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Abstract

Facial features such as lip corners, eye corners and nose tip are critical points

in a human face. Robust extraction of such facial feature locations is an impor-

tant problem which is used in a wide range of applications including audio-visual

speech recognition, human-computer interaction, emotion recognition, fatigue de-

tection and gesture recognition.

In this thesis, we develop a probabilistic method for facial feature extraction.

This technique is able to automatically learn location and texture information of

facial features from a training set. Facial feature locations are extracted from face

regions using joint distributions of locations and textures represented with mixtures

of Gaussians. This formulation results in a maximum likelihood (ML) optimization

problem which can be solved using either a gradient ascent or Newton type algo-

rithm. Extracted lip corner locations are then used to initialize a lip segmentation

algorithm to extract the lip contours. We develop a level-set based method that

utilizes adaptive color distributions and shape priors for lip segmentation. More

precisely, an implicit curve representation which learns the color information of lip

and non-lip points from a training set is employed. The model can adapt itself to

the image of interest using a coarse elliptical region. Extracted lip contour provides

detailed information about the lip shape.



Both methods are tested using different databases for facial feature extraction

and lip segmentation. It is shown that the proposed methods achieve better re-

sults compared to conventional methods. Our facial feature extraction method

outperforms the active appearance models in terms of pixel errors, while our lip

segmentation method outperforms region based level-set curve evolutions in terms

of precision and recall results.
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İSTATİSTİKSEL YÜZ ÖZNİTELİK ÇIKARIMI VE DUDAK BÖLÜMLEMESİ

MUSTAFA BERKAY YILMAZ

ME, Yüksek Lisans Tezi, 2009

Tez Danışmanı: Hakan Erdoğan

Yardımcı Danışman: Mustafa Ünel
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Özet

Yüz öznitelikleri; insan yüzündeki dudak köşeleri, göz köşeleri ve burun ucu

gibi kritik noktalardır. Bu tür yüz özniteliklerinin konumlarının sağlam çıkarımı;

görsel-işitsel konuşma tanıma, insan-bilgisayar etkileşimi, duygu tanıma, yorgunluk

algılaması ve hareket tanımayı da kapsayan geniş bir uygulama alanına sahiptir.

Bu tezde, yüz özniteliklerinin çıkarılması için bir olasılık modeli geliştirilmiştir.

Bu teknik, yüz özniteliklerinin konum ve doku bilgisini bir eğitim kümesinden otomatik

olarak öğrenebilir. Yüz özniteliklerinin konumları, konum ve doku bilgisinin ortak

dağılımını temsil eden Gauss karışımlarını kullanarak yüz bölgelerinden çıkarılır. Bu

formülasyon, rampa tırmanışı veya Newton türü bir algoritma ile çözülebilecek bir

maksimum ihtimal problemi ile sonuçlanır. Çıkarılmış dudak köşeleri daha sonra du-

dak hatlarını çıkarmak amacıyla bir dudak bölümlemesi algoritmasını başlatmak için

kullanılır. Dudak bölümlemesi için, uyarlamalı renk uzayı ve şekil önceliklerinden

yararlanan düzey-kümesi tabanlı bir yöntem geliştirilmiştir. Daha detaylı olarak,

dudak ve dudak dışı noktaların renk bilgilerini bir eğitim setinden öğrenebilen örtük

bir eğri temsilcisi kullanılmıştır. Bu model, kaba bir eliptik bölge kullanarak kendini

ilgili resme uyarlayabilir. Çıkarılan dudak hatları, dudak şekliyle ilgili detaylı bilgi

sağlar.



Yüz öznitelikleri çıkarımı ve dudak bölümlemesi yöntemleri farklı veritaban-

ları kullanılarak test edilmiştir. Önerilen yöntemlerin, geleneksel yöntemlere göre

daha iyi sonuçlar verdiği gösterilmiştir. Yüz öznitelikleri çıkarma yöntemi, pik-

sel hatası bazında aktif görünüm modellerinden daha iyi sonuç vermiştir. Dudak

bölümleme yöntemi ise, duyarlık ve akletme bazında bölge tabanlı düzey-kümesi

eğri gelişiminden daha iyi sonuç vermiştir.
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Chapter 1

Introduction

1.1 Motivation

Extraction of facial feature locations is an important problem in computer vision.

There are many uses of facial feature extraction from a face image such as automatic

visual emotion detection, gesture recognition, pupil tracking, driver fatigue detection

for safe driving, face detection and recognition using a bottom-up approach, facial

image compression and low-bit video coding.

Our main motivation to work on this problem is to improve the performance of

audio-visual automatic speech recognition. Especially in noisy environments, visual

information is complementary to auditory information. In order to extract visual

features, one either needs to find the lip region or lip boundary. We worked on both

finding the lip corners and extraction of lip boundaries in this thesis. Since other

facial features such as eye corners can help in finding lip corners, we decided to

develop an algorithm for general facial feature extraction.

Among many different approaches aiming at robust facial feature extraction in

literature, we followed a statistical model to learn appearance and shape of facial

features in a natural way. This way we hope to learn other dependencies between fa-

cial features such as geometric constraints, symmetry properties, expected locations

on the face and texture representations, implicitly.

Our lip segmentation approach uses color space information and shape informa-

tion in a level-set framework to detect lip boundaries.
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1.2 Literature Review

Facial feature extraction from a face image has been an intensive research area. It

is an appropriate application area of various image processing and pattern recogni-

tion techniques. There are many different approaches, most of them being hybrid

approaches that are combinations of various methods.

Human face has an impressive special symmetry giving an ideal look. Many

works in literature actively make use of this symmetry. In [1], a generalized symme-

try operator is used. Method proposed in [2] makes a simple segmentation based on

pixel darkness and then searches for minima pairs for eyes and mouth. A symmetry

based cost function is introduced in [3] and then it is optimized to find perfect facial

feature locations. [4] also uses this symmetry property to find eye locations.

Geometry-based approaches use some rule based a-priori information which are

usually determined visually by people. Their most widespread use is to find the

location of a special facial feature using a detailed and robust search, and then de-

cide where to look and search for other facial features. They are especially useful

for limiting the search area but they are not sufficient for a robust facial feature

extraction system. Detailed geometric models are defined to indicate relative posi-

tions of features in a typical human face. Some example works incorporating strict

geometric models are [4–15].

Low level image features such as corners and edges are also intensively used in

the literature. Some previous works relying on simple edge information are [1,11,16].

An example work using simple corner detection is [17].

Works especially published recently using low level image features are utilizing

a method “Smallest Univalue Segment Assimilating Nucleus” or its abbreviation

SUSAN, proposed in [18]. This is a completely novel approach for corner detection

in an intensity image, with the ability to behave like an edge detector tuning an

input parameter called “geometrical threshold”. There are many works using this

method to extract low level image features of a face image, for instance [19].

Shape based approaches statistically learn relative distribution of facial feature

point locations, usually by introducing a point distribution model (PDM). PDM is

then used as a local optimizer for a detailed localization. Shape based approaches are

also used for facial feature extraction. This kind of methods are usually classified un-
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der the name deformable templates. That term includes both statistical approaches

and several kinds of other non-rigid template matching approaches. The most fa-

mous methods under this class of algorithms are Active Contour Models (ACM) or

snakes [20] and Active Shape Models (ASM) also known as smart snakes [21, 22].

Difference of the ASM from ACM lies under the fact that ASM can only deform to

fit the data in ways consistent with the training set, in other words it knows where

to search for the contours. ASMs are statistical models of the shape of objects which

iteratively deform to fit to an example of the object in a new image. The shape of

an object is represented by a set of points (controlled by the shape model). Instead

of single point extraction for each facial feature, those algorithms work in a manner

of segmentation extracting many points representing a single facial feature such as

eyes or the lip. In [23]; eyebrow, nostril and face are modeled using ACMs. In [24],

an improvement called the jumping snake is used with manual initialization. Unlike

classical snakes, it can be initialized far from the final edge and the adjustment of

its parameters is easy and intuitive. In [16], multiple snakes are used synchronously

after the initialization stage using color similarity map and low level image fea-

tures. Recent works making use of ASMs for facial feature extraction are [25–28].

