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ABSTRACT 
 
 
  

Digital control systems that have computer nodes which communicate over a data loss 

and random delay prone common network are called Networked Control System (NCS).  In a 

typical NCS, the sensor, controller and the actuator nodes reside in different computers and 

communicate with each other over a network.  Random delays and data loss of the 

communication network can endanger the stability of the NCS and retransmission of data is 

not feasible in control applications since it adds delay to the system. 

 

The aim of this thesis is to verify that the distributed NCS method called Model Based 

Predictive Networked Control System (MBPNCS) can be implemented using an observer and 

that it can control an open loop unstable plant.  MBPNCS compensates for missed and late 

data by implementing an intelligent predictive control scheme based on a model of the plant.  

MBPNCS does not use retransmission and does not guarantee timely delivery of data packets 

to each computer node since this solution is not feasible on every control application and 

every communication medium.  Instead, MBPNCS offers a control solution that can work 

under random network delay and data loss by the use of a predictive architecture that predicts 

plant state estimates and respective control signals from actual plant states.  

 

In this thesis, MBPNCS is described along with an introduction to a theoretical 

stability criterion.  This is followed by an implementation of MBPNCS with two different 

plants.  First, MBPNCS is implemented with an observer based DC motor plant to 

demonstrate the system’s efficiency with an observer.  Next, MBPNCS is implemented with 

an inverted pendulum to demonstrate the system’s efficiency with an open loop unstable 

plant.  Finally, two separate MBPNCS’s are implemented over a common network to 

demonstrate the systems efficiency and feasibility in industrial applications.  The results show 

that considerable improvement over performance is achieved with respect to an event based 

networked control system. 
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ÖZET 
 
 

  
Veri kaybı ve rastgele gecikmelerin bulunduğu bir haberleşme ağı üzerinden, dağıtık 

bir sistem ile kontrol uygulayan dijital kontrol sistemlerine ağ bağlantılı kontrol sistemleri 

denir.  Tipik bir ağ bağlantılı kontrol sistemi farklı bilgisayarlara yerleştirilmiş ve ağ 

üzerinden haberleşen algılayıcı, kontrol ve eyleyici düğümünden oluşur.  Tipik bir ağ 

bağlantılı kontrol sistemi, veri kaybı ve rastgele gecikmeleri verileri tekrar gönderme yaparak 

düzeltmeye çalışır.  Ama tekrar gönderim, sistemdeki gecikmeyi artırır ve bu sistemin 

kararlığını tehlikeye attığı için kontrol uygulamaları için elverişli değildir. 

 

Bu araştırmada Modele Dayalı Öngörülü Ağ Baglantılı Kontrol Sistemi 

(MODOAKOS) adı altında bir ağ bağlantılı kontrol sisteminin bir gözleyici ile çalışabileceği 

ve açık döngüde kararsız bir sistemde kararlı olduğu gösterilmiştir.  MODOAKOS sistemdeki 

veri kaybı ve rastgele gecikmeleri, tesisin modelini kullanarak hesapladığı tahmini tesis 

durumları sayesinde telafi eder.  MODOAKOS veri tekrar gönderimi yapmaz ve verinin 

zamanında düğümlere ulaşmasını beklemez çünkü bu çözüm endüstride kullanılan her 

haberleşme ağı için elverişli olmaz.  Bunun yerine MODOAKOS veri kaybı ve rastgele 

gecikmenin olabileceği her haberleşme ağı üzerinden çalışabilen bir çözüm sunar ve bunu 

akıllı öngörü algoritması sayesinde başarır. 

 

Bu tezde öncelikle MODOAKOS tanımlanmıştır ve teorik bir kararlılık kriteri 

sunulmuştur.  Bu sunuştan sonra MODOAKOS farklı tesisler kullanılarak uygulanmıştır.  İlk 

olarak bir gözleyici kullanılarak DC motor üzerinden hız kontrolü yapılmıştır ve gözleyici 

kullanıldığı zaman sistemin verimliliği test edilmiştir.  Ardından, MODOAKOS bir ters 

sarkaç tesisi üzerinde uygulanmıştır ve sistemin verimliliği açık döngüde kararsız bir tesis ile 

test edilmiştir.  Son olarak iki ayrı MODOAKOS sistemi aynı ağ bağlantısı üzerinde 

uygulanmıştır ve sistemin endüstriyel uygulamalardaki elverişliliği test edilmiştir.  Yapılan 

deneyler sonucu sistemimizin diğer basit öngörüsüz ağ bağlantılı kontrol sistemlerine oranla 

daha yüksek bir performans ve kararlılıkla çalıştığı görülmüştür. 
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Chapter 1  

 

 

 

 

INTRODUCTION 

 

 

 

A Networked Control System (NCS) is a control system that uses a real time 

communication structure which exchanges control and feedback data through a 

network.  The control and feedback data are shared via communication packets.  A 

basic NCS has four generic components; three computer nodes and one communication 

network.  The three computer nodes are; sensor node which is responsible for gathering 

sensor data, controller node which calculates the control signal and the actuator node 

which implements the appropriate control signal output to the plant.  The 

communication network is responsible for the communication between the computer 

nodes.  The most prominent feature of the NCS is that it connects computer peripherals 

to a physical plant thus, enabling execution of control from long distance.  A basic NCS 

structure is shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 



 2 
 

 

 

 

Figure 1.1 Basic Structure of Networked Control Systems 
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In the networked control system, the sensor node periodically samples the sensor 

data output of the plant, encodes the data into a packet and sends it to the controller 

node.  The controller node takes in the sensor data, applies the control algorithm and 

sends out the control signal to be applied to plant to the actuator node within a data 

packet.  The actuator node takes in the controller data and applies the control signal to 

the plant.  Since the sensor, controller and actuator data travel through a network 

connection, there are communication delays and data loss, thus not all packets make it 

to their destination on time, and some are lost on the way due to problems associated 

with the network connection such as interference, collision and retransmission.  

Communication delay between the sensor node and the controller node that has 

occurred following sampling instant kt  is )( kSC t , computation delay in the controller 

node that has occurred following sampling instant kt  is )( kC t , and communication 

delay between the controller node and the actuator node that has occurred following 

sampling instant kt is )( kCA t [1]. The total delay in the system is given by (1.1) : 

 

)( kt = )( kSC t + )( kC t + )( kCA t    (1.1) 

Most communication systems use a confirmation of reception which, if not 

received within a specific amount of time, triggers a retransmission.  However, in a 

networked control system, this means extra time is lost within a sampling interval, and 

rather than resending the old data, it is better to transmit a more recent plant output 

sample or a newer control signal instead. Similarly, delayed packets may be considered 

as lost since control signal applied late to the plant does not guarantee stability. 

Networked control systems (NCS) improve the performance of conventional 

digital control systems and have increased system agility, reliability and ease of system 

diagnosis and maintenance. Although the system has such advantages, a simple NCS as 

explained above is still vulnerable to random communication delay and loss on the 

network which jeopardizes the stability unless special measures are taken since the 

communication delays decrease the phase margin of the control system and data loss 

can be considered as noise.  
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Model Based Predictive Networked Control System (MBPCNS) is a networked 

control system method where stable control is possible even under random delay and 

data loss.  The loss and delay of packets in communication are compensated in 

MBPNCS by the help of an intelligent predictive scheme put in the controller and the 

actuator node.  MBPNCS holds a model of the plant inside the controller and computes 

the next n predicted controller output states each period based on the plant model.  The 

predicted controller outputs are appended to the controller output signal in a given 

period and sent to the actuator node.  The actuator node employs a state machine to 

determine whether the generated control predictions are based on a valid plant state.  

MBPNCS rejects delayed packets and dropped packets are not retransmitted. 

