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Abstract

Trajectories are spatio-temporal traces of moving objects which

contain valuable information to be harvested by spatio-temporal

data mining techniques. Applications like city traffic planning,

identification of evacuation routes, trend detection, and many

more can benefit from trajectory mining. However, the trajec-

tories of individuals often contain private and sensitive informa-

tion, so anyone who possess trajectory data must take special care

when disclosing this data. Removing identifiers from trajectories

before the release is not effective against linkage type attacks,

and rich sources of background information make it even worse.

An alternative is to apply transformation techniques to map the

given set of trajectories into another set where the distances are

preserved. This way, the actual trajectories are not released,
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but the distance information can still be used for data mining

techniques such as clustering. In this thesis, we show that an

unknown private trajectory can be reconstructed using the avail-

able background information together with the mutual distances

released for data mining purposes. The background knowledge is

in the form of known trajectories and extra information such as

the speed limit. We provide analytical results which bound the

number of the known trajectories needed to reconstruct private

trajectories. Experiments performed on real trajectory data sets

show that the number of known samples is surprisingly smaller

than the actual theoretical bounds.
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Mekan-Zaman Yörüngelerinin Yayınlanmasında Gizlilik Açıkları

Emre KAPLAN

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2009

Tez Danışmanı: Yar. Doç. Dr. Yücel Saygın

Anahtar Kelimeler: Gizlilik, mekan-zaman verisi, hareket yörüngeleri, veri

madenciliği

Özet

Hareket yörüngeleri, hareketli objelerin içerisinde değerli bilgiler içeren

zaman-mekan izleridir. Bu bilgiler çeşitli veri madenciliği uygulamalarında

kullanılmak üzere toplanırlar. Şehir trafiğinin planlanması, acil ulaşım yol-

larının belirlenmesi ve akım takibi gibi bir çok uygulama hareket yörüngesi

madenciliğinden faydalanır. Kişilere ait hareket yörüngeleri sık sık kişiye özel

ve hassas bilgiler içermektedir. Bu bilgilere sahip kişiler, veriler açıklanmadan

önce gerekli özeni göstermelidir. Kişisel belirteçlerin, bu veriler açıklanmadan

önce temizlenmesi de bağlaç tipi saldırılara karşı zayıf kalmaktadır ve zen-

gin arka-plan bilgileri ile bu zayıflık daha da belirginleşmektedir. Bu konuda

bir alternatif, bilgileri açıklamadan önce dönüşüm teknikleri kullanarak, ver-

ilen bir küme hareket yörüngesini, ikili uzaklıkları korunacak şekilde bir

v



başka kümeye dönüştürmektir. Bu şekilde gerçek hareket yörüngeleri açık-

lanmamakta fakat ikili uzaklık bilgileri hala kümeleme gibi veri madenciliği

uygulamalarında kullanılabilmektedir. Bu çalışmada, bilinmeyen ve özel bir

hareket yörüngesinin, veri madenciliğinde kullanılmak üzere açıklanan ikili

uzaklık bilgileri ve kullanıma müsait arka-plan bilgileri ile çözülebileceği gös-

terilmektedir. Bahsedilen arka-plan bilgisi, bilinen bazı hareket yörüngeleri

ve hız sınırı ek bilgileri biçimindedir. Çalışmada ayrıca, özel hareket yörün-

gelerini çözmek için bilinmesi gereken hareket yörüngeleri sayısı hakkında

analitik sonuçlar da sunulmaktadır. Gerçek hareket yörüngesi veritaban-

larında yapılan deneyler bilinmesi gereken hareket yörüngeleri sayısının ol-

ması gereken teorik sınırlardan şaşırtıcı derecede küçük olduğunu göstermek-

tedir.
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1 Introduction

Today’s world highly benefits from the wireless technologies which are in de-

mand for the last 15 years. Since mid 90’s, wireless technologies have been

developed together with various services and applications. As a result, peo-

ple became more and more mobilized with mobile phones and the wireless

trend is widely adopted. Today, mobile phones and personal digital assis-

tants (PDA) are also equipped with Global Positioning Systems (GPS), Wi-fi,

Bluetooth, and Radio Frequency Identification (RFID) tags. As these tech-

nologies become part of our life, a lot of time-referenced location information

is collected by different mobile service providers. Time-referenced location

data is also called spatio-temporal data, where “spatio” means the location,

and “temporal” means related to time. The collected spatio-temporal data

contains valuable information to be harvested by spatio-temporal data min-

ing techniques for various applications such as traffic management, identifica-

tion of evacuation routes, trend detection, geo-marketing, and sometimes for

geo-spamming. In general, spatio-temporal data can be analyzed to discover

new patterns about how people travel and behave in public areas. However,

privacy is a major concern for data mining in general and spatio-temporal

data mining in specific. Privacy issues become even more serious when the

data miner and the data owner are different, and they have to share the data

for data mining, or when organizations publish their data for public use. For

example, GSM companies with the capability of collecting huge amounts of

spatio-temporal data about their users which shows where they have been at

specific times and what are their habits etc. Therefore, companies who col-
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lect privacy sensitive spatio-temporal data also have the obligation to protect

the privacy of their customers. Therefore, they need mechanisms to harvest

useful information from their data while protecting the privacy of individu-

als. Privacy concerns are not solely the subject of spatio-temporal datasets

but also in data mining context for conventional data. However, existing

methods, developed for conventional data such as tabular data cannot be

directly applied to spatio-temporal datasets. Moreover, privacy threats for

spatio-temporal data are different and more diverse than conventional data.

In order to preserve individual privacy, the first attempt would be to remove

the personal identifiers from the spatio-temporal data collected before it can

be disclosed to third parties or made public. However, this has been shown

that simply removing the identifiers is not enough, since some of the remain-

ing attributes in the data set could be used to join the public and private

information as discussed in [48]. Availability of rich background information

makes the privacy issues more complicated [50] and this is even more serious

in case of spatio-temporal data considering the variety of background infor-

mation to be used. A safer approach may be to perturb the data before it is

made public, as discussed in [40], or apply transformations on the data in a

way that preserves important properties such as pair wise distances among

the data points so that data mining techniques such as clustering can still be

applied. However, there may still be privacy risks in such transformations

on spatio-temporal data. In this thesis, we consider distance preserving data

transformations on trajectories and identify the privacy leaks in such trans-

formation when an adversary has background information. We propose two

different methods to show that private trajectories could be discovered with
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very high precision. For both methods, we consider the following scenario

where the adversary would like to reconstruct the movement behavior of a

specific individual (the so called “target trajectory”) and knows the released

set of pair wise distances between the trajectories in the dataset. We assume

that the trajectories themselves are not published but only their pair wise

distances are available for data mining purposes. In both methods, we show

that target trajectories can be found very precisely with limited background

information and using computationally feasible methods. Contributions of

this thesis are listed below:

1. We have shown that publishing pair wise distances between data points

leads to privacy leaks.

2. Easy accessible background information in addition to pair wise dis-

tances enhances the attack quality and results in very precise solutions

leading to further privacy leaks.

In the first method, the adversary has access to some background information

such as the average speed, or the maximum speed of the trajectory and

a bunch of trajectories from the dataset together with access to released

pair wise distances. The adversary reconstructs the target trajectory with

a heuristic based algorithm. Due to limited information, he/she may not

exactly recover the target trajectory but can still figure out the basic shape

of the route. Experiments show that even with very limited information in

terms of number of trajectories, the adversary can reconstruct the target

trajectory precisely in most of the cases. As a qualitative measure we discuss
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the relation between reconstruction quality of the target trajectory and the

number of trajectories the adversary has.

In the second method, the adversary only has a bunch of trajectories and

access to published pair wise distances between trajectories of the dataset

which is going to be attacked. This method is not solely an alternative

attack method but has advantages over the first one in the sense that:

1. It is faster than the previous method.

2. Target trajectory can be discovered and the solutions are mathemati-

cally sound however, due to the limited information, one can generate

various numbers of candidates which are all identical in terms of dis-

tances to the known trajectories and equally possible to be the target

trajectory.

3. This method results in a set of trajectories which enables us to do

several other observations such as the confidence about the areas that

the target trajectory possibly passed through. Area where the most of

the results are passing through is likely to be also passed by the target

trajectory. We calculate confidence of those areas in terms of number

of results found in the attack.

The thesis is organized as follows: Section 2 focuses on background infor-

mation and related work done in the area of privacy and spatio-temporal

data mining. In Section 3, we cover the definitions, notations and the for-

mal problem definition addressed in this thesis. In Section 4 we discuss our

4



first attack method, in Section 5 we discuss our second attack method. We

conclude in Section 7 and discuss the future works.
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2 Background and Related Work

The contributions of this thesis are in the research area of privacy in spatio-

temporal data mining. In this chapter, we survey several other related re-

search areas as well. These are privacy preserving data mining, anonymiza-

tion and privacy in spatio-temporal data. In this section, we provide the

basics and related work about these topics. We start by defining what is

privacy and why it is important for this research and continue covering other

topics listed above.

2.1 Privacy In Data Mining

Privacy is defined in [4] as,

“Privacy is the ability of an individual or group to seclude them-

selves or information about themselves and thereby reveal them-

selves selectively.”

Privacy rights are developed almost in all countries so that utilizing personal

data is not an easy task. Disclosing information other than what the data

owner has selected to share is called privacy leak and should be avoided. Pri-

vacy is important because of the growing number of emerging technologies in

mobile area, vast number of spatio-temporal data is collected and data min-

ing applications harvest valuable information out of those huge data heaps.

The key point is: does the collected information contain more than what
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the individual decide to disclose? For example, no one can be traced unless

stated otherwise but what about collected GPS data or RFID tag data of that

individual? Are those data points just innocent points or more than that?

In spatio-temporal data mining, collected data points are utilized in various

techniques to decide or create meaningful results out of those considerable

amounts of data. When information from various sources come together, un-

expected data disclosure may result and cause privacy leaks. In [18, 19, 34]

authors discuss when the results of data mining applications cause privacy

violations.

2.2 Privacy Preserving Data Mining

Privacy preserving data mining is a very popular research area since the

beginning of 2000’s. A large number of collected data needs well designed

algorithms to be utilized. As discussed in 2.1, utilizing personal information

is not an easy task. Privacy preserving algorithms are needed to preserve

individual privacy while utilizing data as in ordinary data mining techniques.

