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Keywords: UAV, Quad-Rotor, Tilt-Wing, Kalman Filter, PID, LQR, IMU

Abstract

Unmanned Aerial Vehicles (UAV) are flying robots that are either con-
trolled by an operator from a remote location or flown autonomously accord-
ing to the given commands. UAVs are often equipped with cameras, other
sensors and communication units and used for missions which are dangerous,
tedious or effortful for manned aircrafts. Some applications of these vehicles
are surveillance, reconnaissance, traffic monitoring, exploration of disasters
(fire, earthquake, flood, etc...) and agricultural pesticide spraying.

This thesis work focuses on the modeling and control of a new quadro-
tor Unmanned Aerial Vehicle (SUAVİ: Sabancı University Unmanned Aerial
Vehİcle) with tilt-wing mechanism. The vehicle is capable of vertical take-off
and landing (VTOL) like a helicopter and flying horizontally like an air-
plane. The design specifications and sensor/actuator integration of SUAVİ
are presented. A full mathematical model that incorporates the dynamics
of horizontal flight, vertical flight and the transition mode is obtained using
Newton-Euler formulation. Attitude and position controllers (PID, LQR) are
designed in linear framework for the VTOL mode of the vehicle. A controller
for transition between vertical and horizontal flight modes is also proposed.
All controllers are evaluated in simulations along with 3D visualization. For
real-time experiments, Kalman filtering is employed to obtain accurate roll
and pitch angle estimations. VTOL experiments with the prototype demon-
strate the success of the proposed controllers.
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Döner-Kanat Mekanizmalı Yeni bir İnsansız Hava Aracının

(SUAVİ) Modellemesi ve Kontrolü

Kaan Taha Öner

ME, Master Tezi, 2009

Tez Danışmanı: Doç. Dr. Mustafa Ünel

Anahtar Kelimeler: İHA, Dört-Rotor, Döner-Kanat, Kalman Filtresi, PID,

LQR, IMU

Özet

İnsansız Hava Araçları (İHA) yer istasyonundaki bir operatör tarafından
kontrol edilen ya da verilen komutlara göre otonom olarak uçabilen mo-
bil robotlardır. Kameralar, başka sensörler ve haberleşme sistemleri gibi
çeşitli ekipmanlarla donatılan bu araçlar insanlar için tehlike arz eden ya
da zorlu görevlerde kullanılmaktadır. Gözetim, keşif, trafik görüntüleme,
afet inceleme (yangın, deprem, sel, vb...) ve tarımsal ilaçlama insansız hava
araçlarının kullanıldığı çeşitli görevlere örneklerdir.

Bu tez çalışmasında döner kanat mekanizmasına sahip dört rotorlu bir in-
sansız hava aracının (SUAVİ: Sabancı University Unmanned Aerial Vehİcle)
modellemesi ve kontrolü yer almaktadır. Hava aracı bir helikopter gibi dikey
(VTOL) ve bir uçak gibi yatay uçabilecek şekilde tasarlanmıştır. Aracın
tasarım özellikleri ve sensör/eyleyici entegrasyonu sunulmuştur. SUAVİ’nin
yatay uçuş, dikey uçuş ve iki uçuş modu arasındaki geçiş dinamiklerini içeren
matematiksel modeli Newton-Euler metoduyla elde edilmiştir. Aracın VTOL
modu için yönelim ve pozisyon kontrolörleri (PID, LQR) tasarlanmıştır. Bir
başka kontrolör ise aracın dikey ve yatay uçuş modları arasındaki geçişi
sağlamak üzere tasarlanmıştır . Bütün kontrolörler benzetim ortamında in-
celenmiş ve benzetimler 3 boyutlu olarak görselleştirilmiştir. Gerçek zamanlı
deneylerde kullanılmak üzere, Kalman filtresi ile yuvarlanma ve yunuslama
açılarının kestirimi yapılmıştır. Prototip ile yapılan VTOL uçuş deneyleri
kontrolörlerin başarısını göstermektedir.
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Chapter I

1 Introduction

Mobile robots with autonomous control capabilities have always been a

fascinating subject among researchers. It has been more than 20 years that an

autonomous land vehicle has performed road tracking with computer vision

algorithms for the first time in 1988 [1]. Since then many autonomous mobile

robots that work on land, water and air have been developed for industrial,

civil and military use. Even though aerial vehicles offered a broader field of

applications they remained unreachable because of their high costs for a long

time. In the last decade with the advances in sensor, actuator and power

technologies these vehicles turned into affordable platforms for researches

and a new trend has started.

1.1 Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle (UAV) (or sometimes referred as an Un-

manned Aircraft System) is a mobile robot that is either controlled from

a ground station or flown autonomously with high level control algorithms.

UAVs are often equipped with cameras, sensors and communication units

and used for missions which are dangerous tedious or effortful for manned

aircraft. There are a plenty number of commercial and non-commercial UAVs

with different shapes, sizes and configurations. These variety of designs come



from the wide range of the missions and objectives they are used for. In to-

day’s world many people have heard of UAVs from the military drones which

are used for reconnaissance and attack missions. However traffic monitor-

ing, exploration of disasters (fire, earthquake, flood, etc...) and agricultural

pesticide spraying are civilian examples of use for these vehicles.