In [26], red-green-blue (RGB) color information is integrated into ASM. In [27], two

separate strategies are proposed to improve the ASM. One is called “asymmetric

sampling”: Information outside the contour and near the background is complex

and with large variance due to illumination, background and hairstyle, so it does

not carry much useful information, hence it is not suitable to use in training; on the

contrary, information contained in the pixels inside the contour and hence on the

face, is much more stable and deserves more attention. Therefore, instead of the

symmetric strategy used in the standard ASM, they adopt asymmetric sampling.

Other one is the “multi-template ASM”: It basically uses the fact that some facial

features such as eyes and mouth have different appearances when they are closed

and open, so a multi-template ASM is introduced to handle these kinds of different

states. The work in [28] also brings some extensions to ASM: fitting more landmarks

than are actually needed; selectively using two instead of one-dimensional landmark

templates; adding noise to the training set; loosening up the shape model as the

iterations advance; trimming covariance matrices by setting most entries to zero

3



and stacking two ASMs in series.

Appearance based methods use various transformations to represent the texture

information learnt from a database. They are supposed to generalize to any unseen

example as long as the database is large enough. Active appearance model (AAM)

is first introduced in [29]. It is based on ASM however there are radical differences.

A good comparison of ASM and AAM is given in [30]. ASM searches along profiles

about the current model point positions to update the current estimate of the shape

of the object. AAM samples the image data under the current instance and uses

the difference between the model and the sample to update the appearance model

parameters. ASM matches the model points to a new image using an iterative

technique which is a variant of the Expectation Maximization (EM) algorithm. A

search is made around the current position of each point to find a point nearby which

best matches a model of the texture expected at the landmark. The parameters

of the shape model controlling the point positions are then updated to move the

model points closer to the points found in the image. AAM manipulates a full

model of appearance, which represents both shape variation and the texture of the

region covered by the model. This can be used to generate full synthetic images of

modeled objects. AAM uses the difference between the current synthesized image

and the target image to update its parameters. In [31], a coarse to fine approach

is followed. First a coarse global AAM is used for initialization, then local detailed

AAM models are used for fine localization. The whole procedure is formulated into

a Maximum-A-Posteriori (MAP) framework.

Other typical examples involving deformable templates are [23, 32, 33]. In [32],

statistical information is generated by estimating the distributions of the model

parameters. Approximate location, scale and orientation of the head is found by

repeatedly deforming the whole template at random by scaling, rotation and trans-

lation; until it matches best with the image whilst remaining a feasible head shape.

In [23], the contours of some facial features such as eye and mouth are captured by

a deformable template model.

There are various examples involving classical rigid template matching methods.

Design of the template is the critical part of this method. A local patch is used

to learn the search template from a database, using texture information. In [34],
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an elliptic template is applied to the lip region, to find most probable lip position.

The template’s size is chosen proportional to the face ellipse size. In [35], extended

templates are used which represent both local appearance and a relative positional

relationship between sampling points and feature points. An extended template

consists of three elements: a reference pattern at a sampling point, directional vec-

tors from the sampling point to the feature points, and local likelihood patterns at

the feature points.

To represent the texture of a facial feature in a lower dimensional subspace,

there are different dimension reduction techniques used in previous works. Princi-

pal component analysis (PCA) is probably the most well known technique. Some

examples using it are [11, 36–40]. A PCA subspace is trained in [36] with an initial

training set. As the facial features from new test images are extracted, training set

is extended by adding the results to the training set. However this may lead to a

degraded PCA model due to some erroneous test results. Method proposed in [37]

uses shape model to describe the outer and inner lip contour and a deformable grey

level model to describe intensity values around the lip contours. It is closely related

to ASM. PCA is performed on all profile examples of a training set to reduce the

feature space and to obtain the principal modes of profile variation. Any profile of

the training set can be approximated by a linear combination of the mean profile

and the first few modes of profile variation. The profile model deforms with the

contour model and therefore always represents the same object features. Kernel

PCA was first introduced in [41]. It is an extension of PCA using techniques of

kernel methods. Using a kernel, the originally linear operations of PCA are done in

a reproducing kernel Hilbert space with a non-linear mapping. Non-linearity comes

from an individually selected kernel function that enable to operate in the feature

space without ever computing the coordinates of the data in that space, but rather

by simply computing the inner products between the images of all pairs of data in

the feature space. An example utilizing polynomial functions as kernel function in

KPCA for face and facial features recognition is [42]. In [43], an improved version of

PCA is introduced to use with missing data which is called Robust PCA (RPCA).

In [44], RPCA is applied to capture the statistics of shape variations. Discrete cosine

transformation (DCT) is another dimension reduction technique used for instance
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in [7, 9, 45]. In [44], training face samples are automatically labeled by local image

search using Gabor wavelet features. In [46], Gabor filters are used with 24 filters

consisting of 6 different orientations and 4 different wavelengths. Linear discrimi-

nant analysis (LDA) is a useful dimension reduction tool. A good review on LDA

is published in [47] and it summarizes different LDA based facial feature extraction

methods. It further proposes some post processing ideas on discriminant images to

vindicate the LDA that it is a suitable way of dimension reduction for facial feature

extraction.

There are so many different classifiers used for facial feature extraction that it is

not possible to list all of them in this thesis. Some example classifiers are: Neural

networks (NN) [10], support vector machine (SVM) [42], adaboost [48], gentleboost

[14], hidden Markov model (HMM) [49], Gaussian mixture model (GMM) [39], k-

means clustering [50], bayesian network (BN) [40], binary decision tree (BDT) [40],

self-organizing feature map (SOFM) based NNs [51].

Scale-invariant feature transform (SIFT) is an image feature extractor published

in [52] and it is robust to changes in illumination, noise, and minor changes in

viewpoint. An example utilizing it for facial feature extraction is [53].

Genetic algorithm (GA) is a search technique used in computing to find exact

or approximate solutions to optimization and search problems. In [6], GA is used

to search for facial feature locations instead of the traditional template matching.

The approach in [42] used GA to select optimal feature set. GA is used in [8] to

find the face region.

Besides the key points extraction from a face image, lip segmentation is the next

task for detailed lip contours extraction. There are various approaches, most of

them based on the snake method. In [54], a spatiotemporal Markov random field

(MRF) framework is used for mouth colored pixels detection, using red hue predom-

inant region and motion in a spatiotemporal neighborhood. In [55], a novel color

transformation is proposed as a preprocessing step for lip segmentation process. In

various works, Eveno et. al. proposed a new idea which is based on a parametric

model composed of several cubic curves fitted on the lips. First one composed of

two cubic curves and a broken line in case of a closed mouth, and a second one

composed of four cubic curves in case of an open mouth. These parametric models

6



give a flexible and accurate final inner lip contour. This model is flexible enough

to reproduce the specificities of very different lip shapes [56–61]. It is considered

that the lip boundary is composed of several independent cubic polynomial curves,

instead of a single closed curve. In [62, 63], classical snake algorithm is applied to

extract lip contour points after key points detection. In [64], both the color infor-

mation and the spatial distance are taken into account while most of the methods

focus on the former. A new dissimilarity measure, which integrates the color dissim-

ilarity and the spatial distance in terms of an elliptic shape function, is introduced,

which is able to differentiate the pixels having similar color information but located

in different regions. It provides good differentiation between the lip region and the

non-lip region. In [65], a fuzzy clustering method is used. It is a “one object, mul-

tiple background” approach. Since the non-lip region becomes inhomogeneous in

the presence of beards, multiple background clusters can produce better fitting to

a rather complex background region than one single cluster. Spatial information in

terms of the physical distance towards the lip center is incorporated to enhance the

differentiation between the lip and the background region. In [66], a method based

on a statistical model of shape (ASM) with local appearance Gaussian descriptors

is used. Idea is that the response of the local descriptors can be predicted from the

shape. This prediction is achieved by a non-linear neural network. In [67], a specific

parametric model is defined for each deformable feature. Segmentation is done us-

ing a jumping snake model. In [68], a lip versus non-lip classification is done using