Agrawal and Srikant’s work [9] in this area lead other researchers to focus

on privacy aspects of data mining. The basic method in privacy preserving

data mining is to remove personal identifiers and other sensitive information

in a way that the data will not be linked to its owner. In [49], authors

worked in association rule hiding such that sensitive information is concealed.

Another way is to do Secure Multi-party Computation (SMC) on vertically

or horizontally partitioned data. In [32, 30], authors developed such methods

based on SMC.
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2.3 Privacy In Spatio-Temporal Data

Privacy in spatio-temporal data is another popular research area in recent

years. Location based services (LBS) are very popular in today’s world which

are discussed in [10, 14, 41, 15]. Mobile applications often use location infor-

mation and service according to client’s location. In [10], authors propose a

way to express users preferences on their location information and obfuscate

the data to preserve privacy.

Data perturbation is a well-studied field in data privacy in[10, 33, 37, 40]

which researchers studied on perturbing the data in a way that preserve

privacy. Indeed, several other papers have treated this topic, showing that

data perturbation techniques are not always effective in protecting privacy

[37] because the perturbation can be predictable.

Anonymization is another research subject aiming at protecting individ-

ual privacy. Anonymization based privacy preserving methods are discussed

in [48, 8, 46, 6, 23, 14]. Techniques for trajectory anonymization were re-

cently proposed in [8] and [46], but privacy risks after data release were not

considered. In another recent work, privacy risks due to distance preserving

data transformations were identified [51], however spatio-temporal data was

not addressed. The privacy risks in trajectory data was addressed in [50]

where authors point out how parts of a trajectory could be used as quasi-

identifiers to discover the rest of the trajectory. In this work, authors assume

that the trajectories are distributed vertically across multiple sites where

sites are curious to learn the rest of the trajectory, and the authors propose
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methods to prevent that by suppressing parts of the trajectories before they

are published.
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3 Preliminaries and Problem Definition

In this section, we provide the basic building blocks for the thesis. The meth-

ods covered in the following sections 4 and 5 uses the notations and definitions

expressed in this section. We first define the sample points, trajectory and

the notations, then we discuss the distance metrics and dissimilarity matrix.

Background information used in both methods are discussed followed by the

discussion of error and success rate measures. At last, we discuss the gradient

descent algorithm which is adopted our method discussed in Section 4.

3.1 Trajectories and Their Properties

Trajectories are paths in space-time. For every time frame, there is a space

(or say location) coordinates which are easily collected by GPS devices or

mobile phones nowadays. Hence, a trajectory can be represented as a set

of points, denoted as sample points. A sample point has 3 features namely,

x-coordinate, y-coordinate and time stamp, t. In this thesis, a discrete tra-

jectory is defined as a polyline represented as a list of sample points which

the time component is discarded for the sake of simplicity. We represent tra-

jectories in two different forms. A trajectory either represented as a column

vector which is described below or as a list of sample points. If we have more

than one trajectory then ith trajectory is denoted as T i. The list of sample

points representation of a trajectory is as follows:
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T = ((x0, y0, t0), ....., (xn−1, yn−1, tn−1))

In this thesis, we assume that trajectories

1. are aligned.

2. have constant sampling rate (ti+1 − ti = 4t, for some constant 4t).

Algorithms for ensuring these conditions can be found in [28]. Time com-

ponent is discarded for the sake of simplicity and there are methods to have

constant sampling rate which makes time component redundant, so we rep-

resent a trajectory as a list of (x, y) coordinates (or a vector in R2n). We

write Ti to represent the ith sample-point (xi, yi, ti). In most of this thesis, we

think of a trajectory as a column-vector in a large vector-space. We use calli-

graphic letters to refer to the vector representation of a trajectory. The vector

representation of a trajectory T is: T = (x0, y0, t0, . . . , xn−1, yn−1, tn−1)
T ∈

R3n. In this case Ti is the ith element of the vector (i.e. T0 = x0,T1 =

y0, . . . ,T3n−1 = tn−1). A trajectory T can posses many properties which are

of interest in different situations, such as maximum and average speed of a

trajectory, closest distance to certain locations, duration of longest “stop”, or

percentage of time that T moves “on road”. We use average and maximum

speed property of trajectories in the first method in Section 4, so we discuss

these properties in the following subsections..

In this thesis, we also define known, target, candidate and reconstructed

trajectory. Definitions of those trajectories are below.
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Known trajectory is the trajectory known by the adversary to be used

in the privacy attacks as the key information. In our methods, the

adversary generally has a bunch of trajectories known from the dataset

where s/he attacks to.

Target trajectory (or private trajectory) is the trajectory which the ad-

versary wants to find. Target trajectory is naturally a member of the

dataset where the adversary attacks to. Target trajectory denoted as

T ′ and X .

Reconstructed trajectory is the trajectory which is the only outcome of

the attack. This term is used in the first method that we discuss in

Section 4.

Candidate trajectory is the trajectory which is one of the outcomes of the

attack. Due to limited information, there are more than one trajectory

in general, satisfies the conditions in terms of knowledge of the adver-

sary. Candidate trajectories are possible representatives of the target

trajectory although they may not be similar on a map but mathemat-

ically they satisfies all the conditions as the target trajectory does and

none of them is better than the others. Candidate trajectory i is de-

noted as ci. This term is used in the second method that we discuss in

Section 5.
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3.2 Distance Metrics and Dissimilarity Matrix

3.2.1 Distance Metrics

The most important property of the trajectories that our work relies on, is the

distance property. Distance is the numeric value which defines the closeness

of two data points. The distance metric can be any of the metrics defined

below but for the sake of simplicity we chose Euclidean distance. However

when comparing trajectories in terms of their relative distances, using real

Euclidean distances or distance square values doesn’t matter since we care of

the relative distances of those points hence we use Euclidean square distance

defined below. Moreover omitting square root operation saves computation

results in speed because methods presented in this thesis extensively do this

operations. There are some distances metrics in the literature[45]. The dis-

tance metrics used throughout this work is listed below. Note that Euclidean

distance and P-norm distance are using the vector representation so that their

indices are in range of [0, 2n− 1] while rest of the distance metrics are using

list of sample points representation so that their indices are in the rage of

[0, n− 1]

Euclidean distance

‖T −T ′‖2 =

√√√√2n−1∑
i=0

|Ti −T ′
i |2 (3.1)
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P-norm distance

‖T −T ′‖p =

(
2n−1∑
i=0

|Ti −T ′
i |p
)1/p

(3.2)

Average p-norm distance

ASDp(T, T
′) =

1

n

n−1∑
i=0

‖Ti − T ′i‖p (3.3)

Variance distance

dv(T, T
′) =

1

n

n−1∑
i=0

(‖Ti − T ′i‖2 − d2(T, T
′))2 (3.4)

Euclidean-Square distance

‖T − T ′||2 =
n−1∑
i=0

|Ti − T ′i |2 (3.5)

Area distance dA(T, T ′), which is the area of the region enclosed between

the two trajectories [45].

Note that the average sample distance is a special form of average p-norm

distance where p = 2. In this thesis, we mainly focus on Euclidean distance

and square of Euclidean distance which we defined above.

3.2.2 Dissimilarity Matrix

Data holders want to do privacy preserving data mining so that instead

of publishing actual data points (trajectories in this thesis) they publish the
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pairwise distances of the data points so the information in terms of data min-

ing is contained in the distances in-between data points. The list of pairwise

distances of all trajectories to each other are represented in the matrix form,

where D(i, j) represents the distance between ith and jth trajectory in the

matrix D. This is called dissimilarity matrix also mentioned in [35, 36, 51].

An example of a dissimilarity matrix is given below.

Dataset:
Trajectory 1: [(1,1)(2,2)(3,3)]
Trajectory 2: [(2,1)(3,2)(4,3)]
Trajectory 3: [(2,3)(3,4)(4,5)]

Distances:
D(2,1) =

√
3

D(3,1) =
√

15
D(2,3) =

√
12

Dissimilarity Matrix, D
1 2 3
0
√

3
√

15

- 0
√

12
- - 0

Figure 1: Dissimilarity Matrix

Dissimilarity matrix is denoted as D and a pairwise distance between

trajectory i and trajectory j is denoted as D(i, j).

3.3 Types Of Background Information

3.3.1 Known Distances

The most important property of the trajectories that we use in this thesis is

the known distances. Known distances are in the form of dissimilarity matrix

defined in Section 3.2.2 which is the only released information that includes

15



the distance from an unknown trajectory T to a fixed trajectory, T ′ for all

trajectories in the dataset and accessible by the adversary. This data may

be release in order for a third party to perform clustering on the trajecto-

ries. Calculating distance in between trajectories is discussed in Section 3.2.

When using a continuously differentiable norm to compute the distance be-

tween T and T ′ we obtain a continuously differentiable property of T ; e.g.

∆T ′(T ) = d(T ′,T ) is continuously differentiable. Note that all these dis-

tance measures are continuously differentiable with the exception of p-norm

distance for odd p.

3.3.2 Average and Maximum Speed

Another property of trajectories, which is natural to consider, is the max-

imum or average speed at which the moving object is traveling. Since we

only have discretized versions of the trajectories, with sample points taken

at a fixed sample rate, we can only approximate the average and maximum

speed:

avgSpeed(T ) =
1

n− 1

n−1∑
i=0

‖Ti − Ti+1‖2
∆t

(3.6)

maxSpeed(T ) = max
i

{
‖Ti − Ti+1‖2

∆t

}
(3.7)

where ∆t is the known, constant sample rate (which we have discarded from

the description of the trajectory itself). Note that the average/max speed

in this case is approximated by the average/max speed of each segment of

the discretized trajectory, where segment i is the line segment (Ti, Ti+1),
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or, when written in the vector notation: ((T2i,T2i+1), (T2i+2,T2i+3)). The

average speed is easily seen to be continuously differentiable. To compute the

derivative of the maxSpeed, first note that the derivative of the maximum

function can be approximated as:

∂

∂xi
max{x0, . . . , xn−1} =

 1 for i ∈ argmaxi{x0, . . . , xn−1}

0 else
(3.8)

where argmaxi{x0, . . . , xn−1} = {i1 . . . , il} is the set of indices such that xij
has the largest value of {x0, . . . , xn−1} (more than one element can have the

maximum value).