According to a market investigation held in 2009 [2], 22 industrial and

twice as much research groups are currently working on UAVs. A total

number of 6695 UAVs are reported to be operating in NATO nations [3] and

294 different UAV models for civil and commercial applications are referenced

in [4]. A global consensus of classification method for these UAVs is not

established yet, nevermore these vehicles can be investigated under three

main categories:

1.1.1 Micro Aerial Vehicles (MAVs)

Although the aerial vehicles that fit in this category are limited to a size

less then 15 cm by DARPA’s (Defense Advanced Research Projects Agency)

1997 definition [5], fixed-wing planes, helicopters, ducted fans, blimps and

some other bird/insect like flying platforms that have a wingspan of no more

than 50 cm or weigh less than 1 kg’s are referred as MAVs today. The appli-

cations of these vehicles are mainly aerial exploration and surveillance under

altitudes of 100 meters however high altitude MAVs also exist. Generally

they are equipped with MEMS sensors, powered by Li-Po batteries and ac-

tuated with DC electric motors/rotors. Table 1.1 summarizes some existing

MAV projects [6]-[14].
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Table 1.1: Some MAV projects and specifications

Project Name W
id

th
[c

m
]

L
en

gt
h

[c
m

]

W
ei

gh
t

[k
g]

P
ay
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ad
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[k

m
]

E
nd
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an
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[m

in
]

M
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ee

d
[k

m
/h

]

H
ov

er
?

Delta of UTC [6] 30 30 0.45 0.2 N/A N/A N/A Yes

MAV of Drexel [7] 76 N/A 0.6 0.4 N/A N/A N/A Yes

Black Widow of AeroVironment [8] 15 15 0.08 N/A 1.8 30 48 No

Delfly Micro of Delft [9] 10 10 0.003 N/A 0.05 3 N/A No

Ornithopter of Utah [10] 60 N/A 0.097 N/A N/A 9-10 N/A No

Blimp II of EPFL [11] 110 60 0.1 0.2 Indoor 120-180 3.6 Yes

Birotor of Compiégne [12] 20 20 1 N/A N/A N/A N/A Yes

Draganflyer X6 of DraganFly [13] 91 85 1 0.5 2.4 20 50 Yes

T-Hawk of Honeywell [14] 33 33 7.7 N/A 10 50 74 Yes
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1.1.2 Small Unmanned Aerial Vehicles (SUAVs)

SUAVs (or sometimes called Mini UAVs) are generally interpreted to

be packable and portable aircrafts that can be carried from one location

to another by a single human operator. Their dimensions are at most 3

m in width or length [15] which are mostly well known fixed wing planes

or helicopters. A great percentage of existing aerial vehicles are in SUAV

segment and these vehicle have started being substituted instead of their

much more expensive large scales. That is because the SUAVs cost several

thousand dollars whereas the large scale UAVs cost up to several million

dollars. For example, U. S. Army have been using the Raven RQ-11B from

AeroVironment in surveillance missions of Iraq war [16]. Some important

examples to these segment of aerial vehicles are given in Table 1.2 with their

specifications [17]-[24].

1.1.3 Large Scale Unmanned Aerial Vehicles (UAVs)

The aerial vehicles that fit in this category are designed for endurance,

range or large payload capability and they go up to scales of airliner planes.

With the budgets going up to 40 million $ these aerial vehicles are mainly in

the hands of professional aircraft manufacturers. Only the Yamaha R-Max

(the smallest one) from this class, is known to be used for research purposes

and civil applications. Table 1.3 summarizes some important examples to

this class of UAVs [25]-[30].

4



Table 1.2: Some SUAV projects and specifications

Project Name W
id

th
[m

]
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en
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h
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g]
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m
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]

H
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Raven of AeroVironment [17] 1.4 0.9 1.9 0.2 10 60-90 81 No

Desert Hawk of Lockheed Martin [18] 1.37 0.91 3 1 15 90 N/A No

Orbiter of AAI Corp. [19] 2.2 0.91 6.5 N/A 45 120-180 139 No

Malazgirt of Baykar Tech. [20] 1.8 1.2 12 1 20 35/90 1 N/A Yes

QTW UAS F4 of GH Craft [21] 1.8 1.86 30 5 20 60 150 Yes

Tango of DraganFly [22] 1.5 1.2 2.8 1.14 N/A 50 95 No

Blimp 2C of Survey Copter [23] 1.2 3 N/A 0.9 N/A 60 N/A Yes

Tailsitter of Brigham [24] 1 0.65 1.37 0.2 N/A 2.5/15 2 54 Yes

1electric/gasoline
2hover/level flight
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Table 1.3: Some UAV projects and specifications

Project Name W
id

th
[m

]
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en

g
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[m
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t
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d
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e
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]
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h
]

H
o
v
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R-Max of Yamaha [25] 2 3.63 95 N/A 2 1.5 20 Yes

Fire Scout of Northrop Grumman [26] 9.2 8.4 1428 300 200 6.1 231 Yes

Eagle Eye of Bell Helicopter [27] 7.3 5.5 N/A 91 N/A 6 360 Yes

Predator of General Atomics [28] 17 8 1043 204 730 40 222 No

Global Hawk of Northrop Grumman [29] 39.9 14.5 14628 1360 N/A 35 574 No

Helios of NASA [30] 75.3 2.44 1052 N/A N/A 30 N/A No

6



1.2 Contribution of This Thesis

• A mathematical model of a new quadrotor unmanned aerial vehicle

with tilt-wing mechanism (SUAVİ: Sabancı University Unmanned Aerial

Vehicle) that incorporates the flight dynamics of horizontal flight, ver-

tical flight and transition process is obtained using Newton-Euler for-

mulation. SUAVİ is being developed in the context of a TÜBİTAK

(The Scientific & Technological Research Council of Turkey) funded

research project under the grant 107M179.

• Position controller and attitude stabilizer are designed in linear frame-

work for vertical flight and a method for transition process is presented.

• Robust roll and pitch angle estimations are obtained for attitude stabi-

lization with Kalman filtering using low-cost MEMS sensors employed

in IMU. The performance of the filters in high frequency vibration en-

vironment are verified with flight experiments.

• A flight simulator with joystick input and 3D visualization toolbox is

developed in Simulink/Matlab environment.