SVM. Then, an energy functional is minimized using level-set methods. In [69], a

novel multi-class and shape-guided fuzzy c-means (MS-FCM) clustering algorithm

is introduced and used for lip segmentation. In [70], lip contours are extracted us-

ing edge information directly. A special edge detection method, wavelet multi-scale

edge detection across the discrete Hartley transform is performed. In [71], level-set

method is used for lip segmentation. An internal shape constraint energy is incor-

porated into the evolution equation. Difference between the shape constraint and

current curve is used for minimization. Predetermined parametric curves are used

for imposing shape constraints instead of a shape subspace built from a training set.

In [72], level set framework is used for segmentation. The contribution is, instead

of employing signed distance function resulting in partial differential equation for

7



the temporal evolution, implicit polynomial function is utilized and the temporal

evolution equation is obtained using ordinary differential equation. This approach

has not been tried for the lip contour segmentation purpose in that work, but the

sample results with and without missing image data are promising.

1.3 Contributions

Our contributions in this thesis are:

1. A statistical facial feature extraction method which is able to automatically

learn location and texture information from a training set is introduced.

2. Joint optimization problem is formulated in such a way as to be solved using

gradient ascent algorithm or Newton’s method.

3. We develop a lip segmentation algorithm that uses adaptive color space and

shape prior information together.

1.4 Outline

In Chapter 2, we explain the facial feature extraction system in detail, which finds

facial feature point locations in a face image. The face detection system, normaliza-

tion of rotation, scaling, translation and side illumination effects are explained. We

propose two models; independent features model and dependent locations model.

We actually use both models in cooperation for our system. We describe how to

realize our models for implementation. At the end, we show experimantal results.

In Chapter 3, we propose a novel lip segmentation method for detailed lip con-

tours extraction. A novel level set formulation is proposed. Then we integrate a

shape prior term into our level set framework. At the end we describe how to mea-

sure the performance of segmentation algorithm and show the experimental results.

In Chapter 4, conclusion of the thesis is made and some further improvements

are proposed.

8



Chapter 2

Facial Feature Extraction

Facial features are critical points such as lip corners, eye corners and nose tip in a

human face. For the cases where the image of an object is represented by a finite

set of landmark points, it is convenient to use flexible shape modeling. Usually,

critical points on flexible shapes are detected and then the shape of the object can

be deduced from the location of these key points. Face can be considered as a flexible

object and critical points on a face can be easily identified.

In this thesis, our goal is to detect the location of facial features. We use nine

facial features which we think are helpful for finding exact lip corner locations.

Facial features used in this work are shown in Figure 2.1. Number of facial features

to extract can be increased and determined individually by providing a training set

having necessary facial features annotated.

Figure 2.1: Facial features used in this work
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(a) Input image (b) Detected face image

Figure 2.2: Example face detection result

(a) Face regions, without

miss

(b) Face regions, one missed

Figure 2.3: Obtained multiple elliptic face regions

2.1 Face Detection and Normalization

2.1.1 Face Detection

For the detection of face or separate faces in an image, the same approach in [73] is

followed without further improvements. This algorithm is currently state of the art

and is based on efficiently extracting Haar-like features and using those features in

an Adaboost classification - feature selection framework.

An example video frame from our database and its corresponding detected face

image are shown in Figure 2.2.

Two complex scenes with multiple faces are shown in Figure 2.3. Found face

regions are shown using ellipses in various colors, instead of the rectangular face

region in Figure 2.2b.
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2.1.2 Face Normalization

Face image has to be processed after face detection to normalize various effects such

as scaling, rotation, translation and side illumination. We assume that the face

detection output is correct, so there is no translation in face image. Face image

is resized to a fixed dimension during both training and test steps to overcome the

effects of different scalings. Our system is capable of learning the texture information

from face images with minor rotations.

To normalize side illumination effects, a four-region adaptive histogram equal-

ization is applied as described in [74]. It is based on dividing the face image into 4

big rectangles and doing histogram equalization in each rectangle separately. Then

each pixel is affected by 4 histogram equalization functions by its distance to each

4 regions.

2.2 Probabilistic Facial Feature Extraction

1Every facial feature is expressed with its location and texture components. Let

vector li = [xi, yi]
T denote the location of the ith feature in a 2D image2. ti = ti(li)

is the texture vector associated with it. We use f i = [lTi , t
T
i ]T to denote the overall

feature vector of the ith critical point on the face. The dimension of the location

vector is 2, and the dimension of the texture vector is p for each facial feature.

Define l = [lT1 , l
T
2 , . . . , l

T
N ]T , t = [tT1 , t

T
2 , . . . , t

T
N ]T and f = [fT1 ,f

T
2 , . . . ,f

T
N ]T as

concatenated vectors of location, texture and combined parameters respectively.

Our goal is to find the best facial feature locations by maximizing the joint dis-

tribution of locations and textures of facial features. We define the joint probability

of all features as follows:

P (f) = P (t, l). (2.1)

In this thesis, we will make different assumptions and simplifications to be able to

calculate and optimize this objective function. The optimal facial feature locations

can be found by solving the following optimization problem:

l̂ = argmaxlP (t, l). (2.2)

1This section is based on [75].
2The location vector could be three dimensional in a 3D setup
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It is not easy to solve this problem without simplifying assumptions. Hence, we

introduce some of the possible assumptions in the following section.

2.2.1 Independent Features Model

We can simplify this formula by assuming independence of each feature from each

other. Thus, we obtain:

P (t, l) ≈
N∏
i=1

P (ti, li). (2.3)

We can calculate the joint probability P (ti, li) by concatenating texture and location

vectors; obtaining a concatenated vector f i of size p+2. We can then assume a para-

metric distribution for this combined vector and learn the parameters from training

data. One choice of a parametric distribution is a Gaussian mixture model (GMM)

which provides a multi-modal distribution. With this assumption, we can estimate

each feature location independently, so it is suitable for parallel computation. Since

l̂i = argmaxliP (ti, li), (2.4)

each feature point can be searched and optimized independently. The search involves

extracting texture features for each location candidate (pixels) and evaluating the

likelihood function for the concatenated vector at that location. The pixel coordi-

nates which provide the highest likelihood score will be chosen as the seeked feature

location l̂i. Although this assumption can yield somewhat reasonable feature points,

since the dependence of locations of facial features in a typical face are ignored, the

resultant points are not optimal.

2.2.2 Dependent Locations Model

Another assumption we can make is to assume that the locations of features are

dependent while the textures are independent. First, we write the joint probability

as follows:

P (t, l) = P (l)P (t|l). (2.5)

Next, we approximate the second term in the equation above as:

P (t|l) ≈
N∏
i=1

P (ti|l) ≈
N∏
i=1

P (ti|li),
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where we assume (realistically) that the textures of each facial feature component is

only dependent on its own location and is independent of other locations and other

textures. Since the locations are modeled jointly as P (l), we assume dependency

among locations of facial features. With this assumption, the equation of joint

probability becomes:

P (t, l) = P (l)
N∏
i=1

P (ti|li). (2.6)

We believe this assumption is a reasonable one since the appearance of a person’s

nose may not give much information about the appearance of the same person’s

eye or lip unless the same person is in the training data for the system. Since we

assume that the training and test data of the system involve different subjects for

more realistic performance assessment, we conjecture that this assumption is a valid

one. The dependence of feature locations however, is a more dominant dependence

and it is related to facial geometry of human beings. The location of the eyes is a

good indicator for the location of the nose tip for example. Hence, we believe it is

necessary to model the dependence of locations.