When there is more than one largest argument to the max function, the

partial derivatives with respect to those arguments are not well-defined (the

right-derivatives are 1, while the left-derivatives are 0). However, in the

following, we will use the convention that the partial derivatives of the largest

arguments are 1 in those arguments.

Let S be the set of indices of the first sample points on the fastest segments

of the trajectory: S = argmaxi{‖Ti − Ti+1‖2/∆t}, and let St = {2s + t|s ∈

S}, t ∈ {0, . . . , 3} be the sets of the indices of the coordinates of the vector

representation of the fastest segments (S0 is the set of x-coordinates on the

first sample points, S1 is the set of y-coordinates on the first sample points,

S2 is the set of x-coordinates on the second sample points, etc.). In the

following we will use a generalization of Kronecker delta: δi,S , which is 1 if
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i ∈ S, and 0 otherwise. The partial derivatives of the maximum speed is:

∂

∂Ti

maxSpeed(T ) =
∂

∂Ti

max
j

{
‖Tj − Tj+1‖2

∆t

}
=

3∑
k=0

δi,Sk

1

∆t

∂

∂Ti

‖(Ti−k,Ti−k+1)− (Ti−k+2,Ti−k+3)‖2

=
3∑

k=0

δi,Sk

1

∆t

Ti − (−1)δk,{0,1}Ti+2 − (−1)δk,{2,3}Ti−2

2‖(Ti−k,Ti−k+1)− (Ti−k+2,Ti−k+3)‖2

This partial derivative is not continuous, however, as we argue in Section 4.4,

it is still suitable for the reconstruction of trajectories.

3.4 Error and Success Rate of a Trajectory

3.4.1 Error

We define the “error” of a candidate X ′ as

E(X ′) =
1

2

m∑
i=1

(
Pi(X

′)− Pi(X )
)2 (3.9)

where Pi are the properties which are known about the target trajectory (in

other words: Pi(X ) are known values). The error function is the difference

between the given properties of the target trajectory, X , and corresponding

properties of the candidate trajectory, X ′. The error function is 0 when

the properties of the candidate and the target trajectory are the same and

a positive number, otherwise. Furthermore, the error function is positive. It

is differentiable as long as the properties are differentiable.
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The error function is defined for the adversary to measure how well s/he

uses background information. It depends on only the information that the

adversary has.

When the adversary uses the hyper-lateration technique with an adequate

number of trajectories, it exactly finds the target trajectory. But in general,

due to lack of information, the target trajectory may not be found exactly so

the adversary needs to calculate the difference between the target trajectory

and the candidate trajectory in terms of their properties. This measure is

called error and error of a reconstructed trajectory shows how much the

reconstructed trajectory differs from the target trajectory. Any zero of the

error function exhausts the knowledge (i.e the known properties) about the

target trajectory. Equation 3.9 is a general error definition defined over

trajectories with any number of properties. In Equation 3.10, error of a

candidate trajectory is calculated over its only known property, the distances.

E(X ′) =
i=n∑
i=1

(||X ′ − Ti||2 − δi)2
where δi = ||X − Ti||2 (3.10)

In Equation 3.10, error is defined over the known distances. It shows

how well the candidate trajectory, X ′, satisfies known distances to all the

Ti’s. It calculates the squared differences between the distance from candi-

date trajectory, X ′, to known trajectory, Ti, and δi. Note that δi represents

the distance of the known trajectory Ti from the target trajectory X. This

tells us something about how far the candidate trajectory is from the target
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trajectory. The error function in 3.10 is 0 when the candidate trajectory is at

δi to the known trajectory Ti for all i ∈ {1, .., n}, and a positive number oth-

erwise. Figure 2 depicts how to find error on a 2d plane on ordinary points.

The logic behind the calculations is the same in trajectories because trajec-

tories with n sample points are just points in R2n. In Figure 2, black point

denotes the candidate trajectory, gray point denotes the known trajectory

and finally red point denotes the target trajectory. According to Equation

3.10, summation calculates d1 and δi calculates d2 so the overall error equa-

tion, E(X ′), calculates d1 − d2 which denotes the error between the target

trajectory and the candidate trajectory. This is shown in Figure 2.

Figure 2: Error

3.4.2 Success Rate

In essence the success depends on how well the candidate represents the

target.
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In [35] an unknown target trajectory was reconstructed from knowledge

of the distance from the target trajectory to each trajectory in a set of known

trajectories. To evaluate the success of the reconstruction the following suc-

cess rate was used:

SR(X ′) = 1− ‖X −X ′‖2
δmin

(3.11)

where δmin = mini(δi) is the smallest known distance. This success-rate is 1 if

the method finds X precisely, 0 if it returns the closest known trajectory, and

negative if it performs worse than just returning the closest known trajectory.

This measure has a number of shortcomings, which makes it difficult to

compare the success of different algorithms, or even the same algorithm, but

applied to different datasets. One obvious problem is that the success rate

cannot be applied to reconstruction methods which do not use the distance to

known trajectories. Furthermore, it is very difficult to obtain a high success

rate for a dataset with many close trajectories (since δmin is likely to be

a very small number). Another problem is that this success does not take

the “resolution” of the target trajectory into account: For fixed length target

trajectories the success rate does not depend on the number of sample points.

If the target trajectory has a high sample rate (high resolution) it is likely

that the quality of the reconstruction is more sensitive to noise than if the

same target trajectory only has a low resolution.

We overcome some of the shortcomings of the old success measure by

defining a new success rate SR(X ′) of a candidate trajectory. The success

rate should satisfy the following properties:

• SR(X ′) ∈ [0, 1]
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• SR(X ) = 1

• Depend only on the target and candidate trajectories.

• Be independent of the magnitude of coordinates.

Intuitively the quality of a candidate trajectory depends on how far away

the candidate trajectory is from the target trajectory at any given time. In

our case, since we assume that trajectories are aligned, the average distance

of the candidate trajectory to the target trajectory over time is the average

sample distance:

ASDT (X) =
1

n

n−1∑
i=0

‖Xi − Ti‖2 (3.12)

The average sample distance alone, however, is not a good measure of success,

since it depends highly on the magnitude of the coordinates. To factor out

this dependency on the magnitude of the coordinates, we divide the average

sample distance with the total length of the target trajectory, which can be

computed as:

‖T‖l =
n−2∑
i=0

‖Ti − Ti+1‖2 (3.13)

The fraction ASDT (X)/‖T‖l is a non-negative real number, which is 0

when X = T . We define the success rate from this fraction as follows:

SR(X ′) = e−αASDT (X)/‖T‖l (3.14)

where α is a sensitivity factor which decides how steep the success rate goes to

1 as the candidate approaches the target. The new success rate satisfies the
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criteria listed above: SR(T ) = e−αASDT (T )/‖T‖l = e0 = 1, and as ASDT (X)

tends to infinity, SR(X) tends to e−∞ = 0.

The success measure defined above may not be appropriate in all situa-

tions for instance when the trajectories may be laying on top of each other,

thus giving the visual impression of a perfect match, but may be very far

apart in time: Even though all sample points overlap, the chronological or-

dering may be reversed, this situation will give a very poor success rate with

the measure defined above, but will appear as a perfect match.

All in all, success rates aim to evaluate the attack methodology in the

point of view of the researcher. That is, both success rates involves the target

trajectory which is an unknown information to the adversary. Success Rate

1 depends on the target trajectory, candidate trajectory and some known

distances from the dissimilarity matrix (i.e the the distance of the closest

known trajectory to the target). Success Rate 2, however, depends only

on the target and the candidate trajectory and overcomes the shortcomings

discussed above.

Lower Bound of Success Rate Although the adversary cannot know

the final success rate before the attack, there are situations where s/he can

give a lower bound on the success rate. Since the success rate is defined in

terms of the average sample distance, s/he can get the following bound in the

situation where s/he knows the average sample distance to a set of known

trajectories.
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Theorem 1 Let T 1, . . . , Tm be known trajectories, and let δi = d2(T
i, X) be

the average sample distances to the unknown trajectory X. Then, for any

trajectory X ′ with E(X ′) = 0 the success rate is:

SR(X ′) ≥ e−2αδmax/(n‖X‖) (3.15)

where δmax = maxi(δi) is the largest given distance, and E is the error func-

tion defined in Eq. 3.10.

While the attacker does not know the length of X, he may be able to

estimate it from his background knowledge.

Proof . We first observe that since E is a sum of the non-negative terms

1/2(d2(T
i, X ′)− δi)2, and since E(X ′) = 0, necessarily d2(T

i, X ′) = δi.

Now, note that for all k ∈ {1, . . . ,m}

ASDX(X ′) =
1

n

n−1∑
i=0

‖X ′i −Xi‖2

=
1

n

n−1∑
i=0

‖X ′i − T ki + T ki −Xi‖2

≤ 1

n

n−1∑
i=0

(‖X ′i − T ki ‖2 + ‖T ki −Xi‖2)

=
1

n
(d2(T

k, X ′) + d2(T
k, X))

=
2δk
n
.
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Inserting this in the definition of the success rate gives us:

SR(X ′) = e−αASDX(X′)/‖X‖l ≥ e−2αδk/(n‖X‖l) (3.16)

Since Eq. 3.16 is true for all δk, it is true for δmax. �

3.5 Problem Definition

Location information is collected by GSM companies and the adversary also

has a mobile phone and has his/her own trajectories in the dataset. This

way s/he naturally has some information from the dataset. S/he also knows

the pairwise distances of his/her trajectories to the other trajectories because

that information is contained in the dissimilarity matrix defined in Section

3.2.2 which is published for data mining purposes hence s/he will be capable

of calculating target trajectories from the dataset.

Formally, given a dataset D, with cardinality c, and a set of trajectories

from this dataset, say k trajectories (and k ≤ m), and pairwise distances of

those k trajectories to the target trajectory, then the adversary can compute

the target trajectory. In [51], a target trajectory can be found by hyper-

lateration technique (see Section 5.3.2) but it requires a high number of

known trajectories, which may be infeasible. Assume that trajectories in

the data set have 500 sample points, the method presented in [51] needs

2n + 1 trajectories where n is the number of sample points in trajectories,

hence 2 ∗ 500 + 1 = 1001 trajectories and corresponding pairwise distances
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are needed. However knowing high number of trajectories and their pairwise

distances may be infeasible. The first method discussed in Section 4 aims

to lower this high number of known trajectories needed to be known by

the adversary. Actually 2n + 1 known trajectories is indeed not needed in

many cases because a heuristic based method can find very precise candidate

trajectory with a very limited information.

