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All Rights Reserved



APPROXIMATION AND POLYNOMIAL CONVEXITY IN SEVERAL COMPLEX

VARIABLES

Büke Ölçücüoğlu
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Abstract

This thesis is a survey on selected topics in approximation theory. The topics use
either the techniques from the theory of several complex variables or those that arise in
the study of the subject. We also go through elementary theory of polynomially convex
sets in complex analysis.
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Özet

Bu tez, yaklaşımlar teorisinde seçilmiş konular üzerine bir araştırmadır. Bu konular
incelenirken ya çok değişkenli karmaşık analiz teorisinde mevcut olan, ya da inceleme
sırasında ortaya çıkan teknikler kullanılıyor. Araştırmamız aynı zamanda karmaşık anal-
izde polinomsal konveks kümelerin temel teorisini de inceliyor.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this thesis basic theory of approximation in Cn when n ≥ 1 is surveyed. The
main object of study in complex analysis is the holomorphic function spaces. Let K
be a compact set in Cn. It is possible to consider various classes of function spaces,
such as H(K), A(K), R(K), and P(K) (see section 1.2 for their definition) all of which
are mostly interest of study in the theory of functions. From their definitions it follows
immediately that

P(K)⊂ R(K)⊂ H(K)⊂ A(K).

In Chapter 2 we first take a glance at the classical approximation results in C such
as Runge Theorem, Lavrentiev’s Theorem and Mergelyan Theorem that can be taught
in a standard graduate complex analysis course. We follow the book of Rudin for this
chapter. Chapter 4 is devoted to an exposition of the theory of polynomially convex
sets. A compact subset of Cn is polynomially convex if it is defined by a family, finite
or infinite, of polynomial inequalities. These sets play an important role in the theory of
functions of several complex variables, especially in questions concerning approxima-
tion. Chapter 3 is devoted to the generalization of Runge Theorem to Cn, so called the
Oka-Weil Theorem.

Not every compact subset of Cn is polynomially convex. Generally it is a difficult

task to find criteria for checking whether a given compact set is polynomially convex. In

Chapter 4 we give a few well-known examples of polynomially convex sets. In section

4.2 we present two results that are full characterizations of polynomially convex sets.

A fundamental connection between polynomial convexity and plurisubharmonic func-

tions is presented by Theorem 4.2.1. The second (Theorem 4.2.4) characterization of

polynomial convexity is a recent result of Duval and Sibony which uses the concept of
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Jensen measures. These measures recently attracted the attention of quite a number of

mathematicians and proved to have important applications in complex analysis.

Basic definitions are given in Chapter 1. Classical results in several complex vari-

ables and pluripotential theory are also included in section 1.2. In section 1.3 the class of

Jensen measures is introduced. Elementary theory of differential forms, ∂-operator and

currents that we will need are given in sections 1.4, 1.5 and 1.6, respectively. Section

1.7 is devoted to the solution of the ∂-equation in the polydisk. One of the important

tasks to do in complex analysis is to solve the ∂-equation. This concept is revisited in

Theorem 3.1.8 for the case of polynomial polyhedra. This result is the essence of the

proof of the Oka-Weil theorem.

1.2 Basic Definitions and Theorems

We refer to [Hör73] for detailed information on the content of this section. Let Ω be

an open set in Cn. For any k = 0,1, . . ., we will denote by Ck(Ω) the space of all k times

continuously differentiable complex-valued functions in Ω. Ck
0(A), where A is a subset

of Ω, will denote the set of functions in Ck(Ω) vanishing outside a compact subset of A.

C∞(Ω) will denote the algebra of all finitely differentiable complex-valued functions on

Ω. We write C∞ for C∞(Ω). We will define the operators on C∞ as follows:

∂

∂z j
=

1
2

(
∂

∂x j
− i

∂

∂y j

)
,

∂

∂z j
=

1
2

(
∂

∂x j
+ i

∂

∂y j

)
(1.1)

Definition 1.2.1. A function f ∈C1 is said to be holomorphic on Ω if

∂ f
∂z j

= 0 (1.2)

for every j = 1, . . . ,n. The set of all holomorphic functions defined on Ω will be denoted

by Hol(Ω).

We will think of the set Hol(Ω) together with the compact-open topology. A se-

quence of functions f j ∈ Hol(Ω) converges to a function f in Hol(Ω) if f j converges

uniformly to f on every compact subset of Ω.
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Any function which satisfies (1.2), satisfies the Cauchy-Riemann equations in the

z jth coordinate for any j. Hence a holomorphic function is holomorphic in each variable.

The converse of this statement is known as Hartogs theorem.

Theorem 1.2.2. [Hartogs Theorem] Let f be a complex valued function defined in an

open set Ω ⊂ Cn. Suppose that f is holomorphic in each variable z j when the other

coordinates zk for k 6= j are fixed. Then f is holomorphic in Ω.

Theorem 1.2.3. [Hartogs Extension Theorem] Suppose Ω is a bounded nonempty open

connected subset of Cn with connected boundary bΩ. If n ≥ 2, then each function f

that is holomorphic in some connected neighborhood of the boundary of Ω, bΩ, has a

holomorphic extension to Ω.

The (open) ball of radius r centered at z0 ∈ Cn is the set

Bn
(
z0,r

)
=

z ∈ Cn :
∣∣z− z0∣∣=( n

∑
j=1

∣∣z j− z0
j
∣∣2)1/2

< r

 .

Similarly, the (open) polydisk of polyradius r = (r1, · · · ,rn) centered at z0 is the set

Un(z0,r) =
{

z ∈ Cn :
∣∣z1− z0

1
∣∣< r1, · · · ,

∣∣zn− z0
n
∣∣< rn

}
.

Bn and Un denoting, respectively, the open ball of center 0 and radius one and open

polydisk of polyradius (1, · · · ,1) and center 0 will be used consistently throughout the

text.

Definition 1.2.4. An open set Ω⊂ Cn is called a domain of holomorphy if there are no

open sets Ω1 and Ω2 in Cn with the following properties:

(i) /0 6= Ω1 ⊂Ω2∩Ω.

(ii) Ω2 is connected and not contained in Ω.

(iii) For every f ∈ Hol(Ω) there is a function f2 ∈ Hol(Ω2) (necessarily uniquely

determined) such that f = f2 in Ω1.

4



So we can say that a domain of holomorphy is a set which is maximal in the sense

that there exists a holomorphic function on this set which cannot be extended to a bigger

set.

Definition 1.2.5. If K is a compact subset of Ω, we define the holomorphic hull, K̂Hol

of K with respect to Ω by

K̂Hol
Ω = {z ∈Ω : | f (z)| ≤ ‖ f‖K if f ∈ Hol(Ω)}

where ‖ f‖K = maxK | f |.

Theorem 1.2.6. The following conditions are equivalent:

(i) Ω is a domain of holomorphy,

(ii) K̂Hol
Ω
⊂⊂Ω if K ⊂⊂Ω

where K ⊂⊂ Ω means that K is relatively compact in Ω, that is, K is contained in a

compact subset of Ω.

Definition 1.2.7. Let X be a topological space. We say that a function f : X → [−∞,∞)

is upper-semicontinuous if the set {x ∈ X : f (x) < a} is open in X for each a ∈ R.

Definition 1.2.8. Let U be an open set of C. A function f : U → [−∞,∞) is called

subharmonic if it is upper-semicontinuous and satisfies the local submean inequality,

i.e. given w ∈U , there exists ρ > 0 such that

f (w)≤ 1
2π

∫ 2π

0
f (w+ reit)dt (0≤ r < ρ). (1.3)

Definition 1.2.9. A function f defined in an open set Ω⊂ Cn with values in [−∞,+∞)

is called plurisubharmonic if

(i) f is upper-semicontinuous,

(ii) For arbitrary z and w ∈ Cn, the function τ→ f (z + τw) is subharmonic in the

part of C where it is defined.

We will denote the set of such functions by PSH(Ω).
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Definition 1.2.10. A smooth function u on Ω is said to be strictly plurisubharmonic on

Ω if for every relatively compact open set V ⊂ Ω there exists a number ε > 0 so that

u(z)− ε |z|2 is plurisubharmonic on V .

The elementary theory of plurisubharmonic functions parallels that of subharmonic

functions rather closely. In particular, plurisubharmonic functions enjoy the following

properties. We refer to [Kli91] for more about plurisubharmonic functions.

Proposition 1.2.11.

(a) If
{

u j
}

j=1,...
is a monotonically decreasing sequence of plurisubharmonic func-

tions defined on a domain Ω, then the function u defined by u(z) = lim j→∞ u j(z) is also

plurisubharmonic.

(b) If {uα}α∈A is an arbitrary collection of plurisubharmonic functions on a domain

Ω, and if u(z) = supα(z) then the upper regularization of u defined by

u∗(w) = lim
ε→0+

(
sup
|w−z|<ε

u(z)

)
is plurisubharmonic or else identically +∞.

(c) A plurisubharmonic function on a connected open set in Cn is either identically

−∞ or else is locally integrable with respect to Lebesgue measure on Cn.

(d) If u is a plurisubharmonic function on the domain Ω, there is a decreasing se-

quence
{

u j
}

j=1,...
of functions of class C∞ on Ω with u(z) = lim j→∞ u j(z) for all z and

with the property that if K is a compact subset of Ω, then all but finitely many of the

functions u j are plurisubharmonic on a neighborhood of K.

(e) If u is a plurisubharmonic function on a domain Ω and if χ : R→ R satisfies χ′,

χ′′ ≥ 0, then χ◦u is plurisubharmonic on Ω.

(f) Plurisubharmonic functions are subharmonic in the sense of potential theory.

Therefore whenever Bn(z0,r)⊂Ω

u(z0)≤
n!

πnr2n

∫
Bn(z0,r)

u(z)dL(z)

for every u ∈ PSH(Ω).
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(g) Let u ∈ PSH(Ω). Let Ω j be domains so that Ω j ⊂ Ω j+1 is relatively compact

for every j and Ω = ∪Ω j. There exist functions u j ∈C∞(Ω)∩PSH(Ω j) such that u j(z)

eventually decreases to u(z) for every z ∈Ω.

Theorem 1.2.12. [Hör73] Let Ω be a domain in Cn, let K be a compact subset of Ω,

and let g be a continuous function on Ω. If {uk}k=1,... is a sequence of plurisubharmonic

functions that is locally uniformly bounded on Ω and that satisfies

limsup
k→∞

uk(z)≤ g(z) for all z ∈Ω,

then for each ε > 0 there is a kε such that for k > kε, uk(z) < g(z)+ ε for every z ∈ K.

Proof. We first suppose that the function g is constant. Without loss of generality, we

can suppose that the sequence is uniformly bounded on Ω. It can then be supposed that

g = C with C < 0 and that each uk is negative on Ω.

Choose a δ < 1
3 dist(K,Cn\Ω). If z0 ∈ K, then by Proposition 1.2.11 (f)

uk (z0)≤
n!

πnδ2n

∫
Bn(z0,δ)

uk(z)dL(z).

Fatou′s lemma implies that

limsup
k→∞

∫
Bn(z0,δ)

uk(z)dL(z)≤
∫

Bn(z0,δ)
CdL(z) = C

πnδ2n

n!
.

Thus there is k (z0) large enough that for k > k (z0),∫
Bn(z0,δ)

uk(z)dL(z) <
πnδ2n

n!
(C + ε/2) .

If |w− z0|< r for an r < δ, then, becouse the u′s are negative, we have, for large k,

uk(w) ≤ n!

πn (δ+ r)2n

∫
Bn(w,δ+r)

uk(z)dL(z)

≤ n!

πn (δ+ r)2n

∫
Bn(z0,δ)

uk(z)dL(z)

≤ δ2n

(δ+ r)2n (C + ε/2)

≤ C + ε/2

since Bn (w,δ+ r)⊃ Bn (z0,δ). Thus, for each z0 ∈ K, we have found a neighborhood of

z0 on which uk ≤C + ε provided k is big enough. Compactness now implies the result.
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Having established the result when the function g is constant, we derive the general

case. Let K, ε, and g be as given in the theorem. Because the function g is continuous,

compactness yields finitely many compact sets E1, · · · ,Eq with union K and correspond-

ing constants c1, · · · ,cq such that for each j and all x ∈ E j , g(x) < c j < g(x) + ε/2.

