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Abstract

Airline revenue management (ARM) problem focuses on finding a seat allocation
policy, which results in the maximum profit. Overbooking has been receiving significant
attention in ARM over the years, since a major loss in revenue results from cancella-
tions and no-shows. Basically, overbooking problem aims at maximizing the profit by
minimizing the number of vacant seats. However, this problem is difficult to handle
due to the demand and cancellation uncertainties and the size of the problem. In this
study, we propose new models for the static and the dynamic overbooking problems.

Due to the complex analytical form of the overbooking problem, in the static case
we introduce models that give upper and lower bounds on the optimal expected profit.
In the dynamic case, however, we propose a new dynamic programming model, which is
based on two streams of arrivals; one for booking and the other one is for cancellation.
This approach allows us to come up with a computationally tractable model. We also
present numerical results to show the effectiveness of our models.



KAPASİTE ÜSTÜ REZERVASYONU, GELMEYENLERİ VE İPTALLERİ İÇEREN

TEK BACAK HAVAYOLLARI GELİR YÖNETİMİ İÇİN YENİ MODELLER
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üstü rezervasyon.

Özet

Havayolları gelir yönetimi problemi maksimum karı sağlayacak kapasite dağıtım

politikasını bulmaya odaklanmıştır. Gelir kaybının en büyük kısmı iptaller ve gelmeyen

yolculardan kaynaklandığı için kapasite üstü rezervasyon stratejisi havayolları gelir

yönetiminde senelerdir önemli bir yer tutmaktadır. Kapasite üstü rezervasyonu içeren

havayolları gelir yönetimi problemi temel olarak boş koltuk saysını emküçükleyerek en

büyük geliri elde etmeyi amaçlamaktadır. Ancak, talep-iptal belirsizlikleri ve problem

büyüklüğü gibi nedenlerle bu problemi çözmek oldukça zordur. Bu çalışmada, statik

ve dinamik kapasite üstü rezervasyon problemleri için çeşitli modeller önerilmiştir.

Kapasite üstü rezervasyon probleminin karmaşık analitik yapısından dolayı, statik

problemde en iyi beklenen kar için alt ve üst sınırları belirleyen yeni modeller sunulmuştur.

Dinamik problemde ise rezervasyon ve iptaller için iki akış temelli dinamik programlama

modeli ortaya konulmuştur. Bu yaklaşım bize çözülebilir bir model sağlar. Modellerin

etkinliğini gösteren sayısal örnekler de çalışmada sunulmuştur.



Table of Contents

Abstract vi
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CHAPTER 1

INTRODUCTION

Airline revenue management (ARM) has been one of the most successful application

areas of operations research. With the Airline Deregulation Act in 1979, US Civil

Aviation Board (CAB) loosened control of airline prices and new low-cost and charter

airlines entered the market. Therefore, airline companies began to explore the ways of

competing effectively, and different approaches in revenue management (RM) evolved.

As world aviation markets were increasingly deregulated, airline companies began to

adopt ARM. Following the success at the airlines, RM has been applied by a number

of other industries, including hotels, car rental agencies, rail transportation, and cruise

lines. Development and investment in RM continues in many of these industries today.

We refer the reader to Talluri and Van Ryzin [34] and Phillips [27] for a comprehensive

overview on revenue management.

ARM is the strategy of managing the available capacity among different fare classes

over time in order to maximize the revenue. It is basically concerned with the demand-

management decisions. In particular, it is related to setting and updating the avail-

ability of the fare classes. ARM decisions are executed at three levels. Strategic level

includes identification of customer segments and establishment of products targeted at

those segments. The key point is to make a distinction between leisure and business

customers. Tactical level requires determining and updating reservation limits on the

seat capacity of a particular fare class. It is the key point of the process. Such tactical

decisions include capacity allocation and overbooking related decisions. Lastly, booking

control level determines which bookings to accept and which to reject. It is a function

of the reservation system. Such operational level decisions may depend on the time

and the characteristics of the request, the segment of customer, or the combinations of

all of these.

The techniques applied in ARM have been expanded with the increasing competi-

tion among the airlines. Capacity allocation and overbooking are two main strategies
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of ARM. While capacity allocation is important for determining the number of seats

reserved for booking for different fare classes, overbooking plays a critical role in set-

ting the total bookings that should be accepted for a fare class in the face of uncertain

no-shows and cancellations.

Capacity allocation is the problem of determining how many seats are to be booked

for different fare classes. In this case, the critical decision is optimal control of the

seat inventory. If tickets are sold on a first-come first-serve basis, the flight capacity

is going to fill up with low fare customers and the airline loses the potential high fare

passengers. By imposing booking limits on fare classes, potential revenue losses can

be avoided. However, inefficient booking limits may result in unsold seats. Therefore,

determining how many seats is crucial and we refer to this problem as the capacity

allocation (seat allocation) problem.

Typically, the booking limits are determined at the beginning of the booking process

based on demand estimates. The basic capacity allocation problem is concerned with

the allocation of the limited seats to the demand that occurs over time before the flight

departure. A straightforward mathematical model of the seat allocation problem is,

max
m∑

i=1

rimin{xi, di}

s.t
m∑

i=1

xi ≤ C,

x ∈ Zm
+ ,

(1.1)

where xi denotes the number of reserved seats for fare class i, 1 ≤ i ≤ m and di is

the realized demand for that class. Here, ri is the price of fare class i seat, and we

assume without loss of generality that r1 > r2 > ... > rm. The objective is to find the

optimal allocation of the seat capacity C such that the revenue is maximized. It is

clear that an optimal allocation policy is given as follows. By considering the demand

for each fare class, we reserve all the seats for the higher priced classes as long as

the capacity is still available. However, this simple model ignores the demand uncer-

tainty. Since the demand realization cannot be known in advance, we may estimate

its distribution. Let Di(ω) be the realization of demand di. Then, the total revenue

is given by
m∑

i=1

rimin{xi, Di(ω)} and the expected revenue equals
m∑

i=1

riE[min{xi, Di}].
Consequently, the seat allocation problem for random demand is given by
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max
m∑

i=1

riE[min{xi, di}]

s.t
m∑

i=1

xi ≤ C,

x ∈ Z .
+

(1.2)

This problem is first formulated by Wollmer [37] and it is a standard separable problem

which can be solved by dynamic programming (see also [6]).

1.1 Motivation

In ARM problem, while the revenue consideration tends to protect seats for potential

high-fare passengers, it is important to utilize as many seats as possible. Solving the ca-

pacity allocation problem effectively does not guarantee the maximum possible revenue

in practice due to the fact that passengers with reservations may cancel or not show up

at the departure time. If airlines strictly stick to the physical flight capacity, they will

experience revenue loss due to the cancellations and no-shows. Therefore, many airlines

try to compensate for such losses by a strategy called overbooking. Overbooking is the

policy of accepting more reservations than the physical capacity to protect themselves

against unanticipated cancellations or no-shows. Without overbooking, many of the

cancellations and each one of the no-shows would result in an empty seat. As a result,

the airline would not only lose potential revenue, it would also maintain and support

huge amounts of useless capacity. Current statistics on major airlines depict that the

average no-show rate is around 8% [2]. Smith et al. [32] have estimated that 50% of

American Airlines reservations resulted in either a cancelation or a no-show in 1992.

More recently, US Airways have reported that there would have been a loss of $1 billion

revenue in 2007 if the airline had not been overbooked.

Considering the overbooking issue poses an additional challenge, since the airline

company incurs a penalty if there is not an available seat for an overbooked passenger.

Basically, taking into consideration the overbooking requires decisions on the number

of physically available seats on a flight leg that are allowed to be oversold given that

the accepted requests may not show up at the departure time. Therefore, the optimal

overbooking level should balance lost revenue due to empty seats with the penalties

and loss of customer goodwill when the firm faces more demand than the physical

capacity. When a flight is oversold, the airline will rebook some customers on a later

flight which is called bumping. If the flight is much later, the bumped passengers are
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provided with a meal and overnight accommodation when necessary. In addition, a

penalty charge is paid to each bumped passenger.

There are mainly four overbooking policies:

1. Deterministic Heuristic: It calculates booking limit with respect to the ratio of

capacity and show-up rate.

2. Risk-Based Policy : It estimates the cost of denied service and then weighs that

cost against the expected revenue to determine booking levels that maximize the

expected profit.

3. Service-Level Policy : It determines the booking limits according to a specific

target such as aiming no more than one denied service for every 500 shows.

4. Hybrid Policy : It joins risk-based policy and service-level policy. Risk-based

limits are calculated according to service-level constraints.

Although companies differ in their overbooking policies, they mainly aim to max-

imize revenue by setting booking limits, which balance the expected cost of denied

service with the potential additional contribution from more sales. It is clear that how

many seats to offer to different fare classes on a flight depends on how much the airline

is willing to overbook; thus, capacity allocation and overbooking decisions are interre-

lated. Therefore, the problem of determining optimal booking limits for multiple fare

classes is the combination of overbooking and capacity allocation problem, and it is

extremely difficult to solve in general. Since 1950, various solution methodologies have

been developed to solve this problem. After now, we refer to capacity allocation with

overbooking as overbooking problem. Although overbooking has been studied over the

years, the proposed models generally simplify the problem. Therefore, they do not

represent the actual overbooking problem in real world. These simplifications can be

classified as follows: To deal with the uncertainty some models ignore the cancellation

or no-show penalties [10, 13, 17]. On the other hand, some studies use historical data

to model randomness. However, they can only be applied to a specific overbooking

problem [31,35,36]. To reduce the size of the problem some models consider one or two

fare classes and they generally focus on only overbooking costs, instead of the revenue

contribution from different fare classes [1, 4, 29, 33, 36]. Furthermore, in dynamic over-

booking problem it is generally considered that arrival and cancellation probabilities

depend on the number of reservations [9, 33]. However, one may argue that no arrival

and arrival probabilities should be independent of the number of the reserved seats.
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1.2 Contributions

In this research, we firstly review and discuss the overbooking problem in detail. This

review allows us to position our work in the literature. Then, we propose new math-

ematical models for static and dynamic single-leg problems. Our models consider

overbooking, no-shows and cancellations. Considering the class dependency and de-

mand uncertainty, the proposed approaches provides us realistic ARM policies. In the

static case, several models that examine the overbooking problem from different angles

are introduced. Since the static overbooking problem has a very complex structure,

we present new models, which give upper and lower bounds on the optimal expected

profit. On the other hand, in the dynamic case we propose a new dynamic program-

ming model which is based on two streams of arrivals: one for booking and the other

one for cancellation. We relax the unrealistic assumption used in the literature and

allow cancellation and no-show probabilities depend on the total number of already

booked seats.