We built another method discussed in Section 5 on top of the hyper-

lateration technique where we use interpolation technique discussed in Sec-

tion 5.3.1 in between sample points of a trajectory so that we lower the need

of high number of trajectories because of the facts that the trajectories are

aligned and constant sampled as discussed in Section 3.1. Trajectory data is

mostly collected by GPS data, which are from mobile vehicles, that follows up

certain paths and roads. When the resolution of the data is low, trajectories

have high linear dependencies between the sample points that follows each

other. In this fashion, if we know two points, we can guess the other points

in-between those points because the sampling is constant (i.e time difference

between points is constant) and it is possible to guess more or less how long

distance covered during the time between two sample points hence the points

in-between can be predictable up to some degree depending on the structure

of the trajectory. As the trajectory is more linear, the trajectory or part of

the trajectory can be more predictable. We use linear interpolation for the

sake of simplicity and trajectories themselves are set of lines because they

are denoted as a set of sample points so each pair of sample points forms a

line so that the points in-between those sample points should be on that line

unless the collected data is noisy.
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4 Discovering Private Trajectories Using Back-

ground Information

4.1 Introduction

In this attack method, we consider the following scenario: A malicious person

wishes to reconstruct the movements (the “target trajectory”) of a specific

individual. Besides a released set of mutual distances between a data set

of trajectories, which contains the target trajectory, the attacker has some

background information, such as the average speed or maximum speed of the

trajectory, and some of the other trajectories in the data set. We propose

a concrete algorithm which can reconstruct the target trajectory from this

information.

We demonstrate that trajectories can be reconstructed very precisely with

very limited information using relatively simple methods. In particular we

apply our method to two real-world data-sets. In one data-set, containing

the trajectories of private cars in Milan, we can reconstruct an unknown

trajectory with 500 sample points by knowing its distance to only 60 known

trajectories. This is in sharp contrast to the 1001 known distances which

would be needed to solve the corresponding system of equations to find the

unknown trajectory.

We propose a method which can reconstruct trajectories from a very

wide range of continuous properties (see Section 2); the method of known
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distances is only a special case. We show that any property of T which

can be expressed as a continuously differentiable function f : R2n → R

can be used to reconstruct T . Our method is optimal in the sense that it

will eventually find a candidate which exhausts all the information available

about the target trajectory.

4.2 Reconstructing Trajectories

We consider how a malicious person can find an unknown trajectory, X,

with as little information as possible. Any information we have about X

may improve our ability to reconstruct X; a car does not drive in the ocean,

and rarely travels at a speed of more than 200 km/h. The information which

the malicious person has about a trajectory can be divided into two kinds:

1. Data which has been released into the public domain by a data holder

(in some anonymized format)

2. Background information which the malicious person already had about

the trajectory.

In this thesis, the only kind of released information we address are the mutual

distances between trajectories. This data may be release in order for a third

party to perform clustering on the trajectories. Examples of background

information are maximum speed of a trajectory, since speed limits are well-

known.
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With a sufficient number of known properties of X, the trajectory can be

fully reconstructed. For example, if 2n linear properties of X are known, we

have a system of 2n linear equations. Solving these 2n equations gives us the

exact unknown trajectory. The number of linear properties we need to know,

however, is at least as large as the number of coordinates in the trajectory

itself. If only m� 2n+ 1 linear properties are known, the solution will be in

a (2n−m)-dimensional subspace, at best. When the candidate can only be

restricted to a subspace, it can be arbitrarily far away from X. If the known

properties are non-linear, finding a solution to the corresponding equations,

even if sufficient number of properties is known, may even become infeasible.

As an example, consider m known trajectories, T 1, . . . ,T m, and m cor-

responding positive real values δi, where

δi = ‖X −T i‖2 (4.1)

for unknown trajectory X . Our task is to find an approximation X ′ which

minimizes the distance ‖X −X ′‖2. This can be done by hyper-lateration, a

generalization of trilateration. By squaring the known distances we obtain a

system of n quadratic equations: δ2
i =

∑2n−1
i=0 |Ti − T ′

i |2, for i ∈ {1, . . . , n}.

However, by subtracting each of these equations from the first equation we

obtain n− 1 linear equations:

δ2
1 − δ2

i = ‖X −T 1‖22 − ‖X −T i‖22 (4.2)

⇒ δ2
1 − δ2

i =
2n∑
j=1

2Xj(T
i
j −T 1

j ) + (T 1
j )2 − (T i

j )2 (4.3)
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for i ∈ {2, . . . , 2n+ 1}. As previously argued, this approach is unsatisfactory

since we need to know at least (2n+1) distances where a trajectory may have

thousands of sample points so that obtaining (2n+ 1) distances is infeasible

in many cases, and the method is too sensitive to noise.

As seen from the discussion above, we need a method which can recon-

struct the unknown trajectory with considerably fewer known properties than

coordinates. However, the best thing is to find a candidate trajectory which

has the same properties as the properties we know about X . If, for instance,

the only information we have about X , is a car driving at an average speed

of 50 km/h in Athens, then any X ′ which moves along the roads of Athens

at 50 km/h is a possible solution. We use the error measure defined in Sec-

tion 3.4 to calculate the difference between the given properties of X , and

the corresponding properties of the candidate X ′; in the case above, the

distances to the known trajectories because we want to minimize the error so

that the candidate trajectory with lowest error is simply the best candidate

trajectory.

4.3 Noise

The information available to the attacker about the unknown trajectory may

not always be precise but subject to noise and the noise is either a deliberate

attempt from the data holder to anonymize the released data, or simply errors

in the background knowledge of the attacker such as dissimilarity matrix,

known trajectories or average / maximum speed.
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It is important to note the difference between noise in the original mea-

surement of trajectories, and noise which is added before data is released.

Noise due to measurements does not affect the attack method but affects the

quality of the data because for instance if there is a noise in trajectories, then

the dissimilarity matrix built also includes that noise and the distance values

will be according to the noisy data so that the the trajectory we reconstruct

will not be the real target trajectory without noise but the target trajectory

in the dataset which is noisy. Noise can also be added to published data delib-

erately to prevent beaching the privacy of individuals. Data perturbation is

a well-studied field in data privacy [40]. As an example of deliberately added

noise, consider a trajectory database which releases the pairwise distances of

all trajectories that it contains. The distances of these trajectories have to

satisfy the triangle inequality however, if the noise is added independently to

each of the released distance, the distances will no longer satisfy the triangle

inequality.

We consider the case of known distances, where the attacker knows m

trajectories, T 1, . . . ,T m, and m corresponding distances:

δi = ‖X −T i‖2 + εi (4.4)

where εi are noise terms.

When the equations known to the attacker have errors as above, recon-

struction based on solving the system of equations by hyper-lateration as

described in Section 4.2 does not work well. On the other hand, if the noise

follows a distribution with an expected value of 0, a reconstruction method
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based on optimization should still perform well, since the real solution is

likely to be close to the solution of the erroneous equations. In Section 4.5,

we show that our method can handle additive noise which follows a Gaussian

distribution up to a certain standard deviation.

4.4 Our Reconstruction Method

We adopt the steepest descent (gradient descent search) algorithm to find a

candidate with minimum error.

The error-function in Equation 3.10 has value 0 exactly when the candi-

date trajectory has the same properties as the known trajectory Ti, for all

properties Pi, i ∈ {1, . . . ,m}. Furthermore, since Equation 3.10 is a posi-

tive valued function, the target trajectory is a global minimum. There may,

however, be more than one global minimum, as well as several local minima;

but any zero of the error-function exhausts the knowledge we can possibly

have about the unknown trajectory, given the known properties. Recall that

the gradient descent algorithm finds a zero of a positive and continuously

differentiable function E as follows

1. Choose a random point, x0, in the domain of E.

2. Iteratively define xi+1 = xi − γ∇E(xi), for some step-size γ > 0.

3. When xi+1 = xi (∇E(xi) = 0) a (local) minimum has been reached. If

E(xi) = 0 we have a global minimum (since E is non-negative), and

we stop. Otherwise, we go back to step 2.
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Note that the size of the steps taken in the direction of the gradients are

determined by the step size, γ. Ideally, the attack should neither underesti-

mate nor overestimate the step size. If the step size is too small, the attack

will converge very slowly, thus yielding poor success rate, whereas if the step

size is too large the attack takes big steps and possibly overshoots the target,

which again yields a poor success rate. Also note that gradient descent is

not the most efficient algorithm for solving this kind of optimization problem.

However, the aim of this method is to demonstrate potential dangers in data

disclosure,.efficiency of the attack is out of the scope.

The gradient, ∇E(X ′), depends on the differentiable properties Pi, i ∈

{1, . . . ,m}:

∂

∂X ′
i

E(X ′) =
m∑
j=1

(
Pi(X

′)− Pi(X )
) ∂

∂X ′
i

Pj(X
′) (4.5)

If all properties are continuously differentiable, then the gradient is a contin-

uous function in the candidate trajectory.

Recall that not all partial derivatives of the maximum speed property

are continuous. The discontinuity happens when more than one segment are

equally fast, and are the fastest segments. However, since we defined the

derivative to be one in this case, the gradient descent will still change the

speed of these segments until they satisfy the known maximal speed.
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4.5 Evaluations and Experimental Results

To validate our reconstruction method, we have designed three different tests,

and applied them on two datasets of real-world GPS data. One data set con-

sists of routes of school busses in Athens and it represents a more predictable

data set since busses will usually follow the same routes. The second data

set is obtained in the context of the GeoPKDD project and it consists of the

GPS tracks of a set of cars in the city of Milan in Italy. GPS tracks of cars are

definitely less predictable since there are many routes that they can follow.

In the first test, we let the reconstruction method run for many iterations

to see how the success-rate evolves over time. The second test consists of

several executions of the reconstruction algorithm on the same dataset, but

with a varying number of known trajectories and background information.