By the special case of the result that we have proved, there is an integer k j such that

uk(x) < c j + ε/2 if j > k j, x ∈ E j . With k > max
{

k1, · · · ,kq
}

, we have that for all

x ∈ K, uk(x) < g(x)+ ε. The theorem is proved.

Definition 1.2.13. If K is a compact subset of the open set Ω ⊂ Cn we define the

plurisubharmonic hull K̂Psh
Ω

of K with respect to Ω by

K̂Psh
Ω = {z ∈Ω : f (z)≤ ‖ f‖K for all f ∈ PSH(Ω)} .

Let δ be an arbitrary continuous function on Cn such that δ > 0 except at 0 and

δ(tz) = |t|δ(z), t ∈ C, z ∈ Cn.

Set δ(z,bΩ) = infw/∈Ω δ(z−w). It’s clear that δ(z,bΩ) is a continuous function of z.

Definition 1.2.14. The open set Ω ∈Cn is called pseudoconvex if the following equiva-

lent conditions are satisfied:

(i) −log δ(z,bΩ) is plurisubharmonic in Ω.

(ii) There exists a continuous plurisubharmonic function f in Ω such that

Ωc = {z ∈Ω : f (z) < c} ⊂⊂Ω

for every c ∈ R.

(iii) K̂Psh
Ω
⊂⊂Ω if K ⊂⊂Ω.

Definition 1.2.15. A domain of holomorphy Ω⊂Cn is called a Runge domain if polyno-

mials are dense in Hol(Ω), that is, if every f ∈ Hol(Ω) can be uniformly approximated

on an arbitrary compact set in Ω by polynomials.
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Here and throughout this work polynomials are understood to be holomorphic poly-

nomials.

Definition 1.2.16. Let K be a compact subset of Cn. We define the polynomial hull of

K, denoted by K̂, by

K̂ = {z ∈ Cn : |p(z)| ≤ ‖p‖K for all polynomials p} .

K is called polynomially convex if K̂ = K.

The definition can also be stated as follows:

A compact subset K of Cn is polynomially convex if and only if for every z0 in Cn\K

we can find a polynomial p with

|p(z0)|> ‖p‖K .

Proposition 1.2.17.

K ⊂ K̂Psh
Ω ⊂ K̂Hol

Ω ⊂ K̂

Proof. Clearly K ⊂ K̂Psh
Ω

. Let z ∈ K̂Psh
Ω

and f ∈ Hol(Ω). Then | f | ∈ PSH(Ω). Hence

| f (z)| ≤ ‖ f‖K and therefore z ∈ K̂Hol
Ω

which means K̂Psh
Ω
⊂ K̂Psh

Ω
. Let z ∈ K̂Hol

Ω
and p be

a polynomial in Cn. Then p|Ω ∈ Hol(Ω) and |p(z)| ≤ ‖p‖K . Thus z ∈ K̂ and K̂Hol
Ω
⊂ K̂.

Theorem 1.2.18. The following conditions on a domain of holomorphy Ω ⊂ Cn are

equivalent:

(i) Ω is a Runge domain.

(ii) K̂ = K̂Hol
Ω

if K ⊂Ω is compact.

(iii) K̂∩Ω⊂⊂Ω if K ⊂Ω is compact.

On domains of holomorphy, plurisubharmonic functions can be approximated by

plurisubharmonic functions of particularly simple form. The following result was stated

by Bremermann [Bre58]
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Theorem 1.2.19. If Ω is a domain of holomorphy in Cn, and if u is a continuous

plurisubharmonic function on Ω, then for each compact subset K of Ω and for every

ε > 0, there are finitely many holomorphic functions f1, · · · , fr on Ω such that for suit-

able positive constants c j,

u(z)≤ max
j=1,...,r

c j log
∣∣ f j(z)

∣∣≤ u(z)+ ε.

In the event that Ω is a Runge domain in Cn, the holomorphic functions f j can be

taken to be polynomials.

Proof. Introduce the domain Ω∗ in Cn+1 defined by

Ω
∗ =

{
(z,w) ∈ Cn×C : |w|< e−u(z)

}
.

This domain is pseudoconvex and so a domain of holomorphy.

For z0 ∈Ω, define the function fz0 by fz0(w) = ∑
∞
k=0 eku(z0)wk, which is defined and

holomorphic in the planar domain
{

w ∈ C : |w|< e−u(z0)
}

. The domain Ω∗ is a domain

of holomorphy, so there is a function F ∈Hol(Ω∗) with F (z0,w) = fz0(w) for all w ∈C

with |w| < e−u(z0). The function F admits an expansion F(z,w) = ∑
∞
k=0 ak(z)wk with

coefficients ak ∈ Hol(Ω) that satisfy

lim
k→∞

sup∑
log |ak(z)|

k
≤ u(z)

for all z ∈Ω by Hadamard′s formula for the radius of convergence of a power series.

Theorem 1.2.12 implies that for ε > 0, there is k0 large enough that for k > k0,
log|ak(z)|

k ≤ u(z) + ε for all z ∈ K. By the choice of F , limsupk→∞

log|ak(z0)|
k = u(z0),

whence by continuity, limsupk→∞

log|ak(z)|
k > u(z0)− ε for all z in a neighborhood of z0.

By compactness, a finite number of choices of the point z0 will yield a cover of K by the

corresponding neighborhoods. The theorem follows.

Definition 1.2.20. Let X be a compact Hausdorff space. A uniform algebra on X is an

algebra U of continuous complex-valued functions on X satisfying

(i) U is closed under uniform convergence on X ,

(ii) U contains the constants,

10



(iii) U separates the points of X .

Theorem 1.2.21. [Stone-Weierstrass Theorem] U is a subalgebra of C(X) containing

the constants and separating points. If

f ∈U ⇒ f̄ ∈U,

then U is dense in C(X).

Let K ⊂Cn be compact. We will use the following notations. C(K) is the class of all

continuous complex-valued functions with supremum norm on K. A(K) is the uniform

limits of continuous complex-valued functions holomorphic in some neigborhood of K.

H(K) is the class of continuous complex-valued functions on K which are holomorphic

on K◦, the interior of K. P(K) is the class of functions consisting of uniform limits of

polynomials restricted to K. R(K) is the uniform closure in C(K) of rational functions

r = p/q where p and q are polynomials and q(z) 6= 0 for z ∈ K.

Evidently,

P(K)⊂ R(K)⊂ H(K)⊂ A(K)⊂C(K).

One of the major problems is to determine when equality holds between these spaces.

1.3 Jensen Measures

We will now introduce and mention a few basic facts about the class of Jensen

measures in complex analysis. Let Ω⊂Cn be an open set. Let C0(Ω) be the space of all

compactly supported continuous functions on Ω. By the Riesz representation theorem

(see Theorem 6.19 in [Rud87]) the dual space C∗0(Ω) of C0(Ω) can be considered as the

class of all compactly supported Borel measures on Ω. Let M0(Ω) be the class of all

positive Borel probability measures in C∗0(Ω). We consider the set M0(Ω) together with

the induced weak-∗ topology on it from C∗0(Ω). A sequence µ j from M0(Ω) converges

to a measure µ ∈M0(Ω) if the supports suppµ j are contained in some fixed compact set

K ⊂Ω and µ j(ϕ) converges to µ(ϕ) for every function ϕ ∈C0(Ω). Let z ∈Ω be a point.

A measure µ ∈M0(Ω) is called a Jensen measure with barycenter z on Ω if

u(z)≤
∫

udµ

11



for every u ∈ PSH(Ω). We denote by Jz the class of all Jensen measures µ with barycen-

ter z on Ω.

The class Jz is evidently convex. We will also show that it is weak-∗ closed. First

we need a Lemma:

Lemma 1.3.1. Let s be an upper bounded upper semicontinuous function on a compact

metric space X and {µ j} ⊂ C∗(X) be a sequence of measures converging weak-∗ to a

measure µ ∈C∗(X). Then

limsup
j

∫
sdµ j ≤

∫
sdµ.

Proof. There exist functions ϕk ∈C(X) so that ϕk ↓ s on X . Then

limsup
j

∫
sdµ j ≤ limsup

j

∫
ϕk dµ j =

∫
ϕk dµ

for all k. Finally by the monotone convergence theorem

limsup
j

∫
sdµ j ≤

∫
sdµ.

Corollary 1.3.2. Jz is weak-∗ closed.

Proof. Suppose µ j is a sequence in Jz that converges weak-∗ to µ∈M0(Ω). There exists

a compact set K in Ω so that suppµ j and suppµ is contained in K for every j. Take any

function u in PSH(Ω). Then by Lemma 1.3.1,

u(z)≤ limsup
j

∫
udµ j ≤

∫
udµ.

Therefore, µ ∈ Jz and Jz is compact.

When Ω is a Runge domain, a measure µ is in Jz if and only if

|p(z)| ≤
∫
|p|dµ

for every polynomial p. This a simple consequence of Theorem 1.2.19.
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1.4 Differential Forms

We will study differential forms on an open subset Ω of real Euclidean n-space Rn.

For sections 1.4 and 1.5 we refer to [AleWer98].

Definition 1.4.1. Let Ω be an open subset of Rn. For any x ∈ Ω we define the tangent

space at x, Tx, as the collection of all maps v : C∞→ C for which

(a) v is linear.

(b) v( f ·g) = f (x) · v(g)+g(x) · v( f ), where f, g ∈C∞.

The elements of Tx are called tangent vectors at x, and the dual space to Tx is denoted by

T ∗x .

Definition 1.4.2. A 1-form ω on Ω is a map ω assigning to each x in Ω an element of

T ∗x .

dx1, . . . ,dxn are particular 1-forms.

Lemma 1.4.3. Every 1-form ω admits a unique representation

ω =
n

∑
1

C jdx j,

the C j being scalar functions on Ω.

Let V be an n-dimensional vector space over C. Denote by ∧p(V ) the vector space

of p-linear alternating maps of V ×·· ·×V →C, where alternating means that the value

of the function changes sign if two of the variables are interchanged.

Define G(V ) as the direct sum

G(V ) = ∧0(V )⊕∧1(V )⊕·· ·⊕∧n(V ).

Here ∧0(V ) = C and ∧1(V ) is the dual space of V . Put ∧ j(V ) = 0 for j > n.

We now introduce a multiplication in the vector space G(V ). Fix τ ∈ ∧p(V ), σ ∈

∧q(V ). The map

(
ξ1, . . . ,ξp,ξp+1, . . . ,ξp+q

)
→ τ(ξ1, . . . ,ξp)σ

(
ξp+1, . . . ,ξp+q

)
13



is a (p+q)-linear map from V ×·· ·×V (p+q factors)→C. It is, however, not alternat-

ing. To obtain an alternating map, we use

Definition 1.4.4. Let τ ∈ ∧p(V ), σ ∈ ∧q(V ), p, q ≥ 1.

τ∧σ
(
ξ1, . . . ,ξp+q

)
=

1
(p+q)! ∑

π

(−1)π
τ
(
ξπ(1), . . . ,ξπ(p)

)
·σ
(
ξπ(p+1), · · · ,ξπ(p+q)

)
,

the sum being taken over all permutations π of the set {1,2, . . . , p+q}, and (−1)π de-

noting the sign of the permutation π.

Lemma 1.4.5. τ∧σ as defined is (p+q)-linear and alternating and so τ∧σ∈∧p+q(V ).

The operation ∧ defines a product for pairs of elements, one in ∧p(V ) and one in

∧q(V ), the value lying in ∧p+q(V ), hence in G(V ). By linearity, ∧ extends to a product

on arbitrary pairs of elements of G(V ) with value in G(V ). For τ ∈ ∧0(V ), σ ∈ G(V ),

define τ∧σ as a scalar multiplication by τ.

Lemma 1.4.6. If τ ∈ ∧p(V ), σ ∈ ∧q(V ), then τ∧σ = (−1)pqσ∧ τ.

Let e1, . . . ,en form a basis for ∧1(V ).

Lemma 1.4.7. Fix p. The set of elements

ei1 ∧ ei2 ∧·· ·∧ eip , 1≤ i1 < i2 < · · ·< ip ≤ n,

forms a basis for ∧p(V )

We now apply preceding to the case when V = Tx, x ∈ Ω. Then ∧p(Tx) is the space

of all p-linear alternating functions on Tx, and so, for p = 1, coincides with T ∗x . Thus

the following extends our definition of a 1-form.

