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Abstract

Next generation wireless communication applications require reliable transmission of
data at high data rates and a guarantee of quality-of-service over wireless links.
However, degradations inherent in wireless channels, such as multipath fading,
shadowing, path loss, and noise lead to reduction in the communication capacity and
range significantly. One way to combat these adverse limitations is to employ spatial
diversity, which can be achieved, for example, by transmitting independent copies of the
signal over relay nodes, resulting in improvements in the transmission rates, reliability,
and the capacity of the channel under pre-mentioned detrimental effects. In addition to
exploiting diversity, the capacity of the channel can be further increased by employing
an error correction code such as low-density parity check (LDPC) codes and turbo

codes, etc.

Throughout this thesis, we consider LDPC coded full-duplex multi-relay channels using
Estimate and Forward (EF) and Decode and Forward (DF) protocol. We focus on
designing optimal and sub-optimal iterative soft detectors. Although the use of multi-
relaying improves the channel reliability, the performance of the system is degraded
because of the interference caused by multiple received signals coming from all relay
nodes. To reduce the effect of the interference, maximum a posteriori (MAP) detector
can be employed. Unfortunately, the complexity of the MAP detector grows
exponentially as the number of relays increases. In the literature, two computationally
efficient sub-optimal detectors have been proposed based on Taylor expansion or Central
Limit Theorem (CLT) assumption to alleviate this problem. However, we find out that
the correlation between intrinsic and extrinsic information stemming from these sub-
optimal detectors is very high, and this correlation degrades the detector performance.
To remedy that, in this thesis, we developed two new detectors: Soft Decorrelating
Detection-Taylor (SODED-Taylor) and Soft Decorrelating Detection-CLT (SODED-
CLT), which improves the performance of sub-optimal detectors about 0.8 dB - 1 dB.



Ozet

Yeni nesil kablosuz iletisim uygulamalari, bilginin (verinin) kablosuz baglantilar
tizerinden yiiksek veri hizinda, giivenilir ve kaliteli servis garantisi altinda iletimini
gerektirir. Ancak, ¢ok yollu soniimlenme, golgeleme, yol kaybi1 ve giiriiltii gibi kablosuz
ortamin yapisinda var olan bazi sinirlamalar, iletisim kapasitesi ve mesafesinde dnemli
Olclide azalmalara sebep olur. Bu olumsuz sinirlamalarla miicadele etmenin bir yolu da
sinyalin birbirinden bagimsiz kopyalarinin réle diiglimleri {lizerinden iletimiyle elde
edilen uzamsal cesitliliktir. Role kullanilarak elde edilen cesitlilik, bu smirlamalar
altinda bile iletim veri hizinda, sinyalin giivenilirliginde ve kanal kapasitesinde artmalara
sebep olur. Cesitlilikten bagka, kanalin kapasitesi ayrica LDPC, Turbo kodlari gibi hata

diizeltme kodlari kullanilarak da artirilabilinir.

Bu tezde, “Tahmin ve Ileri” veya “Kod ¢6zme ve Ileri” protokollerini kullarak, LDPC
kodlu ¢ift yonlii ¢oklu rdle kanallar1 i¢in, en uygun ve standart alt1 6zyineli alict kod
¢ozme tasarimi iizerine odaklandik. Coklu role kullanimi kanal giivenilirligini ve
kapasitesini artirsa da, sistem performansi tiim rolelerden gelen ¢oklu alinan sinyallerden
dolay1 olusan girisim sayesinde bozulur. Girisimin etkisini azaltmak icin En Biiyiik
sonsal (MAP) sezicisi kullanilabilinir. Ne yazik ki, role sayis1 arttikga, MAP sezicisinin
karmagiklig {istel olarak artar. Literatiirde, bu sorunu hafifletmek i¢in, Taylor ac¢ilimi
veya Merkezi Limit Teoremi varsayimi kullanilarak iki tane sayisal karmasikligi az olan
standart alt1 sezici Onerildi. Ancak, standart alt1 detektér kullanmaktan kaynaklanan asil
ve ikincil bilgi arasindaki ilintinin fazla oldugunu ve bunun sezici performansini
azalttigini farkettik. Buna care olarak, bu tezde standart alt1 sezicilerin performansini 0.8
-1dB artiran iki yeni sezici gelistirdik: Yumusak ilintisizlestiren Sezim-Taylor (SODED-
Taylor) ve Yumusak Ilintisizlestiren Sezim-CLT (SODED-CLT).
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1. Introduction

Wireless communication is one of the most vibrant and rapidly growing area of the
communications industry that provides a high-speed and a high-quality information
exchange between devices when the use of wires are impossible or impractical to
implement. Potential applications enabled by this technology include cell phones, smart
homes, video teleconferencing, distance learning, and wireless sensor networks.
However, supporting these applications using robust wireless techniques is challenging,
since a transmitted signal encounters various obstacles, such as interference, propagation
path loss, delay spread, Doppler spread, shadowing, and fading, due to the randomness
in wireless channel, and limited transmission resources. These obstacles make it difficult
to support high data rates with continuous coverage at a reduced cost, which is the main
requirement in today's wireless broadband networks. Increasing the transmission
bandwidth or transmit power is not a feasible solution to increase the transmission data
rates due to high system deployment costs, an increased interference to other

transmissions, and also reduction in the battery life-time [1].

Apart from increasing transmission bandwidth or transmit power, the scarcity of wireless
spectrum allows the allocation of the high frequency bands to support high data rates.
But, in high frequency bands, power attenuation with distance is more severe, leading to
reduction in the coverage of a base station significantly. Therefore, increasing the
density of base stations is also suggested to overcome fast decay of power to get
improvements in the capacity and the coverage of networks. However, this trivial
solution leads to the high infrastructure and deployment costs. As a result, we face a
situation in which the wireless systems can achieve any two, but not all three, of high

capacity, high coverage, and low cost [2].



Diversity was introduced as a pragmatic solution to mitigate the limitations imposed by
wireless channel [3]. There are three main diversity techniques in the literature, which
are temporal diversity, frequency diversity, and spatial diversity. Among these, spatial
diversity provides a more robust and reliable communication, since it provides a higher

system capacity without requiring any additional power or bandwidth.

Spatial diversity is exploited by transmitting signals via several independent diversity
branches to get independent copies of the signal at the destination. Cooperative
communication generates this diversity via multiple spatially separated antennas and
multiple geographically separated users or relay nodes. Therefore, using relay nodes is a
more practicable solution to increase the data rate, coverage range, and enhance the
reliability, compared to employing additional antennas on mobile terminals and/or

deploying base stations.

To grasp the impact of relay channels, a realistic example should be given. We’ve all
had that annoying experience: the strength of your signal may suddenly weaken when
you’re in the middle of a cell phone conversation, making it difficult for you to
perpetuate your chat. The reason is that the wireless channel suffers from fading, leading
to severe variations in signal attenuation within the duration of any given call. Therefore,

you never know when your conversation will be interrupted or cut off.

In today's mobile communication, cell phones and base stations form a one to one
communication. When an obstacle comes between the cell phone and a base station, the
phone either increases its signal power to maintain continuous contact with the base
station or the communication is cut off. But, as it is mentioned above increasing transmit

power results in reduced battery life and an increased interference to other transmissions.

The fact that numerous people use cell phones simultaneously allows the creation of a
cooperative network protocol that phones communicate with a base station through the
help of other phones. When your cell phone has some difficulties to maintain contact

with the base station, the fellow behind you may have a perfectly strong signal.



Therefore, by exploiting cooperative communication, your phone sends its signal
through that fellow's cell phone, and the strength of your signal becomes stronger than
before. Therefore, the overall signal power is strengthened and an interactive, reliable,
and cooperative mode of uninterrupted communication is generated. This cooperative
communication scheme is not designed for only cell phones, but also for any wireless

devices operating in a network.

In the next section, the communication techniques enabling spatial diversity are
introduced and specifically background on relay networks, which is one of those

communication techniques, is provided.

1.1 Background on Relay Channels

Spatial diversity can be generated via multiple antennas that are physically separated
from one another. The receiver antenna diversity, where the receiver has more than one
antenna is the first spatial diversity technique proposed in the literature [4]. The antennas
must be separated on the order of wavelength to have independently faded versions of
the transmitted signal to use receiver combining techniques, i.e., maximum-ratio
combining (MRC), equal gain combining (EGC), and selection combining (SC)
effectively. But, the size of the mobile terminals puts a constraint to employ multiple
antennas. To overcome this constraint, a simple transmit diversity scheme is invented by
Alamouti [5], which involves the transmission of multiple redundant copies of data to
combat for fading. Alamouti’s transmit diversity scheme for two transmit antennas is
used to develop Space-Time Block Coding (STBC). A generalized study of STBC is
given in [6], [7].

Again, due to the limitations in size and hardware complexity, transmit diversity
methods are not applicable to many wireless systems. A conventional example is ad-hoc
networks and sensor networks, where size, complexity, and power are all constraints that

prevent the presence of a large number of transmit antennas. In such wireless networks,



geographically separated users can be used to help forward the data of their partners,
resulting in diversity. If only one user in the network has information to transmit and the
other nodes are only present to help the user by forwarding its data, such networks are
called relay networks [8]. With this approach, the full connectivity between the nodes in

the network is exploited.

The use of relays can significantly improve the channel capacity, reduce the power cost
and enhance the system reliability. In relay networks, the basic idea is that a relay node
helps a source node transmit its data to a destination that is out of reach of the source
node [9]. Relay channels are important building blocks of next generation wireless
systems and will play a central role in various applications including cellular systems
and wireless ad hoc networks. From a physical layer point of view, there are two main
research directions on wireless relaying: information theoretical work aiming at the
evaluation of theoretical limits of relay channels [10], and the development of practical
wireless relaying protocols. This thesis focuses on the latter research direction, where an
appropriate receiver structure is designed for LDPC coded full-duplex relay channels
and works on increasing the system performance by employing multi-relays, as well as

decreasing the system complexity as relay number increases

Some practical relaying strategies have been proposed in the literature. The “coded
cooperation” technique was proposed using convolutional codes [11] and later extended
to space-time codes [12], [13]. However, these codes could not approach the capacity
limits of the relay channel. That leads to incorporation of Turbo codes [14]-[15]. In [14]-
[15], the authors propose turbo coded cooperation schemes for both half-duplex and full-
duplex relaying and it is shown that these schemes approach the capacity limits very
closely by employing a multi-access channel detector and iterative decoding at the
destination. LDPC codes which have superior error correction capability and capacity
approaching capability as compared to Turbo codes have not been considered in a
significant amount of research for relay channels. Specifically, [16] proposes the design
of a compress and forward scheme for the half-duplex Gaussian relay channel based on

Wyner-Ziv coding where LDPC codes are not given a special attention, but only treated



as an error protection method at the source node. The authors in [17] present an efficient
LDPC code design approach for full-duplex Gaussian relay channels and corresponding
decoding based on a partial factor graph. From information theoretical perspective, the
authors in [18] and [19] show that carefully-designed LDPC codes can approach the
capacity limits in a non-fading environment by developing different coding schemes for
half-duplex and full-duplex relay channels. In [20], authors design appropriate
coding/decoding strategies based on LDPC codes using the decode-and-forward protocol
for single relay channel for both full-duplex and half-duplex relay channels. In this
thesis, we have implemented appropriate receiver structures for full-duplex LDPC

coded-multi relay channels using DF and EF protocol.

There are a number of contributions in the literature on relay channels. We add to that

knowledge by developing some ideas, which are mentioned in the next section.

1.2 Contributions of the Thesis

This thesis is concerned with decoding scheme of full-duplex multiple relay channels for

fading channels. The contributions of this thesis can be classified into three categories

1. We extend full-duplex single relay channel to full-duplex multiple relays for flat
fading channels. The destination observes a superposition of the codewords
transmitted from source and relay nodes. The iterative receiver structure
between maximum a posteriori (MAP) detector and LDPC decoder is designed
to extract the transmitted data from source node by using these superimposed

signals.

2. As we increase the relay number, the computational complexity of MAP
detector increases exponentially. Therefore, two sub-optimal detectors based on

Taylor expansion or Central Limit Theorem (CLT) approaches are investigated.



The performances of these low complex detectors are compared with optimal

MAP detector with respect to number of relays in the network.

3. Using sub-optimal detectors result in degradation of system performance due to
high correlation between intrinsic and extrinsic information of detectors.
Therefore, we propose two detectors named SODED-Taylor and SODED-CLT
which decorrelate these two values by using attenuators at the output of the

detector and get improvements.

1.3 QOutline of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 Presents an overview of LDPC codes. The representation of LDPC codes,

encoding and decoding processes are provided in detail.

Chapter 3 Provides a background on cooperative communication and cooperative

diversity relaying. In addition, background on coding for relay channels is presented.

Chapter 4 Studies the performance of single relay networks where the source, the
destination and relay node are all equipped with single antennas. Full-duplex channel
model and capacity and information rates of this scheme, as well as the direct and multi-
hop transmission schemes are discussed. At the receiver side, the iterative decoding
process between MAP detector and LDPC decoder is analyzed. Moreover, single relay
system is extended to multi-relay systems and an appropriate receiver structure is
designed accordingly. The performance of this system is investigated and compared to

single-relay systems.

Chapter 5 Two sub-optimal detectors with low computational complexity are obtained

by approximating MAP detector using Taylor expansion or CLT assumption. These sub-



optimal detectors are compared with optimal MAP detector and the worse performance
of these sub-optimal detectors compared to MAP is alleviated by decreasing the
correlation between intrinsic and extrinsic information using attenuators. The reduction
in decorrelation of intrinsic and extrinsic information allows us to achieve two detectors,

named SODED-Taylor and SODED-CLT.

Chapter 6 Provides concluding remarks and discuss possible future work based on the

ideas developed in this thesis.

1.4 Notation

In the thesis, we use following notations. " stands for transposition . Bold uppercase

letters describe matrices while bold lowercase letters describe row vectors of appropriate

dimensions. We denote the expectation operator as E[.]. I, is the N x N identity matrix.



2. LDPC Codes

This chapter introduces a detailed overview of LDPC codes. The representation,
encoding and principles of iterative LDPC decoding, which will be used throughout this
thesis, are provided. Before we begin a discussion of LDPC codes, some basics of linear

block codes are reviewed.

