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ABSTRACT

Proteins are essential players of the cell that control and affect all functions. In proteins,
structural patterns consist of a few amino acids which assemble in a specific arrange-
ment. Due to their specific structures, they are recognized as the functionally important
sites of the proteins, and conserved even in distantly related proteins. Moreover, several
structural patterns merge and form domains which are also associated with the proteins
function.

In this work, we introduced a method for finding structure patterns common to a
protein pair by using graphlet mappings. We presented protein structures with graphs,
and then generate graphlets. Local alignments are produced by mapping the generated
graphlets from protein pairs. Moreover, by merging these local alignments, we tried to
recognize functionally important domains.

These common domains are very useful in protein function prediction, fold clas-
sification and homology relationship detection. In this work, our algorithm was first
applied to fold classification problem and 80% accuracy was observed. Furthermore, our
algorithm was also used for protein function prediction and 97% accuracy was observed.
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PROTEİN FONKSİYON TAYİNİ İÇİN
YAPISAL ÖRÜNTÜ TESPİTİ VE DOMEN TANINMASI

Süveyda Yeniterzi

MS Tezi, 2009

Tez Danışmanı: Doç. Dr. Osman Ug̃ur Sezerman

Anahtar Kelimeler: Yapısal örüntü tespiti, domen tanınması, bölgesel yapı hizalaması,
graf parçacıkları eşlemesi, protein fonksiyon tayini, işlevsel yapı ünitesi tayini

Özet

Proteinler hücrelerdeki fonksiyonları kontrol eden ve etkileyen önemli faktörlerdir. Pro-
teinlerdeki birkaç aminoasitin belirli bir düzen içinde bir araya gelmesi ile yapısal
örüntüler oluşur. Belirli düzenleri nedeniyle proteinlerin fonksiyon olarak önemli yer-
leri kabul edilen bu örüntüler, birbirlerine uzaktan akraba proteinlerde de korunurlar.
Bunun yanında, bu tür birkaç yapısal örüntü bir araya gelerek protein fonksiyonunda
önemli yeri olan domenleri oluşturur.

Bu çalışmada, iki proteindeki ortak yapısal örüntüleri graf parçacıkları eşlemesi
kullanarak bulmaya çalışan bir metodu tanıtıyoruz. Protein yapıları, graf kullanılarak
gösterildi daha sonra da graf parçacıkları yaratıldı. Her iki proteindeki graf parçacıkları
birbirleriyle eşleştirilerek bölgesel yapı hizalamaları elde edildi. Ayrıca bu bölgesel yapı
hizalamaları birleştirilerek fonksiyon olarak önemli domenler bulunmaya çalışıldı.

Bu ortak domenler, protein fonksiyon tayini ve işlevsel yapı ünitesi tayini ile ho-
moloji ilişki tespitinde kullanılabilir. Çalışmada, algoritmamız öncelikle işlevsel yapı
ünitesi tayin etme amacıyla kullanıldı ve %80 doğru sınıflandırma yapıldı. Ayrıca algo-
ritmamız, fonksiyon tayin etme amacıyla da kullanıldı ve %97 doğru fonksiyon ataması
gerçekleştirildi.
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Chapter 1

INTRODUCTION

1.1 Motivation

Proteins are essential players of the cell that control and affect all functions. Their role

is mainly determined by their structure. Likewise, it is the amino acid sequence that

determines the protein’s structure. Therefore, there is a strong relationship among the

sequence, structure and function of the proteins. This relationship is generally used to

solve one of the most challenging problems in bioinformatics: the prediction of protein

function. The classical method for protein function prediction is based on a pairwise

sequential or an overall structural alignment of proteins. If similarities are detected

in the alignment, the information about the function of well-known protein can be

transferred to the successfully aligned unknown proteins [Saçan et al., 2007].

In spite of the relationship between sequence, structure and function of the pro-

teins, the sequence similarity-based and the overall structure similarity-based approaches

have limitations in function prediction. For instance, sequence alignments can provide

insight into protein function; however, the sequence similarity-based approach fails

when new proteins have a very low level sequence similarity with known proteins. Pro-

tein pairs that do not have high sequence similarity may still have similar functions

due to the physicochemical properties conserved at the structural level [Liang et al.,

2003]. Therefore, it has been concluded that the structure of the protein provide better

sensitivity and predictive value for function prediction than does sequence similarity

[Saçan et al., 2008].
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Even though the knowledge of structural similarity has a great importance for

function prediction, this approach fails to consider distantly related proteins that have

only local similarities rather than global similarities. Since protein functions are de-

termined from the specific structural regions, such as catalytic sites, binding sites, and

protein-protein interaction sites, proteins are largely tolerant to mutations that hap-

pened in the non-functional regions of the structure. Thus, it is very common for two

proteins with the same function to show only local similarities even though their struc-

tures are not globally similar. As a result, focusing only on the functionally important

sites rather than the overall structure performs better in function prediction [Saçan

et al., 2007, Ben-Hur and Brutlag, 2003]. The limitations of the above approaches led

us to the development of this thesis.

We propose a method for finding structure patterns common to a protein pair

by using a local alignment algorithm based on graphlet mappings. In our method, the

proteins are represented with graphs and these graphs are used to detect graphlets of

size 3 to 10. Topological similarities between two proteins are discovered by performing

graphlet mapping. Moreover, our algorithm tries to assemble these aligned fragment

pairs into a larger alignment for the purpose of recognizing structurally and functionally

important domains shared between two proteins. Such domains are the most important

factors in the identification of protein’s function. Moreover, since structure patterns

are better conserved than amino acidic sequences [Carugo, 2006], remote homology

relationship between distantly related proteins can be recognized more reliably by using

these local similarities.

1.2 Outline

The organization of the thesis as follows: Chapter 2 presents a brief biological back-

ground and an overview of the related works. In Chapter 3, we explain our approach

in detail. Chapter 4 discusses the experiments and the results. Lastly, the conclusions

and the future works are given in Chapter 5.
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Chapter 2

BACKGROUND AND RELATED
WORKS

2.1 Biological Background

2.1.1 Protein

A protein is composed of a chain of amino acids which are joined together by peptide

bonds. There are a total of 20 amino acids and every amino acid has an amino group

(NH2), a carboxyl group (COOH), one carbon atom at the center which is also known

as the alpha carbon (Cα), and a side chain attached to the Cα. These amino acids

are listed in Table 2.1 [Kyte and Doolittle, 1982, Cooper and Hausman, 2004]. These

amino acids have different biochemical properties such as hydrophilic or hydrophobic

characters, resulted from their side chains. Since these properties affect the interac-

tions of amino acid residues, they have a great influence on protein three-dimensional

structure and as a result protein’s main function. The distribution of hydrophobic and

hydrophilic (polar and charged) amino acids determines the structure of the protein

where the hydrophobic residues try to get a position in the protein core while the

hydrophilic ones prefer to be outside.

When amino acids are strung together into a polypeptide chain, a water molecule

is liberated from each joined amino acids. Therefore, rather than the original amino

acids, the proteins composed of amino acid residues [Setubal and Meidanis, 1997]. These

amino acid residues form the primary structure of the protein. When the sequence of

3



Figure 2.1: α-helices (a-b) and β-sheets (c) [Branden and Tooze, 1999]

amino acids are linked by hydrogen bonds, they form the secondary structures such as

alpha(α) helices or beta(β) sheets. An α-helix on the average has 3.6 residues per turn

and hydrogen bonds are formed between carboxyl and amino groups of the backbone

atoms. An α-helix is one continuous sequence and its ends are generated by polar

residues; therefore, they can be mostly observed on the surface of proteins. Similar to

α-helices, in β-sheets hydrogen bonds are formed between backbone atoms of paralel

strands. β-sheets occupy at least two continuous sequences each with approximately

5 to 10 residues long and either parallel and anti-parallel to each other [Branden and

Tooze, 1999]. Examples to α-helices and β-sheets can be found in Figure 2.1.

α-helices and β-sheets form a spatial arrangement when certain attractions are

present between them. This completely folded structure is called the tertiary structure.

