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Abstract

This thesis is a survey on selected topics in approximation theory. The topics use
either the techniques from the theory of several complex variables or those that arise in
the study of the subject. We also go through elementary theory of polynomially convex

sets in complex analysis.
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Ozet

Bu tez, yaklagimlar teorisinde se¢ilmis konular {izerine bir arastirmadir. Bu konular
incelenirken ya cok degiskenli karmagik analiz teorisinde mevcut olan, ya da inceleme
sirasinda ortaya ¢ikan teknikler kullaniliyor. Arastirmamiz ayni zamanda karmagik anal-

izde polinomsal konveks kiimelerin temel teorisini de inceliyor.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this thesis basic theory of approximation in C" when n > 1 is surveyed. The
main object of study in complex analysis is the holomorphic function spaces. Let K
be a compact set in C". It is possible to consider various classes of function spaces,
such as H(K), A(K), R(K), and P(K) (see section 1.2 for their definition) all of which
are mostly interest of study in the theory of functions. From their definitions it follows
immediately that

P(K) CR(K) C H(K) C A(K).

In Chapter 2 we first take a glance at the classical approximation results in C such
as Runge Theorem, Lavrentiev’s Theorem and Mergelyan Theorem that can be taught
in a standard graduate complex analysis course. We follow the book of Rudin for this
chapter. Chapter 4 is devoted to an exposition of the theory of polynomially convex
sets. A compact subset of C" is polynomially convex if it is defined by a family, finite
or infinite, of polynomial inequalities. These sets play an important role in the theory of
functions of several complex variables, especially in questions concerning approxima-
tion. Chapter 3 is devoted to the generalization of Runge Theorem to C", so called the
Oka-Weil Theorem.

Not every compact subset of C" is polynomially convex. Generally it is a difficult
task to find criteria for checking whether a given compact set is polynomially convex. In
Chapter 4 we give a few well-known examples of polynomially convex sets. In section
4.2 we present two results that are full characterizations of polynomially convex sets.
A fundamental connection between polynomial convexity and plurisubharmonic func-
tions is presented by Theorem 4.2.1. The second (Theorem 4.2.4) characterization of

polynomial convexity is a recent result of Duval and Sibony which uses the concept of



Jensen measures. These measures recently attracted the attention of quite a number of
mathematicians and proved to have important applications in complex analysis.

Basic definitions are given in Chapter 1. Classical results in several complex vari-
ables and pluripotential theory are also included in section 1.2. In section 1.3 the class of
Jensen measures is introduced. Elementary theory of differential forms, é—operator and
currents that we will need are given in sections 1.4, 1.5 and 1.6, respectively. Section
1.7 is devoted to the solution of the é—equation in the polydisk. One of the important
tasks to do in complex analysis is to solve the 5—equation. This concept is revisited in
Theorem 3.1.8 for the case of polynomial polyhedra. This result is the essence of the

proof of the Oka-Weil theorem.

1.2 Basic Definitions and Theorems

We refer to [Hor73] for detailed information on the content of this section. Let € be
an open set in C". For any k =0, 1,..., we will denote by C¥(Q) the space of all k times
continuously differentiable complex-valued functions in Q. C’g (A), where A is a subset
of Q, will denote the set of functions in C¥(Q) vanishing outside a compact subset of A.
C>(Q) will denote the algebra of all finitely differentiable complex-valued functions on

Q. We write C* for C*(2). We will define the operators on C* as follows:

o _1(0 Y\ 2 _1(d 2 W
aZj_z ax]' ayj ’ BZJ-_Z ax]' ayj .
Definition 1.2.1. A function f € C! is said to be holomorphic on Q if
of
- —0 1.2
dzZ; (12)

forevery j =1,...,n. The set of all holomorphic functions defined on Q will be denoted
by Hol(Q).

We will think of the set Hol(Q) together with the compact-open topology. A se-
quence of functions f; € Hol(€2) converges to a function f in Hol(Q) if f; converges

uniformly to f on every compact subset of Q.



Any function which satisfies (1.2), satisfies the Cauchy-Riemann equations in the
zjth coordinate for any j. Hence a holomorphic function is holomorphic in each variable.

The converse of this statement is known as Hartogs theorem.

Theorem 1.2.2. [Hartogs Theorem] Let f be a complex valued function defined in an
open set Q C C". Suppose that f is holomorphic in each variable z; when the other

coordinates zy for k # j are fixed. Then f is holomorphic in Q.

Theorem 1.2.3. [Hartogs Extension Theorem] Suppose Q is a bounded nonempty open
connected subset of C" with connected boundary b<). If n > 2, then each function f
that is holomorphic in some connected neighborhood of the boundary of Q, bQ, has a

holomorphic extension to Q.

The (open) ball of radius r centered at z° € C" is the set
1/2
‘Z j— % ‘ <r
=1

Similarly, the (open) polydisk of polyradius r = (ry,--- ,r,) centered at z¥ is the set

B, (zo,r) =<¢zeC": |z—ZO‘ = (
J
U”(zo,r) = {zE(Cn: |Z1—z(])‘ <r1,~-~,|zn—zg‘ < rn}.

B, and U”" denoting, respectively, the open ball of center 0 and radius one and open
polydisk of polyradius (1,---,1) and center O will be used consistently throughout the

text.

Definition 1.2.4. An open set Q C C" is called a domain of holomorphy if there are no

open sets Q; and Q; in C" with the following properties:
1) 0£Q; CQNQ.
(i) €, is connected and not contained in .

(iii) For every f € Hol(Q) there is a function f, € Hol(£;) (necessarily uniquely
determined) such that f = f5 in Q;.



So we can say that a domain of holomorphy is a set which is maximal in the sense
that there exists a holomorphic function on this set which cannot be extended to a bigger

set.

Definition 1.2.5. If K is a compact subset of Q, we define the holomorphic hull, KHol

of K with respect to Q by
K5 = {z€ Q:|f(2)| < || flxif f € Hol(Q)}
where || = maxg |f].
Theorem 1.2.6. The following conditions are equivalent:
(i) Q is a domain of holomorphy,
(ii) KH' cCc QifK cC Q

where K CC Q means that K is relatively compact in Q, that is, K is contained in a

compact subset of Q.

Definition 1.2.7. Let X be a topological space. We say that a function f : X — [—oo,00)

is upper-semicontinuous if the set {x € X : f(x) < a} is open in X for each a € R.

Definition 1.2.8. Let U be an open set of C. A function f : U — [—o0,0) is called
subharmonic if it is upper-semicontinuous and satisfies the local submean inequality,

i.e. given w € U, there exists p > 0 such that

1

2 )
Flw) < ﬁ/0 Fwre)di (0<r<p). (1.3)

Definition 1.2.9. A function f defined in an open set Q C C" with values in [—oo, +o0)

is called plurisubharmonic if
(1) f is upper-semicontinuous,

(ii) For arbitrary z and w € C", the function T — f(z+ Tw) is subharmonic in the

part of C where it is defined.

We will denote the set of such functions by PSH(Q).



Definition 1.2.10. A smooth function « on  is said to be strictly plurisubharmonic on
Q if for every relatively compact open set V C Q there exists a number € > 0 so that

u(z) — &z|? is plurisubharmonic on V.

The elementary theory of plurisubharmonic functions parallels that of subharmonic
functions rather closely. In particular, plurisubharmonic functions enjoy the following

properties. We refer to [K1i91] for more about plurisubharmonic functions.
Proposition 1.2.11.

(a) If {u j}j:] __is a monotonically decreasing sequence of plurisubharmonic func-
tions defined on a domain Q, then the function u defined by u(z) = limj_...u;(z) is also

plurisubharmonic.

(b) If {uo}yeq is an arbitrary collection of plurisubharmonic functions on a domain

Q, and if u(z) = sup,(z) then the upper regularization of u defined by

u*(w)= lim [ sup u(z)
e—0" |lw—z|]<€

is plurisubharmonic or else identically +oo.

(c) A plurisubharmonic function on a connected open set in C" is either identically

—oo or else is locally integrable with respect to Lebesgue measure on C".

(d) If u is a plurisubharmonic function on the domain Q, there is a decreasing se-
quence {u j}j:1 _of functions of class C* on Q with u(z) = lim;j_u;(z) for all z and
with the property that if K is a compact subset of Q, then all but finitely many of the

functions uj are plurisubharmonic on a neighborhood of K.

(e) If u is a plurisubharmonic function on a domain Q and if { : R — R satisfies /,

x" > 0, then x o u is plurisubharmonic on Q.

(f) Plurisubharmonic functions are subharmonic in the sense of potential theory.
Therefore whenever B, (zo,r) C Q

n!

<
< /B @2

u(z0)

for every u € PSH(Q).



(g) Let u € PSH(Q). Let Q; be domains so that Q; C Q.1 is relatively compact
for every j and Q = UQ;. There exist functions u; € C*(Q) NPSH(Q;) such that u;j(z)

eventually decreases to u(z) for every z € Q.

Theorem 1.2.12. [Hor73] Let Q be a domain in C", let K be a compact subset of Q,
and let g be a continuous function on Q. If {uy } k=1,... Is a sequence of plurisubharmonic

functions that is locally uniformly bounded on  and that satisfies

limsupuy(z) < g(z) forall z € Q,

k—o0

then for each € > O there is a ke such that for k > ke, uy(z) < g(z) +¢€ for every z € K.

Proof. We first suppose that the function g is constant. Without loss of generality, we
can suppose that the sequence is uniformly bounded on Q. It can then be supposed that
g = C with C < 0 and that each uy is negative on Q.

Choose a 8 < § dist(K,C"\Q). If zy € K, then by Proposition 1.2.11 (f)

n!

< dL(2).
e (20) < T /IB%n(zmS) “(E)d L)

Fatou’s lemma implies that

J.l:nSZn
limsu up(z)d L(z S/ CdL(z)=C
kﬂoop BH(ZO78) k( ) ( ) En(ZQ,S) ( ) n!