• Several vertical flight experiments have been performed in real time

approximately for 50 sec. in hovering conditions.

7



Chapter II

2 The Design of the Aerial Vehicle (SUAVİ)

The design motivation of the aerial vehicle (SUAVİ1) is shaped considering

the missions it will carry out. For observation of indoor and outdoor spaces

of large buildings and storages a MAV or SUAV scale electrically actuated

platform is chosen as the vehicle class. Twenty five minutes hover and ninety

minutes level flight are set as desired endurance characteristics for a successful

monitoring and exploration of disasters like fire, earthquake, flood and other

events. To start with the design procedure, the physical characteristics of

the aerial vehicle are defined as follows:

• a maximum width/length of 1 m

• a maximum weight of 4 kg

• VTOL (Vertical Take-Off and Landing) configuration

• 40-70 km/h horizontal flight speed

2.1 Flying Principles

In the design process of an aerial vehicle, many flying concepts need to be

explored for success. Including the self lifting vehicles, the flying principles

1SUAVİ is being developed in the context of a TÜBİTAK (The Scientific & Technolog-
ical Research Council of Turkey) funded research project under the grant 107M179.



of aerial vehicles can be investigated under four main categories; Fixed-Wing

Aerial Vehicles, Rotary-Wing Aerial Vehicles, Blimps and V/STOL (Vertical

Short Take-Off and Landing) Vehicles that combine Fixed-Wing and Rotary-

Wing flying concepts. Table 2.1 adapted from [31] gives a comparison of these

flying concepts for the MAV and SUAV class vehicles.

Table 2.1: Flying principles comparison (1=bad, 5=good)

Fixed-Wing Rotary-Wing Blimp V/STOL

Power Cost 3 1 5 2

Control Effort 3 1 5 1

Payload/Volume 5 3 1 4

Manoeuvrability 3 5 1 5

Stationary Flight 1 5 5 5

Low Speed Flight 1 5 5 5

High Speed Flight 5 3 1 4

Hover 1 5 5 5

Endurance 4 1 5 3

Miniaturization 3 5 1 3

Indoor Use 1 5 3 4

Total 30 39 37 41

From this comparison one can see that V/STOL Vehicles that combine

Fixed-Wing and Rotary-Wing structures together have the most promising

mission performance for the MAV/SUAV class platforms.

2.1.1 Fixed-Wing Aerial Vehicles

For missions that demand endurance and long flight range, fixed-wing

type aerial vehicles are preferred to rotary-wing vehicles. To remain at a
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constant altitude a fixed-wing vehicle’s energy consumption is considerably

small compared to a rotary-wing vehicle that has to put a lot its effort to

compensate for gravity. This flying principle is often used in SUAV and UAV

class to achieve robust and stable flight. Although near target surveillance

and hovering is not achievable with a fixed-wing aerial vehicle, some wing

configurations allow as low as 30-40 km/h airspeeds.

2.1.2 Rotary-Wing Aerial Vehicles

Rotary-Wing vehicles are capable of Vertical Take Off/Landing (VTOL)

which is a great advantage for many applications. The hovering ability and

very low flight speed makes them good candidates for MAV and SUAV ap-

plications like target tracking and indoor use. A comparison of Rotary-Wing

configurations adapted from [31] is given in Table 2.2.

Table 2.2: Rotary-Wing configurations compared (1=bad, 4=good)
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Power Cost 2 2 2 2 1

Control Effort 1 1 4 2 3

Payload/Volume 2 2 4 3 3

Manoeuvrability 4 3 2 2 3

Stationary Flight 4 4 4 4 4

Low Speed Flight 4 3 4 3 4

High Speed Flight 2 4 1 2 3

Miniaturization 2 3 4 2 4

Total 21 22 25 20 25
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From the Table 2.2, one can see that the Quadrotor and Coaxial-Rotors

are more advantageous on an overall evaluation and therefore they may be

preferred over other rotary-wing configurations in MAV/SUAV applications.

2.1.3 V/STOL Aerial Vehicles

This class of aircraft uses a single propulsion system that alters the direc-

tion of thrust for hover or cruise, or alters the attitude of the aircraft itself

[32]. The V/STOL Aerial Vehicle configurations can be summarized under

three main principles: Tilt-Rotor, Tilt-Wing and Tailsitter vehicles.

The Tailsitters are fixed wing airplanes that can take off above their

tails like a rocket using the thrust of the propeller. These vehicles are not

suitable for hovering type missions and the vertical flight is only limited to

take off and landing process. The Tilt-Rotor and Tilt-Wing aerial vehicles

however combine the advantages of horizontal and vertical flight. They are

in general hard to fly vehicles which require advanced control and actuation

technologies for a safe flight. Tilting the entire wing, instead of just the

rotor or propeller, provides the benefit of increasing aerodynamic flow over

the lifting and control surfaces during transition, and minimizes the lift loss

due to downwash in hover [32]. Considering that the number of rotors is

affecting the controllability and the stability of the aerial vehicle directly,

the general attitude on these vehicle’s rotor configurations is to have two

or four symmetrically placed rotors, which can be rotated from vertical to

horizontal position, as can be seen from the chronological guide of existing

vehicles given in Table 2.3 [33].
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Table 2.3: Tilt-Rotor & Tilt-Wing aerial vehicles history

Project Name Year Project Name Year

1-G of Trascenden-

tal

1954 XV-3 of Bell 1955

VZ-2 of Vertol 1955 Tilt-Wing of

Vertol-NASA

1959

VZ-4 of Doak 1958 X-18 of Hiller 1959

K-16 of Kaman 1962 X-100 of Curtis

Wright

1960

X-100 of Curtis

Wright

1964 XC-142 of LTV-

Hiller-Ryan

1964

CL-84 “Dynavert”

of Canadair

1965 X-22 of Bell 1966

Nord 500 of Nord

Aviation

1968 VC-400 of VFW 1969

VC-500 of VFW N/A XV-15 of Bell 1980

V-22 “Osprey” of

Bell-Boing

1989 BA-609 of Bell-

Agusta

1999
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Until 2000’s the Tilt-Wing and Tilt-Rotor flying concepts remained only

applied to manned aircrafts. UAVs capable of both horizontal and verti-

cal flight are newly being explored. The current Tilt-Rotor and Tilt-Wing

research is summarized in Table 2.4.