The folded structures of a protein can form an important functional site such as catalytic

or binding sites [Branden and Tooze, 1999]. Therefore, structure of a protein is very

important in function prediction.
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Amino Acid Abbreviations Polarity Charge Hydropathy index

Alanine Ala A nonpolar neutral 1.8
Arginine Arg R polar positive -4.5
Asparagine Asn N polar neutral -3.5
Aspartic acid Asp D polar negative -3.5
Cysteine Cys C nonpolar neutral 2.5
Glutamic acid Glu E polar negative -3.5
Glutamine Gln Q polar neutral -3.5
Glycine Gly G nonpolar neutral -0.4
Histidine His H polar positive -3.2
Isoleucine Ile I nonpolar neutral 4.5
Leucine Leu L nonpolar neutral 3.8
Lysine Lys K polar positive -3.9
Methionine Met M nonpolar neutral 1.9
Phenylalanine Phe F nonpolar neutral 2.8
Proline Pro P nonpolar neutral -1.6
Serine Ser S polar neutral -0.8
Threonine Thr T polar neutral -0.7
Tryptophan Trp W nonpolar neutral -0.9
Tyrosine Tyr Y polar neutral -1.3
Valine Val V nonpolar neutral 4.2

Table 2.1: List of amino acids
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2.1.2 Structural Pattern

A sequence pattern is a biologically important nucleotide or amino acid sequence pattern

that occurs frequently in many DNA strands or polypeptide chains. On the other hand,

a structural pattern is a combination of few three-dimensional structural elements,

which may not be adjacent. In proteins, structural patterns consist of several amino

acids that form a specific geometric arrangement. These geometric arrangements can

be associated with a particular function or a part of larger structural and functional

unit [Branden and Tooze, 1999]. Although some structural patterns are regarded as an

arrangement of secondary structures, such as the four-helix bundle motif; most patterns

consist of several amino acids and they do not depend on any secondary structure. For

instance, subtilisin, a bacterial serine protease, and chymotrpsin, a mammalian serine

protease, have a common pattern called catalytic triad which consists of aspartic acid,

histidine and serine. Even though, these two proteins share a structural pattern, their

overall structures are quite different, and the elements of the catalytic triad are in

different positions in the primary sequence [Petsko and Ringe, 2003].

2.1.3 Domain

A domain is a polypeptide chain or a part of a polypeptide chain which can fold inde-

pendently into a stable tertiary structure. Domains are built from the different combi-

nations of structural patterns [Branden and Tooze, 1999]. They are described as units of

folding [Wetlaufer, 1973], compact structure [Richardson, 1981], function and evolution

[Bork, 1991] which is not surprising since they are all related to each other. Therefore,

domains are very important in finding protein’s function, classifying protein’s fold, and

identifying homology relationships. Proteins may have either one domain or several

domains which are called multi-domain. In multi-domain proteins, each domain can

have a different function independent from the others, or they can work together in a

concerted action. Domains form the functionally important sites of the proteins such as

the catalytic sites of the enzymes or ligand binding sites. Moreover, since domains can

fold independently, they play a significant role in protein folding by accelerating the

6



folding process and reducing the potentially large combination of residue interactions.

2.2 Graph Representation of Protein Structures

Protein structure can be converted into a graph where the nodes represent the amino

acids and the edges represent the contacts between residues. Contact map is one of the

major graph representation techniques used in the literature [Vendruscolo and Domany,

1998, Zemla, 2003, Huan et al., 2004, Gupta et al., 2005, Bartoli et al., 2008, Küçükural

et al., 2008]. In contact maps, the amino acids are represented with one of their atoms

and the chosen atom’s three dimensional coordinates are used in calculations. In order

to decide which atoms represent the amino acids best, Cα, Cβ and several other func-

tional atoms were compared in [Torrance et al., 2005], and it is observed that Cα and

Cβ atoms have a better representation of the amino acids. Therefore, in this work, Cα

atoms are used and it is assumed that two residues are in contact if three dimensional

distances of their Cα atoms are smaller than a threshold. Several optimum distance

thresholds were proposed in the literature such as 5.8Ao [Vendruscolo et al., 1997, Zaki,

2003], 6.8Ao [Miyazawa and Jernigan, 1985, Bahar and Jernigan, 1997, Shental-Bechor

et al., 2005], and 8.6Ao [Zhao and Karypis, 2003, Atılgan et al., 2004, Taylor and Vais-

man, 2006].

Besides the contact maps, another commonly used representation technique of

protein structure is Delaunay tessellated graphs [Atılgan et al., 2004, Taylor and Vais-

man, 2006, Küçükural et al., 2008] which have a different contact definition than contact

maps. In a Delaunay tessellated graph, the edge lengths represents the physical dis-

tances between protein residues. On the other hand, in a contact map, all the edge

lengths are equal to 1, which makes it a relational graph [Taylor and Vaisman, 2006].

In previous studies [Huan et al., 2004, Küçükural et al., 2008], it has been showed that

Delaunay tessellated graph does not represents the structure of the proteins as good

as the contact maps. Because of this, contact maps are employed in this work for the

representation of protein structures.
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2.3 Structural Alignment

Structural alignment is a method for discovering the similarities between proteins based

on the proteins’ shapes and three-dimensional conformations. During the evolution,

protein structure is more conserved than the sequence; therefore, structural alignment

is preferred in detecting evolutionary relationships between proteins with low sequence

similarities. Moreover, structural alignment has been also a valuable tool in protein

fold classification, protein structure modeling, and protein function prediction.

Many different overall structural alignment methods were developed. For instance,

Combinatorial Extension (CE) [Shindyalov and Bourne, 1998] is a popular structural

method which tries to assemble aligned fragment pairs (AFP) into a complete align-

ment. Similar to CE, distance alignment matrix method (DALI) [Holm and Sander,

1996] also breaks each structure into a series of fragments and brings together these

fragments into a larger alignment using Monte Carlo simulation. Another widely used

structure alignment method is sequential structure alignment program (SSAP) [Orengo

and Taylor, 1996], which makes use of dynamic programming for detecting and com-

bining local alignments. Finally, a recent method TM-align [Zhang and Skolnick, 2005]

also uses dynamic programming with a novel method for weighting its distance ma-

trix. TM-align uses inter structural residue distance vectors and an extended version

of LG-scoring matrix TM-scoring. This algorithmic improvements accelerate the con-

vergence of dynamic programming while overcoming the length difference problem of

protein pairs. Therefore, TM-align performs better in both speed and accuracy over

the existing methods. The quality of an alignment is measured with different methods

such as root mean square deviation (RMSD), Levitt-Gerstein score (LG score) [Levitt

and Gerstein, 1998], and local-global alignment (LGA) measure [Zemla, 2003].

2.4 Structural Pattern Detection

Many different methods have been developed in order to detect common structure

patterns between proteins. Some algorithms rely on the structural alignments generated

8



by superposition [Shapiro and Brutlag, 2004] while others apply geometric hashing to

protein pairs [Nussinov and Wolfson, 1991, Barker and Thornton, 2003]. In this thesis,

we focused on graph based approaches.

In one of these approaches, [Milik et al., 2003], the authors developed a search

method for locating functionally and structurally common structures of protein pairs.

Rather than using the backbone atoms, they chose specific atom types for each amino

acid and found cliques of size four. Similar to our algorithm, discovered cliques from

both proteins were compared and then merged to create a larger and continuous graph.

Graph theoretical representation and inexact subgraph matching approaches are

also used in the determination of structural patterns. Similar to our method, in

[Küçükural, 2008] the authors used contact maps for protein structure representation,

and then used network properties such as connectivity, centrality, cliquishness to cap-

ture similar and conserved regions of proteins.

Another graph theoretic approach, [Wangikar et al., 2003], tried to detect struc-

tural patterns common in proteins from the same family. The method first generates

all possible structural patterns in all proteins structures, and then detects the most

observed pattern on the basis of content and geometric similarity.

Lastly, in [Jia et al., 2009], the authors developed a method called Approximate

Graph Mining (APGM) which efficiently extracts and scores structure patterns from

diverse proteins. Similar to our method, they represent the protein structures using

graphs and take advantage of the substitution matrices in order to devise a novel graph

data mining method to identify approximate matched frequent subgraphs. They applied

their algorithm in protein fold classification problem where each discovered structure

pattern was used as a feature in their classification scheme.

2.5 Domain Prediction

Protein domain prediction is significant for several reasons [Ingolfsson and Yona, 2008]:
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Functional analysis of proteins:

Since domains are associated with protein function, finding domains is necessary for

understanding the protein’s function. Moreover, since domains are recurring patterns,

determining the function of a domain will be useful in function prediction of many

proteins which contain the same domain.