Definition 1.4.8. A p-form ωp on Ω is a map ωp assigning to each x in Ω an element of

∧p(Tx).

Let τp and σq be, respectively, a p-form and q-form. For x ∈Ω, put

τ
p∧σ

q(x) = τ
p(x)σq(x) ∈ ∧p+q(Tx).

14



In particular, since dx1, . . . ,dxn are 1-forms,

dxi1 ∧dxi2 ∧·· ·∧dxip

is a p-form for each choice of (i1, . . . ip).

Because of Lemma 1.4.6,

dx j∧dx j = 0 f or each j.

Hence dxi1 ∧·· ·∧dxip = 0 unless the iv are distinct.

Lemma 1.4.9. Let ωp be any p-form on Ω. Then there exist (unique) scalar functions

Ci1, · · · ,Cip on Ω such that

ω
p = ∑

i1<i2<···<ip

Ci1···ipdxi1 ∧·· ·∧dxip.

Definition 1.4.10. ∧p(Ω) consists of all p-forms ωp such that the functions Ci1···ip oc-

curring in Lemma 1.4.9 lie in C∞ (Ω). We set ∧0(Ω) = C∞.

Consider the map f → d f from C∞→∧1(Ω). We wish to extend d to a linear map

∧p(Ω)→∧p+1(Ω), for all p.

Definition 1.4.11. Let ωp ∈ ∧p(Ω), p = 0,1,2, . . .. Then

ω
p = ∑

i1<i2<···<ip

Ci1···ipdxi1 ∧·· ·∧dxip.

Define

dω
p = ∑

i1<i2<···<ip

dCi1···ip ∧dxi1 ∧·· ·∧dxip.

Note that d maps ∧p(Ω)→∧p+1(Ω). We call dωp the exterior derivative of ωp.

1.5 The ∂̄-Operator

Let Ω be an open subset of Cn. The complex coordinate functions z1, . . . ,zn as well

as their conjugates z1, . . . ,zn lie in C∞(Ω). Hence the forms

dz1, . . . ,dzn, dz1, . . . ,dzn

15



all belong to ∧1(Ω). Fix x ∈Ω. Note that ∧1(Tx) = T ∗x has dimension 2n over R, since

Cn = R2n. If z j = x j + iy j, then

(dx1)x , . . . ,(dxn)x , (dy1)x , . . . ,(dyn)x

form a basis for T ∗x . Since dx j = 1/2
(
dz j +dz j

)
and dy j = 1/2i

(
dz j−dz j

)
,

(dz1)x , . . . ,(dzn)x , (dz1)x , . . . ,(dzn)x

also form a basis for T ∗x . In fact,

Lemma 1.5.1. If ω ∈ ∧1(Ω), then

ω =
n

∑
j=1

a jdz j +b jdz j,

where a j,b j ∈C∞(Ω).

Fix f ∈C∞(Ω). Since (x1, · · · ,xn,y1, · · · ,yn) are real coordinates in Cn,

d f =
n

∑
j=1

∂ f
∂x j

dx j +
∂ f
∂y j

dy j

=
n

∑
j=1

(
1
2

∂ f
∂x j

+
1
2i

∂ f
∂y j

)
dz j +

(
1
2

∂ f
∂x j
− 1

2i
∂ f
∂y j

)
dz j.

Then from 1.1,

d f =
n

∑
j=1

∂ f
∂z j

dz j +
∂ f
∂z j

dz j.

We define

∂ f =
n

∑
1

∂ f
∂z j

dz j, ∂̄ f =
n

∑
1

∂ f
∂z̄ j

dz̄ j.

Note that ∂ f +∂ f = d f , if f ∈C∞.

Let I be any p-tuple of integers, I = (i1, i2, . . . , ip), 1≤ i j ≤ n, all j. Put

dzI = dzi1 ∧·· ·∧dzip.

Thus dzI ∈ ∧p(Ω).

Let J be any q-tuple
(

j1, . . . , jq
)
, 1≤ jk ≤ n, all k, and put

dzJ = dz j1 ∧·· ·∧dz jq.
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So dzJ ∈ ∧q(Ω). Then

dzI ∧dzJ ∈ ∧p+q(Ω).

For I as above, put |I|= p and |J|= q.

Definition 1.5.2. Fix integers p,q ≥ 0. ∧p,q(Ω) is the space of all ω ∈ ∧p+q(Ω) such

that

ω = ∑
I,J

aIJdzI ∧dzJ,

the sum being extended over all I,J with |I|= p, |J|= q, and with each aI,J ∈C∞.

An element of ∧p,q(Ω) is called a form of bidegree (p,q). We now have a direct sum

decomposition of each ∧p(Ω):

Lemma 1.5.3.

∧p(Ω) = ∧0,p(Ω)⊕∧1,p−1(Ω)⊕∧2,p−2(Ω)⊕·· ·⊕∧p,0(Ω).

We extend the definition of ∂ and ∂ to maps from ∧p(Ω) → ∧p+1(Ω) for p, as

follows:

Definition 1.5.4. Choose ωp in ∧p(Ω),

ω
p = ∑

I,J
aI,JdzI ∧dzJ,

∂ω
p = ∑

I,J
∂aI,J ∧dzI ∧dzJ,

and

∂ω
p = ∑

I,J
∂aI,J ∧dzI ∧dzJ.

Since aI,J ∈C∞,

∂ω
p +∂ω

p = ∑
I,J

daI,J ∧dzI ∧dzJ = dω
p

so we have

∂+∂ = d

as operators from ∧p(Ω)→ ∧p+1(Ω). Note that if ω ∈ ∧p,q, ∂ω ∈ ∧p+1,q and ∂ω ∈

∧p,q+1.
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Lemma 1.5.5. ∂
2
= 0, ∂2 = 0, and ∂∂ = ∂∂ = 0.

Lemma 1.5.6. If ωp ∈ ∧p(Ω) and ωq ∈ ∧q(Ω), then

∂(ωp∧ω
q) = ∂ω

p∧ω
q +(−1)p

ω
p∧∂ω

q.

1.6 The Currents

We will need elementary theory of currents. We refer to [Sto07] for this section. If

Ω⊂Rn, then D(Ω) is the subspace of C∞(Ω) that consists of the functions with compact

support. The space ∧p(Ω) contains the subspace D p(Ω) of the compactly supported p-

forms on Ω. Thus D(Ω) = D0(Ω). If Ω is a domain in Cn, D p,q(Ω) is the space of

compactly supported forms of bidegree (p,q). D p,q(Ω) is again a subspace of ∧p,q(Ω).

A natural way of defining a topology on D p(Ω) is as follows: A sequence α j ∈D p(Ω)

converges to 0 if the sequences of coefficients of α j, as well as the sequences of the

derivatives of all fixed orders of these coefficients, converge to 0 uniformly on compact

subsets of Ω.

Definition 1.6.1. A current of dimension p and of degree n− p on Ω is a C-linear func-

tional T on the space D p(Ω) that has the following continuity property: If
{

α j
}

j=1,...
is

a sequence in D p(Ω) such that for some fixed compact set K ⊂ Ω, supp α j ⊂ K for all

j and if, in addition, α j converges to 0, then the sequence
{

T (α j)
}

j=1,...
converges to

zero.

The space of currents of dimension p (and degree n− p) on Ω is denoted by D ′p(Ω).

A current of bidimension (p,q) and bidegree (n− p,n− q) is a C-linear functional

on D p,q(Ω) with the indicated continuity property. If T is a current of dimension p, then

the support of T is the smallest closed subset K of Ω with the property that T (α j) = 0

for all α ∈D p(Ω) that vanish on a neighborhood of K.

Definition 1.6.2. If Ω is a domain in Cn, an element ϕ∈∧p,p(Ω) is said to be positive if

whenever α j, j = 1, · · · ,n− p, are (1,0)-forms defined in Ω with continuous compactly

supported coefficients, then∫
Ω

ϕ∧ iα1∧α1∧·· ·∧ iαn−p∧αn−p ≥ 0.
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Definition 1.6.3. A current T in Dn−p,n−p(Ω) is said to be positive if for all non-

negative functions f ∈ D(Ω) and for all forms α1, · · · ,αp ∈ D1,0(Ω), the quantity

T ( f iα1∧α1∧·· ·∧ iαp∧αp) is nonnegative.

Perhaps the simplest example of a positive current is the current [λ] of integration

over the complex line λ in Cn.

If T ∈ Dp,p(Ω) is positive, and ϕ ∈ ∧q,q(Ω) is a positive form, then the exterior

product T ∧ϕ∈Dp+q,p+q(Ω), which is defined by T ∧ϕ(α) = T (ϕ∧α) is also positive,

for any α ∈ ∧n−p−q(Ω).

1.7 The Equation ∂̄u = f

As before, fix an open set Ω⊂Cn. Given f ∈ ∧p,q+1(Ω), we seek u ∈ ∧p,q such that

∂u = f . (1.4)

Since ∂
2
= 0 from Lemma 1.5.5, a necessary condition on f is

∂ f = 0. (1.5)

If (1.5) holds, we say that f is ∂-closed. What is a sufficient condition on f to solve

∂u = f ? It turns out that this will depend on the domain Ω. We refer to [AleWer98] for

this section.

Recall the analogous problem for the operator d on a domain Ω ⊂ Rn. If ωp is a

p-form in ∧p(Ω), the condition

dω
p = 0 (ω is closed) (1.6)

is necessary in order that we can find some τp−1 in ∧p−1(Ω) with

dτ
p−1 = ω

p. (1.7)

However, (1.6) is, in general, not sufficient. (Think of an example when p = 1 and

Ω is an annulus in R2.) If Ω is simply connected, then (1.6) is sufficient in order that

(1.7) admit a solution.

19



For the ∂-operator, a purely topological condition on Ω is inadequate. We shall find

various conditions in order that (1.4) will have a solution. Denote by Un the closed unit

polydisk in Cn :
{

z ∈ Cn :
∣∣z j
∣∣≤ 1, j = 1, . . . ,n

}
.

Theorem 1.7.1. [Complex Poincare Lemma] Let Ω be a neighborhood of Un
. Fix ω ∈

∧p,q(Ω), q > 0, with ∂ = 0. Then there exists a neighborhood Ω∗ of Un
and there exists

ω∗ ∈ ∧p,q−1(Ω∗) such that

∂ω
∗ = ω in Ω

∗.

We need some preliminary work in order to prove Theorem 1.7.1.

Lemma 1.7.2. Let F ∈C1
0(C). Then

F(ζ) =−1
π

∫
C

∫
∂F
∂z̄

dxdy
z−ζ

, all ζ ∈ C. (1.8)

Proof. Fix ζ and choose R > |ζ| with suppF ⊂ {z : |z|< R}. Fix ε > 0 and small. Put

Ωε = {z : |z|< R and |z−ζ|> ε}.

The 1-form F dz/z−ζ is smooth on Ωε and

d
(

F dz
z−ζ

)
=

∂

∂z̄

(
F

z−ζ

)
dz̄ dz =

∂F
∂z̄

dz̄ dz
z−ζ

.

By Stokes’s Theorem ∫
Ωε

d
(

F dz
z−ζ

)
=
∫

∂Ωε

F dz
z−ζ

.

Since F = 0 on {z : |z|= R}, the right side is∫
|z−ζ|=ε

F dz
z−ζ

=−
∫ 2π

0
F(ζ+ εeiθ)idθ,

so ∫
Ωε

∂F
∂z̄

dz̄ dz
z−ζ

=−
∫ 2π

0
F(ζ+ εeiθ)idθ.

Letting ε→ 0 we get ∫
|z|<R

∂F
∂z̄

dz̄ dz
z−ζ

=−2πiF(ζ).

Since ∂F/∂z̄ for |z|> R and since dz̄ dz = 2i dx dy, this gives∫
∂F
∂z̄

dx dy
z−ζ

=−πF(ζ),

i.e., (1.8).
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Lemma 1.7.3. Let G ∈C2
0(C). Then

G(ζ) =− 1
2π

∫
C

∫
∆G(z)log

1
|z−ζ|

dxdy, all ζ ∈ C. (1.9)

Proof. The proof is very much like that of Lemma 1.7.2. With Ωε as in that proof, start

with Green′s formula∫
Ωε

∫
(u∆v− v∆u)dxdy =

∫
∂Ωε

(
u

∂v
∂n
− v

∂u
∂n

)
ds

and take u = G, v = log |z−ζ|. We leave the details to the reader.