The aim of the second test is to verify the claim that an attacker can recon-

struct a target trajectory with only a few known trajectories. In the third

test, we apply Gaussian noise to the released distance data to see how fast

the success-rate diminishes in the face of errors.

The first dataset is named Athens dataset [20, 1]. This dataset contains

145 trajectories each with 1096 (x, y) sample points. The trajectories are

aligned with samples approximately every half minute on 108 different days.

This dataset is chosen because of its regularity, which enables us to test our

reconstruction algorithm in a near best-case scenario.

The second dataset, Milan dataset [2]. This dataset contains 135 trajec-

tories recorded with sample points at irregular intervals over a period of time
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of one week. The density of sample points of the Milan dataset is lower than

the dataset from Athens. Even though the trajectories in the Milan dataset

are not aligned, for the purpose of these tests, we assume that they are. This

assumptions only means that we are not working with the original trajecto-

ries, but trajectories which follow the same routes, but at different speeds.

The Milan dataset is much more complex than the Athens dataset, and is

chosen to test our reconstruction algorithm in a scenario which is much more

realistic (and relevant) than the Athens dataset.

For the purpose of testing the reconstruction method described in Sec-

tion 4.4 we implemented a limited version. In the implementation the step-

size γ is set to 1, and the implementation does not restart if a local maxima,

or saddle point is reached. Furthermore, we assume that the two datasets are

aligned, so that we can discard the time component. In all tests in this sec-

tion we report the success rate as defined in Equation 3.14. We have chosen

the smoothness parameter α = 20 based on visual impression from several

tests.

Even though efficiency is not a primary concern in this work, we remark

that it takes approximately 8 minutes to run the reconstruction method with

50 known trajectories from the Athens dataset for 60.000 iterations on a 1.7

GHz laptop.
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4.5.1 Success-rate over Time

In the first test, we run the reconstruction method on the Athens dataset for

one million iterations to see how the success-rate evolves over time. Figure 3

shows the convergence speed of our reconstruction method. The success-rate

is an average value obtained from 5 runs of the reconstruction algorithm on

the Athens dataset with 50 known trajectories, where the target trajectory

is selected at random in each of the 5 runs. The x-axis shows the number of

iterations in log-scale.
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Figure 3: Success-rate vs. number of iterations for the Athens dataset. The
x-axis is in log-scale (Average of 5 experiments with 50 known trajectories).

Figure 4 shows the evolution of candidates in one experiment with the

Athens dataset and one with the Milan dataset. The test uses 60 known

trajectories from the Athens dataset, and 90 known trajectories from the

Milan dataset. Notice that a success-rate of 0.6 allows us to determine the

general area in which the target trajectory is moving, but not specific streets.
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With a success-rate of 0.85 it is possible to identify some, but not all, streets.

4.5.2 Success Rate with Background Information

In the second test, we fix the number of iterations used in the reconstruction

to 60.000, and measure the success-rate as a function of the information

available to the attacker. We run the reconstruction with a different number

of known trajectories, ranging from 10 to 140. We also run the reconstruction

both with and without background information about average and maximum

speed in the dataset. And finally we run the reconstruction with two different

distance measures: Euclidean distance, and average sample distance.

Figure 5 shows the success-rate attainable for different numbers of known

trajectories in the Athens dataset. Each sample is the average success-rate of

20 tests each running for 60.000 iterations. Both target and known trajecto-

ries are chosen at random in each test. The solid line shows the success rate of

the attack, when the attacker only uses the Euclidean distances between the

target and the known trajectories as the continuously differentiable proper-

ties. The dashed line shows the success rate, when the attacker assumes that

the target trajectory moves with an average and maximum speed similar to

the average and maximum speed of his known trajectories (see Section3.3).

The graph shows that for the case of the Athens dataset, using knowledge

about the average speed does not give extra success to the attack. However,

Figure 6 shows the same experiment for the Milan dataset, and here it is

clear that, for a low number of known trajectories, using knowledge about

the average speed gives a success rate up to 0.05 higher (for 20–40 known
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trajectories). From the result, we can see that simple background informa-

tion, such as average and maximum speed, can improve the accuracy of the

reconstruction when the quality of the trajectory data is poor (as in the Mi-

lan dataset), or in insufficient number of known trajectories are available.

However, for good quality trajectory data, the impact of simple background

information is not significant. We have only tested speed information, but

other kinds of background information may give a higher impact.

Figure 7 shows the success-rate attainable for different numbers of known

trajectories in the Athens dataset when the attacker knows the average

sample distance to his/her known trajectories. Each sample is the aver-

age success-rate of 20 tests each running for 60.000 iterations. Both target

and known trajectories are chosen at random in each test. Figure 8 shows

the same result for the Milan dataset. The success rate attained from these

tests shows that for our attack, knowing the mutual Euclidean distance is

stronger than knowing the mutual average sample distances.

4.5.3 Noise

Figure 9 shows the success-rate attainable in the face of errors in the known

distances. Independent and identically distributed Gaussian noise with a

mean value of 0 has been added to each distance known to the attacker. The

Gaussian x-axis of the figure shows the deviation of the noise as a fraction of

the average value of the distances. This means that for x = 1 approximately

32% of the distances are subject to noise with the same magnitude as the

distance itself.
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(a) The 60 known trajectories for Athens. (b) The 90 known trajectories for Milan.

(c) Athens, Success-rate 0.60 (d) Milan, Success-rate 0.60

(e) Athens, Success-rate 0.85 (f) Milan, Success-rate 0.85

Figure 4: Evolution of the candidate trajectory in the Athens and Milan
datasets. 39
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Figure 5: Success-rate vs. number of known trajectories in the Athens
dataset with known Euclidean distances. With and without known average
and maximum speed.
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Figure 6: Success-rate vs. number of known trajectories in the Milan dataset
with known Euclidean distances. With and without known average and max-
imum speed.
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Figure 7: Success-rate vs. number of known trajectories for the Athens
dataset with known average sample distance.
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Figure 8: Success-rate vs. number of known trajectories for the Milan dataset
with known average sample distance.
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Figure 9: Success-rate for 40 known Euclidean distances subject to noise.
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4.6 Discussions

In this chapter, we consider distance preserving data transformations, and

assume that the mutual distances of trajectories are released rather than

the actual trajectories. We show that, even in such a scenario, the private

trajectories can be identified using background information such as known

distances and speed limits.

Experiments performed on these real data sets show that unknown private

trajectories with 1096 sample points can be reconstructed with an expected

success-rate of 0.8 by knowing the distance to only 50 known trajectories

while reconstructing the trajectory perfectly with “tri-lateration” would re-

quire 2193 known trajectories as studied in [51].
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5 Interpolation Based Private Trajectory Dis-

covery

5.1 Introduction

We discussed an attack model in which the adversary uses available back-

ground information such as average / maximum speed and those background

information played an important role in reconstructing trajectories (see Sec-

tion 4). In a scenario where the attacker knows some of the trajectories from

the dataset together with a released set of mutual distances in-between the

trajectories in the dataset, any unknown trajectory from that dataset can be

solved. In this chapter, we propose another attack algorithm which utilizes

the known trajectories together with the released set of mutual distances.

We solve any unknown trajectory mathematically no worse than the actual

target trajectory and any other possible solutions. Since the adversary has

limited information in terms of known trajectories to perfectly find the target

trajectory, s/he may or may not find the exact target trajectory. However

s/he can generate all possible solutions which clearly includes the target tra-

jectory itself. Comparing to the first method discussed in Section 4 which

finds an arbitrary solution, this method computes all the possible solutions.

The set of all possible solutions, so called candidate trajectories are utilized

to calculate the confidence of the sample points which the target trajectory

passes through with high probability. We define the confidence of an area as

the ratio of candidates passing through a specified sample point or area to all
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candidates. The number of candidate trajectories depends on how much in-

formation the adversary has. If the adversary has a very limited information,

the attack results in a vast number of candidates or even an infinite set of

candidate trajectories. We build our method on top of the hyper-lateration

technique which is also mentioned in [51]. The number of known trajectories

is less than the number of known trajectories in [51]. Because knowing a high

number of trajectories and their pairwise distances may be infeasible. Our

method works on trajectory data which is assumed to be aligned and have

constant sampling rate. This assumption enables us to use interpolation so

that some of the points can be imitated by interpolated points hence the

number of known trajectories needed is lowered.

This chapter can be outlined as follows:

1. The target trajectory can be solved and the solution is one of the math-

ematically possible candidates due to the limited information however

one can generate various number of candidates which are all identical in

terms of distances to the known trajectories so to construct candidate

trajectory set.

2. Confidence of an area can be calculated by utilizing the candidate tra-

jectory set to state how certain the target trajectory passes through

that area. This analysis is important because this method may not ex-

actly find the target trajectory but using all the solutions generated, it

can conclude with high confidence that the target trajectory is passing

through a specific area.
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5.2 Preliminaries

In this method, we assume that the trajectories follow up paths such as

roads and streets. Consecutive sample points should be close to each other

which makes interpolation meaningful in this context. Definitions of inter-

polated trajectory, distance preserving trajectory, candidate trajectory and

confidence of an area is discussed below.

Interpolated trajectory is a trajectory which a number of interpolated

points are added among its segments.

Distance preserving trajectory is a trajectory which the pairwise dis-

tances from the known trajectories is the same as the pairwise distances

of the target trajectory from the known trajectories.

Candidate trajectory is the result trajectory of the attack which is a

distance preserving trajectory that contains a number of interpolated

points.

Confidence of an area is the probability of the target trajectory passing

through a certain area. This area is selected to be a sample point, so

we discuss about the confidence of a sample point.

5.3 Underlying Methods and Techniques

First of all we don’t have enough information to solve unknown variables

unless we have enough equations. By re-writing some of the unknown vari-
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ables in terms of other points, we reduce the number of unknowns to solve.

We use linear interpolation to re-write some of the sample points from the

target trajectory. Once we have reduced the number of unknowns, we use a

modified hyper-lateration technique to find the target trajectory.

5.3.1 Interpolation Technique

Interpolation is used to create points in between two given points such that

they are expected to simulate a real life scenario. Trajectories mostly fol-

low paths such as roads which act like a line when the resolution is high.