Structural analysis of proteins:

Since domains can fold independently into a stable tertiary structure, then protein

structure determination is likely to be more successful if the protein can be divided into

independent units such as domains.

Protein design:

Scientists make use of domain knowledge in protein engineering which is the design of

new proteins and chimeras.

In the rest of this section, domain prediction methods will be explained briefly

[Ingolfsson and Yona, 2008].

2.5.1 Experimental methods

In these experimental methods, a protein is chopped into its domains using proteases

which are cellular enzymes that can cleave bonds between amino acids. By carefully

manipulating experimental conditions, scientists make sure that the proteases can only

access relatively unstructured regions of the protein, so that each fragment will contain

a domain. Then with other experimental methods scientists try to understand the

structure and function of these domains [Parrado et al., 1996].

2.5.2 Methods that use three dimensional structure

All methods in this category are based on the same general principle which assumes

that domains are structurally compact and separate substructures. The differences in

these methods are in the slightly different definitions of structurally compact substruc-

tures, and in the algorithms employed to search for these substructures. Some of these
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methods use various approaches to cluster residues into domains [Lesk and Rose, 1981],

while others use top-down divisive approaches to split a protein into its domains [Xu

et al., 2000, Alexandrov and Shindyalov, 2003].

2.5.3 Methods that are based on structure prediction

Since structure information is available for only a small number of proteins, several

methods [Rigden, 2002, George and Heringa, 2002a] approach the domain prediction

problem by employing structure prediction methods first. These algorithms can be

quite effective in predicting domains; however, because of the structure prediction step,

they are computationally intensive.

2.5.4 Methods based on similarity search

Methods that are based on similarity search use homologous sequences detected in a

database search to predict domains. Most of these algorithms [Gracy and Argos, 1998,

Heger and Holm, 2003, Portugaly et al., 2007] start with an all-vs.-all comparison of

sequence databases, and then the similar sequences are clustered and split into domains.

2.5.5 Methods based on multiple sequence alignments

Another domain detection method is based on multiple sequence alignments (MSA).

MSA-based approaches are the basis of several popular domain databases, such as Pfam

[Bateman et al., 2004], and SMART [Schultz et al., 1998] which combine computational

analysis and manual verification. Other MSA-based approaches [George and Heringa,

2002b] search their query sequences in a database to collect homologs and generate a

MSA which is then processed to find domains. However, the quality of these methods

depends on the number and composition of homologs used to construct the MSA.

2.5.6 Methods that use sequence-based features

Some methods try to utilize sequence-based features such as secondary structure in-

formation [Marsden et al., 2002], solvent accessibility, evolutionary profile, and amino
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Figure 2.2: Yearly growth of the protein structures with the annotation ‘Unknown
Function’ deposited in the PDB

acid entropy [Chen et al., 2006] for domain prediction.

2.6 Function Prediction

Protein function prediction is one of the most challenging problems of bioinformatics.

Even though function of a protein can be determined from its’ structure, currently

many proteins in the Protein Data Bank (PDB) are classified as ‘Unknown Function’

as can be seen in Figure 2.2. Besides these annotated proteins, many more proteins

with unknown function are not even annotated. Therefore, what we see in Figure 2.2

is just the tip of the iceberg.

Many approaches were developed for predicting the protein’s function and these

approaches are mostly based on detecting the similarities between a functionally an-

notated protein and the query protein, and then transferring the function information.

During the evaluation of these approaches, three methods are generally used: predic-

tion of Gene Ontology (GO) terms [Martin et al., 2004, Conesa et al., 2005], ligand

binding site [Brylinski and Skolnick, 2008], and Enzyme Commission numbers [Dobson

and Doig, 2005, Syed and Yona, 2009]. In this work, prediction of enzyme commission

numbers is used for the evaluation purpose.
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2.6.1 Prediction of Enzyme Commission Numbers

Enzymes are mostly protein based biomolecules that accelerate the rate of chemical

reactions in a living organism. During these reactions, they convert a specific set of

substrates into specific products. Since enzymes are selective for their substrates, they

increase rates of only a few reactions which make the prediction of enzyme function an

important problem.

The specific functions of enzymes are derived from their three dimensional struc-

tures, especially their active sites. Active site of an enzyme is the catalytic region that

binds to the substrate and then carries out the reaction. Catalytic site structures are

extremely conserved between distantly related enzymes. Since the catalytic site deter-

mines the activity of an enzyme, they can also be very similar in unrelated enzymes of

similar function, such as the Ser-His-Asp catalytic triad [Torrance et al., 2005].

Many different methods were proposed for the prediction of enzyme function.

The earlier researches focused on the sequence-based [Shah and Hunter, 1997] and the

structure-based approaches [Rost, 2002]; however, lately different approaches based on

alternative representation of proteins became popular. Features extracted from proteins

such as secondary structure elements, contact energies, amino acid compositions, and

physio-chemical properties are used for enzyme function prediction [desJardins et al.,

1997, Cai and Chou, 2004, Han et al., 2004, Dobson and Doig, 2005, Borro et al.,

2006, Syed and Yona, 2009]. Furthermore, information such as proteins’ subcellular

locations, tissue specificities and organism classifications are retrieved from databases

for the same purpose [Lee et al., 2007]. Lastly, approaches that focused only on the

functional regions such as catalytic sites were also proposed [Ben-hur and Brutlag, 2004,

Torrance et al., 2005].

The International Union of Biochemistry and Molecular Biology have developed

a nomenclature for enzymes, the Enzyme Commission number (EC number) [IUBMB,

1992], which is based on the function of an enzyme. In this numerical classification

system, every enzyme consists of the letters ‘EC’ followed by four numbers seperated by

periods such as EC.X.X.X.X. The first number indicates the general type of chemical

reaction catalyzed by an enzyme. This top level classification divides enzymes into
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6 categories: oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases.

The remaining three numbers represent a progressively finer classification of the enzyme

and this classification is particular to each class. For instance, oxidoreductase class

contains the enzymes that catalyze the transfer of electrons from one molecule (donor)

to another (acceptor). In this class, second EC number represents the donor molecule,

third number represents the acceptor molecule, and lastly fourth number represents the

substrate [Ben-Hur and Brutlag, 2003].

It is important to note that EC numbers do not specify the enzymes; they clas-

sify the enzyme-catalyzed reactions. According to this classification scheme, different

enzymes form different organisms have the same EC number if they catalyze the same

reaction which is only possible if they share the same catalytic site structure. Therefore,

in the EC number prediction systems, searching for similar catalytic site structure will

perform better than using sequence or overall structure alignments for the following

reasons [Torrance et al., 2005]:

• In order to carry out similar reactions, different proteins may independently evolve

the same catalytic site structure. This phenomenon is known as convergent evo-

lution and only the similar catalytic site structure can be used to predict the

common function between these different proteins.

• In homologous enzymes of similar function, the catalytic site structure is con-

served while the remaining protein structure has diverged to the degree that

overall structure or sequence alignment cannot be used to predict the function.

• Although it is possible to identify distant homologues enzymes using the sequence

methods, there may exist some ambiguities in the alignment, and a comparison

of the catalytic site structures can be used as a disambiguation method.

• Moreover, similar catalytic sites that are spread over multiple protein chains can

be identified easily by searching structurally similar catalytic sites rather than

performing sequence or overall structural alignments.

• It is possible that two enzymes with different functions can be identified as ho-

mologues based on their sequence or overall structural alignments. In order to
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prevent the possibility of assigning these two enzymes to the same function class,

their catalytic site structures have to be checked. Since the enzymes have different

functions, their catalytic site structure will be dissimilar and this will prevent the

misclassification.

2.7 Fold Classification

Proteins are made of polypeptide chains which are folded into a functional three di-

mensional structure. The folding process is the result of the interactions between the

amino acids. These certain attractions form a spatial arrangement of the secondary

structures. Therefore, finding the secondary structures of a protein is an important

step in finding the three dimensional structure since it can reduce the search space.