Lemma 1.7.4. Let φ ∈C1(R2) and assume that φ has compact support. Put

Φ(ζ) =−1
π

∫
R2

φ(z)
dxdy
z−ζ

.

Then Φ ∈C1 (R2) and ∂Φ/∂ζ = φ(ζ), all ζ.

Proof. Choose R with supp φ⊂ {z : |z| ≤ R}.

πΦ(ζ) =
∫
|z|≤R

φ(z)
1

ζ− z
dxdy

=
∫
|z′−ζ|≤R

φ
(
ζ− z′

) dx′dy′

z′

=
∫

R2
φ
(
ζ− z′

) dx′dy′

z′
.

Since 1/z′ ∈ L1(dx′dy′) on compact sets, it is legal to differentiate the last integral

under the integral sign. We get

π
∂Φ

∂ζ
(ζ) =

∫
R2

∂

∂ζ

[
φ
(
ζ− z′

)] dx′dy′

z′

=
∫

R2

∂φ

∂ζ

(
ζ− z′

) dx′dy′

z′

=
∫

R2

∂φ

∂ζ
(z)

dxdy
ζ− z

.

On the other hand, Lemma 1.7.2 gives that

−πφ(ζ) =
∫

R2

∂φ

∂ζ
(z)

dxdy
z−ζ

.

Hence ∂Φ/∂ζ = φ.
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Lemma 1.7.5. Let Ω be a neigborhood of Un
and let f be a function in C∞(Ω). Fix

j,1≤ j ≤ n. Assume that

∂ f
∂zk

= 0 in Ω, k = k1, . . . ,ks, each ki 6= j. (1.10)

Then we can find a neigborhood Ω1 of Un
and F in C∞(Ω1) such that

(a) ∂F/∂ζ j = f in Ω1.

(b) ∂F/∂ζk = 0 in Ω1, k = k1 . . . ,ks.

Proof. Choose ε > 0 so that if z = (z1, . . . ,zn)∈Cn and |zv|< 1+2ε for all v, then z∈Ω.

Choose ψ ∈C∞
(
R2), having support contained in {z : |z|< 1+2ε}, with ψ(z) = 1 for

|z|< 1+ ε. Put

F
(
ζ1, · · · ,ζ j, · · · ,ζn

)
=−1

π

∫
R2

ψ(z) f
(
ζ1, · · ·ζ j−1,z,ζ j+1, · · ·ζn

) dxdy
z−ζ j

.

For fixed ζ1, · · · ,ζ j−1,ζ j+1, · · · ,ζn with |ζv| < 1 + ε, all v, we now apply Lemma 1.7.4

with

φ(z) = ψ(z) f
(
ζ1, · · · ,ζ j−1,z,ζ j+1, · · · ,ζn

)
, |z|< 1+2ε

= 0 outside supp ψ.

We obtain

∂F

∂ζ j

(
ζ1, · · · ,ζ j, · · · ,ζn

)
= φ

(
ζ j
)

= f
(
ζ1, · · · ,ζ j−1,ζ j,ζ j+1, · · · ,ζn

)
,

if
∣∣ζ j
∣∣< 1+ ε, and so (a) holds with

Ω1 = {ζ ∈ Cn : |ζn|< 1+ ε, all v} .

Part (b) now follows directly from (1.10) by differentiation under the integral sign.

Proof of Theorem 1.7.1. We call a form

∑
I,J

CIJdzl ∧dz j
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of level v, if for some I and J with J = ( j1, j2, · · · ,v), where j1 < j2 < · · ·< v, we have

CI,J 6= 0; while for each I and J with J = ( j1, · · · , js) where j1 < · · ·< js and js > v, we

have CI,J = 0. Consider first a form ω of level 1 such that ∂ω = 0. Then ω ∈ ∧p,1(Ω)

for some p and we have

ω = ∑
I

aIdz1∧dzI aI ∈C∞(Ω) for each I.

0 = ∂ω = ∑
I,k

∂aI

∂zk
dzk∧dzI ∧dzI.

Hence (∂Ia/∂zk)dzk∧dz1∧dzI = 0 for each k and I. It follows that

∂aI

∂zk
= 0, k ≥ 2, all I.

By Lemma 1.7.5 there exists for every I, AI in C∞(Ω1), Ω1 being some neighborhood

of ∆n, such that
∂AI

∂z1
= aI and

∂AI

∂zk
= 0, k = 2, . . . ,n.

Put ω̃ = ∑I AIdzI ∈ ∧p,0(Ω1).

∂ω̃ = ∑
I,k

∂AI

∂zk
dzk∧dzI = ω.

We proceed by induction. Assume that the assertion of the theorem holds whenever

ω is of level ≤ v−1 and consider ω of level v. By hypothesis ω ∈ ∧p,q(Ω) and ∂ω = 0.

We can find forms α and β of level ≤ v−1 so that

ω = dzv∧α+β

0 = ∂ω = −dzv∧∂α+∂β,

where we have used Lemma 1.5.6. So

0 = dzv∧∂α−∂β (1.11)

Put

α = ∑
I,J

aI,JdzI ∧dzJ, β = ∑
I,J

bI,JdzI ∧dzJ.

Equation (1.11) gives

0 = dzv∧ ∑
I,J,k

∂aIJ

∂zk
dzk∧dzI ∧dzJ− ∑

I,J,k

∂bIJ

∂zk
dzk∧dzI ∧dzJ. (1.12)
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Fix k > v, and look at the terms on the right side of (1.12) containing dzv∧dzk. Becouse

α and β are the level ≤ v−1, these are the terms:

dzv∧
∂aIJ

∂zk
dzk∧dzI ∧dzJ.

It follows that for each I and J, AIJ ∈C∞(Ω1) with

∂AIJ

∂zv
= aIJ,

∂AIJ

∂zk
= 0, k > v

Put

ω1 = ∑
I,J

AIJdzI ∧dzJ ∈ ∧p,q−1(Ω1),

∂ω1 = ∑
I,J,k

∂AIJ

∂zk
dzk∧dzI ∧dzJ

= ∑
I,J

aIJdzv∧dzI ∧dzJ + γ,

where γ is a form of level ≤ v−1. Thus

∂ω1 = dzv∧α+ γ

Hence

∂ω1−ω = γ−β

is a form of level ≤ v−1. Also

∂(γ−β) = ∂

(
∂ω1−ω

)
= 0.

By induction hypothesis, we can choose a neigborhood Ω2 of Un and τ ∈ ∧p,q−1(Ω2)

with ∂τ = γ−β. Then

∂(ω1− τ) = ∂ω1−∂τ = ω+(γ−β)− (γ−β) = ω.

ω1− τ is now the desired ω∗.
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CHAPTER 2

APPROXIMATION IN C

2.1 Runge Theorem

For this section, see [Rud87] for detailed information. First we will work on a result

of Hahn-Banach Theorem.

Theorem 2.1.1. Let M be a linear subspace of a normed linear space X, x0 ∈ X. Then

x0 ∈M if and only if for any bounded linear functional on X such that f (x) = 0 for all

x ∈M we have f (x0) = 0.

Proof. Let x0 ∈M and f be bounded linear functional on X , f (x) = 0 for all x ∈M. The

continuity shows f (x0) = 0.

Let x0 /∈M. Then there exists δ > 0 such that ‖x− x0‖> δ for x ∈M. Let M′ be the

subspace generated by M and x0, and define f (x + λx0) := λ if x ∈M and λ is a scalar.

We can get

δ |λ| ≤ |λ|
∥∥λ
−1x+ x0

∥∥= ‖x+λx0‖ .

Hence
|λ|

‖λx0 + x‖
≤ 1

δ
.

Since

‖ f‖= sup
x∈M

λ scalar

‖ f (x+λx0)‖
‖x+λx0‖

= sup
x∈M

λ scalar

|λ|
‖x+λx0‖

≤ 1
δ
,

we see that f is a linear functional on M′ whose norm is at most 1
δ
. Also f (x) = 0 on

M, f (x0) = 1. From Hahn Banach Theorem we can extend this to X . We founded a

bounded linear functional on X such that f (x) = 0, for all x ∈M but f (x0) 6= 0.
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Denote C as the union of the complex plane and the point ∞.

Theorem 2.1.2. [Runge Theorem] Let K ⊂C be a compact set and
{

α j
}

be a set which

contains one point in each component of C\K. If f ∈ Hol(Ω) where Ω is an open set

containing K and ε > 0, then there exists a rational function R, whose poles lie in
{

α j
}

such that

| f (z)−R(z)|< ε

for every z ∈ K.

Proof. Let M ⊂C(K) consisting of the restrictions to K of all rational functions which

have all their poles in
{

α j
}

. If we can show that f ∈ M, the proof is done. From

Theorem 2.1.1 we get f ∈ M if and only if every bounded linear functional on C(K)

which vanishes on M also vanishes at f . From Riesz Representation Theorem it is

enough to prove the following claim.

Claim: If µ is a complex Borel measure on K such that∫
K

Rdµ = 0

for every rational function R with poles only in the set
{

α j
}

, and if f ∈ Hol(Ω), then

we also have ∫
K

f dµ = 0.

Proof of Claim: Assume
∫

K Rdµ = 0. Define

h(z) :=
∫

K

dµ(ζ)
ζ− z

where z ∈ C\K. h ∈ Hol(C\K). Let Vj be the component of C\K which contains α j,

and suppose D(α j;r)⊂Vj.

First let α j 6= ∞. Fix z ∈ D(α j;r), then

1
ζ− z

= lim
N→∞

N

∑
n=0

(z−α j)n

(ζ−α j)n+1 (2.1)

uniformly for ζ ∈ K. Since the right side of the equation (2.1) is a rational function with

poles only in the set
{

α j
}

, the integral over K is 0. So∫
K

1
ζ− z

dµ = lim
N→∞

N

∑
n=0

∫
K

(z−α j)n

(ζ−α j)n+1 dµ = 0
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Hence h(z) = 0 for all z ∈ D(α j;r), and hence for all z ∈Vj.

Now let α j = ∞.
1

ζ− z
= lim

N→∞

N

∑
n=0

z−n−1
ζ

n

for ζ ∈ K and |z|> r. So h(z) = 0 in D(∞;r), hence in Vj. We get that h(z) = 0 in C\K.

Now choose a cycle Γ in Ω\K such that the Cauchy formula:

f (z) =
1

2πi

∫
Γ

f (ζ)
ζ− z

dζ

holds for every f ∈ Hol(Ω) and for every z ∈ K. Then∫
K

f dµ =
∫

K
dµ(ζ)

[
1

2πi

∫
Γ

f (ω)
ω−ζ

dω

]
=

1
2πi

∫
Γ

f (ω)dω

∫
K

dµ(ζ)
ω−ζ

= − 1
2πi

∫
Γ

f (ω)h(ω)dω

= 0

In second equality Fubuni’s Theorem is legitimate since we are dealing with Borel mea-

sures and continuous functions on compact spaces and the last equality depends on the

fact that Γ∗ ⊂Ω\K, where h(ω) = 0. We proved the claim and so the proof is done.

Theorem 2.1.3. [Runge Theorem] Let K ⊂ C be compact with C\K connected. Then

A(K) = P(K).

Proof. C\K is connected hence has only one component. Take α j = ∞ in Theorem

2.1.2, so for ε > 0 there exists a rational function which has a pole at ∞, hence a poly-

nomial p, such that

| f (z)− p(z)|< ε.
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2.2 Lavrentiev’s Theorem

Let µ be a measure of compact support ⊂ C. We define the logarithmic potential µ∗

of µ by

µ∗ =
∫

log
∣∣∣∣ 1
z−ζ

∣∣∣∣dµ(ζ).

We define the Cauchy transform µ̂ of µ by

µ̂ =
∫ 1

ζ− z
dµ(ζ).

Lemma 2.2.1. [Carleson] Let E be a compact plane set with C\E connected and fix

z0 ∈ bE. Then

(a) there exist probability measures σt for each t > 0 with σt carried on C\E such

that:

Let α be a real measure on E satisfying∫
E

∣∣∣∣log
∣∣∣∣ 1
z0−ζ

∣∣∣∣∣∣∣∣d |α|(ζ) < ∞ (2.2)

and

(b)

lim
t→0

∫
α
∗dσt(z) = α

∗(z0).