Table 2.4: Current Tilt-Wing & Tilt-Rotor SUAV projects

Institute Project Configuration Year

Florida Institute of Technology VERTIGO Tilt-Rotor 2004-?

Arizona State University HARVee Tilt-Wing 2004-?

Korea Aerospace Research Institute Smart UAV Tilt-Rotor 2004-2009

Chiba University & G.H. Craft QTW UAS-FS4 Tilt-Wing 2006-2009

AVT Hammerhead Tilt-Rotor 2003-2009

2.2 Aerodynamic Configuration

The aerodynamic design stage of the vehicle is a crucial part of the devel-

opment phase, because it also puts constraints on the mechanical design of

the vehicle. For good hovering properties and vertical flight performance the
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Rotary-Wing flying configuration is determined to be the quadrotor type.

As explained in Chapter I, this configuration has been adapted to various

V/STOL platforms and has the advantages of mechanical simplicity and

large payload capacity compared to other Rotary-Wing platforms. In order

to realize the symmetrical structure of a quadrotor with minimum actuation

complexity, the vehicle is designed with four equal wings that are mounted

on the front and at the back of the vehicle. The Tilt-Wing configuration is

chosen instead of a Tilt-Rotor in order to minimize the downwash effects.

To obtain the maximum volume for placing the electronic equipment, a rect-

angular cross-sectioned body with the shape of a symmetric wing profile is

selected as the fuselage. With this wing and body configuration, the vehicle’s

airframe transforms into a quadrotor structure if the wings are at the vertical

position and into a tandem wing airplane structure if the wings are at the

horizontal position Fig. 2.1.

Figure 2.1: Aerial vehicle in vertical and horizontal flight modes

To keep the control complexity in horizontal flight mode on a minimum

level, the rotations of the wings are used as attitude control inputs in addi-

tion to motor thrust inputs of the vehicle. Therefore using additional control
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surfaces that are put on trailing edges of the wings on a regular airplane are

eliminated. The two wings on the front are designed to be rotated indepen-

dently whereas the two wings at the back are designed to be rotated together.

This way the control surfaces of a regular plane in horizontal flight mode are

mimicked with minimum number of actuators. To achieve this type of a flight

control structure a precise wing design and analysis need to be performed

which includes the selection of a wing profile, determination of the physical

dimensions and the analysis of the airstream interactions between the wings.

2.2.1 Wing Design

Different wing planforms (2D projections) with stall progression patterns

are shown in Fig. 2.2 [34].

Figure 2.2: Different wing planforms
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Compared to other shapes the rectangular planform has some advantages

of simplicity as explained in [34]:

“In comparison, the rectangular wing has a tendency to stall first
at the wing root and provides adequate stall warning, adequate
aileron effectiveness, and is usually quite stable. It is, therefore,
favored in the design of low cost, low speed airplanes.”

“Note that it is possible for the trailing edge of the inboard por-
tion of the rectangular wing to be stalled while the rest of the
wing is developing lift. This is a very desirable characteristic,
and along with simplicity of construction is the reason why this
type of wing is so popular in light airplanes, despite certain struc-
tural and aerodynamic inefficiencies.”

To start with, NACA2412 , a well known wing profile in the literature,

with rectangular wing planform is chosen as the wing profile for the vehicle.

Using JavaFoil R© software, coordinates of 60 sample points from the wing

profile are obtained for CAD modeling (Fig. 2.3).

Figure 2.3: NACA 2412 Wing profile

After modeling the airframe of SUAVİ the CAD model is imported to
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ANSYS R© for CFD analysis (Fig. 2.4). A wind tunnel simulation environment

is created with proper inlet, outlet, body and propeller boundary conditions.

Figure 2.4: Half model in wind tunnel simulation

Simulations done by ANSYS R© showed that the NACA2412 wing pro-

file with 25 cm chord length and 45 cm span produced more than 10 N

lift thrust that has to be generated by each of four wings on aimed flight

speeds (40-70 km/h). To reduce the drag forces further, the wing profile is

replaced with NACA2410 which consists of a 2% smaller camber. Simula-

tions repeated with NACA2410 wing profile with the same chord and span

dimensions showed that the desired lift forces (10 N per Wing) are obtained

with a minor improvement on drag forces. A first draft of the aerodynamic

design appears in [35].

Airstream Interaction Between Front and Rear Wings

The difference between the angle of attacks of the wings on the front and

at the back of the vehicle is a result of change in the airstream caused by the

front wing .
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Figure 2.5: Streamlines showing the airstream interaction

To minimize the interaction of the wings, it is suggested to put the wings

at the back of the vehicle on a different height level such that the airstreams

of the wings on the front will not interact with the wings at the back. How-

ever, simulations showed that the height difference, needed to overcome these

interactions, is a large distance compared to the size of the aerial vehicle (as

can be seen from the streamlines in Fig. 2.5), so the wings are left on the

same height level. With this wing configuration at a flight speed of 40 km/h,

the angle of attacks needed to achieve necessary lift forces are obtained as

10.5o for the wings on the front and 12.5o for the wings at the back of the

vehicle. For a flight speed of 68 km/h these angle of attacks are computed

as 2o for the wings on the front and 3.7o for the wings at the back of the

vehicle.
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2.3 Mechanical Platform

The main motivation behind the mechanical design is to construct a very

light weight structure that can withstand to loading forces that occur during

vertical and horizontal flight. To achieve this goal, the material of the vehicle

is chosen to be carbon composite with sandwich structure that has better

compression and tension properties compared to layered carbon structures.