1.3 Outline

The outline of the thesis is as follows. Chapter 2 gives a literature review of the

airline revenue management problem with a particular emphasis on overbooking. This

literature review is followed in Chapter 3 by the introduction of the static and dynamic

models. Solution approaches to the proposed models are given in Chapter 4. Chapter

5 presents the computational study. We end this thesis with Chapter 6, which contains

the conclusion and the planned future work.
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CHAPTER 2

LITERATURE REVIEW

Despite decades of research and practice, the airline revenue management is still a

challenging research area. One stream of papers on ARM develop leg-based models,

whereas the other stream of papers focuses on network-based models. While the leg-

based models aim at optimizing the passenger mix on a single-leg flight, network models

find similar optimal decisions when booking requests for multiple legs are considered

simultaneously. Although many practical overbooking problems observed in the airline

industry are network based, single leg problems still play an important role. Because

network based airline problems generally require solving many single leg problems and

some small airline companies have special one-hub networks with single legs and so

they only need to solve single leg problems.

Before reviewing the relevant literature on the single-leg airline revenue manage-

ment, we list some common terminology [34]:

• Flight leg: A nonstop flight.

• Standby: A passenger without a reservation who wants to get on a flight and

waits at the airport for last minute openings.

• No-show: A passenger who has booked a ticket on an airline flight but does not

show up for the departure.

• Go-show: A passenger without a reservation who has been assigned to an empty

seat right before the departure.

• Overbooking pad: The number of seats to be overbooked on a given flight.

• Authorization level: The maximum number of bookings allowed for each fare

class.
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2.1 General Single-Leg ARM without Overbooking

General single-leg problem without overbooking can be defined as the allocation of

limited seats to the demand. This problem is also known as the capacity allocation

problem. Most of the research on ARM focuses on the capacity allocation problem.

This problem can be examined using two models; static and dynamic. Static models

focus on setting booking limits on different fare classes at the beginning of the booking

period. It is assumed that reservation requests come in sequentially in order of increas-

ing fare level. For instance, low fare booking requests come in before high fare booking

requests. This means that booking control policies can be based on the total demand

for each fare class and they do not need to consider the actual arrival process. On

the other hand, dynamic models monitor the actual demand over the booking period

and decide whether to accept a reservation request at its arrival time. There is no

assumption on the arrival order of the booking requests.

2.1.1 General Static Single-Leg Problem

The static capacity allocation problem is firstly addressed by Littlewood [24]. He has

formulated a two fare class model to determine the booking limits. The idea behind

his model is closing the low fare class when the revenue from selling another low fare

class seat is less than the expected revenue of selling the same seat at a higher fare. In

other words, he determines a protection level for high fare class.

Belobaba [5] extends Littlewood’s model to a multi-class problem and introduces the

method of expected marginal seat revenue (EMSR) for the general approach. However,

this method can generate optimal booking limits only for the two fare class problem.

Curry [12], Wollmer [37], and Brumelle and McGill [8] work on EMSR method and ob-

tain optimal policies for the multi-class static problem. Furthermore, Curry proposes

an approach to deal with multi flight legs, when the capacities are not shared among

different origin-destinations. He models the problem with continuous time dynamic

programming formulation with a recursive equation for the optimal value functions.

Wollmer presents a method to find a seat allocation policy by establishing a critical

value for each fare class as EMSR method does. Different than Belobaba’s method, he

uses discrete demand distributions. Brumelle and McGill formulate a model which is

capable of handling both continuous and discrete demand, and they show that under

certain conditions the optimal allocation can be found by equating the marginal rev-

enues in the various fare classes. All of these proposed static models result in optimal
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policies under the assumption that reservation requests arrive in the order of increas-

ing fare class prices. However, Robinson [28] makes no assumption on the order of the

demand arrival and he obtains close approximations to the optimal policy by using

Monte Carlo integration.

On the other hand, Van Ryzin and McGill [38] develop a simple adaptive approach

to find protection levels for the multi class problem, which does not need any demand

forecasting. The method adjusts protection levels by using historical observations.

They show that under reasonable regularity conditions, the algorithm converges to the

optimal protection levels. Since this method does not need any demand forecasting, it

is a way to remove all of the difficulties involving demand uncertainty. However, to get

a good approximation of the protection levels, the updating procedure requires a large

sequence of flights to obtain sufficient historical data.

2.1.2 General Dynamic Single-Leg Problem

Brumelle and McGill [8] demonstrate that under the low-to-high fare arrival assump-

tion, a static solution method is optimal as long as no change is realized in the prob-

ability distributions of demand. However, dynamic solution methods do not assume

a specific arrival order of the booking requests and they do not determine a booking

policy at the start of the reservation period like the static methods do. Instead, they

observe the state of the system over time and decide whether to accept a particular

request when it arrives. In this case, a booking policy based on the total demand for

each fare class is not optimal, and dynamic programming methods are required.

Lee and Hersh [22] propose a discrete-time dynamic programming model where

the demand for each fare class is modeled by a nonhomogeneous Poisson process;

they formulate the problem as a Markov decision process (MDP). In this model, the

reservation period is divided into decision periods. These decision periods are chosen

sufficiently small to allow only one arrival within a period and the state of the system

changes when a decision period ends. In each period, a reservation request is accepted if

its fare is higher than expected marginal revenue of the seat. The model determines the

optimal capacity level for each fare class. Liang [23] reformulates and solves the model

in Lee and Hersh in continuous-time. On the other hand, Kleywegt and Papastavrou

[18] present a different approach. They show that the problem can also be formulated

as a dynamic and stochastic knapsack problem (DSKP). Their model considers cost

of unused capacity and penalty for rejection different than the other existing models.
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Lautenbacher and Stidham [21] combine the dynamic and static approaches under a

common MDP formulation which yields both models as special cases. The proposed

model allows passenger arrival throughout the booking period. They first develop a

dynamic model and then make the necessary adjustments for the static model.

2.2 Single-Leg ARM with Overbooking

By the end of 1950s, no-shows were becoming a major problem since customers were

allowed to cancel or became no-show without penalty. In 1961, CAB estimated a no-

show rate of 1 out of 10 passengers [34]. To deal with the economical consequences,

airlines have been allowed to overbook. There is a huge literature on overbooking

problem and we focus on the most related work. Again, the types of models within

this field can be classified into static models and dynamic models.

2.2.1 Static Overbooking Problem

Before the Littelewood’s research [24] on capacity allocation problem, almost all re-

search on ARM focusses on determining overbooking pad without considering contri-

bution of fare classes. These models either take a cost-based approach that controls the

expected number of denied passengers or a sevice level-based approach that controls the

probability of denied boarding within limits set by airline regulators. The first scientific

work on overbooking appeared in 1958 by Beckman [4]. Beckman works on the single-

leg one fare class cost-based problem. He presents a simple static overbooking model,

which determines the total overbooking by balancing the lost revenue due to empty

seats with the cost of denied boardings. A more implementable model was published

by Thompson [36], which entirely ignores the probability distribution of demand and

requires only data of cancellation proportions out of any fixed number of reservations.

He tries to determine the risk of overselling by allowing extra bookings in two fare

classes problem or, alternatively, determine the extra bookings in two fare classes so

that the overselling risk equals some pre-assigned value. His work has been examined

and refined by Taylor [35], and Rothstein and Stone [31]. They have developed models

for certain airline problems by using British European Airways data. Therefore, they

face problems in estimating the parameters for more general models. Rothstein [30]

also presents a study on the history of overbooking in the airline industry.
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Later work on the static overbooking problem was published by Bodily and Pfeifer

[7]. They give optimal decision rules for overbooking in single fare class problem. They

have developed a generic decision rule, then adapted it to specific models. As in the

model proposed by Beckman, they trade off between the number of unutilized seats and

the number of denied customers. The decision rule they have developed maximizes the

expected payoff including the cost of both spoilage and oversales. These rules provide

insights to the user. Probabilities for spoilage is assessed subjectively at each decision

point by using the number of reserved seats and previous experience.

Chi [10] formulates multi class static overbooking problem as a dynamic program-

ming model. Given the flight capacity, fares and the distributions of demand, he derives

the maximum number of seats allowed for the lowest open fare class. In this model,

fare classes constitute the stages and he assumes that the demand for the lowest fare

occurs first and the booking for a class starts, if all the bookings are made for the

lower classes. In addition, to simplify the model he assumes that reservations can be

canceled without any penalty. He proposed an approximate dynamic programming

algorithm as a solution method which provides near-optimal solutions. Coughlan [11]

has also studied the overbooking problem in the multi-class case and tried to determine

overbooking levels for each fare class. In this model, the empty seats are considered

right before the plane departure and go-shows are allocated to empty seats with the

same ticket price. To simplify the model, Coughlan [11] assumes that the demand and

the number of bookings in each fare class are independent and normally distributed.

However, in literature it is common to assume that demand follows a Poisson distri-

bution. Furthermore, they assume that the minimum of demand and the number of

bookings are also independently normally distributed. In addition, he assumes that the

number of go-shows in any class is independent of the number of show-ups in that class.

This assumption may not be valid in practice, since the number of show-ups limits the

number of go-shows. As a solution method, he proposes direct search methods, Hooke

and Jeeves [16] and Nelder and Mead [26]. He tests his model only for three fare classes

and states that the solution procedures employed do not guarantee optimality.

2.2.2 Dynamic Overbooking Problem

Several researchers have addressed dynamic overbooking models for a single-leg flight.

Generally, dynamic overbooking problem is modeled as a MDP. Rothstein [29], Alstrup

et al. [1] and Subramanian et al. [33] are three examples that use Markov decision
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processes. Rothstein [29] has formulated the one fare-class overbooking problem and

has constructed a general model for determining overbooking policies. The number of

reservations is the state space of the system and the system changes the state space

according to time-dependent transition probabilities. In order to simplify the model,

he assumes that cancellation probabilities are independent of the number of reserved

seats. However, this assumption may not be realistic. On the other hand, Alstrup

et al. [1] have developed a dynamic-programming approach to solve an overbooking

model with two fare classes by extending [29]. The objective is to determine the optimal

allocation of seats such that the difference between the maximal obtainable gain and the

actual gain is maximized. Different than Rothstein [29], they also consider the cost of

transferring higher fare-class passengers to lower fare-class passengers (downgrading).