A protein can be classified into fold classes according to its secondary structure

components. Several databases have been developed for this purpose. Structural Clas-

sification of Proteins (SCOP) [Murzin et al., 1995] database is a manually created

database for fold classification. SCOP database classifies proteins into structural do-

mains based on their amino acid sequences and three dimensional structures. It has

four hierarchical levels: class (general structure of the domain), fold (similar arrange-

ments of secondary structures without evolutionary relation), superfamily (indicative of

demonstrable evolutionary relationship without sequence homology), and family (some

sequence similarity).

Besides SCOP, more automatic databases also exist such as CATH Protein Struc-

ture Classification [Orengo et al., 1997] database and Families of Structurally Simi-

lar Proteins (FSSP) [Taylor and Radzio-Andzelm, 1994] database. CATH is a semi-

automatic classification system which also has four hierarchical levels: class (overall

secondary-structure content of the domain), architecture (a large-scale grouping of

topologies which share particular structural features), topology (high structural simi-

larity without homology, equivalent to a fold in SCOP), and homologous superfamily

(indicative of a demonstrable evolutionary relationship, equivalent to the superfamily

level of SCOP). On the other hand, FSSP is purely automatically created database of
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Figure 2.3: Yearly growth of protein structures in PDB and SCOP

structurally superimposed proteins generated using the DALI algorithm. This database

does not classify the proteins. It compares the protein structures and allows the user

to draw their own conclusion. Other automatic fold classification methods [Tan et al.,

2003, Zerrin et al., 2004, Chen and Kurgan, 2007, Shamim et al., 2007] were also de-

veloped for fold classification.

Even though, important parts of the classification are performed manually in

CATH, most of the work is done automatically. SCOP provides a better classification

than CATH and all the other existing methods. Its’ advantage over other systems is

making use of human expertise which is needed to decide whether certain proteins are

evolutionary related and therefore should be assigned to the same superfamily, or their

similarity is a result of structural constraints and therefore should be assigned to the

same fold. However, since SCOP is a manually generated database, it is incomplete

and not up to date. If the yearly growth of protein structures in PDB and SCOP is

compared, the gap between the number of PDB and SCOP structures grows in the last

five years as can be seen in Figure 2.3. Therefore, there is a need for an automatic

method that classifies proteins into different folds as accurate as SCOP does.
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Chapter 3

METHODOLOGY

3.1 Introduction

Structural patterns consist of a few amino acids which assemble in a specific arrange-

ment. Due to their specific structures, they are recognized as the functionally important

sites of proteins, and even conserved in distantly related proteins. In our approach, we

first represent the protein structures with graphs, and then generate the graphlets. In

order to find the common structural patterns in protein pairs, local alignments are pro-

duced by mapping the generated graphlets from the same topologies. All the graphlet

mappings are ranked with a scoring function which considers the residue distribution

similarities of the mapped graphlets, connectivity, and evolutionary similarities of the

mapped amino acids. Since our scoring function is based on structural arrangement

and biochemical properties of amino acids, the graphlet mappings with high scores are

treated as local structural alignments. In the rest of this thesis, graphlet mappings and

local structural alignments are used interchangeably.

Domains are also associated with proteins function and they are built from struc-

tural patterns. Therefore, by merging the graplet mappings, we aim to construct func-

tional domains. Moreover, many proteins have a multi domain structure and these

different domains are associated with different functions. Our algorithm is designed to

handle such situations by constructing all possible domains. A schematic illustration of

our method is shown in Figure 3.1, and in the following sections, each step is explained

in detail.

17



Figure 3.1: A schematic illustration of the methodology

3.2 Structural Pattern Detection

3.2.1 Contact Map Generation

The contact map is one of the major graph representation techniques for protein struc-

tures where the nodes represent the amino acids and the edges represent the contacts

between residues. In this work, we assume that two residues are in contact if the three

dimensional distances of their Cα atoms are smaller than a threshold. Several different

optimum distance thresholds were proposed in the literature such as 5.8Ao [Vendrus-

colo et al., 1997, Zaki, 2003], 6.8Ao [Miyazawa and Jernigan, 1985, Bahar and Jernigan,

1997, Shental-Bechor et al., 2005], and 8.6Ao [Zhao and Karypis, 2003, Atılgan et al.,

2004, Taylor and Vaisman, 2006]. All these thresholds were used in our experiments

and the optimum distance threshold was decided according to the experimental results.

In the contact map generation step, three-dimensional atomic coordinates of all

the residues are retrieved from the PDB files for each protein. These atomic coordinates

are used to calculate the Euclidean distances between each residue pair. Two residues
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are assumed to be in contact if their distance is smaller than the threshold. During

the implementation, the contact maps are represented with a binary two-dimensional

matrix filled with 0. If two residues, i and j, are in contact, then the ij element of the

matrix is changed to 1.

3.2.2 Graphlet Generation

After representing the structure of the proteins as graphs, the next step is to find

the graphlets. A graphlet is a small connected induced subgraph of a graph. In this

definition it is important to emphasize the definition of induced subgraph. A subgraph

of G is a graph whose nodes and edges belong to G. On the other hand, an induced

subgraph H of G is a subgraph of G, such that the edges of H consist of all edges of G

that connect the nodes of H [Przulj et al., 2004, Hormozdiari et al., 2007].

Graphlets with 3, 4, 5 and 6 nodes have 141 possible graphlet topologies as shown

in Appendix A. In this work, all these possible graphlet topologies are considered. Fur-

thermore, we consider the cliques of sizes 7, 8, 9, and 10, which makes a total of 145

topologies. All these graphlets are generated by a program developed by Fereydoun

Hormozdiari as the implementation of the paper [Hormozdiari et al., 2007]. The pro-

gram takes contact maps as input and calculates the frequencies of all the graphlet

topologies. If the frequency of a topology is below 1000, all the graphlets for that

topology are generated.

For each graphlet topology, the algorithm starts by matching the topology’s high-

est connected node to the nodes of the contact map, and considers each neighbor of

that node as a possible neighbor of the node in the topology. Then the total number

of counted graphlets are divided by the over counting factor of that topology. Over

counting factor of a topology depends on the number of nodes with the highest con-

nectivity value and the number of neighbors with similar contacts. For instance, two

different topologies, topology 6 and 7 are shown in Figure 3.2. In topology 6, the node

with the highest node connectivity is the 2nd node. First, the algorithm tries to match

this node to contact map nodes. When possible matches are discovered, the neighbors

of the matched nodes are compared. As you can see, in topology 6, the 1st and the
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3rd nodes have similar connections. Because of this similarity, this graphlet is counted

twice during the comparison. Therefore, the over counting factor of topology 6 is 2. On

the other hand, there are two nodes, the 1st and the 4th, with the highest connectivity

value in topology 7. Moreover, these nodes’ neighbors, the 2nd and the 3rd nodes have

similar contacts. Therefore, this graphlet will be counted twice for the 1st node, and

again twice for the 4th node, which makes the over counting factor equal to 4.

Figure 3.2: Topology 6 and 7

In the generated graphlets, the nodes are labeled with the residue numbers and

their arrangement follows the graphlet topology. For instance, as seen in Figure 3.3,

topology 11 consist of five nodes and there are only four edges which connects the 2nd

node to all the other nodes. Three example graphlets of this topology for two different

proteins are shown in Figure 3.4. In this representation, the letters represent the one

letter code of the amino acids, and the numbers in the parenthesis represent the residue

numbers. As you can see, the residue numbers are not always in a sorted order. Their

order is decided according to the topology. After the graphlet generation, the next step

is finding isomorphic graphlets between two proteins.

3.2.3 Mapping Graphlets

At this step, we attempt to discover the topological similarities between protein pairs

by mapping the generated graphlets. When graphlets of the same topology are detected

for protein pairs, their isomorphism is checked. In this work, the isomorphism relation

is defined as follows: given a labeled graphlet g1 from Protein 1 and a labeled graphlet
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Figure 3.3: Topology 11

Protein 1
Topology 11 Node 1 Node 2 Node 3 Node 4 Node 5
Graphlet 1: Y (13) I (15) M (34) I (45) E (47)
Graphlet 2: N (87) D (92) K (90) V (95) L (119)
Graphlet 3: W (89) M (86) A (93) H (108) G (120)

Protein 2
Topology 11 Node 1 Node 2 Node 3 Node 4 Node 5
Graphlet 1: F (17) V (21) M (33) I (35) Q (36)
Graphlet 2: Y (45) L (32) A (47) H (61) G (82)
Graphlet 3: N (96) D (119) R (115) I (121) I (124)

Figure 3.4: Examples of graphlets

g2 from Protein 2, the two graphlets are isomorphic when the bijection between the

vertex sets of g1 and g2 will preserve the arrangements of the residues. According to this

definition, our isomorphism detection is much simpler than the classical isomorphism

definition. For instance, if we keep ordering of the g1’s node constants; then in classical

isomorphism, the number of possible graphlets that needs to be checked is equal to

the permutation of the number of g2’s nodes. However, according to our definition,

the only permutation that enables a structural alignment is the one that has the same

residue ordering as the graphlet it’s aligned. For example, in Figure 3.5 and Figure 3.6,

example graphlet mappings for topology 11 are shown. The first graphlet mapping is

possible because at the end of the mapping, the aligned nodes of the proteins are in

an ascending order without any disoriented mapping. On the other hand, the second

graphlet mapping is not possible since the mappings become disoriented when the nodes

are sorted. For the graphlets in Figure 3.4, all possible mappings are given in Figure
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3.7.