 

In order to achieve a trustful distributed control system that would be used in an 

imperfect environment, one has to prove the stability of the proposed method through 

theory and demonstrate practical implementation.  This thesis aims in answering the 

performance and stability related questions of the MBPNCS. 

 

In this thesis, we aimed at showing that the performance of the MBPNCS, a 

system that has been simulated [1] and implemented with a DC motor [2], is better than 

that of conventional NCS by implementing the system with an open loop unstable plant 

and with an observer.  A theoretical stability discussion is also shown. 

 

Chapter two of this thesis addresses previous studies that have been carried out 

in the area of NCS and solutions that have been proposed to the problems associated 

with it. In chapter three, MBPNCS method used in this thesis is explained in detail.  

Chapter four explains the setup and the implementation procedure of MBPNCS that 

have been carried out.  Chapter five includes the theoretical stability discussion. Chapter 

six presents the experimental results and chapter seven concludes the study and presents 

ideas for future work.  
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Chapter 2  

 

 

 

2. LITERATURE REVIEW 

 

 

 

Studies on distributed control of large scale systems were active as early as 

1970s when nationwide phase synchronization of power plants in large countries was an 

important issue since it was not known how to transmit power over thousands of 

kilometers lacking a common time base.  Important work has been done in the last 

decade on how to synchronize country wide electricity grids that use multiple power 

plants [3][4][5]. 

 

NCS has been an outcome of development in the network theory and control 

theory and lack of interaction thereof.   The network theory aims in increasing the 

average throughput of the network and has little concern on the latency of transmitted 

data packets which results in the aim of increasing efficiency of the network by sending 

a batch of data packets at once.  In the case of a packet loss, retransmission of the 

packet is usually expected and the loss of a packet is sensed by the use of confirmation 

of receipt flag called acknowledgement (ACK).  Retransmission however steals from 

the transmission time of the packet and causes latency which is one of the reasons why 

it is not possible to put an upper bound on the packet transmission time and the 

stochastic nature of the network being another.  In control theory however, the control 

loop is assumed to work in a centralized manner and have no information loss or delay 

due to the transmission of information meaning the implementations are free of jitter.  

The stability of the system is proved with this assumption in the control theory. 
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However, in a NCS stability of the controlled system depends on the timely and 

correct delivery of transmitted packets.  Delivery of signals from sensor node to 

controller node and from controller node to actuator node must be guaranteed for each 

sampling time. For this reason, general application based computer networks used today 

are not suitable without presenting a robust solution to the NCS [6].  On the other hand, 

MBPNCS does not use retransmission or other network compensation methods.  

MBPNCS does not assume any direct link between the nodes.  MBPNCS is designed to 

work in a network with packet loss and delay.  In this chapter, several methods that 

attack the problem areas in NCS with various assumptions and shortcomings are 

summarized. 

 

 

2.1. Co-design of NCS 

 

An unnecessary rate of data transfer would increase lost packets and packet 

latency and these two problems would risk stability, whereas too low rate will not be 

enough for the requirements of the control algorithm.  The network and control 

components of a NCS should be designed together in order to find an optimum amount 

of data transfer that would not corrupt the stability of the controlled system.  In order to 

keep stability and not lose network performance, the network and the control system 

should be designed together with a suitable compromise on each side.  Branicky, 

Phillips and Wei have used rate monotonic scheduling algorithm and have studied the 

effects of packet loss and the associated cost functions [7].  NCSs are overloaded which 

results in some loss of packets.  Overloading results in un-schedulable systems to be 

scheduled and the effects of dropped packets are concluded to be insignificant 

according to this research.   
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2.2. Reduction of Communication 

 

Packet loss and latency reduce the quality of service (QoS) of the controlled 

system and affects the stability.  Much of the work on NCS has focused on decreasing 

the amount of network communication which aims in finding a better linear time 

invariant approximation of the network [8].  The research has used several methods in 

reducing the amount of communication in the network.  Some of the methods used are 

described below. 

 

 

2.2.1 Deadbands 

 

Networks have unnecessary communication with packets containing identical 

data transmitted between the nodes.  This research focuses on reducing the amount of 

communication by reducing the amount of unnecessary communication.  Only the first 

packet is sent in the case where consecutive packets contain identical or similar data.  In 

the case of no packet transmission for a given time, receiver node uses the most recent 

packet received. Otane, Moyne and Tilbury studied the effect of deadband control in a 

network with no packet loss and reliable communication [9].  This research is assumed 

to work with a perfect network that has neither packet loss nor delay.  

 

2.2.2 Estimators 

 

Estimators use the model of the plant on the receiver side, and aims in reducing 

the amount of communication in the network.  The models of components produce the 

data to be used by the nodes, thus data that arrive from the network is not needed which 

reduces the amount of communication in the network.  The system holds a threshold 

value that is the upper limit to the error between the model estimated values and the true 

values.  If this threshold is exceeded, the actual value is broadcast to the system and the 

estimators are updated to the actual value.  Yook, Tilbury, Wong and Soparkar 
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concluded that this system saves great amount of bandwidth due to communication 

reduction, however great risk to the stability occurs in the case of a communication 

breakdown when the threshold is exceeded and the parameters are updated [10].   

 

 

2.3. Network Observers 

 

The delay in the network can be considered as a disturbance and a disturbance 

observer is utilized as a solution. Disturbance observer architecture is used to calculate 

this disturbance which is then added to the control signal. This would have similar 

effects on the closed loop control system as the Smith predictor [11] and eliminates the 

effect of the delay introduced by the network.  This research assumes that delay in the 

network is slow varying or correlated. 

 

2.4. Gain Adaptation 

 

The Quality of Service (QoS) of the system may change due to changes in the 

traffic load of the network.  An intelligent gain adaptation scheme is used to measure 

the QoS in the network and calculates the controller gains.  The performance of the 

network and delay directly affects the system, thus recalculated controller gains are used 

in the new delay affected network [12].   

 

2.5. Model Predictive Control 

Model Predictive Control (MPC) is a predictive control scheme that has been 

used for a long time in control systems.  MPC assumes that the sensor and the controller 

are connected directly without any communication network and a-priori knowledge of 

the reference is assumed.  The model of the plant resides in the controller node and the 

control outputs will be calculated using the model several sampling times in the future.  

First the system calculates a cost function that will be used a choice factor for the 

optimization of the future control variables.  The control output to be applied to the 
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plant is chosen by looking at the cost function and determining which output minimizes 

the cost function the most.  This predictor resides in the controller and calculates the 

control signals up to the control horizon.  This scheme is called the model predictive 

control. 

 

Another predictor, called the network control predictor resides in the actuator 

and selects which signal to be applied to the plant. When the network predictor and 

model predictor are put together the networked model predictive control is found. The 

networked control predictor compensates the network communication delay and the 

predictive controller controls the system [13].  

 

The short coming of this system is the direct connection between the sensor and 

the controller which is not feasible for every application.  Breakdowns are frequent 

between the sensor and the controller and electrical noise may be a problem which 

should be taken into account for.  Also prior knowledge of the reference is not 

applicable to every control system. 

 

 

2.6. Predictive Approaches 

 

Some studies have been conducted in recent years on the stability of predictive 

controllers similar to MBPNCS.  Montestruque and Antsaklis [14] [15] focus on finding 

a state response for the system and finding a limiting factor for the norm of the response 

to prove Lyapunov based stability.  Their research focus on a NCS model that has a 

prior knowledge of the update interval, thus the system update interval is not random.  

This research also assumes a lossless network.  Liu, Xia et al. [16] also studied on a 

scenario of delay and packet losses and predictive controller similar to MBPNCS.  