The FEM analysis made in ANSYS R© showed that under an acceleration of

2.5 g, the maximum stress that appears on the airframe has a magnitude of

4 MPa. The location of this stress point is on the bottom of the body where

the 2.4 kg heavy batteries will be placed (Fig. 2.6).

Figure 2.6: Stresses appearing on the wing and body under 2.5g acceleration

Tensile Strength Test

Using the “Universal Testing Machine” (Fig. 2.7) 25x250 mm sized com-

posite carbon sandwich structures with 6 mm2 cross section are tested for

tensile strength using 2 mm/min separation speed. From different samples a

mean value of 27 GPa tensile strength is obtained for the carbon composite

material (Table 2.5), thus the material can withstand the predicted stresses

and is therefore suitable for the airframe. Fig. 2.8 shows the airframe of the
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Figure 2.7: Universal testing machine

vehicle produced with this carbon sandwich structure.

Table 2.5: Tensile strength test of carbon composite material

Lc F(0.2 %) F(0.3 %) EM2 S0 F(0.1 %) F(0.2 %) Gradient Fmax Strain Fmax F at Break Strain Break

mm N N MPa mm2 N N MPa MPa % N %

100 419.43 542.59 20525 6.00 255.41 419.43 27337 524.72 2.78 3029 2.78

100 455.04 582.02 21162 6.00 285.69 455.04 28225 541.88 2.64 3186 2.65

100 410.27 535.20 20821 6.00 248.39 410.27 26981 560.01 2.82 3286 2.82

100 392.40 541.21 24801 6.00 220.60 392.40 28632 506.39 2.54 3038 2.54

Figure 2.8: Airframe produced with carbon composite material
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2.4 Actuator Integration

The actuation system of SUAVİ consists of rotors, rotor drivers, pro-

pellers, servos and batteries.

2.4.1 Rotor & Rotor Driver

For a 4 kg aerial vehicle with hovering capabilities, the minimum thrust

to be generated is determined as 6 kg which is composed of 1 kg nominal

thrust, 0.25 kg control margin and 0.25 kg payload capacity for each rotor.

After some investigation of different rotor types, Great Planes Rimfire 42-

40-800kV outrunnner brushless rotors (Fig. 2.9) are chosen as the actuators

of the vehicle. This high torque, light weight (148 g) rotors are providing a

maximum of 592 Watt constant power with 32 A current on input voltages

of 11.1 V - 18.5 V [36].

Figure 2.9: Rimfire 42-40-800 kV and Silver Series SS-45

Silver Series SS-45 are chosen as electronic speed controllers (ESC) to

drive the Rimfire rotors as suggested by the rotor specifications. The 48 g

weighing driver can supply up to 45 A constant current and provide 500 Watt

operation power at a control frequency of 50 Hz [37].
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2.4.2 Propeller

Different propellers with standard sizes 11x8, 12x8, 13x6.5, 13x8, 14x7

and 14x8.5 of APC are tested on the Rimfire 42-40-800kV rotor in laboratory

environment to find the best combination of the components. A test rig with

a force gauge has been built (Fig. 2.10) and the propellers are tested under

two different voltage levels (11.1 V and 14.8 V) for maximum static thrust

and efficiency.

Figure 2.10: Test rig for thrust measurements

The results of maximum static thrust test are given in the table below:

Table 2.6: Propeller current draw on max. static thrust test

11.1 V 14.8 V

Size Current Max. Thrust Thrust/Current Current Max. Thrust Thrust/Current

[A] [kg] [kg/A] [A] [kg] [kg/A]

11x8 19.1 1.06 0.056 30.2 1.73 0.057

12x8 21.7 1.25 0.058 34.6 2.02 0.058

13x6.5 23.4 1.50 0.064 36.2 2.25 0.062

13x8 24.7 1.47 0.059 39 2.33 0.059

14x7 27.6 1.73 0.063 41.1 2.49 0.061

14x8.5 30.8 1.76 0.057 41.9 2.35 0.056

13x6.5 and 14x7 have been found to be the most efficient propeller sizes
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on both operating voltage levels. Because the desired thrust values can be

generated on 11.1 V, this voltage level has been chosen as the operating

voltage level of the actuators. To come up with a conclusive result the ef-

ficiency tests are repeated around nominal thrust (1 kg) value. Within this

test 14x7 propeller has performed a slightly better current/thrust ratio and

this propeller size is chosen for the actuation system (Fig. 2.11).

Figure 2.11: Xoar 14x7 propeller

The obtained thrust and current relationship for the 14x7 sized propeller

is given in Fig. 2.12.
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Figure 2.12: Current vs. thrust graph of 14x7 propeller (11.1 V)
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2.4.3 Servos

Tower Hobbies TS-170 digital servos are used in the tilt mechanism of the

vehicle. These high torque servos have a maximum 1.77 Nm output torque

at 4.8 V operating voltage level. Fig. 2.13 shows the TS-170 digital servo.

Figure 2.13: Tower Hobbies TS-170 digital servo

2.4.4 Battery

In order to get on the 11.1 V operating voltage level, three 3.7 V Li-Po

cells (Fig. 2.14) with 2400 mAH energy storage capacity are connected in

series for each of the rotors.