Finding the location l that maximizes equation (2.2) will find optimal locations

of each feature on the face.

2.2.3 Representing Locations and Texture

The location parameters can be represented as x and y coordinates directly.

The texture parameters are extracted from rectangular patches around facial

feature points. We train subspace models for them and use p subspace coefficients

as representations of textures. We use different dimension reduction techniques to

build the subspaces and compare their performances at the end.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an orthogonal linear transformation that

transforms the data to a new coordinate system. The greatest variance by any

projection of the data comes to lie on the first coordinate called the first principal

component, the second greatest variance on the second coordinate, and so on.

PCA can be used for dimensionality reduction by keeping lower-order principal

components and ignoring higher-order ones. Such low-order components represent
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most of the data. It is possible to select individual number of lower-order principal

components.

We collect the texture data of a facial feature using rectangular patches around

that feature’s point location, stacking them as column vectors of a data matrix.

Each rectangular patch contains M pixels. Suppose X is the mean subtracted data

matrix. The covariance matrix of mean subtracted data is calculated by

C =
1

N
XXT . (2.7)

An eigenvalue decomposition is applied to the covariance matrix by the formula

V −1CV = D, (2.8)

where V is the M×M square matrix with an eigenvector in each column and D is a

diagonal matrix containing the corresponding eigenvalues of eigenvectors. Eigenvec-

tors corresponding to larger eigenvalues are more important for the representation

of the data. All of the eigenvectors form an orthogonal basis. Dimensionality re-

duction is possible ignoring the eigenvectors with lower eigenvalues. Suppose that

the dimension is to be reduced to L where 1 ≤ L ≤ M , then L eigenvectors with

the highest corresponding eigenvalues are placed in columns of the transformation

matrix W of size M ×L. When we obtain the transformation matrix, it is possible

to express the M dimensional feature vector xi as L dimensional feature vector yi

by the formula

yi = W Txi. (2.9)

The elements of yi are the coefficients of the orthogonal basis vectors.

Discrete Cosine Transformation (DCT)

DCT is an energy compaction technique to concentrate most of the signal informa-

tion in a few low frequency components. DCT does not need a training to build the

subspace as it has fixed basis vectors. DCT is an orthonormal transformation. The

pixel (n1, n2) of DCT basis Bk1,k2 is calculated as:

Bk1,k2(n1, n2) =

√
2

N1

√
2

N2

Λ(k1)Λ(k2)cos(
π(n1 + 0.5)k1

N1

)cos(
π(n2 + 0.5)k2

N2

),

(2.10)
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where Λ(k) = 1√
2

when k = 0 and Λ(k) = 1 for other values of k. DCT coefficient

D(k1, k2) is found by the inner product D(k1, k2) =< X,Bk1,k2 >. We can invert

this transformation and obtain the original input image X as

Xk1,k2(n1, n2) =

N1∑
k1=0

N2∑
k2=0

D(k1, k2)Bk1,k2(n1, n2). (2.11)

For feature extraction from a region of interest, we use top few 2D DCT coefficients

extracted from that region. We used zig-zag-scan ordering of 2D DCT coefficients

for selecting the top coefficients to be used in dimension reduction.

Gabor Transformation (GT)

A real Gabor filter is defined as follows:

g(x, y;λ, θ, ψ, σ, γ) = exp (−(x′)2 + γ2(y′)2

2σ2
) cos (

2πx′

λ
+ ψ), (2.12)

where x′ = x cos θ+ y sin θ, y′ = −x sin θ+ y cos θ, λ is the wavelength of the cosine

factor, θ is the orientation of the normal to the parallel stripes of a Gabor function,

ψ is the phase offset, σ is the sigma of Gaussian envelope and γ is the spatial aspect

ratio specifying the ellipticity of the support of the Gabor filter.

Gabor features can be obtained by taking the inner product of an image patch

with a Gabor filter. Notice that, this does not constitute an orthogonal transforma-

tion in general.

2.2.4 Modeling Locations and Texture

A multivariate Gaussian distribution is defined as follows:

N (x;µ,Σ) =
1

(2π)N/2|Σ|1/2
exp (−1

2
(x− µ)TΣ−1(x− µ)), (2.13)

where x is the input vector, N is the dimension of x, Σ is the covariance matrix

and µ is the mean vector.

For the model defined in 2.2.1, probability for each concatenated feature vector

f i, P (f i) is modeled using a mixture of Gaussian distributions. GMM likelihood

can be written as follows:

P (f i) =
K∑
k=1

wkiN (f i;µ
k
i ,Σ

k
i ). (2.14)
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Here K is the number of mixtures, wki , µ
k
i and Σk

i are the weight, mean vector and

covariance matrix of the kth mixture component. N indicates a Gaussian distribu-

tion with specified mean vector and covariance matrix.

For the model defined in 2.2.2, probability P (t|l) of texture parameters t given

location l is also modeled using a GMM as in equation (2.14).

During testing, for each facial feature i, a GMM texture log-likelihood image is

calculated as:

Ii(x, y) = log (P (ti|li = [x y]T )). (2.15)

Note that, to obtain Ii(x, y), we extract texture features ti around each candidate

pixel li = [x y]T and find its log-likelihood using the GMM model for facial feature

i.

Our model for P (l) is a Gaussian model, resulting in a convex objective function.

Location vector l of all features is modeled as follows:

P (l) = N (l;µ,Σ). (2.16)

Candidate regions for each feature i can be found by marginalizing the above

multi-dimensional Gaussian distribution learned from data. Marginal Gaussian dis-

tribution of a feature location is thresholded and a binary ellipse region is obtained

for that feature. GMM scores are calculated only inside those ellipses for faster

computation.

The model parameters are learnt from training data using maximum likelihood.

Expectation maximization (EM) algorithm is used to learn the parameters for the

GMMs [76].

2.2.5 Algorithm

For independent features model, we calculate P (f i) in equation (2.14) using GMM

scores for each candidate location li of feature i and decide the location with maxi-

mum GMM score as the location for feature i.

For dependent locations model, we propose an algorithm as follows. We obtain

the log-likelihood of equation (2.6) by taking its logarithm. Because the texture of

each feature is dependent on its location, we can define an objective function which
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only depends on the location vector:

φ(l) = log (P (t, l)) = log (P (l)) +
N∑
i=1

log (P (ti|li)). (2.17)

Using the Gaussian model for location and GMM for texture defined in section 2.2.4,

we can write the objective function φ as:

φ(l) =
−β
2

(l− µ)TΣ−1(l− µ) +
N∑
i=1

Ii(xi, yi) + constant. (2.18)

Here, µ is the mean location vector, and Σ−1 is the precision (inverse covariance)

matrix, learnt during the training. β is an adjustable coefficient. Ii(x, y) is the score

image of feature i defined in equation (2.15).

So the goal is to find the location vector l giving the maximum value of φ(l):

l̂ = argmaxlφ(l). (2.19)

To find this vector, we use two different optimization algorithms and compare their

performances at the end.

