımlanmıştır ve teorik bir kararlılık kriteri

sunulmuştur. Bu sunuştan sonra MODOAKOS farklı tesisler kullanılarak uygulanmıştır. İlk

olarak bir gözleyici kullanılarak DC motor üzerinden hız kontrolü yapılmıştır ve gözleyici

kullanıldığı zaman sistemin verimliliği test edilmiştir. Ardından, MODOAKOS bir ters

sarkaç tesisi üzerinde uygulanmıştır ve sistemin verimliliği açık döngüde kararsız bir tesis ile

test edilmiştir. Son olarak iki ayrı MODOAKOS sistemi aynı ağ bağlantısı üzerinde

uygulanmıştır ve sistemin endüstriyel uygulamalardaki elverişliliği test edilmiştir. Yapılan

deneyler sonucu sistemimizin diğer basit öngörüsüz ağ bağlantılı kontrol sistemlerine oranla

daha yüksek bir performans ve kararlılıkla çalıştığı görülmüştür.

 vi

To my family and friends

 vii

ACKNOWLEDGEMENTS

I would like to state my gratitude to my MS. supervisor, Asst. Prof. Dr. Ahmet ONAT. I

would like to thank him for his enthusiasm, encouragement, guidance and help that helped me

complete this thesis. He has provided me with good advice, good teaching, good company,

and lots of good knowledge in the process of my thesis writing period. It has been a great

honor and privilege to work with him.

I also would like to thank my fellow colleagues who have shown me a great support

during my times at Sabancı University. I am especially grateful to Teoman Naskali and

Emrah Parlakay for their thesis related help and support. I would also like to thank İlker

Sevgen, Utku Seven, Evrim Taşkıran, Kaan Öner, Ender Kazan, Berk Çallı and many other

friends at Sabancı University Mechatronics Laboratory.

Finally, I wish to thank my parents, Nadir Mutluer and Şükran Mutluer, my brother

Selim Can Mutluer. They have been the fuel and moral support that has helped me finish this

thesis.

 viii

TABLE OF CONTENTS
ABSTRACT...iv

ÖZET..v

ACKNOWLEDGEMENTS...vii

TABLE OF CONTENTS ...viii

LIST OF FIGURES...x

LIST OF ABBREVIATIONS..xii

1. INTRODUCTION...1

2. LITERATURE REVIEW ..5

 2.1. Co-Design of NCS...6

 2.2. Reduction of Communication ..7

 2.2.1 Deadbands ...7

 2.2.2 Estimators ..7

 2.3. Network Observers ..8

 2.4. Gain Adaptation...8

 2.5. Model Predictive Control...8

 2.6. Predictive Approaches ...9

3. MODEL BASED PREDICTIVE NETWORKED CONTROL SYSTEM.........................10

 3.1. MBPNCS...10

 3.2. Sensor Node ..11

 3.3. Controller Node...11

 3.4. Control Algorithm ...13

 3.5. Actuator Node ...15

4. METHODS AND APPARATUS...19

 4.1. Inverted Pendulum...20

 4.1.1. Inverted Pendulum System Model..20

 4.1.2. Chassis...23

 4.2. Observer Based DC Motor Control with MBPNCS...25

 4.2.1. The DC Motor System Model ..25

 4.3. Implementation of the Experimental Setup..28

 4.3.1. The Computer Hardware of Sensor, Controller, Actuator28

 4.3.2. AD&DA Converter ..28

 4.3.3. Quadrature Decoder and Encoder...29

 4.4. TrueTime...30

 ix

 4.5. Motors ...30

 4.6. Computer Network ..32

 4.6.1. Random Number Generator..32

5. THEORETICAL STABILITY...34

6. RESULTS ...39

 6.1. Observer Based DC Motor Control Experiment ..40

 6.2. Dual Observer Based DC Motor Control Experiment..45

 6.3. Inverted Pendulum Control Experiment ..49

 6.3.1. Simulations ..49

 6.3.2. Experimental Results..52

7. CONCLUSION AND FUTUREWORK ..62

REFERENCES..64

 x

LIST OF FIGURES

Figure 1.1 Basic Structure of Networked Control Systems

Figure 3.1 State Machine of the Actuator Node

Figure 4.1 Basic Inverted Pendulum Diagram

Figure 4.2 Inverted Pendulum Free Body Diagram

Figure 4.3 Inverted Pendulum Chassis

Figure 4.4 DC Motor Electrical Modeling

Figure 4.5 DC Motor Free Body Diagram

Figure 4.6 MBPNCS Setup

Figure 6.1 Setup of the DC motor MBPNCS

Figure 6.2 RMS Error of MBPNCS in DC motor control with Observer

Figure 6.3 Time Graph %0 Loss –Observer DC Motor

Figure 6.4 Time Graph %30 Loss –Observer DC Motor

Figure 6.5 Time Graph %50 Loss –Observer DC Motor

Figure 6.6 Time Graph %70 Loss –Observer DC Motor

Figure 6.7 Time Graph %90 Loss –Observer DC Motor

Figure 6.8 RMS Error of MBPNCS in Dual DC motor control with Observer

Figure 6.9 Time Graph %30 Loss –DC Motor 1

Figure 6.10 Time Graph %50 Loss –DC Motor 1

Figure 6.11 Time Graph %70 Loss –DC Motor 1

Figure 6.12 Time Graph %90 Loss –DC Motor 1

Figure 6.13 Time Graph %30 Loss –DC Motor 2

Figure 6.14 Time Graph %50 Loss –DC Motor 2

Figure 6.15 Time Graph %70 Loss –DC Motor 2

Figure 6.16 Time Graph %90 Loss –DC Motor 2

Figure 6.17 TrueTime simulation block diagram

Figure 6.18 Simulated RMS error in pole angle

Figure 6.19 Simulated RMS error in cart position

Figure 6.20 Setup of the inverted pendulum motor MBPNCS

 xi

Figure 6.21 Experimented RMS error in Pole angle

Figure 6.22 Experimented RMS error in Cart position

Figure 6.23 Inverted Pendulum Control with MBPNCS %0 Loss – Pole Angle

Figure 6.24 Inverted Pendulum Control with bNCS %0 Loss – Pole Angle

Figure 6.25 Inverted Pendulum Control with MBPNCS %0 Loss – Cart Position

Figure 6.26 Inverted Pendulum Control with bNCS %0 Loss – Cart Position

Figure 6.27 Inverted Pendulum Control with MBPNCS %30 Loss – Pole Angle

Figure 6.28 Inverted Pendulum Control with bNCS %30 Loss – Pole Angle

Figure 6.29 Inverted Pendulum Control with MBPNCS %30 Loss – Cart Position

Figure 6.30 Inverted Pendulum Control with bNCS %30 Loss – Cart Position

Figure 6.31 Inverted Pendulum Control with MBPNCS %50 Loss – Pole Angle

Figure 6.32 Inverted Pendulum Control with bNCS %50 Loss – Pole Angle

Figure 6.33 Inverted Pendulum Control with MBPNCS %50 Loss – Cart Position

Figure 6.34 Inverted Pendulum Control with bNCS %50 Loss – Cart Position

Figure 6.35 Inverted Pendulum Control with MBPNCS %70 Loss – Pole Angle

Figure 6.36 Inverted Pendulum Control with bNCS %70 Loss – Pole Angle

Figure 6.37 Inverted Pendulum Control with MBPNCS %70 Loss – Cart Position

Figure 6.38 Inverted Pendulum Control with bNCS %70 Loss – Cart Position

Figure 6.39 Inverted Pendulum Control with MBPNCS %90 Loss – Pole Angle

Figure 6.40 Inverted Pendulum Control with bNCS %90 Loss – Pole Angle

Figure 6.41 Inverted Pendulum Control with MBPNCS %90 Loss – Cart Position

Figure 6.42 Inverted Pendulum Control with bNCS %90 Loss – Cart Position

 xii

 LIST OF ABBREVIATIONS

NCS Networked Control System

MBPNCS Model Based Predictive Networked Control System

bNCS Basic Networked Control System

AD Analog to Digital converter

DA Digital to Analog converter

RMS Root mean square

MPC Model Predictive Control

ACK Acknowledgement

EMF Electromotive Force

 1

Chapter 1

INTRODUCTION

A Networked Control System (NCS) is a control system that uses a real time

communication structure which exchanges control and feedback data through a

network. The control and feedback data are shared via communication packets. A

basic NCS has four generic components; three computer nodes and one communication

network. The three computer nodes are; sensor node which is responsible for gathering

sensor data, controller node which calculates the control signal and the actuator node

which implements the appropriate control signal output to the plant. The

communication network is responsible for the communication between the computer

nodes. The most prominent feature of the NCS is that it connects computer peripherals

to a physical plant thus, enabling execution of control from long distance. A basic NCS

structure is shown in Figure 1.1.