That is, given a trajectory with considerable number of sample points, it is

likely that points follow each other closely. The distance between two sample

points in a trajectory depends on the sampling rate and the speed so the

points in-between two given points can be predicted by interpolation if the

sampling rate of the points are constant. Constant sampling rate is assumed

in this thesis (see Section 3.1). It will be fairly easy to interpolate the points

since the sampling of the points are constant, so given any two points, so

called main points and the number of points in-between main points, it is

possible to calculate those points in-between, so called interpolated points.

An interpolated point can be found from the main points using the formula

below.

Ij(i) =

(
T2i +

j(T2i+2 − T2i)

s+ 1
, T2i+1 +

j(T2i+3 − T2i+1)

s+ 1

)
, j = 1, 2, 3...s

(5.1)
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where Ij(i) is the jth interpolated point in the (i+1)th segment, T2i is the

2ith coordinate of the trajectory which we add interpolated points. Hence

the above formula calculates the x and y values of the Ij(i). Note that T2i

and T2i+2 corresponds to x values where as T2i+1 and T2i+3 corresponds to y

values of the main points which the interpolated points will lie in-between.

For example, in Figure 10, I1(0) is between main points A and B is the start

and end points of the first segment. The coordinates of A and B are T0, T1

and T2, T3 respectively.

Figure 10: Interpolation

In Figure 10, the black points denotes the main points which are fixed

while the grey points denotes the interpolated points. The points I1, I2, I3

are interpolated points in the segment 0 and calculated by Equation 5.1.
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5.3.2 Modified Hyper-lateration Technique

Hyper-lateration is a generalization of tri-lateration. It is a simple technique

to identify the exact location of a point. In tri-lateration, to identify a point

with 2 coordinates namely x and y, 3 other points and their distances to that

point are needed. A point in a 2 dimensional plane, R2, is found by 3 points

in R2. In Figure 11, an example of trilateration is shown. In Figure 11a,

the set of points r1, r2 away from the center of the circles are shown. The

points marked with a red circle show the points satisfying the condition so

that those points are r1, r2 away from the center of the circles but we don’t

know which one is the real solution. This is the case when we do not have

sufficient information about the target point so we can find more than one

solution as seen in this example. However in Figure 11b, the target point

is defined to be r1, r2, r3 away of the center of the 3 circles. This time 3

pairwise distances are enough to exactly specify the target trajectory hence

the unique solution is found. This example illustrates trilateration, so points

are 2d and in R2. As seen from this small example, in R2 we need 2 + 1 = 3

points to find the target exactly, anything less than 3 points results in more

than one solution.

49



Figure 11: Trilateration

In general, to exactly identify a point in R2n, 2n + 1 points are needed.

Trajectories are high dimensional points in space, that is, a trajectory with

n sample points (2n coordinates) is a point in R2n. Hence a trajectory can

be exactly identified by 2n+ 1 points in R2n. The proposed attack methods

based on hyper-lateration, such as [51], needs 2n + 1 trajectories to solve

an unknown trajectory. This can be done by squaring the known distances

(which are in Euclidean distances, so they become Euclidean square distances

defined in Section 3.2.1) a system of n quadratic equations is formed such

that δ2
i = ||T − T ′||2 =

∑2n−1
i=0 |Ti − T ′i |2, for i ∈ {1, . . . , n}. Subtracting

each of these equations from the first equation yields n− 1 linear equations.

Note that X , T denotes the sample point representation, X,T represents the

vector representation of the trajectories.
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δ2
1 − δ2

i = ‖X − T 1‖2 − ‖X − T i‖2 (5.2)

=
n−1∑
j=0

‖Xj − T 1
j ‖2 −

n−1∑
j=0

‖Xj − T ij ‖2 (5.3)

Assume that the point X1 is on the line segment |X0,X2|. If X1 is an

interpolated point denoted as I1(0), then Equation 5.2 reduce to

δ2
1 − δ2

i = ‖X0 − T 1
0 ‖2 − ‖X0 − T i0 ‖2 (5.4)

+ ‖I1(1)− T 1
1 ‖2 − ‖I1(1)− T i1 ‖2 (5.5)

+
n−1∑
j=2

‖Xj − T 1
j ‖2 −

n−1∑
j=2

‖Xj − T ij ‖2 (5.6)

Note that I1(0) is calculated according to Equation 5.1. According to

Equation 5.4, we have the same number of linear equations but one less

unknown point to solve because that point is interpolated. This technique

can be generalized to further reduce the number of unknown points. To

solve the system of linear equations, the number of unknown variables must

be equal to the number of equations. Thus the number of interpolated points

depends on the number of known trajectories.

According to Equation 5.2, any trajectory satisfying δ2
1−δ2

i ∀i ∈ {1, . . . , n}

is a candidate trajectory. Different dissimilarity matrices may have same

δ2
1 − δ2

i ∀i ∈ {1, . . . , n} but when only distance differences are preserved,
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candidate trajectories to all different dissimilarity matrices will be the same

although the target trajectories are different for each dissimilarity matrix.

Thus, a candidate set of distance difference preserving trajectories does not

necessarily demonstrate the target trajectory. We can be sure about our can-

didate trajectories if we preserve the pairwise distances instead of distance

differences.

Equation 5.2 preserves distance differences but a distance preserving

method can also be derived from the same formula with a new settings.

If we have 2n known trajectories, 2n − 1 equations are formed with hyper-

lateration mentioned in Equation 5.2 so that 2n−1 coordinates can be solved.

Assume 2n − 1 coordinates are solved where trajectory has 2n coordinates.

This means, the last coordinate cannot be solved due to lack of information,

but all other coordinates can be expressed in terms of the last coordinate,

tn. We re-write all ti’s in terms of tn.

i=2n−1∑
i=1

(2ai − 2bi)ti + (2an − 2bn)tn = dbt − dat +
i=2n∑
i=1

a2
i − b2i (5.7)

i=2n−1∑
i=1

(2ai − 2bi)ti = dbt − dat +

[
i=2n∑
i=1

a2
i − b2i

]
− (2an − 2bn)tn (5.8)

where dxy represents Euclidean square distance (see Equation 3.5) in-

between trajectory X and trajectory Y .
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Equation 5.8 can be seen as a matrix operation thus system of equations

can easily be solved. This is a matrix operation of Ax = b, where x represents

all the ti’s, A is the (2ai−2bi) for each ti and right hand side of the equation

is simply the b. To solve all ti’s, multiply both sides with A−1 so that it

becomes A−1Ax = A−1b hence x = A−1b. Here the key point is, the matrix

denoted as A must be an invertible matrix. A should be invertible so that the

system of equations can be solved and a real root can be found. Note that in

this system of equations, the root found will be the tn, the last coordinate of

the unknown trajectory. All the ti’s are expressed in terms of tn so whenever

a root is found in this system of equations, the tn is found automatically. All

other coordinates are in terms of tn so they are found too. To solve Equation

5.8, right hand side of the equation is divided into two main components

since it is in the form of x − y where x = dbt − dat + [
∑i=2n

i=1 a2
i − b2i ] and

y = (2an−2bn)tn. Hence we produce two equations to be solved and real ti’s

will be in the form of their outputs.

i=2n−1∑
i=1

(2ai − 2bi)ei = dbt − dat +

[
i=2n∑
i=1

a2
i − b2i

]
(5.9)

i=2n−1∑
i=1

(2ai − 2bi)fi = (2an − 2bn)tn (5.10)

Equations 5.9 and 5.10 are in the form of Ae = x and Af = y. Calculating

Equation 5.9 and Equation 5.10 as separate matrix operations yields two

different solutions to be combined to find real tn. Solving this system of

equations as matrix operation is explained above. When both Equation 5.9
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and Equation 5.10 and solved, Equation 5.9 yields ei , ∀ i ∈ {1, 2, ....., 2n−1}

and Equation 5.10 yields fi , ∀ i ∈ {1, 2, ....., 2n− 1} . Since the right hand

side of the Equation 5.8 is in form of x− y the real ti’s will be in the form of

ti = ei − fitn, ∀ i ∈ {1, 2, ....., 2n− 1} (5.11)

All ti’s according to Equation 5.11 are constructed. Since all ti’s are in

terms of tn that we want to find, we can plug these ti’s into the distance cal-

culation (see Section 3.2) between any known trajectory, k and the unknown

trajectory. Distance between k and t is as follows:

i=2n∑
i=1

(ki − ti)2 = dkt →
i=2n∑
i=1

(ki − ti)2 − dkt = 0 (5.12)

Plugging Equation 5.11 into Equation 5.12 results in

[
i=2n−1∑
i=1

f 2
i t

2
n + (2kifi − 2eifi)tn + (ki − ei)2

]
+ (k2

n − 2kntn + t2n) − dkt = 0

(5.13)

The roots of Equation 5.13 can be solved by solving quadratic equations.

Solving quadratic equations and finding real roots are explained in [5]. Since

Equation 5.13 is a quadratic equation in the form of ax2 +bx+c = 0, the real

root will be tn. Since tn is found, the coordinates, ti’s , that are expressed in

terms of tn’s are also found.
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The real roots, which will be tn can be found using the formula below.

x1 =
−b− sgn(b)

√
b2 − 4ac

2a
(5.14)

x2 =
c

ax1

(5.15)

where sgn denotes sign function which returns the sign of the given ar-

gument (i.e if it is positive then it returns 1, else it returns -1).