Gradient ascent optimization

Evolution formula for the gradient ascent optimization is given as follows:

l(n) = l(n−1) + kn∇φ(l(n−1)). (2.20)

Here, n denotes the iteration number. We can write the location vector l as:

l = [x1, y1, x2, y2, ..., xN , yN ]T . (2.21)

Then we can find the gradient of φ as:

∇φ(l) = [∂φ/∂x1, ∂φ/∂y1, ..., ∂φ/∂yN ]T . (2.22)

For a single feature i:

∂φ/∂xi =
∂

∂xi
logP (l) +

N∑
i=1

∂

∂xi
logP (ti|li), (2.23)

and

∂φ/∂yi =
∂

∂yi
logP (l) +

N∑
i=1

∂

∂yi
log (P (ti|li)). (2.24)
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The gradient for the location part can be calculated in closed form due to the mod-

eled Gaussian distribution and the gradient for the texture part can be approximated

from the score image using discrete gradients of the score image. Plugging in the

values for the gradients, we obtain the following gradient ascent update equation

for the algorithm:

l(n) = l(n−1) + kn(−βΣ−1(l(n−1) − µ) + G), (2.25)

where

G =



G1
x(l

n−1
1 )

G1
y(l

(n−1)
1 )

...

GN
x (l

(n−1)
N )

GN
y (l

(n−1)
N )


. (2.26)

Here, Gi
x and Gi

y are the two-dimensional numerical gradients of Ii(x, y) in x and y

directions respectively. The gradients are computed only for every pixel coordinate

(integers) in the image. G is the collection vector of gradients of all current feature

locations in the face image. kn is the step size which can be tuned in every iteration

n. Since l(n) is a real-valued vector, we use bilinear interpolation to evaluate gradi-

ents for non-integer pixel locations. Iterations continue until the location difference

between two consecutive iterations is below a stopping criterion.

Newton optimization

Evolution formula for the Newton optimization is given as follows:

l(n) = l(n−1) +Hφ(l(n−1))−1∇φ(l(n−1)), (2.27)

where Hφ(l(n−1)) is the 2N × 2N Hessian matrix of vector function φ.

Hessian matrix of the objective function is defined as:

Hφ(l(n−1)) = −βΣ−1 + A, (2.28)

where A = ∂2

∂xi∂yi

∑N
i=1 Ii(xi, yi).

It turns out that A is a block diagonal matrix and it is computed using second
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order gradients of the score image Ii as follows:

A =



G1
xx(l

n−1
1 ) G1

xy(l
n−1
1 ) 0 0 ...

G1
yx(l

n−1
1 ) G1

yy(l
n−1
1 ) 0 0 ...

0 ...

...

0 0 ... GN
xx(l

n−1
N ) GN

xy(l
n−1
N )

0 0 ... GN
yx(l

n−1
N ) GN

yy(l
n−1
N )


. (2.29)

The gradients Gi
yx and Gi

xy are expected to be the same. However, because of

the interpolation process, they may end up having different values. So we take the

average Ĝi
yx = Ĝi

xy =
Gi

yx+Gi
xy

2
to overcome this problem.

Other optimization schemes based on the idea of improving the performance of

Newton optimization method by approximation such as Gauss-Newton, Levenberg-

Marquardt, efficient second order minimization (ESM) [77] are present, however the

search in this optimization problem is not so complex, so the performance of the

optimization is not crucial.

2.2.6 Experimental Results

Databases

We used various face video databases and their combinations for training and testing

of our method. We used a selection of extracted frames from videos. Databases used

for facial feature extraction are:

1. Sabanci University Turkish Audio Visual Database (SUTAV): Consists of

many male and female individuals’ frontal videos counting from zero to nine

in Turkish. There are two tapes with same individuals and same number of

videos. Individuals are in different conditions in two different tapes in terms

of dressings, facial hair and illumination. No excessive head rotations, scal-

ings and translations of the face region is present. It is a relatively challeng-

ing database because it includes different illumination conditions. We hand-

marked the locations of necessary facial features in selected frames manually

to make use of this database.
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2. Multi Modal Verification for Teleservices and Security Applications Face Database

(M2VTS - [78]): It is made up from 37 different faces and provides 5 shots

for each person. These shots were taken at one week intervals or when drastic

face changes occurred in the meantime. During each shot, people have been

asked to count from zero to nine in their native language (most of the people

are French speaking). There are videos including various head rotations. We

used the videos without head rotations. We selected random frames per video

and hand-marked them as in SUTAV database.

3. Technical University of Denmark Department of Informatics and Mathemati-

cal Modeling Face Database (IMMDB - [79]): The IMM Face Database com-

prises 240 still images of 40 different human faces, all without glasses. The

gender distribution is 7 females and 33 males. The following facial structures

were manually annotated using 58 landmarks: eyebrows, eyes, nose, mouth

and jaw. We used only nine facial features of our interest. Each person has

six different images:

(a) Full frontal face, neutral expression, diffuse light.

(b) Full frontal face, happy expression, diffuse light.

(c) Face rotated approximately 30 degrees to the person’s right, neutral ex-

pression, diffuse light.

(d) Face rotated approximately 30 degrees to the person’s left, neutral ex-

pression, diffuse light.

(e) Full frontal face, neutral expression, spot light added at the person’s left

side.

(f) Full frontal face, joker image (arbitrary expression), diffuse light.

Some facial features are unseen in some face images with much rotation. We

found and put out those images.

We used some subsets and combinations of the databases explained above and

made different experiments with each set:

1. Set:
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• Training: All IMMDB face images except 24 images having some facial

features occluded because of head rotation (216). In addition, randomly

selected 4 images of 15 females and 10 males from SUTAV (100). Totally

316 frontal face images are used.

• Testing: We randomly selected 4 images of 14 females and 11 males from

SUTAV (100). No identity in the test set is used in the training set.

2. Set:

• Training: In addition to the training part of Set 1, randomly selected

images of 27 subjects from each 5 tape of M2VTS are used. 28 face images

are eliminated because of faulty face detection results. That makes a

training set of 423 face images.

• Testing: Same as the test part of Set 1.

3. Set: Only M2VTS frames are used for this set. Training and testing groups

are shown below:

• Training: 10 random frames from each 5 tape of 10 subjects are selected.

Those subjects are distinct from the 27 subjects used in Set 2 training.

There are in total 500 face images in this training set.

• Testing: 2 random frames from each 5 tape of the same 10 subjects are

selected. Those frames are distinct from the ones selected in training.

There are in total 100 face images in this testing set.

Parameters

There are miscellaneous critical parameters used during our experiments. We found

the optimal parameter values experimentally. We used 320× 300 face images, then

down-sampled them to 80 × 75 preserving the aspect ratio, for faster computation

while improving the performance in terms of pixel errors. PCA subspaces of different

dimensions are obtained for different facial features by using the texture information

inside rectangular patches around facial features. Four-region adaptive histogram

equalization based side-illumination normalization method described in Section 2.1.2

resulted in better facial feature extraction results. We used this method in two
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Table 2.1: PCA subspace dimension and window size parameters used for facial

features

Feature PCA and DCT dimensions Window size Hist. eq.

1 30 17× 17 2

2 30 17× 17 1

3 30 21× 21 2

4 30 11× 11 2

5 20 11× 11 2

6 50 25× 25 1

7 50 27× 27 2

8 50 25× 25 2

9 50 39× 39 2

different ways: Features having this histogram equalization method as 1; histogram

equalization is applied for red, green and blue channels separately and the resulting

image is converted to gray-level. For features having this histogram equalization

method as 2; image is converted to gray-level and then histogram equalization is

applied to the resulting image. Those training parameters are found experimentally.

Optimal PCA and DCT subspace dimensions of each facial feature, window sizes

used around facial feature points and side illumination normalization methods used

are shown in Table 2.1. For facial features having large variability between different

people, like jaw and lip; we had to train larger dimensional PCA subspaces and had

to use larger windows.

Search locations for facial features are limited using separate Gaussian models

trained using locations of each feature. Search areas are shown in Figure 2.4. Ellipses

denote the boundaries of search regions and pentagrams denote the mean facial

feature locations.