Thus there is k (z9) large enough that for k > k(zo),

ns\2n

/]Bn(zo,S) ur(2)d£(z) < nn! (C+e/2).

If [w—zo| < r for an r < §, then, becouse the u's are negative, we have, for large k,

n!
_— dr
T (8+r)2n /n(w75+r) Mk(Z) (Z)
n!

< up(z)d L

T (84 /Bnuo,& Ha)alla)
82n

(8+r)*"

< C+e¢g/2

uk(w) <

(C+¢€/2)

since B, (w,8+r) D B, (20,9). Thus, for each zg € K, we have found a neighborhood of

Zo on which u; < C+ € provided k is big enough. Compactness now implies the result.



Having established the result when the function g is constant, we derive the general
case. Let K, €, and g be as given in the theorem. Because the function g is continuous,
compactness yields finitely many compact sets Ey,- - - , E, with union K and correspond-
ing constants ci,---,c, such that for each j and all x € E; , g(x) < ¢ < g(x) +¢€/2.
By the special case of the result that we have proved, there is an integer k; such that
up(x) < cj+e/2if j > kj, x € Ej . With k > max {ky, -k, }, we have that for all
x € K, ug(x) < g(x) + €. The theorem is proved.

O]

Definition 1.2.13. If K is a compact subset of the open set Q C C" we define the

plurisubharmonic hull 1?5”’ of K with respect to Q by
KB ={ze€Q: f(z) <||f|lx forall f € PSH(Q)}.
Let d be an arbitrary continuous function on C” such that & > 0 except at 0 and
O(tz) =t|08(z), teC, zeC"
Set 8(z,bQ) = inf, 4o 8(z —w). It’s clear that 8(z,bQ) is a continuous function of z.

Definition 1.2.14. The open set Q € C" is called pseudoconvex if the following equiva-

lent conditions are satisfied:
(i) —log 8(z,bQ) is plurisubharmonic in Q.
(i) There exists a continuous plurisubharmonic function f in € such that
Q.={z€eQ:f(z)<c}CcCQ
for every c € R.
(i) K2 cc Qif K cc Q.

Definition 1.2.15. A domain of holomorphy Q C C" is called a Runge domain if polyno-
mials are dense in Hol(Q), that is, if every f € Hol(Q) can be uniformly approximated

on an arbitrary compact set in Q by polynomials.



Here and throughout this work polynomials are understood to be holomorphic poly-

nomials.

Definition 1.2.16. Let K be a compact subset of C". We define the polynomial hull of
K, denoted by K, by

K ={zeC":|p(z)| < ||pllgfor all polynomials p}.
K is called polynomially convex if K =K.

The definition can also be stated as follows:
A compact subset K of C" is polynomially convex if and only if for every zg in C"\K

we can find a polynomial p with

P (20)] > llpllk -

Proposition 1.2.17.

KC K" c KB c K

Proof. Clearly K C I?SSh. Letz € I?SS}’ and f € Hol(Q). Then |f| € PSH(Q). Hence
1f(2)] < |If|lx and therefore z € K3°! which means K5 K5, Let z € K" and p be
a polynomial in C”. Then p|q € Hol(Q) and |p(z)| < ||p|lx. Thus z € K and I?g"l CK.

0

Theorem 1.2.18. The following conditions on a domain of holomorphy Q C C" are

equivalent:
(i) Qis a Runge domain.
(i) K = I?g(’l if K C Qis compact.
(iii) KNnQccQ if K C Q is compact.

On domains of holomorphy, plurisubharmonic functions can be approximated by
plurisubharmonic functions of particularly simple form. The following result was stated

by Bremermann [Bre58]



Theorem 1.2.19. If Q is a domain of holomorphy in C", and if u is a continuous
plurisubharmonic function on €, then for each compact subset K of Q and for every
€ > 0, there are finitely many holomorphic functions fi,--- , f, on  such that for suit-

able positive constants c;,
u(z) < max cjlog|fi(z)] < u(z) +e.
j=1,...r

In the event that Q is a Runge domain in C", the holomorphic functions f; can be

taken to be polynomials.

Proof. Introduce the domain Q* in C"*! defined by
Q= {(z,w) eC'"xC:|w| < e*”(z)}.

This domain is pseudoconvex and so a domain of holomorphy.

For zp € Q, define the function f;; by f;,(w) = X5, k() Wk which is defined and
holomorphic in the planar domain {w eC:|w|< e~ z0) } The domain Q* is a domain
of holomorphy, so there is a function F' € Hol(Q*) with F (zo,w) = f;,(w) forallw € C
with [w| < ¢7#(), The function F admits an expansion F(z,w) = Y, ax(z)w" with

coefficients a; € Hol(Q2) that satisfy

jimswr £2EE <)
for all z € Q by Hadamard's formula for the radius of convergence of a power series.
Theorem 1.2.12 implies that for € > 0, there is ko large enough that for k > ko,
w < u(z) +¢ for all z € K. By the choice of F, limsupkﬂmw = u(20),
whence by continuity, limsup;_., % > u(zo) — € for all z in a neighborhood of zp.
By compactness, a finite number of choices of the point zp will yield a cover of K by the

corresponding neighborhoods. The theorem follows. U

Definition 1.2.20. Let X be a compact Hausdorff space. A uniform algebra on X is an

algebra U of continuous complex-valued functions on X satisfying
(1) U is closed under uniform convergence on X,

(i1) U contains the constants,

10



(111) U separates the points of X.

Theorem 1.2.21. [Stone-Weierstrass Theorem] U is a subalgebra of C(X) containing

the constants and separating points. If
feU= feU,
then U is dense in C(X).

Let K C C" be compact. We will use the following notations. C(K) is the class of all
continuous complex-valued functions with supremum norm on K. A(K) is the uniform
limits of continuous complex-valued functions holomorphic in some neigborhood of K.
H(K) is the class of continuous complex-valued functions on K which are holomorphic
on K°, the interior of K. P(K) is the class of functions consisting of uniform limits of
polynomials restricted to K. R(K) is the uniform closure in C(K) of rational functions
r = p/q where p and g are polynomials and ¢(z) # 0 for z € K.

Evidently,

P(K) CR(K) C H(K) CA(K) C C(K).

One of the major problems is to determine when equality holds between these spaces.

1.3 Jensen Measures

We will now introduce and mention a few basic facts about the class of Jensen
measures in complex analysis. Let Q C C" be an open set. Let Cy(Q) be the space of all
compactly supported continuous functions on Q. By the Riesz representation theorem
(see Theorem 6.19 in [Rud87]) the dual space Cj;(Q) of Cp(Q) can be considered as the
class of all compactly supported Borel measures on Q. Let My(Q) be the class of all
positive Borel probability measures in Cj(Q). We consider the set My(Q) together with
the induced weak-# topology on it from Cj;(£2). A sequence u; from Mo(€2) converges
to a measure u € My (Q) if the supports suppu; are contained in some fixed compact set
K C © and u;(@) converges to u(¢) for every function ¢ € Cp(Q). Let z € Q be a point.

A measure u € My(Q) is called a Jensen measure with barycenter z on Q if

u(z) < /udy

11



for every u € PSH(). We denote by J; the class of all Jensen measures u with barycen-
ter z on €.
The class J; is evidently convex. We will also show that it is weak-* closed. First

we need a Lemma:

Lemma 1.3.1. Let s be an upper bounded upper semicontinuous function on a compact
metric space X and {u;} C C*(X) be a sequence of measures converging weak-x to a

measure u € C*(X). Then
limsup/sdyj < /sd,u.
J
Proof. There exist functions @ € C(X) so that ¢4 | s on X. Then

limsup/sd,uj < limsup/(pkdyj :/(pkd,u
J J

for all k. Finally by the monotone convergence theorem

limsup/sd,uj < /sdy.
J

Corollary 1.3.2. J, is weak-* closed.

Proof. Suppose u; is a sequence in J; that converges weak-+ to u € Mo(Q). There exists
a compact set K in € so that suppu; and suppu is contained in K for every j. Take any

function « in PSH(Q). Then by Lemma 1.3.1,

u(z) < limsup/ud,uj < /ud,u.
J
Therefore, u € J, and J; is compact. [

When Q is a Runge domain, a measure u is in J; if and only if

p@I< [ Ipldu

for every polynomial p. This a simple consequence of Theorem 1.2.19.

12



1.4 Differential Forms

We will study differential forms on an open subset Q of real Euclidean n-space R".

For sections 1.4 and 1.5 we refer to [AleWer98].

Definition 1.4.1. Let Q be an open subset of R”. For any x € Q we define the tangent

space at x, Ty, as the collection of all maps v : C* — C for which

(a) vis linear.

(b) v(f-g)=f(x)-v(g)+g(x) - v(f), where f, g € C*.
The elements of 7 are called tangent vectors at x, and the dual space to 7 is denoted by
T/
Definition 1.4.2. A 1-form ® on € is a map ® assigning to each x in Q an element of
T;.

dxy,...,dx, are particular 1-forms.

Lemma 1.4.3. Every [-form ® admits a unique representation
n
o= ZC jdx s
1
the C; being scalar functions on S.

Let V be an n-dimensional vector space over C. Denote by AP(V) the vector space
of p-linear alternating maps of V x --- x V. — C, where alternating means that the value
of the function changes sign if two of the variables are interchanged.

Define G(V) as the direct sum

GV)=N(V)en (V)@ e (V).

Here A°(V) = C and A!(V) is the dual space of V. Put A/(V) = 0 for j > n.
We now introduce a multiplication in the vector space G(V). Fix Tt € AP(V), 6 €

AN4(V'). The map

(&17"W&,D?&[H-l?""(t?p-i‘q) *T(@h--~,§p)6(§p+1,---,<§p+q)

13



is a (p+¢)-linear map from V x --- x V (p + ¢ factors)— C. It is, however, not alternat-

ing. To obtain an alternating map, we use

Definition 1.4.4. Lett € A?(V),c € AN1(V), p, g > 1.