Figure 3.5: A possible graphlet mapping

Figure 3.6: An impossible graphlet mapping

If an isomorphism exists between two graphlets according to our definition, then

that local alignment is treated as a potential structural pattern shared by the two

proteins. In order to decide whether a mapping is a definite structural pattern, it needs

to be supported with the similar biochemical properties of the matched residues, or

similar residual distributions of the graphlets. For this reason, in the next step, all

possible mappings are ranked using a scoring function.
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Node 1 Node 2 Node 3 Node 4 Node 5
Protein 1 Graphlet 1: Y (13) I (15) M (34) I (45) E (47)
Protein 2 Graphlet 1: F (17) V (21) M (33) I (35) Q (36)

Protein 1 Graphlet 2: N (87) D (92) K (90) V (95) L (119)
Protein 2 Graphlet 3: N (96) D (119) R (115) I (121) I (124)

Protein 1 Graphlet 3: W (89) M (86) A (93) H (108) G (120)
Protein 2 Graphlet 2: Y (45) L (32) A (47) H (61) G (82)

Figure 3.7: Examples of graphlet mappings

3.2.4 Scoring

In this step, all the generated mappings are assigned a score based on their aligned

amino acids’ similarities, graphlets’ residue distributions, and nodes’ connectivity simi-

larities. Therefore, our scoring function consists of three scores and the details of these

scores are explained below.

3.2.4.1 Evolutionary Similarity Score

Amino acids have biochemical properties that influence their interchangeability in evo-

lution. For instance, hydrophobic residues more likely get substituted for one another

than do those of polar residues. Therefore, while calculating the similarity between

two graphlets, it is important to use a scoring scheme that considers the evolutionary

similarity and interchangeability of paired amino acids [Setubal and Meidanis, 1997].

For this reason, BLOSUM (BLOcks of Amino Acid SUbstitution Matrix) scores are

used as one of the scoring function parameters.

BLOSUM matrices have been first proposed in [Henikoff and Henikoff, 1992] as a

substitution matrix for protein sequence alignment. They are derived from aligned pro-

tein blocks and several sets were calculated from different blocks, each with a different

sequence similarity percentage. For instance, BLOSUM62 matrix is constructed from

sequence alignments with more than 62% identity. In this work, aligned residue pairs

are scored using the BLOSUM62 matrix since it is specially designed for comparing

moderately distant proteins. The BLOSUM62 matrix is given in Appendix B.

For two graphlets, g1 and g2, the evolutionary similarity score, E (g1, g2), is calcu-
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lated as follows: for each aligned amino acid pair, BLOSUM62 score is added and then

the total BLOSUM62 score is divided to the number of amino acid pairs so that the

average BLOSUM62 score can be obtained. This average residue BLOSUM62 score is

used as the evolutionary similarity score of the mapping. The evolutionary similarity

score values range from -4 to 11 due to the values of the BLOSUM62 matrix.

3.2.4.2 Residue Distribution Score

Besides evolutionary similarity, for a structurally consistent mapping, the distribution

of the residues, i.e. the relative distances between the neighbor residues on the linear

ordering of the protein, must be similar. In order to incorporate this property, the

residue distribution score is defined as follows:

R (g1, g2) =
1

n− 1

n−1∑
i=1

min {|g1 (i+ 1)− g1 (i)| , |g2 (i+ 1)− g2 (i)|}
max {|g1 (i+ 1)− g1 (i)| , |g2 (i+ 1)− g2 (i)|}

(3.1)

where, g1 and g2 are the graphlets, n is the number of nodes, and g() is the function

that returns the residue number of a node. Equation 3.1 returns a value between 0 and

1. Therefore, graphlet mappings with similar residue distributions are rewarded with

scores close to 1, whereas mappings with different residue distributions are penalized

with scores close to 0.

3.2.4.3 Connectivity Score

Our last score is based on connectivity, a graph theoretical property that measures the

number of neighbors of each residue in the protein [Küçükural et al., 2008]. Since we

are looking for functionally shared motifs, it is important to have node alignments that

have similar connectivity values. If in a mapping, the connectivity values of the aligned

nodes are very different, then it is very unlikely that two graphlets share the same

functionality. In order to reward residue alignments with similar connectivity values,

the connectivity score is calculated as follows:

C (g1, g2) =
1

n

n∑
i=1

min {conn (g1 (i)) , conn (g2 (i))}
max {conn (g1 (i)) , conn (g2 (i))}

(3.2)
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where, g1 and g2 are the graphlets, n is the number of nodes, and conn() is the function

that returns the connectivity value of a residue. Similar to the residue distribution

score, the connectivity score also assigns scores close to 0 if the graphlet mappings have

a very different node connectivity.

After all three scores are calculated, the total score is calculated as follows:

TotalScore (g1, g2) = coef1 ∗ E (g1, g2) + coef2 ∗R (g1, g2) + coef3 ∗ C (g1, g2) (3.3)

where the coef ’s represents the coefficients that the scores are multiplied with.

3.2.4.4 Parameter Optimization

As shown in Equation 3.3, our scoring function is the linear sum of R, C, and E scores.

These score values differ greatly from each other since the E score can be any value

between -4 and 11 while the R and the C scores are restricted to the interval between

0 and 1. Because of this, each score has a different weight on the total score. In order

to prevent this, we decided to add coefficients to our scoring function. Moreover, with

optimum coefficients, we can also achieve a better ranking of our mappings. For finding

the optimum parameters, multidimensional linear regression was performed where the

TM-align similarity score which will be explained in Section 4.1.2 was used as the

dependent variable and the R, C, and E scores were used as the predictor variables.

The results of the regression analysis will be given in Section 4.1.4.

When all the graphlet mappings are scored, they are sorted in preparation for the

merging step.

3.3 Domain Recognition

3.3.1 Merging Graphlet Mappings

Local structural alignments are obtained in the previous step with the graphlet map-

pings. It is possible to detect domains by extending these local alignments into longer

alignments. Therefore, after the mappings are scored and ranked, we merge these map-
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pings in order to obtain longer alignments or trees as we have called them. Our merging

process is based on three conditions:

Condition I

Two mappings can be merged if they have at least one common residue pair. For

instance, the mappings in Figure 3.8 can be merged due to their common amino acid

alignment G(32)-G(34).

Figure 3.8: Example for condition I

Condition II

Two mappings can be merged if their residue pairings do not conflict. For example,

the mappings in Figure 3.9 cannot be merged since the first mapping’s G(32)-G(34)

and G(47)-G(47) alignments are in conflict with the second mapping’s G(32)-G(47)

alignment. As seen in this example, G(32) and G(47)are aligned with each other in

Mapping 2, while they are aligned with different residues in Mapping 1.

Figure 3.9: Example for condition II

Condition III

Two mappings can be merged if there is no conflict in their residue orderings. For

instance, the mappings in Figure 3.10 cannot be merged because the second mapping’s
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L(45)-I(60) alignment disrupts the ascending residue order of second sequence in the

merged mapping G(34) I(60) G(47).

Figure 3.10: Example for condition III

If two alignments satisfy all the three conditions, then they can merge and form

a longer alignment. In our algorithm, a large tree can be constructred by merging

mappings starting from the highest scoring one. However, this algorithm ignores two

probable circumstances. The first one is if we only focus on the best scoring mapping,

then a mapping with a slightly smaller score can be ignored if it contains residues from

a completely different portion of the proteins. Since they do not have a common residue

pair, the second mapping will be lost in the merging process even though it is a correct

alignments. This is a very common case for multi-domain proteins.