As a solution method, two dimensional stochastic dynamic programming has been used.

However, the dynamic programming treatment of overbooking grows exponentially in

size and becomes computationally burdensome for real-world problems.

Subramanian et al. [33] formulate the multi class overbooking problem as a discrete-

time MDP without making any assumption on the arrival pattern. They extend the

model of Lee and Hersh [22] that does not permit overbooking. The state space is the

number of reserved seats in each fare class. Although, they propose a model which has

class dependent cancellations and no-shows, their model can be applied only to small

size problems. Due to the computational intractability, they try to reduce the size of

the state space into one dimension. In the proposed model, it is assumed that only an

arrival, a cancellation or a null event can be realized at each stage. Furthermore, no

arrival, cancellation and arrival probabilities are assumed to depend on the number of

reserved seats. However, one may argue that no arrival and arrival probabilities should

be independent of the number of reserved seats. In our model, while cancellation

probabilities depend on the number of bookings, arrival and no arrival probabilities

are independent of the current bookings. Chatwin [9] formulates the problem as a

birth-and-death process and proposes two models. While model he ignores refunds

and no-show penalties in the first, in the second model, he allows that the refunds and

the fares may vary over time. The state of the system is the number of reservations

on hand. He assumes that customers cancel their reservations independently according

to an exponential distribution with a common rate and the number of reservation

requests is dependent on the number of current bookings as Subramanian et al. [33].

As mentioned before, it may be preferable to relax the latter assumption that the
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demand depends on the number of reserved seats.

Karaesmen and Van Ryzin [17] examine the problem differently. Their model also

permits that classes can substitute for one another. They formulate the problem as a

two-period problem. In the first period, reservations are accepted and in the second

period, cancellations are realized and reserved seats allocated to the classes. The

problem is then to decide how many additional reservation requests to accept. In

the service period, after the cancellations and no-shows all remaining customers are

either assigned to a class seat or are denied. The assignment to a class is modeled as

a network flow problem. In this formulation, they assume that the service provider

decides allocation with perfect knowledge of the number of survivals in each class. As

a solution method, they propose a stochastic gradient algorithm.

All of these proposed models try to find optimal booking limits for fare classes,

assuming the aggregate overbooking limit is pre-determined. However, Feng and Xiao

[13] treat overbooking upper bound as a decision variable and derive its optimal level.

This model is closely related to the model present by Chatwin [9] but they do not

consider cancellations. In addition, they extend it by taking fare dependent no-show

rates and refunds. It is assumed that the overbooking penalty is an increasing and

uniformly convex function of the number oversold seats. This uniform convexity means

that extra overbooking decreases revenues. They show that the expected revenue

increases with the overbooking level up to a certain point and then remains the same.

2.3 Robust Single Leg Problem

In seat allocation and overbooking models, probability distributions are used to model

uncertainty in demand and cancellations. These probabilities are usually estimated by

analyzing the historical data, and hence, they are prone to inaccuracies. Robust model

takes into account the inaccurate estimate of the probability distributions. Recent

research in ARM discusses the availability of information. Adaptive methods are used

to find optimal booking limits with limited information. In each iteration booking limits

are updated with respect to historical observations [19, 20]. Ball and Queyranne [3]

use online algorithms to solve robust problem and present closed-form optimal booking

limits. Lan et al. [20] formulate the robust problem by assuming that demand in each

fare class lies in a given interval. Birbil et al. [6] present the robust version of classical

static and dynamic single leg problem which considers the inaccuracies associated with

estimated probability distributions of the demand for different fare classes.

12



CHAPTER 3

NEW MATHEMATICAL MODELS

The overbooking problem has been studied in the literature since the 1950’s. In the

classical single-leg problem, information needed for the state of the system is the num-

ber of seats still available. However, with cancellations, no-shows and overbookings, we

will need to monitor how many seats are already booked for each fare class. This makes

the problem more complex and difficult to solve. Therefore, some of the proposed mod-

els have examined the problem by simplifying some of the components. Others present

heuristics or approximation algorithms as a solution method. In this study, we propose

new mathematical models for the static and dynamic single-leg problems that cover

overbooking, no-shows and cancellations. The proposed approaches seek to achieve

a better ARM policy by considering class dependency and using realistic probability

distributions to optimize overbooking. Usually demand and cancellations are random

variables and we do not know in advance their realizations. In order to deal with

this uncertainty, we need to know the probability distributions of these demands and

cancellations which are consistent with the system.

3.1 Problem Statement

Early studies on the overbooking problem propose a cost or service level based approach

[34]. They either try to balance overbooking cost with the cost of empty seats or limit

the probability of denied service [4, 31, 35, 36]. Later studies focus on finding optimal

booking limits by maximizing revenue. Generally, overbooking models aim to find

optimal booking limits in each fare class by reducing the revenue losses resulting from

no-shows or cancellations.

The overbooking problem can be defined as follows. Consider a flight with a known

seat capacity C. The airline operator may overbook passengers with a corresponding

penalty s up to an overbooking limit C ′. If di is the demand for fare class i it is

assumed in the our basic model that passengers can reserve one of the m fare classes
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with probability pi, 1 ≤ i ≤ m. In the other models the demand assumptions are

more complex. ri is the price of a fare class i seat, 1 ≤ i ≤ m, and without loss of

generality r1 > r2 > ... > rm. In our model, passengers who already have a reservation

may cancel at any time or become a no-show customer at the departure time of the

flight. In case of cancellation, the airline company refunds those passengers with a

percentage αi, 1 ≤ i ≤ m of the corresponding fare class i ticket price. While in

static models cancelation and no-shows are considered together, dynamic models due

to their dynamic nature relax this assumption. The objective is now to determine

the optimal allocation of overbooking capacity of each fare class in terms of expected

revenue maximization.

3.2 Notation

Before explaining the proposed models of this system, we introduce some notation. We

first need to define a Bernoulli selection type random variable to model demand and

list therefore the following convention. If X and Y are random variables, then X =d Y

means that the cumulative distribution functions of X and Y are the same. Also, if X

denotes the nonnegative integer random size of a population, then the random variable

B(p,X) denotes the total number within the population of size X having a certain

property under the condition that each member in the population has this property

with probability p independent of each other. Hence the random variable B(p,X) is

given by

B(p,X) :=





∑X
i=1 1{Ui≤p} if X ≥ 1

0 if X = 0
(3.1)

with Un, n ∈ N a sequence of independent standard uniformly distributed random

variables and the random variable X is independent of the sequence Un, n ∈ N.

An alternative way to look at this random variable is the value of a simple increasing

random walk with probability 1− p of staying in the same state and p of moving one

upwards evaluated at the random time X. Clearly for every j ≤ k

P(B(p,X) = j|X = k) =

(
k

j

)
pj(1− p)k−j (3.2)
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and so with qk := P(X = k) it follows that

P(B(p,X) = j) =
∑∞

k=j

(
k

j

)
pj(1− p)k−jqk = pj

∑∞
k=j

(
k

j

)
(1− p)k−jqk (3.3)

In general, this distribution might be difficult to compute unless X has a particular

distribution function. Also by relation (3.1) we simply obtain

E(B(p,X)) = pE(X). (3.4)

The following result is well known. For completeness we give its proof.

Lemma 1 The probability generating function of the random variable B(p,X) is given

by

E(zB(p,X)) = E
(
(1− p + pz)X

)

and B(q,B(p,X)) =d B(pq,X) for any 0 ≤ p, q ≤ 1

Proof. To compute the generating function of the random variable B(p,X) we observe

by the conditional expectation formula that

E
(
zB(p,X)

)
=

∑∞
k=0
E(zB(p,X)|X = k)P(X = k). (3.5)

By relation (3.1) we obtain for k ≥ 1

E(zB(p,X)|X = k) = E
(
zB(p,k)

)
= (1− p + pz)k.

This shows by relation (3.5)

E(zB(p,X)) = E
(
(1− p + pz)X

)
(3.6)

and the first result is proved. To show the second result we observe by the first part

that

E(zB(q,B(p,X))) = E
(
(1− q + qz)B(p,X)

)
= E((1−p + z∗p)X)

with z∗ = 1− q + qz. Since 1−p + z∗p = 1− pq + zpq we obtain

E(zB(q,B(p,X))) = E(zB(pq,X))
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and the second result is proved. 2

In the remainder of this thesis we need the following class of functions.

Definition 1 A function f : Z+ 7→ Z is discrete concave if and only if the differences

n 7→ f(n + 1) − f(n) are decreasing. It is called discrete convex if the function −f is

discrete concave. If the function f is both discrete concave and discrete convex it is

said to be discrete linear.

We will now collect some results related to discrete concavity which are needed in

the next sections. The first result is also listed in [25]. For completeness we give a

proof.

Lemma 2 If the function µ : Z+ 7→ [0, 1] is a discrete concave function and the

function f : Z+ 7→ R is a nonincreasing discrete concave function then the function

g : Z+ 7→ R given by

g(n) = µ(n)f(n− 1) + (1− µ(n))f(n)

is a nonincreasing discrete concave function.

Proof. We need to show that the function n 7→ g(n)−g(n+1) is increasing. Introducing

the increasing sequence d(n) = f(n)− f(n + 1) ≥ 0 it follows that

g(n)− g(n + 1) = µ(n)d(n− 1) + (1− µ(n + 1))d(n)

Clearly g(n) − g(n + 1) ≥ 0 and so g is nonincreasing. It follows now after some

computations that the difference p(n) := (g(n)−g(n+1))−(g(n+1)−g(n+2)) equals

p(n) = a1(n) + a2(n) + a3(n)

with

a1(n) = d(n)(µ(n + 2)− 2µ(n + 1) + µ(n)) ≤ 0

and

a2(n) = (d(n− 1)− d(n))µ(n) ≤ 0

and

a3(n) = (1− µ(n + 2))(d(n)− d(n + 1)) ≤ 0
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Hence the function p is nonpositive and this means that the function n 7→ g(n+1)−g(n)

is decreasing. 2

The next result is also proved in [25].

Lemma 3 If the function f : Z+ 7→ R is discrete concave, then the function h : Z+ 7→
R given by

h(n) =





max{r + f(n + 1), f(n)} if n ∈ N
f(0) if n = 0

is also discrete concave.