1

T/\G(§1a~-7§p+q)==Z;j;gjgz;(—J)”f(ﬁnu>’~-7§nuﬂ)'G(ﬁnuﬂa>v"7§mp+qﬂ,

the sum being taken over all permutations 7 of the set {1,2,...,p+¢}, and (—1)" de-

noting the sign of the permutation .
Lemma 1.4.5. TAG as defined is (p+ q)-linear and alternating and so tTAc € APT(V).

The operation A defines a product for pairs of elements, one in AP(V) and one in
A?(V), the value lying in APT9(V), hence in G(V). By linearity, A extends to a product
on arbitrary pairs of elements of G(V) with value in G(V). For 1 € A°(V), 6 € G(V),

define T A © as a scalar multiplication by 7.
Lemma 1.4.6. Ift € N\P(V), 6 € N1(V), then TAG = (—1)PIo AT
Leteq,...,e, form a basis for AL(V).

Lemma 1.4.7. Fix p. The set of elements
eil/\eiz/\---/\e,-p, 1§i1<i2<«~-<ip§n,
forms a basis for NP(V)

We now apply preceding to the case when V = T, x € Q. Then AP(Ty) is the space
of all p-linear alternating functions on 7, and so, for p = 1, coincides with 7;7. Thus

the following extends our definition of a 1-form.

Definition 1.4.8. A p-form ®” on Q is a map ®” assigning to each x in Q an element of

NP(Ty).
Let 17 and o be, respectively, a p-form and g-form. For x € Q, put

™ Ao (x) = P (x)o?(x) € APHI(T,).

14



In particular, since dx,...,dx, are 1-forms,
dxil A a’x,-z A A dx,-p

is a p-form for each choice of (iy,...ip).

Because of Lemma 1.4.6,
dxjNdxj=0 foreach j.
Hence dx;, N\--- A dx,-p = 0 unless the i, are distinct.

Lemma 1.4.9. Let ®” be any p-form on Q. Then there exist (unique) scalar functions
Ciy,-++,Ci, on Q such that
o’ = Z Ciyiydxiy N+ Ndxi,.
i1<ip<--<ip
Definition 1.4.10. A\”(Q) consists of all p-forms ®” such that the functions C;,...;, oc-
curring in Lemma 1.4.9 lie in C* (). We set A%(Q) = C™.

Consider the map f — df from C* — A!(Q). We wish to extend d to a linear map
AP(Q) — APTH(Q), for all p.
Definition 1.4.11. Let ®” € AP(Q), p=0,1,2,.... Then
o’ = Z Cil“'ipdxil /\---/\dxip.
i]<i2<"'<ip

Define
do’ = Y  dC

i1 <iy<--<i,

Note that d maps AP(Q) — APT1(Q). We call dw? the exterior derivative of .

/\dxil /\---/\dxip.

1ip

1.5 The 0-Operator

Let Q be an open subset of C". The complex coordinate functions z;,...,z, as well

as their conjugates 7, ..., 7, lie in C*(Q). Hence the forms

dzi,...,dz,, dazi,...,dz,
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all belong to A'(Q). Fix x € Q. Note that A!(7,) = T;* has dimension 2n over R, since
C"r =R, Iij =Xj+iyj, then

(dx1),,...,(dxn),,  (dy1)ys---,(dyn),
form a basis for 7. Since dx; = 1/2 (dz; + dz;) and dy; = 1/2i (dz; — dz;),

(dz1)gse o (dzn) s (A1), (d2n),
also form a basis for 7. In fact,
Lemma 1.5.1. If® € A'(Q), then

0= Zn: a;dzj+b;dz;,
=1

where aj,b; € C*(Q).

Fix f € C*(Q). Since (x1,- -+ ,Xn, Y1, ,yn) are real coordinates in C",

df = —dx+ dy;
jglaxl ! y] !
W (1df 1aF\, . (laf 1af
B Jg‘l<2ax] 218yj>dz+(28x] Zzay] dzj:

Then from 1.1,
of
df = Z dZJ T3 oAz

J
We define

o)
of = Zafdzj, of = Z dzj

1
Note that 0f +9f = df, if f € C=.
Let I be any p-tuple of integers, I = (i, i2,...,ip), 1 <ij <n,all j. Put

dz; = dz;, /\~~-/\dZip.

Thus dz; € AP(Q).
Let J be any g-tuple (j1 yens ,jq), 1 < jx <n,all k, and put

dzy=dzj \---Ndzj,.
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So dz; € N1(Q). Then
dz Ndzy € NPH(Q).

For I as above, put |I| = p and |J| = q.

Definition 1.5.2. Fix integers p,q > 0. AP4(Q) is the space of all ® € APT4(Q) such
that

W= Z(l]de[ ANdzy,
7

the sum being extended over all /,J with |I| = p, |J| = ¢, and with each a; ; € C*.

An element of AP4(Q) is called a form of bidegree (p,q). We now have a direct sum

decomposition of each AP (Q):

Lemma 1.5.3.
AP(Q) = /\071)(9) EB/\LP*I(Q) @AZ,p*Z(Q) D--- @AP,O(Q)_

We extend the definition of d and 0 to maps from AP(Q) — APTH(Q) for p, as

follows:

Definition 1.5.4. Choose ®” in AP (Q),

o =Y arjdz Nz,
I

80)1’ = Zaa]J/\dZ[/\dZI,
1J

and

50)[7 = Zéau Ndzy Ndz;.
7
Since a; ; € C~,

0w’ +00 = Zdau ANdzg NdzZy = dwP
7

so we have

0+d=d

as operators from AP(Q) — APT1(Q). Note that if ® € AP, do € APT14 and dw €

AP
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Lemma 1.5.5. 3- = 0, 92 = 0, and 99 = 99 = 0.
Lemma 1.5.6. If o” € A\P(Q) and ®? € N1(Q), then

(0 Aw?) = 0w A + (—1)P 0P Ao,

1.6 The Currents

We will need elementary theory of currents. We refer to [Sto07] for this section. If
Q C R”, then D(Q) is the subspace of C*() that consists of the functions with compact
support. The space AP(Q) contains the subspace D (Q) of the compactly supported p-
forms on Q. Thus D(Q) = D°(Q). If Q is a domain in C", DP4(Q) is the space of
compactly supported forms of bidegree (p,q). DP9(€) is again a subspace of AP7(Q).
A natural way of defining a topology on D”(Q) is as follows: A sequence o.; € DP(Q)
converges to 0 if the sequences of coefficients of a;, as well as the sequences of the
derivatives of all fixed orders of these coefficients, converge to 0 uniformly on compact

subsets of Q.

Definition 1.6.1. A current of dimension p and of degree n — p on Q is a C-linear func-
tional 7 on the space DP(Q) that has the following continuity property: If {Oc j}jzl,... is
a sequence in D”(Q) such that for some fixed compact set K C Q, supp o; C K for all

J and if, in addition, o; converges to 0, then the sequence {T(OC ])} _converges to

j=1,..
Z€10.

The space of currents of dimension p (and degree n — p) on Q is denoted by D'P(Q).

A current of bidimension (p,q) and bidegree (n — p,n — q) is a C-linear functional
on DP4(Q) with the indicated continuity property. If T is a current of dimension p, then
the support of T is the smallest closed subset K of & with the property that T'(o;) =0
for all a € DP(Q) that vanish on a neighborhood of K.

Definition 1.6.2. If Q is a domain in C", an element ¢ € AP?(Q) is said to be positive if
whenever o, j=1,--- ,n—p, are (1,0)-forms defined in Q with continuous compactly

supported coefficients, then

/Q([)/\l'Oh A0 /\---/\i()(,,l_p/\an_‘D >0
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Definition 1.6.3. A current T in D,_, ,—,() is said to be positive if for all non-
negative functions f € D(Q) and for all forms oy,---,0, € DM(Q), the quantity

T (fioeg AOy A--- Ao, ATLp) is nonnegative.

Perhaps the simplest example of a positive current is the current [A] of integration
over the complex line A in C".

If T € D, ,(Q) is positive, and ¢ € A?(Q) is a positive form, then the exterior
product T AQ € Dy g p+4(L2), which is defined by 7 A (o) = T (¢ A ) is also positive,
for any a0 € A"7P7I(Q).

1.7 The Equation ou = f
As before, fix an open set Q C C". Given f € AP4T1(Q), we seek u € AP4 such that
du=f. (1.4)

. =2 .. .
Since 0 = 0 from Lemma 1.5.5, a necessary condition on f is

af =0. (1.5)

If (1.5) holds, we say that f is 0-closed. What is a sufficient condition on f to solve
ou= f? It turns out that this will depend on the domain Q. We refer to [AleWer98] for
this section.

Recall the analogous problem for the operator d on a domain Q C R". If ®” is a

p-form in A?(Q), the condition
do’ =0 (ois closed) (1.6)
is necessary in order that we can find some 7! in A?~!(Q) with
dt’ = . (1.7)

However, (1.6) is, in general, not sufficient. (Think of an example when p = 1 and
Q is an annulus in R2.) If Q is simply connected, then (1.6) is sufficient in order that

(1.7) admit a solution.
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For the é—operator, a purely topological condition on € is inadequate. We shall find
various conditions in order that (1.4) will have a solution. Denote by U" the closed unit

polydiskinC”:{zE(C”: ’z,-! <l,j= 1,...,n}.

Theorem 1.7.1. [Complex Poincare Lemma] Let Q be a neighborhood of U". Fixoe
APA(Q), g > 0, with d = 0. Then there exists a neighborhood Q* of U" and there exists
o©* € AP YH(Q*) such that
00" = 0 in Q.
We need some preliminary work in order to prove Theorem 1.7.1.