However, their research does not utilize a mechanism of accounting for drift of state 

estimates caused by delay and loss in the controller to actuator link.  
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Chapter 3 

 

 

 

 

 

3. MODEL BASED PREDICTIVE NETWORKED CONTROL SYSTEMS  

 

3.1. MBPNCS 

 

The main problems associated with networked control systems arise from the 

existence of packet delay and loss associated with the common network protocols and 

topologies connecting the nodes.  The purpose of MBPNCS is to bring a solution that is 

stable and tolerant to problems that exist in the networked control systems.  Minimizing 

delay and eliminating packet loss is one way to solve the problems that jeopardize 

stability of the NCS, however one can not guarantee that this solution is generic and 

would work on every network system available.  Thus, MBPNCS does not deal with 

reducing packet delay and eliminating packet loss. In other words, it does not guarantee 

the timely and correct delivery of packets between the nodes.  MBPNCS is a system 

that augments stability in networks with packet loss and delay. 

 

 A basic Networked Control System (bNCS) is a simple and commonly used 

networked control system. It will be used as the benchmark for the tests in this research.  

A bNCS works in the following way:  The sensor node samples the output of the plant 

periodically, and sends the output to the controller.  The controller node works in an 

event based manner, meaning that it is notified when there is a data packet arriving from 

the sensor node.  The controller node applies the control algorithm to the incoming 

sensor data and sends out the control signal to the actuator via a data packet.  The 

actuator node is also event based and notified on the event of a new message arriving 

from the controller.  When there is a data packet arriving from the controller node, the 
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actuator applies the control signal to the plant.  It is important to note that the actuator 

node and the controller run their tasks only when there is a data packet arriving from the 

previous node. 

 

At every sampling instant the controller node computes the output to be applied 

to the actuator at that time t and for the next n time instants using a model of the plant.  

The actual control signal and n predicted control signals are placed into a packet and 

sent to the actuator.  In the case of a communication break between the sensor and the 

controller, the controller uses the estimated plant state values to predict the sensor data 

and implements the control algorithm with these values.  The communication between 

the sensor, controller and the actuator node is done with data packets. 

 

At every sampling time the actuator implements the control output to the plant 

using the actual output that is located at the beginning of the newly received controller-

actuator packet.  The n predicted control signals that follow the initial control signal are 

stored in a buffer in case of a communication breakdown between the controller and the 

actuator.  In case of a communication breakdown the actuator starts applying the 

predicted control signals to the plant.  This procedure is repeated until the 

communication between the controller and the actuator is restored.  The limit for the 

number of predictions that can be applied to the plant is limited with the number of 

predictions that is n. 

 

Model based predictive networked control systems are composed of five parts: A 

sensor node, a controller node and an actuator node, a communication network which is 

assumed to cause data loss and protocol delay, and a model of the plant presiding inside 

the controller node. 

 

3.2. Sensor Node 

 

The sensor node in MBPNCS periodically gathers data from the plant in every 
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sampling time tk , x(tk) , the sensor node of the MBPNCS works similar to the sensor 

node of a NCS.  The acquired sensor data is put into a packet and sent to the controller.  

No other communication is done by the sensor node; it uses a one way communication; 

gathering data and sending it out.  In the case of a communication breakdown with the 

controller node, the sensor node is not responsible for compensation.  The required 

compensation is done by the controller node. 

 

3.3. Controller Node 

 

The controller node in MBPNCS is an intelligent component of the system and 

is also time based.  At the beginning of every period it receives the plant states from the 

sensor node. A control signal that will be consecutively applied to the plant is created 

using the sensor data and the control algorithm.  The control algorithm is used to obtain 

the actual control signal based on x(tk)  and the resulting control signal u(tk)  is sent to 

the actuator via a packet using the communication network.   The plant of MBPNCS is 

governed by (3.1) and (3.2): 

 

)()()( 1 kkk tButAxtx      (3.1) 

)()( kk tCxty       (3.2) 

 

 

Since MBPNCS discards late packets and does not allow retransmission, also a 

model of the plant resides in the controller node.  The estimated plant states of 

MBPNCS are governed by (3.3) and (3.4): 

 

)(ˆ)(ˆˆ)(ˆ 1 kkk tuBtxAtx      (3.3) 

)(ˆˆ)(ˆ kk txCty       (3.4) 

 

where Â , B̂ , Ĉ  are the plant model state transition and input matrices respectively. 
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If complete plant state cannot be measured, an observer can be used when the 

plant is observable.  The resulting control algorithm would be [13]: 

 

))(ˆ)(()0,(ˆ)(ˆˆ)(ˆ 101211   kkkkkkkk ttytyKtuBttxAttx  (3.5) 

 

where )(ˆ 1kk ttx  is the state estimate for tk based on the informationfrom tk-1, 0K  is the 

observer gain, y(tk), ŷ (tk) are actual and estimated plant outputs respectively. For 

example in the absence of a current sensor, an observer can be used to calculate the 

control output of a  speed or position of a DC motor. 

 

 

3.4. Control Algorithm 

 

The control algorithm that resides in the controller node is a state feedback 

control, calculates the real control output using the control gain Kc.  Thus the control 

output looks like: 

 

u(tk) = Kcx(tk)     (3.6) 

 

This actual control signal is placed at the top of the control packet that is sent to the 

actuator to be applied to the plant consecutively. 

 

The model in the controller is used to calculate n future estimates of the state of 

the plant where n is the estimate number used in our research but can be changed by 

changing the size of the transmitted packet. So a series of predicted control signals 

),(ˆ itu k  are calculated in an iterative fashion[17]: 

 

)1,(ˆˆ)(ˆˆ)(ˆ 1   ituBtxAtx kikik    (3.7) 
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)(ˆ),(ˆ ikck txKitu       (3.8) 

 

where i 1, 2,...n. 

 

At time tk, control signal u(tk) applied to the plant is applied to the model. The 

output of the model )(ˆ 1ktx  is the state estimate of the plant at time 1kt . To compute the 

controller output at time 1kt , control algorithm is applied to the estimated states )(ˆ 1ktx . 

The control output )(ˆ 1ktu is then applied to the model of the plant to compute the next 

predicted output of the plant. This process is recursively applied n times and computed 

control outputs from )(ˆ 1ktu  to )(ˆ 1ktu  are placed in a data packet together with u(tk) to 

be sent to the actuator node. The error between the model estimates and the real plant 

output can be defined as:  

 

)(ˆ)()(~
kkk txtxtx       (3.8) 

)(])ˆˆ()[()(~
k

n
c

n
cnk txKBABKAtx    (3.9) 

 

The plant model state transition matrices BA ˆ,ˆ  and control value cK  must guarantee that 

)(~
nktx   has an upper bound [2].  

 

This scheme is the key to MBPNCS as it is useful in two cases; transmission 

problems between the actuator and the controller and the transmission problems 

between the controller and the sensor.  The delay and loss packets between the sensor 

and the controller are compensated by this intelligent algorithm. 

 

The controller node holds a variable called sensor flag (SF), which will actually 

be used by the actuator node. At time kt , if no packet loss occurs between the sensor 

node and the controller node, the controller node sets the sensor flag variable to ‘1’ and 

works as defined above by computing the control output signal u( kt ) and predicted 
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control output signals from )(ˆ 1ktu  to )(ˆ nktu   using the plant states x( kt ) received from 

the sensor node.  Else, sensor flag is set to ‘0’.  Sensor flag is sent to the actuator within 

every packet to signal whether a control packet is based on a measured state or an 

estimated state of the plant. 

At time kt , in the case of a packet loss between the controller node and the sensor 

node, the controller node computes the u( kt ) and )(ˆ 1ktu  to )(ˆ nktu   using the predicted 

plant state )(ˆ ktx computed at time 1kt  and sets the sensor flag to 0. Since predicted 

plant states are used to compute u(k), control signal output is less reliable in comparison 

to the control signal output computed with the real plant states. If the packet loss events 

consecutively follow each other, reliability of the computed control signal output and 

predicted control signal outputs decrease each period with a rate of )(~ kx . To overcome 

this reliability problem, sensor flag parameter is sent by the controller node and a state 

machine runs on the actuator node to asses the validity of the arriving control signal 

packets. 