Proof. The function f : Z+ → R is discrete concave, so this function is increasing on

{0, ..., n∗} and decreasing on {n∗, n∗ + 1, ..., } with

n∗ = arg maxf(p) : p ∈ Z+.

Hence it follows for every n ∈ {0, ..., n∗ − 1} that

f1(n) :=





max{f(n + 1), f(n)} = f(n + 1) if 1 ≤ n ≤ n∗ − 1

f(0) if n = 0

and for every n ∈ {n∗, n∗ + 1, ..., } that

f1(n) = max{f(n + 1), f(n)} = f(n)

Since f is discrete concave this implies for x belonging to {1, ..., n∗ − 1} that

f1(x− 1)− f1(x) = f(x)− f(x + 1)

≤ f(x + 1)− f(x + 2)

= f1(x)− f1(x + 1)

Also for x = n∗

f1(n
∗ − 1)− f1(n

∗) = 0

≤ f(n∗)− f(n∗ + 1)

= f1(n
∗)− f1(n

∗ + 1)
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and for x ∈ {n∗ + 1, ..., }

f1(x− 1)− f1(x) = f(x− 1)− f(x)

≤ f(x)− f(x + 1)

= f1(x)− f1(x + 1)

and hence we have shown the function f1 : Z+ → R is discrete concave. Clearly for all

n ∈ {1, 2, ...}

g(n) = max{r + f(n + 1), f(n)}
= maxp∈{n+1,n}{f(p) + r(p− n)}
= maxp∈{n+1,n}{f(p) + rp} − rn

(3.7)

Since the function is discrete concave also the function p 7→ f(p)+rp is discrete concave

and this implies that the function

n 7→





maxp∈{n+1,n}{f(p) + rp} if n ∈ N

f(0) if n = 0

is discrete concave. Applying now relation 3.7 yields the desired result. 2

In the next lemma we will derive an important property of expectations of discrete

concave functions of the random variable B(p, n)).

Lemma 4 If the function f : Z+ 7→ R is discrete concave, then the function n 7→
Ef(B(p, n)) is also discrete concave.

Proof. We need to show that

n 7→ Ef(B(p, n + 1))− Ef(B(p, n))

is decreasing. By the definition of B(p, n + 1) in relation (3.1) and the conditional
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expectation formula we obtain that

Ef(B(p, n + 1))− Ef(B(p, n)) = pE(f(B(p, n + 1))− f(B(p, n))|Un+1 ≤ p)

= p(E(f(1 + B(p, n))− f(B(p, n))|Un+1 ≤ p)

= pE(f(1 + B(p, n))− f(B(p, n))).

(3.8)

Since B(p, n + 1) ≥ B(p, n) and f discrete concave we obtain that

n 7→ f(1 + B(p, n))− f(B(p, n))

is decreasing and by relation (3.8) the result follows. 2

Usually the demand for fare classes is a random variable D and we do not know

in advance its realization. Let n be the number of reserved seats and D the random

demand for seats. Consequently, the total number of reserved seats on the selected

flight is equal to the random variable

N(n) := min(n,D) (3.9)

We will now investigate the behavior of the expectation of any function of the random

N(n). If f : Z+ 7→ R is such a function and we consider n 7→ E(f(N(n))) then clearly

E(f(N(n))) = P(D ≥ n)f(n) +
∑n−1

k=0
f(k)P(D = k)

This shows for every n ∈ Z+ that

E(f(N(n+1)))−E(f(N(n))) = P(D ≥ n+1)f(n+1)+P(D = n)f(n)−P(D ≥ n)f(n).

(3.10)

Since

P(D ≥ n) = P(D ≥ n + 1) + P(D = n) (3.11)

we obtain by relation (3.10) that

E(f(N(n + 1)))− E(f(N(n))) = P(D ≥ n)(f(n + 1)− f(n))− P(D = n)(f(n + 1)− f(n))

= (P(D ≥ n)− P(D = n))(f(n + 1)− f(n))
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Using again relation (3.11) this implies

E(f(N(n + 1)))− E(f(N(n))) = P(D ≥ n + 1)(f(n + 1)− f(n)) (3.12)

Now we show a rather surprising result needed in the next subsection.

Lemma 5 If f : Z+ 7→ R is a discrete concave function and the optimization problem

max{f(n) : n ≥ C}

has a finite optimal solution nopt, then this is also an optimal solution of the problem

max{Ef(N(n)) : n ≥ C}.

Proof. By the discrete concavity of f implying discrete unimodality we obtain for every

n ≥ nopt that

f(n + 1) ≤ f(n) (3.13)

and for every n < nopt

f(n + 1) ≥ f(n). (3.14)

This shows by relations (3.12), (3.13) and (3.14) that for every n ≥ nopt

E(f(N(n + 1)) ≤ Ef(N(n))

and for every n < nopt that

E(f(N(n + 1)) ≥ E(f(N(n)).

Hence nopt is also an optimal solution of the optimization problem max{Ef(N(n)) :

n ≥ C}. 2

If the random variable D has a bounded support then it does not hold that every

optimal solution of the optimization problem max{Ef(N(n)) : n ≥ C} is also an opti-

mal solution of the optimization problem max{f(n) : n ≥ C}. As an example we take

C = 2, f(n) = −(n−4)2 and P(D = 3) = 1. In this case the unique optimal solution of

optimization problem max{f(n) : n ≥ C} is given by n = 4. The set of optimal solution

of optimization problem max{Ef(N(n)) : n ≥ C} = max{f(min{n, 3}) : n ≥ C} is
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given by n ≥ 3 and so this set contains elements which are not an optimal solution of

the first problem. However, if the support of the random varible D is given by the set

Z+, then one can also show the reverse implication of Lemma 5 as shown in the next

result.

Lemma 6 If the support of the random variable D is given by Z+ and the optimization

problem

max{f(n) : n ≥ C}

with f a discrete concave function has a finite optimal solution, then the optimal solu-

tion sets of the optimization problems max{f(n) : n ≥ C} and max{Ef(N(n)) : n ≥ C}
coincide.

Proof. By Lemma 5 we only need to show that there exists an optimal solution

of the optimization problem max{Ef(N(n)) : n ≥ C} and that an optimal solu-

tion of this problem is also an optimal solution of max{f(n) : n ≥ C}. Since by

assumption the optimization problem max{f(n) : n ≥ C} has a finite optimal so-

lution it follows by Lemma 5 that this is also an optimal solution of the optimiza-

tion problem max{Ef(N(n)) : n ≥ C}. Consider now an optimal solution nopt of

max{Ef(N(n)) : n ≥ C}. By relation (3.12) we obtain for every n > nopt that

0 ≥ Ef(N(n))− Ef(N(nopt))

=
∑n−1

k=nopt
Ef(N(k + 1))− Ef(N(k))

=
∑n−1

k=nopt
P(D ≥ k + 1)(f(k + 1)− f(k))

(3.15)

Since the set of optimal solutions of the optimization problem max{f(n) : n ≥ C} is

nonempty, there exists a minimal element ns of this set. For this minimal element it

follows using f is discrete concave that for every k < ns

f(k + 1)− f(k) ≥ f(ns)− f(ns − 1) > 0

If ns > nopt and applying P(D ≥ k + 1) > 0 for every k this yields by relation (3.15)

that

0 ≥ Ef(N(ns))− Ef(N(nopt)) > 0

and hence it must follow that ns ≤ nopt. Without loss of generality, we may assume that

21



ns < nopt. Since by lemma 5 the value ns is also an optimal solution of max{Ef(N(n)) :

n ≥ C} we obtain

0 = Ef(N(nopt))− Ef(N(ns))

=
∑nopt−1

k=nst
P(D ≥ k + 1)(f(k + 1)− f(k))

(3.16)

By the discrete concavity of the function f and ns an optimal solution of max{f(n) :

n ≥ C} it follows that

f(k + 1)− f(k) ≤ 0

for every k ≥ ns. This shows by relation (3.16) that

f(k + 1)− f(k) = 0

for ns ≤ k ≤ nopt − 1 and so f(nopt) = f(ns). Hence nopt is also an optimal solution of

max{f(n) : n ≥ C} and the result is proved. 2

We will now discuss a generalization of the selection process. If our selection process

yields the possible properties Ei, 0 ≤ i ≤ m to reflect the demand for each fare class,

then we introduce for X a nonnegative integer random size of the population, the m+1

dimensional random vector

(B0(p,X), .....,Bm(p,X))

with p = (p0, ..., pm), pi > 0,
∑m

i=0 pi = 1 and

Bk(p,X) =





∑X
i=1 1{ξi=Ek} if X ≥ 1

0 if X = 0

where ξi, i ∈ N a sequence of independent and identically distributed random vari-

ables having state space {E0, ...., Em}. The random variable Bk(p,X) denotes the

total number of members within the population having property Ek if we assume that

independent of each other each member within the population has property Ej with

probability pj, 0 ≤ j ≤ m. If we want to know the total number of the population X

having one of the different properties E1, ..., Em, then in each trial we have probability

p0 that a member does not have either of these properties and so the total number of
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the population having either one of the different properties E1, ..., Em has a binomial

distribution with parameter 1− p0 =
∑m

k=1 pk of success.

Lemma 7 It follows that
∑m

k=1 Bk(p,X) =d B(1− p0,X).

Proof. By definition

∑m
k=1 Bk(p,X) =

∑m
k=1

∑X
i=1 1{ξi=Ek}

=
∑X

i=1

∑m
k=1 1{ξi=Ek}

=
∑X

i=1 1{∪m
k=1{ξi=Ek}}

Since

P(∪m
k=1{ξi=Ek}) =

∑m

k=1
pk = 1− p0

and hence
∑X

i=1
1{∪m

k=1{ξi=Ek}} =d
∑X

i=1
1{Ui≤1−p0}

we obtain
∑m

k=1
B(pk,X) =d B(

m∑

k=1

pk,X).

2

3.3 Static Overbooking Problem

In this section, we introduce our static overbooking models. Static models focus on

determining booking limits in each fare class at the beginning of a reservation period.

In this section, we first start with a basic model capturing this behavior. In a second

static model, we introduce demand assumptions at the fare class level.