2.1 Linear Block Codes

In error control codes, extra redundant bits are added to the information data to help the
receiver detect and correct errors of the received data. The main characterization of a
block code is the division of the transmitted data into blocks of fixed length of K bits. A
linear block code is an important type of block codes used in detection and correction of
errors. In linear block coding, each symbol can be written as a linear combination of
other bits or symbols in the transmitted data. The encoder maps block of K source bits
into blocks of N coded bits, where N is greater than K. That would provide the recipient
of the message block enough redundancy to detect and correct errors. The rate of the
code is expressed as R=K/N, where it states the fraction of the total amount of

information that is useful (non-redundant).

When X bits are used to form an information data, there are 2% distinct information data
possible. Each K bit information data is attributes to the N bit codeword. An arbitrary
encoding, an encoder requires the storage of a table of 2 entries each of length N, which
is not practical as K increases. Linear block codes alleviate the non-practicality and the
complexity of the arbitrary encoding by using a linear generator matrix to transform

information data to codewords. In this work, we consider binary linear block codes.



A binary code is linear if and only if the modulo-two sum of any two codewords is a
codeword, which allows to find a generator matrix (G), defining the code. The generator
matrix consists of K linearly independent row vectors of size N, g1, g2...gk, such that it

can be defined as

8

The encoder generates a codeword ¢ by multiplying the message bits u with the
generator matrix G as, ¢=uG, where ¢ is the codeword and u is the vector of message
bits. As it is mentioned above, in arbitrary encoding the complexity of the encoder is 25
x N, whereas now the complexity reduces to the size of G, that is K x N, since it is
enough for the encoder to just store G. Also a parity-check matrix H can be deduced
from the generator matrix G, where the relation of the matrices are expressed as GH'=0.
To check whether the received data, y, is a codeword or not, the receiver uses the H

matrix, by utilizing the expression

yH =0

since uGH'=0. That is, a codeword is orthogonal to each row of H. This expression is

used by the decoder for error detection and correction.

Systematic encoding, where the message bits and redundant bits are explicitly extracted
from the codeword, is convenient to be used in encoders. Designing a generator matrix
that allows systematic encoding, is possible by performing row reductions and column

reordering on G until obtaining an identity matrix. Thus G can be expressed as

2.1)

(2.2)



pl,l pl,N—K 1 0 0
Py 0 Pan-k o1 -0

G=[P|I,]= (2.3)
Per  Pewx 00 -1
where P is an K x (N-K) sub-matrix, and Ik is the K x K identity matrix
It is easy to determine the parity check matrix H, when G is systematic. It is simply
10 -0 =py - Py,
01 - 0 -p. - -
H=[I, (|-P']= Do :pl)2 . {7“ (24)

00 --- 1 _pl,N—K“' _pK,N—K

where Iy is the (V-K) identity matrix and P' is the transpose matrix of P. For binary

codewords, -P'=p".

After providing some basics of linear block codes, the next section introduces one of the
most powerful error correcting codes, LDPC codes, which are a class of linear block

codes.

2.2 Low Density Parity Check Codes

Designing practical coding schemes approaching the capacity very closely has always
been a central challenge in coding theory. In recent years, understanding and the ability
to design iterative decoding schemes have improved such that all aspects of the
telecommunication network can be included in the iterative processing: source coding
channel coding, modulation, equalization, multiple access, and transmission via multiple
antennas; and so on. Coding techniques, such as turbo codes or LDPC codes, also use
iterative decoding based approach, that give a performance close to the Shannon limit

within a factor of a dB.

10



LDPC codes were discovered by Robert Gallager in the 60s in his Ph.D. thesis [21]. But,
his ideas of iterative decoding using message-passing algorithm has been forgotten for
almost 30 years until Mackay-Neal [22] and Wiberg [23] rediscovered the capability of
this error correcting code. With an appropriate degree distribution, LDPC codes were
shown to demonstrate the properties of good codes capable of asymptotically
approaching Shannon limit. They have a threshold within 0.0045dB of the Shannon limit
of AWGN channel (At BER 10 and block length 107) [24]. LDPC codes were further
extended in [25] to include irregular LDPC codes, outperforming the Turbo codes, in

terms of bit-error rates.

The interest of researchers on LDPC codes has boosted due to its surpassing the
performance of Turbo codes and having lower hardware complexity than Turbo codes.
Therefore, a number of next generation communication standards, such as mobile
phones and next-generation satellite digital video broadcasting standard, DVB-S2 has

been considering LDPC codes for error correction standard [26].

LDPC codes are linear block codes specified by a sparse M x N parity check matrix, H
where N>M and M=N-K. Despite the fact that these codes can be generalized to non-
binary symbols, in this thesis we only consider binary codes. The parity check matrix
contains a small number of 1’s per column and per row, both of which are very small
compared to block length, making it sparse. In particular, an (, j, k) low-density code is
a code of block length N. The number of 1’s in a parity check matrix row is called the
row weight, &, and the number of 1’s in a column is the column weight, j. Regular LDPC
codes have same row weight and same column weight on parity check matrix, whereas,

irregular LDPC codes have different row and column weight on parity check matrix.

e A regular LDPC code is characterized by two values: &, and ;.

j is the number of ones in each column of the parity check matrix H e F,"" .

k represents the number of ones in each row. F,"" represents binary finite field,

consisting of M x N elements 0 and 1, where addition is exclusive OR (XOR) and
multiplication is AND.
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The rate of parity check matrix is the fraction of information bits in the

K N-M . M

codeword. It is given by R = — =1-—
N N

The number of 1’s in the parity check matrix H is given by Mk or Nj. From
M .

MIk=Nj, we getﬁzi. Hence the rate of matrix can also be expressed as R

~1-7
k

Figure 2.1 represents a regular (6, 2, 3) LDPC code with its parameters

1 10100
1 010160
011001
000111

Figure 2.1: A regular matrix: k=3,j=2, M =4; N =6, K=N-M=2; R=1/3

An irregular LDPC code has different numbers of ones in each row and columns.
It is known to be better than the regular one in terms of bit error rate (BER) and

its performance is close to Shannon limit [27].

Figure 2.2 shows an irregular parity check matrix. The number of ones in some
columns is 3 and in others it is 2. We have also the same situation for rows, a row

has 4 ones and others have 3 ones.

1010001

1100101
H=[1100010
0011100
0001011

Figure 2.2: An irregular matrix
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2.3 LDPC Representation

R.M. Tanner, in [28] used the basic techniques of graph theory to facilitate the design
algorithms for encoding and decoding. He proposed an approach to the construction of
codes which generalized the LDPC code construction, using recursive techniques. In
addition, he suggested a bipartite graph, also known as a Tanner graph for a graphical
representation of LDPC codes, rather than using a sparse matrix for representation. In a
bipartite graph, nodes are partitioned into two subsets such that an edge connects each
node in a set to a node in the other set. In the context of LDPC coding, the two subsets of
nodes in a Tanner graph are referred to as check nodes and variable nodes. Figure 2.3
shows a parity check matrix with a corresponding Tanner graph, Figure 2.4. An edge
exists between the ¢™ check node and the v variable node if and only if H,,, is 1. Check

nodes c...cs represent the five rows of the matrix, whereas v;...v;( are the columns.

A cycle in a Tanner graph is formed by starting from a node and alternating through “1”
entries between variable and check nodes, and then ending in the starting node. The
number of edges in the complete path determines the length of the cycle and is always
even; but it cannot be two. A cycle of four is shown in bold in the graph of Figure 2.4.
The smallest cycle in a Tanner graph is called its girth. The smallest possible girth is

four.

[1111110000]
0011111100
H=({0101010101
1010101010
110010101 1]

Figure 2.3: LDPC code: A matrix representation
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Check Nodes

Variable Nodes

Figure 2.4: LDPC Code: Tanner Graph Representation

24 LDPC Encoding

The encoding of LDPC codes is similar to encoding of linear codes, which is briefly
discussed in Section 2.1. From a given parity check matrix, H, a generator matrix, G, is
derived. The encoding of datau=u,..u,is performed by multiplying u with the
generator matrix, ¢ =uG where u is a vector of message bits and ¢ is the codeword to be
transmitted. Converting H matrix in systematic form, using Gaussian elimination and
column permutations H=[I,, | P"], eliminates the sparseness of the parity check matrix,
since it has no longer fixed column or row weights and P is very likely to be dense. The
computational complexity of the encoder increases due to this denseness of P, since the
multiplication of message bits with the dense generator matrix requires a large number

of operations. Performing Gaussian elimination takes about O(N?) and afterwards the
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actual encoding it takes O(N?), or more precisely N*( ) operations, where R is

R(1-R)
2

the code rate [29], since the H matrix is dense after the Gaussian elimination.

Richardson and Urbanke [30] took advantage of the sparsity of the H matrix to decrease
the quadratic complexity of the encoding process by parity-check matrix preprocessing.
They found that the encoding complexity is either linear or quadratic, but quite
manageable without performance degradation. For example, for a (3,6) regular code of
length N, even though the complexity is still quadratic, the actual number of operations
required is O(N) in addition to 0.017°N*. But 0.017% is a small number, so the complexity

of the encoder is still manageable for large N.

2.5 LDPC Decoding

In addition to introducing LDPC codes, Gallager also proposed an iterative decoding
algorithm with a computational complexity that is linear in the block length [22]. The
decoding algorithm works iteratively and computes the distributions of variables by
passing messages on the edges of bipartite graph. Depending on the context, decoding
algorithm has different names which include sum-product algorithm (SPA), the message
passing algorithm (MPA) and the belief propagation algorithm (BPA). In this thesis, we
will use “message passing” term, which usually covers SPA, BPA and their
approximations. In message-passing algorithm, message, which is an estimate of the bit

associated with that edge, is passed along the edges of the graph as shown in Figure 2.5.
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N-K check nodes

Check-to-Bit

. messages
Bit-to-Check

messages

LLR, LLR;,
N variable nodes

HD, HD, HD: Decoded bits LLR: Estimation of received bits HD,,

Figure 2.5: Illustration of message-passing algorithm on a bipartite graph

These decoders can be understood by focusing on one bit as follows:

A codeword which is encoded by LDPC codes encounter noisy communication channel
during transmission and some of its bits are corrupted by noise. Each variable node at
the decoder has to determine whether the bit that arrived is error free or not. Therefore
the variable node asks all bit’s neighboring check nodes (two nodes are said to be
neighbors if they are connected by an edge) about the value of the bit. Afterwards, each
neighboring check node asks its other neighbors their values and modulo two sums of

those values is sent back to the variable node.
The variable node now has several estimations coming from check nodes. It can take a

majority vote, but as the iteration number increases, the true value of the bit can be

obtained easily.
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Each node obtains estimates from all its neighbors and forwards its estimate to each
neighbor with the help of the estimates of the other neighbors. This is what message-
passing algorithm is. This iterative algorithm goes on until either all parity-check

equations are satisfied or a pre-determined iteration number runs out.

The decoding analysis of LDPC codes is given in detail in [31].
Similar to symbol by symbol decoding of trellis codes, the value of the a posteriori

probability (APP) that a given bit in the transmitted codeword ¢ =[¢, ¢, ... ¢, ] equals 1,
given the received wordy =[y, », ...y, ] 1s important.

For the decoding of bit ¢;, the APP is computed as

P(c; =11y) (2.5)

or the APP ratio (also called the likelihood ratio, LR)

LR@{_):M (2.6)
P(c, =1 'Y)
or the log-APP ratio (also called the log-likelihood ratio, LLR).
LLR(c) = log(2& =Y, 2.7)
P(c, =1]y)

In one half iteration, each variable node v processes its input messages and sends its
output messages to its neighboring check nodes c¢. This is shown in Figure 2.6 for the
message m;3 from variable node v; to check node c;. The information passed is (2.5) or
(2.6) or (2.7). Note that all the information coming to v; from the channel and its
neighbors, except c; is passed to c3. That means only extrinsic information is exchanged.

Such extrinsic information is computed for each connected variable-check node pair.
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C1 Cz C3

Vi

» (received information)

Figure 2.6: Message passing from variable node to check node

In the other half iteration, each check node processes its input messages coming from
variable nodes and sends its output messages to its neighboring variable nodes. This is
shown in Figure 2.7 for the message m;4 from check node ¢; to variable node v4. The
information passed is Pr(check equation c; is satisfied | input messages). Similar to the
previous case, only extrinsic information is passed to variable node v4. That is all the
information coming to c; from its neighbors, except v4 is passed to v4. Such extrinsic

information is computed for each connected check-variable node pair.

Cy

" Vs Vi V

Figure 2.7: Message passing from check node to variable node



After a pre-determined number of iterations or all parity check equations are satisfied,

the decoder computes the APP and decides the bits transmitted from this APP value. One

example of stopping criterion is to stop iterating whenéH’ =0, where ¢is a decoded

codeword.

2.5.1 Probability Domain SPA Decoder

We start by introducing the following notation:
e ;= {variable nodes connected to check node c;}
e V= {variable nodes connected to check node c;}\{variable node i}
e (;= {check nodes connected to variable node v;}
e (;= {check nodes connected to variable node v;}\{check node j}

e M (~1i)={messages from all variable nodes except node v;}

e M _(~ j)={messages from all check nodes except node ¢;}

o P=Pr(v~=l:)

e S~ event that the check equations involving v; are satisfied.

e g,(b)=Pr(v,=0[S,,y,, M (~ j)),where be{0,1}. For the APP algorithm
m;=q;(b); for the LR algorithm m;=q;{0)/ g;(1); and for the LLR algorithm

mi=log[qi(0)/ gi(1)]
e r,(b)=Pr(check equation ¢; is satisfied | v=b, M ,(~ i) ), where b €{0,1}. For the

APP algorithm m;=r;; (b); for the LR algorithm m;= r;; (0)/r;; (1); and for the LLR
algorithm m;=log[r;; (0)/r;; (1)]

q;(0) 1s expressed as

q;(0) =Pr(v, =015, y,, M (~ )

= (1= R)PK(S v, = 0.7, M, (~ /))/Pr(S)) 2.8)
=~ K,(-P) [ r,,(0)
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where the Bayes’ rule is used twice to obtain the second line and the independence

assumption is used to obtain the third line. Similarly,

g; =K, P [T 7. (2.9)

Jj'eC\j
The constants Kj; are chosen to ensure that g;{0) + g;(1) = 1

Calculation of g;;1s shown in Figure 2.8

rjib)

Vi

Yi

Figure 2.8: Illustration of message passing half-iteration for the computation of ¢;(b)

To find an expression for the 7;(b), the following result is used.