Figure 2.14: Li-Po battery

Although high energy capacity and light weight Li-Po batteries are used as

the power source of actuation, batteries still consist the greatest percentage of

the aerial vehicle’s weight. Each battery cell has a weight of 160 g and a total
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number of 12 battery cells consist a 1.92 kg total weight. Fig. 2.15 shows the

SUAVİ prototype with integrated actuators on different flight configurations.

Figure 2.15: SUAVİ with integrated actuators on different flight configura-

tions

2.5 Sensor Integration

2.5.1 IMU

For stabilization, control and attitude estimation purposes, SUAVİ is

equipped with Sparkfun V4 Inertial Measurement Unit (IMU) that consists

of 3 axis gyroscopes from InvenSense, 3 axis accelerometers from FreeScale

and 3 axis magnetometers from Honeywell (Fig. 2.16).

Control of the Sparkfun IMU is provided through a LPC2138 ARM7 pro-

cessor. Sensor readings are available with 10 Bit precision from this processor
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Figure 2.16: Sparkfun IMU V4

over TTL communication at 115200 kbps [38]. Custom filters and sensor fu-

sion algorithms are implementable inside this controller such that the Euler

angles defining the attitude of the vehicle with reference to the ground are

output instead of raw sensor readings. In order to implement such an al-

gorithm each sensor components characteristics are explored in Chapter IV.

The sensor and actuator integration presented in this chapter will appear in

[39].

2.6 Communication

Communication between the ground station and SUAVİ is established via an

Futaba RC Transmitter and a Roving Networks Bluetooth module. The RC

Transmitter is used to send operator commands to the vehicle whereas the

Bluetooth connection is used for monitoring purposes.
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Chapter III

3 Kinematic & Dynamic Modeling

The kinematic and dynamic modeling of a Quad Tilt Wing aerial vehicle

is a challenging engineering problem. Many well known mathematical models

have been developed for fixed wing airplanes [40], quadrotors [41, 42, 43, 44,

31] and tilt-rotor vehicles with two rotors [45, 46, 47]. A mathematical model

for the Quad Tilt Wing configuration on a SUAV class vehicle (Low Reynolds’

Number) is not developed yet, whereas a dynamic model via identification

methods have been established by Nonami et al. [48].

SUAVİ’s full dynamic model consists of horizontal flight using aerody-

namic lift of the wings, vertical flight using thrust of the rotors and the

transition process that incorporates both horizontal and vertical flight dy-

namics. Newton-Euler formulation is used to obtain a unified Quad Tilt

Wing dynamic model while following assumptions are made:

• The center of mass and the body fixed frame origin are coincident.

• The structure is rigid.

• The drag force of the fuselage is neglected.

• The relative airspeed on the body frame is only due to vehicle’s flight
speed.



3.1 Modeling Using Newton-Euler Formulation

The dynamic model of the aerial vehicle is developed under the light

of the works presented in [31, 44, 45]. A first draft of the dynamic model

appears in [49],[50].

3.1.1 Coordinate Frames

Two reference frames are defined for kinematic modeling of the aerial

vehicle:

• body fixed reference frame B : (Ob, xb, yb, zb)

• earth fixed inertial reference frame W : (Ow, xw, yw, zw).

Figure 3.1: Coordinate frames of the aerial vehicle

3.1.2 Kinematic Equations

For the given coordinate frames, the equations describing the position

and attitude of the vehicle are obtained by 6 DOF kinematic equations. The

28



position and linear velocity of the vehicle’s center of mass in world frame W

are described as,

Pw =




X

Y

Z


 , Vw = Ṗw =




Ẋ

Ẏ

Ż




The attitude and angular velocity of the vehicle in world frame W are de-

scribed as,

αw =




φ

θ

ψ


 , Ωw = α̇w =




φ̇

θ̇

ψ̇




where, φ, θ, ψ are named roll, pitch and yaw angles respectively. The equa-

tions for the transformation of the angular and linear velocities between world

frame W and body frame B are given in equations (1) and (2):

Vb =




vx

vy

vz


 = R(φ, θ, ψ) · Vw (1)

where

R(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ)

and

Ωb =




p

q

r


 = E(φ, θ) · Ωw (2)
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where

E(φ, θ) =




1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ




The transformation matrix E(φ, θ) is obtained from the relationship Ṙ =

S(ωb)R where S(ωb) is a skew-symmetric matrix [51]. The abbreviations sβ

and cβ are used instead of sin(β) and cos(β) respectively.

3.1.3 Dynamic Equations

The dynamic equations obtained for 6 DOF rigid body transformation of

the aerial vehicle in body fixed reference frame B are given as:

Ft = mV̇b + Ωb × (m · Vb) (3)

Mt = IbΩ̇b + Ωb × (Ib · Ωb) (4)

where m is the mass and the Ib is the inertia matrix expressed in the body

frame B. The external forces and torques acting on the vehicle are given in

Fig.3.2.

The 6 DOF dynamic equations (3) and (4) describing the rigid body

motion are valid for horizontal flight, vertical flight and for transition process.

However the external forces Ft and external moments Mt are functions of the

tilt angle θ1−4 and show very different actuation dynamics for different flight

modes.
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Figure 3.2: External forces and torques acting on the vehicle

External Forces

The total external force Ft acting on the vehicle’s center of gravity is the

sum of the forces Fth created by the rotors, the gravity Fg, the lift and drag

forces generated by the wings Fw and the aerodynamic forces Fd which is

considered as a disturbance.