Proof. We may assume that z0 = 0. Fix t > 0. Since 0∈ bE and C\E is connected, there

exists a probability measure σt carried on C\E such that

σt {z : r1 < |z|< r2}=
1
t
(r2− r1) for 0 < r1 < r2 ≤ t

and σt = 0 outside |z| ≤ t.

If some line segment, with 0 as one end point and length t, happens to lie in C\E,

we may of course take σt as 1/t · linear measure on that segment.
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Then for all ζ ∈ C we have∫
log
∣∣∣∣ 1
z−ζ

∣∣∣∣dσt(z) ≤
∫

log
∣∣∣∣ 1
|z|− |ζ|

∣∣∣∣dσt(z)

≤ 1
t

∫ t

0
log

1
||r|− |ζ||

dr

≤ 1
t

∫ t

0
log

1
|ζ|

1∣∣∣ r
|ζ| −1

∣∣∣dr

≤ 1
t

∫ t

0
log

1
|ζ|

dr +
1
t

∫ t

0
log

1∣∣∣ r
|ζ| −1

∣∣∣dr

≤ log
1
|ζ|

+
1
t

∫ t

0
log

1
|1− r/ |ζ||

dr.

The last term is bounded above by a constant A independent of t and |ζ|. Hence we

have

∫
log
∣∣∣∣ 1
z−ζ

∣∣∣∣dσt(z)≤ log
1
|ζ|

+A, all ζ, all t > 0. (2.3)

Also, as t→ 0, σt → point mass at 0. Hence for each fixed ζ 6= 0.

lim
t→0

∫
log
∣∣∣∣ 1
z−ζ

∣∣∣∣dσt(z) = log
1
|ζ|

. (2.4)

Now for fixed t, Fubini′s theorem gives∫
α
∗(z)dσt(z) =

∫ {∫
log
∣∣∣∣ 1
z−ζ

∣∣∣∣dσt(z)
}

dα(ζ).

By (2.3), (2.4), and (2.2), the integrand on the right tends to log1/ |ζ| dominantly with

respect to |α|. Hence

lim
t→0

∫
α
∗(z)dσt(z) = lim

t→0

∫
log

1
|ζ|

dα(ζ) = α
∗(0)

Lemma 2.2.2. The functions∫ ∣∣∣∣log
∣∣∣∣ 1
z−ζ

∣∣∣∣∣∣∣∣d |µ|(ζ) and
∫ ∣∣∣∣ 1

ζ− z

∣∣∣∣d |µ|(ζ)

are summable −dxdy over compact sets in C. It follows that these functions are finite

a.e. −dxdy and hence that µ∗ and µ̂ are defined a.e. "−dxdy.
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Proof. Since 1/r ≥ |logr| for small r > 0, we need only consider the second integral.

Fix R > 0 with supp |µ| ⊂ {z : |z|< R}.

γ =
∫
|z|≤R

dx dy
{∫ ∣∣∣∣ 1

ζ− z

∣∣∣∣d |µ|(ζ)
}

=
∫

d |µ|(ζ)
∫
|z|≤R

dx dy
|z−ζ|

.

For ζ ∈ supp |µ| and |z| ≤ R, |z−ζ| ≤ 2R.∫
|z|≤R

dx dy
|z−ζ|

≤
∫
|z′|≤2R

dx′ dy′

|z′|
=
∫ 2R

0
rdr

∫ 2π

0

dθ

r
= 4πR.

Hence γ≤ 4πR · ‖µ‖.

Lemma 2.2.3. If µ is a measure with compact support in C, and if µ̂(z) = 0 a.e. −dx dy,

then µ = 0. Also, if µ∗(z) = 0 a.e. −dx dy, then µ = 0.

Proof. Fix g ∈C1
0(C). by Lemma 1.7.2∫

g(ζ)dµ(ζ) =
∫

dµ(ζ)
[
−1

π

∫
∂g
∂z

(z)
dxdy
z−ζ

]
.

Fubini’s theorem now gives

1
π

∫
∂g
∂z

(z)µ̂(z)dxdy =
∫

gdµ. (2.5)

Since µ̂ = 0 a.e., we deduce that ∫
gdµ = 0.

But the class of functions obtained by restricting to supp µ the functions in C1
0(C) is

dense in C(supp µ) by the Stone-Weierstrass theorem. Hence µ = 0.

Using (1.9), we get similarly for g ∈C2
0(C),

−
∫

gdµ =
1

2π

∫
∆g(z) ·µ∗(z)dxdy

and conclude that µ = 0 if µ∗ = 0 a.e.

Theorem 2.2.4. [Lavrentiev’s Theorem] Let K ⊂ C be compact with C\K connected.

Then P(K) = C(K) if and only if K◦ = /0
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Proof. Let α be a real measure on X with α ⊥ Re(P(X)). Then∫
Re ζ

n dα(ζ) = 0, n≥ 0

and ∫
Im ζ

n dα =
∫

Re(−iζn)dα = 0, n≥ 0,

so that ∫
ζ

n dα = 0, n≥ 0.

For |z| large,

log
(

1− ζ

z

)
=

∞

∑
0

cn(z)ζn,

the series converging uniformly for ζ ∈ X . Hence∫
log
(

1− ζ

z

)
dα(ζ) =

∞

∑
0

cn(z)
∫

ζ
ndα(ζ) = 0,

whence ∫
Re
(

log
(

1− ζ

z

))
dα(ζ) = 0

or ∫
log |z−ζ|dα(ζ)−

∫
log |z|dα(ζ) = 0,

whence ∫
log |z−ζ|dα(ζ) = 0,

since α ⊥ 1. Since ∫
log |z−ζ|dα(ζ) = 0

is harmonic in C\X , the function vanishes not only for large |z|, but in fact for all z in

C\X , and so

α
∗(z) = 0, z ∈ C\X .

By (2.2.1) it follows that we also have

α
∗(z0) = 0, z0 ∈ X ,

provided (2.2) holds at z0. By (2.2.2) this implies that

α
∗ = 0 a.e. −dxdy.

31



By Lemma 2.2.3 this implies that α = 0. Hence

Re P(X) is dense in CR(X). (2.6)

Now choose µ ∈ P(X)⊥. Fix z0 ∈ X with∫ ∣∣∣∣ 1
z− z0

∣∣∣∣d |µ|(z) < ∞. (2.7)

Because of (2.6) we can find for each positive integer k a polynomial Pk such that

|Re Pk(z)−|z− z0|| ≤
1
k
, z ∈ X (2.8)

and

Pk(z0) = 0.

fk(z) =
e−kPk(z)−1

z− z0

is an entire function and hence its restriction to X lies in P(X). Hence∫
fkdµ = 0. (2.9)

Equation (2.8) gives

Re kPk(z)− k |z− z0| ≥ −1,

whence

e−kPk(z) ≤ e−k|z−z0|+1, z ∈ X .

It follows that fk(z)→−1/z− z0 for all z ∈ X z0, as k→ ∞, and also

| fk(z)| ≤
4

|z− z0|
, z ∈ X .

Since by (2.7) 1/ |z− z0| is summable with respect to |µ|, this implies that∫
fkdµ→−

∫ dµ(z)
z− z0

by dominated convergence. Equation (2.9) then gives that∫ dµ(z)
z− z0

= 0.

Since (2.7) holds a.e. on X by Lemma 2.2.2, and since certainly∫ dµ(z)
z− z0

= 0 for z0 ∈ C\X

we conclude that µ̂ = 0 a.e., so µ = 0 by Lemma 2.2.3. Thus µ⊥P(X) implies that µ = 0.

So P(X) = C(X).
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2.3 Mergelyan’s Theorem

Definition 2.3.1. Suppose γ0 and γ1 are closed curves in a topological space X , both

with parameter interval I = [0,1]. We say that γ0 and γ1 are X-homotopic if there is a

continuous mapping H of the unit square I2 = I× I into X such that

H(s,0) = γ0(s), H(s,1) = γ1(s), H(0, t) = H(1, t) (2.10)

for all s ∈ I and t ∈ I. Put γt(s) = H(s, t). Then (2.10) defines a one-parameter family

of closed curves γt in X , which connects γ0 and γ1. Intuitively, this means that γ0 can be

continuously deformed to γ1, within X .

If γ0 is X-homotopic to a constant mapping γ1 (i.e, if γ∗1 consists of just one point),

we say that γ0 is null-homotopic in X .

Definition 2.3.2. If X is connected and if every closed curve in X is null-homotopic, X

is said to be simply connected.

Now let’s consider the polynomial convexity in C.

Lemma 2.3.3. Let K ⊂ C be compact. Then

K̂ = K∪{bounded components of C\K} .

Proof. Name all the bounded connected components of C\K as G1,G2, · · · . By max-

imum modulus principle, for all x ∈ Gi and for every polynomial p; |p(x)| ≤ ‖p‖K .

Hence for all i, Gi ⊂ K̂.

From Lemma 2.3.3 we have the following trivial result:

Lemma 2.3.4. Let K be a compact set in C. C\K is connected if and only if for each x0

in C\K we can find a polynomial p such that

|p(x0)|> ‖p‖K .

Theorem 2.3.5 ([Rud87]). For a plane region Ω, each of the following conditions im-

plies all others.
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(a) Ω is homeomorphic to the open unit disc U.

(b) Ω is simply connected.

(c) C\Ω is connected.

(d) Every f ∈ Hol(Ω) can be approximated by polynomials, uniformly on compact

subsets of Ω.

(e) For every f ∈ Hol(Ω) and every closed path γ in Ω,∫
γ

f (z)dz = 0.

(f) To every f ∈ Hol(Ω) corresponds an F ∈ Hol(Ω) such that F ′ = f .

(g) If f ∈Hol(Ω) and 1/ f ∈Hol(Ω), there exists a g∈Hol(Ω) such that f =exp(g).

(h) If f ∈ Hol(Ω) and 1/ f ∈ Hol(Ω), there exists a ϕ ∈ Hol(Ω) such that f = ϕ2.

Lemma 2.3.6. [[Rud87]] Suppose f ∈C′c(R
2), the space of all continuously real differ-

entiable functions in the plane, with compact support. Put

∂̄ =
1
2

(
∂

∂x
+ i

∂

∂y

)
. (2.11)

Then the following "Cauchy formula" holds:

f (z) =−1
π

∫
R2

∫ (∂̄ f )(ζ)
ζ− z

dξdη (ζ = ξ+ iη). (2.12)

Theorem 2.3.7. [Tietze’s Extension Theorem] [Rud87] Suppose K is a compact subset

of a locally compact Hausdorff space X, and f ∈C(K). Then there exists an F ∈Cc(X)

such that F(x) = f (x) for all x ∈ K.

The following fact will be useful in the proof of next Lemma. We refer to [[Rud87]

Th. 14.15] for its proof.

Proposition 2.3.8. Suppose F ∈Hol(U\0), F is one-to-one in U, F has a pole of order

1 at z = 0, with residue 1 and neither w1 nor w2 are in F(U). Then |w1−w2| ≤ 4.
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Let E be a compact subset of C. By diameter of E we mean the supremum of the

numbers |z1− z2|, where z1 ∈ E and z2 ∈ E.

Lemma 2.3.9. Suppose D is an open disc of radius r > 0, E ⊂ D, E is compact and

connected, Ω = C\E is connected, and the diameter of E is at least r. Then there is a

function g ∈ Hol(Ω) and a constant b, with the following property: If

Q(ζ,z) = g(z)+(ζ−b)g2(z), (2.13)

the inequalities

|Q(ζ,z)|< 100
r

(2.14)

∣∣∣∣Q(ζ,z)− 1
z−ζ

∣∣∣∣< 1000r2

|z−ζ|3
(2.15)

hold for all z ∈Ω and for all ζ ∈ D.

Proof. We assume, without loss of generality, that the center of D is at the origin. So

D = D(0;r). Since Ω is simply connected, the Riemann mapping theorem shows that

there is a conformal mapping F from unit disc U onto Ω. Again without loss of gener-

ality, we can choose F such that F(0) = ∞. F has an expansion of the form

F(w) =
a
w

+
∞

∑
n=0

cnwn (w ∈U) (2.16)

for some a 6= 0.