 2

Figure 1.1 Basic Structure of Networked Control Systems

 3

In the networked control system, the sensor node periodically samples the sensor

data output of the plant, encodes the data into a packet and sends it to the controller

node. The controller node takes in the sensor data, applies the control algorithm and

sends out the control signal to be applied to plant to the actuator node within a data

packet. The actuator node takes in the controller data and applies the control signal to

the plant. Since the sensor, controller and actuator data travel through a network

connection, there are communication delays and data loss, thus not all packets make it

to their destination on time, and some are lost on the way due to problems associated

with the network connection such as interference, collision and retransmission.

Communication delay between the sensor node and the controller node that has

occurred following sampling instant kt is)(kSC t , computation delay in the controller

node that has occurred following sampling instant kt is)(kC t , and communication

delay between the controller node and the actuator node that has occurred following

sampling instant kt is)(kCA t [1]. The total delay in the system is given by (1.1) :

)(kt =)(kSC t +)(kC t +)(kCA t (1.1)

Most communication systems use a confirmation of reception which, if not

received within a specific amount of time, triggers a retransmission. However, in a

networked control system, this means extra time is lost within a sampling interval, and

rather than resending the old data, it is better to transmit a more recent plant output

sample or a newer control signal instead. Similarly, delayed packets may be considered

as lost since control signal applied late to the plant does not guarantee stability.

Networked control systems (NCS) improve the performance of conventional

digital control systems and have increased system agility, reliability and ease of system

diagnosis and maintenance. Although the system has such advantages, a simple NCS as

explained above is still vulnerable to random communication delay and loss on the

network which jeopardizes the stability unless special measures are taken since the

communication delays decrease the phase margin of the control system and data loss

can be considered as noise.

 4

Model Based Predictive Networked Control System (MBPCNS) is a networked

control system method where stable control is possible even under random delay and

data loss. The loss and delay of packets in communication are compensated in

MBPNCS by the help of an intelligent predictive scheme put in the controller and the

actuator node. MBPNCS holds a model of the plant inside the controller and computes

the next n predicted controller output states each period based on the plant model. The

predicted controller outputs are appended to the controller output signal in a given

period and sent to the actuator node. The actuator node employs a state machine to

determine whether the generated control predictions are based on a valid plant state.

MBPNCS rejects delayed packets and dropped packets are not retransmitted.

In order to achieve a trustful distributed control system that would be used in an

imperfect environment, one has to prove the stability of the proposed method through

theory and demonstrate practical implementation. This thesis aims in answering the

performance and stability related questions of the MBPNCS.

In this thesis, we aimed at showing that the performance of the MBPNCS, a

system that has been simulated [1] and implemented with a DC motor [2], is better than

that of conventional NCS by implementing the system with an open loop unstable plant

and with an observer. A theoretical stability discussion is also shown.

Chapter two of this thesis addresses previous studies that have been carried out

in the area of NCS and solutions that have been proposed to the problems associated

with it. In chapter three, MBPNCS method used in this thesis is explained in detail.

Chapter four explains the setup and the implementation procedure of MBPNCS that

have been carried out. Chapter five includes the theoretical stability discussion. Chapter

six presents the experimental results and chapter seven concludes the study and presents

ideas for future work.

 5

Chapter 2

2. LITERATURE REVIEW

Studies on distributed control of large scale systems were active as early as

1970s when nationwide phase synchronization of power plants in large countries was an

important issue since it was not known how to transmit power over thousands of

kilometers lacking a common time base. Important work has been done in the last

decade on how to synchronize country wide electricity grids that use multiple power

plants [3][4][5].

NCS has been an outcome of development in the network theory and control

theory and lack of interaction thereof. The network theory aims in increasing the

average throughput of the network and has little concern on the latency of transmitted

data packets which results in the aim of increasing efficiency of the network by sending

a batch of data packets at once. In the case of a packet loss, retransmission of the

packet is usually expected and the loss of a packet is sensed by the use of confirmation

of receipt flag called acknowledgement (ACK). Retransmission however steals from

the transmission time of the packet and causes latency which is one of the reasons why

it is not possible to put an upper bound on the packet transmission time and the

stochastic nature of the network being another. In control theory however, the control

loop is assumed to work in a centralized manner and have no information loss or delay

due to the transmission of information meaning the implementations are free of jitter.

The stability of the system is proved with this assumption in the control theory.

 6

However, in a NCS stability of the controlled system depends on the timely and

correct delivery of transmitted packets. Delivery of signals from sensor node to

controller node and from controller node to actuator node must be guaranteed for each

sampling time. For this reason, general application based computer networks used today

are not suitable without presenting a robust solution to the NCS [6]. On the other hand,

MBPNCS does not use retransmission or other network compensation methods.

MBPNCS does not assume any direct link between the nodes. MBPNCS is designed to

work in a network with packet loss and delay. In this chapter, several methods that

attack the problem areas in NCS with various assumptions and shortcomings are

summarized.

2.1. Co-design of NCS

An unnecessary rate of data transfer would increase lost packets and packet

latency and these two problems would risk stability, whereas too low rate will not be

enough for the requirements of the control algorithm. The network and control

components of a NCS should be designed together in order to find an optimum amount

of data transfer that would not corrupt the stability of the controlled system. In order to

keep stability and not lose network performance, the network and the control system

should be designed together with a suitable compromise on each side. Branicky,

Phillips and Wei have used rate monotonic scheduling algorithm and have studied the

effects of packet loss and the associated cost functions [7]. NCSs are overloaded which

results in some loss of packets. Overloading results in un-schedulable systems to be

scheduled and the effects of dropped packets are concluded to be insignificant

according to this research.

 7

2.2. Reduction of Communication

Packet loss and latency reduce the quality of service (QoS) of the controlled

system and affects the stability. Much of the work on NCS has focused on decreasing

the amount of network communication which aims in finding a better linear time

invariant approximation of the network [8]. The research has used several methods in

reducing the amount of communication in the network. Some of the methods used are

described below.

2.2.1 Deadbands

Networks have unnecessary communication with packets containing identical

data transmitted between the nodes. This research focuses on reducing the amount of

communication by reducing the amount of unnecessary communication. Only the first

packet is sent in the case where consecutive packets contain identical or similar data. In

the case of no packet transmission for a given time, receiver node uses the most recent

packet received. Otane, Moyne and Tilbury studied the effect of deadband control in a

network with no packet loss and reliable communication [9]. This research is assumed

to work with a perfect network that has neither packet loss nor delay.

2.2.2 Estimators

Estimators use the model of the plant on the receiver side, and aims in reducing

the amount of communication in the network. The models of components produce the

data to be used by the nodes, thus data that arrive from the network is not needed which

reduces the amount of communication in the network. The system holds a threshold

value that is the upper limit to the error between the model estimated values and the true

values. If this threshold is exceeded, the actual value is broadcast to the system and the

estimators are updated to the actual value. Yook, Tilbury, Wong and Soparkar

 8

concluded that this system saves great amount of bandwidth due to communication

reduction, however great risk to the stability occurs in the case of a communication

breakdown when the threshold is exceeded and the parameters are updated [10].

2.3. Network Observers

The delay in the network can be considered as a disturbance and a disturbance

observer is utilized as a solution. Disturbance observer architecture is used to calculate

this disturbance which is then added to the control signal. This would have similar

effects on the closed loop control system as the Smith predictor [11] and eliminates the

effect of the delay introduced by the network. This research assumes that delay in the

network is slow varying or correlated.

2.4. Gain Adaptation

The Quality of Service (QoS) of the system may change due to changes in the

traffic load of the network. An intelligent gain adaptation scheme is used to measure

the QoS in the network and calculates the controller gains. The performance of the

network and delay directly affects the system, thus recalculated controller gains are used

in the new delay affected network [12].

2.5. Model Predictive Control

Model Predictive Control (MPC) is a predictive control scheme that has been

used for a long time in control systems. MPC assumes that the sensor and the controller

are connected directly without any communication network and a-priori knowledge of

the reference is assumed. The model of the plant resides in the controller node and the

control outputs will be calculated using the model several sampling times in the future.