Result: (Gallager [21]) Consider a sequence of M independent binary digits a; for which

Pr(a=1)=p; . Then the probability that {a,}", contains an even number of 1’s is

M
l+1H(1—2p,) (2.10)
2 2%

Proof: Induction on M
Using this result and the correspondence p; 2 ¢;(1), we get
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=2 +1 [ 1-24,,0) @11)

i'eV\i
Clearly,
r..(l): l—r.A(O) (2.12)

qi(b)

Vi

Figure 2.9: Illustration of message passing algorithm for the computation of r;(b)

Summary of the Probability-Domain SPA Decoder

1) For all variable nodes, P =Pr(v, =1|y,) is calculated, where y; is the i™ received

channel symbol. Then, set ¢;(0) = 1-P; and g;(1) = P; for all i,j.
2) Update r;(b) using equations (2.11) and (2.12).
3) Update g;(b) using equations (2.8), (2.9) and solve for the constants Kj;

4) Compute
Qi(O):Ki(l—E)Hlfji(O) (2.13)

and
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O =KR[]r,M (2.14)

jeC;
where the constant K; is chosen to ensure that Q,(0)+Q,(1)=1

1 ifQ.()>0,0)

0 else

5) Set ¢, ={

If ¢H" =0 or the number of iterations equal to the pre-determined iteration, stop;

else go to Step 2.

2.5.2 Log-Domain SPA Decoder

For binary codes, the sum-product algorithm can be performed more efficiently in log-
domain, where the probabilities are equivalently characterized by the log-likelihood

ratios (LLR).

Initialization: Each variable node v; is assigned an a posteriori probability Pi=Pr

(vi=1|yi). In the case of equiprobable inputs for a memoryless AWGN channel

r, Pr(v,=0]y) I-P 2

L(v) =1 J 2= L= "y 2.15
) OgPr(vi=1|y,-) og P o ¥, (2.15)

A %‘(0)
L(g;) =log——=L(v,) (2.16)

’ q,; (D)

A, 1i(0)
Lir ) 2102~ 2.17
() =log D (2.17)

Checks to variable nodes: Each check node ¢; gathers all the incoming information and
updates the belief on the bit i based on the information from all other bits connected to

the check node ¢;.
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First replace 7;(0) with 1-7;;(1) in (2.12) and rearrange to obtain

1-2r,()=[] (1-24,,)

i'eV\i
Now, using the fact that tanh[% log(&)] = p,— p, =1-2p,, the equation above is
P

written as

tanh(%L(rﬁ)) = H tanh(lL(qf,- ),

i'er\i 2

and rearranging the equation gives

L(r;;)=2tanh™' (] tanh(L(g, )/ 2)) (2.18)

i'elV;\i

Variable to Check nodes: Each variable node v; passes its probability to all the check

nodes that connect to it. The initial information P; and the “extrinsic” information, r.

i
coming from the connected check nodes are used to calculate the probability. The belief
that the v; propagates back to the check node c¢; should not include the information

coming from c;.

First divide equation (2.8) by (2.9) and taking the logarithm of both sides gives

Lig,) =L+ Y L(ry) (2.19)

J'€C\j

Check stop criterion: The decoder obtains the total a posteriori probability for the bit i

by summing the information from all the check nodes that connect to the bit i.

L)~ 1og% =L+ 3 10) (2.20)

23



Hard decision is made based onZ(Q,)and the resulting decoded input vector Vv is

checked against the parity-check matrix H. If YH" = 0, the decoder stops and outputs v.

Otherwise, it repeats the steps after the initialization.

Figure 2.10 and Figure 2.11 illustrate the full LDPC coding and decoding process.

REDUNDAN ]F.EDUNU'Ah REDUNDAN
GLASS, j'

parity bits { 2 :

[EX =)}

Figure 2.10: Demonstration of encoding with a rate 1/2 Gallager code. The encoder is
derived from a very sparse 10000 x 20000 parity-check matrix with three 1’s per column.
(a) The code creates transmitted vectors consisting of 10 000 source bits and 10 000 parity-
check bits. (b) Here, the source sequence has been altered by changing the first bit. Notice
that many of the parity-check bits are changed. Each parity bit depends on about half of
the source bits. (c) The transmission for the case s = (1,0,0,... 0). This vector is the
difference (modulo 2) between transmissions (a) and (b). (Reproduced from [22])
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RECEIVED:
M e
L A

1

DECODED:

Figure 2.11: Iterative probabilistic decoding of a Gallager code. The sequence of figures
shows the best guess, bit by bit, given by iteration decoder, after 0,1,2,3,10,11,12 and 13
iterations loop. The decoder halts after the 13th iteration when the best guess violated no
parity check set. This final decoding is error free. (Reproduced from [22])
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3. Cooperative Communications

This chapter provides a background on cooperative communication and cooperative
diversity relaying. First, SISO system where the network only consists of a single source
and destination node is introduced. Then, SISO system is extended to cooperative
communication scheme where other nodes help forward data to the destination.

Moreover, background on coding for relay channels is presented.

3.1 SISO System

SISO system consists of a bit source; transmitter, channel, receiver, and a bit sink, as

shown in Figure 3.1.

Source Source Channel Digital
—> —> >
Encoder Encoder Modulator
\ 4
Channel
Destination Source Channel Digital
«— < < <
Decoder Decoder Demodulator

Figure 3.1: Communication block diagram
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The bit source generates a vector of information bits to be transmitted. Normally in

simulations, a random bit generator is employed as a bit source.

Channel encoder: The transmitter encodes the message bits into coded bits by using the
channel encoder, which attaches redundancy to message bits to protect against channel-

induced errors.

Modulator: Transforms discrete symbols into analog signals that can be transmitted

across the channel.

Communication Channel: A communication channel provides a way to communicate

at large distances, which contains external signals like noise that effects transmission.

Signal detection: Receiver decides which message was sent based on noisy received
signal, depending on the signal transmission methods as well as the communication

channel. Optimum detector minimizes the probability of an erroneous receiver decision.

Channel Decoder: Performs error correction techniques to recover transmitted

information
The cooperative system consists of source and destination similar to SISO system, but

also includes a partner node (relay node or another user). This system will be

investigated in the next section.

3.2 Cooperative Diversity

3.2.1 Background

In a conventional cellular radio network, wireless terminals communicate directly with a

base station via a single hop. However, most times the area that base stations cover
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cannot include the terminals; hence terminals cannot be approached by their base
stations via single hop. For example, the user may be in some place shadowed by a
building, or in a subway station or tunnel. Therefore, present wireless systems are
incapable of supporting the intended coverage, quality of service and transmission rates

expected of future wireless systems.

The inefficiency and inadequacy of conventional cellular architecture do not seem to be
reduced enough by the advances in signal processing techniques, smart antennas and
MIMO systems. Therefore, present wireless systems require design and deployment of
promising signal processing techniques to alleviate the inefficiency. The incorporation
of diversity techniques in the current wireless networks is one of the novel and feasible

strategies, allowing the support of high data rate, quality of service and coverage.

Due to the wireless environmental factors and limited resource constraints, a transmitted
signal encounters various detrimental effects, such as interference, propagation path loss,
delay spread, Doppler spread, shadowing and fading that result in high error and outage
rates of wireless systems. Therefore, these detrimental effects make diversity techniques
appealing to increase robustness. MIMO technology has aroused interest in wireless
communications, since it promises improvements in data rate, range, and reliability
without additional bandwidth and transmit power. That will enhance the usefulness of
wireless applications significantly. MIMO produces link reliability, or in other word,
diversity by increasing bit rate which reduces fading. To achieve diversity using MIMO,
the transmitter should use multiple antennas at both receiver and transmitter. However,
size, cost or hardware limitations limit multiple antennas at many wireless devices that

MIMO technology cannot be exploited.

When spatial diversity through multiple antennas is not feasible, cooperative
communications provide a new form of spatial diversity, called cooperative diversity
without utilization of multiple transmit or receive antennas. In a cooperative system,
transmitted signal between source and destination can be overheard at neighboring nodes

due to the broadcast nature of wireless medium. The neighboring nodes process this
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information and re-transmit to collaborate and create spatial diversity. Therefore, it
allows single antenna mobiles in a multi-user environment to share their antennas and to
produce virtual multiple-antenna system. With this scheme, the detrimental effects of
fading are mitigated, since independent copies of the original source signal are
forwarded to the destination. As a result, higher throughput, channel capacity and

reliability are obtained.

One of the first studies that introduced the concept of cooperative diversity is [32] by
Sendonaris et al, in which two users cooperate and form a partnership to forward
partner’s data. The authors demonstrated the potential of cooperative diversity in
increasing the achievable rate region of the two users, as well as improving error
probability, outage capacity and coverage. The work of Laneman and Wornell [33]
approaches cooperative communication scheme in a conceptual manner and put the user
cooperation in a mathematical framework. In this seminal paper, the authors discuss a
cooperative protocol for alleviating multipath fading of wireless networks by exploiting
the spatial diversity available among terminals that have agreed to forward each other’s

data.

3.2.2 Relay Channels

Novel and promising strategies at various layers must be improved to support high data
rate services needed by future wireless networks. Recently, the use of relay nodes to help
source node transmit its information to the destination is considered and received a
significant attention due to its application in wireless networks, since it offers higher
quality of service, power savings, extended coverage, and improve reliability in BER. It
is closely related with MIMO system, which has been widely employed to achieve a
diversity gain. But, as it is discussed above, some wireless devices cannot support more
than one antenna, since the separation between antennas must be at least on the order of
half the wavelength of the carrier frequency to prevent correlated fading. In contrast,

relaying enables single antenna mobiles in a multi-user environment to share their
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antennas and generate a virtual multiple-antenna transmitter. This is known as
cooperative relaying, where the relay node virtually becomes another transmitter and
helps the source transmit source data to the destination. Since the copies of source
information are transmitted through independent wireless links, a diversity gain is

achieved.

A wireless relay network is generally composed of a source node, a destination node,
and a variable number of intermediate relay nodes, where these relay nodes participate in
the communication between source and destination node by passing information to
destination node coming from the source node. Therefore relay nodes cooperate with a
source node by forwarding source message and thus help the destination node

successfully decode the original information message.

The simple relay system consists of three nodes, as shown in Figure 3.2.

Relay

Source
-/

Destination

A 4

Figure 3.2: Cooperative Relay System

o The source: A node that transmits information.
o The relay: A node that both receives and transmits information to aid the
communication between the source and destination node.

o The destination: A node that receives information from both relay and source.
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Note that each terminal has one antenna and thus cannot generate spatial diversity

individually.

The wireless relaying protocols are classified into three main types amplify-and-forward

(AF), decode-and-forward (DF) and estimate and forward (EF) [34].

3.2.2.1 Amplify-and-Forward Method

In this method, each relay receives a noisy version of the transmitted signal and acts like
analog repeater. It simply amplifies its received signal, to satisfy its own power
constraints, and forwards it to the destination node. The destination can decode received

signal by combining the two independently copies of the signals.

Source and the relay nodes are assumed to have power constraints
of E[x,x,"]1= E[xzx,]=Eg, respectively. And channels are Rayleigh fading
WithE[]h\z]zl.

Source node broadcasts its message and the signal received by the relay node is

YR :\/EShSRxS+n (3.1)

The receiver sends an amplified version of (3.1) to the destination and the transmitted

2
Xe =, ES|hS2R| Xg + / 12 n (3.2)
Eg | hg |” +N, Eg | hge |” +N,

In AF mode, storage element is required because of the operation on analog signals, and

signal is given by

the fact that noise is also amplified and retransmitted to destination, make AF mode be

expensive in applications.
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3.2.2.2 Decode-and-Forward Method

The relay first decodes the received signal. It re-encodes the data and forwards it to the
destination. It uses either the same code as the one used at the transmitter or a new one.
When the relay fails to decode the data correctly, it cannot help the source for the current

cooperation and it may select staying silent to save energy

3.2.2.3 Estimate-and-Forward Method

In this strategy, the relay sends an estimate of its channel output to the destination,
without decoding the source message. When the relay node is close to the destination, at
low SNR estimate and forward relaying is shown to provide substantially higher rates

compared to both direct and two-hop communication [35].

3.3 Cooperative Coding

The work of Meulen [8], and Cover and El-Gamal [34] on relay channels is the pioneer
of the idea behind cooperative communication, which provides the basis for the
cooperative schemes and protocols that recently have received attention. However, they
focused on information theoretical perspective, rather than practical perspective. The
authors in [34] evaluates the maximum achievable rate of Gaussian channels for with or

without feedback to the source or relay node.

Although the area of cooperative communications has seen significant improvements
and advancements, it still requires study on practical distributed coding strategies that
can approach the capacity limits of the relay channels, derived by information theoretical
perspective. Along with the advancements in information theoretic relay channels,
practical transmission schemes for relay systems have also been developed [19]-[20],
[32]-]42]. Among them, it has been proven that the integration of cooperation with

coding is a very useful technique to improve the system performance.
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Despite the fact that the implementation of repetition-based protocols proposed in [33] is
very simple, they are not efficient with respect to bandwidth utilization. Therefore, more
promising schemes that enhance the spectral efficiency must be developed to alleviate
the inefficient use of bandwidth of repetition-based protocols. For example, coded
cooperative schemes, where signals are not repeated, are proposed using convolutional
codes [11]-[12], [36]-[37]. Hunter and Nosratinia [11] proposed a coded cooperation
scheme that N bit long codeword of each user is divided into two frames of size N; and
N, via puncturing techniques, using convolutional codes. Each user transmits the N; bit
frame to its partner. Partner node decodes the received signal and extracts the punctured
bits, which are the second frame of size N,. Then the users transmit the N, bit frame of
their partner to the destination node. The receiver combines the two frames N, and N, to
decide the original size N codeword. Due to the fact that first (N;) and second frames
(N,) for each user are transmitted through independent channels, diversity can be
exploited. This technique is extended to space-time codes in [12], [13], [38]. It has been
clearly shown that coded cooperative diversity can achieve full diversity order for an
arbitrary number of cooperating nodes at higher data rates than repetition-based schemes

137, [38].