We define

g(z) :=
1
a

F−1(z) (z ∈Ω), (2.17)

where F−1 is the mapping inverse from Ω onto U . We put

b =
1

2πi

∫
Γ

zg(z)dz, (2.18)

where Γ is the positively oriented circle with center 0 and radius r.
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By (2.16) , Theorem 2.3.8 can be applied to F/a. It asserts that the diameter of

the complement of (F/a)(U) is at most 4. Note that C\(F/a)(U) = {z/a : z ∈ E}. So

diam E ≤ 4 |a|. Since diam E ≥ r, it follows that

|a| ≥ r
4
. (2.19)

Since g is a conformal mapping of Ω onto D(0;1/ |a|), (2.19) shows that

|g(z)|< 1
|a|
≤ 4

r
, (z ∈Ω). (2.20)

Recall that Γ = {|z|= r}. Hence Γ has length 2πr, (2.18) gives

|b| ≤
∣∣∣∣ 1
2πi

∣∣∣∣∫
Γ

|z| |g(z)| |dz| (2.21)

<
1

2π
r

4
r

∫
Γ

|dz| (2.22)

= 4r. (2.23)

If ζ ∈ D, then |ζ|< r, so (2.13), (2.20) and (2.23) imply

|Q| ≤ |g|+(|ζ|+ |b|)
∣∣g2∣∣

≤ 4
r

+5r
(

16
r2

)
<

100
r

.

This proves (2.14).

Fix ζ ∈D. If z = F(w), then zg(z) = wF(w)/a; and since wF(w)→ a as w→ 0, we

have zg(z)→ 1 as z→ ∞. Hence g has an expansion of the form

g(z) =
1

z−ζ
+

λ2(ζ)
(z−ζ)2 +

λ3(ζ)
(z−ζ)3 + · · · (|z−ζ|> 2r). (2.24)

Let Γ0 be a large circle with center at 0; (2.24) gives (by (2.18) and Cauchy’s theorem)

that

λ2(ζ) =
1

2πi

∫
Γ0

(z−ζ)g(z)dz (2.25)

=
1

2πi

∫
Γ0

zg(z)dz− 1
2πi

ζ

∫
Γ0

g(z)dz (2.26)

= b−ζ. (2.27)
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Substitute this value of λ2(ζ) into (2.24). Then (2.13) shows that the function

ϕ(z) =
[

Q(ζ,z)− 1
z−ζ

]
(z−ζ)3 (2.28)

is bounded as z→ ∞. Hence ϕ has a removable singularity at ∞. If z ∈ Ω∩D, then

|z−ζ|< 2r, so (2.14) and (2.28) give

|ϕ(z)|< 8r3 |Q(ζ,z)|+4r2 < 1000r2. (2.29)

By the maximum modulus theorem, (2.29) holds for all z ∈Ω. This proves (2.15).

Runge’s theorem is a special case of the following theorem.

Theorem 2.3.10. [Mergelyan’s Theorem] Let K ⊂ C be compact with C\K connected.

Then H(K) = P(K).

Proof. Let f ∈ H(K). By theorem 2.3.7, f can be extended to a continuous function in

the plane, with compact support. We fix one such extension, and denote it again by f .

Define

ω(δ) := sup | f (z2)− f (z1)|

for any δ > 0, where |z2− z1| ≤ δ. Since f is uniformly continuous, we have

lim
δ→0

ω(δ) = 0. (2.30)

From now on, δ will be fixed. We shall prove that there is a polynomial p such that

| f (z)− p(z)|< 10000ω(δ) (z ∈ K). (2.31)

By (2.30), this proves the theorem.

Our first objective is the construction of a function Φ ∈C′c(R
2), such that for all z

| f (z)−Φ(z)| ≤ ω(δ), (2.32)

∣∣(δ̄Φ)(z)
∣∣< 2ω(δ)

δ
, (2.33)
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and

Φ(z) =−1
π

∫
X

∫ (δ̄Φ)(ζ)
ζ− z

dξdη (ζ = ξ+ iη), (2.34)

where X is the set of all points in the support of Φ whose distance from the complement

of K does not exceed δ. (Thus X contains no point which is "far within" K.)

We construct Φ as the convolution of f with a smoothing function A. Put a(r) = 0

if r > δ, ,put

a(r) =
3

πδ2

(
1− r2

δ2

)2

(0≤ r ≤ δ), (2.35)

and define

A(z) = a(|z|) (2.36)

for all complex z. It is clear that A ∈C′c(R
2).

∫
R2

∫
A =

∫
δ

0

∫ 2π

0

3
πδ2

(
δ2− r2

δ2

)2

rdθdr

= 2π

∫
δ

0

3
πδ2

(
δ

2− r2)2
rdr

= 1.

and since A has a compact support, from Stoke’s theorem∫
R2

∫
δ̄A =

∫
bR2

∫
A = 0.

∫
R2

∫ ∣∣δ̄A
∣∣ =

∫
δ

0

∫ 2π

0

1
2

∣∣∣eiθ
∣∣∣ ∣∣∣∣ ∂

∂r
A+

i
r

∂A
∂θ

∣∣∣∣rdθdr

=
∫

δ

0

∫ 2π

0
− r

2
∂a
∂r

dθdr

=
∫

δ

0

∫ 2π

0
− r

2

(
3

πδ2 2
(

1− r2

δ2

)(
−2r

δ2

))
dθdr

=
∫

δ

0

∫ 2π

0

6
(
δ2− r2)
πδ6 dθdr

=
24
15δ

<
2
δ
.
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Hence we get ∫
R2

∫
A = 1, (2.37)

∫
R2

∫
δ̄A = 0, (2.38)

∫
R2

∫ ∣∣δ̄A
∣∣< 2

δ
. (2.39)

Now define

Φ(z) =
∫

R2

∫
f (z−ζ)A(ζ)dξdη =

∫
R2

∫
A(z−ζ) f (ζ)dξdη. (2.40)

Since f and A have compact support, so does Φ. Since

Φ(z)− f (z) =
∫

R2

∫
[ f (z−ζ)− f (z)]A(ζ)dξdη (2.41)

and A(ζ) = 0 if |ζ|> δ,

|Φ(z)− f (z)| ≤
∫
|ζ|≤δ

∫
| f (z−ζ)− f (z)|dξdη

∫
|ζ|≤δ

∫
A(ζ)dξdη ≤ ω(δ).

So we have shown (2.32).

The difference quotients of A converge boundedly to the corresponding partial deriva-

tives of A, since A ∈ C′c(R
2). Hence the last expression in Φ(z) may be differentiated

under the integral sign,

(δ̄Φ)(z) =
∫

R2

∫
(δ̄A)(z−ζ) f (ζ)dξdη (2.42)

=
∫

R2

∫
f (z−ζ)(δ̄A)(ζ)dξdη (2.43)

=
∫

R2

∫
[ f (z−ζ)− f (z)] (δ̄A)(ζ)dξdη (2.44)

The last equality depends on (2.38). Now (2.39) and (2.44) give (2.33). If we write

(2.44) with Φx, and Φy, in place of δ̄Φ, we see that Φ has continuous partial derivatives.

Hence Lemma 2.3.6 applies to Φ, and (2.34) will follow if we can show that δ̄Φ = 0 in
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G, where G is the set of all z ∈ K whose distance from the complement of K exceeds δ.

We shall do this by showing that

Φ(z) = f (z) (z ∈ G); (2.45)

note that δ f = 0 in G, since f is holomorphic there. Now if z ∈ G, then z− ζ is in the

interior of K for all ζ with |ζ| < δ. The mean value property for harmonic functions

therefore gives, by the first equation in (2.40),

Φ(z) =
∫

δ

0
a(r)rdr

∫ 2π

0
f (z− reiθ)dθ (2.46)

= 2π f (z)
∫

δ

0
a(r)rdr (2.47)

= f (z)
∫

R2

∫
A = f (z) (2.48)

for all z ∈ G.

We have now proved (2.32), (2.33), and (2.34).

The definition of X shows that X is compact and that X can be covered by finitely

many open discs Dl, . . . ,Dn of radius 2δ, whose centers are not in K. Since C\K is

connected, the center of each D j can be joined to ∞ by a polygonal path in C\K. It

follows that each D j contains a compact connected set E j, of diameter at least 2δ, so

that C\E j is connected and so that K∩E j = /0.

We now apply Lemma 2.3.9, with r = 2δ. There exists functions g j ∈ Hol(C\E j)

and constants b j so that the inequalities∣∣Q j(ζ,z)
∣∣< 50

δ
, (2.49)

∣∣∣∣Q j(ζ,z)− 1
z−ζ

∣∣∣∣< 4000δ2

|z−ζ|3
(2.50)

hold for z /∈ E j and ζ ∈ D j, if

Q j(ζ,z) = g j(z)+(ζ−b j)g2
j(z). (2.51)

Let Ω be the complement of El ∪·· ·∪En. Then Ω is an open set which contains K. Put

X1 = X ∩D1 and X j = (X ∩D j)− (X1∪·· ·∪X j−1), for 2≤ j ≤ n. Define

R(ζ,z) = Q j(ζ,z) (ζ ∈ X j, z ∈Ω) (2.52)
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and

F(z) =
1
π

∫
X

∫
(∂̄Φ)(ζ)R(ζ,z)dξdη (z ∈Ω) (2.53)

Since

F(z) =
n

∑
j=1

1
π

∫
X j

∫
(∂̄Φ)(ζ)Q j(ζ,z)dξdη, (2.54)

(2.51) shows that F is a finite linear combination of the functions g j and g2
j Hence

F ∈ Hol(Ω).

By (2.53), (2.33), and (2.34) we have

|F(z)−Φ(z)| <
1
π

∫
X

∫ ∣∣∣∣∂̄Φ(ζ)R(ζ,z)+
∂̄Φ(ζ)
ζ− z

∣∣∣∣ (z ∈Ω) (2.55)

<
2ω

πδ

∫
X

∫ ∣∣∣∣R(ζ,z)− 1
z−ζ

∣∣∣∣dξdη (z ∈Ω). (2.56)

Observe that the inequalities (2.49) and (2.50) are valid with R in place of Q j if ζ ∈ X

and z ∈Ω. For if ζ ∈ X then ζ ∈ X j for some j,and then R(ζ,z) = Q j(ζ,z) for all z ∈Ω.

Now fix z ∈ Ω, put ζ = z + ρeiθ, and estimate the integrand in (2.56) by (2.49) if

ρ < 4δ, by (2.50) if 4δ≤ ρ. Then the integral in (2.56) is less than

2π

∫ 4δ

0

(
50
δ

+
1
ρ

)
ρdρ+2π

∫
∞

4δ

4000δ2

ρ3 ρdρ = 2808πδ.

Hence (2.56) yields

|F(z)−Φ(z)|< 6000ω(δ) (z ∈Ω). (2.57)

Since F ∈ Hol(Ω), K ⊂ Ω, and C\K is connected, Runge’s theorem shows that F can

be uniformly approximated on K by polynomials. Hence (2.32) and (2.57) show that

(2.31) can be satisfied. This completes the proof.
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CHAPTER 3

APPROXIMATION IN Cn

3.1 Oka-Weil Theorem

Now we want to generalize the Runge Approximation Theorem to Cn, for n > 1. The

condition ‘C\K is connected’ is a purely topological restriction on K. No such purely

topological restriction can suffice when n > 1.

Example 3.1.1. Consider the two sets in C2 = {(z,w) : z,w ∈ C} defined as follows:

K1 =
{
(xz,xw) ∈ R2 : x2

z + x2
w ≤ 1

}
,

K2 = {(z,0) : |z| ≤ 1} .

Both of these sets are polynomially convex in C2; i.e., K1 = K̂1 and K2 = K̂2; thus each

set satisfies the obvious necessary condition for holomorphic polynomials to be dense

in the space of continuous functions on the set. However, K2 lies in the complex z-plane

and P(K2) can be identified with P(K) where K is the closed unit disk in one complex

variable; since K◦ 6= /0, the observation made regarding Lavrentiev′s theorem shows that

P(K2) 6= C(K2).

So the question is: What condition on K will assure A(K) = P(K) for a compact

subset K of Cn?

For K ⊂ C Lemma 2.3.4 gives that A(K) = P(K) if K is polynomially convex. For-

mulated in this way the Runge Approximation Theorem admits a generalization to Cn

for n > 1.

Remark 3.1.2. Let K = B−B(0,r), 0 < r < 1. A(K) = P(K) from Theorem 1.2.3.

However; since K̂ = B 6= K, K is not polynomially convex.
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Now it is time to state our result as a theorem.