First the system calculates a cost function that will be used a choice factor for the

optimization of the future control variables. The control output to be applied to the

 9

plant is chosen by looking at the cost function and determining which output minimizes

the cost function the most. This predictor resides in the controller and calculates the

control signals up to the control horizon. This scheme is called the model predictive

control.

Another predictor, called the network control predictor resides in the actuator

and selects which signal to be applied to the plant. When the network predictor and

model predictor are put together the networked model predictive control is found. The

networked control predictor compensates the network communication delay and the

predictive controller controls the system [13].

The short coming of this system is the direct connection between the sensor and

the controller which is not feasible for every application. Breakdowns are frequent

between the sensor and the controller and electrical noise may be a problem which

should be taken into account for. Also prior knowledge of the reference is not

applicable to every control system.

2.6. Predictive Approaches

Some studies have been conducted in recent years on the stability of predictive

controllers similar to MBPNCS. Montestruque and Antsaklis [14] [15] focus on finding

a state response for the system and finding a limiting factor for the norm of the response

to prove Lyapunov based stability. Their research focus on a NCS model that has a

prior knowledge of the update interval, thus the system update interval is not random.

This research also assumes a lossless network. Liu, Xia et al. [16] also studied on a

scenario of delay and packet losses and predictive controller similar to MBPNCS.

However, their research does not utilize a mechanism of accounting for drift of state

estimates caused by delay and loss in the controller to actuator link.

 10

Chapter 3

3. MODEL BASED PREDICTIVE NETWORKED CONTROL SYSTEMS

3.1. MBPNCS

The main problems associated with networked control systems arise from the

existence of packet delay and loss associated with the common network protocols and

topologies connecting the nodes. The purpose of MBPNCS is to bring a solution that is

stable and tolerant to problems that exist in the networked control systems. Minimizing

delay and eliminating packet loss is one way to solve the problems that jeopardize

stability of the NCS, however one can not guarantee that this solution is generic and

would work on every network system available. Thus, MBPNCS does not deal with

reducing packet delay and eliminating packet loss. In other words, it does not guarantee

the timely and correct delivery of packets between the nodes. MBPNCS is a system

that augments stability in networks with packet loss and delay.

 A basic Networked Control System (bNCS) is a simple and commonly used

networked control system. It will be used as the benchmark for the tests in this research.

A bNCS works in the following way: The sensor node samples the output of the plant

periodically, and sends the output to the controller. The controller node works in an

event based manner, meaning that it is notified when there is a data packet arriving from

the sensor node. The controller node applies the control algorithm to the incoming

sensor data and sends out the control signal to the actuator via a data packet. The

actuator node is also event based and notified on the event of a new message arriving

from the controller. When there is a data packet arriving from the controller node, the

 11

actuator applies the control signal to the plant. It is important to note that the actuator

node and the controller run their tasks only when there is a data packet arriving from the

previous node.

At every sampling instant the controller node computes the output to be applied

to the actuator at that time t and for the next n time instants using a model of the plant.

The actual control signal and n predicted control signals are placed into a packet and

sent to the actuator. In the case of a communication break between the sensor and the

controller, the controller uses the estimated plant state values to predict the sensor data

and implements the control algorithm with these values. The communication between

the sensor, controller and the actuator node is done with data packets.

At every sampling time the actuator implements the control output to the plant

using the actual output that is located at the beginning of the newly received controller-

actuator packet. The n predicted control signals that follow the initial control signal are

stored in a buffer in case of a communication breakdown between the controller and the

actuator. In case of a communication breakdown the actuator starts applying the

predicted control signals to the plant. This procedure is repeated until the

communication between the controller and the actuator is restored. The limit for the

number of predictions that can be applied to the plant is limited with the number of

predictions that is n.

Model based predictive networked control systems are composed of five parts: A

sensor node, a controller node and an actuator node, a communication network which is

assumed to cause data loss and protocol delay, and a model of the plant presiding inside

the controller node.

3.2. Sensor Node

The sensor node in MBPNCS periodically gathers data from the plant in every

 12

sampling time tk , x(tk) , the sensor node of the MBPNCS works similar to the sensor

node of a NCS. The acquired sensor data is put into a packet and sent to the controller.

No other communication is done by the sensor node; it uses a one way communication;

gathering data and sending it out. In the case of a communication breakdown with the

controller node, the sensor node is not responsible for compensation. The required

compensation is done by the controller node.

3.3. Controller Node

The controller node in MBPNCS is an intelligent component of the system and

is also time based. At the beginning of every period it receives the plant states from the

sensor node. A control signal that will be consecutively applied to the plant is created

using the sensor data and the control algorithm. The control algorithm is used to obtain

the actual control signal based on x(tk) and the resulting control signal u(tk) is sent to

the actuator via a packet using the communication network. The plant of MBPNCS is

governed by (3.1) and (3.2):

)()()(1 kkk tButAxtx (3.1)

)()(kk tCxty (3.2)

Since MBPNCS discards late packets and does not allow retransmission, also a

model of the plant resides in the controller node. The estimated plant states of

MBPNCS are governed by (3.3) and (3.4):

)(ˆ)(ˆˆ)(ˆ 1 kkk tuBtxAtx (3.3)

)(ˆˆ)(ˆ kk txCty (3.4)

where Â , B̂ , Ĉ are the plant model state transition and input matrices respectively.

 13

If complete plant state cannot be measured, an observer can be used when the

plant is observable. The resulting control algorithm would be [13]:

))(ˆ)(()0,(ˆ)(ˆˆ)(ˆ 101211 kkkkkkkk ttytyKtuBttxAttx (3.5)

where)(ˆ 1kk ttx is the state estimate for tk based on the informationfrom tk-1, 0K is the

observer gain, y(tk), ŷ (tk) are actual and estimated plant outputs respectively. For

example in the absence of a current sensor, an observer can be used to calculate the

control output of a speed or position of a DC motor.

3.4. Control Algorithm

The control algorithm that resides in the controller node is a state feedback

control, calculates the real control output using the control gain Kc. Thus the control

output looks like:

u(tk) = Kcx(tk) (3.6)

This actual control signal is placed at the top of the control packet that is sent to the

actuator to be applied to the plant consecutively.

The model in the controller is used to calculate n future estimates of the state of

the plant where n is the estimate number used in our research but can be changed by

changing the size of the transmitted packet. So a series of predicted control signals

),(ˆ itu k are calculated in an iterative fashion[17]:

)1,(ˆˆ)(ˆˆ)(ˆ 1 ituBtxAtx kikik (3.7)

 14

)(ˆ),(ˆ ikck txKitu (3.8)

where i 1, 2,...n.

At time tk, control signal u(tk) applied to the plant is applied to the model. The

output of the model)(ˆ 1ktx is the state estimate of the plant at time 1kt . To compute the

controller output at time 1kt , control algorithm is applied to the estimated states)(ˆ 1ktx .

The control output)(ˆ 1ktu is then applied to the model of the plant to compute the next

predicted output of the plant. This process is recursively applied n times and computed

control outputs from)(ˆ 1ktu to)(ˆ 1ktu are placed in a data packet together with u(tk) to

be sent to the actuator node. The error between the model estimates and the real plant

output can be defined as:

)(ˆ)()(~
kkk txtxtx (3.8)

)(])ˆˆ()[()(~
k

n
c

n
cnk txKBABKAtx (3.9)

The plant model state transition matrices BA ˆ,ˆ and control value cK must guarantee that

)(~
nktx has an upper bound [2].

This scheme is the key to MBPNCS as it is useful in two cases; transmission

problems between the actuator and the controller and the transmission problems

between the controller and the sensor. The delay and loss packets between the sensor

and the controller are compensated by this intelligent algorithm.

The controller node holds a variable called sensor flag (SF), which will actually

be used by the actuator node. At time kt , if no packet loss occurs between the sensor

node and the controller node, the controller node sets the sensor flag variable to ‘1’ and

works as defined above by computing the control output signal u(kt) and predicted

 15

control output signals from)(ˆ 1ktu to)(ˆ nktu using the plant states x(kt) received from

the sensor node. Else, sensor flag is set to ‘0’. Sensor flag is sent to the actuator within

every packet to signal whether a control packet is based on a measured state or an

estimated state of the plant.