5.4 Our Method

5.4.1 The Method and Confidence of an Area

Our approach is based on hyper-lateration (see Section 5.3.2) together with

interpolation (see Section 5.3.1). The adversary, has a set of trajectories,

say k trajectories, with s sample points. S/he computes k − 1 equations

by using the Equation 5.2. According to Equation 5.2, distance differences

are preserved between the candidate trajectory and the known trajectories

regardless of how close the resulting trajectory is to the target trajectory. If

k = s, hyper-lateration will result the exact unknown trajectory and we are

done. When k < s, it can only solve up to k − 1 coordinates. Due to lack

of information, we can not find an exact solution. Under the assumption of

constant sampling rate mentioned in Section 3.1, we use the interpolation

technique (see Section 5.3.1) for the rest of the points. This solvable k − 1
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coordinates are called main coordinates. Two main coordinates (x and y co-

ordinates) forms a main point. We re-write the interpolated points in terms

of their main points hence when they are solved, candidate trajectory is au-

tomatically formed. When k − 1 coordinates are solved, there are s− k − 1

coordinates needed to be interpolated. Those interpolated points are dis-

tributed randomly among the segments of the candidate trajectory. Those

segments are formed by the main points of the candidate trajectory. In each

run of finding candidates (i.e each run of the attack), different number of

interpolated points are added to the segments hence a different candidate

trajectory is formed. When k = s, target trajectory is exactly found. Oth-

erwise, we measure the success of the found trajectory because there are

many candidates which satisfies all the properties. As the number of known

trajectories by the adversary decreases, the number of candidate trajectories

increases. If the information is very limited, so that the number of coordi-

nates to be interpolated is very high compared to the number of coordinates

that can be solved, the attack even becomes senseless. Success rate is mea-

sured as in Section 3.4.2. Our method gives the best possible results in terms

of distances because pairwise distances are preserved so mathematically any

candidate trajectory found with this method is no less likely to be the target

trajectory than any other candidate trajectory.
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Figure 12: Candidate Generation

When k < s there are more than one solution to the equation system

where each solution is a candidate. Each solution is mathematically identi-

cal to each other within given properties, so the known distances, which is

the only information the adversary have. In Figure 12, candidate trajectory

generation is shown. With the limited information we have, we can solve up

to k − 1 coordinates ((k − 1)/2 main points) which are the denoted by the

black points. In between two main points, we have a segment where we can

put a number of interpolated points which are denoted with grey points. Ev-

ery segment can have a different number of interpolated points depending on

the distribution of the interpolated points. We distribute a random number
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of interpolated points to each segment so the total number of sample points

will be equal to the total number of sample points of the other trajectories

in the dataset. This way, candidate trajectory has same number of sam-

ple points as the target trajectory. As seen in Figure 12, when the number

of interpolated points of the segment changes, a new candidate trajectory

originates. Each candidate is equally likely to be the target trajectory even

though they may not be the target trajectory. Because all candidates sat-

isfies the known distances property. Distances from those candidates to the

known trajectories are equal to each other. Moreover the distances between

a candidate and the known trajectories are equal to the distances from the

target trajectory to known trajectories.

Candidate trajectories, c1, c2, c3 in Figure 12 are all indistinguishable in

terms of pairwise distances and visually different trajectories. This set of

candidate trajectories is called candidate trajectory set. We assume that

the candidate set eventually contain the target trajectory when all possible

solutions are generated. While each candidate in this set is a possible target

trajectory, the area covered by these candidates is possibly the area where

the actual target trajectory passes through. We do not only find a good

solution but also compute the confidence on the solutions. Confidence of an

area is the ratio of the number of candidate trajectories which passes through

a specific area, or a sub-trajectory, or a sample point in the trajectory (say lth

sample point) to the cardinality of the candidate trajectory set. Confidence

of an area around the sample point l , denoted as sl is calculated as follows:
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Cl =
# of candidates passing sl

cardinality of candidate trajectory set
(5.16)

For instance, in Figure 13, assume that we have 5 candidates, namely

c1, c2, c3, c4, c5, for a target trajectory, t, each of which has different success

rate according to Success Rate 2 in 3.14. Consider the area 1m2 around

sl, which is marked in a green rectangle denoted as Al. After examining

the candidates, c1, c2, c3, c4 are passing through Al while c5 is not passing

through so 4 out of 5 candidates pass through Al, hence we conclude that

the target trajectory, t, passes through Al with confidence 4/5 = 80% . This

section aims to find the target trajectory and discuss the confidence of areas

that are possibly to be used by the target trajectory.

The power of this method is based on how successful the interpolation

is done over the trajectory. If the target trajectory is following up a linear

path, so the interpolation works great and we may have very high success

rates. At least one candidate trajectory will be close to the target trajectory.

Otherwise, the success rate may be very low or even becomes 0.
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Figure 13: Confidence of an Area

5.4.2 Evaluations and Experimental Results

This method is tested on a synthetic data that we created. Our aim is

to show that this method works and present the confidence of the areas

where the unknown trajectory likely to pass through. Our experiments show

that, all the candidate trajectories we found have the same distances given

in the dissimilarity matrix. The dissimilarity matrix contains the pairwise

distances between the known trajectories and the target trajectory. This

makes them mathematically indistinguishable from each other and from the

target trajectory. In Figure 14, success rate versus the number of known

trajectories is shown. According to Success Rate 2 defined in 3.14, average
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success rate of the whole attack is 0, 53 when the α = 20. Success rate was

calculated, for a fixed target trajectory which has 20 coordinates.

Figure 14: Success Rate vs no of known trajectories

5.5 Discussions

In this section, we present a method for finding unknown trajectories with a

limited information such as a very few known trajectories and their pairwise

distances to other trajectories. Our method finds candidates which is the

best possible candidates and they are mathematically same and no less likely

than the real target trajectory because the pairwise distances among them
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are preserved. Using hyper-lateration technique needs 2n + 1 trajectories

to be known beforehand while our method can decrease that number up to

40% depending how linear the target trajectory is. Linear structure among

the sub-parts of the trajectories is the key part in our method because we fill

those missing information with the interpolated points so that if the unknown

trajectory has a linear sub-structures, the interpolated points that we placed

among the candidate will conform to the real target and the rest of the points

are solved because we had those information from the system of equations.

In other words, assuming we have 50 trajectories, we calculate up to 49

coordinates while unknown target trajectory has 90 coordinates, we place

90 − 49 = 41 coordinates which are produced by interpolation technique

and distributed randomly across the sub-segments of the candidate that we

create and treat as the unknown trajectory. Due to the time constraints,

calculating confidence of the sample points or an area is leaved as a future

work which we are currently working on. Our method is sensitive to the noise

can be presented in dissimilarity matrix because a change in the distances will

result in candidates which are wrongly placed but still preserve the pairwise

distances which contains noise. Another future work can be strengthen this

method against noise in the dissimilarity matrix.
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6 Comparisons

In this thesis, we presented two attack methods which reveal private trajecto-

ries using background information. The ultimate aim in both of the methods

is to show privacy leaks. However these methods differ not only in the way

of computations but also in their settings.

In the first method presented in Section 4, the aim is to recover the private

trajectory. This method exhausts various kinds of background information

and results in one arbitrary solution with a high success rate possible. This

solution may not be the real target trajectory but due to limited information,

it is the best solution so far and satisfy all available information about the

target trajectory. Other possible solutions are not calculated in this method.

This is a heuristic based method and exhausts the given background infor-

mation. It also works when there is noise in the dissimilarity matrix and can

even handle complex real world datasets like the Milan dataset. Moreover it

can use almost any kind of background information.

In the second method discussed in Section 5, the aim is to recover the

private trajectory by calculating all possible candidate trajectories satisfying

the given information and further discuss about confidence of the selected ar-

eas. This method exhausts only the dissimilarity matrix and a set of known

trajectories. Using the available but limited information to the adversary,

possible solutions (i.e the candidates) are calculated and a candidate trajec-

tory set is formed. The real target trajectory may or may not be in this set

but eventually if all the candidates are generated, then the target trajectory
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will be in this set. Calculating all the candidates may be infeasible if the

information is very limited. Although we may not find the target trajectory,

using the possible candidate trajectories, we can discuss about the areas

where the target trajectory passes through. This method is based on linear

interpolation which works better if the sample points in the trajectories are

close like in the Athens dataset. Moreover hyper-lateration is sensitive to

noise and we do not expect high success rate in noisy and complex datasets

like the Milan dataset. This method needs more available information com-

pared to first method to yield good success rates.

In both of the methods, the key point determining the success rate is the

available information to the adversary. Exhausting limited information yields

more than one solution because theoretically finding the exact solution needs

2n + 1 known trajectories. When the available information is high, success

rates in both attack methods are high too.
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7 Conclusions and Future Work

In this thesis, we studied privacy leaks that may occur in case of distance

preserving data transformations on spatio-temporal datasets, especially in

trajectory publishing. We presented two methods, which are based on avail-

able background information, and a dissimilarity matrix to show that shar-

ing dissimilarity matrices for data mining is not exactly a privacy preserving

solution. Background information is in terms of known distances, average

and maximum speed. The only given information is the dissimilarity ma-

trix which is released for data mining purposes. Speed limit is not given

information though adversary can easily learn it because it is a set of rules

that defines the maximum speed on different types of roads and the average

speed can also be computed according to traffic density of the roads. In

fact, traffic density applications are available on the internet for many cities

around the world so the average speed can be obtained from such informa-

tion sources. Our methods demonstrate that with limited information, the

adversary can precisely find the target trajectory which is clearly a privacy

leak in dissimilarity matrix release.

In the first method presented in Section 4, our contribution is to demon-

strate the privacy leak in dissimilarity matrices with a very limited informa-

tion compared to hyper-lateration attack discussed in [51]. We also utilized

other properties of trajectories such as average and maximum speed and

show their effect on the success rate of the attack. We use the speed limit as

background information, but the attack model we propose is general enough

so that any kind of background information about trajectories with continu-
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ous properties could be the input. Our method is optimal in the sense that

it will eventually find a candidate which exhausts all the information avail-

able about the unknown trajectory. The experiments show that, with known

trajectories we can find very precise candidates with a high success rate.

In the second method presented in Section 5, we demonstrate an advanced

version of hyper-lateration attack which requires less information than the

original one. Although 2n + 1 known trajectories are needed for a perfect

attack, we are still able to find privacy leaks with limited information. In

case the number of known trajectories is smaller than 2n+1, we use an inter-

polation technique to infer some of the points in terms of the known points.

Contribution of this method is not limited to privacy leak demonstration but

we also discuss the confidence of an area that target trajectory is possibly

passes through. Since the background information is limited, there can be

a number of candidate trajectories. The area that the real target trajectory

passes can be discovered from the candidates by looking at the intersections

of their surrounding areas.

The methods presented in this thesis show that privacy-preserving spatio-

temporal data mining using data transformation techniques may not be an

appropriate solution. This shows that privacy in spatio-temporal data mining

context needs further research against background information-based attacks.

In this thesis, we address the privacy leaks in trajectory data publishing and

address the weakness of dissimilarity matrix release in terms of privacy. As

a future work, we plan to study the effect of noise. We are currently looking

at confidence of an area discussed in the second method. We believe that
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revealing location information of individuals is as important as revealing the

whole target trajectory. In the first method, we aim to reveal the trajectory

without considering the sensitive locations that the person may pass through

while in the second method we address the need of a measure to calculate

how likely the person passes through a selected location.