However, these distributed coding strategies still have not approached the capacity limits
of the relay channel, which motivates the incorporation of turbo codes [14], [15], [39]-
[41]. In [39], [40], distributed turbo coding structures are proposed for the half-duplex
relay channel, where the destination receives the signals transmitted from the source and
the relay nodes via orthogonal sub channels. Later, an improved scheme utilizing the
channel adaptivity is developed in [41]. All these strategies take an orthogonal channel
between the source and the relay into consideration. That would result in a simpler
receiver structure, but inefficient spectral efficiency.

To achieve a higher capacity, the authors in [14], [15] propose several practical turbo
coded cooperation schemes for both full-duplex relaying and time-division based half-
duplex relaying where the destination receives a superposition of source and relay

transmission. These turbo coded cooperation schemes are shown to approach capacity
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bounds very closely, by designing an efficient multi-access channel detector and

iterative decoding at the destination between detector and decoder.

LDPC codes, which are one of the strongest error correcting codes with its capacity
achieving performance, has not been considered for relay channels extensively, except
for some preliminary work. Specifically, [42] proposes the design of a compress and
forward scheme for the half-duplex Gaussian relay channel based on Wyner-Ziv coding
where LDPC codes are not given a special attention, but only treated as an error
protection method at the source node. The authors in [17] present an efficient LDPC
code design approach for full-duplex Gaussian relay channels and corresponding
decoding based on a partial factor graph. From information theoretical perspective, The
authors in [18] and [19] show that carefully-designed LDPC codes can approach the
corresponding capacity limits in a non-fading environment by developing different
coding schemes for half-duplex and full-duplex relay channels. In [20], authors design
appropriate coding/decoding strategies based on LDPC codes using the decode-and-
forward protocol for single relay channel for both full-duplex and half-duplex relay

channels.

Based on the decoding scheme proposed in [20] for single relay channels, in the next
section we extend this model to multi-relay channels for full duplex scheme using DF
and EF transmission protocols. The iterative receiver structure between detector and

LDPC decoder is developed for our scheme.
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4. LDPC Codes over Wireless Relay
Channels

With the increased interest in wireless ad-hoc networks, next generation wireless
systems must provide increased high data rate and improved coverage [10]. To meet
these objectives, the intermediate nodes that relay data from a sender to the receiver in a
dense environment have been developed. The use of relays can significantly improve the
channel capacity, reduce the power cost and enhance the system reliability. In relay
networks, the basic idea is that a relay node helps a source node transmit its data to a
destination that is out of reach of the source node [9], as shown in Figure 4.1. Relay
channels are important building blocks of next generation wireless systems and will play
a central role in various applications including cellular systems and wireless ad hoc
networks. Therefore, channel capacity and coding for relay channels have been receiving

significant attention recently [10].

Some practical relaying strategies have been proposed. The “coded cooperation”
technique was proposed using convolutional codes [11] and later extended to space-time
codes [12], [13]. However, these codes could not approach the capacity limits of the
relay channel. That leads incorporation of Turbo codes [14], [15]. In [14], [15], the
authors propose turbo coded cooperation schemes for both half-duplex and full-duplex
relaying and it is shown that these schemes approach the capacity limits very closely by
employing a multi-access channel detector and iterative decoding at the destination.
LDPC codes which have superior error correction capability and capacity approaching
capability compared to Turbo codes have not been considered in a significant amount of
research for relay channels. In [20], authors design appropriate coding/decoding schemes
for single relay based on LDPC codes using the DF protocol for both full-duplex and
half-duplex relay channels.
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This chapter exploits the capacity approaching of LDPC codes to design a decoding
scheme for full duplex channels using EF and DF protocol, where the source, the
destination and relay node are all equipped with a single antenna. The chapter is
organized as follows. First, the channel models for the single relay system, as well as the
direct and multi-hop transmission schemes are presented. In addition, the capacity
bounds and the information rate bounds are provided. Then, the iterative decoding
process between MAP detector and LDPC decoder at the receiver side is analyzed and
some simulation results for Rayleigh fading channels are provided. Moreover, single
relay system is extended to multi-relay systems and an appropriate receiver structure is
designed. The performance of this system is investigated and compared to single-relay

systems

Source Destination

\4

Figure 4.1: Basic Relaying System

4.1 Single Relay Channel

4.1.1 Channel Model for Full-Duplex Relay Schemes

In a simple relay system, there are three directed transmission links as shown in Figure
4.2, which are from source to destination, from source to relay and from relay to

destination. Signal to noise ratio (SNR) is y for source-destination link, g,y for source-
relay link and g,y for relay-destination link, where g, and g, are the relative gains of

the source-relay link and the relay-destination link over the source-destination link
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obtained by strong line of sight of signals (LOS) or by short transmission distances.

Typically, the source to relay and the relay to destination links have a larger SNR than

the direct link, 1.e., g, >1and g, > 1.

The overall SNR is defined asy = F,/(N,R), where Ris the code rate. Each node is

assumed as to have only one transmit and/or receive antenna, and destination observes
the superposition of that the source and relay transmissions, which means source and

relay do not transmit through orthogonal channels.

In addition, we neglected Doppler spread, which allows to have independently and
identically distributed (i.i.d.) statistics. Moreover, we assume that the coherence
bandwidth of the channel is much larger than the bandwidth of the signal, such that each
channel is flat faded. Therefore, all frequency components of the signal experience the

same magnitude of fading.

np

&Y w

Source s 4 > ‘ ‘ Destination
‘ ' Vb

Figure 4.2: Block Diagram of the Relay System

YRl Relay |2z n,
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The received signal at the relay node is denoted by y, which is given by

Yr =\/g_1hSRxS + g 4.1)

where xg is the transmitted symbol from the source with powerP,. n,is an AWGN

term, which is a real Gaussian random variable with variance N,/2and hg, is the
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channel coefficient between source and relay node, which is considered as 1 when
AWGN channel is considered and zero-mean complex Gaussian random variable with

unit variance when Rayleigh fading channel is considered.

We considered Rayleigh fading in our simulations, since it is most applicable signal
propagation model when relay lies in the non-line-of-sight (NLOS) scenario of both the
source and the destination, which is the situation for urban environments. There are
many obstacles in the environment that scatter the signal before it arrives at the receiver.
Thus, the magnitude of the signal passing through this wireless medium will vary
randomly according to a Rayleigh distribution, which can be modeled by generating the
real and imaginary parts of a complex number according to independent normal

Gaussian variables.

The received signal at the destination is denoted by y,,, which is given by

Yp =hgpXg +1 &y hppXg + 1y 4.2)

where x, is the transmitted symbol from the relay node. A, h,, are independent

channel coefficients between source-destination and relay-destination link, respectively.

They are complex Gaussian distributed random variables having zero mean and unit

variance. n, denotes a AWGN term with zero mean and variance of N,/2 per

dimension.

The links between source-relay, relay-destination and source-destination are assumed as
independent and flat Rayleigh fading channels. In addition, it is assumed that receivers

know the channel coefficients, but the transmitters do not know.
The original relay channel model of [8] is used for the full-duplex relay scheme, since

this channel model provides a higher channel capacity than the half duplex relay

schemes or relaying schemes that source and relay transmit through orthogonal channels.
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The authors in [14] assume that source and relay nodes have the same power constraint
(Py), but using a total power constraint and splitting the total power smartly between
relay and source node, higher capacity and information rates can be achieved, leading to

an improved performance.
For comparison purposes, the signal transmission using direct transmission and multi-
hop schemes are considered. In direct transmission, no relay node is considered, the

transmission occurs only between source and destination. The channel model is given by

Vp =hgyXs + 1y, (4.3)

where it is assumed that source transmits with 2F, for a fair comparison.

In multi-hop transmission, only relay node is considered and source to destination link is

ignored. The channel model for this scheme is given by,

Yp = \/g_thDxR +n, (4.4)

where it is assumed that relay node can both receive and transmit simultaneously.

4.1.2  Capacity and Information Rate Bounds

A general upper and lower bound on the capacity of the relay system is derived in [34],

which is given by

C< r(nax)min{I(Xs,XR§YD)J(XS;YR,YD|XR)} (4.5)
P(XgXp
and
c= r(nax)min{[(XSaXR;YD)J(XS;YR|XR)} (4.6)
P(Xg,Xp

where p(xs, xr) is the joint probability of the signals transmitted at the source and the

relay nodes.
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In addition to capacity bounds, the achievable information rates for relay channels with

i.u.d. binary inputs are evaluated.

The upper and lower information-rate bounds are given by

I<min{l,(Xg, X;;Y),1,(Xs; Y, Yy | Xp)} 4.7)
and
]2min{lb(XS5XR;YD)5]b(XS;YR ‘XR)} (4.8)

where xg and x are i.u.d. binary random variables, which are independent of each other.

Furthermore, for comparison purposes, the capacity and information rates of direct and
multi-hop transmission are evaluated. Due to the fact that direct transmission consists of
only source-destination link, it is easy to evaluate the information rates. For the multi-
hop transmission, the capacity or the achievable information rate is computed by the

worse link, either between source to relay or relay to destination.

As shown in [20], when g,is much larger than g, , both the upper and lower bounds are

limited by the achievable rate of relaying part, thus convergence is achieved.

If a practical case is considered, which means, the source-to relay link is imperfect
(g1=12dB), and so is the relay-to-destination link (g,= 4dB). The capacity bounds
converge for the relay system over the i.i.d. Rayleigh flat-fading channel in this case,
and are given in Figure 4.3 together with the capacities of the multi-hop and direct
transmission schemes. As it is seen in Figure 4.4, the lower and upper bounds converge
in the low-to-medium SNR region and the gain in terms of achievable information rates
is very large by using the relay system, instead of the direct transmission. The intuition
behind this gain is that, the asymptotical rate for the relay system is two bits per channel
use, whereas it is one bit per channel use for the direct transmission, using binary
signaling. For example, there is a gain of 6.5 dB over the multihop transmission and 7.5

dB over the direct transmission promised by these information theoretical limits.
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4.1.3 Iterative LDPC Decoding for Relay Channels

Low-Density Parity-Check Codes (LDPC) were first discovered by Gallager in 1962 and
rediscovered by Mackay in 1999. Recently, it has received a lot of attention lately due to
its excellent error-correcting capability and simple to implement decoding algorithms
[43]. LDPC codes were shown to demonstrate the properties of good codes capable of
asymptotically approaching Shannon limit (With an appropriate degree distribution will
come arbitrarily close to the capacity of the channel). They have a threshold within
0.0045dB of the Shannon limit of Additive White Gaussian Noise (AWGN) channel (At
BER 10 and block length 107) [24]. With coding gain approaching Shannon limit and
lower hardware complexity than Turbo codes, LDPC has been considered by a number

of next generation communication standards.

During the transmission of the first block, the source node (Ns) encodes u” with a code

rate of R =1/2 and sends x) to both relay (Nr) and destination (Np). Then relay node

decodes x) and decodes it into #°. In the second block, xy , the codeword for u', is

transmitted to both relay and destination. The relay node decodes x; into i', but at the
same time, it encodes #° and gets x, which is sent to destination. As a result, the

destination node receives the superposition of x;andx,. In summary, in the block i,
where =0, 1...B and B is the number of blocks, source encodes u' and transmits the
coded bits x{to both relay and destination nodes. Relay node both decodes current
codeword, and encodes the previous codeword into x} to send to destination. Destination
receives the superposition of two signals from source and relay nodes and given B+1
received blocks, the destination node tries to decode the message bits . This process is
shown in Figure 4.5, where Ng, Ng, Np denotes source, relay and destination node,
respectively. There is no rate loss here, since the last message block is only encoded and
transmitted by the source node, that is relay node do not contribute in transmission of the
last block. Therefore, there is no rate loss here i.e., B+1 message blocks are transmitted

in B+1 time slots.
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Figure 4.5: Block Diagram of the coding scheme for the relay channels

The general decoding procedure is illustrated in Figure 4.6. First B+1 MAP detectors are
used to find the log-likelihood ratios (LLRs) for the coded bits from both the source and

the relay nodes, and these LLRs are sent to appropriate LDPC decoders. Thei” LDPC

decoder takes the soft information L(x)and L(x;")from i”and(i+1)" channel MAP

detectors, respectively, and calculates the extrinsic information, E(x{)and E(x;"')which

are sent back to the same two channel MAP detectors. This decoding process is similar
to the idea of turbo equalization (TE) proposed to reduce the intersymbol interference
(IST) [45]. The final hard decisions are made by the LDPC decoders after a number of
iterations. All the channel MAP detectors calculate LLR values concurrently, and thus
are implemented in parallel, and also the LDPC decoders operate in parallel. But, MAP

detectors and LDPC decoders exchange the soft information serially.
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To briefly describe the soft input soft output MAP detector,

LLR:A(xS)zlog p(xg :1‘)’1)) 1o p(yplxs =Lx, =0)p1,0 +p(yp | xg =1,x, :1)p1,1
p(xs=0[y,) Py | X =0,x, =0)py, + p(y) [ X5 =0,x, =D py,

(4.9)

where p; =p(xs=i)p(xr=j) with i and j taking values 0 or 1. A(xs) and A(xr) are LLRs for
the coded bits from the source and relay node, respectively. Similarly, the LLR for xg is

computed.

Due to the fact that a priori information about xs and xg is available, which can be
obtained from an outer decoder, p;; can be updated, and the soft information passed to

the outer decoder is given by

L(5) = AG) ~log 2= g p .10)
p(x; =0)

i

The soft information L(x), L(x,)provided by the source and the relay nodes,

respectively are combined by summing up the likelihood information from the source
and the relay corresponding to the same data block. Then, the combined soft information
is sent to the decoder, which is implemented using the log-domain belief propagation

(BP) algorithm. The extrinsic information sent back to the detector is
E(XS) :Ldec _L(XS)7 E(xR):Ldec _L(XR) (411)

where L, is the total LLR for each bit obtained by belief propagation.

dec
A priori probabilities are found using extrinsic information obtained from decoders and
is passed to the detector for the next iteration.

E(xg) eE(ka )

e
p(xs —1)—1+—Emand p(ka —1)——)

( for source and relay nodes, respectively.
e



4.1.4 Simulation Results

We now present several simulation results. The information block of length 1000 was
first encoded with LDPC regular H (matrix taken from Mackay library) with rate 1/2
and codeword of block length 2000 is created. 1000 consecutive blocks are considered.
The encoded codeword was modulated using BPSK assigning -1 to digit 0 and 1 to digit
1 and sent through the Rayleigh fading channel to the both relay and destination. At the
relay node, two techniques are employed which are DF and EF. In DF scheme, received
signal was decoded by using LDPC decoding and again re-encoded the signal with
LDPC codes with rate 1/2 and transmitted it to the destination. On the other hand, in EF

scheme, the information transmitted is extracted using

Xp = sign(\/g_thRxS +ny) (4.12)

where Agy 1s the channel coefficient between source and relay node, which is considered
as 1 when AWGN channel is considered and zero-mean complex Gaussian random

variable with unit variance when Rayleigh fading channel is considered.