Lemma 1.7.2. Let F € C}(C). Then

:__//aF@, all L € C. (1.8)

07 z—
Proof. Fix { and choose R > |{| with suppF C {z:|z] < R}. Fix € > 0 and small. Put

Qe ={z:|zl <Rand |z—C| > €}.
The 1-form F dz/z— { is smooth on Q¢ and

F dz d F JF dzZ dz
d| — d7dz = .
(Z—C) aZ( C) ¢ 9z z—C

By Stokes’s Theorem
(F dz) F dz
/ a2 = / ra
Qe Z_C.» 0Q; Z_C

Since F =0 on {z: |z| = R}, the right side is

Fd on .
/| L —/ F({+ee®)ide,
0

—f=e2—G
Q)
oF dzdz /2’t "
—_——— = F(C+¢€e™)ido.
0. 02z-C Jo (Ceeti
Letting € — 0 we get
oF dZ dz
= —2miF
/|z|<R 0z z—C ©:
Since dF /9Z for |z| > R and since dZ dz = 2i dx dy, this gives
OF dx dy
— = —-7nF(Q),
07 z—C ©
1re., (1.8).
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Lemma 1.7.3. Let G € C3(C). Then

// AG(z log |dxdy, all{ e C. (1.9)

Proof. The proof is very much like that of Lemma 1.7.2. With Q¢ as in that proof, start

with Green’s formula
d ad
/Qs/(uAv— vAu) dxdy = /BQS <u£ 8Z> ds
and take u = G, v = log |z — {|. We leave the details to the reader. O

Lemma 1.7.4. Let ¢ € C! (RZ) and assume that ¢ has compact support. Put

2= [ o™,

T z—G

Then ® € C' (R?) and 0® /38 = ({), all &,

Proof. Choose R with supp ¢ C {z: |z| < R}.

R0 = [ 0)pdudy

Since 1/7 € L'(dx'dy") on compact sets, it is legal to differentiate the last integral
under the integral sign. We get

0 0 o dx'dy
2 (@) = AZ£[¢(Q_Z)}dzgy

B 00 dx'dy’
- /R2 ac (C Z) Z’

o0 dxdy
/]Rz ¢ ) C—

On the other hand, Lemma 1.7.2 gives that

0= [ FOTT

Hence 0®/9C = ¢. O
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Lemma 1.7.5. Let Q be a neigborhood of U" and let f be a function in C*(Q). Fix

j, 1 < j<n. Assume that

)
an =0inQ, k=ky,... kg, eachk; # j. (1.10)
Lk

Then we can find a neigborhood Q1 of U and F in C*(Qy) such that
(a) aF/an = fin Q.
(b) OF /30, =0in Q, k=kj ...,k

Proof. Choose € > 0 so thatif z=(zj,...,z,) € C" and |z,| < 1 +2¢ for all v, then z € Q.

Choose y € C~ (R?), having support contained in {z: |z| < 1 +2¢}, with y(z) = 1 for

|z] < 1+e€. Put
1 dxdy

F (S8 Ga) ——E/RZW(Z)JC(CI,...C_J1,Z;Cj+1,...cn)z_cj.
For fixed G, ,§j—1,8j+1, -+, G with |,| < 1+ ¢, all v, we now apply Lemma 1.7.4
with

(I)(Z) - W(Z)f(cla Jz;j—hzaz;j-i-la"' 7@")7 |Z| <1+2¢
= 0 outside supp V.

We obtain

F

if |C;] < 1+, and so (a) holds with

(G, G0 G) =0(85) =7 (Cis -, Gm1, 6, Gt o+ Gn)

Q={CeC":|(,| <1+e¢, allv}.
Part (b) now follows directly from (1.10) by differentiation under the integral sign. [

Proof of Theorem 1.7.1. We call a form

ZC[]dZ[ VAN de
7
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of level v, if for some I and J with J = (j1, j2,---,v), where j; < j» < --- < v, we have
Crj # 0; while for each I and J with J = (j1,-- -, js) where j; <--- < jyand j; > v, we
have C;; = 0. Consider first a form o of level 1 such that do = 0. Then ® € AP!(Q)

for some p and we have

0 = Zaldzl/\dz[ ar € C*(Q) foreachl.
0=dw = Z dzk/\dz]/\dz]

Hence (07a/dzx) dzx Adz) Adzy = 0 for each k and 1. It follows that

8a1

5, =0 k=2l
By Lemma 1.7.5 there exists for every I, A; in C*(Q), Q; being some neighborhood
of A", such that

oA —a and%:O, k=2,....n.

E 0%
Put ® = ¥, A;dz; € APO(Q)).

oM = Z de Ndz; =

We proceed by induction. Assume that the assertion of the theorem holds whenever
 is of level < v — 1 and consider ® of level v. By hypothesis ® € AP%(Q) and 9o = 0.

We can find forms o and B of level <v—1 so that

o = dz,ANa+P

0=0w = —dz,Ado.+ap,

where we have used Lemma 1.5.6. So

0 = dz, Ado— o (1.11)
Put
O(.ZZCI]JCZZ]/\CZZJ, B:ZbI,JdZ[/\dZJ-
1J IJ
Equation (1.11) gives
0=dz Ay, O o Ny Nl Y L1 o N2y Ny, (1.12)
10k 0% 10k 0k

23



Fix k > v, and look at the terms on the right side of (1.12) containing dz, A dz;. Becouse

o and [ are the level < v — 1, these are the terms:

o
dz, A2 = Az Adzy.
0Zx

It follows that for each [ and J, Ajy € C*(Q;) with

0Ary Ay

— = a y - —O7 k>v
oz, P

Put

0 = ZAIJdZI Adzy € NPTH(Qy),
7

- A
do; = Y —dzmAdzdz
17k 0k

= Y aydz, Ndz AdZy+,
1J

where Y is a form of level <v— 1. Thus

00 = dz, NaL+y

Hence

do; —o =7

is a form of level <v—1. Also
a(y—B) :5(5(:)1 —co) =0.

By induction hypothesis, we can choose a neigborhood €, of U" and t € AP4! (Q2)
with ot = y— B. Then

(0] —1) =00 —9t1=w+ (y—P) — (Y—B) = o.

1 — T is now the desired o*. O
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CHAPTER 2

APPROXIMATION IN C

2.1 Runge Theorem

For this section, see [Rud87] for detailed information. First we will work on a result

of Hahn-Banach Theorem.

Theorem 2.1.1. Let M be a linear subspace of a normed linear space X, xy € X. Then
xo € M if and only if for any bounded linear functional on X such that f(x) = 0 for all
x € M we have f(xg) = 0.

Proof. Let xo € M and f be bounded linear functional on X, f(x) =0 for all x € M. The
continuity shows f(xg) = 0.
Let xo ¢ M. Then there exists & > 0 such that ||x — xo|| > & for x € M. Let M’ be the

subspace generated by M and xg, and define f(x+Axp) := A if x € M and A is a scalar.

We can get
SIA] < [A] || A" +x0| = [Jx+ Ao
Hence
Mt
[Axo +x|| — &
Since
||f|| = sup ||f()€+7\x0)|| = sup |7\’| <l
N em [lx+Axol| T &
A scalar A scalar

we see that f is a linear functional on M’ whose norm is at most %. Also f(x) =0 on
M, f(xp) = 1. From Hahn Banach Theorem we can extend this to X. We founded a
bounded linear functional on X such that f(x) = 0, for all x € M but f(xg) # 0.

25



Denote C as the union of the complex plane and the point co.

Theorem 2.1.2. [Runge Theorem] Let K C C be a compact set and {oc j} be a set which
contains one point in each component of C\K. If f € Hol(Q) where Q is an open set
containing K and € > 0, then there exists a rational function R, whose poles lie in {OL j}

such that
1f(z) —R(z)| <¢

for every z € K.

Proof. Let M C C(K) consisting of the restrictions to K of all rational functions which
have all their poles in {(x j}. If we can show that f € M, the proof is done. From
Theorem 2.1.1 we get f € M if and only if every bounded linear functional on C(K)
which vanishes on M also vanishes at f. From Riesz Representation Theorem it is
enough to prove the following claim.

Claim: If u 1s a complex Borel measure on K such that

/Rd,u:O
K

for every rational function R with poles only in the set {(X j}, and if f € Hol(Q), then

we also have

/ fdu=0.
K
Proof of Claim: Assume [ Rdu = 0. Define
du(C)
h(z):= | ——=
(@)= | -

where z € C\K. h € Hol(C\K). Let V; be the component of C\K which contains o},
and suppose D(oj;r) C V.
First let oj # 0. Fix z € D(oj;r), then

peoy _(Z=@)"

m —_—
{—z Now= ((—a;)t!

uniformly for { € K. Since the right side of the equation (2.1) is a rational function with

2.1)

poles only in the set {OL j}, the integral over K is 0. So

(z—oy)"
/Cdﬂ_l\}l—r&;/(c a§n+ld“ 0



Hence h(z) = 0 for all z € D(a.j;r), and hence for all z € V;.

Now let ot = oo,

_llmZZ n— lcn

C N—nx:
for { € K and |z| > r. So h(z) = 0 in D(co;r), hence in V;. We get that 4(z) = 0 in C\K.

Now choose a cycle I' in Q\K such that the Cauchy formula:

S
1= g2

holds for every f € Hol(Q) and for every z € K. Then

[raw = [ au {m [ £©) édm]
- 27'Cl/f /—(CQ)
- Zth/f

=0

In second equality Fubuni’s Theorem is legitimate since we are dealing with Borel mea-
sures and continuous functions on compact spaces and the last equality depends on the
fact that I C Q\K, where h(®) = 0. We proved the claim and so the proof is done.

]

Theorem 2.1.3. [Runge Theorem] Let K C C be compact with C\K connected. Then
A(K) = P(K).