The second probable case is although we tried to perfect our scoring scheme with

coefficients obtained from the regression analysis which will be explained in detail in

Section 4.1.4, it is not definite that the highest scoring mapping is always the best

alignment. Sometimes, a mapping which conflicts with the best scoring mapping can

be a better alignment. In that case, again this mapping will be lost in the merging

process.

In order to prevent the above two situations, all possible trees are generated in

the merging process. The merging process starts from the highest scoring mapping, and

continues with the next higher score mapping. All new mappings are first compared

with the existing trees to check whether they have at least one common residue pairing.

If they have no common residue pairing, than a new tree is formed for the mapping;

however, if they have a common pair, then these trees and the mapping are checked for
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the situations below:

• If the mapping is in conflict with these trees; then a new tree is created for that

mapping.

• If the mapping satisfies conditions II and III with one of the existing trees, then

the mapping is added to that tree.

• If the mapping satisfies conditions II and III with more than one of the existing

trees, then these trees are checked with each other in order to detect whether they

are in conflict or not:

– If all these trees are in conflict, then the mapping is added to the one with

the highest average node score.

– If some of the trees are not in conflict, then these trees are merged and

the mapping is added to this new merged tree. With this condition, trees

that cover different portions of the proteins may be merged and one global

alignment can be formed.

The flow diagram of the merging algorithm is given in Figure 3.11.
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Figure 3.11: Flow diagram of the merging algorithm
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Chapter 4

EXPERIMENTS AND RESULTS

4.1 System Improvement

After the algorithm design, we tried to improve the efficiency of our scoring function

and determine an optimum contact map threshold by performing several experiments

on a small data set. In this section, the details of these experiments are explained along

with the data set and the evaluation criteria.

4.1.1 Data Set

We performed all our experiments on a set of protein pairs. These proteins were cho-

sen from ASTRAL 40 database [Chandonia et al., 2004] which contains protein pairs

with sequence identity less than 40%. This database was created according to SCOP

classification; therefore, the protein pairs are remote homologous and from the same

sub-family. Random 10 protein pairs were chosen. These protein pairs, their lengths,

SCOP families, and the sequence similarity percentages can be found in Table C.1 in

Appendix C.

4.1.2 Evaluation

Since we focused on local structural alignments, it is not possible to evaluate our align-

ment results with measuring techniques such as RMSD value, LG score, or LGA mea-

sure. Therefore, we decided to evaluate our local alignments by comparing them with

the results of a protein overall structural alignment method. We used TM-align [Zhang
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and Skolnick, 2005] because it has better accuracy than other structural alignment

methods. For each mapping generated by our method, its’ similarity to the alignment

resulted from TM-align is detected and a TM-align similarity score is assigned. The

TM-align similarity score is calculated as follows: our aligned residue pairs are com-

pared with the pairs aligned by TM-align. The number of the same residue alignments

is divided to the alignment length, which gives us the similarity percentage of the two

alignments. An example comparison is given in Figure 4.1 where all residue alignments

are same except the last one which therefore returns an 83.33% similarity score.

Our alignment:

A(16) G(32) T(84) C(34) G(47) L(86)
A(17) G(34) I(83) S(36) G(47) V(113)
TM-align alignment:

A(16) G(32) T(84) C(34) G(47) L(86)
A(17) G(34) I(83) S(36) G(47) V(92)
Alignment accuracy according to TM-align : 83, 33%

Figure 4.1: Example TM-align comparison

Observing a graphlet with clique of size 7, 8, 9 or 10 in a contact map is a very

low probability. For this reason, in all our experiments, the detected mappings always

consist of 4, 5 or 6 node alignments. Possible TM-align similarity scores are 0%, 25%,

50%, 75%, 100% for a mapping with 4 residue alignments; 0%, 20%, 40%, 60%, 80%,

100% for a mapping with 5 residue alignments; and 0%, 16.66%, 33.33%, 50%, 66.66%,

83.33%, 100% for a mapping with 6 residue alignments.

4.1.3 Determining the Score Thresholds

As explained previously in Section 3.2.1, in the literature, different cutoff distances

such as 5.8Ao, 6.8Ao, and 8.6Ao have been proposed for contact map generation. All

three cutoff distances were evaluated during our system development. Three different

contact maps were generated for all the twenty proteins. When these contact maps

were compared with each other, it was observed that the contact maps produced with
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thresholds 5.8Ao and 6.8Ao are same for all the proteins except one. Therefore, only

contact maps with 6.8Ao and 8.6Ao thresholds were used in the rest of the experiments.

In the next step, the created contact maps were used to generate graphlets for all

the 145 different topologies shown in Appendix B. The graphlets of the two proteins

were mapped for each protein pair. During this mapping process, only the graphlets

from the same topologies, and the similar residue orderings were aligned. As stated

before, the resulted mappings were compared with the alignments produced by TM-

align in order to calculate the TM-align similarity score. Moreover, as explained in

Section 3.2.4, the mappings were scored according to the evolutionary and connectivity

similarities of the aligned amino acids and the residue distribution similarity of the

aligned graphlets. We compared this score with the TM-align similarity score in order

to determine the thresholds for our scoring function components which are R score for

the residue distribution similarity, E score for the evolutionary similarity, and C score

for the connectivity similarity. The frequencies of the scoring function components were

determined for each TM-align similarity score. For instance, all the mappings’ R scores

were divided into intervals of size 0.1, and the number of mappings was counted within

these intervals for each TM-align similarity score. In order to clarify the methodology,

an example frequency table for R score is given in Table 4.1 for 8.6Ao contact map

threshold. Similar to the R score, intervals of size 0.1 were used for C score which also

takes values between 0 and 1. On the other hand, since E score can take values ranging

from -4 to 11, we used intervals of size 0.5 for E score.

Table 4.1: R score frequency table for graphlet mappings generated with 8.6Ao contact
map threshold
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When the frequencies were determined for all the score intervals and TM-align

similarity scores, we observed that in all ten protein pairs, we have many mappings

with 100% TM-align similarity score. For this reason, we decided to focus only on the

TM-align similarity scores of 100% for determining our score thresholds. The number of

mappings with 100% TM-align similarity score was determined for each interval of the

three scoring function components. These values are represented in the graphs below

in Figure 4.2, Figure 4.3, and Figure 4.4 which is a detailed version of Figure 4.3.

Figure 4.2: The distribution of E score for the number of mappings with 100% TM-align
similarity score

Figure 4.3: The distribution of R and C scores for the number of mappings with 100%
TM-align similarity score
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Figure 4.4: Detailed distribution of the R and C scores for the number of mappings
with 100% TM-align similarity score

As seen in Figure 4.2, for 6.8Ao contact map threshold, none of the mappings with

100% TM-align similarity score has E score less than -3, and for 8.6Ao contact map

threshold, none of the mappings have E scores less than -2.5. Furthermore, as seen in

Figure 4.4, for both contact map thresholds, no mapping exists with an R score less

than 0.5 or C score less than 0.6. Therefore, we used these values as score thresholds

in our scoring function. As a result, graphlet mappings that have evolutionary less

similar amino acid alignments, or mappings with different residue distributions were

eliminated in the scoring section. When these eliminations were performed for the

graphlet mappings of ten protein pairs, a minimum 9.97% and a maximum 38.39%

decrease was observed in the number of mappings generated with 6.8Ao contact map

threshold. These percentages are even more drastic for mappings generated with 8.6Ao

contact map threshold, with a minimum 40.14% and maximum 68.11% decrease. The

numbers of eliminated and remained mappings for each contact map cutoff distance are

represented in Figure 4.5.

4.1.4 Determining the Coefficients of the Scoring Function

As mentioned in Section 3.2.4.4, multidimensional linear regression was performed with

the purpose of determining the scoring function coefficients. The coefficients obtained

34



Figure 4.5: The numbers of eliminated and remained mappings

from the regression are given in Table 4.2 and Table 4.3. In addition, other regression

statistics can be found in Appendix D.