 

 The controller and the actuator nodes are time based and run at the same 

sampling period with the sensor node.  A data packet is disregarded by the controller 

and the actuator nodes depending on its arrival time.  The nodes check if the data packet 

arrives before or after a pre determined decision time within the sampling interval.  This 

pre determined decision time for the controller DCt  and the actuator DAt can be 

calculated as in (3.10) and (3.11). 

 

)()( 1 kakkDA tttt        (3.10) 

pdkckDAkDC ttttt   )()()(    (3.11) 

 

where 1kt is the beginning of the next sampling interval, pd is the average time delay of 

data transmission in the network, ka t( ) and )( kc t  are the delays associated with the 

actuator and the controller node respectively. 
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3.5. Actuator Node 

 

The actuator node is responsible for receiving the control signal packets from the 

controller node, assessing the validity of the received packets, selecting the appropriate 

ones and applying them to the plant.  The actuator node is time based and runs a 

periodic task that checks for a received control signal packet at the beginning of every 

period.  The actuator node is an intelligent unit that determines which control signal to 

apply to the plant by using a state machine to make this selection.  The actuator node 

applies the actual control signal u( kt ) received from the controller node if there is no 

packet loss and the SF =1 indicating that the packet is based on an actual plant state 

measurement.  In the case of a packet loss, the actuator node uses the following state 

transition diagram to decide which control signal to apply to the plant, which is 

explained in Figure 3.1. 

 

 

 

Figure 3.1 State Machine of the Actuator Node 
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The synchronization or loss thereof is sensed by the actuator using the SF flag in 

the control packet and the information of actual packet loss. The actuator node has two 

modes, the synchronized mode and the interrupted mode. 

 

 

In the synchornized mode the states of the plant model are synchronized with the 

plant states. If SF =1 and the actuator node receives a control packet from the controller 

node when it is in the synchronized mode then it applies the first control output from 

that packet to the plant, which is )0,( ktu .  If the consecutive packets that the controller 

sends have SF switched from ‘1’ to ‘0’; this indicates that the controller is not receiving 

actual plant states, but there is no controller to actuator data loss, then the actuator keeps 

applying the first control output from the received packets )0,( jktu  .  The actuator 

keeps applying the first output because in this situation the controller makes the 

assumption that the network is conveying the calculated control signal to the actuator 

node properly and are being applied to the plant and the actuator node stays in 

synchronized mode. If data is lost due to network delay or packet loss, the actuator node 

enters the interrupted mode. 

 

When the actuator enters the interrupted mode the actuator node applies the 

control signal iitu k ),,(ˆ 1,2,3… to the plant until the last sample is reached or 

communication is restored. However, if one of the control packets received in this mode 

has SF =0 indicating that the controller is using state estimates based on the wrong 

assumption of applied control signal as stated above, then the packet is rejected.  In the 

interrupted state, packets based on estimated states are rejected even if they are received 

without delay and the actuator stays in the interrupted state.  If the actuator is still in the 

interupted state after the last prediction ),(ˆ ntu k  is reached without the communication 

being restored, the output is kept constant at that value thereafter. In order for the 

actuator to enter the synchronized mode it has to receive a control packet with SF =1.  
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All of the computer nodes in MBPNCS are time based and intelligent systems.  

All computer nodes run periodic tasks as a computational model. Packet loss between 

the sensor node and the actuator node is compensated at the controller node by 

predictions calculated by the model in the controller and packet loss between the 

controller node and the actuator node is compensated at the actuator node by usage of a 

selection algorithm based on the state machine and predicted control outputs. Late 

arriving packets are discarded in this work and no retransmission is done. A time 

synchronizing method is assumed to be used among the computer nodes. This is not a 

strong assumption because the network is generally pyhsically small and the amount of 

synchronization accuracy is comparable to the sampling time[17]. 
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Chapter 4 

 

  

 

 

 

 

METHODS AND APPARATUS 

 

 

This research aims to verify that we can implement MBPNCS using an observer 

and verify that we can control an open loop unstable plant.  In order to achieve this aim 

we have conducted experiments in our laboratory environment.  First, MBPNCS is 

tested with an inverted pendulum plant to show that MBPNCS is efficient with an open 

loop unstable plant.  Next, MBPNCS is tested on a DC motor with a Luenberger 

observer to verify that MBPNCS is efficient with an observer in the system.  MBPNCS 

is designed to work in an industrial environment, thus multiple systems should be 

implementable on a common network.  Thus, a final experiment is carried out by 

connecting two separate MBPNCSs with separate DC motor with a Luenberger 

observer plants to the same Ethernet hub to show that two separate MBPNCSs are 

implementable on a common network.  The plants will be explained in detail in the 

subsequent chapters, and the NCS setup is common to both plants.   
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4.1. The Inverted Pendulum 

 

 

The performance of the MBPNCS is verified through experiments with a real 

inverted pendulum.  The inverted pendulum is a nonlinear system that enables us to see 

an open loop unstable controllable system to be tested on the MBPNCS.  The inverted 

pendulum is more sensitive to the control method than the DC motor since it is open 

loop unstable.   

 

An inverted pendulum is frequently used in the demonstration of controlling an 

unstable system.  The inverted pendulum consists of a pole that has mass on its top and 

has a pivot attached to a laterally moving cart.  It is controlled to keep it in the upright 

direction.  In other words the inverted pendulum has two degrees of freedom; the angle 

of the rod and the position of the cart, but the input is the force acting sideways on the 

cart.  The inverted pendulum is linearized around the upright position by assuming that 

the angle of the rod makes only small perturbations. 

 

4.1.1 The Inverted Pendulum System Model 

 

The inverted pendulum has two equilibrium points, one being stable and the 

other being unstable.  The stable equilibrium corresponds to the rod pointing 

downwards toward gravity and making a -90 degree with the plane of the cart.  This 

equilibrium point being stable means that the rod will return to this position in the 

absence of any control and force acting on the cart.   The stable equilibrium requires no 

control input to be achieved  thus, is uninteresting from a control perspective.  The 

unstable equilibrium corresponds to a state in which the pendulum points strictly 

upwards and, thus, requires a control force to maintain this position. The basic control 

objective of the inverted pendulum problem is to maintain the unstable equilibrium 

position when the pendulum initially starts in an upright position at rest [18]. 
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In order to design the control to be applied to inverted pendulum, first the system 

model should be derived.  The system model of the inverted pendulum can be derived 

using the Lagrange equations or free body diagrams taking Figure 4.1 for reference 

[19]. 

 

 

Figure 4.1 Basic Inverted Pendulum Diagram 

 

 

Figure 4.2 Inverted Pendulum Free Body Diagram 

 

 

Summing the forces in the horizontal direction of the cart the following equation 

is obtained: 

 

FNxbxM        (4.1) 
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Summing the forces in the horizontal direction of the pole the following 

equation is obtained: 

 

 sincos 2 mlmlxmN     (4.2) 

 

Substituting the second equation into the first equation we get the following: 

 

FmlmlxbxmM   sincos)( 2   (4.3) 

 

Summing the forces perpendicular to the pendulum, we get the following 

equation: 

 

 cossincossin xmmlmgNP     (4.4) 

 

Summing the moments around the center of mass of the pendulum, we get the 

following equation: 

 

 INlPl  cossin     (4.5) 

 

Combining these two equations, we get the following equation: 

 

 cossin)( 2 xmlmglmlI       (4.6) 

In order to work with linear functions, this set of equations should be linearized 

about   . Assume that   +ø where ø represents a small angle. Therefore, cos( ) 

= -1, sin( ) = - , and ̂̂  = 0. After linearization the two equations of motion become: 

 

 

xmlmglmlI   )( 2     (4.7) 
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umlxbxmM  )(     (4.8) 