Proof. C\K is connected hence has only one component. Take oj = oo in Theorem
2.1.2, so for € > 0O there exists a rational function which has a pole at e, hence a poly-

nomial p, such that

[f(2) —p(2)| <e.
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2.2 Lavrentiev’s Theorem

Let 1 be a measure of compact support C C. We define the logarithmic potential u*

H = gZ—C_,

We define the Cauchy transform u of u by

i= [ a0

Lemma 2.2.1. [Carleson] Let E be a compact plane set with C\E connected and fix

of u by

'du(C)-

z0 € bE. Then

(a) there exist probability measures G; for each t > 0 with &, carried on C\E such
that:

Let o be a real measure on E satisfying

J

log
-G

‘ ‘ d|ol(C 2.2)
and

(b)

liné o"do(z) = o (z0).
11—

Proof. We may assume that zop = 0. Fix # > 0. Since 0 € bE and C\E is connected, there

exists a probability measure G; carried on C\E such that
1
o {z:n<lz<m}l=- (rz—rl) forO0<r <m<t

and 6; = 0 outside |z| <1.
If some line segment, with 0 as one end point and length ¢, happens to lie in C\E,

we may of course take G, as 1/ - linear measure on that segment.
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Then for all { € C we have

1
log | — dG (z) < /log—
/ ’ o =[G
1/tlog !
Hr\—!CH
/log
B
14 - ‘
| 1 1
—/ log—dH——/ log ——dr
tJo Tl to |_£|_1‘

1 1 rt 1
< log — + — log——d
= °g\cr+r/o TEY Tl

The last term is bounded above by a constant A independent of 7 and |C|. Hence we

do; (Z)

IN

IN

IN

have

1
do(z) <log—

1o ﬁ T

Also, as t — 0, 6, — point mass at 0. Hence for each fixed  # 0.

+A, allg allt>0. (2.3)

do;(z) = log 2.4)

1
li log|——
i s

Now for fixed 7, Fubini’s theorem gives

[ o @aoi) = [ { [1og] L | doito) o),

By (2.3), (2.4), and (2.2), the integrand on the right tends to log 1/ || dominantly with

1sh

respect to |a|. Hence

lim [ o (z)do(z) = hm log

lim ol =0’ (0)

Lemma 2.2.2. The functions

e g [l @ ana - [ ||

are summable —dxdy over compact sets in C. It follows that these functions are finite

log

a.e. —dxdy and hence that u* and u are defined a.e. "—dxdy.

29



Proof. Since 1/r > [logr| for small r > 0, we need only consider the second integral.

Fix R > 0 with supp |u| C {z:|z| < R}.

1= [ ! [l )} - famo [ 22

For € € supp |u| and [z] <R, [z—C| <2R.

dx d dx' dv 2R 2m 40
/ =8 S/ ar ay / T r/ — =4mR.
d<rlza—C = <ok 2]

Hence Y < 4R - ||u||.

]

Lemma 2.2.3. If u is a measure with compact support in C, and if fi(z) =0 a.e. —dx dy,
then u= 0. Also, if u*(z) =0 a.e. —dx dy, then u=0.

Proof. Fix g € C}(C). by Lemma 1.7.2

[ fano [ [0

Fubini’s theorem now gives

g, - B
a—Z(Z)u(Z)dxdy— / gdu. (2.5)

/gd,uzO.

But the class of functions obtained by restricting to supp u the functions in C(%((C) 1s

Since u = 0 a.e., we deduce that

dense in C(supp u) by the Stone-Weierstrass theorem. Hence u = 0.

Using (1.9), we get similarly for g € C5(C),

—/gd,u /Ag (z)dxdy

and conclude that y =0 if g* =0 a.e.
O

Theorem 2.2.4. [Lavrentiev’s Theorem] Let K C C be compact with C\K connected.
Then P(K) = C(K) if and only if K° =
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Proof. Let o be a real measure on X with @ L Re(P(X)). Then

/Recnda(c):o, n>0

and
/Im ¢ dou— /Re(—iC”)doc —0, n>0,
so that
/C"doc:O, n>0.
For |z| large,

log (1 —%) =§cn<z>c",

the series converging uniformly for { € X. Hence

[ 108 (1-2 ) do@) = Tente) [ ) =

whence
/Re (log (1 — %)) do(C) =0
or
[ 108z~ tldo(©) - | togz|da(@) =0,
whence

[ 10glz~glda(t) =0,
since @ L 1. Since

[ 10g]2-¢da() =0
is harmonic in C\X, the function vanishes not only for large |z|, but in fact for all z in
C\X, and so

@' (z) =0, zeC\X.

By (2.2.1) it follows that we also have
o (z0) =0, z0€X,
provided (2.2) holds at zg. By (2.2.2) this implies that

o =0a.e. —dxdy.
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By Lemma 2.2.3 this implies that oo = 0. Hence

Re P(X) is dense in Cr(X). (2.6)
Now choose u € P(X)*. Fix zo € X with
/ 1

Z—20
Because of (2.6) we can find for each positive integer k a polynomial P, such that

d|u| (z) <o (2.7)

1
|Re Pi(z) — |z — 20| <

T zeX (2.8)
and
Pi(z0) = O.
filz) = ig?%}l

is an entire function and hence its restriction to X lies in P(X). Hence

/ Jiedpu = 0. (2.9)
Equation (2.8) gives
Re kP(z) —kl|z—z0| > —1,

whence

e KPi(z) < e—klz—zo|+17 zeX.
It follows that f(z) — —1/z—zo for all z € X zp, as k — o, and also

[fi(2)] < z€X.

|z— 20|’
Since by (2.7) 1/ |z — zo| is summable with respect to |u|, this implies that

/fkdue—/%

by dominated convergence. Equation (2.9) then gives that
d
/ du(z) —0.
Z—20
Since (2.7) holds a.e. on X by Lemma 2.2.2, and since certainly

/ dp(z) =0 forzpe C\X
Z—20

we conclude that =0 a.e., so u = 0 by Lemma 2.2.3. Thus uL P(X) implies that 4 = 0.
So P(X) =C(X). O
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2.3 Mergelyan’s Theorem

Definition 2.3.1. Suppose Yy and 7y; are closed curves in a topological space X, both
with parameter interval / = [0,1]. We say that ¥y and 7y, are X-homotopic if there is a

continuous mapping H of the unit square 1> = I x I into X such that
H(s,0)=v(s), H(s,1)=my1(s), H(0,t)=H(1,t) (2.10)

forall s € I and r € I. Put 7y, (s) = H(s,t). Then (2.10) defines a one-parameter family
of closed curves 7y; in X, which connects Yy and ;. Intuitively, this means that yy can be
continuously deformed to y;, within X.

If o is X-homotopic to a constant mapping Y; (i.e, if Y] consists of just one point),

we say that Yy is null-homotopic in X.

Definition 2.3.2. If X is connected and if every closed curve in X is null-homotopic, X

is said to be simply connected.
Now let’s consider the polynomial convexity in C.

Lemma 2.3.3. Let K C C be compact. Then
K = K U{bounded components of C\K} .

Proof. Name all the bounded connected components of C\K as Gy,G»,---. By max-
imum modulus principle, for all x € G; and for every polynomial p; |p(x)| < ||plk-

Hence for all i, G; C K. O
From Lemma 2.3.3 we have the following trivial result:

Lemma 2.3.4. Let K be a compact set in C. C\K is connected if and only if for each x

in C\K we can find a polynomial p such that

Ip(x0)| > [pllg -

Theorem 2.3.5 ([Rud87]). For a plane region Q, each of the following conditions im-

plies all others.

33



(a) Q is homeomorphic to the open unit disc U.
(b) Q is simply connected.
(c) C\Q is connected.

(d) Every f € Hol(Q) can be approximated by polynomials, uniformly on compact
subsets of Q.

(e) Forevery f € Hol(Q) and every closed path 7y in Q,
/ f(z)dz=0.
Y

(f) To every f € Hol(Q) corresponds an F € Hol(Q) such that F' = f.
(g) If f €Hol(Q) and 1/ f € Hol(Q), there exists a g € Hol(Q) such that f =exp(g).
(h) If f € Hol(Q) and 1/ f € Hol(Q), there exists a ¢ € Hol(Q) such that f = ¢>.

Lemma 2.3.6. [[RudS7]] Suppose f € C.(R?), the space of all continuously real differ-

entiable functions in the plane, with compact support. Put

= 10 .0

Then the following "Cauchy formula" holds:

0= [, [P aean @—g+m) @12)

Theorem 2.3.7. [Tietze’s Extension Theorem] [Rud87] Suppose K is a compact subset
of a locally compact Hausdorff space X, and f € C(K). Then there exists an F € C.(X)
such that F (x) = f(x) for all x € K.

The following fact will be useful in the proof of next Lemma. We refer to [[Rud87]
Th. 14.15] for its proof.

Proposition 2.3.8. Suppose F € Hol(U\0), F is one-to-one in U, F has a pole of order

1 at z =0, with residue 1 and neither wy nor wy are in F(U). Then |wy —w;| < 4.
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Let E be a compact subset of C. By diameter of E we mean the supremum of the

numbers |71 —z|, where z; € E and 75 € E.

Lemma 2.3.9. Suppose D is an open disc of radius r > 0, E C D, E is compact and
connected, Q = C\E is connected, and the diameter of E is at least r. Then there is a

function g € Hol(Q) and a constant b, with the following property: If

0(8,2) = g(2) + (- b)&*(2), (2.13)
the inequalities
100
0@ 2)[ < — (2.14)
1 100072
,2) — 2.15
’Q(Cz) Z_§’<Iz—§!3 (2.15)

hold for all z € Q and for all C € D.