At time kt , in the case of a packet loss between the controller node and the sensor

node, the controller node computes the u(kt) and)(ˆ 1ktu to)(ˆ nktu using the predicted

plant state)(ˆ ktx computed at time 1kt and sets the sensor flag to 0. Since predicted

plant states are used to compute u(k), control signal output is less reliable in comparison

to the control signal output computed with the real plant states. If the packet loss events

consecutively follow each other, reliability of the computed control signal output and

predicted control signal outputs decrease each period with a rate of)(~ kx . To overcome

this reliability problem, sensor flag parameter is sent by the controller node and a state

machine runs on the actuator node to asses the validity of the arriving control signal

packets.

 The controller and the actuator nodes are time based and run at the same

sampling period with the sensor node. A data packet is disregarded by the controller

and the actuator nodes depending on its arrival time. The nodes check if the data packet

arrives before or after a pre determined decision time within the sampling interval. This

pre determined decision time for the controller DCt and the actuator DAt can be

calculated as in (3.10) and (3.11).

)()(1 kakkDA tttt (3.10)

pdkckDAkDC ttttt)()()((3.11)

where 1kt is the beginning of the next sampling interval, pd is the average time delay of

data transmission in the network, ka t() and)(kc t are the delays associated with the

actuator and the controller node respectively.

 16

3.5. Actuator Node

The actuator node is responsible for receiving the control signal packets from the

controller node, assessing the validity of the received packets, selecting the appropriate

ones and applying them to the plant. The actuator node is time based and runs a

periodic task that checks for a received control signal packet at the beginning of every

period. The actuator node is an intelligent unit that determines which control signal to

apply to the plant by using a state machine to make this selection. The actuator node

applies the actual control signal u(kt) received from the controller node if there is no

packet loss and the SF =1 indicating that the packet is based on an actual plant state

measurement. In the case of a packet loss, the actuator node uses the following state

transition diagram to decide which control signal to apply to the plant, which is

explained in Figure 3.1.

Figure 3.1 State Machine of the Actuator Node

 17

The synchronization or loss thereof is sensed by the actuator using the SF flag in

the control packet and the information of actual packet loss. The actuator node has two

modes, the synchronized mode and the interrupted mode.

In the synchornized mode the states of the plant model are synchronized with the

plant states. If SF =1 and the actuator node receives a control packet from the controller

node when it is in the synchronized mode then it applies the first control output from

that packet to the plant, which is)0,(ktu . If the consecutive packets that the controller

sends have SF switched from ‘1’ to ‘0’; this indicates that the controller is not receiving

actual plant states, but there is no controller to actuator data loss, then the actuator keeps

applying the first control output from the received packets)0,(jktu . The actuator

keeps applying the first output because in this situation the controller makes the

assumption that the network is conveying the calculated control signal to the actuator

node properly and are being applied to the plant and the actuator node stays in

synchronized mode. If data is lost due to network delay or packet loss, the actuator node

enters the interrupted mode.

When the actuator enters the interrupted mode the actuator node applies the

control signal iitu k),,(ˆ 1,2,3… to the plant until the last sample is reached or

communication is restored. However, if one of the control packets received in this mode

has SF =0 indicating that the controller is using state estimates based on the wrong

assumption of applied control signal as stated above, then the packet is rejected. In the

interrupted state, packets based on estimated states are rejected even if they are received

without delay and the actuator stays in the interrupted state. If the actuator is still in the

interupted state after the last prediction),(ˆ ntu k is reached without the communication

being restored, the output is kept constant at that value thereafter. In order for the

actuator to enter the synchronized mode it has to receive a control packet with SF =1.

 18

All of the computer nodes in MBPNCS are time based and intelligent systems.

All computer nodes run periodic tasks as a computational model. Packet loss between

the sensor node and the actuator node is compensated at the controller node by

predictions calculated by the model in the controller and packet loss between the

controller node and the actuator node is compensated at the actuator node by usage of a

selection algorithm based on the state machine and predicted control outputs. Late

arriving packets are discarded in this work and no retransmission is done. A time

synchronizing method is assumed to be used among the computer nodes. This is not a

strong assumption because the network is generally pyhsically small and the amount of

synchronization accuracy is comparable to the sampling time[17].

 19

Chapter 4

METHODS AND APPARATUS

This research aims to verify that we can implement MBPNCS using an observer

and verify that we can control an open loop unstable plant. In order to achieve this aim

we have conducted experiments in our laboratory environment. First, MBPNCS is

tested with an inverted pendulum plant to show that MBPNCS is efficient with an open

loop unstable plant. Next, MBPNCS is tested on a DC motor with a Luenberger

observer to verify that MBPNCS is efficient with an observer in the system. MBPNCS

is designed to work in an industrial environment, thus multiple systems should be

implementable on a common network. Thus, a final experiment is carried out by

connecting two separate MBPNCSs with separate DC motor with a Luenberger

observer plants to the same Ethernet hub to show that two separate MBPNCSs are

implementable on a common network. The plants will be explained in detail in the

subsequent chapters, and the NCS setup is common to both plants.

 20

4.1. The Inverted Pendulum

The performance of the MBPNCS is verified through experiments with a real

inverted pendulum. The inverted pendulum is a nonlinear system that enables us to see

an open loop unstable controllable system to be tested on the MBPNCS. The inverted

pendulum is more sensitive to the control method than the DC motor since it is open

loop unstable.

An inverted pendulum is frequently used in the demonstration of controlling an

unstable system. The inverted pendulum consists of a pole that has mass on its top and

has a pivot attached to a laterally moving cart. It is controlled to keep it in the upright

direction. In other words the inverted pendulum has two degrees of freedom; the angle

of the rod and the position of the cart, but the input is the force acting sideways on the

cart. The inverted pendulum is linearized around the upright position by assuming that

the angle of the rod makes only small perturbations.

4.1.1 The Inverted Pendulum System Model

The inverted pendulum has two equilibrium points, one being stable and the

other being unstable. The stable equilibrium corresponds to the rod pointing

downwards toward gravity and making a -90 degree with the plane of the cart. This

equilibrium point being stable means that the rod will return to this position in the

absence of any control and force acting on the cart. The stable equilibrium requires no

control input to be achieved thus, is uninteresting from a control perspective. The

unstable equilibrium corresponds to a state in which the pendulum points strictly

upwards and, thus, requires a control force to maintain this position. The basic control

objective of the inverted pendulum problem is to maintain the unstable equilibrium

position when the pendulum initially starts in an upright position at rest [18].

 21

In order to design the control to be applied to inverted pendulum, first the system

model should be derived. The system model of the inverted pendulum can be derived

using the Lagrange equations or free body diagrams taking Figure 4.1 for reference

[19].

Figure 4.1 Basic Inverted Pendulum Diagram

Figure 4.2 Inverted Pendulum Free Body Diagram

Summing the forces in the horizontal direction of the cart the following equation

is obtained:

FNxbxM (4.1)

 22

Summing the forces in the horizontal direction of the pole the following

equation is obtained:

 sincos 2 mlmlxmN (4.2)

Substituting the second equation into the first equation we get the following:

FmlmlxbxmM sincos)(2 (4.3)

Summing the forces perpendicular to the pendulum, we get the following

equation:

 cossincossin xmmlmgNP (4.4)

Summing the moments around the center of mass of the pendulum, we get the

following equation:

 INlPl cossin (4.5)

Combining these two equations, we get the following equation:

 cossin)(2 xmlmglmlI (4.6)

In order to work with linear functions, this set of equations should be linearized

about . Assume that +ø where ø represents a small angle. Therefore, cos()

= -1, sin() = - , and ̂̂ = 0. After linearization the two equations of motion become:

xmlmglmlI)(2 (4.7)

 23

umlxbxmM)((4.8)

The state sapce representation of the dynamics of the inverted pendulum is:

u

MmlmMI
ml

MmlmMI
mlI

x
x

MmlmMI
mMmgl

MmlmMI
mlb

MmlmMI
glm

MmlmMI
bmlI

x
x

2

2

2

22

2

22

2

2

)(

0
)(

0

0
)(

)(
)(

0

1000

0
)()(

)(0

0000

u
x
x

y

0
0

0100
0001

 (4.9)

4.1.2 Chassis

An aluminum chassis was designed and built for the purpose of carrying out the

inverted pendulum experiments. The plane of the cart is 1 meters long and the cart is

positioned on the plane via a toothed belt. The trigger belt is positioned on the plane via

two pulleys. The cart runs on a round rail with radial ball bearings. The chassis is given

in Figure 4.3.