 

 

The state sapce representation of the dynamics of the inverted pendulum is: 
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   (4.9) 

  

4.1.2 Chassis 

An aluminum chassis was designed and built for the purpose of carrying out the 

inverted pendulum experiments.  The plane of the cart is 1 meters long and the cart is 

positioned on the plane via a toothed belt.  The trigger belt is positioned on the plane via 

two pulleys.  The cart runs on a round rail with radial ball bearings. The chassis is given 

in Figure 4.3. 
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Figure 4.3 Inverted Pendulum Chassis 

 

The below parameters are measured and used with the state space model and 

discretized: 

 

M = .552 [kg]  Mass of the Cart 

m = 0.0825 [kg] Mass of the Rod 

b = 2.5 [N/m/sec]       Friction 

g = 9.8 [N/kg]  Gravity 

l = 0.25 [m]  Length to Rod Center of Mass 
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4.2. Observer Based DC Motor Control with MBPNCS 

 

The stability of the MBPNCS is experimented with a DC motor to verify 

theoretical results.  The DC motor is a simple and easy to use control plant that can be 

controlled with speed and position values.   This research focuses on the speed control 

of DC motor and applies state feedback algorithm with a Luenberger observer.  

Luenberger observer is used to compensate for a lack of current sensor and allows for a 

better verification of performance in MBPNCS. 

 

In this research two DC motor control setups were built and experimented. First, 

one Luenberger observer based DC Motor control was implemented and tested.  

Second, two Luenberger observer based DC Motor controls were implemented and 

tested where each setup communicates on the same communication medium.   

 

 

4.2.1 The DC Motor System Model 

 

DC motor is a simple and common actuated plant in the control systems. 

Voltage provide to the DC motor provides rotary motion and the electrical modelling 

and the free body diagram of the motor is shown in (4.4) and (4.5) [19]: 
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Figure 4.4 DC Motor Electrical Modeling 

 

 

Figure 4.5 DC Motor Free Body Diagram 

 

Since MBPNCS requires model of the plant to reside in the controller, the DC 

motor modelling is required. 

The DC motor has a torque,  , which corresponds to the armature current, i, 

explained in the following equation: 

 

iKT t      (4.10) 

where tK  is the torque constant. 

The back EMF, e, is related to the rotational velocity by the following equation: 

eKe       (4.11) 

 

In SI units torque constant, tK , is equal to voltage constant eK .  This constant is 



 27 
 

called electromotive force constant and the following equation holds true: 

 

K= eK = tK      (4.12) 

 

 

 

From the free body diagram of the motor and using the Newton’s law the 

following equation is obtained: 

 

KibJ         (4.13) 

 

 

Using the electrical model of the motor and using the Kirchhoff's law the 

following equation is obtained: 

 

KVRi
dt
diL      (4.14) 

 

Using these two equations and the state space representation of the DC motor 

can be obtained.  In the state-space form, the equations above can be expressed by 

choosing the rotational speed and electric current as the state variables and the voltage 

as an input. The output is chosen to be the rotational speed and the following equations 

are obtained: 

 

V
LiLRLK
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4.3. Implementation of the Experimental Setup 

 

 

4.3.1 The Computer Hardware of Sensor, Controller, Actuator: 

Each sensor, controller and actuator node reside in a separate PC 104 type 

computer that is equipped with a 300 MHz AMD Geocode processor.  The codes are 

written and compiled in a Linux server and the PC 104’s use RT-Linux as the operating 

system.  RTLinux is necessary to guarantee that the periodic tasks of the sensor, 

controller and actuator work in a real time environment.  Calculations and previous 

simulations in Matlab show that the discrete control system with 10-3 seconds of 

sampling time works under stable conditions [1].  The setup of the MBPNCS is given in 

Figure 4.6. 

 

Figure 4.6 MBPNCS Setup 
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4.3.2 AD & DA Converter 

 

Analog to digital and digital to analog conversions were performed using a 

Kontron ADIO 128.  Kontron ADIO128 is a 12 bit module is used by the actuator to 

drive the plant with the control signal sent by the AD/DA.  The digital to analog 

converter function of the Kontron ADIO128 is used for this purpose.  Kontron 

ADIO128 is able to create an output voltage between -10 and 10 volts which is used as 

a reference to the motor drivers.  The driver software of the Kontron ADIO128 is 

prepared and run as a kernel driver inside the actuator. This software was written by the 

project team. 

 

 

 

4.3.3 Quadrature Decoder and Encoder 

 

Shaft angles of the motors and the pole are measured using quadrature encoders.  

Sensor node is equipped with a quadrature decoder to acquire the position information 

from the plant. MSI P400 with fifteen input channels is used for this purpose.  The 

kernel driver is prepared and placed in the sensor node since this device also does not 

have any Linux driver published.  An encoder is mounted on the cart of the inverted 

pendulum and the cart moves on the aluminum platform via a toothed belt.  The encoder 

takes in the angle of the rod in units of radians, 0 radian means the rod is standing up 

and makes a 90 degree angle with the platform.  Another encoder is used for calculating 

the position of the cart.  This encoder calculates the position in terms of meters, a 0 m 

means the cart is on the initial position.  The two sensor data is referenced with 0 to 

calculate the error value in the system.   
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4.4. TrueTime 

 

MBPNCS performance in the above mentioned applications was simulated in 

the computer environment using TrueTime, which is a Matlab toolbox developed by 

Henriksson, Cervin and Arzen [20][21].  TrueTime is a MATLAB/SIMULINK based 

tool used to simulate networked embedded systems. The tool can be used to create low 

level of instruction and simulations can be done on the instruction execution level and 

network communication can be done on the wanted transport level.  This allows for user 

to choose the execution time of every instruction and also assign execution times to 

individual code blocks. The kernel blocks are event-driven and execute code that 

models input output tasks, control algorithms, network interfaces and various other 

tasks. Likewise, network messages are sent and received according to the chosen 

network model.  In this research, the chosen communication network was a model 

100BaseT Ethernet with suitable packet loss and delay rates and realistic transmission 

speeds. 

The code and algorithms developed under TrueTime can be directly exported to 

the actual implementation of digital control systems. The user is able to choose the type 

of scheduling algorithm applied on the simulated computer by TrueTime such as rate 

monotonic scheduling algorithm. Different standard network protocols can also be 

tested using TrueTime making it easy to see and measure their influence on networked 

control system. In the simulation the application level code of the sensor, controller and 

actuator nodes were written in the ‘C’ code, ‘m’ code of Matlab and Simulink blocks to 

implement the desired algorithms to be performed by network nodes at the kernel were 

also used.  

 

4.5. Motors 

  

A Minertia J Series motor is used to drive the cart of the pendulum.  Some 

parameters of the motor such as winding resistance and the torque constant Kt of the 
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motor should be known in order to drive the cart with the correct voltage value.  Since 

there is no reference published by the manufacturer, the torque constant Kt is measured. 

A pulley setup is prepared to calculate the torque of the motor.  The torque of the motor 

is given as: 

 

tiKmgr       (4.17) 

 

where  is the torque of the motor, m is is the mass applied to the motor and r is radius 

of the pulley. A known weight, such as 1 kg is applied to the pulley. An ampermeter is 

put in series between the motor and the power supply. Voltage is started to be fed 

slowly to the motor. At the exact instant when the motor stops the current of the motor 

is noted. The torque constant tK  is measured to be 0.1767 Nm/Amp.  This motor was 

driven using a Maxon motor driver, in torque control mode. 

 

A Maxon motor type of 144501 is used for in the DC motor experiments and 

motor parameters published by the manufacturer were used.   