For the independent model explained in Section 2.2.1, texture coefficients and

location vectors are used to build a GMM model to obtain scores. We tried two

different types of GMM models when using PCA: First one is the concatenated

vector choice where texture coefficients and location vectors are combined as required
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(a) Outer eye and lip cor-

ners

(b) Inner eye corners and

bottom lip corner

(c) Nose tip and upper lip

corner

Figure 2.4: Search regions for facial features

Table 2.2: Number of mixtures used for different GMMs

GMM Number of mixtures

GMMPCA 2

GMMCOMBI 2

GMMDCT 1

GMMGT 2

in our independent model. In the second choice, we only used texture coefficients

as our dependent locations model implies. For other texture feature extraction

methods such as GT or DCT, we only used texture coefficients.

In total, we tried 5 different GMM models:

1. GMM built using PCA coefficients (GMMPCA)

2. GMM built using PCA coefficients and location parameters (GMMCOMBI)

3. GMM built using DCT coefficients (GMMDCT )

4. GMM built using GT coefficients (GMMGT )

Two mixtures for GMMs gave the best results in most of the experiments which

means that there are basically two clusters of texture data for each feature. Number

of mixtures used for different GMMs are shown in Table 2.2.

For each feature, the pixel giving the highest GMM score is selected as the initial

location. These locations are then used to solve the dependent locations model in
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Section 2.2.2. Using the method explained in Section 2.2.5, locations and textures

of the features are refined iteratively.

Results and Comparison

Pixel error of a single facial feature on a face image is the Euclidean distance between

the location found for that feature and the manually labeled location. We find the

mean pixel error of all facial features on a single face image. We take the mean of

all such means over all test images. We also find the maximum pixel error of each

facial feature over all test images, then we take the mean of such maximum errors

for all facial features. This maximum value gives an idea about the performance

of a method in the worst case scenario. We discuss the performance of different

feature extraction algorithms, different optimization methods in different data sets

in following. We also compare the performance of our method with the AAM method

using the AAM implementation AAM-API [80].

Pixel errors for the independent model are shown in Table 2.3, pixel errors for

the dependent model with gradient ascent optimization are shown in Table 2.4, pixel

errors for the dependent model with Newton optimization are shown in Table 2.5

and pixel errors for AAM are shown in Table 2.6. PCA1 denotes the GMM where

we use only PCA texture coefficients and PCA2 denotes the GMM where we use

the concatenated vector of PCA texture coefficients and location parameters. All

pixel errors are calculated in the 320× 300 face images.

For data sets involving different people in training and testing parts, both inde-

pendent and dependent models outperformed AAM. For data sets involving same

people in training and testing parts like Set 3, our method gives closer results to

AAM. For that case; dependent locations model gives slightly better results com-

pared to AAM, but AAM is slightly better in terms of maximum errors.

Newton optimization usually gives better results than gradient ascent optimiza-

tion in terms of maximum errors. But they give very similar results in terms of mean

errors. However, Newton optimization converges in fewer iterations which makes it

faster than gradient ascent optimization.

Among all texture representation methods, PCA is the best in terms of pixel

errors. PCA1 is better for dependent model and PCA2 is better for independent
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Table 2.3: Pixel errors for independent model

PCA1 PCA2 DCT GT

Data Set Mean Max Mean Max Mean Max Mean Max

Set 1 5.805 23.672 5.538 18.879 5.981 24.616 10.978 34.517

Set 2 5.680 22.401 5.467 20.560 5.980 25.297 11.073 34.110

Set 3 4.580 51.588 4.505 51.522 5.075 54.755 11.156 69.539

Table 2.4: Pixel errors for dependent model with gradient ascent optimization

PCA1 PCA2 DCT GT

Data Set Mean Max Mean Max Mean Max Mean Max

Set 1 5.251 17.756 5.211 16.399 5.774 21.077 9.407 27.737

Set 2 5.049 17.120 5.078 17.478 5.669 20.713 9.672 27.903

Set 3 4.381 51.119 4.555 51.220 4.720 51.985 9.227 64.773

model which is convenient to our formulations. DCT also gives good results. Both

PCA and DCT outperformed GT.

Example facial feature extraction results are shown in Figure 2.5 and Figure 2.6.

Table 2.5: Pixel errors for dependent model with Newton optimization

PCA1 PCA2 DCT GT

Data Set Mean Max Mean Max Mean Max Mean Max

Set 1 5.235 16.382 5.300 16.831 5.831 19.826 9.551 34.765

Set 2 5.021 15.688 5.124 16.495 5.656 18.574 10.029 29.632

Set 3 4.629 53.269 4.577 50.759 4.764 52.007 9.337 64.687
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Table 2.6: Pixel errors for AAM

AAM

Data Set Mean Max

Set 1 8.126 17.845

Set 2 5.501 15.267

Set 3 4.547 50.396

(a) Independent locations (b) Dependent locations

Figure 2.5: Facial feature locations obtained using independent and dependent lo-

cations models, with a good independent model initialization

(a) Independent locations (b) Dependent locations

Figure 2.6: Facial feature locations obtained using independent and dependent lo-

cation models, with an inaccurate independent model initialization
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Chapter 3

Lip Segmentation

Lip segmentation can be an important part of audio-visual speech recognition (AVSR),

lip-synching, modeling of talking avatars and facial feature tracking systems. In

audio-visual speech recognition, it has been shown that using lip texture informa-

tion is more valuable than using the lip boundary information [81,82]. However, this

result may have been partly due to inaccurate boundary extraction as well, since

lip segmentation performance was not independently evaluated in earlier studies.

In addition, it is possible to use lip segmentation information complementary to

the texture information. Lip boundary features can be utilized in addition to lip

texture features in a multi-stream Hidden Markov model (HMM) framework with

an appropriate weighting scheme. Thus, we conjecture it is beneficial to use lip

boundary information to improve accuracy in AVSR. Once the boundary of a lip

is found, one may extract geometric or algebraic features from it. These features

can be used in audio-visual speech recognition systems as complementary features

to audio and other visual features.

Section 3.1 follows the work of Ozgur et. al. [83] for lip segmentation using

adaptive color space training. In Section 3.2, we propose the idea of imposing shape

priors into our level set framework.

3.1 Lip Segmentation Using Adaptive Color Space Training

We use statistical color distributions represented by GMMs to obtain region based

fields to be employed in a level-set curve evolution framework. The GMMs are

first trained in a speaker independent way by taking lip and non-lip examples from

multiple subjects. Then, for each test subject, we obtain initial lip and non-lip
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examples using good initial guesses and adapt lip and non-lip GMMs to the subject

by using the maximum a-posteriori probability (MAP) algorithm. We compare the

performance of different color spaces for lip segmentation. Our level-set formulation

enables fusion of different regional fields. We assess different combinations of color

spaces using our approach as well.

3.1.1 Probabilistic Modeling

We would like to learn color distributions of the pixels in the lip and non-lip regions

by modeling them using GMMs. The training data we used has the lip region hand-

marked. We take a region of interest around the marked lip region and label the

pixels as lip or non-lip within that region of interest. We randomly select a fixed

number of pixels from each region in our training data. Next, we extract color-space

features from each chosen pixel. We use these features to train a GMM for each

region.

Let x denote x and y coordinates and c = c(x) denote the color space feature(s)

associated with a pixel. Probability P (c|R) is the probability of a pixel c being a lip

or a non-lip pixel where R is an indicator of the region (lip (L) or non-lip (N)). This

probability is modeled using a GMM distribution for c as in 2.2.4. We call these

distributions generic region models in the following discussion.