 24

Figure 4.3 Inverted Pendulum Chassis

The below parameters are measured and used with the state space model and

discretized:

M = .552 [kg] Mass of the Cart

m = 0.0825 [kg] Mass of the Rod

b = 2.5 [N/m/sec] Friction

g = 9.8 [N/kg] Gravity

l = 0.25 [m] Length to Rod Center of Mass

10411.00165.00
0010.00.100

00013.09955.00
000010.01

A

 25

0066.0
0

0018.0
0

B

0100
0001

C

0
0

D

4.2. Observer Based DC Motor Control with MBPNCS

The stability of the MBPNCS is experimented with a DC motor to verify

theoretical results. The DC motor is a simple and easy to use control plant that can be

controlled with speed and position values. This research focuses on the speed control

of DC motor and applies state feedback algorithm with a Luenberger observer.

Luenberger observer is used to compensate for a lack of current sensor and allows for a

better verification of performance in MBPNCS.

In this research two DC motor control setups were built and experimented. First,

one Luenberger observer based DC Motor control was implemented and tested.

Second, two Luenberger observer based DC Motor controls were implemented and

tested where each setup communicates on the same communication medium.

4.2.1 The DC Motor System Model

DC motor is a simple and common actuated plant in the control systems.

Voltage provide to the DC motor provides rotary motion and the electrical modelling

and the free body diagram of the motor is shown in (4.4) and (4.5) [19]:

 26

Figure 4.4 DC Motor Electrical Modeling

Figure 4.5 DC Motor Free Body Diagram

Since MBPNCS requires model of the plant to reside in the controller, the DC

motor modelling is required.

The DC motor has a torque, , which corresponds to the armature current, i,

explained in the following equation:

iKT t (4.10)

where tK is the torque constant.

The back EMF, e, is related to the rotational velocity by the following equation:

eKe (4.11)

In SI units torque constant, tK , is equal to voltage constant eK . This constant is

 27

called electromotive force constant and the following equation holds true:

K= eK = tK (4.12)

From the free body diagram of the motor and using the Newton’s law the

following equation is obtained:

KibJ (4.13)

Using the electrical model of the motor and using the Kirchhoff's law the

following equation is obtained:

KVRi
dt
diL (4.14)

Using these two equations and the state space representation of the DC motor

can be obtained. In the state-space form, the equations above can be expressed by

choosing the rotational speed and electric current as the state variables and the voltage

as an input. The output is chosen to be the rotational speed and the following equations

are obtained:

V
LiLRLK

jKjb
idt

d

/1

0
//

//
 (4.15)

i

 10 (4.16)

 28

4.3. Implementation of the Experimental Setup

4.3.1 The Computer Hardware of Sensor, Controller, Actuator:

Each sensor, controller and actuator node reside in a separate PC 104 type

computer that is equipped with a 300 MHz AMD Geocode processor. The codes are

written and compiled in a Linux server and the PC 104’s use RT-Linux as the operating

system. RTLinux is necessary to guarantee that the periodic tasks of the sensor,

controller and actuator work in a real time environment. Calculations and previous

simulations in Matlab show that the discrete control system with 10-3 seconds of

sampling time works under stable conditions [1]. The setup of the MBPNCS is given in

Figure 4.6.

Figure 4.6 MBPNCS Setup

 29

4.3.2 AD & DA Converter

Analog to digital and digital to analog conversions were performed using a

Kontron ADIO 128. Kontron ADIO128 is a 12 bit module is used by the actuator to

drive the plant with the control signal sent by the AD/DA. The digital to analog

converter function of the Kontron ADIO128 is used for this purpose. Kontron

ADIO128 is able to create an output voltage between -10 and 10 volts which is used as

a reference to the motor drivers. The driver software of the Kontron ADIO128 is

prepared and run as a kernel driver inside the actuator. This software was written by the

project team.

4.3.3 Quadrature Decoder and Encoder

Shaft angles of the motors and the pole are measured using quadrature encoders.

Sensor node is equipped with a quadrature decoder to acquire the position information

from the plant. MSI P400 with fifteen input channels is used for this purpose. The

kernel driver is prepared and placed in the sensor node since this device also does not

have any Linux driver published. An encoder is mounted on the cart of the inverted

pendulum and the cart moves on the aluminum platform via a toothed belt. The encoder

takes in the angle of the rod in units of radians, 0 radian means the rod is standing up

and makes a 90 degree angle with the platform. Another encoder is used for calculating

the position of the cart. This encoder calculates the position in terms of meters, a 0 m

means the cart is on the initial position. The two sensor data is referenced with 0 to

calculate the error value in the system.

 30

4.4. TrueTime

MBPNCS performance in the above mentioned applications was simulated in

the computer environment using TrueTime, which is a Matlab toolbox developed by

Henriksson, Cervin and Arzen [20][21]. TrueTime is a MATLAB/SIMULINK based

tool used to simulate networked embedded systems. The tool can be used to create low

level of instruction and simulations can be done on the instruction execution level and

network communication can be done on the wanted transport level. This allows for user

to choose the execution time of every instruction and also assign execution times to

individual code blocks. The kernel blocks are event-driven and execute code that

models input output tasks, control algorithms, network interfaces and various other

tasks. Likewise, network messages are sent and received according to the chosen

network model. In this research, the chosen communication network was a model

100BaseT Ethernet with suitable packet loss and delay rates and realistic transmission

speeds.

The code and algorithms developed under TrueTime can be directly exported to

the actual implementation of digital control systems. The user is able to choose the type

of scheduling algorithm applied on the simulated computer by TrueTime such as rate

monotonic scheduling algorithm. Different standard network protocols can also be

tested using TrueTime making it easy to see and measure their influence on networked

control system. In the simulation the application level code of the sensor, controller and

actuator nodes were written in the ‘C’ code, ‘m’ code of Matlab and Simulink blocks to

implement the desired algorithms to be performed by network nodes at the kernel were

also used.

4.5. Motors

A Minertia J Series motor is used to drive the cart of the pendulum. Some

parameters of the motor such as winding resistance and the torque constant Kt of the

 31

motor should be known in order to drive the cart with the correct voltage value. Since

there is no reference published by the manufacturer, the torque constant Kt is measured.

A pulley setup is prepared to calculate the torque of the motor. The torque of the motor

is given as:

tiKmgr (4.17)

where is the torque of the motor, m is is the mass applied to the motor and r is radius

of the pulley. A known weight, such as 1 kg is applied to the pulley. An ampermeter is

put in series between the motor and the power supply. Voltage is started to be fed

slowly to the motor. At the exact instant when the motor stops the current of the motor

is noted. The torque constant tK is measured to be 0.1767 Nm/Amp. This motor was

driven using a Maxon motor driver, in torque control mode.

A Maxon motor type of 144501 is used for in the DC motor experiments and

motor parameters published by the manufacturer were used.

L= 3.16131e-3 [Henri] Terminal inductance

Kt= 118.54e-3 [Nm/A] Torque constant

R= 11.80 [Ohm] Terminal resistance

b= 2.1008e-006 [Nms/rad] Friction

j = 6.2800e-006 [kgm^2] Rotor inertia

The above parameters are measured and used with the state space model and the

following model is found after discretization:

0.0180-0.0088-
4.47220.8663

A

 32

0750.0
1.1315

B

0

10

D

C

4.6. Computer Network

In order to experiment with network problems such as packet loss and delay, a

non-reliable network environment is chosen. Ethernet is chosen as the communication

network since it is widely used and is supported by PC 104. A typical non switching

hub is used as the connection point of the nodes.

4.6.1 Random Number Generator

A random number generator is used to simulate dropped packets. By using a

random number generator we are able to determine the rate at which packet loss occurs.

The used random number generator is of type Linear Congruential Generator (LCG)

and uses the following equation:

mcaXX nn mod)(1 (4.18)

where Xn is the array of random values, m is the modulus, a is the multiplier, c is the

increment and 0X is the starting value.

 In this research the below parameters are used for the LCG as proposed by Press,

Teukolsky, Vetterling and Flannery[22]:

m= 232

a= 1664525

 33

c= 1013904223

0X = 1

 34

Chapter 5

THEORETICAL STABILITY

The stability for MBPNCS can be proven by showing that the control based on

state estimates during intervals of disturbance in the network is stable and state

estimates do not deviate from actual states. MBPNCS updates the state variables at the

beginning of the sampling time, thus estimated data is reset to actual data in random

integer multiples of the sampling period. The stability of the MBPNCS can be proven

in the Lyapunov sense if a suitable Lyapunov equation can be discovered as explained

below.