 

L= 3.16131e-3 [Henri]                   Terminal inductance 

Kt= 118.54e-3 [Nm/A]        Torque constant 

R= 11.80 [Ohm]          Terminal resistance 

b= 2.1008e-006 [Nms/rad]    Friction 

j = 6.2800e-006 [kgm^2]      Rotor inertia 

 

The above parameters are measured and used with the state space model and the 

following model is found after discretization: 
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4.6. Computer Network 

 

In order to experiment with network problems such as packet loss and delay, a 

non-reliable network environment is chosen. Ethernet is chosen as the communication 

network since it is widely used and is supported by PC 104.  A typical non switching 

hub is used as the connection point of the nodes.   

 

 

4.6.1 Random Number Generator 

  

A random number generator is used to simulate dropped packets.  By using a 

random number generator we are able to determine the rate at which packet loss occurs.  

The used random number generator is of type Linear Congruential Generator (LCG) 

and uses the following equation: 

 

mcaXX nn mod)(1      (4.18) 

where Xn is the array of random values, m is the modulus, a is the multiplier, c is the 

increment and 0X  is the starting value. 

 In this research the below parameters are used for the LCG as proposed by Press, 

Teukolsky, Vetterling and Flannery[22]: 

m= 232  

a= 1664525  
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c= 1013904223 

0X = 1 
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Chapter 5  

 

 

 

 

THEORETICAL STABILITY 

 

The stability for MBPNCS can be proven by showing that the control based on 

state estimates during intervals of disturbance in the network is stable and state 

estimates do not deviate from actual states.  MBPNCS updates the state variables at the 

beginning of the sampling time, thus estimated data is reset to actual data in random 

integer multiples of the sampling period.  The stability of the MBPNCS can be proven 

in the Lyapunov sense if a suitable Lyapunov equation can be discovered as explained 

below.  

 

To derive a stability criterion, it will be shown that during the intervals when 

transmitted data is not delayed or lost, the system behaves as a normal digital control 

system, and during the intervals when the communication is interrupted, the state 

estimates do not deviate significantly from the actual states, thus control based on the 

state estimates does not jeopardize stability. The existing results of Montestruque and 

Antsaklis can be applied to MBPNCS with some modifications[14][15][17]. 

 

Montestruque and Antsaklis proposed that the stability of their NCS can be 

proven by using the following procedure.  In an ideal simple NCS with no delay and 

packet loss, the state estimate x̂  is updated when the actual state variable x of the plant 

is received by the controller node in the sampling period; tk = to+kh, k=0, 1, ... where h 

is the sampling period.  The dynamics of the plant is BuAxx  and the dynamics of 

the model is uBxAx ˆˆˆˆ  , but containing some modeling error.  This research uses state 

feedback control in order to control the plant; xKu ˆ .  We assume that there exists 
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some modeling error, AAA ˆ~
  and BBB ˆ~

 .  Therefore the dynamics of the overall 

system can be written using the augmented state vector TT exz [ ] T  where state error is 

xxe ˆ  and the augmented system dynamics can be represented as zz   where  is 

given by (5.1): 

 










KBA

BKA
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KBA

BK
~ˆ     (5.1) 

 

If one uses an ideal NCS with no delay and packet loss, and the state esimate 

x̂ is reset to the actual state value x after each state update which occurs at every 

sampling interval.  After each update the error component xxe ˆ  becomes zero.  

Since the error term becomes zero in every status update the state response in between 

the state updates, for 1 kk ttt , z(t) can be represented as: 
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where kt  is the last update time and )( 00 tzz  is the initial value. 

 

Taking the norm of each term on both sides of the equation above, a limiting 

factor for )(tz can be found and this factor is shown below: 
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Since the terms )( ktte   and 0z  are limited the state response of the system 

)(tz is proved to be globally exponentially stable around the solution z = [0   0]T if the 

eigenvalues of the matrix M which is shown next are strictly inside the unit circle. 
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M= 
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      (5.4) 

 

However, this proof is shown for non-random update times and should be expanded for 

random update times for MBPNCS.  If the update time is random ]),[)(( maxmin hhjh  , 

the system has the following response )(tz : 
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where M is shown below: 

M= 
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    (5.6) 

 

The stability of such system can be shown by using the Lyapunov theory where 

the system with state response )(tz  shown in (5.5) is asymptotically stable for 

][ maxmin,hhh  if a positive definitive matrix X exists such that QMXMX T   is also 

positive define for all ][ maxmin,hhh . 

 

Using the footsteps of this logic, the stability of the MBPNCS can also be 

proved using a similar approach.  MBPNCS is system where the state update is not done 

periodically, but only after the connection is restored between the sensor and the 

controller or controller and the actuator, which happens in the arbitrary integer multiples 

of the update interval h.  Modifying (5.5) we get the following state response equation 

for the MBPNCS: 
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where: 

M(ai)= 



0
I
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    (5.8) 

 

where: ),...,3,2,1( maxaai   

 

 

The initial state response is  0z  and during the interval ),( 0 ktt , there may be a 

communication breakdown that span from time h to amaxh.  However, these 

communication breakdowns can happen only in finite number of intervals due to the 

nature of the MBPNCS.   

 

For a given MBPNCS system hmin can be defined by the minimum packet 

transmission latency and hmax can either be the maximum network delay, or left open as 

a condition of stability. In both cases, there are a finite number of update intervals for 

which the stability condition must be checked.  The number of predictions necessary in 

open loop stable plants can be related to the settling time of the plant when disturbances 

are small[17]. 

 

Thus, if a Lyapunov equation can be found in the sense that QMXMX T    

 

where: 

 

M(ai)= 
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I
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where: ),...,3,2,1( maxaai    

maxa will give us the maximum number of consecutive packet loss the system can 

tolerate.   
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The effect of number of predictions n in the system should also be emphasized 

briefly. The maximum number of packet loss the system can tolerate maxa  will be 

compensated with the number of predictions in the system which equals n.  Thus, if 

maxa < n the MBPNCS can be stated to be Lyapunov stable.  In this thesis, n is chosen to 

be a sufficiently large value that can’t be depleted even with % 99.8 packet losses.  

However, the amount of time required to calculate n number of predictions should not 

exceed sampling time of the system.  Thus, the stability of the MBPNCS is related to 

the number of predictions in the system by the following equation: 

 

maxa < n< maxn      (5.9) 

 

where maxn equals to the number of maximum predictions that can be calculated in each 

sampling time ST . 
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Chapter 6  

 

 

 

6. RESULTS 

 

The purpose of this research is to verify that MBPNCS holds performance and 

stability with  

a) A control plant with an observer  

b) An open loop unstable control plant and that MBPNCS is suitable for 

industrial applications.   

In order to reach this aim this thesis focused on implementing the MBPNCS 

with an inverted pendulum and a Luenberger observer based DC motor.  Simulations 

are carried out in MATLAB Simulink and TrueTime toolbox for simulating network 

communication and the real time computers.  The performance of MBPNCS is 

measured with respect to the loss over the network.  Experiments are carried out in two 

MBPNCS setups one for the inverted pendulum and the other for the DC Motor control.  

The experiments run stochastic test programs that increment packet loss with sampling 

periods.  Test programs increment the packet loss percentage in pre-determined 

intervals and after each increment the MBPNCS is initialized.  This procedure is 

valuable in observing the effects of increasing packet loss and delay in the network.  

The packet loss is simulated by a random number generator that drops packets by the 

help of a threshold value as explained in chapter 4.7.1.  As stated in chapter 4.3.1 

MBPNCS is stable with a sampling time of 10-3 seconds, thus experiments use this 

value as sampling time. 

 

The experiment results of the inverted pendulum are benchmarked with the 

experiment results of a basic Network Controlled System (bNCS) to identify the 

improvements MBPNCS offer over conventional NCSs.  bNCS is an event based NCS, 

where the sensor node periodically samples and sends plant states to the controller node 
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and the controller and actuator nodes produce output only when they receive data.  The 

bNCS model has no intelligent units in the computer nodes and is prone to problems 

associated with packet loss and delay in the network.  The bNCS is also run with 

stochastic test programs that increment packet loss with sampling periods.  Test 

programs increment the packet loss percentage in pre-determined intervals and after 

each increment the bNCS is initialized. 