3.3.1 Model With No Booking Limit For Each Fare Class

For simplicity, we start with the most basic model capturing overbooking in the reser-

vation process of seats for an airplane. In this simple model, we only try to determine

the optimal size of the overbooking of a C seat capacity flight with m different fare

classes. Let y be the total size of the overbooking. Hence the total number of seats

to be allocated is given by n := C + y ≥ C. If D denotes the total random demand

for seats in this airplane, then clearly N(n) := min(n,D) is the random number of
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reserved seats before departure. To model the revenue we assume in this static model

that each reserved seat is a fare class i seat with probability pi, 1 ≤ i ≤ m. Clearly

these probabilities satisfy
∑m

i=1 pi = 1. This shows that B(pi,N(n)) is the random

number of reserved fare class i seats before departure and the associated random rev-

enue before departure is therefore given by riB(pi,N(n)). Since with probability 1−βi

each passenger having a reserved seat will not show up it follows by Lemma 1 that

the total random number of no shows within fare class i equals B((1 − βi)pi,N(n)).

Hence with αi denoting the fraction of the price refunded for a fare class i ticket the

total random revenue generated by fare class i customers at the departure time of the

airplane is given by

riB(pi,N(n))− αiriB((1− βi)pi,N(n)).

By relation (3.4) this implies that (ripi − αi(1− βi)ripi)E(N(n)) is the total expected

revenue of fare class i customers and so the total expected revenue over all fare classes

equals

θ0E(N(n)). (3.17)

with

θ0 :=
∑m

i=1
ripi(1− αi(1− βi))

To model the penalty cost of overbooking, we first observe applying again Lemma 1

that the total number of arriving fare class i customers before departure is given by

B(βipi,N(n)) with βi denoting the probability that a reserved fare class i customer will

show up. Adding up all the different arriving fare class i customers the total number

of overbooked seats equals

max{
∑m

i=1
B(βipi,N(n))− C, 0} (3.18)

By Lemma 7 we know that

max{
∑m

i=1
B(βipi,N(n))− C, 0} =d max

{
B

(∑m

i=1
βipi,N(n)

)
− C, 0

}
. (3.19)
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Hence by relations (3.18) and (3.19) and s the penalty costs of an overbooking the

total expected overbooking costs are given by

sE
(
max

{
B

(∑m

i=1
βipi,N(n)

)
− C, 0

})
. (3.20)

Adding the terms in (3.17) and (3.20), we finally obtain the expected revenue as

g(n) := θ0E(N(n))− sE
(
max

{
B

(∑m

i=1
βipi,N(n)

)
− C, 0

})
. (3.21)

Now, the optimal overbooking limit is a solution of the optimization problem

max{g(n) : n ≥ C, n ∈ Z+} (PT )

To analyse this optimization problem, we first rewrite the objective function g. Since

for any 0 ≤ p ≤ 1,

max{B(p,N(n))− C, 0}+ min{B(pN(n))− C, 0} = B(p,N(n))− C,

we obtain

−sE( max{B(p,N(n))− C, 0}) = −spE(N(n)) + sC + sE( min{B(p,N(n))− C, 0}).

Hence, the objective function g in relation (3.21) can be written as

g(n) = Ef(N(n)) (3.22)

with the function f : Z+ 7→ R given by

f(x) := sC + (θ0 − s
∑m

i=1
βipi)x + sE

(
min{B

(∑m

i=1
βipi, x

)
− C, 0}

)
(3.23)

To analyze the global behavior of this function we consider the following cases;

1. θ0 − s
∑m

i=1 βipi ≥ 0. To analyse this case we first observe using B(p, n + 1) ≥
B(p, n) that the function

x 7→ E
(
min{B

(∑m

i=1
βipi, x

)
− C, 0}

)

is increasing. This shows by relation (3.23) that the function f is increasing.
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Hence by the the monotonicity of n 7→ N(n) the function n 7→ Ef(N(n)) is

increasing and an optimal solution of our booking problem is to set n = ∞. An

intuitive interpretation of this result is as follows. Since (1 − βi) is the no-show

rate and αi is the refund percentage, the expected net revenue per customer given

that this is a fare class i customer equals

ri − riαi(1− βi)− sβi

Hence with pi denoting the probability that a customer is a fare class i customer

the expected revenue per customer is given by

∑m

i=1
pi(ri − riαi(1− βi)− sβi) = θ − s

∑m

i=1
βipi.

Hence for θ − s
∑m

i=1 βipi ≥ 0, it is always profitable despite the overbooking

costs to accept all demand. This means that the overbooking limit should be set

to infinity. Clearly, this is a pathological case and will probably never happen in

practice. A more reasonable assumption is given by the following

2. θ0 − s
∑m

i=1 βipi < 0. To analyze this case we observe by Lemma 4 that the

function

x 7→ E
(
min{B

(∑m

i=1
βipi, x

)
− C, 0}

)

is a discrete concave function. Hence by relation (3.23) the function f is a discrete

concave function. Since limx↑∞f(x) = −∞ this shows that the optimization

problem

max{f(n) : n ≥ C}

is easy to solve and there exist a finite optimal solution nopt ≥ C. Applying

now Lemma 5 yields that nopt is also a solution of the optimization problem PT .

A surprising consequence of this result is that the total booking limit does not

depend on the cumulative distribution function (cdf) of the total demand D. To

compute this optimal solution we first need to evaluate the function

n 7→ f(n + 1)− f(n)
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for every n ≥ C with f given by relation (3.23). Introducing

θ1 := s
∑m

i=1
βipi

it follows by relation (3.23) and (3.8) that

f(n + 1)− f(n) = θ0 − θ1 + θ1Ef0

(
B

(∑m

i=1
βipi, n

))
(3.24)

with

f0(x) = min{x− C + 1, 0} −min{x− C, 0} =





1 if x ≤ C − 1

0 otherwise

This shows for every n ≥ C that

f(n + 1)− f(n) = θ0 − θ1 + θ1P
(
B

(∑m

i=1
βipi, n

)
≤ C − 1

)
. (3.25)

By our assumption we know that 0 < θ0θ
−1
1 < 1 and this implies by relation

(3.25)

f(n + 1)− f(n) ≤ 0 ⇔ P
(
B

(∑m

i=1
βipi, n

)
≤ C − 1

)
≤ 1− θ0θ

−1
1 .

Using the discrete concavity of the function f , an optimal solution of our opti-

mization problem is therefore given by

nopt = inf
{

n ≥ C : P
(
B

(∑m

i=1
βipi, n

)
≤ C − 1

)
≤ 1− θ0θ

−1
1

}
.

3.3.2 Model With Booking Limit For Each Fare Class

In problem PT , we only consider the total demand and we do not distinguish different

fare classes. We extend this model by considering overbooking and no-shows at the

class level and propose two models, which provide us with the lower and upper bounds

of the optimal expected revenue. In these models, we try to determine the optimal size

of the reserved fare class i seats, 1 ≤ i ≤ m . Therefore, we do not have the binomial

relationship between overall demand and the demand for individual fare classes as in

the problem PT .

Let Di denote the random demand for fare class i, 1 ≤ i ≤ m and ni be the
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number of reserved seats in fare class i such that
∑m

i=1 ni ≥ C. The random variable

Ni(ni) = min{ni,Di} denotes the number of customers having a reserved seat in fare

class i before the departure time of the plane. Since with probability (1−βi) a customer

having a fare class i seat will not show up, the number of no-shows within fare-class i

is given by B((1 − βi),Ni(ni)), while the number of occupied fare class i seats at the

departure of the plane is given by B(βi,Ni(ni)). Since the total number of overbookings

is given by max{∑m
i=1 B(βi,Ni(ni))− C, 0}, the random overbooking cost is given by

s max{∑m
i=1 B(βi,Ni(ni)) − C, 0}. Hence for any feasible vector n = (n1, ..., nm) the

random revenue is

∑m

i=1
riNi(ni)−

∑m

i=1
αiriB((1− βi),Ni(ni))− s max{

∑m

i=1
B(βi,Ni(ni))− C, 0}.

(3.26)

Applying now relation (3.4) and relation (3.26), we obtain that the total expected

revenue of a given feasible booking vector n = (n1, ..., nm) as follows

q(n) =
∑m

i=1
(1− αi(1− βi))riE(Ni(ni))− sE

(
max{

∑m

i=1
B(βi,Ni(ni))− C, 0}

)
.

Hence the associated optimization problem becomes

max{q(n) :
m∑

i=1

ni ≥ C, ni ∈ Z+}. (PI)

This problem is very difficult to solve. However, we can find upper and lower bounds

on the optimal objective function. Let yi be the actual allocation of physical capacity

to fare class i, 1 ≤ i ≤ m and C ′ denote the overbooking capacity. Then, we allocate

at most C ′ seats, to different fare classes in such a way that the objective function,

including the revenue and the penalty costs representing the inability to keep the

occupied fare class i seats at departure below a the target value yi, is maximized.

Lemma 8 It follows that

E( max{
∑m

i=1
B(βi,Ni(ni))− C, 0}) ≤

m∑
i=1

E( max{B(βi,Ni(ni))− yi, 0})

for any vector y satisfying
∑m

i=1 yi = C.

Proof. Clearly the function f(x) = max{x, 0} satisfies the subadditivity property given

by

f(y1 + y2) ≤ f(y1) + f(y2).
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By this subadditivity property and
∑n

1=1 yi = C, yi ∈ Z+ it follows that

f (
∑m

i=1 B(βi,Ni(ni))− C) = f(
∑m

i=1 B(βi,Ni(ni))− yi)

≤ ∑m
i=1 f(B(βi,Ni(ni))− yi).

Hence we obtain for any
∑m

i=1 yi = C, yi ∈ Z+ that

E
(
f

(∑m

i=1
B(βi,Ni(ni))− C

))
≤

m∑
i=1

E(f(B(βi,Ni(ni))− yi)),

and so the result is verified. 2

It follows by the above lemma that

q(n) ≥
∑m

i=1
(1− αi(1− βi))piE(Ni(ni))− s

∑n

i=1
E (max{B(βi,Ni(ni))− yi, 0}) .

Hence, to obtain a lower bound on the optimal objective value we could solve the

following separable problem:

max
∑m

i=1(1− αi(1− βi))riE(Ni(ni))− s
∑m

i=1 E (max{B(βi,Ni(ni))− yi, 0})

s.t
∑m

i=1 ni ≥ C,

∑m
i=1 ni ≤ C ′, (PLB

I )

∑n
i=1 yi = C,

ni ∈ Z+, yi ∈ Z+.

In this study, we determine C ′ by using deterministic heuristic (1). By solving the

problem ?? we obtain a lower bound on the expected revenue. Since this model is a

separable problem, it can be decomposed into separate problems for each fare class.