67



References

[1] Athens dataset. http://www.rtreeportal.org/.

[2] Geopkdd. http://www.geopkdd.eu.

[3] Global positioning system. http://en.wikipedia.org/wiki/Global_Positioning_System.

[4] Privacy. http://en.wikipedia.org/wiki/Privacy.

[5] Solving quadratic equations. http://en.wikipedia.org/wiki/Quadratic_equation.

[6] Location Privacy in Mobile Systems: a Personalized Anonymization

Model, 2005. Proceedings of the 25th International Conference on Dis-

tributed Computing Systems.

[7] First interdisciplinary workshop on mobility, data mining and pri-

vacy, rome, italy. http://wiki.kdubiq.org/mobileDMprivacyWorkshop/,

February 2008.

[8] O. Abul and F. Bonchi. Never walk alone: Uncertainty for anonymity

in moving objects databases. In The 24th International Conference on

Data Engineering (ICDE 2008), 2008.

[9] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of

the ACM SIGMOD Conference on Management of Data, pages 439–450.

ACM Press, May 2000.

[10] C. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati,

and P. Samarati. Location privacy protection through obfuscation-based

techniques. pages 47–60. 2007.

68



[11] J. Baugh and J. Guo. Location privacy in mobile computing environ-

ments. pages 936–945. 2006.

[12] A. R. Beresford and F. Stajano. Location privacy in pervasive comput-

ing. Pervasive Computing, IEEE, 2(1):46–55, 2003.

[13] A. R. Beresford and F. Stajano. Mix zones: user privacy in location-

aware services. In Pervasive Computing and Communications Work-

shops, 2004. Proceedings of the Second IEEE Annual Conference on,

pages 127–131, 2004.

[14] C. Bettini, S. Mascetti, X. S. Wang, and S. Jajodia. Anonymity in

location-based services: Towards a general framework. In MDM, pages

69–76, 2007.

[15] C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy against

location-based personal identification. LNCS 3674, pages 185–199, 2005.

[16] J. V. C. Clifton, M. Kantarcýoðlu, X. Lin, and M. Y. Zhu. Tools for

privacy preserving data mining. pages 28–34, 2004. ACM SIGKDD

Explorations.

[17] C. Clifton, M. Kantarcioglu, and J. Vaidya. Defining privacy for data

mining. 2002.

[18] C. Clifton, D. Mulligan, and R. Ramakrishnan. Data mining and pri-

vacy: An overview. pages 191–208. 2006.

[19] J. Domingo-Ferrer and V. Torra. Privacy in data mining. Data Mining

and Knowledge Discovery, 11(2):117–119, September 2005.

69



[20] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Nearest neigh-

bor search on moving object trajectories. In SSTD05: Advances in Spa-

tial and Temporal Databases, pages 328–345, 2005.

[21] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar

trajectory search. In ICDE, pages 816–825, 2007.

[22] S. L. Garfinkel, A. Juels, and R. Pappu. Rfid privacy: an overview of

problems and proposed solutions. Security & Privacy Magazine, IEEE,

3(3):34–43, 2005.

[23] B. Gedik and L. Liu. Protecting location privacy with personalized k-

anonymity: Architecture and algorithms. IEEE Transactions on Mobile

Computing, 7(1):1–18, January 2008.

[24] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Mining sequences

with temporal annotations. In SAC ’06: Proceedings of the 2006 ACM

symposium on Applied computing, pages 593–597. ACM, 2006.

[25] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory pat-

tern mining. In KDD ’07: Proceedings of the 13th ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining, pages

330–339. ACM, 2007.

[26] F. Giannotti and D. Pedreschi. Mobility, Data Mining and Privacy:

Geographic Knowledge Discovery. Springer Publishing Company, Incor-

porated, 2008.

[27] M. Gruteser and X. Liu. Protecting privacy in continuous location-

tracking applications. 2004. IEEE Security and Privacy.

70



[28] D. Gusfield. Efficient methods for multiple sequence alignment with

guaranteed error bounds. Bulletin of Mathematical Biology, 55(1):141–

154, January 1993.

[29] J. Han and M. Kamber. Data Mining, Second Edition, Second Edition :

Concepts and Techniques (The Morgan Kaufmann Series in Data Man-

agement Systems) (The Morgan Kaufmann Series in Data Management

Systems). Morgan Kaufmann, January 2006.

[30] A. Inan. Privacy preserving distributed spatio-temporal data mining.

Master’s thesis, Sabancı University, 2006.

[31] A. Inan and Y. Saygin. Privacy preserving spatio-temporal clustering

on horizontally partitioned data. In DaWaK, pages 459–468, 2006.

[32] A. Inan, Y. Saygin, E. Savas, A. A. Hintoglu, and A. Levi. Privacy

preserving clustering on horizontally partitioned data. In Data Engi-

neering Workshops, 2006. Proceedings. 22nd International Conference

on, page 95, 2006.

[33] V. S. Iyengar. Transforming data to satisfy privacy constraints. In KDD

’02: Proceedings of the eighth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 279–288, New York,

NY, USA, 2002. ACM Press.

[34] M. Kantarcioglu, J. Jin, and C. Clifton. When do data mining results

violate privacy? In KDD ’04: Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

599–604, New York, NY, USA, 2004. ACM Press.

71



[35] E. Kaplan, T. B. Pedersen, E. Savaş, and Y. Saygın. Privacy risks

in trajectory data publishing: Reconstructing private trajectories from

continuous properties. In KES 2008: Knowledge-Based Intelligent In-

formation and Engineering Systems, volume 5178 of Lecture Notes in

Computer Science, pages 642–649. Springer-Verlag, 2008.

[36] E. Kaplan, T. B. Pedersen, E. Savaş, and Y. Saygın. Discovering private

trajectories using background information. In DKE Special Issue, 2009.

[37] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy

preserving properties of random data perturbation techniques. In ICDM,

pages 99–106, 2003.

[38] J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-

group framework. In SIGMOD ’07: Proceedings of the 2007 ACM SIG-

MOD international conference on Management of data, pages 593–604.

ACM, 2007.

[39] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic density-based discov-

ery of hot routes in road networks. In SSTD 2007: 10th International

Symposium on Advances in Spatial and Temporal Databases, Lecture

Notes in Computer Science, pages 441–459. Springer, 2007.

[40] K. Liu, H. Kargupta, and J. Ryan. Random projection-based multiplica-

tive data perturbation for privacy preserving distributed data mining.

IEEE Trans. Knowl. Data Eng., 18(1):92–106, 2006.

[41] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: A privacy-

aware location-based database server. In ICDE, pages 1499–1500, 2007.

72



[42] S. Mukherjee, M. Banerjee, Z. Chen, and A. Gangopadhyay. A privacy

preserving technique for distance-based classification with worst case

privacy guarantees. Data Knowl. Eng., 66(2):264–288, 2008.

[43] M. Nanni. Clustering Methods for Spatio-Temporal Data. PhD thesis,

University of Pisa, 2002.

[44] M. Nanni and D. Pedreschi. Time-focused clustering of trajectories of

moving objects. Journal of Intelligent Information Systems, 27(3):267–

289, November 2006.

[45] C. J. Needham and R. D. Boyle. Performance evaluation metrics and

statistics for positional tracker evaluation. In Third International Con-

ference on Computer Vision Systems, ICVS 2003, pages 278–289, 2003.

[46] E. Nergiz, M. Atzori, and Y. Saygin. Towards trajectory anonymiza-

tion: a generalization-based approach. In In Proceedings of ACM GIS

Workshop on Security and Privacy in GIS and LBS, CA, USA, 2008.

[47] P. Samarati. Protecting respondents’ identities in microdata release.

IEEE Transactions on Knowledge and Data Engineering, 13:1010–1027,

2001.

[48] P. Samarati and L. Sweeney. Generalizing data to provide anonymity

when disclosing information (abstract). PODS, page 188, 1998.

[49] Y. Saygın, V. S. Verykios, and C. Clifton. Using unknowns to prevent

discovery of association rules. SIGMOD Record, 30(4):45–54, 2001.

73



[50] M. Terrovitis and N. Mamoulis. Privacy preservation in the publication

of trajectories. In The 9th International Conference on Mobile Data

Management (MDM’08), pages 65–72, 2008. The 9th International Con-

ference on Mobile Data Management (MDM’08).

[51] E. O. Turgay, T. B. Pedersen, Y. Saygın, E. Savaş, and A. Levi. Disclo-

sure risks of distance preserving data transformations. In SSDBM 2008:

Scientific and Statistical Database Management Conference, 2008.

[52] J. Vaidya and C. Clifton. Privacy-preserving data mining: why, how,

and when. Security & Privacy, IEEE, 2(6):19–27, 2004.

[53] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin,

and Y. Theodoridis. State-of-the-art in privacy preserving data mining.

SIGMOD Rec., 33(1):50–57, 2004.

[54] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multi-

dimensional trajectories. In Data Engineering, 2002. Proceedings. 18th

International Conference on, pages 673–684, 2002.

74


	Introduction
	Background and Related Work
	Privacy In Data Mining
	Privacy Preserving Data Mining
	Privacy In Spatio-Temporal Data 

	Preliminaries and Problem Definition
	Trajectories and Their Properties 
	Distance Metrics and Dissimilarity Matrix
	Distance Metrics
	Dissimilarity Matrix

	Types Of Background Information
	Known Distances
	Average and Maximum Speed

	Error and Success Rate of a Trajectory
	Error
	Success Rate

	Problem Definition

	Discovering Trajectories Using Background Information
	Introduction
	Reconstructing Trajectories
	Noise
	Our Reconstruction Method
	Evaluations and Experimental Results
	Success-rate over Time
	Success Rate with Background Information
	Noise

	Discussions

	Interpolation Based Private Trajectory Discovery
	Introduction
	Preliminaries
	Underlying Methods and Techniques
	Interpolation Technique
	Modified Hyper-lateration Technique

	Our Method
	The Method and Confidence of an Area
	Evaluations and Experimental Results

	Discussions

	Comparisons
	Conclusions and Future Work
	References