3.1.2 Adaptation

During testing, we first adapt the generic region models to the subject of interest by

initially choosing conservative regions in the test image making use of the extracted

(or assumed) lip corners. We find two concentric ellipses that pass through the

lip corners as shown in Figure 3.2a. Inside of the smaller ellipse is assumed to be

a part of the lip region and outside of the outer ellipse is assumed to be a part

of the non-lip region. We choose the ellipses such that for almost all subjects the

assumptions are correct. We then randomly take a fixed number of samples from

two assumed regions to adapt the generic models to the subject. This adaptation

step yields models that are well-suited to the subject of interest. We use MAP

adaptation as described in [84] with a relevance parameter ρ. After adaptation of

GMMs, we obtain adapted regional models for the subject of interest.
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3.1.3 Testing

For testing, we first find the region of interest using the lip corner points. For

each pixel within the region of interest, we calculate a detection score based on the

likelihood ratio as follows:

Ŝ(x) = log p(c(x)|N)− log p(c(x)|L) + log
P (N)

P (L)
. (3.1)

Here P (N) and P (L) denote the probability that a pixel belongs to non-lip and lip

regions, respectively. This score is precisely the logarithm of the likelihood ratio

plus a prior imbalance term. The range of the score function is (−∞,∞). We can

assume P (N)/P (L) to be in the range 5-10 since there are more non-lips than lips in

a typical region of interest. In order to remove regional discontinuities, we median

filter this score field using a 9× 9 window.

Since the logarithm of a small likelihood value tends towards −∞, it may be

beneficial to limit the dynamic range of the score function. To achieve this, we

obtain a clipped score as follows:

S̃(x) =


Ŝ(x) if |Ŝ(x)| < SM

−SM if Ŝ(x) < −SM
SM if Ŝ(x) > SM

, (3.2)

where SM is the maximum score allowed.

This score needs to be thresholded and we expect the pixel x to belong to the lip

region if the score is less than the threshold and vice versa. This threshold can be

varied to adjust precision-recall trade-off (or ROC curve). However, we would like

to choose a single optimal threshold value in this work. In order to choose a single

best threshold value, we make use of two ellipses that go through lip and non-lip

regions as shown in Figure 3.2b.

We calculate the means µ of the clipped score field S̃(x) values on the boundary

pixels of each ellipse. We then choose the single best threshold value to be a value

in between these two means as follows:

topt = kµlip + (1− k)µnonlip. (3.3)

One might think of choosing the threshold as the middle point between two means

(k = 0.5) but, we experimentally found that using a k value larger than 0.5 worked

better.
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(a) Potential field surface (b) Segmented lip bound-

ary

Figure 3.1: Potential field surface and segmented lip boundary

(a) Sampling for adapta-

tion

(b) Ellipses used for

score mapping

Figure 3.2: Sampling and score mapping

Our level-set formulation requires a score field which is between -1 and +1 and

we would like to have a negative value within the lip region and a positive value

within the non-lip region ideally. So, we need to map the score value to the range

(−1, 1). For this purpose, we linearly map the score value S̃(x)− topt to the desired

range by dividing the score by the maximum absolute score Z:

S(x) = (S̃(x)− topt)/Z. (3.4)

We also experimented with some more sophisticated score mapping techniques with

no improvement in results.

Figure 3.1a shows an example potential field surface S(x) and the final lip con-

tour which is governed by it.

3.1.4 Curve Evolution

We consider a level set formulation [85] based on both region and image gradients

information. For this purpose, we construct color based potential fields to be used

in level set equation to drive the interface to the boundaries of a lip and stop there
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by the help of a stopping function which uses image gradients. The initial curve is

chosen to be an ellipse which passes through the extracted lip corners around the

mouth. The evolution of the level set function is given by:

Φt + F |∇Φ| = 0, (3.5)

where the speed function F on a pixel x is designed as:

F (x) = −g(x)(εκ+
n∑
i=1

αiSi(x)), (3.6)

where g, κ and S denote stopping function, curvature and the potential field con-

structed from a color space, respectively. The coefficients ε and αi are positive

scalars. The number of color spaces used is given by n. We have used up to three

color spaces together in this paper. The potential field Si(x) is computed using

equation (3.4) for the ith color feature.

The stopping function is designed in terms of the gradient of the Gaussian

smoothed image as follows,

g(x) =
1

1 + |∇((G ∗ I)(x))|p
, p ≥ 1. (3.7)

Reinitialization

Signed distance function (SDF) Φ represents the distance of pixels from the zero

level set. For the purpose of segmentation, only the zero level set is meaningful.

Distance of other level sets may blow up during the evolutions. This situation may

lead to incorrect calculations for the evolution. To overcome this problem, a periodic

reinitialization of SDF is done: We stop the evolution calculation periodically in time

and discretize the zero level set holding only the isocontour Φ = 0. We then measure

the signed distances of other pixels to the zero level set isocontour.

3.1.5 Color Spaces

In our experiments, we used 4 types of color space: {RGB}, { R
R+G
}, {Hue} and

{rg}, to train GMMs and to construct potential fields. We define r = R/(R+G+B)

and g = G/(R+G+B) as red and green ratios independent of illumination, and {rg}
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denotes this normalized chromatic space. The { R
R+G

, Hue∗} and { R
R+G

, Hue, rg}

combined color spaces are also employed. In the first combined color space, {Hue∗}

represents hue image itself, used as potential field, after mapping to the range (-1,1).

3.2 Addition of Shape Priors

In Section 3.3, it is shown that the method proposed in Section 3.1 achieves satisfying

results on its own. Human lip shape has discriminative characteristics of shape,

and it is perceptional to integrate this shape prior information into our evolution

formulation.

Heaviside function HΦ is defined as follows:

Φ(x, y) ≥ 0⇒ HΦ(x, y) = 1,

Φ(x, y) < 0⇒ HΦ(x, y) = 0,
(3.8)

where Φ is the signed distance function (SDF).

3.2.1 Shape Priors Using Linear Subspace

For shape subspace, we prefer to build a linear subspace as in [86] considering

computational issues together with the urge of palatable segmentation outputs.

Training

Suppose we have a training set τ = {I1, I2, ..., IN} of N binary images as m × n

matrices. Ii’s represent the possible shapes of objects of interest. They have the

value of 1 inside the object and 0 outside. Extraction of the region of interest (i.e.

lip region) from those binary images is straightforward, we just cut the part of the

image from top and left starting with 1’s and to bottom and right ending with 1’s.

We resize this ROI to a fixed dimension to get rid of scaling differences. An example

binary image and the corresponding ROI can be seen in Figure 3.3. We perform PCA

directly on those ROIs. First the mean shape is found as µ = 1
N

∑N
i=1 Ii. Subtract

from each Ii this mean shape to create a mean-offset map Ĩi. These Ĩi’s are written

as column vectors and collected in a matrix M = [Ĩ1
c
, Ĩ1

c
, ..., Ĩ1

c
]. Covariance

matrix is then C = 1
N
MMT . C is decomposed using singular value decomposition

as C = UΣUT where U is a matrix whose column vectors represent the set of
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(a) Binary image (b) Corresponding ROI

Figure 3.3: Binary image and corresponding ROI

orthogonal modes of shape variation (principal components) and Σ is a diagonal

matrix of corresponding eigenvalues. Each column ui of U can be rearranged as the

original lip region image inverting the stacking process.

Let S be a given binary map, representing an arbitrary Heaviside function of lip

region. The coordinates αk of the projection of S onto the first k components of

the space of shapes can be computed as

αk = UT
k (Sc − µc), (3.9)

where U k is the dimension reduction of U to its first k columns, Sc and µc are

column vectors obtained by stacking S and µ. The projection P k(S) of S is then

obtained by:

P k(S) =
k∑
i=1

αkiui + µ. (3.10)

Curve Evolution

The shape energy is defined as follows:

Eshape(Φ) = ‖HΦ− P k(HΦ)‖2. (3.11)

Here, P k(HΦ) is the projection of Heaviside function onto the shape subspace. Our

aim is to minimize the shape energy.