Today's multimedia communication applications include delivery of video, data over IP,
wireless basestation, and medical applications, which require high data rates and low
latency, specifically for full-duplex communication that involves streaming data like
voice. Lower latency puts tight requirements on the number of acceptable bit errors in
serial transmission. Our acceptable target BER is chosen as 10”, since wireline serial
transmission typically has a BER in the 107" to 107" range, whereas most radio systems
are in the 10™ to 10 range [47]. For example, the Wireless Lan (WLAN) cards used by
DELL computers require a BER of better than 10™ for both 802.11a, 802.11b and
802.11g standards [48] . The BER that gives a good quality for voice applications is 107,
but BER of 107, is better and common. For Voip communication, packet loss and voice
frame loss are unacceptable at BER larger than 10°. Moreover, the quality of service

(Qos) parameters specified in the 3rd Generation Partnership Project (3GPP) considers

46



Bit Error Rates

10°-107, as an acceptable BER constraint for real time applications in satellite, vehicular

and portable, handheld wireless devices [49].

In Figure 4.7, we simulated the channel models for both direct transmission, multi-hop
transmission and single relay transmission for Rayleigh fading channel using Monte-
Carlo simulation and plotted the Bit Error Rates (BER) performances at various SNR
values. The relay node performs DF technique to extract the codeword and destination
node performs 2 global iterations (iteration between MAP detector and LDPC decoder),
and 100 inner LDPC iterations. The channel gain g; is 4 dB and g, is 4 dB. As it is seen
in Figure 4.7, relay transmission outperforms direct and multi-hop transmission. For
example, at BER 107, there is a gain of about 1 dB over the multihop transmission and

about 5 dB over the direct transmission.
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Figure 4.7: Bit error rate for three transmissions using LDPC decoding
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The intuition of the above result is that multi-hop transmission outperforms direct
transmission over fading channels due to path-loss gain. And relay transmission
outperforms multi-hop transmission due to diversity gain. Thus, the relay transmission
requires less power to achieve a certain BER relative to the direct and multi-hop

transmission [50].

In addition, we simulated the single relay channel for different number of global
iterations using DF and EF technique. At the destination, transmitted codeword was
extracted using iterative decoding. The number of global iteration taken as one, two, and
three; since further iterations would not improve the performance significantly, so small
number of iterations is enough [20]. The number of inner iterations (local iterations)

within the LDPC decoder is 100. The channel gain g; is 4 dB and g, is 4 dB.

In Figure 4.8, EF technique is used at relay nodes. As it is seen in the figure, at BER 107
the improvement between first and second global iteration is 0.8 dB, and the
improvement between second and third global iteration is 0.4 dB. In Figure 4.9, DF
technique is used at relay nodes. As it is seen in the figure, at BER 10~ the improvement
between first and second global iteration is 0.5 dB, and the improvement between second
and third global iteration is 0.2 dB. Therefore, the improvement in BER as the global

iteration number increases diminishes.
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If we combine Figure 4.8 and Figure 4.9, we get Figure 4.10. As it is seen in the figure,
DF technique outperforms EF technique. At BER 107, DF is 2.6 dB better than EF for
one global iteration, 2.2 dB better for two global iterations, 1.9 dB better for three global

iterations.
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One Relay 3 Global Iter. I
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Figure 4.10: BER comparison of EF and DF techniques for different number of global iteration

In the next section, one relay channel is extended to multi-relay channels to gain some
improvements in terms of BER. The iterative receiver structure of single relay channel is
also adopted, but some modifications to compute the LLR values have been done. The

comparison between single relay and multi-relay channel is studied through simulations.

50



4.2 Multiple Relay Channels

The propagation loss from source node to the destination node can attenuate the signals
beyond detection. One way to deal with this problem is to pass the transmitted signal

through two or more relay sensors. The transmission model is shown in Figure 4.11.

»| Destination

Source

Relay (K-1)

Figure 4.11: Multiple Relaying Systems

The received signal at the relay nodes are
YR, :JEIhSkaS g, (4.13)

where k=1, 2, ... K and K is the number of relays. Ay, is the Rayleigh channel coefficient

between source and £" relay node, which is assumed as zero-mean complex Gaussian
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random variable with unit variance. n, is AWGN term for the k™ relay node, with zero

mean and variance N, /2.

The received signal at the destination node is given by
Y =heyXg + &2 g pXp &2 hp pXr, + ot &2 g pXp, + 1) (4.14)

where h, ,,is the Rayleigh channel coefficient between k™ relay node and destination,

which is assumed as zero-mean complex Gaussian random variable with unit variance.

n,1s AWGN term for the destination node, with zero mean and variance N, /2.

The important point is that the transmission power of one relay is P,/ K, so the total
relay transmission power is P, which is similar to single relay channels, where relay

transmits with power £, .

4.2.1 Iterative LDPC Decoding for Multiple Relay Channels

Decoding process at the receiver can be extended from single relay to multiple relays
easily. Source encodes u' and transmits the coded bits xg (i=0, 1...B) to both relay nodes

and destination node, where B is the total block number and i is the i block to be
transmitted. k" relay node both decodes current codeword, and encodes the previous

codeword into x; (=1, 2 ... K) to send to destination, where K is the number of relays.

Destination receives the superposition of signals from source and K relay nodes. Given

B+1 received blocks, the destination tries to decode the message bit v’

The general decoding procedure is illustrated in Figure 4.12. First B+1 MAP detectors
are used to calculate the log-likelihood ratios (LLRs) for the coded bits from both the
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source and the relay nodes, and these LLR values are sent to appropriate LDPC
decoders. The i LDPC decoder takes the soft information

Llxg]fromi" and L(x,"), L(x'), ..., L(x;) from (i +1)” channel MAP detectors, and

calculates the extrinsic information, E[xg]and E(x,"), E(xy), ..., E(x; ) which are
sent back to the same two channel MAP detectors. The final hard decisions are made by
the outer decoders after a number of iterations. As it is mentioned for one relay channel,

the channel MAP detectors and the LDPC decoders also operate in parallel for multiple

relay channels and detectors and decoders exchange the soft information serially.
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To briefly describe the soft input soft output MAP detector,

Py | xg = l’xR] =0, Xp, = 0""ka =0)pigo ot
= ot x.=Lx, =Lx, =1,..x, =1
LLR = A(x,) = log p(xs=1|y,) _ P(yp | xg R R, Ry )p1,1,..1
p(xg=0]y,) Py | xg = O’xR] = O’sz = 0""ka =0)Pooo,0t--
et p(p [ X5 =0,x, =Lx, =L..xp =Dpy, |

poes

(4.15)

where p, Xy Ky X, is the joint probability of the signals transmitted at the source and

relay nodes. Similarly, the LLR for x, (k=1, 2... K) is computed. By assuming
thatx, ,x, ,..x, are independent, which is justified by the use of random interleavers,

LLR for the source and relay nodes are expressed as

K
Z Pp | xg =L X, Xp 5oy Xp )HP(XR,-)
i=1

LLR = A(xy) =log —p((xs :(1)“ yD)) = |og At = +log p((xs _(1)))
Xg = Xg =
P s yD Z p(yD‘xS :OaxR]>xR27'-~>xRK)Hp(xR‘,) P §
Xy Xpy Xy i=1
(4.16)
Suppose we have a priori information about xg,x, ,x, ,...x, Which can be obtained from
LDPC decoders, then p, , , , 1s updated and the soft information passed to the
LDPC decoders is given by
=1
L(xg) = A(x) - log 2Ls =1 (4.17)
pxs =0)
and
x, =1
Ly ) = A, ) log 2% =D (4.18)

(ka =0)

for both source and relay nodes, respectively.

The soft information provided by source and relay nodes are summed up and combined
information is sent to the LDPC decoder, which is implemented using log-domain belief
propagation algorithm. The extrinsic information sent back to the detector is calculated

as
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E(x;k )=L,, — L(x}k ) (4.19)
and

E(xy)=L,,. —L(xy) (4.20)

dec

for both source and relay nodes, respectively, where Lge. is the total LLR for each bit

obtained from LDPC decoder.

A priori probabilities are found using extrinsic information obtained from decoders and
passed to the detector for the next iteration.
E(xg) eE(ka)

e
p(xs =)= 1— and p(x, =1)=

0 for source and relay nodes, respectively
+e'

4.2.2 Simulation Results

We now present simulation results. The information block of length 1000 was first
encoded with LDPC regular H (matrix taken from Mackay library) with rate 1/2 and
codeword of block length 2000 is created. 10000 consecutive blocks are considered. The
encoded codeword was modulated using BPSK assigning -1 to digit 0 and 1 to digit 1.
We simulated the channel models for one relay, two relay and three relay transmissions
for Rayleigh fading channel using DF and EF protocol and plotted the BER
performances at various SNR values. In DF scheme, received signal was decoded by
using LDPC decoding and again re-encoded the signal with LDPC codes with rate 1/2
and transmitted it to the destination. On the other hand, in EF scheme, the information

transmitted is extracted using
X, zsign(\/g_thkas+an), fork=1,2 ...K (4.21)

At the destination, transmitted codeword was extracted using iterative LDPC decoding.
The inner iteration of LDPC decoder is 100. Channel gains g; and g, are both 4 dB. We
have simulated the channel for single, two and three relays using DF and EF protocol for

different number of global iterations. In Figure 4.13, we have used DF protocol and as it
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is seen in the figure, there is an improvement in BER as relay number increases. To be
specific, at BER 107 for two global iterations, increasing the number of relays from one
to two provides us with 3.1 dB BER gain and from two to three provides us with 1.1 dB
BER gain. In addition, for two relays the gain obtained by increasing the global iteration
from two to three is 0.1 dB, which is very inconsiderable. Therefore, there is no need to

increase the global iteration number.

In Figure 4.14, we have used EF protocol and as it is seen in the figure, there is an
improvement in BER as relay number increases. To be specific, at BER 10” for two
global iterations, increasing the number of relays from one to two provides us with 4.9
dB BER gain and from two to three provides us with 1.4 dB BER gain. Similar to the DF
case, for two relays the gain obtained by increasing the global iteration from two to three
is 0.1 dB, which is very inconsiderable. Therefore, there is no need to increase the global

iteration number.
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Figure 4.13: Bit Error Rate for one, two and three relays using DF
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Figure 4.14: Bit Error Rate for one, two and three relays using EF

If we combine Figure 4.13 and Figure 4.14 to compare the performances of DF and EF
protocols, we get Figure 4.15. As it is seen in the figure, DF protocol outperforms EF
protocol. For two relays, the gain obtained by DF technique compared to EF is 0.4 dB
for one global iteration, 0.3 dB for two global iterations and 0.2 dB for three global
iterations at BER 107°. Moreover, for three relay network, the gain is less than 0.1 dB at
BER 107.
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Figure 4.15: BER comparison of EF and DF techniques for multi-relay channels

We have not considered the multi-hop case where the source message is conveyed to the
destination through K nodes. Each node gets the source message from previous node and
delivers to the next node. Employing multi-hop technique leads to the propagation of
error [S1]. For example, if the first link between source and first relay node is degraded,
then the error decoding performance of the first relay becomes worse, and thereby the
undetected errors of the first relay propagates to the destination through the other relay
nodes. In contrast, in multi-relay channels, even if the link between source and one of
the relay nodes is degraded, other relays can help the source transmit its data. As a result,

multi-relay scheme outperforms multi-hop scheme.
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Next, we comment on the assumptions in our simulations and say how much it would

differ in real life applications and in what aspects

)

2)

3)

We considered Rayleigh fading in our simulations, since it is most applicable
signal propagation model when relay lies in the non-line-of-sight (NLOS)
scenario of both the source and the destination, which is the situation for urban
environments. But, in practical propagation environments, these assumptions
may not hold true. In the future work part, a relay channel model which can take

into account both LOS and NLOS propagation environments should be proposed.

We also ignored the effect of the location of the relay and effect of power
allocation on the system performance in our analysis, which remains as a future

work.

In commercial wireless communication system, most wireless devices function in
time division duplexing (TDD) mode that can not transmit and receive at the
same time in the same frequency band [52]. This scheme is called half-duplex
system. Although full-duplex scheme can be implemented, the design of full-
duplex radios are not too favourable since the design of such radios require

accurate interference cancellation between transmitted and received signals.

It is good to have improvements as we increase the relay number, but improvement

comes with increased complexity to calculate LLR values using MAP detector.

Therefore, in the next section two sub-optimal detectors are investigated to decrease the

computational complexity of MAP detector. A comparative study of the performance of

these two detectors is presented.
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5. Low Complexity Iterative Soft Detection

In many practical communication systems, data is transmitted through a channel where
multiple-access interference (MAI) and ISI are present and pose an obstacle for reliable
communication in multipath channels. Therefore, redundant bits are added to the original
data using an error correction code at the transmitter to mitigate those problems. The
receiver tries to extract the transmitted data using equalization and decoding. Joint
equalization and decoding faces important developments, one of which information is
exchanged back and forth between the decoder and equalizer iteratively, until

convergence is achieved.

In this thesis, an iterative receiver structure is used for decoding multi-relay information
in a LDPC coded system. The receiver consists of two soft input soft output modules
that exchange information iteratively. At each iteration, extrinsic information resulting
from one module is used as a priori information for the other module. In the iterative
receiver, the detector provides the log likelihood ratio (LLR) of symbols. Hence MAP
detector is optimal, and thus desirable. Unfortunately, the computational complexity of
this detector grows exponentially as relay number increases. Especially, in multi-relay
case, the detector calculates LLR values for source and relay nodes iteratively.
Therefore, the high computational complexity of the optimal detectors has motivated the
study of a number of computationally suboptimal and efficient detectors. In [53], the
minimum square error (MMSE) detector with soft interference cancellation (SIC),
referred to as MMSE-SIC detector is proposed. But, the fact that MMSE-SIC involves
matrix inversion; it still requires a high complexity and processing delay. Thus, other
various sub-optimal, but less complex detectors, which perform worse, compared to
MAP detector are proposed [54]. In [55], Taylor series are considered to approximate the

LLR directly to find computationally efficient detectors for the iterative receiver.
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Moreover, in [56] MAP detector is approximated under the Central Limit Theorem

(CLT) assumption.