To derive a stability criterion, it will be shown that during the intervals when

transmitted data is not delayed or lost, the system behaves as a normal digital control

system, and during the intervals when the communication is interrupted, the state

estimates do not deviate significantly from the actual states, thus control based on the

state estimates does not jeopardize stability. The existing results of Montestruque and

Antsaklis can be applied to MBPNCS with some modifications[14][15][17].

Montestruque and Antsaklis proposed that the stability of their NCS can be

proven by using the following procedure. In an ideal simple NCS with no delay and

packet loss, the state estimate x̂ is updated when the actual state variable x of the plant

is received by the controller node in the sampling period; tk = to+kh, k=0, 1, ... where h

is the sampling period. The dynamics of the plant is BuAxx and the dynamics of

the model is uBxAx ˆˆˆˆ , but containing some modeling error. This research uses state

feedback control in order to control the plant; xKu ˆ . We assume that there exists

 35

some modeling error, AAA ˆ~
 and BBB ˆ~

 . Therefore the dynamics of the overall

system can be written using the augmented state vector TT exz [] T where state error is

xxe ˆ and the augmented system dynamics can be represented as zz where is

given by (5.1):

KBA

BKA
~~

KBA

BK
~ˆ (5.1)

If one uses an ideal NCS with no delay and packet loss, and the state esimate

x̂ is reset to the actual state value x after each state update which occurs at every

sampling interval. After each update the error component xxe ˆ becomes zero.

Since the error term becomes zero in every status update the state response in between

the state updates, for 1 kk ttt , z(t) can be represented as:

()()(kttetz

0
I

0
0 he

0
I

0
0

0) zk (5.2)

where kt is the last update time and)(00 tzz is the initial value.

Taking the norm of each term on both sides of the equation above, a limiting

factor for)(tz can be found and this factor is shown below:

)(tz ()(ktte

0
I

0
0 he

0
I

0
0

0) zk
0

)(zMe ktt k (5.3)

Since the terms)(ktte and 0z are limited the state response of the system

)(tz is proved to be globally exponentially stable around the solution z = [0 0]T if the

eigenvalues of the matrix M which is shown next are strictly inside the unit circle.

 36

M=

0
I

0
0 he

0
I

0
0

 (5.4)

However, this proof is shown for non-random update times and should be expanded for

random update times for MBPNCS. If the update time is random]),[)((maxmin hhjh ,

the system has the following response)(tz :

0
1

)()()(zjMetz
k

j

tt k

 (5.5)

where M is shown below:

M=

0
I

0
0)(jhe

0
I

0
0

 (5.6)

The stability of such system can be shown by using the Lyapunov theory where

the system with state response)(tz shown in (5.5) is asymptotically stable for

][maxmin,hhh if a positive definitive matrix X exists such that QMXMX T is also

positive define for all][maxmin,hhh .

Using the footsteps of this logic, the stability of the MBPNCS can also be

proved using a similar approach. MBPNCS is system where the state update is not done

periodically, but only after the connection is restored between the sensor and the

controller or controller and the actuator, which happens in the arbitrary integer multiples

of the update interval h. Modifying (5.5) we get the following state response equation

for the MBPNCS:

l

i
i

tt zaMetz k

1
0

)()()((5.7)

 37

where:

M(ai)=

0
I

0
0 haie

0
I

0
0

 (5.8)

where:),...,3,2,1(maxaai

The initial state response is 0z and during the interval),(0 ktt , there may be a

communication breakdown that span from time h to amaxh. However, these

communication breakdowns can happen only in finite number of intervals due to the

nature of the MBPNCS.

For a given MBPNCS system hmin can be defined by the minimum packet

transmission latency and hmax can either be the maximum network delay, or left open as

a condition of stability. In both cases, there are a finite number of update intervals for

which the stability condition must be checked. The number of predictions necessary in

open loop stable plants can be related to the settling time of the plant when disturbances

are small[17].

Thus, if a Lyapunov equation can be found in the sense that QMXMX T

where:

M(ai)=

0
I

0
0 haie

0
I

0
0

where:),...,3,2,1(maxaai

maxa will give us the maximum number of consecutive packet loss the system can

tolerate.

 38

The effect of number of predictions n in the system should also be emphasized

briefly. The maximum number of packet loss the system can tolerate maxa will be

compensated with the number of predictions in the system which equals n. Thus, if

maxa < n the MBPNCS can be stated to be Lyapunov stable. In this thesis, n is chosen to

be a sufficiently large value that can’t be depleted even with % 99.8 packet losses.

However, the amount of time required to calculate n number of predictions should not

exceed sampling time of the system. Thus, the stability of the MBPNCS is related to

the number of predictions in the system by the following equation:

maxa < n< maxn (5.9)

where maxn equals to the number of maximum predictions that can be calculated in each

sampling time ST .

 39

Chapter 6

6. RESULTS

The purpose of this research is to verify that MBPNCS holds performance and

stability with

a) A control plant with an observer

b) An open loop unstable control plant and that MBPNCS is suitable for

industrial applications.

In order to reach this aim this thesis focused on implementing the MBPNCS

with an inverted pendulum and a Luenberger observer based DC motor. Simulations

are carried out in MATLAB Simulink and TrueTime toolbox for simulating network

communication and the real time computers. The performance of MBPNCS is

measured with respect to the loss over the network. Experiments are carried out in two

MBPNCS setups one for the inverted pendulum and the other for the DC Motor control.

The experiments run stochastic test programs that increment packet loss with sampling

periods. Test programs increment the packet loss percentage in pre-determined

intervals and after each increment the MBPNCS is initialized. This procedure is

valuable in observing the effects of increasing packet loss and delay in the network.

The packet loss is simulated by a random number generator that drops packets by the

help of a threshold value as explained in chapter 4.7.1. As stated in chapter 4.3.1

MBPNCS is stable with a sampling time of 10-3 seconds, thus experiments use this

value as sampling time.

The experiment results of the inverted pendulum are benchmarked with the

experiment results of a basic Network Controlled System (bNCS) to identify the

improvements MBPNCS offer over conventional NCSs. bNCS is an event based NCS,

where the sensor node periodically samples and sends plant states to the controller node

 40

and the controller and actuator nodes produce output only when they receive data. The

bNCS model has no intelligent units in the computer nodes and is prone to problems

associated with packet loss and delay in the network. The bNCS is also run with

stochastic test programs that increment packet loss with sampling periods. Test

programs increment the packet loss percentage in pre-determined intervals and after

each increment the bNCS is initialized.

A performance metric for the setup is necessary to be able to objectively

compare the MBPNCS with bNCS. One suitable metric for comparing the performance

of MBPNCS and bNCS is Root Mean Square (RMS) error. The formula for calculating

the RMS error is shown in (6.1).

n

refy
n

i
i

1

2)(
 (6.1)

where iy is the plant output and ref is the reference given to the plant, at every sampling

time; iTs ; where i = 1, 2, ….n.

6.1 Observer Based DC Motor Control Experiment

A Luenberger observer based DC motor control experiment is conducted to

verify that MBPNCS holds performance, in the case where the plant state vector can not

be measured but the output of the plant is measurable and the plant is observable. This

test is valuable since MBPNCS should hold performance and stability in the case where

all state variables are not measurable which is common in industrial applications. This

test is prepared to verify that MBPNCS would be successful in industrial applications.

This experiment runs with a sampling period of 10-3 seconds. The model used in

this experiment was stated in chapter 4.2.1. The control algorithm applied is state feed

back control. The DC motor speed reference toggles between 50 and 0 rpm in every

1000 milliseconds. The picture of the setup is given in Figure 6.1.

 41

Figure 6.1 Setup of the DC motor MBPNCS

 The RMS error performance of MBPNCS with an observer is shown in Figure

6.2. In this figure y axis is the RMS Error in speed of the motor calculated with (6.1)

and x axis is the packet loss percentages in the MBPNCS.

 42

Figure 6.2 RMS Error of MBPNCS in DC motor control with Observer

 Figure 6.2 shows that the MBPNCS can support stability with packet losses up

to %90. The MBPNCS can sustain its performance up to %80 packet loss and degrades

in performance with higher rates of packet loss. Detailed view of MBPNCS

performance with packet loss rates of %0, %30, %50, %70 and %90 are depicted in

Figures 6.3, 6.4, 6.5, 6.6 and 6.7.