For the implementation of the Heaviside function, following regularization is

used:

Hεφ(x, y) := (
1

2
+

1

π
arctan

φ(x, y)

ε
), (3.12)

and

δεφ(x, y) :=
1

π
(

ε

φ2(x, y) + ε2
), (3.13)
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(a) Face image (b) Corresponding binary

lip image

Figure 3.4: Example face image and its corresponding binary lip image

where ε is a parameter such that as ε→ 0, Hε → H and δε → δ with δ = H ′.

The new curve evolution term is the following:

Φt = (β1(−F |∇φ|) + β2(P
k(Hεφ)−Hεφ))2δεφ, (3.14)

where β1 is the image term weight and β2 is the data term weight.

3.3 Experimental Results

3.3.1 Database

For testing, we used 100 face images from our own audio-visual database SUTAV.

For each test image, we prepared a hand-marked binary face image having 1 inside

the lip and 0 outside. Comparing the binary ground truth lip image with the

segmented lip region supplies us the segmentation errors. An example face image

and its corresponding binary lip image is shown in Figure 3.4.

3.3.2 Performance Metric

In order to assess the segmentation performance we used the following precision (p)

and recall (r) metrics,

p =
tp

tp + fp
, r =

tp
tp + fn

, (3.15)

where tp , fp and fn denote the true positives, the false positives and the false

negatives with respect to ground truth binary image of the lip, respectively. The

closer p and r are to 1, the better the segmentation. Segmented lip region is equal
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(a) Segmented boundary (b) tp in brown, fp in light

blue and fn in orange.

(p = 0.9178 r = 0.9212)

Figure 3.5: Segmented boundary and its precision-recall image

to tp + fp. Figure 3.5 shows a segmented lip and its tp in brown, fp in light blue and

fn in orange colors.

3.3.3 Results

To make a comparison of the performance of adaptive color space training image

term, we also made the same experiments using the simple gray-level region based

image term in [86] with both shape priors and without shape priors. That region

based image term basically uses the difference between mean intensity inside the

bounded object and mean intensity outside of the bounded object.

Precision and recall results of our method for different color spaces with and

without shape priors, and that of conventional gray-level region based method are

shown in Table 3.1. For adaptive color space segmentation, we take the mean

precision and recall results over all color spaces. At the end, we compare all methods

with respect to their mean precision and recall results.

Example adaptive color space segmentation results are shown in Table 3.2. Left

column shows the results without shape priors, right column shows the results using

shape priors. Each row represents a different color space, from top to bottom; RGB,

R/(R+G), HUE, rg, Combination 1 and Combination 2. Region based gray-level

segmentation results for the same region of interest are shown in Table 3.3. Again

left column shows the result without shape priors, right column shows the result

using shape priors.
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Table 3.1: Precision and recall results

Precision Recall Mean

Region based gray-level without shape priors 0.6151 0.9139 0.7645

Adaptive color space without shape priors: − − −

RGB 0.7316 0.7970 0.7643

R/(R+G) 0.8380 0.8574 0.8477

HUE 0.7955 0.8611 0.8283

rg 0.8521 0.7866 0.8194

Combination 1 0.8444 0.8389 0.8417

Combination 2 0.8952 0.6487 0.7720

Mean of all color spaces 0.8261 0.7983 0.8122

Region based gray-level with shape priors 0.5410 0.9947 0.7679

Adaptive color space with shape priors: − − −

RGB 0.7075 0.9405 0.8240

R/(R+G) 0.8095 0.9315 0.8705

HUE 0.7576 0.9469 0.8522

rg 0.7544 0.9600 0.8572

Combination 1 0.8282 0.9086 0.8684

Combination 2 0.8813 0.7764 0.8288

Mean of all color spaces 0.7898 0.9106 0.8502
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Table 3.2: Adaptive color space segmentation results

Without using shape priors Using shape priors

RGB

R/(R+G)

Hue

rg

Combination 1

Combination 2
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Table 3.3: Region based gray-level segmentation results

Without using shape priors Using shape priors
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

It is experimentally shown that our facial feature extraction method using both the

independent locations model and the dependent locations model outperforms AAM

for the same experimental setup in terms of pixel errors. Approaches like AAM and

ASM are widely used for the purpose of facial feature extraction. These are very

popular methods, however they give favorable results only if the training and test

sets consist of a single person. They can not perform as well for person-independent

general models. AAM uses subspaces of location and texture parameters which are

learned from training data. However, this learning is not probabilistic and every

point in the subspace is considered equally likely. This is highly unrealistic since we

believe some configurations in the subspace may have to be favored as compared to

other configurations. An advantage of AAM is that it takes into account global pose

variations. Our algorithm is modeling the probability distributions of facial feature

locations arising from inter-subject differences when there are no major global pose

variations. It is critical for our algorithm that it takes as the input, the result of a

good face detector.

Dependent locations model gives better results than independent locations model

as expected. Newton optimization usually gives relatively better results than gra-

dient ascent optimization as it additionally takes the second order gradients of the

objective function into account.

Among texture feature extraction methods, DCT and PCA give good results.

In our dependent locations formulation, GMMs are supposed to be trained using

only texture coefficients. When we use only PCA texture coefficients for training
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the GMM, it gives better results as it is appropriate to our formulation. We tried

using combined PCA texture coefficients and location parameters, this combination

achieved better results for independent features model but did not provide much

improvement. We trained the GMMs only with texture coefficients for other feature

extraction techniques.

As it is reasonable, using a data set which is constituted by a more homogenous

selection, that is the selection from same kinds of databases, provides better results.

This way our method can more easily learn the illumination conditions and personal

appearances of a special database.

Our lip segmentation algorithm works well both using shape priors and without

using shape priors, it outperforms conventional gray-level region based segmentation

in all cases. It is shown that R/(R+G) is the best color space when the object of

interest is the lip. Using the gray-level region based segmentation without shape

priors can give visually unpleasant results when facial hair is present in the region of

interest. Imposing shape priors, improves the results visually, but it can only make

little improvement in terms of precision and recall. Imposing shape priors to adap-

tive color space lip segmentation algorithm also improves our method. Shape priors

are especially useful when there are local discontinuities other than lip boundary in

a noisy lip region image.

4.2 Future Work

We were able to get promising facial feature extraction results from independent and

dependent locations assumptions offered in this work. Dependent locations model

improves the independent one. It is in our plans to find better texture parameters.

Using global-pose variation compensation is expected to improve our approach. Us-

ing color information in addition to gray-level intensities can also improve facial

feature extraction results. It is possible to fine tune special parameters experimen-

tally but it would not be fair when comparing our method with general purpose

approaches like AAM. Our method is better utilized for point extraction from face

image but it is possible to use it for other purposes, such as medical imaging. Other

distributions for locations and texture can be used.

For the lip segmentation part, an obvious improvement can be done using other
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color spaces, such as non-linear ones. An implicit polynomial function may be

employed instead of the current signed distance function.

We currently use a linear shape space built with the help of PCA. However, as

stated in [87], the space of signed distance functions is a nonlinear manifold and is

not closed under linear operations. We can improve upon this approach, for instance

by extending a Parzen density estimator to the space of shapes.

One can develop an adaptive weighting between image term and shape term for

our segmentation framework. The weight of the image term may decrease as the

level-set iterate, while the weight of the shape term increases. So that, a faster

convergence is expected in previous iterations. In later iterations, shape priors

will gain more importance and local improvements in lip boundary may give more

pleasant results.

Another possible improvement is to consider inner and outer lip boundaries as

separate objects and employ a multiple object segmentation for inner and outer

bounds of the lip. For this, we need a binary training set labeled both for inner and

outer lip boundaries to build the necessary shape spaces.
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