Proof. We assume, without loss of generality, that the center of D is at the origin. So
D = D(0;r). Since Q is simply connected, the Riemann mapping theorem shows that
there is a conformal mapping F from unit disc U onto Q. Again without loss of gener-

ality, we can choose F such that F(0) = co. F has an expansion of the form

a [ee]
F(w)=— " U 2.16
(w) W+r§6cnw (weU) (2.16)
for some a # 0.
We define
| —
g(z) == aF (z) (z€Q), (2.17)

where F~! is the mapping inverse from Q onto U. We put

1
/l_zg(z)dz, (2.18)

T omi

where I is the positively oriented circle with center 0 and radius r.
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By (2.16) , Theorem 2.3.8 can be applied to F/a. It asserts that the diameter of
the complement of (F /a)(U) is at most 4. Note that C\(F /a)(U) = {z/a:z € E}. So

diam E < 4|a|. Since diam E > r, it follows that

,
> —. 2.19
o> 2.19)
Since g is a conformal mapping of Q onto D(0;1/ |a|), (2.19) shows that
1

4
18(z)| < Tal <2 (z€ Q). (2.20)

Recall that I" = {|z| = r}. Hence I has length 27r, (2.18) gives

1
b < |— d 2.21
bl < || [ ez .21)
1 4
< oo [laz (222)
2t rJr
= 4r. (2.23)

If £ € D, then || < r, so0 (2.13), (2.20) and (2.23) imply

8]+ (8] +16]) [¢%|

4 1
—+5r <—S)
r r

Ie

IN

IN

N
|

This proves (2.14).
Fix { € D. If z = F(w), then zg(z) = wF (w)/a; and since wF (w) — a as w — 0, we

have zg(z) — 1 as z — 0. Hence g has an expansion of the form

L O M
L N P A G

Let Iy be a large circle with center at 0; (2.24) gives (by (2.18) and Cauchy’s theorem)

+- (Jz=C| >2r). (2.24)

that
1
O g O (2.25)
I 1
= 2_m/r zg(z)dz—z—m.C . g(z)dz (2.26)
- b-C 2.27)
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Substitute this value of A, ({) into (2.24). Then (2.13) shows that the function

o) = oo - |- 228)

is bounded as z — co. Hence ¢ has a removable singularity at o. If z € QN D, then

|z—C| < 2r, so (2.14) and (2.28) give
[9(2)] < 8r°Q(C,2)| +4r* < 1000r°. (2.29)

By the maximum modulus theorem, (2.29) holds for all z € Q. This proves (2.15).

Runge’s theorem is a special case of the following theorem.

Theorem 2.3.10. [Mergelyan’s Theorem] Let K C C be compact with C\K connected.
Then H(K) = P(K).

Proof. Let f € H(K). By theorem 2.3.7, f can be extended to a continuous function in
the plane, with compact support. We fix one such extension, and denote it again by f.

Define
®(8) :=sup |f(z2) — f(z1)]

for any & > 0, where |z — z1| < d. Since f is uniformly continuous, we have

li 9)=0. 2.30
613(1)60( ) (2.30)

From now on, & will be fixed. We shall prove that there is a polynomial p such that
|f(z) — p(z)| < 10000w(8) (z € K). (2.31)

By (2.30), this proves the theorem.

Our first objective is the construction of a function ® € C%.(R?), such that for all z

£(2) - ()| < 0fd), 23
Go)()] < 222, 2.33)

37



and

e (§=E+in), (2.34)

® ):_%/X/(Sgbm)

where X is the set of all points in the support of ® whose distance from the complement
of K does not exceed 0. (Thus X contains no point which is "far within" K.)
We construct @ as the convolution of f with a smoothing function A. Put a(r) =0

if r > 9, ,put

3 r? 2
a(r) =5 (1——) (0<r<y9), (2.35)
and define
A(z) =a(lz]) (2.36)

for all complex z. It is clear that A € C.(R?).

m 3§22\
/R2/A - // n62( )rdedr

= ZTE/O @(Sz—r) rdr
= 1.

and since A has a compact support, from Stoke’s theorem

/RZ/SA:/sz/Azo.
Jo el = [ 5k S 5

A+;% dedr

2n raa

[
2n r? 2r

- [5G (-5) () ) deer
26 (8% —r?)

= /0/0 56 a’Gdr

24

158
22
5
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Hence we get

[fa=r
R2
//SAzo,
RZ
2
/Rz/\SA|<g.

Now define

//fz— (§)dEdn = //Az— (Q)dEdn.

Since f and A have compact support, so does ®. Since

- [ [ =0 - r@1A@dEm

and A(C) =0if || > 9,

9() 1< [, 10 -r@lagan [ [4@dean < o)

So we have shown (2.32).

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

The difference quotients of A converge boundedly to the corresponding partial deriva-

tives of A, since A € C/.(R?). Hence the last expression in ®(z) may be differentiated

under the integral sign,

3@)(z) = /R 2 / (84)(z— C) f(£)dEdn
= /Rz/f 72— ) (84)(L)dEdn

= [, [ =0 1) 64)C)dean

(2.42)
(2.43)

(2.44)

The last equality depends on (2.38). Now (2.39) and (2.44) give (2.33). If we write

(2.44) with ®,, and Py, in place of SCID, we see that @ has continuous partial derivatives.

Hence Lemma 2.3.6 applies to ®, and (2.34) will follow if we can show that & = 0 in
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G, where G is the set of all z € K whose distance from the complement of K exceeds .

We shall do this by showing that
P(z) =f(z) (z€G); (2.45)

note that §f = 0 in G, since f is holomorphic there. Now if z € G, then z— { is in the
interior of K for all { with |{| < 8. The mean value property for harmonic functions

therefore gives, by the first equation in (2.40),

d(z) = /Osa(r)rdr/oznf(z— re®®)do (2.46)
= 2nf(z) /Osa(r)rdr (2.47)
-~ 1@ [ [A=r@) (2:48)

forall z € G.

We have now proved (2.32), (2.33), and (2.34).

The definition of X shows that X is compact and that X can be covered by finitely
many open discs D, ..., D, of radius 28, whose centers are not in K. Since C\K is
connected, the center of each D; can be joined to o by a polygonal path in C\K. It
follows that each D; contains a compact connected set £, of diameter at least 29, so
that C\E ;j 1s connected and so that KNE; = 0.

We now apply Lemma 2.3.9, with r = 28. There exists functions g; € Hol(C\E))

and constants b; so that the inequalities

50
0;&2)| <5 (2.49)
1 400082
(C2)— 2.50
e 250
hold for z ¢ Ej and { € D, if
0;(C,2) =gj(2)+ (£ —b))g5(2). (2.51)

Let € be the complement of E; U ---UE,. Then £ is an open set which contains K. Put
X1 =XND ande = (X ﬂDj) — (X] U--- UX]',1>, for 2 < j < n. Define

R(C,2) = 0Qj(C2) (X, z2€Q) (2.52)
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and

/ / (0D)(QR(C,z)dedn  (z€ Q) (2.53)

Since
noq _
PO =Y [, [ @000 254

(2.51) shows that F is a finite linear combination of the functions g; and g? Hence
F € Hol(Q).
By (2.53), (2.33), and (2.34) we have

ro-o@ < <[ [ ’acp agp_@ ‘ (eQ) (259
< E/X/‘R(c,z) 'd&dn (z€Q). (256

Observe that the inequalities (2.49) and (2.50) are valid with R in place of Q; if CeX
and z € Q. For if { € X then { € X| for some j,and then R({,z) = Q;({,z) for all z € Q.

Now fix z € Q, put { = z+ pe™®, and estimate the integrand in (2.56) by (2.49) if
p < 49, by (2.50) if 48 < p. Then the integral in (2.56) is less than

43 2
2m / ( >pdp+27t/8 402 05 pdp = 28087d.
4

Hence (2.56) yields

|F(z) — @(z)| < 60000(8) (z€ Q). (2.57)

Since F € Hol(Q), K C Q, and @\K is connected, Runge’s theorem shows that F' can
be uniformly approximated on K by polynomials. Hence (2.32) and (2.57) show that

(2.31) can be satisfied. This completes the proof.
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CHAPTER 3

APPROXIMATION IN C"

3.1 Oka-Weil Theorem

Now we want to generalize the Runge Approximation Theorem to C", forn > 1. The
condition ‘C\K is connected’ is a purely topological restriction on K. No such purely

topological restriction can suffice when n > 1.

Example 3.1.1. Consider the two sets in C> = {(z,w) : z,w € C} defined as follows:

Ki = {(x;,x0) ER*:x2+x3 < 1},

Ky = {(z0):]zf <1}.

Both of these sets are polynomially convex in C% e, K| = K 1 and Kp = 1?2; thus each
set satisfies the obvious necessary condition for holomorphic polynomials to be dense
in the space of continuous functions on the set. However, K> lies in the complex z-plane
and P(K) can be identified with P(K) where K is the closed unit disk in one complex
variable; since K° # 0, the observation made regarding Lavrentiev’s theorem shows that
P(Kz) # C(Ka).

So the question is: What condition on K will assure A(K) = P(K) for a compact
subset K of C"?

For K C C Lemma 2.3.4 gives that A(K) = P(K) if K is polynomially convex. For-
mulated in this way the Runge Approximation Theorem admits a generalization to C"

forn > 1.

Remark 3.1.2. Let K =B —B(0,r), 0 <r < 1. A(K) = P(K) from Theorem 1.2.3.

However; since K = B # K, K is not polynomially convex.
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Now it is time to state our result as a theorem.

Theorem 3.1.3. [The Oka-Weil Theorem] Let K be a compact polynomially convex set
in C". Then A(K) = P(K).

The rest of this section is devoted to the proof of the Oka-Weil Theorem.

Definition 3.1.4. A subset I1 of C" is a polynomial polyhedra if there exist polynomials
D1, ..., Ps such that

M={zeC":|z] <1, allj,and [p(z)| < LLk=1,2,...,5}.

Lemma 3.1.5. Let K be a compact polynomially convex subset of ﬁ LetV be an open

set containing K. Then there exists a polynomial polyhedra I1 with K CI1 C V.

Proof. For eachx € U"\V there exists a polynomial p, with |py(x)| > 1 and |p,| <1 on
K.
Then |p,| > 1 in some neighborhood Ny of x. By compactness of U"\V, a finite

collection Ny, ..., N,, covers @n\V. Put

M={zel": py @ <1, lpy ] <1}

If z € K, then z € I1, so K C I1. Suppose that z ¢ V. If 7 ¢ U", then z ¢Il If z € U,
then z € U"\V. Hence z € Ny, for some j . Hence ]pxj (z)| > 1. Thus z ¢ IT. Hence
mcv. O

Let now II be a polynomial polyhedra in C”,

H:{ZEE”; ‘pj(z)l S],j:l,...,r}.