5.1 Approximation based on Taylor Expansion

We approximate the LLR directly by using Taylor series to find computationally
efficient detectors. This approach differs from the existing approaches in [53]-[54],
where LLR is obtained by an indirect approach.

(In this chapter, results are obtained for vector case. They can easily be extended to

scalar case with minor modifications.)

Soft information passed to the LDPC decoder for the source data is expressed as

Lx,) = A(x )~ log 285 =1 5.1
(x0)=Ax) ~log £ (5.1)

where A(x,)1s calculated in (4.16). Then

ZP(YD |xs =L X,) Pr(Xy)

Xr
D> (¥, | xs =0,X,)Pr(X,)’

Xg

L(xy)=log (5.2)

where X, =[x; X ...x; ]Jand x, €{+1,—1}. x, is the binary symbol of the K" relay

node

There are 2 binary vectors in the set X »» where K is the relay number. Therefore, the

complexity to calculate the a posteriori probability of xg is O (25). It is easily seen that,

as relay number increases, the computational complexity increases.
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First consider

_NLHYD_\/FShSD_\/g—Z\/P—RHRDXﬁ‘z
D p(yp lxs =LX)Pr(X) e e ™ Pr(X,)
< x: (5.3)
Iy e Pt X P
’ ]

=Ey [e

where Hy, =[h;, h,, .. h, ,Jandy" =yD—\/FShSD.

h, ,, denotes the channel coefficient for k™ relay node-destination link, h p denotes the
channel coefficient between source and destination. Fis the transmission power from

o P . .
source to destination and P, =ES is the transmission power from relay node to

destination, which is assumed as equal for each relay node.

. —NLHy*—\/g\/EHRDXZHZ
Let vi(X;)=e ™

, then using Taylor series it is shown that

V+(XR):V+(§(R)+V€+(§(R)(XR—)A(R)'i‘... (5.4

where V _ is the gradient of v"(X) which is given as

oV (x)ovi(x) Ovi(x)

A
] and Xz = E[X,], where E[.] is the expectation
ox,  0x, OXy

V()=

operator.

We can show that

B (X,)] = v (Xe)+ EV (Xe)(X,, = Xe)]+... = v (X) +0+...

where the first term order becomes zero.
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This Taylor series leads to the following approximation:

Y e P ELX TP
> oy, lxs =LX)Pr(X,) e

X

(5.5)

With the same approach above, we can approximatez p(y, | x =0,X,)Pr(X;). The

X
approximate LLR is given as
Iy e P ELX TP
e 0
L(xy)=lo 5.6
(xs) =log Y VFeH e ELX TP (5-6)
e 0
where y~ =y, +Fhg,.
Then LLR is approximated by
A4 \ Psth T 57
L(xg) = T(yD_\/gZ\/B?HRDEXR[XR] ) (5.7)

0

Using the same approach, we can also calculate LLR for relay nodes. For example, LLR

for relay node 1 is

L(x, (v~ H E[XT) (5.8)

R
)2 4TI
1 NO
where X =[x x, x,..x, | and Hy =[\[Bhg, Jg,\/Bhy, - g, Bhy ]

The channels gains (g2) between relay nodes and destination are assumed as equal. This
can be justified by the fact that the distance between relay nodes and destination node is

equal, so the path loss gain is the same for all relays.
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Hence, first Soft Cancellation method is applied on received signal, y, —H,E,[X]" and

then the resulting vector is multiplied with /g, \/F;h; , and first order approximation of

LLR is obtained. This detector is called the matched filter (MF) detector with SIC,
referred to as the MF-SIC detector, in [57]. The equation (5.7) does not contain a matrix

inversion, so it is computationally more efficient than the MMSE-SIC detector in [53].

The BER comparison for MAP detector and sub-optimal detector obtained by Taylor
expansion is shown in Figure 5.1-Figure 5.2 for two relay network for different number

of global iterations.

For both figures, the information block of length 1000 was first encoded with LDPC
regular H (matrix taken from Mackay library) with rate 1/2 and codeword of block
length 2000 is created. The codeword is sent through Rayleigh fading channel and at
relay nodes DF or EF technique is used. At the destination node, transmitted codeword
was extracted using iterative LDPC decoding. The inner iteration of LDPC decoder is

100. Channel gains g; and g, are both 4 dB.

As it is shown in Figure 5.1, the performance of the detector obtained by Taylor
expansion is 0.8 dB worse than MAP detector for one global iteration at BER 107
Figure 5.2 compares the performance of sub-optimal detector obtained by Taylor
expansion for two global iterations. Sub-optimal detector performs 1 dB worse when
relay nodes use DF technique and 1.2 dB worse when EF technique is used at relay

nodes.
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5.2 Approximation based on Central Limit
Theorem (CLT)

In this section, Gaussian approximation based on the CLT is considered to find the LLR,
as the sum of interfering signals caused by relay transmissions can be approximated by a

Gaussian random process for large number of relay nodes [56].

To calculate the soft information passing to the LDPC decoder for the source node, in
(5.3)

1
—y" *HRDXITe Hz

D p(yp | xs =1 X,)Pr(X,) = Ey [e ™

Xg

where Hp, = [\/g_2\/FRhR,D \/g_z\/FRhRZD \/g_2\/FRhRKD] is found.

- T _ &
Let ug, =H, X; =ug +eg

where @iy = Ey [ug]=H,,Ey [X,] and e; = H,, (X} - Ex [X,;]")

It follows that

1
IV Mo XRI Vel

Ey [e ™ 1=E.[e™ 1, where v =y" —i, (5.9)

Assumption: When number of relay nodes is large, based on CLT, esis assumed as zero

mean Gaussian random variable with the covariance matrix
R, = E[ege;] = H, By [XX'HG,, where X=X} —Ey [X, ] (5.10)

Under this assumption,

L(xg) = L(x)“" = 4, [P0l (Ry + NI) 'y, where y, =y, — i (5.11)
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A
Hence, as relay number increases, L(x,)" can approach L(x,) given in (5.2).
The direct derivation of (5.11) for the general vector case is the following:

(e Q5 es +--9(v ) e5)
0

(— v
E [e ™ 1=Ce ™ je de

€s

. .. _ 401
where C is a normalizing constant and Q' = Ry +—1

0
. . 2 N e e e P
Since -e; o, e, o R ey = e, -2 Q, (e, -z )+ ()" @,z Wherez =0, We have
0 0

(e Qe+ (V) ) (#(v* ) Qgv*)
'[e 0 de,=C'e"™ ,

where C’ is a constant. Then, we have

! + 2 1 +2 1 +\H +
— v = —V+—(v v
[Iv:—egll ( NOH I Ng( ) Qsv)

! +HA +
(—(v)"Qgv")
E, [e ™ 1=C'e =C'le ™

N

A 1
where Qg :I_FOQS

(5.12)

(5.13)

If we carry out eigendecomposition of Qs, we getQ,=EAEY, where

Eg=[eg, e5,... ] and Ag :Diag{/?us,1 /1&2... /IS,N}. e

NG

eigenvector and eigenvalue of Qs

As aresult,

Qs = I—NLOQS = I—NLO(RS1 +NLOI)1
=I—iES(A;1 +i1)-1ES
NO NO
=N,(Rg+N,I)™"
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Substituting (5.13) and (5.14) into (5.9), we get

L(x) = L(xg)" 2 4P [R, + NIT'y,) (5.15)

It is shown in (5.15) that LLR for CLT detector can be calculated with a lower
complexity. Actually, the major complexity of the detector is due to matrix inversion
which has the complexity O(N°), whereas the MAP detector has O(2%). In [56], it is
shown that the approximate MAP detector which is obtained under the assumption based

on the CLT becomes the well-known MMSE-SIC detector proposed in [53].

The BER comparison of MAP detector and sub-optimal detector obtained CLT
assumption is shown in Figure 5.3 and Figure 5.4 for two relay network for different

number of global iterations.

For both figures, the information block of length 1000 was first encoded with LDPC
regular H (matrix taken from Mackay library) with rate 1/2 and codeword of block
length 2000 is created. The codeword is sent through Rayleigh fading channel and at
relay nodes DF or EF technique is used. At the destination node, transmitted codeword
was extracted using iterative LDPC decoding. The inner iteration of LDPC decoder is

100. Channel gains g; and g, are both 4 dB.

As it is shown in Figure 5.3, the performance of the detector obtained by CLT
assumption is about 1 dB worse than MAP detector for one global iteration at BER 107.
Figure 5.4 compares the performance of sub-optimal detector obtained by CLT
assumption for two global iterations. Sub-optimal detector performs about 1.3 dB worse
when relay nodes use DF technique at BER 10 and 1.5 dB worse when EF technique is
used at relay nodes for BER 107,
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As it is mentioned above, the computation of Taylor detector is similar to MF-SIC
detector, while CLT detector becomes MMSE-SIC detector. Therefore, comparing the
Taylor detector and CLT detector is similar to comparing MF-SIC and MMSE-SIC

detectors.

MF-SIC detector does not contain a matrix inversion, so it is computationally more
efficient than the MMSE-SIC detector. The main computational complexity of the
MMSE-SIC detector is due to the matrix inverse in the computation of the MMSE filter,
which is O(N*), whereas the computational complexity of the ME-SIC detector is O(N?)
[S8]. In [59], MF-SIC detector is compared to the MMSE-SIC detector for
MIMO/OFDM systems using two global iterations. It is observed that MF-SIC requires
only 10-30 % computation of the MMSE-SIC. In other words, employing MF-SIC
enables to achieve 70-90 % reduction of computational complexity of MMSE-SIC.
However, [60] also pointed out that the MF approximation is certainly not suitable for
the case in which no a priori information is available, e.g. at the initial detection stage
and it is shown in [S7] MMSE-SIC generally provides a higher spectral efficiency than
the MF-SIC.

For our relay case, the performances of the sub-optimal detectors obtained by Taylor
expansion and CLT assumption are compared in Figure 5.5. As it is seen in the figure,
detector obtained through Taylor expansion is about 0.2 dB better than detector obtained
by CLT assumption at BER 10” when DF technique is used and 0.3 dB better at BER
10* when EF technique is used. The reason for this gap is that the sub-optimal detector
approximated using CLT assumption is identical to the minimum mean square error
(MMSE) detector with soft interference cancellation (SIC) proposed in [S3] and MMSE
detector works better at conditions that the interference is higher. For two relay network,
the interference is not high enough. Therefore, if we increase the interference by
increasing the relay number, the detector of CLT assumption outperforms the detector of
Taylor expansion as it is shown in Figure 5.6. For eight relay network, sub-optimal
detector based on CLT assumption is about 0.1 dB better than sub-optimal detector

based on Taylor expansion for both one and two global iteration.
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Figure 5.5: Comparison of sub-optimal detectors obtained by Taylor expansion and
CLT assumptions for two relay network.
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Figure 5.6: Comparison of sub-optimal detectors obtained by Taylor expansion and
CLT assumptions for eight relay network.
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The next section discusses the reason why sub-optimal detectors perform worse than

MAP detector, and provides a technique to improve the performance of these detectors.

5.3 Soft Decorrelating Detection (SODED)

In [61], Robertson et. al has shown that when a sub-optimal detector is used instead of
the MAP detector, some degradation is observed on the AWGN channel. Several papers
have appeared recently that tried to find the reason behind the poor performance of sub-
optimal detectors compared to the MAP [62]-[67] It is demonstrated in these papers that
the reliability values at the output of the sub-optimal detectors are larger than the values
at the output of MAP decoder, leading degradation. In [68], it is argued that the main
reason for this degradation due to large reliability values is mostly the high correlation
between the intrinsic information (input to the detector) and extrinsic information

(output of the detector).

This correlation leads to overestimation of the extrinsic information estimated by the
detector compared to its true value. The intuition behind this overestimation is that the
extrinsic information passed from the detector to decoder should provide new
information to the decoder. However, due to this high correlation, part of the extrinsic
information passing to the decoder is already known to this decoder. But the receiving
decoder treats all of this extrinsic value as new information. That results in a redundancy
in the exchanged information, leading to exaggerated extrinsic information at the output

of the detector.

It is clear that the intrinsic and extrinsic information of the detector must be decorrelated
before the extrinsic information is passed on to the LDPC decoder. And to alleviate this
problem, the authors in [68] propose to use two attenuators, one applied to the
immediate output of the detector (a posteriori probability) and another applied to the

extrinsic information before it is passed on to the decoder
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Now let us denote the actual detector output by L.y, and the corresponding extrinsic
information by L. The correlation between L.y and intrinsic information (L) is

generally assumed as weakly correlated, and thus Ly is expressed as:

(5.16)

However, the correlation between Liy; and Ley; is rather strong.