In the multidimensional linear regression, several approaches for selecting the

subset of predictor variables were proposed. In statistical methods, the order of the

predictive variables entering into the model is determined according to the strength

of their correlation with the dependent variable. In our regression analysis, we used

the stepwise regression which tests the regression model at each stage for predictive

variables to be included or excluded. The best model in our experiment was the case

that includes all three predictive variables to the model. This result indicates that

all the three scores in our scoring function are significant and necessary for a good

alignment.

Furthermore, when the determined coefficients are compared between each other,

for both regression models, E score’s coefficient is the minimum one. This result was

expected because while the intervals for the E score values are very wide, between -4 and

11; the intervals for the R and C score values are very close, between 0 and 1. Moreover,

it has been observed that C score has the biggest coefficient in both regression models
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Unstandardized Coefficients Standardized Coefficients
Model B Std. Error Beta t Sig.

(Constant) -124.783 .394 -316.810 .000
C Score 160.159 .458 .361 349.600 .000
E Score 9.656 .028 .350 343.708 .000
R Score 29.262 .237 .124 123.711 .000

Table 4.2: Coefficients of the scoring function for graphlet mappings generated with
6.8Ao contact map threshold

Unstandardized Coefficients Standardized Coefficients
Model B Std. Error Beta t Sig.

(Constant) -123.157 .460 -267.655 .000
C Score 138.215 .520 .367 265.811 .000
E Score 7.612 .034 .306 221.188 .000
R Score 51.582 .307 .225 167.852 .000

Table 4.3: Coefficients of the scoring function for graphlet mappings generated with
8.6Ao contact map threshold

which proves that connectivity of the residues are important in structural alignment.

4.1.5 Determining the Optimum Contact Map Threshold

As mentioned before, the protein pairs used in these experiments were chosen from the

same superfamilies as can be seen in Table C.1. For this reason, we decided to determine

our contact map threshold by performing fold classification in our data set. All-vs.-all

pairwise search was performed on the data set where the first proteins were compared

with all the second proteins. Since our aim in this process was to determine the optimum

contact map threshold, all these experiments were performed for two different cutoff

distances, 6.8Ao and 8.6Ao. After graphlets of all the proteins were generated for two

contact map thresholds, they were mapped to each other. A mapping was eliminated

if it does not satisfy one of the below conditions:

• R score must be bigger than or equal to 0.5.

• C score must be bigger than or equal to 0.6.
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• If contact map threshold is 6.8Ao, than its’ E score must be bigger than or equal

to -3.

• If contact map threshold is 8.6Ao, than its’ E score must be bigger than or equal

to -2.5.

Mappings that satisfy all the above conditions were ranked using the scoring

function with the corresponding coefficients. The mappings were merged starting from

the top score graphlet mapping. In all of the merging processes, only the highest scoring

500 mappings were used. At the end of the merging process, the highest score was used

in the classification process. After all the comparisons were finished, the scores were

ranked for each protein. The fold of a protein was determined using the fold of the

hit protein. If the hit protein is in the same superfamily with the searched protein, a

correct prediction has been achieved.

When fold classification was performed for two different contact map thresholds,

70% accuracy was obtained with graphlets generated from the contact map with cutoff

distance 6.8Ao while 80% accuracy was observed with threshold 8.6Ao. Since graphlets

generated from 8.6Ao contact map thresholds have better classification accuracy, we

decided to choose 8.6Ao. Moreover, cutoff distance 8.6Ao seems to be more efficient

than 6.8Ao. In Figure 4.5, we showed the number of mappings obtained from contact

maps with different threshold. A substantial difference is observed in the number of

mappings when thresholds 6.8Ao and 8.6Ao are compared. Even though, the number

of mappings obtained from the contact maps with 8.6Ao is very much smaller than

the number of mappings obtained from the contact maps with 6.8Ao, its classification

accuracy is higher. Therefore, 8.6Ao is chosen as the contact map threshold of our

system.
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4.2 Function Prediction

4.2.1 Data Set

In addition to the system improvements, some experiments were also performed to

evaluate the performance of the system in function prediction. As explained in Section

2.6.1, EC (Enzyme Commission) number prediction is one of the most common tech-

niques used for evaluating function predictions. Our experiments were performed on a

set of enzyme pairs. This data set was obtained from [Küçükural, 2008] where it had

been used for the same purpose. The data set contains 44 protein pairs and they were

all specially chosen from remote homologues and the lengths of the protein sequences

are at least three times longer than its corresponding pair. These protein pairs and

their EC numbers can be found in Table C.2 in Appendix C.

4.2.2 Results

The accuracy of the function prediction is calculated using the EC number prediction as

mentioned before. Similar to the fold classification, an all-vs.-all search was performed

in the data set. In this search, our algorithm first found the local structural alignments

and recognized the common domains shared between two proteins, and then the calcu-

lated scores were ranked for each protein. The function of the protein was determined

using the function of the hit protein. If the hit protein has the same EC number of the

searched protein, a correct prediction has been achieved. If the correct prediction has

not been reached in the top hit, then for the evaluation purposes, top 5 and 10 hits are

considered whether a protein with the same function can be found in those hits.

When only the top hits are considered for function prediction, our accuracy rate

is 97.05%. This accuracy rate is much higher than the accuracy rates reported in

[Küçükural, 2008] for the same data set. The results are shown in Table 4.4.

Moreover, when the score of the top hits are compared with the following hits’

scores, big fold differences are observed. In our data set, for the correctly classified

enzymes, the minimum observed fold difference between the score of the correct protein

function assignment and the score of the highest scoring wrong protein function is 2.28
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Our method [Küçükural, 2008]

Top score 97.05% 55.66%
Top 5 score 97.05% 77.94%
Top 10 score 97.05% 88.24%

Table 4.4: Function prediction results

and these fold differences increase until 13.7. These high fold differences prove that the

high accuracy of our system is not by chance.

Furthermore, in the second column of Table 4.5, for each protein the similar-

ity between the recognized domains and alignments obtained from TM-align is given.

Moreover, domains’ coverage percentages are also given in the last column. These high

accuracies with low coverage percentages indicate that without performing an overall

alignment, our algorithm is able to recognize local domain regions successfully, and

its residue alignments accuracies are very similar to TM-align results. However, our

TM-align similarity accuracies are 0% in several proteins which contain Receptor L

domains. We observed that in these proteins, TM-align can align only the half of the

amino acids, and the remaining amino acids are aligned with gaps. This was an un-

expected observation because in the rest of the proteins TM-align aligns the 95-100%

of the amino acids. Since even for the proteins with receptor L domain our algorithm

predict the functions of the proteins correctly, we believe that the low accuracy values

of protein with receptor L domain are resulted from TM-align’s weak performance.
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Protein Domain Accuracy (%) Coverage(%)

1A81 SH2 95 41.23
1B90 Glyco hydro 14 100 96.96
1EMS HIT 98.96 75.78
1FD9 FKBP C 93.67 69.91
1GAX Anticodon 1 99.2 88.11
1GPM GMP synt C and GATase 54.92 37.96
1GWE Catalase 35.71 31.39
1ITO Peptidase C1 100 56.25
1KI0 Pacifastin I 100 47.5
1LAR Y phosphatase 100 26.66
1LCK SH2 and SH3 1 96.72 62.88
1M6B Recep L domain 0 0
1M8P APS kinase 100 74.43
1MIR Peptidase C1 100 50
1N8Y Recep L domain 0 0
1N8Z Recep L domain 0 0
1NYQ tRNA-synt 2b and tRNA SAD 98.34 54.01
1O6K Pkinase 97.33 61
1PBH Peptidase C1 100 45.83
1QCF SH2 and SH3 1 100 26.22
1SY7 Catalase 100 36.32
1WAA I-set 96.66 67.41
1YGU Y phosphatase 97.72 30.87
2A91 Recep L domain 0 0
2AHX Recep L domain 0 0
2B3O SH2 96.9 37.45
2ESM Pkinase 96.25 50.5
2F2U Pkinase 97.5 50.31
2FH7 Y phosphatase 0 0
2J0J Pkinase Tyr 97.97 40.57
2NLK Y phosphatase 98.75 27.77
2NP0 Toxin R bind N and Toxin R bind C 96.36 12.82
2RD0 PI3K C2 100 78.4
2Z6B Phage lysozyme and Gp5 OB 96.62 54.26

Table 4.5: Domain prediction results
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Chapter 5

CONCLUSIONS

In this thesis, we presented a method for finding structure patterns common to a protein

pair by using graphlet mappings. Identifying these common structures patterns from

diverse protein structures is one of the most challenging problems in bioinformatics due

to several difficulties which we tried to overcome with our algorithm.