 43

 Figure 6.3 Time Graph %0 Loss –Observer DC Motor Figure 6.4 Time Graph %30 Loss –Observer DC Motor

 Figure 6.5 Time Graph %50 Loss –Observer DC Motor Figure 6.6 Time Graph %70 Loss –Observer DC Motor

 Figure 6.7 Time Graph %90 Loss –Observer DC Motor

 44

In Figures 6.3 through 6.7, y axis is the speed of the motor in RPM units and x

axis is the time in milliseconds. Figure 6.3, 6.4, 6.5 and 6.6 support our previous

conclusion that the MBPNCS holds performance up to % 90 packet loss. The negative

effect of increasing loss percentage is not visible until Figure 6.7 which shows packet

loss of % 90. The MBPNCS works with good performance and holds stability with an

observer up to %90 packet loss.

 45

6.2 Dual Observer Based DC Motor Control Experiment

 As stated before, MBPNCS is designed work in industrial applications. In order

to work in the industrial applications, several MBPNCS s should be able to work

together in order to cover large physical spaces. Thus, we have implemented two

MBPNCS s over o common Ethernet network to verify this usage. Two DC motors are

implemented with a Luenberger observer as explained in Chapter 6.1 with both of them

using the same network hub. In Figure 6.8, y axis is the RMS Error in speed of the

motor calculated with 6.1 and x axis is the packet loss percentages in the MBPNCS.

Figure 6.8 RMS Error of MBPNCS in Dual DC motor control with Observer

 Figure 6.8 depicts that the two motors hold performance and stability up to %90

packet loss. This conclusion is concurrent with our previous conclusion in chapter 6.1.

This conclusion is verification that several MBPNCS s can be used with a common

network and thus is feasible for industrial applications. Time graphs of the two motors

are separately given in Figure 6.9 to 6.16.

 46

 Figure 6.9 Time Graph %30 Loss –DC Motor 1 Figure 6.10 Time Graph %50 Loss –DC Motor 1

Figure 6.11 Time Graph %70 Loss –DC Motor 1 Figure 6.12 Time Graph %90 Loss –DC Motor 1

 Figures 6.9 to 6.12 show that Motor 1 holds performance and stability with

increasing packet loss in the system. MBPNCS has no degrading in performance with

packet loss percentages of %30, %50, %70 and %90.

 47

Figure 6.13 Time Graph %30 Loss –DC Motor 1 Figure 6.14 Time Graph %50 Loss –DC Motor 1

Figure 6.15 Time Graph %70 Loss –DC Motor 1 Figure 6.16 Time Graph %90 Loss –DC Motor 2

Figures 6.13 to 6.16 show that Motor 2 holds performance and stability with

increasing packet loss in the system. MBPNCS has no degrading in performance with

packet loss percentages of %30, %50, %70 and %90.

 48

As it can be observed there is little degrading on the stability or the performance of

neither motor with packet losses up to %90. This conclusion is verified with RMS

error in the systems and Figure 6.8. This experiment is valuable in observing that

using a common network communication has no degrading effect on the performance

and the stability of multiple MBPNCS s. Not only MBPNCS can support control

when all state variables are not measurable, but also it can support this performance

when multiple systems work together. This experiment backs up our conclusion from

chapter 6.1 that MBPNCS would be successful in industrial applications.

 49

6.3 Inverted Pendulum Control Experiment

An inverted pendulum is built and controlled to verify that MBPNCS

outperforms bNCS with an open loop unstable plant. Previous studies in MBPNCS

[1][2] failed to show MBPNCS holds performance and stability with an open loop

unstable plant. This research aimed in showing that MBPNCS is efficient with difficult

plants, thus an inverted pendulum setup was built as explained in Chapter 4. Inverted

pendulum has two state variables; position of the cart and the angle of the pole, as

explained in Chapter 4.1.1. In order to verify the results, each state vector is figured

and analyzed separately. The reference given to the cart and the pole of the inverted

pendulum is always ‘0’.

This experiment runs with a sampling period of 10-3 seconds. The model used in

this experiment was stated in chapter 4.1.1. The control algorithm applied is state feed

back control.

6.3.1 Simulations

 Model based predictive networked control system was simulated under

TrueTime, with the inverted pendulum used as the plant. The sampling time of the

systemis 0.01s, and a state feedback control is used. The communication network was a

model of 100BaseT Ethernet with suitable packet loss and delay rates, and realistic

transmission speeds. Figure 6.17 shows the MATLAB simulink block diagram of the

setup. Our experimental setup was replicated in MATLAB simulink and the stochastic

packet loss was simulated by TrueTime.

 50

Figure 6.17 TrueTime simulation block diagram

 The inverted pendulum was simulated with varying stochastic loss percentages.

As it can been seen in the following RMS error graphs, Figure 6.18 and 6.19

simulations results verify that the MBPNCS can support an open loop unstable system

up to %90 packet loss. The pole angle and cart position enter the stable region in less

than 4 seconds with packet loss up to %90. The system is uncontrollable only when the

system has % 90 packet losses. It should be noted that the RMS error in pole angle is

graphed in terms of 10-3 radians and the RMS error in cart position is graphed in terms

of millimeters.

 51

Figure 6.18 Simulated RMS Error in pole angle

Figure 6.19 Simulated RMS Error in cart position

 52

 Simulating the inverted pendulum was necessary to confirm our experimental

results are strong and reliable. As it will be seen in chapter 6.3.2 our simulated results

concur with our experimental results.

6.3.2 Experimental Results

 An experimental setup was built to verify our simulation results. A MBPNCS

unit is connected to an inverted pendulum chassis. Test programs increment the

stochastic packet loss in the system in pre determined intervals. Since the inverted

pendulum state vector has two variables; pole angle and cart position, each variable

should be analyzed separately. The experimental setup is given in Figure 6.20.

Figure 6.20 Setup of the inverted pendulum motor MBPNCS

 53

The performance of MBPNCS is benchmarked with the performance of bNCS.

The results show that MBPNCS outperforms bNCS in every packet loss percentage

when used with an open loop unstable plant. This result can be seen in Figure 6.21

which shows RMS error in pole angle of MBPNCS vs. bNCS. It should be noted that

the RMS error in pole angle is graphed in terms of 10-3

radians.

Figure 6.21 Experimented RMS error in Pole angle

 It can be verified that MBPNCS outperforms bNCS in pole angle performance in

every packet loss percentage. MBPNCS can support the inverted pendulum in an

upright position with packet losses up to %80 but bNCS fails to achieve this.

 54

Figure 6.22 shows RMS error in cart position of MBPNCS vs. bNCS. It should

be noted that the RMS error in cart position is graphed in terms of millimeters.

Figure 6.22 Experimented RMS error in cart position

 The MBPNCS outperforms bNCS in RMS Error values in every loss percentage

value. The MBPNCS can support stability up to %80 whereas bNCS can not.

MBPNCS can support the inverted pendulum cart close to the starting point up to %80

but bNCS fails to achieve this.

In order to make a healthier observation of the performance of MBPNCS over

bNCS, the detailed view of each individual stochastic packet loss interval is graphed. In

each time graph the pole angle is graphed with units of 10-3 radians and the cart position

is graphed in units of millimeters. It should be noted that the pole angle graphs has y

 55

axis from -0.314 to 0.314 radians. This is to show the relative position of the rod. Note

that the rod in downright position makes -3.14 radians or 3.14 radians with the y axis.

Allowed linear region for the rod to stay in upright position is -0.104 to 0.104 radians (-

6 to 6 degrees).

 56

Case 1 % 0 Loss Percentage

 With % 0 loss percentage the performance of bNCS and MBPNCS are graphed

in Figures 6.23 to 6.26.

Figure 6.23 MBPNCS %0 Loss – Pole Angle Figure 6.24 bNCS %0 Loss – Pole Angle

 Figure 6.25 MBPNCS %0 Loss – Cart Position Figure 6.26 bNCS %0 Loss – Cart Position

 MBPNCS shows similar performance over bNCS in %0 packet loss. Both systems

 achieve to hold the rod in an upright position and the cart on the initial starting position.

 57

Case 2 % 30 Loss Percentage

With % 30 loss percentage the performance of bNCS and MBPNCS are graphed

in Figures 6.27 to 6.30.