In this case, dynamic programming can be utilized. The problem PLB
I can be solved

by dynamic programming with two state space, where the fare classes correspond to

stages, and the physical airline and overbooking capacities are the state spaces.
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By using Jensen’s inequality we can find an upper bound on the expected revenue. We

can define the overbooking penalty part of the objective function as

E
(
f

(∑m

i=1
B(β,Ni(xi))− C

))
.

Then, we observe that

E (f (
∑m

i=1 B(β,Ni(xi))− C)) ≥ f(E(
∑m

i=1 B(β,Ni(xi))− C))

= f(β
∑m

i=1 E(Ni(xi))− C),

and so the function

x 7→(1− α(1− β))
∑m

i=1
riE(Ni(xi))− f(β

∑m

i=1
E(Ni(xi))− C)

yields an upper bound on the objective function. Hence, to obtain an upper bound on

the optimal objective value we could solve

max
∑m

i=1(1− αi(1− βi))riE(Ni(ni))− s max(
∑m

i=1 βiE (Ni(ni))− C, 0)

s.t
∑m

i=1 ni ≥ C,

∑m
i=1 ni ≤ C ′, (PUB

I )

ni ∈ Z+.

Again this problem is a separable problem and it can be solved by dynamic program-

ming, where the fare classes and overbooking capacity of the airplane correspond to

the stages and the state space, respectively.

3.4 Dynamic Overbooking Problem

In this section, we introduce our discrete-time dynamic model for the overbooking

problem. Dynamic models decide whether to accept or reject a particular reservation

request at its arrival time. They relax the static assumption on the arrival order of

fare classes. Booking requests for each fare class can arrive throughout the reservation

period and arrivals and cancellations are modeled as time dependent processes.

Consider a flight with m fare classes and a known capacity C. Booking requests for

each fare class arrive according to a time-dependent process. The ticket sales period

30



is partitioned into periods 1, 2, ..., T , where T corresponds to the flight departure time

and stage 1 corresponds to the opening of the flight for reservations. Customers who

have already booked may cancel their tickets up to the departure time of the flight.

At the time of the cancellation, customers are refunded an amount which is a class

dependent percentage of the ticket price ri. In addition, customers can execute no-

shows with probability (1 − βi) right before the departure of the plane, which is also

class dependent; we assume that no-shows are not refunded. To prevent the empty

seats arising from the cancellations and no-shows, customers can be overbooked with

overbooking penalty s. At each period up to departure, we assume that two streams

of events msy occur: a cancellation and an arrival. We assume that the cancellation

request occurs before the arrival process. The state variable is the number of reserved

seats in each fare class n = (n1, ..., nm). Let pit denote the probability of an arrival in

fare class i in period t and p0t denote the null event in period t. Similarly, qit(n) is the

probability of a cancellation in fare class i in period t and q0t(n) = 1 −∑m
i=1 qit(n) is

the probability of no-cancellation. Clearly, the demand probability is independent but

the cancellation probability depends on the number of total reserved seats. To obtain a

more realistic model, we assume that cancellation probabilities are nondecreasing and

concave functions of n. At each stage, upon arrival we decide to accept or reject a

customer’s request.

Next we introduce the random variables ξt ∈ R2, 1 ≤ t ≤ T . The first component of

ξt represents the cancellation and the second component represents the arrival. Below

we list the four possible cases for ξt

ξt = (0, ri) ⇔ no cancellation and a fare class i arrival in period t.

ξt = (kj, ri) ⇔ a fare class j cancellation and a fare class i arrival in period t.

ξt = (kj, r0) ⇔ a fare class j cancellation and no arrival in period t.

ξt = (0, r0) ⇔ no cancellation and no arrival in period t.

Observe that we set i = 0 and r0 = 0 for the null event, and p0t = 1−∑m
i=1 pit. We

assume that the random variables ξt, t = 1, ..., T are independent.

As a function of the state in period t, let Rt(n) be the optimal random revenue

from t up to T before an event occurs in period t and the optimal value function Jt be

given by

Jt(n) = E(Rt(n)),
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where E(Rt(n)|ξt) denotes the conditional expectation on the information ξt. Then, we

obtain the following relations by the principle of optimality in dynamic programming;

E(Rt(n)|ξt = (k0, ri)) = max{ri + Jt+1(n + ei), Jt+1(n)}
E(Rt(n)|ξt = (kj, ri)) = max{ri − kj + Jt+1(n + ei − ej),−kj + Jt+1(n− ej)}
E(Rt(n)|ξt = (k0, r0)) = Jt+1(n)

E(Rt(n)|ξt = (kj, r0)) = −kj + Jt+1(n− ej)

Here ei is the unit vector which denotes the arrival in fare class i and kj is the refund

paid to customer in class j. We set j = 0 and k0 = 0 for no-cancellation. By the

definition of a conditional expectation it follows that

Jt(n) = E(Rt(n))

=
m∑

j=0

m∑
i=0

E(Rt(n)|ξt = (kj, ri))pitqjt(n).
(3.27)

Then,

Jt(n) =
m∑

j=1

m∑
i=0

pit qjt(n) max{ri − kj + Jt+1(n− ej + ei),−kj + Jt+1(n− ej)}

+
m∑

i=0

pit q0t(n) max{ri + Jt+1(n + ei), Jt+1(n)}.

(3.28)

The overbooking penalty constitutes the boundary condition which is

JT (n) = −sE(max{
m∑

i=1

B(βi, ni)− C, 0}).

Due to the multi-dimensional state space, this problem is very difficult to solve. By

reducing the state space into one dimension, it can be simplified. In this new problem,

states are the total number of reserved seats denoted by n. Therefore, the cancellation

probability qt(n) does not depend on the fare class and we assume that the refund,

denoted by k, is the same for all classes. Again in each period, it is assumed that

two streams of events occur. First a cancellation be realized and then the an arrival

may occur. Let pit denote the probability of an arrival in fare class i, qt(n) be the

probability of a cancellation, p0t and q0t(n) denote the no arrival and no cancellation in

period t, respectively. In this model, cancellation probabilities are linearly dependent

on n, qt(n) = ωtn. ωt be the time dependent cancellation parameter. As in the previous
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model, we introduce the random variables ξt ∈ R2, 1 ≤ t ≤ T . Its first component

denotes the cancellation and the second component represents the arrival. Then the

four cases are given by

ξt = (0, ri) ⇔ no cancellation and a fare class i arrival in period t.

ξt = (1, ri) ⇔ a cancellation and a fare class i arrival in period t.

ξt = (1, r0) ⇔ a cancellation and no arrival in period t.

ξt = (0, r0) ⇔ no cancellation and no arrival in period t.

It is also assumed that the random variables ξt, 1 ≤ t ≤ T , are independent. As a

function of the state in period t, let Rt(n) be the optimal random revenue from t up to

T , before an event occurs in period t. Then, the expected optimal value function Jt is

given by Jt(0) = E(Rt(0)) while the number of reservations at the beginning of period

t is 0. Clearly, Jt(0) = E(E[Rt(0)|ξt]) and by the principle of dynamic programming,

the conditional expectations are given by

E(Rt(n)|ξt = (0, ri)) = max{ri + Jt+1(n + 1), Jt+1(n)},
E(Rt(n)|ξt = (1, ri)) = max{ri − k + Jt+1(n),−k + Jt+1(n− 1)},
E(Rt(n)|ξt = (0, r0)) = Jt+1(n),

E(Rt(n)|ξt = (1, r0) = −k + Jt+1(n− 1).

Now using the definition of a conditional expectation it follows that

Jt(n) = E(Rt(n))

=
m∑

i=0

E(Rt(n)|ξt = (1, ri))pitqt(n)

+
m∑

i=0

E(Rt(n)|ξt = (0, ri))pitq0t(n).

(3.29)

Then, the recursive relation becomes

Jt(n) =
m∑

i=0

pit qt(n) max{ri − k + Jt+1(n),−k + Jt+1(n− 1)}+
m∑

i=0

pit q0t(n) max{ri + Jt+1(n + 1), Jt+1(n)},
(3.30)
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Introducing the function

gi,t+1(n) 7→





max{ri + Jt+1(n + 1), Jt+1(n)}, if n ∈ N

Jt+1(0), if n = 0

and using q0t(n) = 1− qt(n) ≥ 0 we obtain

Jt(n) + k

m∑
i=0

pitqt(n) =
m∑

i=0

pit(qt(n)gi,t+1(n− 1) + (1− qt(n))gi,t+1(n)). (3.31)

By Lemma 3 it follows in case n 7→ Jt+1(n) is a nonincreasing discrete concave function

that also n 7→ git+1(n) is a nonincreasing discrete concave function. Since n 7→ qt(n) is

discrete linear on {0, ..., C ′} we conclude from Lemma 2 that the function

n 7→ (qt(n)gi,t+1(n− 1) + (1− qt(n))gi,t+1(n))

is a nonincreasing discrete concave function. Applying now relation (3.31) it follows

that the function

n 7→ Jt(n) + k

m∑
i=0

pitqt(n)

is a nonincreasing discrete concave function. Finally by the linearity of the cancellation

probabilities we obtain

n 7→ k

m∑
i=0

pitqt(n)

is an increasing discrete linear function on {0, ..., C ′}. This depicts that the function

n 7→ Jt(n) is a nonincreasing discrete concave function on {0, ..., C ′}. Hence this

shows by the induction that the function n 7→ Jt(n) is a nonincreasing discrete concave

function once we have verified that n 7→ JT (n), n = 0, ..., C ′ is discerete concave. The

boundary condition of dynamic programming model is given by

JT (n) = −sE(max{B(β, n)− C, 0})

To analyze the boundary condition, we first rewrite JT (n). Since for any 0 ≤ β ≤ 1

max{B(β, n)− C, 0}+ min{B(β, n)− C, 0} = B(β, n)− C

34



We obtain

−sE(max{B(β, n)− C, 0}) = −sβn + sC + sE(min{B(β, n)− C, 0}).

We observe by Lemma 4 that the function

n 7→ E (min{B (β, n)− C, 0})

is a nonincreasing discrete concave function. Therefore, JT (n) is also nonincreasing

discrete concave function.
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CHAPTER 4

SOLUTION APPROACHES

4.1 Static Models

Static models determine the booking limit for each fare class at the beginning of the

reservation period and they assume that reservations for different fare classes happen

sequentially. In this way, the reservation period is divided into intervals during which

all arriving passengers request the same fare. A natural solution approach for such a

problem is dynamic programming where fare classes constitute the stages [5,12,24,37].