Theorem 3.1.3. [The Oka-Weil Theorem] Let K be a compact polynomially convex set

in Cn. Then A(K) = P(K).

The rest of this section is devoted to the proof of the Oka-Weil Theorem.

Definition 3.1.4. A subset Π of Cn is a polynomial polyhedra if there exist polynomials

p1, ..., ps such that

Π =
{

z ∈ Cn :
∣∣z j
∣∣≤ 1, all j, and |pk(z)| ≤ 1,k = 1,2, . . . ,s

}
.

Lemma 3.1.5. Let K be a compact polynomially convex subset of U
n
. Let V be an open

set containing K. Then there exists a polynomial polyhedra Π with K ⊂Π⊂V .

Proof. For each x ∈Un\V there exists a polynomial px with |px(x)|> 1 and |px| ≤ 1 on

K.

Then |px| > 1 in some neighborhood Nx of x. By compactness of Un\V , a finite

collection Nx1, . . . ,Nxr covers Un\V . Put

Π =
{

z ∈ Un : |px1(z)| ≤ 1, . . . , |pxr(z)| ≤ 1
}

.

If z ∈ K, then z ∈ Π, so K ⊂ Π. Suppose that z /∈ V . If z /∈ Un, then z /∈ Π. If z ∈ Un,

then z ∈ Un\V . Hence z ∈ Nx j for some j . Hence
∣∣px j(z)

∣∣ > 1. Thus z /∈ Π. Hence

Π⊂V .

Let now Π be a polynomial polyhedra in Cn,

Π =
{

z ∈ Un :
∣∣p j(z)

∣∣≤ 1, j = 1, . . . ,r
}

.

We can embed Π in Cn by the map

Φ : z→ (z, p1(z), . . . , pr(z)) . (3.1)

Φ maps Π homeomorphically onto the subset of Un+r defined by the equations

zn+1− p1(z) = 0, . . . ,zn+r− pr(z) = 0.
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Definition 3.1.6. Let Ω be an open set in Cn and W be an open set in Ck. Let u =

(u1, . . . ,un) be a map of W into Ω. Assume that each u j ∈ Hol(W ). For each I =

(i1, . . . , ir), J = ( j1, . . . , js) put

duI = dui1 ∧dui2 ∧·· ·∧duir

and define duJ similarly. Thus duI ∧duJ ∈ ∧r,s(W ). Fix ω ∈ ∧r.s(Ω),

ω = ∑
I,J

aIJdzI ∧dzJ.

Define

ω(u) = ∑
I,J

aI,J(u)duI ∧duJ ∈ ∧r,s(W ).

Example 3.1.7. Assume that each u j is holomorphic. d(ω(u)) = (dω)(u) and ∂(ω(u)) =

(∂ω)(u).

Theorem 3.1.8. Let Π be a polynomial polyhedra in Cn and Ω a neigborhood of Π.

Given that φ ∈ ∧p,q(Ω), q > 0, with ∂φ = 0, then there exists a neighborhood Ω1 of Π

and ψ ∈ ∧p,q−1(Ω1) with ∂ψ = φ.

Proof. We denote

Pk(q1, . . . ,qr) =
{

z ∈ Uk :
∣∣q j(z)

∣∣≤ 1, j = 1, . . . ,r
}

,

the q j being polynomials in z1, . . . ,zk. Every polynomial polyhedra is of this form.

We shall prove our theorem by induction on r. The case r = 0 corresponds to the

polynomial polyhedra Uk and the assertion holds, for all k, by Theorem 1.7.1. Fix r

now and suppose that the assertion holds for this r and all k and all (p,q),q > 0. Fix n

and polynomials p1, . . . , pr+1 in Cn and consider φ ∈ ∧p,q(Ω), Ω some neighborhood of

Pn(p1, . . . , pr+1). We first sketch the argument.

Step 1. Embed Pn(p1, . . . , pr) by the map u : z→ (z, pr+1(z)). Note that p1, . . . , pr

are polynomials in z1, . . . ,zn+1 which do not involve zn+1. Let ∑ denote the image of

Pn(p1, . . . , pr+1) under u. π denotes the projection (z,zn+1)→ z from Cn+1→Cn. Note

π◦u = identity.

Step 2. Find a ∂-closed form Φ1 defined in a neighborhood of

Pn+1(p1, . . . , pr)
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with Φ1 = φ(π) on ∑.

Step 3. By induction hypothesis, there exists Ψ in a neighborhood of Pn(p1, . . . , pr+1)

with ∂Ψ = Φ1. Put ψ = Ψ(u). Then

∂ψ = (∂Ψ)(u) = Φ1(u) = φ.

As to the details, choose a neighborhood Ω1 of Pn(p1, . . . , pr+1) with Ω1 ⊂ Ω.

Choose λ ∈ C∞(Cn), λ = 1 on Ω1, λ = 0 outside Ω. Put Φ = (λ ·φ)(π), defined = 0

outside π−1(Ω).

Let χ be a form of type (p,q) defined in a neigborhood of Pn+1(p1, . . . , pr). Put

Φ1 = Φ− (zn+1− pr+1(z)) ·χ. (3.2)

Then Φ1 = Φ = φ(π) on ∑.

We want to choose χ such that Φ1 is ∂-closed. This means that

∂Φ = (zn+1− pr+1(z))∂χ

or

∂χ =
∂Φ

(zn+1− pr+1(z))
. (3.3)

Observe that ∂Φ = ∂φ(π) = 0 in a neighborhood of ∑, whence the right-hand side in

(3.3) can be taken to be 0 in a neighborhood of ∑ and is then in C∞ in a neigborhood of

Pn+1(p1, . . . , pr). Also

∂

{
∂Φ

(zn+1− pr+1(z))

}
= 0.

By induction hypothesis, now, there exists χ satisfying (3.3). The corresponding Φ1 in

(3.2) is then ∂-closed in some neighborhood of Pn+1(p1, . . . , pr). By induction hypoth-

esis again, there exists a (p,q− 1) form Ψ in a neighborhood of Pn+1(p1, . . . , pr) with

∂Ψ = Φ1. As in step 3, then, making use of Exercise 3.1.7, we obtain a (p,q−1) form

ψ in a neighborhood of Pn(p1, . . . , pr+1) with ∂ψ = φ.

We keep the notations introduced in the last proof.
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Lemma 3.1.9. Fix k and polynomials q1, . . . ,qr in z = (z1, . . . ,zk). Let f be holomorphic

in a neighborhood W of Π = Pk(q1, . . . ,qr). Then there exists an F which is holomorphic

in a neighborhood of Π′ = Pk+1(q2, . . . ,qr) such that

F(z,q1(z)) = f (z), all z ∈Π.

Proof. Note that if z ∈ Π, then (z,q1(z)) ∈ Π′. Let ∑ be the subset of Π′ defined by

zk+1−q1(z) = 0. Choose φ ∈C∞
0 (π−1(W )) with φ = 1 in a neighborhood of ∑.

We seek a function G defined in a neighborhood of Π′ so that with

F(z,zk+1) = φ(z,zk+1) f (z)− (zk+1−q1(z))G(z,zk+1),

F is holomorphic in a neighborhood of Π′. We define φ · f = 0 outside π−1(W ). We

need ∂F = 0 and so

f ∂φ = (zk+1−q1(z))∂G

or

∂G =
f ∂φ

(zk+1−q1(z))
= ω. (3.4)

Note that the numerator vanishes in a neighborhood of ∑, so ω is a smooth form in some

neighborhood of Π′. Also ∂ω = 0. By Theorem 3.1.8, we can thus find G satisfying (3.4)

in some neighborhood or Π′. The corresponding F now has the required properties.

Theorem 3.1.10. [Oka Extension Theorem] Given f holomorphic in some neighbor-

hood of Π; then there exists F holomorphic in a neighborhood of Un+r
such that

F (z, p1(z), . . . , pr(z)) = f (z), z ∈Π.

Proof. p1, . . . , pr are given polynomials in z1, . . . ,zn and Π = Pn(p1, . . . , pr). f is holo-

morphic in a neigborhood of Π. For j = 1,2, . . . ,r we consider the assertion

A( j) : there exists Fj holomorphic in a neighborhood of Pn+ j(p j+1, . . . , pr)

such that Fj(z, p1(z), . . . , p j(z)) = f (z), all z ∈Π.

A(1) holds by Lemma 3.1.9. Assume that A( j) holds for some j . Thus Fj is holo-

morphic in a neighborhood of Pn+ j(p j+1, . . . , pr). By Lemma 3.1.9, there exists Fj+1 is
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holomorphic in a neighborhood of Pn+ j+1(p j+2, . . . , pr) with Fj+1(ζ, p j+1(z)) = Fj(ζ),

ζ ∈ Pn+ j(p j+1, . . . , pr) and ζ = (z,zn+1, . . . ,zn+ j). By choice of Fj.

Fj(z, p1(z), . . . , p j(z)) = f (z), all z ∈Π.

Hence

Fj+1(z, p1(z), . . . , p j(z), p j+1(z)) = f (z), all z ∈Π.

Thus A( j+1) holds. Hence A(1),A(2), . . . ,A(r) all hold. But A(r) provides F holomor-

phic in a neighborhood of Un+r with

F(z, p1(z), . . . , pr(z)) = f (z), all z ∈Π.

Proof of the Oka-Weil Theorem. Without loss of generality we may assume that K⊂Un.

The function f is holomorphic in a neighborhood V of K. By Lemma 3.1.5 there exists

a polynomial polyhedra Π with K ⊂ Π⊂V . Then f is holomorphic in a neighborhood

of Π. By Theorem 3.1.10 we can find F satisfying

F(z, p1(z), . . . , pr(z)) = f (z), z ∈Π, (3.5)

where F is holomorphic in a neighborhood of Un+r . Expand F in a Taylor series around

0,

F(z,zn+1, · · · ,zn+r) = ∑
v

avzv1
1 · · ·z

vn
n zvn+1

n+1 · · ·z
vn+r
n+r .

The series converges uniformly in Un+r . Thus a sequence S j of partial sums of this

series converges uniformly to F on Un+r , and hence in particular on Φ(Π), where Φ is

the embedding defined by (3.1). Thus

S j (z, p1(z), . . . , pr(z))

converges uniformly to F (z, p1(z), . . . , pr(z)) for z ∈ Π, or, in other words, converges

to f (z), by (3.5). Since S j (z, p1(z), . . . , pr(z)) is a polynomial in z for each j, we are

done.
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CHAPTER 4

POLYNOMIAL CONVEXITY

4.1 Elementary Properties of Polynomially Convex Sets

In this section we provide some examples of polynomially convex sets in Cn. In

general it is not an easy task to decide whether a compact set in Cn is polynomially

convex or not. Theorem 4.1.3 provides set to be polynomially convex.

Proposition 4.1.1. Every compact convex set in Cn is polynomially convex.

Proof. If K ⊂ Cn is a compact convex set then for each point z ∈ Cn\K there is a real-

valued real-linear functional ` on Cn = R2n with

` < 1 on K

`(z) = 1.

Say ` is the real part of a complex-linear functional L on Cn. Then the entire function

F = eL satisfies

|F(z)|=
∣∣∣eL(z)

∣∣∣= e`(z) = e > ‖F‖K

Hence K is polynomially convex.

Proposition 4.1.2. Every compact subset of Rn is a polynomially convex subset of Cn.

Proof. Let K ⊂ Rn be a compact set. The Weierstrass approximation theorem implies

that if x ∈ Rn\K, then there is a polynomial p with

p(x) = 1 > ‖p‖K .
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Consequently, K̂ ∩Rn = K. If w = u + iv ∈ Cn with u,v ∈ Rn, v 6= 0, then the entire

function F defined by

F(z) =
n

∏
j=1

e−(z j−u j)2

satisfies |F | ≤ 1 on Rn and |F(w)|= ev1
2+···+v2

n > 1. So w /∈ K̂. Thus K = K̂.

Important examples among the convex sets are the closed balls and polydisks.

Certain formal properties of polynomially convex sets are evident. For example, the

intersection of an arbitrary family of polynomially convex sets is polynomially convex,

whereas the union is generally not.

For a compact subset X of Cn, X̂ is the smallest polynomially compact convex set

containing X .