Ft = Fg + Fw + Fth + Fd (5)

Gravity

The gravitational acceleration acting on the vehicle is a fixed vector along

zw axis on the earth reference frame W . The gravitational force therefore is

a function of roll and pitch angles if expressed in the body frame B:

Fg =




−sθ

sφcθ

cφcθ


 mg
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Wing Forces

Wing forces forming due to vehicle’s flight speed incorporate the lift

and drag forces created by each of four wings separately. On a fixed wing

airplane the aerodynamic forces are modeled with a conventional lift and drag

coefficient approach that assumes constant angle of attack during flight [40],

whereas on a rotary wing airplane the blade element theory is used which

takes into account the variation of angle of attack. However these models

do mainly consider the before stall flight envelope and it is hard to find

tables of lift and drag coefficients up to angles of attack of 90◦. The airfoil

of NACA2410 wing profile is obtained by [52] for degrees 0-20. The after

Figure 3.3: NACA2410 airfoil

stall region shows different characteristics for different Reynolds’ Numbers.

For low Reynolds’ Numbers the lift continues to increase with the angle
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of attack and the drop of lift on stall angle is smoother (Fig. 3.4 [52]).

Besides that, in order to incorporate the transition process in aerodynamic

Figure 3.4: Lift vs. Reynolds’ number

forces, the lift function FL(θi, vx, vz) and the drag function FD(θi, vx, vz) are

modeled as not just functions of forward linear velocity vx but also functions

of ascend/descend velocity vz of the vehicle, namely




FD

0

FL


 = R(θi)




−1
2
cD(αi)ρAv2

α

0

−1
2
cL(αi)ρAv2

α




where

vα =
√

v2
x + v2

z

αi = θi − (−atan2(vz, vx))

Here ρ is the air density, A is the wing area, vα is the airstream velocity

and αi is the effective angle of attack as shown in Fig. 3.5. The R(θi) is the

rotation matrix around y axis to transform the lift and drag forces back to
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the body frame.

Figure 3.5: Effective angle of attack αi

The lift coefficient cL(αi) and drag coefficient cD(αi) are modeled accord-

ing to the data points obtained from Javafoil and airfoil models from [52],

[53].
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Figure 3.6: Lift and Drag coefficients on large angles of attack

Fig. 3.7 and Fig. 3.8 show the variation of lift and drag forces versus tilt

angle θi and airstream velocity.
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Figure 3.7: Lift force FL
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Figure 3.8: Drag force FD

The sum of lift and drag forces are then formulated in body frame B as

Fw =




FD(θ1, vx, vz) + FD(θ2, vx, vz) + FD(θ3, vx, vz) + FD(θ4, vx, vz))

0

FL(θ1, vx, vz) + FL(θ2, vx, vz) + FL(θ3, vx, vz) + FL(θ4, vx, vz)



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It is important to mention that the wings at the back are rotated together

and their angle of attacks are the same for all time (θ3 = θ4).

Actuation Forces (Rotor Forces)

From experimental data the relationship between the thrust and square

of propeller angular velocity (ω2) is verified to be very close to linear (Fig.

3.9). With the assumption of near hover flight (low airspeed) the propeller
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Figure 3.9: Relationship between thrust and square of angular velocity for
14x7 propeller

thrusts F(1,2,3,4) are modeled as,

Fi = kω2
i
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With the tilt angles θi of the wings taken into account, the actuation forces

for all flight modes are obtained as,

Fth =




cθ1 cθ2 cθ3 cθ3

0 0 0 0

−sθ1 −sθ2 −sθ3 −sθ3







kω1
2

kω2
2

kω3
2

kω4
2




(6)

External Torques

The total external torque Mt acting on the vehicle’s center of gravity is

the sum of the torques Mth created by the rotors Mw created by the drag/lift

forces of the wings, Mgyro created by the gyroscopic effects of the propellers

and the aerodynamic torques Md which is considered as a disturbance. The

dynamic model contains the gyroscopic effects due to the propellers rotation

whereas the body gyroscopic effects are considered to be negligible due to

the slow nature of rotational motions during flight.

Mt = Mgyro + Mw + Mth + Md (7)

Gyroscopic Torques

The gyroscopic torques arise due to the change of the plane of rotation of

a rotating object. This torque has much more dynamic effect on objects that

rotate on very high speeds. Because of that the propellers gyroscopic torques

need to be included in the dynamic model. By modeling the gyroscopic effect

of the propellers it is assumed that the transition process is slow enough

such that the rate of the change of angle of attacks due to transition cause
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negligible effects. The gyroscopic torques in body frame B are modeled as,

Mgyro =
4∑

i=1

J [ηiΩb ×




cθi

0

−sθi


ωi]

η(1,2,3,4) = 1,−1,−1, 1

Here J is the moment of inertia of the propeller measured along the axis of

propeller’s rotation.

Aerodynamic Torques

The torques that arise due to the imbalance of the lift and drag forces

crated by the wings are defined as aerodynamic torques. With the assump-

tion of that the lift and drag can be considered as acting on a single point on

the surface of the wing that lies almost in the middle of the wingspan and at

the 25% chord length, the torques acting due to lift and drag forces can be

modeled as,

Mw =




(FL(θ1, vx, vz)− FL(θ2, vx, vz))ls

(FL(θ1, vx, vz) + FL(θ2, vx, vz)− FL(θ3, vx, vz)− FL(θ4, vx, vz))ll

(−FD(θ1, vx, vz) + FD(θ2, vx, vz))ls




Actuation Torques (Rotor Torques)

The actuation torques are composed of two components. First component

is the sum of torques that are created by the rotors inherently and that are

proportional to the thrust. Second component is the due to the imbalance of
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thrust forces acting on different tilt angles with different magnitudes. These

two components of actuation torques can be formulated as,

Mth =




lssθ1 −lssθ2 lssθ3 −lssθ4

llsθ1 llsθ2 −llsθ3 −llsθ4

lscθ2 −lscθ2 lscθ3 −lscθ4







kω1
2

kω2
2

kω3
2

kω4
2




+




−cθ1 −cθ2 −cθ3 −cθ4

0 0 0 0

sθ1 sθ2 sθ3 sθ4







λ1kω1
2

λ2kω2
2

λ3kω3
2

λ4kω4
2




(8)