Figure 6.27 MBPNCS %30 Loss – Pole Angle Figure 6.28 bNCS %30 Loss – Pole Angle

Figure 6.29 MBPNCS %30 Loss – Cart Position Figure 6.30 bNCS %30 Loss – Cart Position

MBPNCS starts to outperform bNCS in %30 packet loss. The rod is much more

stable in MBPNCS and the cart does not diverge from the initial starting point as it does in bNCS.

 58

Case 2 % 50 Loss Percentage

With % 50 loss percentage the performance of bNCS and MBPNCS are graphed

in Figures 6.31 to 6.34.

Figure 6.31 MBPNCS %50 Loss – Pole Angle Figure 6.32 bNCS %50 Loss – Pole Angle

Figure 6.33 MBPNCS %50 Loss – Cart Position Figure 6.34 bNCS %50 Loss – Cart Position

MBPNCS outperforms bNCS in %50 packet loss. The rod is much more stable in

 MBPNCS and the cart does not diverge from the initial starting point as it does in bNCS.

 59

Case 2 % 70 Loss Percentage

With % 70 loss percentage the performance of bNCS and MBPNCS are graphed

in Figures 6.35 to 6.38.

Figure 6.35 MBPNCS %70 Loss – Pole Angle Figure 6.36 bNCS %70 Loss – Pole Angle

Figure 6.37 MBPNCS %70 Loss – Cart Position Figure 6.38 bNCS %70 Loss – Cart Position

The biggest performance difference between the MBPNCS and bNCS occurs in

 %70 packet loss. MBPNCS is able to hold the rod in an upright position where as the

bNCS can not hold it in the allowed region.

 60

Case 2 % 90 Loss Percentage

With % 90 loss percentage the performance of bNCS and MBPNCS are graphed

in Figures 6.39 to 6.42.

Figure 6.39 MBPNCS %90 Loss – Pole Angle Figure 6.40 bNCS %90 Loss – Pole Angle

Figure 6.41 MBPNCS %90 Loss – Cart Position Figure 6.42 bNCS %90 Loss – Cart Position

With % 90 loss percentage both system fail to hold the pole angle and the cart position in

the stable region.

 61

Our experimental results verify our simulation results that concluded MBPNCS

holds performance and stability with an open loop unstable plant up to % 90 packet

losses.

 62

Chapter 7

CONCLUSION and FUTURE WORK

In this thesis we experimented with a novel networked control system method;

Model Based Control Networked Control Systems that aims in overcoming problems

associated with data loss and random delay by implementing an intelligent predictive

scheme. The intelligent predictive scheme predicts future plant states and control

signals are calculated according to these states in the case of a data loss or delay.

Previous solutions to problems associated with Networked Control Systems had

assumptions on the properties of the network or the control of the system and these

assumptions would not be applicable in the real world industrial applications. However,

MBPNCS is designed to work on wide range of network protocols and control

algorithms with realistic assumptions, which makes it preferable over previous

solutions.

In chapter 2 of this thesis, previous works on NCS solutions are summarized. In

chapter 3, MBPNCS is introduced and explained in detail. Chapter 4 was on the

implementation method and apparatus of the MBPNCS. Different plants and their

models were also explained. Chapter 5 introduced a theoretical stability criterion for

MBPNCS that builds a foundation for future work on MBPNCS. Finally, in chapter 6

results of experimental tests and simulations were produced. The aim of these tests

were to conclude

a) that MBPNCS would be efficient in industrial applications by showing that

MBPNCS holds performance when used with a control plant with an observer and when

two separate MBPNCS s are working together. A control plant with an observer is

implemented with a DC motor with a Luenberger Observer to achieve this aim.

 b) that MBPNCS is more efficient and stable than a basic Networked Control

System (bNCS) when used with an open loop unstable control plant. An open loop

 63

unstable plant is implemented with an inverted pendulum in these tests.

Through simulations and experimental results, this thesis has showed that

MBPNCS has significantly better performance compared to an event based networked

control system such as bNCS when used with an open loop unstable plant, tolerating

communication losses up to 90%, whereas the latter may become unstable at 30%.

Results have also showed that MBPNCS holds performance when working with an

observer and that multiple MBPNCS s can be supported with a common communication

medium. Based on these results, we believe that MBPNCS will be successful in

industrial applications.

The theoretical stability criterion introduced in this thesis should be expanded

and verified with experimental results for future work.

 64

REFERENCES

[1] A.T. Naskali, A. Onat, “Model Based Predictive Networked Control

Systems”, Ms. Thesis, Sabancı University, 2006

[2] E. Parlakay, A. Onat, “Implementation of a Distributed Control System

Using Real Time Operating System”, Ms. Thesis, Sabancı University, 2007

[3] DD Siljak M. B. Vukcevic “Decentralization, Stabilization, and Estimation

of Large-Scale Linear Systems” IEEE Transactions on Automatic Control.

Vol. AC-29 No.11 November 1984

[4] Arno Linnemann “Decentralized Control of Dynamically Interconnected

Systems” IEEE Transactions on Automatic Control. Vol. AC-29 No.11

November 1984

[5] M. E. Sezer, D.D. Siljak “On Structural Decomposition and Stabilization of

Large-Scale Control Systems” IEEE Transactions on Automatic Control Vol

AC-26, No. 2, April 1981

[6] M. Colnaric “Design of Embedded Control Systems” ICIT 2003 Maribor,

Slovenia 2003

[7] M.S. Branicky, S.M. Phillips, Wei Zhang, "Scheduling and feedback co-

design for networked control systems," Proc. 41st IEEE. Conf. on Decision

and Control, vol.2, no.pp. 1211- 1217 vol.2, 10-13 Dec. 2002

[8] J. Yook, D. Tilbury; N. Soparkar “Performance Evaluation of Distributed

Control Systems With Reduced Communications” IEEE Control Systems

 65

Magazine, Vol. 21, no. 1, pp. 84-99, 2001.

[9] P Otanez; J. Moyne, D. Tilbury “Using Deadbands to Reduce

communication in Networked Control Systems” Proceedings of the 2002

American Control Conference. 2002

[10] J. K. Yook and D. M. Tilbury and H. S. Wong and N. R. Soparkar

"Trading Computation For Bandwidth: State Estimators For Reduced

Communication In Distributed Control Systems” Proceedings of

2000JUSFA 2000 Japan-USA Symposium on Flexible Automation July 23-

26, 200, Ann Arbor, Michigan, USA 2000

[11] K. Natori, K. Onishi “An approach to design of feedback systems with

time delay”, Industrial Electronics Society, 2005. IECON 2005. 32nd Annual

Conference of IEEE 6-10 Page(s):6 pp, Nov. 2005

[12] C. Mo-Yuen, Y. Tipsuwan "Gain adaptation of networked DC motor

controllers based on QoS variations," IEEE Transactions on Industrial

Electronics, vol.50, no.5pp. 936- 943, Oct. 2003

[13] JB Rawlings, “Tutorial Overview of Model Predictive Control”, IEEE

Control Systems Magazine, Vol. 20, No. 3, June 2000, pages 38-52.

[14] L. Montestruque and P. Antsaklis, “On the model-based control of

networked systems,” Automatica, vol. 39, pp. 1837–1843, 2004.

[15] L. Montestruque and P. Antsaklis, “Stability of model-based networked

control systems with time-varying transmission times,” IEEE Transactions

on Automatic Control, vol. 49, no. 9, pp. 1562–1572, 2003.

 66

[16] G. Liu, Y. Xia, J. Chen, D. Rees, and W. Hu, “Networked predictive

control of systems with random network delays in both forward and

feedback channels,” IEEE Transactions on Industrial Electronics, vol. 54,

pp. 1282–1297, 2007.

[17] A.Onat, “Control over Imperfect Networks: Model Based Predictive

Networked Control Systems,” IEEE Transactions on Industrial Electronics,

to be published.

[18] Lam, J. “Control of an Inverted Pendulum”.

http://wwwccec.ece.ucsb.edu/people/smith/student projects/Johnny Lam

report 238.pdf

[19] http://www.engin.umich.edu/group/ctm/examples/pend/invpen.html

[20] D. Henriksson, A. Cervin, and K. Arzen, “Truetime: Real-time control

system simulation with matlab/simulink,” in Proc. of the Nordic MATLAB

Conference, 2003.

[21] D. Henriksson, A.Cervin, and K. Arzen, “Simulation of control loops

under shared computer resources,” in Proc. 15th IFAC World Congress on

Automatic Control, 2002.

[22] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, “Numerical

Recipes in C: The Art of Scientific Computing,” Cambridge University Press,

1993