Without cancellations and overbookings, the state of the system is the number of seats

still available. However, with cancellations and overbookings, the information required

to characterize the state is the number of reservations in each fare class.

Problem PLB
I has two dimensional state space, which corresponds to the overbook-

ing capacity and the physical capacity. Introduce for every p ≤ m, c ∈ {0, ..., C} and

x ∈ {0, ..., C ′} the value Rl
p(x, c) as the maximal expected revenue for fare classes p up

to m, then we have

Rl
p(x, c) = max

{∑m

i=p
S(ni, yi)|

m∑
i=p

ni ≤ x,

m∑
i=p

yi ≤ c, ni, yi ∈ Z, i = p, ..., m

}
,

where

S(ni, yi) = (1− αi(1− βi))riE(Ni(ni))− sE (max{B(βi,Ni(ni))− yi, 0}) .

By the optimality principle of Bellman it now follows for every p+1 ≤ m, c ∈ {0, ..., C}
and x ∈ {0, ..., C ′} that

Rl
p(x, c) = max

0≤np≤x

0≤yp≤c

{
Rl

p+1(x− np, c− yp) + S(np, yp)
}

,
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where Rl
m(x, c) = (1−αm(1−βm))rmE(Nm(nm))−vE (max{B(βm,Nm(nm))− ym, 0}) , c ∈

{0, ..., C} and x ∈ {0, ..., C ′}.
Consequently, we can recursively compute the optimal objective value R1(C

′, C)

and corresponding pseudocode is given in Algorithm 1. The computational complexity

of the algorithm is of the order of O(mCC ′).

Algorithm 1: Solving problem (??)

Input: C, C ′,m, r, s, β, α1:

for i = m to 1 do2:

if i = m then3:

for yi = 0 to C do4:

for ni = 0 to C ′ do5:

Compute S(ni, yi)6:

Rl
m(ni, yi) = S(ni, yi)7:

else8:

for c = 0 to C do9:

for x = 0 to C ′ do10:

Set Z(x, c) = 011:

for yi = 0 to c do12:

for ni = 0 to x do13:

Compute S(ni, yi)14:

Z(ni, yi) = S(ni, yi) + Rl
i+1(x− ni, c− yi)15:

Rl
i(x, c)= max(Z)16:

obj = max(Rl
1)17:

Problem PUB
I is also a standard separable problem and can be solved by dynamic

programming, where the overbooking capacity corresponds to the state space. Let us

define for every p ≤ m and x ∈ {0, ..., C ′} the function Fp(x) =
∑m

i=p(1 − αi(1 −
βi))riE(Ni(ni)) for the revenue and φp(x) = s max(

∑m
i=p βiE (Ni(ni)) − C, 0) for the

overbooking cost. Then, Ru
p(x) denotes the maximal expected revenue for fare classes

p up to m and it is given by

Ru
p(x) = max

{
Fp(x) + φp(x)|

m∑
i=p

ni ≤ x, ni ∈ Z, i = p, ..., m

}
.
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By the optimality principle of Bellman, it now follows for every p + 1 ≤ m and x ∈
{0, ..., C ′} that

Ru
p(x) = max

0≤np≤x
{Fp+1(x− np) + φp(x) + (1− αp(1− βp))rpE(Np(np))} ,

where Ru
m(x) = (1 − αm(1 − βm))rmE(Nm(nm)) − sE (max{B(βm,Nm(nm))− C, 0})

and x ∈ {0, ..., C ′}.
We can then recursively compute the optimal objective value R1(C

′). The pseu-

docode is given in Algorithm 2, which shows that the complexity of the algorithm is

of the order of O(mC ′).

Algorithm 2: Solving problem (3.3.2)

Input: C, C ′,m, r, s, β, α1:

for i = m to 1 do2:

if i = m then3:

for x = 0 to C ′ do4:

Compute Fm(x) and φm(x)5:

Ru
m(x) = Fm(x) + φm(x)6:

else7:

for x = C ′ to 0 do8:

Z(x)=09:

for ni = 0 to x do10:

Compute φi(x)11:

Z(ni) = (1− αi(1− βi))riE(Ni(ni)) + Fi+1(x− ni) + φi(x)12:

Ru
i (x) = max(Z)13:

obj = max(Ru
1)14:

4.2 Dynamic Model

The proposed dynamic model decides whether to accept or reject a booking request

according to its arrival time and the state of the system. The demand and cancellation

for each fare class are modeled as time dependent processes. The primary solution

technique is dynamic programming, where the stages correspond to the remaining

time until departure. The state of the system is the total number of reserved seats.
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A backward recursive solution requires an overall computational complexity of

O(mTC ′) and the pseudocode is given in Algorithm 3.

Algorithm 3: Solving the dynamic overbooking problem

Input: C, C ′, T,m, r, s, β, k, pmt, qt1:

for t = T to 1 do2:

if t = T then3:

for n = C ′ to C do4:

Compute JT (n)5:

else6:

for n = C ′ to 0 do7:

if n = 0 then8:

Jt(n) =
∑m

i=0 pit max{ri + Jt+1(n + 1), Jt+1(n)}9:

else10:

Compute Jt(n)11:
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CHAPTER 5

COMPUTATIONAL RESULTS

We evaluate the performance of the proposed models by performing several experiments

using simulation and present the results in two sections. In the first section, we compare

the static upper bounding problem PUB
I and the lower bounding problem PLB

I for

different show-up probabilities and refund percentages. Then, we analyze the static

problem PLB
I with respect to overbooking parameters, since PLB

I gives the overbooking

amount for each fare class.

In the second section, additional simulation experiments are conducted to see the

differences between the static and dynamic modeling approaches. In this way, we can

measure the effectiveness of the dynamic model. To give a lower bound on the gap be-

tween the static and dynamic models, we compare the solution of the dynamic model

with the solution of the static problem PUB
I because problem PUB

I yields an upper

bound for the maximum expected revenue that can be obtained by the static models.

The simulation experiments depict that the dynamic model performs consistently bet-

ter than the static problem PUB
I . Also, in any of the cases, where the variability of the

show-up probability is high and the overbooking penalty range is wide, the improve-

ment is more significant. In all our simulation experiments we have used MATLAB

7.0 on a personal computer with 1.6 GHz Intel Celeron M processor and 1015 MB of

RAM.

5.1 Static Models

We have implemented the models given in Section 3.1. In the first part, we compare the

two proposed models. To simulate the models, we need to provide a probability vector

pi ∈ <K+1, show-up probability βi, and refund percentages αi, 1 ≤ i ≤ m. Then, we

use the proposed models to find the upper and lower bounds on the optimum objective

value.
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Computation of overbooking levels depends on many parameters. One of them

is show-up probability, βi, 1 ≤ i ≤ m. Different class customers request different

service and get refunds. Therefore, in real world applications show up probability

are class dependent. Generally, it is higher in low fare classes because they are not

flexible (changeable) and do not have any refunds [11]. In our model, we scale the

show-up probabilities by taking into account this observation. On the other hand,

refunds are calculated by using refund percentage parameter, αi ≥ 0, i = 1, ..., m.

We assume without loss of generality that α1 > α2 > ... > αm = 0 to reflect the

higher refunds for relatively more expensive (flexible) fare class seats and no refunds

for the cheapest class. Another important parameter in overbooking calculations is the

cost of denial. Although overbooking aims to minimize the number of empty seats,

it has the risk of customer denial because of the insufficient flight capacity. Bumping

cost may include relatively intangible elements, such as loss of reputation, as well as

any direct compensation. For an overbooking strategy to make sense, the revenue gain

from boarding passengers must outweigh the loss from bumping, including all penalties

and ill-will cost that might be incurred. Denied boardings realize at the cabin level.

Therefore, calculation of the overbooking cost cannot be made exactly. However, in

reality bumping cost depends on the flight properties. For example, Turkish Airlines

(THY) arranges substitute transportation to get the denied passenger to her final

destination and overbooking cost depends on the flight length not fare class price [39].

In the literature, a weighted average fare is used as a overbooking cost [11]. In our

model, overbooking cost, s, is estimated by taking the weighted average of fares with

respect to β.

In our simulation experiments, the probability vectors are generated by using trun-

cated Poisson distribution with parameters λi > 0, i = 1, ..., m and K [6]. K shows the

maximum possible total demand for a fare class. As a result, total demand for a fare

class i is concentrated on {0, ..., K}. In each run λi values are uniformly generated from

the intervals [κi, νi], respectively and sorted in ascending order (λ1 < λ2 < ... < λm)

to show the higher demand for relatively cheaper fare class seats. The parameters and

their values are given in Table 5.1. An example of the probability vectors obtained by

using truncated Poisson distribution is given in Figure 5.1.
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Table 5.1: Parameters used in the truncated Poisson distribution

Parameters Values
[K,C,C ′,m] [100,100,120,4]
(κ1, κ2, κ3, κ4) (2,20,30,40)
(ν1, ν2, ν3, ν4) (12,40,60,80)
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Figure 5.1: Truncated probability distributions for different fare classes

After generating the overbooking parameters and probability vectors, we simulate

the models using these parameters. First, the problems PUB
I and PLB

I are tested with

respect to β changes. To make a fair comparison between two models, we use the same

β for all fare classes. We make 20 simulation runs for each β values and in each run we

provide the probability vectors pi ∈ <K+1, 1 ≤ i ≤ m. As our statistics, we store the

mean value in each run. Table 5.2 gives the parameters used in this simulation. With

these parameters, the running time of algorithm for PLB
I is approximately 20 sec. and

the running time of algorithm for PUB
I is around 0,01 sec.

Figure 5.2 depicts the relative difference between two models over β changes. The

expected revenues of both models decrease as β decreases since we use fixed overbooking

capacity. This means that as show-up probability reduces, it is needed to make more

reservations otherwise it results in revenue loss due to no-shows and related refunds. In

addition, the relative differences decrease with β since two models only differ in their
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overbooking cost calculation. Therefore, as β goes to zero, the results of these models

become similar.