A polynomially convex subset X of Cn can be written as the intersection ∩p p−1 (U),
U the open unit disk in C, where the intersection extends over all the polynomials p that

are bounded by one in modulus on X . A consequence of this simple observation is that if

Ω is a neighborhood of X , then there is a polynomial polyhedra Π such that X ⊂Π⊂Ω

(see Lemma 3.1.5). This is not unlike the process of approximating arbitrary compact

convex sets in Rn by compact convex polyhedra.

There is a natural way to identify P(X) with P(X̂). Consider first the case of P(X).

If X is a compact subset of Cn, there is a natural extension of each function f ∈ P(X)

to a function f̂ ∈C(X̂). To construct f̂ note that because f ∈ P(X), there is a sequence{
p j
}

j=1,...
of polynomials that converges uniformly on X to f . If y is any point of

X̂ , then the sequence p j(y) j=1,... is a Cauchy sequence and so converges. The limit of

this sequence is defined to be f̂ (y). The value f̂ (y) is independent of the choice of the

sequence of polynomials. This construction gives an extension of f ∈ P(X) to a function

f̂ defined on all of X̂ . By uniform convergence, f̂ is continuous and lies in P(X̂). By

way of the identification of f with f̂ , the algebra P(X) can be identified naturally with

the algebra P(X̂).

Theorem 4.1.3. If X is a compact polynomially convex subset of Cn, and if f ∈ P(X)

then the graph of f is a polynomially convex subset of Cn+1.
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In particular, if f is a function continuous on the closed unit disk and holomorphic

on its interior, then the graph of f is a polynomially convex subset of C2.

Proof. Denote by Γ the graph {(z, f (z)) : z ∈ X} of f . The set Γ is compact. Let

(z0,ζ0) ∈ Cn+1\Γ. This means either z0 /∈ X or f (z0) 6= ζ0. If z0 /∈ X , then there is

a polynomial p on Cn such that

|p(z0)|> ‖p‖X .

So if we consider p as a function on Cn+1, it shows that (z0,ζ0) /∈ Γ̂.

If z0 ∈ X , then ζ0 6= f (z0). Let c = |ζ0− f (z0)|. There is a polynomial Q such that

‖Q − f‖X < c
4 . Let

∆ =
{

(z,ζ) ∈ Cn×C : z ∈ X and |ζ−Q (z)| ≤ c
2

}
This is a compact polynomially convex subset of Cn×C, and it contains Γ, for if (z,ζ)∈

Γ, then

|ζ−Q (z)|= | f (z)−Q (z)|< c
4
.

Also (z0,ζ0) /∈ ∆, since

|ζ0−Q (z0)| ≥ |ζ0− f (z0)|− | f (z0)−Q (z0)|>
3c
4

.

That is a compact polynomially convex subset ∆ contains Γ and not the point (z0,ζ0),

so (z0,ζ0) /∈ Γ̂.

4.2 A Characterization of Polynomially Convex Sets

In the present section we establish a full characterization of polynomially convex set

which is folklore and a recent characterization of polynomially convex hulls, obtained

by Duval and Sibony [DuvSib95].

Theorem 4.2.1. If X is a compact, polynomially convex subset of Cn, then there is a non-

negative plurisubharmonic function, v, on Cn with limz→∞ v(z) = ∞, with X = v−1(0),

and with the additional properties that v is of class C∞ on Cn and strictly plurisub-

harmonic on Cn\X. The function v can be chosen to satisfy v(z) = |z|2 for z near
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infinity. Conversely, if v is a nonnegative plurisubharmonic function on Cn such that

limz→∞ v(z) = ∞, then the set v−1(0) is polynomially convex.

Proof. Fix a nonnegative function χ of class C∞ on R with the properties that χ(t) = 0 if

t < 1
2 and χ(1) = 1 respectively. Require also that χ′ and χ′′ be nonnegative and strictly

positive on t > 1
2 . Given a point z ∈ Cn\X , there is a polynomial pz such that pz(z) = 1

and |pz|< 1
4 on X . The function |pz|2 is of class C∞ and is plurisubharmonic. If εz > 0

is sufficiently small, then the function ηz defined by ηz(w) = χ

(
|pz(w)|2 + εz |w|2

)
is

plurisubharmonic and of class C∞ on Cn. It vanishes on a neighborhood of X , and is

strictly plurisubharmonic on a neighborhood Wz of the point z. A countable number of

the neighborhoods Wz, say W1, · · · , cover Cn\X . Let η1, . . . be the associated functions.

If
{

δ j
}

j=1,··· is a sequence of positive numbers that decrease sufficiently rapidly to zero,

then the function u defined by u = ∑ j=1,··· δ jη j is a nonnegative plurisubharmonic func-

tion of class C∞ with X as its zero set that is strictly plurisubharmonic on Cn\X . It

satisfies limw→∞ u(w) = ∞.

To obtain the function v of the statement of the theorem, fix an R > 0 so large that the

set X is contained in the ball Bn(R). Let η : R→ [0,∞) be a smooth function with η(t) =

0 on [0,R)and with η(t) = t2 when t > 3R. Require also that η′ and η′′ be nonnegative.

Let ρ : R→ [0,1] satisfy ρ(t) = 0 if t > 3R and ρ(t) = t when t ∈ [0,2R). The function

v we desired can be defined by v(w) = η(|w|) + ερ(|w|)u(w) for sufficiently small

positive ε.

This completes the proof of one implication of the theorem. We postpone the proof

of the final statement of the theorem for the moment; it will be contained in a more

general result, Theorem 4.2.3, below.

Corollary 4.2.2. If X is a compact subset of Cn and x0 ∈ X̂ , then for each Jensen mea-

sure µ for x0 carried by X and for each plurisubharmonic function u defined on a neigh-

borhood of X̂ ,

u(x0)≤
∫

u(z)dµ(z).

Proof. By the monotone convergence theorem, it suffices to prove that the desired in-

equality holds when u is a continuous plurisubharmonic function. Accordingly, let u be
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such a function, and let ε > 0 be given. By the preceding theorem, there are polyno-

mials P1, · · · ,Pr and positive constants c1, · · · ,cr such that on a neighborhood of X̂ the

inequalities

u− ε < max
j=1,...,r

c jlog
∣∣Pj
∣∣< u

are satisfied. Then for each k,∫
u(z)dµ(z)≥

∫
max

j=1,...,r
c jlog

∣∣Pj
∣∣dµ≥ cklog |Pk (x0)| .

It follows that, as desired, u(x0)≤
∫

u(z)dµ(z).

We can now complete the proof of Theorem 4.2.1. What remains to be proved is the

final assertion. It is a consequence of a more general fact:

Theorem 4.2.3. If X is a compact subset of Cn, then X̂ coincides with X̂Psh.

Proof. For every polynomial P the function |P| is plurisubharmonic on Cn, whence the

inclusion X̂ ⊃ X̂Psh.

For the reverse inclusion, let p be a point of X̂ . There is a Jensen measure µ for

p supported by X . The corollary just proved shows that for every plurisubharmonic

function u on Cn, u(p) ≤
∫

X u(x)dµ(x), which implies the inequality u(p) ≤ supX u(x),

whence p ∈ X̂Psh. The theorem is proved.

We now turn to the characterization of polynomially convex sets found by Duval and

Sibony. Denote by δx the positive measure of unit mass with support the singleton x.

Theorem 4.2.4. For a compact set X in Cn and a point x ∈Cn, the following are equiv-

alent:

(a) x ∈ X̂;

(b) There is a positive current T ∈ Dn−1,n−1(Cn) such that ddcT = µ− δx for a

probability measure µ supported in X.

The conclusion in part (b) is that for each C∞ function ϕ on Cn,∫
ϕdµ−ϕ(x) = T (ddc

ϕ).

That (b) implies (a) is a consequence of a more general result:
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Theorem 4.2.5. If X is a compact subset of Cn, if T ∈ Dn−1,n−1(Cn\X) is positive

and has bounded support, and if ddcT is negative in Cn\X, then the support of T is

contained in X̂ .

Proof. If x∈ supp T\X̂ , then by Theorem 4.2.1, there is a nonnegative smooth plurisub-

harmonic function u on Cn that vanishes on a neighborhood of X̂ and that is strictly

plurisubharmonic where it is positive, which includes a neighborhood of the point x.

We then have that

0 < T (ddcu) = (ddcT )(u)≤ 0,

which is impossible.

We have supp ddcT ⊂ supp T , so this result yields that (b) implies (a).

That (a) implies (b) is a consequence of a more precise statement:

Theorem 4.2.6. Let X be a compact subset of Cn, let x0 ∈ X̂ , and let µ be a Jensen

measure for x0 supported in X. There is a positive current T of bidimension (1,1) and

with bounded support such that ddcT = µ−δx0 .

Proof. Fix an R > 0 large enough that X̂ ⊂ Bn(R).

By a flat disk contained in Bn(R) we shall understand a disk that is contained in the

intersection of Bn(R) with a complex line in Cn.

Introduce the class K0 of currents of bidimension (1,1) of the form S = gD[D], where

D is a flat disk contained in Bn(R) and where gD is the Green function for D, so that if

cD is the center of D, then gD is nonnegative and harmonic on D\cD, gD vanishes on bD,

and, with ∆ denoting the Laplacian in the complex line that contains D, ∆gD = δcD . (On

the unit disk U in C, the Green function is −log|z|.) Thus, for a smooth two-form α on

Cn, S(α) =
∫

D gDα. This integral exists, for gD has a logarithmic singularity at cD.

Let K denote the cone generated by the set K0.We shall show that µ− δx0 lies in

the weak∗ closure of the cone ddcK = {ddcS : S ∈K } in the dual space of the space

∧1,1 (Cn). In the contrary case, there is a weak∗ continuous linear functional on the

dual space of ∧1,1 (Cn) that separates µ− δx0 from the cone ddcK . Weak∗ continuous

linear functionals are point evaluations, so there is a function ϕ ∈ C∞ (Cn) such that∫
ϕdµ−ϕ(x0) < 0≤ T (ddcϕ) for all T ∈K .
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This condition implies that if D is a flat disk in Bn(R), then
∫

D gDddcϕ is nonnega-

tive. Because this happens for all disks D̃ contained in the line λ that contains D and that

are contained in Bn(R), it follows that the Laplacian of ϕ on λ∩Bn(R) is nonnegative.

Thus, ϕ is subharmonic on λ∩Bn(R), and ϕ is plurisubharmonic on Bn(R). It satisfies∫
ϕ̃dµ < ϕ̃(x0),

which is impossible by Corollary 4.2.2, for µ is a Jensen measure for x0. Thus, as

claimed, µ−δx0 lies in the weak∗ closure of the cone ddcK .

Consequently, there is a net
{

ddcTγ

}
γ Γ

in ddcK that converges in the weak∗ sense

to µ−δx0 . For each ϕ ∈C∞(C)n, there are γ0 and M > 0 such that
∣∣ddcTγ(ϕ)

∣∣ ≤M for

γ > γ0. Apply this to the function |z|2. Each Tγ is of the form

Tγ = ∑
j=1,···

λ
γ

jg
γ

j

[
Dγ

j

]
for some choice of positive numbers λ

γ

j and some choice of flat disks Dγ

j contained in

Bn(R). For each γ and j , gγ

j denotes the Green function associated with the disk Dγ

j.

Thus,

ddcTγ

(
|z|2
)

= ∑
j=1,···

λ
γ

j ∑
r=1,··· ,n

i
2

∫
Dγ

j

gγ

jdzr∧dzr.

It follows that if vγ
r is the positive measure defined by∫

f dvγ
r = ∑

j=1,···
λ

γ

j
i
2

∫
Dγ

j

f gγ

jdzr∧dzr,

then for γ > γ0, the measures vγ
r are uniformly bounded in norm. They are supported in

Bn(R). By passing to a suitable subnet, we can suppose that each of the nets
{

vγ
r
}

γ∈Γ

converges in the weak∗ topology on the space of measures on Bn(R), viewed as the dual

space of the space C(Bn(R)), to a measure vr. The measures vr are nonnegative.

We now have that the current T of bidimension (1,1) given by

T

(
∑

j,k=1,··· ,n
α j,kdz j∧dzk

)
= ∑

r=1,··· ,n

∫
αr,rdvr

has support in Bn(R), satisfies T (ddcϕ) =
∫

ϕdµ−ϕ(x0), and is positive.

This completes the proof of the theorem and with it the proof of Theorem 4.2.4.
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