 

A performance metric for the setup is necessary to be able to objectively 

compare the MBPNCS with bNCS.  One suitable metric for comparing the performance 

of MBPNCS and bNCS is Root Mean Square (RMS) error.  The formula for calculating 

the RMS error is shown in (6.1). 

n

refy
n

i
i




1

2)(
     (6.1) 

where iy is the plant output and ref is the reference given to the plant, at every sampling 

time; iTs ; where i = 1, 2, ….n. 

 

6.1 Observer Based DC Motor Control Experiment 

 

A Luenberger observer based DC motor control experiment is conducted to 

verify that MBPNCS holds performance, in the case where the plant state vector can not 

be measured but the output of the plant is measurable and the plant is observable.   This 

test is valuable since MBPNCS should hold performance and stability in the case where 

all state variables are not measurable which is common in industrial applications.  This 

test is prepared to verify that MBPNCS would be successful in industrial applications. 

This experiment runs with a sampling period of 10-3 seconds. The model used in 

this experiment was stated in chapter 4.2.1.  The control algorithm applied is state feed 

back control.  The DC motor speed reference toggles between 50 and 0 rpm in every 

1000 milliseconds.  The picture of the setup is given in Figure 6.1. 

 



 41 
 

 

Figure 6.1 Setup of the DC motor MBPNCS 

 

 The RMS error performance of MBPNCS with an observer is shown in Figure 

6.2.  In this figure y axis is the RMS Error in speed of the motor calculated with (6.1) 

and x axis is the packet loss percentages in the MBPNCS. 
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Figure 6.2 RMS Error of MBPNCS in DC motor control with Observer 

 

 Figure 6.2 shows that the MBPNCS can support stability with packet losses up 

to %90.  The MBPNCS can sustain its performance up to %80 packet loss and degrades 

in performance with higher rates of packet loss.  Detailed view of MBPNCS 

performance with packet loss rates of %0, %30, %50, %70 and %90 are depicted in 

Figures 6.3, 6.4, 6.5, 6.6 and 6.7. 
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        Figure 6.3 Time Graph %0 Loss –Observer DC Motor      Figure 6.4 Time Graph %30 Loss –Observer DC Motor 

 

        Figure 6.5 Time Graph %50 Loss –Observer DC Motor      Figure 6.6 Time Graph %70 Loss –Observer DC Motor 

 

        Figure 6.7 Time Graph %90 Loss –Observer DC Motor
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In Figures 6.3 through 6.7, y axis is the speed of the motor in RPM units and x 

axis is the time in milliseconds.  Figure 6.3, 6.4, 6.5 and 6.6 support our previous 

conclusion that the MBPNCS holds performance up to % 90 packet loss.  The negative 

effect of increasing loss percentage is not visible until Figure 6.7 which shows packet 

loss of % 90.  The MBPNCS works with good performance and holds stability with an 

observer up to %90 packet loss.   
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6.2 Dual Observer Based DC Motor Control Experiment 

 

 As stated before, MBPNCS is designed work in industrial applications.  In order 

to work in the industrial applications, several MBPNCS s should be able to work 

together in order to cover large physical spaces.  Thus, we have implemented two 

MBPNCS s over o common Ethernet network to verify this usage.  Two DC motors are 

implemented with a Luenberger observer as explained in Chapter 6.1 with both of them 

using the same network hub.   In Figure 6.8, y axis is the RMS Error in speed of the 

motor calculated with 6.1 and x axis is the packet loss percentages in the MBPNCS. 

 

Figure 6.8 RMS Error of MBPNCS in Dual DC motor control with Observer 

 

 Figure 6.8 depicts that the two motors hold performance and stability up to %90 

packet loss.  This conclusion is concurrent with our previous conclusion in chapter 6.1.  

This conclusion is verification that several MBPNCS s can be used with a common 

network and thus is feasible for industrial applications.  Time graphs of the two motors 

are separately given in Figure 6.9 to 6.16. 
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     Figure 6.9 Time Graph %30 Loss –DC Motor 1    Figure 6.10 Time Graph %50 Loss –DC Motor 1       

 

 

 

Figure 6.11 Time Graph %70 Loss –DC Motor 1    Figure 6.12 Time Graph %90 Loss –DC Motor 1       

    

    Figures 6.9 to 6.12 show that Motor 1 holds performance and stability with  

increasing packet loss in the system.  MBPNCS has no degrading in performance with  

packet loss percentages of  %30, %50, %70 and %90. 
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Figure 6.13 Time Graph %30 Loss –DC Motor 1    Figure 6.14 Time Graph %50 Loss –DC Motor 1       

 

 

Figure 6.15 Time Graph %70 Loss –DC Motor 1    Figure 6.16 Time Graph %90 Loss –DC Motor 2 

 

Figures 6.13 to 6.16 show that Motor 2 holds performance and stability with  

increasing packet loss in the system.  MBPNCS has no degrading in performance with  

packet loss percentages of  %30, %50, %70 and %90. 
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As it can be observed there is little degrading on the stability or the performance of  

neither motor with packet losses up to %90.  This conclusion is verified with RMS  

error in the systems and Figure 6.8.  This experiment is valuable in observing that 

using a common network communication has no degrading effect on the performance  

and the stability of multiple MBPNCS s.  Not only MBPNCS can support control  

when all state variables are not measurable, but also it can support this performance 

when multiple systems work together.  This experiment backs up our conclusion from  

chapter 6.1 that MBPNCS would be successful in industrial applications. 
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6.3 Inverted Pendulum Control Experiment 

 

An inverted pendulum is built and controlled to verify that MBPNCS 

outperforms bNCS with an open loop unstable plant.  Previous studies in MBPNCS 

[1][2] failed to show MBPNCS holds performance and stability with an open loop 

unstable plant.  This research aimed in showing that MBPNCS is efficient with difficult 

plants, thus an inverted pendulum setup was built as explained in Chapter 4.  Inverted 

pendulum has two state variables; position of the cart and the angle of the pole, as 

explained in Chapter 4.1.1.  In order to verify the results, each state vector is figured 

and analyzed separately.  The reference given to the cart and the pole of the inverted 

pendulum is always ‘0’. 

This experiment runs with a sampling period of 10-3 seconds. The model used in 

this experiment was stated in chapter 4.1.1.  The control algorithm applied is state feed 

back control.   

 

 

6.3.1 Simulations 

 

 Model based predictive networked control system was simulated under 

TrueTime, with the inverted pendulum used as the plant.  The sampling time of the 

systemis 0.01s, and a state feedback control is used.  The communication network was a 

model of 100BaseT Ethernet with suitable packet loss and delay rates, and realistic 

transmission speeds.  Figure 6.17 shows the MATLAB simulink block diagram of the 

setup.  Our experimental setup was replicated in MATLAB simulink and the stochastic 

packet loss was simulated by TrueTime. 
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Figure 6.17 TrueTime simulation block diagram 

 

 The inverted pendulum was simulated with varying stochastic loss percentages.  

As it can been seen in the following RMS error graphs, Figure 6.18 and 6.19 

simulations results verify that the MBPNCS can support an open loop unstable system 

up to %90 packet loss.  The pole angle and cart position enter the stable region in less 

than 4 seconds with packet loss up to %90.  The system is uncontrollable only when the 

system has % 90 packet losses.  It should be noted that the RMS error in pole angle is 

graphed in terms of 10-3 radians and the RMS error in cart position is graphed in terms 

of millimeters. 
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Figure 6.18 Simulated RMS Error in pole angle  

 

Figure 6.19 Simulated RMS Error in cart position 
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 Simulating the inverted pendulum was necessary to confirm our experimental 

results are strong and reliable.  As it will be seen in chapter 6.3.2 our simulated results 

concur with our experimental results. 