One of the difficulties is that proteins contain hundreds of amino acids with thou-

sands of atoms and chemical bonds; therefore, they are large and complex geometric

structures. In order to simplify the protein structures; we represented them with con-

tact maps and during the construction of contact maps, Cα atoms were used since they

represent an amino acid better than other atoms. Moreover, different contact map

thresholds were tried with the purpose of finding the best cutoff distance. At the end of

these experiments, it is observed that structurally important domains can be recognized

better from graphlets generated with the contact map threshold of 8.6Ao which is also

more efficient than 6.8Ao.

Furthermore, in these large protein structures, we do not have any knowledge

about the possible location or geometric shape of the structural patterns. Therefore,

during our graphlet generation step, our algorithm searches all parts of the protein with

the purpose of identifying all possible structural patterns. Our 145 different graphlet

topologies cover all possible structural patterns during this step.

Last but not least, because of the evolutionary mutations, the common structure

patterns between two proteins may show small variations such as different amino acids

or compositions. In order to tolerate such differences, we allow different residue distri-
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butions and amino acid mismatches in our alignments. However, in order to prevent the

alignment of very diverse structures, we incorporated the evolutionary similarity score

and the residue distribution score into our scoring scheme. Moreover, we also included

the connectivity score into our scoring function to find functionally similar structures,

and at the end of the regression analysis, this score proves to be an important factor in

a good alignment.

We found structural pattern with our graphlet mapping algorithm, and then by

merging these local alignments, we tried to recognize domains that are common between

protein pairs. These common domains are very useful in finding a protein’s function,

classifying a protein’s fold, and identifying homology relationships. In this thesis, our

algorithm was first applied to a fold classification problem on a small data set and 80%

accuracy rate was observed. Then, in a larger data set, we tried to predict the proteins’

functions using the domains that are discovered with our algorithm. The accuracy rate

of predicting the correct function for our data set was 97.05% which is better than the

previously published results on the same data set.

Currently, our algorithm can perform local alignments between only two proteins;

however, with small improvements in our graphlet mapping step, multi-structural align-

ments can be obtained. A multi-structural alignment between proteins with the same

function can be very useful in finding the functionally important sites. Besides the

multi-structural alignment, our algorithm can be also used to develop a global struc-

tural alignment method. Our algorithm already assembles short local alignments into a

longer alignment in the merging step. Using these longer alignments, an overall align-

ment can be obtained by matching the unaligned amino acids from the protein pair.

A global alignment obtained this way can be more accurate than previously developed

global alignment methods since this alignment conserves the structural patterns that

are common between protein pair. Lastly, our algorithm currently performs function

prediction according to the top scoring domain. In multi-domain proteins, such an

assignment will be misleading since different domains of the protein may have different

functions. During our merging process, we produce all possible domains; therefore,

with small modifications, multi-label classification can be performed.
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Chapter A

Graplet Topologies

Figure A.1: Graplet topologies used
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Chapter B

BLOSUM62 Matrix

A 4
R -1 5
N -2 0 6
D -2 -2 1 6
C 0 -3 -3 -3 9
Q -1 1 0 0 -3 5
E -1 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

A R N D C Q E G H I L K M F P S T W Y V

Table B.1: BLOSUM62 matrix
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Chapter C

Data Sets

Protein 1 Length SCOP Protein 2 Length SCOP Sequence
Class Class Similarity (%)

1R5T 141 c.97.1.1 1P6O 156 c.97.1.2 15.4
1D2T 222 a.111.1.1 1UP8 597 a.111.1.2 16.5
1IAT 556 c.80.1.2 1VIM 192 c.80.1.3 17.4
1G3K 173 d.153.1.4 2PVA 332 d.153.1.3 18.0
1NW1 365 d.144.1.8 1CJA 327 d.144.1.3 18.8
1A6J 150 d.112.1.1 1HYN 293 d.112.1.2 24.6
1NBW 113 c.51.3.2 1EEX 178 c.51.3.1 24.7
1RWS 68 d.15.3.2 1FM0 81 d.15.3.1 25.9
1C02 166 a.24.10.2 1I5N 128 a.24.10.3 26.2
1MR1 97 d.217.1.2 1UFN 94 d.217.1.1 27.0

Table C.1: Protein data set for system improvement

Protein 1 Chain EC Number Protein 2 Chain EC Number

1A81 A 2.7.1.112 1JWO A 2.7.1.112
1B90 A 3.2.1.2 1CQY A 3.2.1.2
1EMS A 3.6.1.29 2FIT A 3.6.1.29
1FD9 A 5.2.1.8 1YAT A 5.2.1.8
1GAX A 6.1.1.9 1WK9 A 6.1.1.9
1GPM A 6.3.5.2 2VPI A 6.3.5.2
1GWE A 1.11.1.6 1YE9 A 1.11.1.6
1ITO A 3.4.22.1 1SP4 A 3.4.22.1
1KI0 A 3.4.21.7 2PK4 A 3.4.21.7
1KI0 A 3.4.21.7 5HPG A 3.4.21.7
1LAR A 3.1.3.48 2B49 A 3.1.3.48
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Protein 1 Chain EC Number Protein 2 Chain EC Number

1LAR A 3.1.3.48 2GJT A 3.1.3.48
1LAR A 3.1.3.48 2I75 A 3.1.3.48
1LAR A 3.1.3.48 2PA5 A 3.1.3.48
1LCK A 2.7.1.112 3CQT A 2.7.10.2
1M6B A 2.7.1.112 3C09 A 2.7.10.1
1M8P A 2.7.7.4 2PEY A 2.7.1.25
1MIR A 3.4.22.1 1SP4 A 3.4.22.1
1N8Y C 2.7.10.1 3C09 A 2.7.10.1
1N8Z C 2.7.1.112 3C09 A 2.7.10.1
1NYQ A 6.1.1.3 1TJE A 6.1.1.3
1O6K A 2.7.11.1 2NP8 A 2.7.11.1
1PBH A 3.4.22.1 1SP4 A 3.4.22.1
1QCF A 2.7.10.2 3CQT A 2.7.10.2
1SY7 A 1.11.1.6 1YE9 A 1.11.1.6
1WAA A 2.7.11.1 2YZ8 A 2.7.11.1
1YGU B 3.1.3.48 2B49 A 3.1.3.48
1YGU B 3.1.3.48 2I4G A 3.1.3.48
1YGU B 3.1.3.48 2I75 A 3.1.3.48
1YGU B 3.1.3.48 2PBN A 3.1.3.48
2A91 A 2.7.1.112 3C09 A 2.7.10.1
2AHX A 2.7.1.112 3C09 A 2.7.10.1
2B3O A 3.1.3.48 2B49 A 3.1.3.48
2ESM A 2.7.1.37 2NP8 A 2.7.11.1
2F2U A 2.7.1.37 2NP8 A 2.7.11.1
2FH7 A 3.1.3.48 2GJT A 3.1.3.48
2FH7 A 3.1.3.48 2I4G A 3.1.3.48
2FH7 A 3.1.3.48 2I75 A 3.1.3.48
2J0J A 2.7.10.2 2OFV A 2.7.10.2
2NLK A 3.1.3.48 2OC3 A 3.1.3.48
2NLK A 3.1.3.48 2QEP A 3.1.3.48
2NP0 A 3.2.1.52 2QN0 A 3.4.24.69
2RD0 A 2.7.1.153 2V1Y A 2.7.1.153
2Z6B A 3.2.1.17 3LZM A 3.2.1.17

Table C.2: Enzyme data set for function prediction
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Chapter D

Regression Statistics

Adjusted R Std. Error of
Contact map threshold Model R R Square Square the Estimate

6.8Ao 1 .613 .376 .376 25.62049
8.6Ao 1 .624 .390 .390 21.66936

Table D.1: Model summaries

Contact map threshold Model Sum of Squares df Mean Square F

6.8Ao
Regression 2.625E8 3 8.752E7 1.333E5
Residual 4.366E8 665172 656.410

Total 6.992E8 665175

8.6Ao
Regression 1.057E8 3 3.522E7 7.501E4
Residual 1.656E8 352572 469.561

Total 2.712E8 352575

Table D.2: ANOVA tables
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