We can embed IT in C” by the map

®:7—(z,p1(2),---,p:(2))- (3.1)

& maps I1 homeomorphically onto the subset of U""" defined by the equations

Zn+1 _Pl(Z) = O, eo s Zntr _Pr(Z) =0.
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Definition 3.1.6. Let Q be an open set in C" and W be an open set in C*. Let u =

(ur,...,u,) be a map of W into Q. Assume that each u; € Hol(W). For each I =
(i1, iy)s I = (j1,..., js) put

duy = du;, Ndui, \--- Ndu;,
and define du; similarly. Thus du; Adiy € N> (W). Fix @ € A™(Q),

W= Zaudzl Adz;.
17

Define
OJ(M) = Za”(u)dul ANduy € /\r’s(W).
1.J

Example 3.1.7. Assume that each u; is holomorphic. d(®(u)) = (dw) () and d(w(u)) =
(éco)(u).
Theorem 3.1.8. Let I1 be a polynomial polyhedra in C"* and Q a neigborhood of T1.

Given that ¢ € AP4(Q), g > 0, with 0 = 0, then there exists a neighborhood Q1 of T1
and y € AP9-1(Q)) with oy = §.

Proof. We denote

Pk(ql,...,q,):{zeﬁk: {qj(z)\ < 1,j:1,...,r},

the g; being polynomials in zy,...,zx. Every polynomial polyhedra is of this form.

We shall prove our theorem by induction on r. The case r = 0 corresponds to the

polynomial polyhedra T" and the assertion holds, for all k£, by Theorem 1.7.1. Fix r
now and suppose that the assertion holds for this r and all k and all (p,q),q > 0. Fix n
and polynomials py, ..., p,+1 in C" and consider ¢ € AP4(Q), Q some neighborhood of
P*(p1,...,pr+1)- We first sketch the argument.
Step 1. Embed P"(pi,...,p,) by the map u : z — (z,pr+1(z)). Note that py,...,p,
are polynomials in zy,...,z,+1 which do not involve z, 1. Let ) denote the image of
P*(p1,...,pr+1) under u. @ denotes the projection (z,z,+1) — z from C"*! — C". Note
7o u = identity.

Step 2. Find a d-closed form ®; defined in a neighborhood of

P (p1,....pr)
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with ®; = ¢(n) on }..
Step 3. By induction hypothesis, there exists ¥ in a neighborhood of P"(py,...,pr+1)
with 0¥ = ®;. Put y = ¥(u). Then

Iy = (0¥)(u) = @1 (u) = ¢.

As to the details, choose a neighborhood Q; of P"(pi,...,p,+1) with Q| C Q.
Choose A € C*(C"), A =1 on Q, A = 0 outside Q. Put ® = (A-¢) (x), defined = 0
outside 71 (Q).

Let  be a form of type (p,q) defined in a neigborhood of P"*!(py,...,p,). Put

P =P — (2041 — pr+1(2)) - X- (3.2)

Then @) =® =¢(w) on }..
We want to choose 7 such that @ is o-closed. This means that

0P = (Zn—i-l _pr—H(Z))aX

or

- Bl
oY = . 33
A= =P @) G-9)

Observe that 0® = 5(])(Jt) = 0 in a neighborhood of } , whence the right-hand side in

(3.3) can be taken to be 0 in a neighborhood of } and is then in C* in a neigborhood of

P (py,...,pr). Also
= 0P
d =0.
{ e }

By induction hypothesis, now, there exists % satisfying (3.3). The corresponding & in

(3.2) is then o-closed in some neighborhood of P! (p1,---,pr). By induction hypoth-
esis again, there exists a (p,q — 1) form ¥ in a neighborhood of P**!(py,...,p,) with
0¥ = ®;. As in step 3, then, making use of Exercise 3.1.7, we obtain a (p,q—1) form
V in a neighborhood of P*(p1,..., pr+1) with oy = 0. O

We keep the notations introduced in the last proof.
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Lemma 3.1.9. Fix k and polynomials q\,...,q,inz=(z1,...,zx). Let f be holomorphic
in a neighborhood W of 1= P*(q1,...,q,). Then there exists an F which is holomorphic
in a neighborhood of TI' = P**1(qy, . .., q,) such that

F(z,q1(2)) = f(z), allz€elIl

Proof. Note that if z € I, then (z,q1(z)) € IT'. Let ) be the subset of IT" defined by
Zk+1 —q1(z) = 0. Choose ¢ € C(n~!(W)) with ¢ = 1 in a neighborhood of Y.

We seek a function G defined in a neighborhood of IT' so that with

F(z,zk41) = 0(2,2%11) f(2) — (241 — q1(2))G(2, 2641),

F is holomorphic in a neighborhood of IT. We define ¢ - f = 0 outside T~ (W). We
need oF = 0 and so

f90 = (zx41—q1(2))9G
or
G=_ 1% _g 3.4)
(zk+1 —q1(2))
Note that the numerator vanishes in a neighborhood of }’, so ® is a smooth form in some
neighborhood of IT'. Also 0w = 0. By Theorem 3.1.8, we can thus find G satisfying (3.4)

in some neighborhood or IT'. The corresponding F now has the required properties. []

Theorem 3.1.10. [Oka Extension Theorem] Given f holomorphic in some neighbor-

hood of I1; then there exists F holomorphic in a neighborhood of U such that

F(Zapl(z>7~--apr(Z)):f(Z), z eIl

Proof. pi,...,p, are given polynomials in zy,...,z, and I1 = P*(py,...,ps). f is holo-

morphic in a neigborhood of I1. For j =1,2,...,r we consider the assertion
A(j) : there exists F; holomorphic in a neighborhood of P**/(p.1,...,p;)

such that Fj(z, pi(2),...,p;(z)) = f(z), all z€ IL.
A(1) holds by Lemma 3.1.9. Assume that A(j) holds for some j . Thus F; is holo-

morphic in a neighborhood of P"*/(p.1,...,p,). By Lemma 3.1.9, there exists Fj.1 is
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holomorphic in a neighborhood of P/ *1(p;.s,..., p,) with Fj+1(C, pjt1(z)) = Fi(0),

Ce P (pjs1,...,pr) and {= (2,Zn11, - -, Zn+). By choice of Fj.

Fi(z,p1(2),...,pj(z)) = f(z), allzell

Hence
Fig1(z,p1(2),...,pj(2),pj+1(2) = f(z), allzell

Thus A(j+ 1) holds. Hence A(1),A(2),...,A(r) all hold. But A(r) provides F holomor-

phic in a neighborhood of U""" with

F(Zapl(z)v---;pr(Z)):f(Z), all z e Il.
[

Proof of the Oka-Weil Theorem. Without loss of generality we may assume that K C U
The function f is holomorphic in a neighborhood V' of K. By Lemma 3.1.5 there exists
a polynomial polyhedra IT with K C IT C V. Then f is holomorphic in a neighborhood
of Il. By Theorem 3.1.10 we can find F' satisfying

F(z,p1(2),-.,pr(2)) = f(2), z€T], (3.5)

where F' is holomorphic in a neighborhood of . Expand F' in a Taylor series around
0,

v Vinil v,
F(Z,Zn+l,"' ;Zn—i-r) — ZaVZ]l ...Z"flnzn’z:l Znizljt;
v

. . .t . .

The series converges uniformly in U" . Thus a sequence S ; of partial sums of this
. . —n+ : . )

series converges uniformly to F on U""", and hence in particular on ®(IT), where P is

the embedding defined by (3.1). Thus

Sj(z,p1(2);- -, pr(2))

converges uniformly to F (z,p1(z),...,pr(z)) for z € I, or, in other words, converges
to f(z), by (3.5). Since S;j(z,pi(z),...,pr(z)) is a polynomial in z for each j, we are
done. ]
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CHAPTER 4

POLYNOMIAL CONVEXITY

4.1 Elementary Properties of Polynomially Convex Sets

In this section we provide some examples of polynomially convex sets in C". In
general it is not an easy task to decide whether a compact set in C" is polynomially

convex or not. Theorem 4.1.3 provides set to be polynomially convex.
Proposition 4.1.1. Every compact convex set in C" is polynomially convex.

Proof. If K C C" is a compact convex set then for each point z € C"\K there is a real-

valued real-linear functional £ on C" = R?" with

! < lonkK

lz) = L

Say / is the real part of a complex-linear functional £ on C". Then the entire function

F = e~ satisfies

4
=9 > ||Fllg

Hence K is polynomially convex. [
Proposition 4.1.2. Every compact subset of R" is a polynomially convex subset of C".

Proof. Let K C R" be a compact set. The Weierstrass approximation theorem implies

that if x € R"\K, then there is a polynomial p with

px) =1>|pllg-
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Consequently, KNR" =K. If w=u+iv e C" with u,v € R", v # 0, then the entire
function F defined by

n
F(z)=[[e @
j=1
satisfies |[F| < 1 on R" and |F(w)| = ¢"27" > 1. Sow ¢ K. Thus K = K. O

Important examples among the convex sets are the closed balls and polydisks.

Certain formal properties of polynomially convex sets are evident. For example, the
intersection of an arbitrary family of polynomially convex sets is polynomially convex,
whereas the union is generally not.

For a compact subset X of C", X is the smallest polynomially compact convex set
containing X.

A polynomially convex subset X of C" can be written as the intersection N, p! (@),
U the open unit disk in C, where the intersection extends over all the polynomials p that
are bounded by one in modulus on X. A consequence of this simple observation is that if
Q is a neighborhood of X, then there is a polynomial polyhedra IT such that X C IT C Q
(see Lemma 3.1.5). This is not unlike the process of approximating arbitrary compact
convex sets in R” by compact convex polyhedra.

There is a natural way to identify P(X) with P(X). Consider first the case of P(X).
If X is a compact subset of C”", there is a natural extension of each function f € P(X)
to a function f € C(X). To construct f note that because f € P(X), there is a sequence
{ )4 j}j=1,~- of polynomials that converges uniformly on X to f. If y is any point of
X, then the sequence p; (y)j:h_“ is a Cauchy sequence and so converges. The limit of
this sequence is defined to be f(y) The value f(y) is independent of the choice of the
sequence of polynomials. This construction gives an extension of f € P(X) to a function
f defined on all of X. By uniform convergence, fis continuous and lies in P()? ). By
way of the identification of f with fA", the algebra P(X) can be identified naturally with

~

the algebra P(X).