 

6.3.2 Experimental Results 

 

 An experimental setup was built to verify our simulation results.  A MBPNCS 

unit is connected to an inverted pendulum chassis. Test programs increment the 

stochastic packet loss in the system in pre determined intervals.  Since the inverted 

pendulum state vector has two variables; pole angle and cart position, each variable 

should be analyzed separately. The experimental setup is given in Figure 6.20. 

 

 

Figure 6.20 Setup of the inverted pendulum motor MBPNCS 
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The performance of MBPNCS is benchmarked with the performance of bNCS.  

The results show that MBPNCS outperforms bNCS in every packet loss percentage 

when used with an open loop unstable plant.  This result can be seen in Figure 6.21 

which shows RMS error in pole angle of MBPNCS vs. bNCS.  It should be noted that 

the RMS error in pole angle is graphed in terms of 10-3 

radians.

 

Figure 6.21 Experimented RMS error in Pole angle 

 

 It can be verified that MBPNCS outperforms bNCS in pole angle performance in 

every packet loss percentage.  MBPNCS can support the inverted pendulum in an 

upright position with packet losses up to %80 but bNCS fails to achieve this. 
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Figure 6.22 shows RMS error in cart position of MBPNCS vs. bNCS.  It should 

be noted that the RMS error in cart position is graphed in terms of millimeters. 

 

 

Figure 6.22 Experimented RMS error in cart position 

 

 The MBPNCS outperforms bNCS in RMS Error values in every loss percentage 

value.  The MBPNCS can support stability up to %80 whereas bNCS can not.  

MBPNCS can support the inverted pendulum cart close to the starting point up to %80 

but bNCS fails to achieve this. 

In order to make a healthier observation of the performance of MBPNCS over 

bNCS, the detailed view of each individual stochastic packet loss interval is graphed.  In 

each time graph the pole angle is graphed with units of 10-3 radians and the cart position 

is graphed in units of millimeters.  It should be noted that the pole angle graphs has y 
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axis from -0.314 to 0.314 radians.  This is to show the relative position of the rod.  Note 

that the rod in downright position makes -3.14 radians or 3.14 radians with the y axis. 

Allowed linear region for the rod to stay in upright position is -0.104 to 0.104 radians (-

6 to 6 degrees). 
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Case 1 % 0 Loss Percentage 

 

 With % 0 loss percentage the performance of bNCS and MBPNCS are graphed  

in Figures 6.23 to 6.26.   

 

Figure 6.23 MBPNCS %0 Loss – Pole Angle   Figure 6.24 bNCS %0 Loss – Pole Angle 

 

    Figure 6.25 MBPNCS %0 Loss – Cart Position   Figure 6.26 bNCS %0 Loss – Cart Position 

 

   MBPNCS shows similar performance over bNCS in %0 packet loss.  Both systems 

  achieve to hold the rod in an upright position and the cart on the initial starting position. 
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Case 2 % 30 Loss Percentage 

 

With % 30 loss percentage the performance of bNCS and MBPNCS are graphed  

in Figures 6.27 to 6.30.   

 

 

Figure 6.27 MBPNCS %30 Loss – Pole Angle   Figure 6.28 bNCS %30 Loss – Pole Angle 

 

Figure 6.29 MBPNCS %30 Loss – Cart Position   Figure 6.30 bNCS %30 Loss – Cart Position 

MBPNCS starts to outperform bNCS in %30 packet loss.  The rod is much more  

stable in MBPNCS and the cart does not diverge from the initial starting point as it does in bNCS. 
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Case 2 % 50 Loss Percentage 

 

With % 50 loss percentage the performance of bNCS and MBPNCS are graphed  

in Figures 6.31 to 6.34.   

 

Figure 6.31 MBPNCS %50 Loss – Pole Angle   Figure 6.32 bNCS %50 Loss – Pole Angle 

 

 

Figure 6.33 MBPNCS %50 Loss – Cart Position   Figure 6.34 bNCS %50 Loss – Cart Position 

 

MBPNCS outperforms bNCS in %50 packet loss.  The rod is much more stable in 

 MBPNCS and the cart does not diverge from the initial starting point as it does in bNCS. 
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Case 2 % 70 Loss Percentage 

 

With % 70 loss percentage the performance of bNCS and MBPNCS are graphed  

in Figures 6.35 to 6.38.   

 

Figure 6.35 MBPNCS %70 Loss – Pole Angle   Figure 6.36 bNCS %70 Loss – Pole Angle 

 

 

Figure 6.37 MBPNCS %70 Loss – Cart Position  Figure 6.38 bNCS %70 Loss – Cart Position 

 

The biggest performance difference between the MBPNCS and bNCS occurs in 

 %70 packet loss.  MBPNCS is able to hold the rod in an upright position where as the  

bNCS can not hold it in the allowed region. 
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Case 2 % 90 Loss Percentage 

 

With % 90 loss percentage the performance of bNCS and MBPNCS are graphed  

in Figures 6.39 to 6.42.   

 

 

Figure 6.39 MBPNCS %90 Loss – Pole Angle   Figure 6.40 bNCS %90 Loss – Pole Angle 

 

 

Figure 6.41 MBPNCS %90 Loss – Cart Position   Figure 6.42 bNCS %90 Loss – Cart Position 

 

With % 90 loss percentage both system fail to hold the pole angle and the cart position in  

the stable region. 
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Our experimental results verify our simulation results that concluded MBPNCS 

holds performance and stability with an open loop unstable plant up to % 90 packet 

losses.   
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Chapter 7 

 

 

CONCLUSION and FUTURE WORK 

  

In this thesis we experimented with a novel networked control system method; 

Model Based Control Networked Control Systems that aims in overcoming problems 

associated with data loss and random delay by implementing an intelligent predictive 

scheme.  The intelligent predictive scheme predicts future plant states and control 

signals are calculated according to these states in the case of a data loss or delay.     

Previous solutions to problems associated with Networked Control Systems had 

assumptions on the properties of the network or the control of the system and these 

assumptions would not be applicable in the real world industrial applications.  However, 

MBPNCS is designed to work on wide range of network protocols and control 

algorithms with realistic assumptions, which makes it preferable over previous 

solutions. 

In chapter 2 of this thesis, previous works on NCS solutions are summarized.  In 

chapter 3, MBPNCS is introduced and explained in detail.  Chapter 4 was on the 

implementation method and apparatus of the MBPNCS.  Different plants and their 

models were also explained.  Chapter 5 introduced a theoretical stability criterion for 

MBPNCS that builds a foundation for future work on MBPNCS.  Finally, in chapter 6 

results of experimental tests and simulations were produced.  The aim of these tests 

were to conclude  

a) that MBPNCS would be efficient in industrial applications by showing that 

MBPNCS holds performance when used with a control plant with an observer and when 

two separate MBPNCS s are working together.  A control plant with an observer is 

implemented with a DC motor with a Luenberger Observer to achieve this aim. 

 b) that MBPNCS is more efficient and stable than a basic Networked Control 

System (bNCS) when used with an open loop unstable control plant. An open loop 
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unstable plant is implemented with an inverted pendulum in these tests. 

Through simulations and experimental results, this thesis has showed that 

MBPNCS has significantly better performance compared to an event based networked 

control system such as bNCS when used with an open loop unstable plant, tolerating 

communication losses up to 90%, whereas the latter may become unstable at 30%. 

Results have also showed that MBPNCS holds performance when working with an 

observer and that multiple MBPNCS s can be supported with a common communication 

medium.  Based on these results, we believe that MBPNCS will be successful in 

industrial applications. 

The theoretical stability criterion introduced in this thesis should be expanded 

and verified with experimental results for future work.  
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