(Note that the intrinsic value of the detector is the extrinsic value of the LDPC decoder)

The variables L;y,; and L.y are correlated Gaussian random variables with means m;, m.

and variances o, 0., respectively. Assuming xs= +1 is transmitted, the joint conditional

probability density function (pdf) P(L

ext

L. |x, =1)1is then given as

2

1 1 L -m) (L —m
P(Lext’Lint | xS = 1) =ﬁ‘exp(_ 2(1_p2) [( exta > e) + ( mto-2 1) ])
no,0,\1-p e i (5.17)
L, - L —m
.eXp(p( ext me)( l"lé ml))
0,0,(-p)
where p is the correlation coefficient given by,
p= E[(Lext — me)(Lint —m )] (5.18)

0,0,

Similarly, when Assuming xs = -1 is transmitted, the joint conditional probability density

function (pdf) P(L

ext

L. |x, =—1)1s then given as

1 1 L +m) (L +m)
P(Lext’Lint “XS :—l)zﬁ.exp(_ 2(1_p2)[( e)cto-2 e) +( mto-2 z) ])
7o,0,A1—p e i (5.19)
.exp(p(Lext + me)(Lmé + mz))
Gio-e(l_p )
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Using Bayes’ rule, L,y can be calculated as

true __

ln P(xS = +1 ’ Lint’Lext)
'ZPP P(xS = _1 ’ Lint ’L ext)

1 L -m) (L —m) L —-m)L, —m,
eXp(— 5 [( ext 5 e) +( int 5 z) ])exp(p( ext e)( zné l))
— ln 2(1_p) O-e Ui O-iae(l_p)
1 L +m) (L +m) L +m)L  +m,
exp(_ 5 [( ext 5 (,) +( int 5 l) ]).exp(p( ext e)( lné l))
2(1_10) O-e O-i O-io-e(l_p)
— 1 [(Lext _me)2 + (Lint _mi)2 _ (Lext + me)2 _ (Lint + mi)2 ]
20-p%" o o/ o, o/
p(Lext B me)(Lint B mi) _ p(Laxt + me)(Lint + mi)
0,0,(1-p%) 0,0.(1-p%)
— 1 4Lextme 4Lintmi p(_zLextmi - 2Lint B me)
T L 2 Tt 2
2(1_p) O-e O-i Uiae(l_p)
2m, 1 2pm, 2m, 1 2pm,
- Lext[ 2 2y 2 ]+Lint[ 2 2N 2 ]
o, (I-p7) oc0,(-p7) o (1-p7) o.0,(1-p7)
1 2m 2m. 1 2m. 2m
=L . € 1+ L. L <
“-p [0'62 O'iO'e] - p? [ o’ pO'iO'e]
1 o, 1 o,
=L,,.——lrn-pr—1+L,.——=n—-pr.—=]
I-p o, I-p o,
where 7, = 2”? and r, :2—’?
e o-i
= aLext + bLint

where a = ! 2(re—priﬂ) and b:%(ri—preo-e)
1 o, l-p

i

75

(5.20)



Substituting (5.16) into (5.20) yields

L =a(L,, - L,)+bL, (5.21)

app

and consequently extrinsic information passing to LDPC decoder is

a

__ 7qtrue _
Lext _Lapp _Lint _(a+1_b)[a+1—b

L, -L,)=cdL, ~L,] (5.22)

ap,

where c=a+1-b and d=a/(a+1-b)

As a result, to make L.y and Li, uncorrelated, the output of the detector should be
multiplied by d and then the the intrinsic information must be subtracted, and finally the

difference should be scaled by c as it is seen in Figure 5.7

Sub-optimal
Lint v

> Lext

\ 4
) 4

Detector

Figure 5.7: Soft Decorrelating Detection (SODED)

These attenuators depend on the means and variances of the intrinsic and extrinsic
information of the detector, as well as the correlation between them. Therefore, they
should be updated for every received data frame at every iteration. To compute the mean
and variance of intrinsic information is very easy, which is obtained from LDPC decoder
and it does not incur a high complexity, whereas computing the mean and variance of

extrinsic information incurs a processing delay.
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The mean and variance of intrinsic for both source and relay transmission are calculated

as
eLfn, 1 L{ )
m,(x,)=(1) —+(=1)(———) = tanh(—*) (5.23)
1+ e 1+ " 2
02 5) = (D) 4 1y = )
P 1+ eLf"’ 1+ eL[‘"' P (5.24)
=1- mi2 (%)

where /=S or R, , denoting source or k" relay node. L, and L are a

priori information provided by LDPC decoders, for source and kth relay node,

respectively.

To calculate the mean and variance of extrinsic information, we use following

calculations.

First define

X =[x5 xp Xp - Xg I (5.25)

K

We first form soft estimates of the code bits of source and all relay nodes, based on the a

priori information provided by LDPC decoders.

X =E[X]=[% %, % .. %, 1 (5.26)

where X, = tanh(L} /2) and Xp, =tanh(L" /2)

int int

Define

X, =X-%e =[% %, % .5 0% .5 I (5.27)
where /=1,2,...K+1. e;is a zero vector of size (K+1), except M entry, which is
1. x, denotes I"™ entry of X matrix, which is source or relay node transmission and X,

denotes the expectation of x; .
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The received signal at the destination node is given by

y, =HX+n, (5.28)
where H denotes N x (K+1) channel coefficient matrix between relay nodes and

destination. n, denotes the N x 1 zero mean complex noise with covariance matrix oI .

For source and all relay nodes, a soft interference cancellation is performed on the

outputy,.
y, =y, -HX,=H(X-X))+n,, (5.29)

Next, in order to further suppress the residual interference iny,, an instantaneous linear

filter w, 1s applied toy, , to obtain
z=w]y, (5.30)

w, is chosen to minimize the mean square error between the code bit x;,and the filter

output z,

W, =arg min E[|| X _WzTyl ||2] =arg min(w,TE[y,y,T]w, - WITE['xlyl] - E[xzyz]T Wz) (5.31)

w

where the expectation is taken with respect to transmissions other than x;, and noise.
Using (5.29), we have

Ely,y/]=HAH" +5°1 (5.32)
E[x;y,]=He, =h, (5.33)
where h,denotes the channel coefficient between the node, transmitting x, and

destination. In addition, covariance matrix is denoted as
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A, =covi{X-X}

5.34
=diag{l—ié,l—fc;],l—iil,...,l—ifm,l, 1—)?12%, vy l—iik} ©6-34)
Substituting (5.32) and (5.33) into (5.31), the linear filter for CLT detector is
w,=[HAH" +5°1]"'h, (5.395)

It is shown in [60], [70] that linear filter wfor MF-SIC, which is similar to Taylor

detector is

We— L (5.36)

" o’+hln, "’

Using (5.29) and (5.30), the mean, 4, and variance,v;, of the filter output,z,, is

calculated in a different approach used in [S3]. Conditioning on the code bit x, gives us

u=E[z|x, :x]=E[w,Ty, | x, = x]
=w'Ely, |x, =x]=w HE[X-X, | x, = x]

(5.37)
=w, Hx
= h,[HAH" +0c°I]'h,,
where x is a vector of zeros, except entry /, which is x.
V12 =var(z, | x, = x) = W;{E[YIHyz | X, =x]w, - /le
= h[HAH +5°1]'h, — 4/ (5.38)
=H - /112
for CLT detector.
hlh
W =E[z,x,|x :x]:ﬁ (5.39)
v = E[z}]-E[z,} =w] (c’T+HAH" —h h])w, (5.40)

for Taylor detector.
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The authors in [69], [71] examine the behaviour of multiple access-interference (MAI) at
the output of the MMSE detector under various asymptotic conditions, including: large
signal-to-noise ratio; small and large numbers of users. The environment of orthogonal
signaling with additive white Gaussian noise is considered, similar to our relaying case.
It is demonstrated that the conditional distribution of the MAI-plus-noise is
approximately Gaussian in many cases of interest and the non-Gaussian portion of the
MAI-plus-noise vanishes, thereby yielding a Gaussian distribution for the overall

interference term.

As a result, the second order statistics we found in (5.37) and (5.38) describe the

distribution of the output of the filter, z, which is Gaussian distributed, i.e

2
z,~ N, (ux;,v;)

Then the extrinsic information delivered by the filter is

=+1
L, (x) = log PG =D
p(z |x, =-1)
— _(Zl _/Jz)2 + (Zl +/u1)2 — 45}{{21#1}
v/ v/ v/

The mean and variance of extrinsic information for both source and relay transmission is

calculated as

me(xl) =E[L,

ext

Vi Vi

4 8u’
02 (5) = Var(L, () = (5 var(z) =4

) Y

Hence, extrinsic information has a Gaussian distribution of the form

4 2 8 2
L, (x)~NCELx,“An)
v v
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(o= oy (5.42)

(5.43)



In [56], Choi used the correlation mapping technique between the information bit and

estimated information bit to analyze the performance of iterative receivers, which gives

similar results as extrinsic information transfer (EXIT) charts [72].

We employ empirical correlation coefficient technique for intrinsic and extrinsic

information of the detector, which is given by

o1 L:LLZ, m;m, LﬁfoLf —mimt Ly Liif, —m g
10 =
K+1 olo) oloh ol ol
4 L, 4 ARz g} L, ﬂ]
L;S;’t m{zgﬂS} _tanh(it) ll’;s xS ﬁt#_ h( t) R
S s VRI +
— tanh( mf) 845 1~ anh( L y? —8” B
1 v 27\ %
K + 1 LRK 4m{ZRKﬂRK } t h( Lfft ) 4’LlRK
int 2 2 V Ry
+ RK RK
R 8
- tanh( i )2 Hi el
vRK

. . . . . th .
where L’ and L are intrinsic information for source and k" relay node, respectively

L’ and L are extrinsic information for source and K"

relay node,

. . th .
o’ and o;* are standart deviations for source and k= relay node, respectively

. th
o’ and o™ are standart deviations for source and k

comes from K relay nodes and one source node.
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We can use (5.44) to estimate the correlation coefficient, since as K approaches infinity,

equation (5.44) approaches to

int”_ext int "_ext
+ .t

N s S R TR R R Ry 7Ry Ry Re
lim 1 [E[Lm,Lext—mime L.‘L‘—ml.‘me‘_'_ L.KLK—mikmek]J

Koo K41 o’} olich lopionts
Sqys _ S S R yRy _ R _ R Ry rRx _ Ry Ry
— hm 1 E[LintLext mi me ]+E[LintLext mi me ]+ +E[Lint Lext mi me ]
K_)wK-i-l s __S R __R RKO_RK
i e i e i e

int —ext

int”—ext int”—ext ]+
K—» K 41

1 (E[L,L 1-m’m’  E[LY LY 1-mmb
+ R R
o, *o,*

L ELL L 1= mfm® J

5 s R__R
o, 0o, 0,0,

= lim
Koo K 41

(,OS +pR] +...+pRK)

(5.45)

Using mean and variance values of intrinsic and extrinsic information and the correlation
coefficient between intrinsic and extrinsic information, we calculate the values of ¢ and

din (5.22).

We simulated the channel for Rayleigh fading channel using two relay nodes. At the
source node, 1000 bit data information is encoded with rate ¥2 LDPC code and at the
relay nodes EF technique is used. Channel gains g; and g, are both 4 dB. At the

destination node, iterative decoding where two global iterations are performed is used.

As it is observed in Figure 5.8, SODED-Taylor detector improves the performance by
about 0.8 dB relative the sub-optimal detector obtained by Taylor expansion at BER
10”°. Moreover, the performance gap between SODED-Taylor and MAP detector is 0.3
dB. The situation is similar for CLT case, in which SODED-CLT detector improves the
performance by about 1 dB relative the sub-optimal detector obtained by CLT
assumption at BER 10™, as is shown in Figure 5.9. And the performance gap between

SODED-CLT and MAP detector is 0.5 dB.
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6. Conclusion

In this thesis, we worked on the simulation of a wireless relay channel, where single
relay case is considered. In addition to the channel simulation, we evaluated capacity and
information rates, which were useful for comparing single relay channel to direct and
multi-hop transmissions. It was shown that relay channels outperform other two
transmission schemes. Furthermore, in relay channel the destination observes a
superposition of the transmitted codewords from the source and the relay nodes.
Therefore, we studied the iterative decoding process, where we had implemented MAP
and outer decoders using LDPC soft decision decoding to extract the codeword received

by destination.

One relay channel was extended to multiple relay channels and the iterative receiver
technique is improved for multiple relay case. In all our simulations, 1000 bit data bit
was encoded with rate /2 LDPC codes and sent through Rayleigh fading channels. At the
destination, 100 inner LDPC iterations is used and the channel gains g;, g» are both 4 dB.
Simulations demonstrated that as the relay number increases, there is a SNR gain.
Moreover, it was shown that the SNR gain for both single and multi-relay case also
depends on the global iteration number between MAP detector and LDPC decoder. To
be specific, for 2 global iteration case, increasing the number of relays from one to two
provides us with 3.1 dB BER gain for DF protocol, 4.9 dB BER gain for EF protocol and
increasing the number of relays from two to three provides us with 1.1 dB BER gain for

for DF protocol, 1.4 dB BER gain for EF protocol at BER 10~.

Using MAP detector incurs a high computational complexity, as the relay number
increases. To alleviate this problem, we investigated two approximations. First, Taylor
expansion was considered to approximate MAP detector and a sub-optimal MF-SC
detector is observed. It was observed that this sub-optimal detector performs 0.8 dB
worse than MAP detector for one global iteration and about 1.1 dB worse for two global

iterations. And then, CLT assumption was used to approximate MAP detector and it was
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shown that as relay number increases, it approached the performance of MAP and is
similar to MMSE-SC. It was demonstrated in simulations that this sub-optimal detector
performs 1.1 dB worse than MAP detector for one global iteration and about 1.4 dB

worse for two global iterations.

For two relay network, CLT detector worked about 0.3 dB worse than Taylor detector,
since CLT detector performs better for large relay numbers, where high interference
channel is obtained. Therefore, as we increase the relay number from two to eight, CLT
detector is about 0.1 dB better than Taylor detector, since interference also increases

with the relay number.

We briefly examined the correlation between intrinsic and extrinsic information of sub-
optimal detectors and observed that it is very high. Therefore, to decrease the correlation
between these two values, two attenuators are put at the end of sub-optimal detectors. It
was observed that as we decorrelated those, we got a better performance. Particularly,
for two relay network where relay nodes use EF technique and destination node
performs two global iterations, SODED-Taylor detector improves the performance by

0.8 dB BER 10° and SODED-CLT improves the performance about 1 dB at BER 10™,

6.1 Future Work

Extensions of this work are possible in the following directions:

e The concept of multi relay nodes with single antennas in relay networks can be
generalized to cooperative networks in general. This would pave the way for
efficient, wireless peer-to-peer networks. Various cooperation protocols could be
established based on different performance goals, such as minimization of the

download time, spectral efficiency, minimization of interference, etc.
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The concept of multi relay nodes with single antennas in relay networks can be
generalized to multi relay nodes with multiple antennas, since MIMO systems

contribute system performance in an efficient way.

We considered Rayleigh fading in our simulations, which does not consider line-
of-sight (LOS) scenario of both the source and the destination for the relay node.
But, in practical propagation environments, these assumptions may not hold true.
In the future work part, a relay channel model which can take into account both
LOS and non-line-of-sight (NLOS) propagation environments should be
proposed.

We also assumed that relay nodes have the same power constraint and transmit
with the same transmission power. Using power allocation technique and
splitting the total relay transmission power smartly between relay nodes to

achieve higher capacity, remains as a future work

We considered full-duplex multi-relay scheme, where accurate interference
cancellation between transmitted and received signals is difficult to achieve.
Therefore, extending our work, into half-duplex schemes, which is favorable for

current commercial wireless communications sytems, remains as a future work.