Theorem 4.1.3. If X is a compact polynomially convex subset of C", and if f € P(X)

then the graph of f is a polynomially convex subset of C"*1,
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In particular, if f is a function continuous on the closed unit disk and holomorphic

on its interior, then the graph of f is a polynomially convex subset of C2.

Proof. Denote by I the graph {(z,f(z)):z€ X} of f. The set I' is compact. Let
(z0,8o) € C"*!\I'. This means either zo & X or f(z0) # Co. If zo & X, then there is

a polynomial p on C” such that

p(z0) > [Ipllx -

So if we consider p as a function on C*! it shows that (zo, (o) ¢ I.

If zo € X, then {o # f(z0). Let ¢ = |{o — f(z0)|- There is a polynomial Q such that
1Q—fllx < g Let

A:{(Z,C)EC”XC:zeXand IC—Q(2)] S%}

This is a compact polynomially convex subset of C" x C, and it contains I, for if (z,) €

I', then

- QEI=1/@)- QI <

Also (z0,8p) ¢ A, since

3¢

1% — Q20)[ = |80 — f(20) = [ f(z0) = QLz0)| > -

That is a compact polynomially convex subset A contains I" and not the point (zg, o),

50 (20,Go) ¢ T O

4.2 A Characterization of Polynomially Convex Sets

In the present section we establish a full characterization of polynomially convex set
which is folklore and a recent characterization of polynomially convex hulls, obtained

by Duval and Sibony [DuvSib95].

Theorem 4.2.1. If X is a compact, polynomially convex subset of C", then there is a non-
negative plurisubharmonic function, v, on C" with lim, ., v(z) = oo, with X = v~1(0),
and with the additional properties that v is of class C* on C" and strictly plurisub-

harmonic on C"\X. The function v can be chosen to satisfy v(z) = |z|*> for z near
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infinity. Conversely, if v is a nonnegative plurisubharmonic function on C" such that

lim, . v(z) = oo, then the set v='(0) is polynomially convex.

Proof. Fix a nonnegative function ( of class C* on R with the properties that y(z) = 0 if
t < 3 and 3(1) = 1 respectively. Require also that x’ and %" be nonnegative and strictly
positive on t > % Given a point z € C"\X, there is a polynomial p, such that p,(z) =1
and |p,| < % on X. The function |p,|? is of class C* and is plurisubharmonic. If €, > 0
is sufficiently small, then the function m, defined by n.(w) =% (| p-(w)|* +¢. |w|2> is
plurisubharmonic and of class C* on C”". It vanishes on a neighborhood of X, and is
strictly plurisubharmonic on a neighborhood W, of the point z. A countable number of
the neighborhoods W, say Wy, -, cover C"\X. Let 1y, ... be the associated functions.
It {5 j }jzl,-'- is a sequence of positive numbers that decrease sufficiently rapidly to zero,
then the function u defined by u =Y ;_; ...6;1; is a nonnegative plurisubharmonic func-
tion of class C* with X as its zero set that is strictly plurisubharmonic on C"\X. Tt
satisfies lim,, o u(w) = co.

To obtain the function v of the statement of the theorem, fix an R > 0 so large that the
set X is contained in the ball B, (R). Letn : R — [0,0) be a smooth function with 1(¢) =
0 on [0,R)and with 1(z) = > when ¢ > 3R. Require also that 1’ and 1" be nonnegative.
Letp:R — [0,1] satisfy p(r) =0if t > 3R and p(t) =t when ¢ € [0,2R). The function
v we desired can be defined by v(w) =n(|w|) +¢ep(|w|)u(w) for sufficiently small
positive €.

This completes the proof of one implication of the theorem. We postpone the proof

of the final statement of the theorem for the moment; it will be contained in a more

general result, Theorem 4.2.3, below. OJ

Corollary 4.2.2. If X is a compact subset of C" and xo € X, then for each Jensen mea-
sure u for xo carried by X and for each plurisubharmonic function u defined on a neigh-

borhood of X,

ulxo) < [ u(2)duz).

Proof. By the monotone convergence theorem, it suffices to prove that the desired in-

equality holds when u is a continuous plurisubharmonic function. Accordingly, let u be
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such a function, and let € > 0 be given. By the preceding theorem, there are polyno-
mials Py,---, P, and positive constants c1,- - ,c, such that on a neighborhood of X the
inequalities

u—e< jir%ziircjlog |Pj| <u

are satisfied. Then for each k,

/u(z)d,u(z) > / max cjlog|Pj|du > cilog |P (xo)|.
j=1,...r
It follows that, as desired, u (xo) < [u(z)du(z). O

We can now complete the proof of Theorem 4.2.1. What remains to be proved is the

final assertion. It is a consequence of a more general fact:
Theorem 4.2.3. If X is a compact subset of C", then X coincides with XP*".

Proof. For every polynomial P the function |P| is plurisubharmonic on C", whence the
inclusion X D X7,

For the reverse inclusion, let p be a point of X. There is a Jensen measure u for
p supported by X. The corollary just proved shows that for every plurisubharmonic
function u on C", u(p) < [y u(x)du(x), which implies the inequality u(p) < supy u(x),

whence p € XPsh_The theorem is proved. 0

We now turn to the characterization of polynomially convex sets found by Duval and

Sibony. Denote by 9, the positive measure of unit mass with support the singleton x.

Theorem 4.2.4. For a compact set X in C" and a point x € C", the following are equiv-

alent:
(a) x € X R

(b) There is a positive current T € Dy ,—1(C") such that dd°T = pu— 9y for a

probability measure u supported in X.

The conclusion in part (b) is that for each C* function ¢ on C",

/ @du—¢(x) =T (dd"@).

That (b) implies (a) is a consequence of a more general result:

52



Theorem 4.2.5. If X is a compact subset of C", if T € D,_1,-1(C"\X) is positive
and has bounded support, and if ddT is negative in C"\X, then the support of T is

contained in X.

Proof. If x € supp T\)/(\ , then by Theorem 4.2.1, there is a nonnegative smooth plurisub-
harmonic function u# on C” that vanishes on a neighborhood of X and that is strictly
plurisubharmonic where it is positive, which includes a neighborhood of the point x.
We then have that

0<T(ddu) = (ddT)(u) <0,

which is impossible. [

We have supp dd“T C supp T, so this result yields that (b) implies (a).

That (a) implies (b) is a consequence of a more precise statement:

Theorem 4.2.6. Let X be a compact subset of C", let xo € X, and let u be a Jensen
measure for xo supported in X. There is a positive current T of bidimension (1,1) and

with bounded support such that dd‘T = p— d,.

Proof. Fix an R > 0 large enough that X C B,(R).

By a flat disk contained in B, (R) we shall understand a disk that is contained in the
intersection of B, (R) with a complex line in C".

Introduce the class % of currents of bidimension (1, 1) of the form S = gp[D], where
D is a flat disk contained in B, (R) and where gp is the Green function for D, so that if
¢p is the center of D, then gp is nonnegative and harmonic on D\cp, gp vanishes on bD,
and, with A denoting the Laplacian in the complex line that contains D, Agp = &,,. (On
the unit disk U in C, the Green function is —log|z|.) Thus, for a smooth two-form o on
C", S(a) = [pgpo. This integral exists, for gp has a logarithmic singularity at cp.

Let X denote the cone generated by the set %Xp.We shall show that y1 — 6y, lies in
the weak™ closure of the cone dd“K = {ddS:S € K} in the dual space of the space
AbLL (C™). In the contrary case, there is a weak® continuous linear functional on the
dual space of Al'! (C") that separates u — &y, from the cone dd°%. Weak* continuous
linear functionals are point evaluations, so there is a function @ € C* (C") such that

Jodu—o@(xg) <0< T(dd@) forall T € X.
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This condition implies that if D is a flat disk in B, (R), then [, gpdd‘¢ is nonnega-
tive. Because this happens for all disks D contained in the line A that contains D and that
are contained in B, (R), it follows that the Laplacian of @ on ANB,(R) is nonnegative.

Thus, ¢ is subharmonic on ANB,(R), and ¢ is plurisubharmonic on B, (R). It satisfies

[ it < (o),

which is impossible by Corollary 4.2.2, for u is a Jensen measure for xo. Thus, as
claimed, u — 9, lies in the weak* closure of the cone dd‘ XK.

Consequently, there is a net {ddc Ty} yT in dd¢ K that converges in the weak™ sense
to — 8y,. For each ¢ € C=(C)", there are o and M > 0 such that |ddTy(¢)| < M for
Y> Yo. Apply this to the function |z|>. Each Ty is of the form

— Y X DY
L=} M\gj [Dj]
=1,
for some choice of positive numbers 7»} and some choice of flat disks Dz contained in
B, (R). For each yand j, g}( denotes the Green function associated with the disk D}{.

Thus,
2 I -
dd°T, (|z\ ) = Z 73]( Z E/Dyg}dzr/\dzr.
J217 r:17"'7n J
It follows that if v} is the positive measure defined by
v _ vi Y =
/fdvr_jzl‘, A‘jz/DYfgder/\era
=T E

then for y > Yy, the measures v are uniformly bounded in norm. They are supported in

B, (R). By passing to a suitable subnet, we can suppose that each of the nets {V;Y} yel

converges in the weak™ topology on the space of measures on B, (R), viewed as the dual
space of the space C(B,(R)), to a measure v,. The measures v, are nonnegative.
We now have that the current 7' of bidimension (1, 1) given by
T < Z OCLdej /\dzk> = Z /Otnrdvr
Jjk=1,+n r=1,n
has support in B, (R), satisfies T (dd“@) = [ @du— @(xp), and is positive.

This completes the proof of the theorem and with it the proof of Theorem 4.2.4. [
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