Table 5.2: Parameters used in the simulation for β

Parameters Values
[K, C, C ′,m] [100,100,120,4]

(α1, α2, α3, α4) (0.4, 0.3, 0.2, 0)
(r1, r2, r3, r4) (160,135,115,95)

0,500,550,60,650,70,750,80,850,90,95
0

0.2

0.4

0.6

0.8

1

1.2

β

R
el

at
iv

e 
di

ffe
re

nc
e 

%

Figure 5.2: The relative difference between the objective function values of problem
PUB

I and problem PLB
I with respect to β

Then, we test these problems with respect to α changes. We use the parameters

in Table 5.3. Again to make a fair comparison, we use the same α value for all fare

classes. The results are given in the Figure 5.3. As it is seen in the Figure 5.3, as α

increases, the relative difference increases since the refunds of no-shows increases.

Table 5.3: Parameters used in the simulation for α

Parameters Values
[K, C, C ′,m] [100,100,120,4]
(β1, β2, β3, β4) (0.95,0.85,0.80,0.95)
(r1, r2, r3, r4) (160,135,115,95)
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Figure 5.3: The relative difference between the objective function values of problem
PUB

I and problem PLB
I with respect to α

We also conduct sensitivity analysis for the static problem PLB
I with respect to β

since the model gives the overbooking amounts in each fare class. βi values are different

for different fare classes. Therefore, we only change β1 value to observe the effect of

altering the show-up probability of one class to others. In the first simulation, we use

fixed overbooking capacity. The parameters that we use for this simulation are given

in Table 5.4. Again, we make 20 simulation runs and in each run we generate the

probability vectors pi ∈ <K+1, 1 ≤ i ≤ m. As shown in Figure 5.4 the overbooking

amount in fare class 1 increases as β1 decreases and overbooking amount in other classes

decrease because of the fixed overbooking capacity.

Table 5.4: Parameters used in the simulation of static problem PLB
I

Parameters Values
[K, C, C ′,m] [100,100,120,4]
(β2, β3, β4) (0.85,0.80,0.95)

(α1, α2, α3, α4) (0.4, 0.3, 0.2, 0)
(r1, r2, r3, r4) (160,135,115,95)
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Figure 5.4: Overbooking

Then, we test the static problem PLB
I according to β1 and overbooking capacity

changes. The parameters used in the simulation are the same as in Table 5.4. The

results are given in the Figure 5.5. In this simulation, we compare overbooking changes

in fare classes with respect to β1 and overbooking capacity C ′. We make 20 simulations

for each C ′ value. Figure 5.5(a) depicts that while overbooking amount in fare class 1

increases, it decreases in other fare classes, mostly in fare class 4 due to its low fare and

high show-up rate. However, when we allow to make more reservations by increasing

the overbooking capacity, overbooking amount in the fare class 4 does not change due

to its high show-up rate and overbooking amount in fare class 2 and 3 increase but stay

stable with respect to β1 changes. Static problem PLB
I is concave in C ′. Therefore,

even if we increase C ′, after some point overbooking amount in each fare class does not

change.
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(a) C ′ = 115
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(b) C ′ = 120
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(c) C ′ = 125
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(d) C ′ = 130

Figure 5.5: Overbooking amount for different values of show-up and overbooking ca-
pacity

5.2 Dynamic Models

In this section, we conduct simulation experiments to compare the static problem PUB
I

and the dynamic model (3.30). The motivation of these simulations is to show the

effect of having more information, as one has more information in the dynamic model

than the static model.

In the dynamic model (3.30), for each period t up to departure of the plane we con-

sider a cancellation and an arrival process. In order to provide the arrival probability

vector pt of period t, Dirichlet distribution with parameters γi(t), 0 ≤ i ≤ m is used [6].

Dirichlet distribution has been used to describe the distribution of purchase proba-

bilities for a population of individuals buying one and only one brand of a particular

product as described by Goodhardt [15]. In the dynamic model, Dirichlet distribution

allows us to provide arrival probabilities at each period t for each fare class. It is
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reasonable to predict that as the departure time T approaches, the request for cheaper

fare classes reduce, whereas requests for the more expensive fare classes increase. To

achieve this, we adjust the adopted Dirichlet distribution parameters monotonically.

Figure 5.6 shows the change of these variables over time and Table 5.5 gives the val-

ues of the parameters that we use. With these parameters, the running time of the

dynamic programming algorithm is around 0,30 sec.
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Figure 5.6: The change of adopted Dirichlet distribution parameters over time

Table 5.5: Parameters used in the simulation of dynamic model

Parameters Values
[T, C,C ′,m, β, k] [200,100,120,4,0.80,30]

(r1, r2, r3, r4) (160,135,115,95)
(v̄0, v̄, v0, v1, v2, v3) (1,2,3,0.5,1,4,5)

In our model, we assume that booking requests are independent of the number of

seats already reserved, whereas cancellation and no-show probabilities depend on the

total number of booked seats. This means that the higher the number of reserved seats,

the higher the probability of cancellation [33]. In addition, we consider cancellations

and no-shows at class independent rates. For class-based cancellations it is observed

that cancellation intensities of all fare classes are different. While cancellation amount

of the cheaper fare classes are decreasing in the remaining time before departure of the
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plane, it is increasing for the more expensive fare classes in the remaining time before

departure. Therefore, when estimating a probability of cancellation in period t for all

m fare classes, we adjust ωt to reflect intensities of all fare classes. Figure 5.7 shows

cancellation probabilities for different values of n over time. Cancellation probability

function qt(n) is linearly dependent on n.
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Figure 5.7: An example of the change of cancellation probabilities over time and the
number of reserved seats

After generating the parameters and probability vectors, we have firstly imple-

mented a dynamic programming algorithm to solve (3.30). As it is shown in the

Figure 5.8, Jt(n) is nonincreasing in n.

Then we make 20 simulation runs to compare the solution of static and dynamic

models. In each run, we first provide for 1 ≤ t ≤ T the arrival probability vector and

cancellation probability vector. Then, we compute the expected optimal revenue for

the dynamic model (3.30). To be able to compare static and dynamic models, we need

to compute the demand probabilities pil = P (Di = l), 1 ≤ l ≤ T , by using the arrival

probabilities pt, 1 ≤ t ≤ T . If ζi denotes the revenue generated by a random arrival in

period t, we may assume that it may take m + 1 different values r0, r1, ..., rm and its

discrete density is given as P (ζt = ri) = pit, 0 ≤ i ≤ m, 1 ≤ t ≤ T . Then we have

Di =
T∑

i=1

1{ζt≤ri}
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Figure 5.8: Jt(n) versus n for different t values

Since these random variables are assumed to be independent, the Bernoulli random

variables 1{ζt≤ri}, 1 ≤ t ≤ T , are also independent. It is observed that for every

α ∈ (0, 2π) the discrete Fourier transform

P (α) = E(exp(iα(
T∑

i=1

1{ζt≤ri}))) =
T∏

t=1

E(exp(iα1{ζt≤ri})).

Consequently,

E(exp(iα1{ζt≤ri})) = pitexp(iα) + (1− pit) = 1− pit(1− exp(iα))

and as a result, we obtain

P (α) =
T∏

t=1

(1− pit(1− exp(iα))).

It is known that

pit =
1

T + 1

T∑
n=0

P (
2πn

T + 1
)exp(

−2πink

T + 1
)

We can easily obtain the probabilities pik by using the FFT algorithm [14]. After

generating the probabilities, we can compute the expected optimal revenue for the

static upper bounding problem PUB
I . Dynamic model and static problem PUB

I are

firstly compared with respect to different show-up rates. The parameters we use are
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given in Table 5.6. We conduct 20 simulation runs for different β values. To make a

fair comparison between the static and dynamic models, we use the same β values and

fixed refund amount. Figure 5.9 shows our results as a stacked bar plot. Each bar plot

represents the relative difference in percentages between the revenue obtained with

dynamic model and the revenue obtained with the static model. Figure 5.9 depicts

that relative difference increases as show-up rates decreases. This means that dynamic

model gives better results for the systems where randomness is high.

Table 5.6: Parameters used in the simulation of dynamic and static models

Parameters Values
[T, C, C ′, m, k] [200,100,120,4,30]
(r1, r2, r3, r4) (160,135,115,95)
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Figure 5.9: The relative difference between the objective function values of the dynamic
model and static upper bounding problem PUB

I for varying β
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Then we compare these models with respect to overbooking penalty s changes. The

parameters are given in Table 5.7. We make 20 simulation runs for different s values.

Figure 5.10 depicts that relative difference slightly decreases as s increase. This is

reasonable since as s increases overbooking amount decreases; therefore gap due to

overbooking decreases.

Table 5.7: Parameters used in the simulation of dynamic and static models

Parameters Values
[T, C,C ′,m, β, k] [200,100,120,4,0.80,30]

(r1, r2, r3, r4) (160,135,115,95)
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Figure 5.10: The relative difference between the objective function values of the dy-
namic model and static upper bounding problem PUB

I for varying s parameter
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this study, we consider the single-leg ARM problem with overbooking, no-shows,

and cancellations and introduce new static and dynamic models. These models are

different than the proposed models in the literature in terms of the objective function

and modeling approaches. In the literature, generally overbooking problem is simplified

by ignoring cancelation penalty or reducing problem size. In all cases we provide

support for the models with computational results.

For the static overbooking problem, we first introduce an overbooking problem that

considers total demand. Then we extend it to a model with a booking limit for each

fare class. However, due to its complex analytical form we propose two models which

provide the upper and lower bounds on the optimal expected revenue. In this way,

we can also show the possible worst and best cases of static overbooking problem. In

the computational studies we demonstrate that the relative differences between these

models are very low. Therefore, they can give a close approximation of the optimal

expected revenue.

For the dynamic overbooking problem, we propose a new model at which each pe-

riod up to departure of the plane, either a cancellation, an arrival or both of them can

be realized. In this way, we independently handle cancelation and arrival processes.

On the other hand, our proposed model differs from the existing studies in the litera-

ture by its assumptions. We assume that while arrivals are independent of the number

of reservations, cancellations depend on it, which is reasonable. Experimental studies

demonstrate that the relative difference between static and dynamic models is com-

paratively high even if we compare the dynamic model with the static upper bound

model and it increases as the show-up probability decreases.

We can extend this research in several directions and study these extensions on

the model PT . One of the extensions might be introducing a service level constraint.

In this way, we can provide the limit on overbooking risk. In addition, we can set a
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certain target level with respect to the expected earnings and minimize the probability

of overbooking.

Furthermore, we can extend the model PT by considering revenue obtained from the

empty seats before departure. These seats can be allocated to the passengers without

reservations who wait at the airport.
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