86



REFERENCES

[1]1 A.J. Goldsmith, Wireless Communications, Cambridge, UK: Cambridge University Press, 2005.

[2] J.G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX: Understanding Broadband
Wireless Networking, Prentice Hall, 2007.

[3] W.C. Jakes, Microwave Mobile Communications, New York: Wiley, 1974.

[4] J.G. Proakis, Digital Communications, Fourth Edition, McGraw-Hill, 2001

[5] S.M. Alamouti, “A simple transmit diversity technique for wireless communications," [EEE
Journal on Selected Areas in Communications, vol. 16, pp. 1451-1458, October 1998.

[6] H. Jafarkhani, V. Tarokh and A.R. Calderbank, “Space-time block codes from orthogonal
designs," IEEE Trans. Information Theory, vol. 45, pp. 1456-1467, July 1999

[71 N. Seshadri, V. Tarokh and A.R. Calderbank, “Space-time codes for high data rate wireless
communication: Performance criterion and code construction," IEEE Trans. Information Theory,
vol. 44, pp. 744-765, March 1998.

[8] E.C. van der Meulen, “Three-terminal communication channels,” Advanced Applied Probability,
vol. 3, pp. 120-154, 1971.

[9] T. Unger and A. Klein, "Cooperative MIMO Relaying with Distributed Space-Time Block
Codes," Personal, Indoor and Mobile Radio Communications, IEEE 17th International
Symposium on, pp.1-5, Sept. 2006.

[10] C.K. Lo, S. Vishwanath, and R.W. Heath, Jr., "'Rate Bounds for MIMO Relay Channels Using
Precoding," in Proc. of the IEEE GLOBECOM, pp. 1172-1176, St. Louis, MO, November 2005.

[11] T.E. Hunter and A. Nosratinia, “Cooperative diversity through coding,” in Proc. IEEE Int. Symp.
Info. Theory, p. 220, Lausanne, Switzerland, July 2002.

[12] A. Stefanov and E. Erkip, “Cooperative space-time coding for wireless networks,” IEEE Trans.
Commun., vol. 53, no. 11, pp. 1804-1809, Nov. 2005.

[13] R. Nabar, H. Bolcskei, and F. Kneubuhler, “Fading relay channels: Performance limits and
space-time signal design,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 6,
pp- 1099-1109, August 2004.

[14] Z. Zhang and T.M Duman, "Capacity-approaching turbo coding and iterative decoding for relay
channels," IEEE Trans. Commun., vol.53, no.11, pp. 1895-1905, Nov. 2005.

[15] ——, “Capacity approaching turbo coding for half duplex relaying,” in Proc. IEEE Int. Symp. on
Info. Theory, pp. 1888—1892, Adelaide, Australia, Sept. 2005.

[16] Z. Liu, V. Stankovic, and Z. Xiong, “Wyner-Ziv coding for the half duplex relay channel,” in
Proc. IEEE Intl. Conf. on ASSP, Philadelphia, PA, Mar. 2005, pp. 1113-1116.

[17] M.A. Khojastepour, N. Ahmed, and B. Aazhang, “Code design for the relay channel and factor
graph decoding,” in Proc. Asilomar Conf. On Signals, Systems and Computers, Pacific Grove,
California, Nov. 2004, pp. 2000—2004.

87



[18] A. Chakrabarti, A. Baynast, A. Sabharwal, and B. Aazhang, “LDPC code design for half-duplex
decode-and-forward relaying,” in Proc. Allerton Conf., Illinois, Sept. 2005.

[19] P. Razaghi and W. Yu, “Bi-layer LDPC codes for the relay channel,” in Proc. Intl. Conf. on
Commun., Istanbul, Turkey, June 2006

[20] J. Hu and T.M. Duman, “Low Density Parity Check Codes over Wireless Relay Channels,”
IEEE Trans. on Wireless Communications, vol. 6, no. 9, pp. 3384-3394, Sep. 2007.

[21] R.G. Gallager, “Low-Density Parity-Check codes,” Ph.d thesis, MIT Press, Cambridge, MA,
1963.

[22] D.J.C. MacKay, “Good error-correcting codes based on very sparse matrices,” [EEE Trans.
Inform. Theory, vol.45, n0.2, pp.399-431, 1999.

[23] N. Wiberg, “Codes and decoding on general graphs,” Ph.d thesis, Linkoping University,
Linkoping, Sweden, December 1996.

[24] S.Y. Chung, G.D. Forney, T.J. Richardson, and R. Urbanke, “On the Design of Low-Density
Parity-Check Codes within 0.0045 dB of the Shannon Limit,” /EEE Communications Letters,
vol.5, no.2, pp.58-60, Feb. 2001.

[25] T. Richardson and R.Urbanke, “The capacity of low-density parity-check codes under message-
passing decoding,” IEEE Transactions on Information Theory, vol.42, no.2, pp.599-618, 2001.

[26] European Telecommunications Standards Institude (ETSI). Digital Video Broadcasting (DVB)
Second generation framing structure for broadband satellite applications; EN 302 307 Vi.1.1.
www.dvb.org.

[27] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman,” Efficient erasure correcting
codes,” IEEE Transactions on Information Theory, vol. 47, no. 2, Feb. 2001

[28] M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory,
vol.27,no. 5, Sep. 1981

[29] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of provably good low-density parity-
check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001

[30] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity- check codes,” IEEE
Trans. on Information Theory, vol. 47, no. 2, Feb. 2001

[31] W. E. Ryan, "An Introduction to LDPC Codes," in CRC Handbook for Coding and Signal
Processing for Recording Systems (B. Vasic, ed.) CRC Press, 2004.

[32] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity: Part I and Part I1,” IEEE
Trans. Commun., vol. 51, no. 11, pp. 1927-1948, Nov. 2003.

[33] J.N. Laneman, D. N. C. Tse, and G.W. Wornell, “Cooperative diversity in wireless networks:
Efficient protocols and outage bahavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062—
3080, Dec. 2004.

[34] T.M. Cover and A.E. Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inf.
Theory, vol. 25, no. 5, pp. 572-584, Sept. 1979.

88



[35] A. Chakrabarti, A. De Baynast, A. Sabharwal, and B. Aazhang, "Half-duplex estimate-and-
forward relaying: bounds and code design," in IEEE International Symposium on Information
Theory (ISIT '06), pp. 1239-1243, Seattle, Wash, USA, July 2006.

[36] T.E. Hunter and A. Nosratinia, “Diversity through coded cooperation," IEEE Trans. on Wireless
Communications, vol. 5, pp. 283-289, Feb. 2006.

[37] T. Hunter, S. Sanayei, and A. Nosratinia, “Outage analysis of coded cooperation,” I[EEE Trans.
on Information Theory, vol. 52, no. 2, pp. 375-391, February 2006.

[38] P. Mitran, H. Ochiai, and V. Tarokh, “Space-time diversity enhancements using collaborative
communications,” IEEE Trans. on Information Theory, vol. 51, n0.6, pp. 2041-2057, June 2005.

[39] B. Zhao and M. Valenti, “Distributed turbo coded diversity for relay channel,” IEEE Electronics
Letters, vol. 39, no. 10, pp. 786-787, May 2003.

[40] M. Janani, A. Hedayat, T. Hunter, and A. Nosratinia, “Coded cooperation in wireless
communications: Space-time transmission and iterative decoding," IEEE Trans. Signal Process.
vol.52,n0.2, pp.362-371, Feb. 2004.

[41] M.R. Souryal and B.R. Vojcic, “Cooperative turbo coding with time-varying rayleigh fading
channels,” in Proc. Intl. Conf. on Commun., Paris, France, June 2004, pp. 356-360.

[42] Z. Liu, V. Stankovic, and Z. Xiong, “Wyner-Ziv coding for the half duplex relay channel,” in
Proc. IEEE Intl. Conf. on ASSP, Philadelphia, PA, Mar. 2005, pp. 1113-1116.

[43] D. Burshtein, M. Krivelevich, S. Litsyn, and G. Miller, “Upper Bounds on the Rate of LDPC
Codes,” IEEFE Trans. Inf. Theory, vol. 48, no. 9, September 2002.

[44] S. Chae and Y. Park, “Low Complexity Encoding of Regular Low Density Parity Check Codes, ”
IEEE Vehicular Technology Conference, vol.3, pp. 1822-1826, Oct. 2003.

[45] D. Raphaeli and Y. Zarai, “Combined turbo equalization and turbo decoding,” in Proc. IEEE
Global Commun. Conf., vol. 2, Nov. 1997, pp. 639-643.

[46] C. Douillard, M. Jezequel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “Iterative correction
of intersymbol interference: Turbo equalization,” Eur. Trans. Telecomm., vol. 6, pp. 507-511,
Sept./Oct. 1995.

[47] Wireless Tech. Info, available at http://www.zytrax.com/tech/wireless/soup.html

[48] Specifications of DELL WLAN card, available at

http://support.ap.dell.com/support/edocs/network/p44970/en/specs.htm
[49] 3GPP TS 22.105 — Services and service capabilities (Release 8) — January 2007, available at
http://www.arib.or.jp/IMT-2000/V710Dec08/5 Appendix/Rel8/22/22105-840.pdf

[50] C. Carbonelli, S.H. Chen and U. Mitra, "Error propagation analysis for underwater cooperative
multi-hop communications," Ad Hoc Networks, vol. 7, no. 4, pp. 759-769, June 2009.

[51] J. Boyer, D.D. Falconer, and H. Yanikomeroglu, “Multihop Diversity in Wireless Relaying
Channels,” IEEE Trans. Comm., vol. 3, no. 6, pp. 1963-1968, 2004.

89



[52] M.A. Khojastepour, A.S., B. Aazhang, “ Lower Bounds on the Capacity of Gaussian Relay
Channel,” 38th annual conference on information sciences and systems, Princeton, New Jersey,
March 2004

[53] X. Wang and H.V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded
CDMA,” IEEE Trans. Commun., vol. 47, pp. 1046-1061, July 1999

[S4] M. Tuchler, A. Singer, and R. Koetter, “Minimum mean squared error equalization using a
priori information,” IEEE Trans. Sig. Proc., vol. 50, pp. 673-683, Mar. 2002.

[55] J. Choi, “Low complexity MAP detection using approximate LLR for CDMA iterative
receivers,” IEEE Communications Letters, vol. 10, no. 5, May 2006.

[56] J. Choi, “A correlation based analysis for approximate MAP detectors and iterative receivers,”
IEEE Trans. Wireless Communications, vol. 6, no. 5, pp. 1764-1773, May 2007.

[57] K. Li and X. Wang, “EXIT chart analysis of turbo multiuser detection,” IEEE Trans. Wireless
Commun., vol. 4, pp. 300-311, Jan. 2005.

[58] R. Bohnke, D. Wiibben, V. Kiihn, and K.D. Kammeyer, "Reduced complexity MMSE detection
for BLAST architectures," in Proceedings of IEEE Global Telecommunications Conference
(GLOBECOM '03), vol. 4, pp. 2258-2262, San Francisco, Calif, USA, December 2003.

[59] T. Ito, X. Wang, Y. Kakura, et al., “Performance comparision of MF and MMSE combined
iterative soft interference canceller and V-BLAST technique in MIMO/OFDM systems,”
Proceedings of the IEEE 58th. Vehicular Technology Conference - VIC 2003 1:488-492,2003

[60] M. Tiichler, R. Koetter, and A. C. Singer, “Turbo equalization: principles and new results”, IEEE
Tans. Signal Process., vol. 50, no.5, pp.754-756, May 2002.

[61] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log domain,” in Proc. IEEE Int. Conf. Communications
(ICC), 1995, pp. 1009-1013

[62] L. Papke, P. Robertson, and E. Villerbrun, “Improved decoding with the SOVA in a parallel
concatenated (turbo-code) scheme,” in Proc. IEEE Int. Conf. Communications (ICC), Jun. 1996,
pp- 102-106.

[63] G. Colavolpe, G. Ferrari, and R. Raheli, “Extrinsic information in iterative decoding: A unified
view,” IEEE Trans. Commun., vol. 49, no. 12, pp. 2088-2094, Dec. 2001.

[64] D.W. Kim, T.W. Kwon, J.R. Choi, and J. J. Kong, “A modified two-step SOVA-based turbo
decoder with a fixed scaling factor,” in Proc. [EEE ISCAS, vol. 4, May 2000, pp. 37—40.

[65] S. Papaharalabos, P. Sweeney, and B. G. Evans, “Improvements in SOVA-based decoding for
turbo codes,” Electron. Lett., vol. 39, no. 19, pp. 1391-1392, Sep. 2003.

[66] L. Lin and R.S. Cheng, “Improvements in SOVA-based decoding for turbo codes,” in Proc.
IEEE Int. Conf. Communications (ICC), Montreal, QC, Canada, Jun. 1997, pp. 1473—-1478.

[67] Z.Wang and K. Parhi, “High performance, high throughput turbo/SOVA decoder design,” IEEE
Trans. Commun., vol. 51, no. 4, pp. 570-579, Apr. 2003

90



[68] A.Ghrayeb and C.X. Huang, "Improvements in SOVA-based decoding for turbo-coded storage
channels", IEEE Trans. on Magnetics, vol. 41, no. 12, pp. 4435-4442, December 2005

[69] H.V. Poor and S. Verd'u, “Probability of error in MMSE multiuser detection,” IEEE Trans.
Inform. Theory, vol. IT-43, pp. 858-871, May 1997.

[70] H. Omori, T. Asai, and T. Matsumoto, “A matched filter approximation for SC/MMSE iterative
equalizers”, IEEE Commun. Lett., vol. 5, no.7, pp.310-312, July 2001.

[71] J. Zhang, E.K.P. Chong, and D.N.C. Tse, “Output MAI distributions of linear MMSE multiuser
receivers in DS-CDMA systems,” IEEE Trans. Inform. Theory, pp. 1128—1144, Mar. 2001.

[72] S.T. Brink, “Convergence behavior of iterative decoded parallel concatenated codes,” IEEE
Transactions on Communications, vol. 49, pp. 1727— 1737, Oct. 2001.

[73] K.T(John) Sun, and J. Choi, “Selective detection in an iterative soft-interference cancellation

receiver,” in Proc. Asia-Pacijc Conf. Comm., APCC 2005, Oct. 2005, pp.1005-1008.

91