Note that the torque created by the rotors is proportional to the thrust,

with a constant ratio λi that depends on the propeller geometry,

Ti = λikω2
i

It is also important to mention that the sum of torques created by the

rotors result in a roll moment along the x axis in horizontal flight mode

(θ1,2,3,4 = 0) and in a yaw moment along the z axis in vertical flight mode

(θ1,2,3,4 = π/2).
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Chapter IV

4 Controller Synthesis

4.1 Background

Several different controllers designed for the VTOL vehicles with quad-

rotor configurations exist in the literature. In their work, Bouabdallah et al.

present a PID controller for a simplified model and an LQ controller for a

more complete model [54]. Besides classical PID controllers used in [55], PD

[56] and quaternion based PD2 [57] controllers are also used in quad-rotor

research. [58] and [59] show the result of optimal controllers based on LQR

and State Dependent Riccati Equation. In [60] Earl and D’Andrea develop an

attitude estimation technique by using a decomposition approach. Another

study is carried out to use an output feedback controller with estimators and

observers in [61]. Backstepping control of Madani and Benallegue [62] is a

recent example of recent non-linear control methods applied on quad-rotors.

In [63] a comparison of two nonlinear controllers based on integral sliding

mode and reinforcement learning are presented. Hably and Merchand have

recently proposed a global asymptotic stabilizing controller under bounded

inputs [64]. Another recent study proposes a scheme for full control of quad-

rotors [65]. Other controllers for quad-rotor control and stabilization can be

found in [66], [67], and [68].



4.2 Controller Design in Linear Framework

To design attitude and position controllers for VTOL mode of the aerial

vehicle, first the equations obtained in Chapter III are put into state-space

form. The state vector X consists of the position (P ), the attitude (α), the

linear velocity (Vb) and the angular velocity (ωb).

X =




Pw

Vb

ωb

αw




(1)

In light of equations (1)-(4) we have

Ẋ =




Ṗw

V̇b

ω̇b

α̇w




=




R−1(αw) · Vb

1
m
· [Ft − ωb × (m · Vb)]

I−1
b · [Mt − ωb × (Ib · ωb)]

E−1(αw) · ωb




(2)

which is a nonlinear plant of the form

Ẋ = f(X, u) (3)

In order to simplify the controller design, the actuating forces and torques

are decomposed into four virtual control inputs (ui) as follows:
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u =




u1

u2

u3

u4







−(F1 + F2 + F3 + F4)

ls · [(F1 + F3)− (F2 + F4)]

ll · [(F1 + F2)− (F3 + F4)]

λ1F1 + λ2F2 + λ3F3 + λ4F4




(4)

It is important to mention that this decomposition is valid only for the

VTOL mode of the aerial vehicle with 4 DOF actuation. For the horizontal

flight mode the actuation becomes 5 DOF because of the force component

in xb direction and a different decomposition method needs to be applied.

4.2.1 PID Attitude Stabilization

The PID Controllers are used very widely because of their simplicity and

provide satisfactory performance for many plants. Therefore a PID controller

structure is implemented to stabilize the attitude of SUAVİ is for vertical

flight experiments. The transfer functions for the roll, pitch and yaw of the

plant are obtained from linearization of the dynamic model around hover

condition (no gyroscopic effects),

φ̈ =
u2

Ix

(5)

θ̈ =
u3

Iy

(6)

ψ̈ =
u4

Iz

(7)

A PID controller is mathematically formulated as,

u(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd
de(t)

d(t)
(8)
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with tuning parameters Kp, Ki and Kd, where the error e(t) is defined as

e(t) = Xref −X(t) (9)

The Kp term contributes proportional to the error and influences the band-

width and rise time characteristics of the controller. For large bandwidth

the trade-off is often an increased overshoot at the output. The Ki term

eliminates steady-state error, however it can introduce oscillations to the

system. The Kd term dampens the response of the system by changing the

overshoot and rise-time behavior of the system. Although this controller

structure works well in theory, for a robust implementation two modifica-

tions are necessary to apply on the PID controller. Firstly the derivative

action of the PID controller needs to be modified such that for a step refer-

ence the derivative term will not result to an impulse at the output. If that

happens, a saturation due to the physical limitations of the motors is very

probable and therefore not desired. To eliminate this problem instead of the

time derivative of e(t) the time derivative of the state X is used.

u(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ −Kd
dX(t)

d(t)
(10)

Secondly, a windup because of integral action may also occur which can dom-

inate the proportional and derivative actions. To overcome this a saturation

is applied to the integral term of the controller. The final form of the PID

controller is given in Fig. 4.1.
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Figure 4.1: Block diagram of the PID controller

4.2.2 PID Position Controller

The linear motions along x and y axes of the aerial vehicle are coupled

with the pitch and roll angles. In order to accelerate in positive x direction

a negative pitch angle needs to be applied. Similar, in order to accelerate in

positive y direction a positive roll angle needs to be applied. Therefore the

position control in xy plane can be controlled with cascaded PID controllers.

For altitude control no cascade structure is needed, control along z axis is

applied on the plant:

z̈ = (cos(θ)cos(φ))
u1

m
+ g (11)

If linearized around hover conditions (θ, φ = 0), the altitude model will be a

second order differential equation similar to equations (5, 6, 7), namely

z̈ =
u1

m
+ g (12)

The resulting structure of cascade position controller is given in Fig. 4.2
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Figure 4.2: Block diagram of cascade PID position controller

4.2.3 LQR Position Controller

Although the state vector contains 12 variables, in VTOL mode the aerial

vehicle is an underactuated system with 4 DOF. Therefore the control pa-

rameters of the plant are chosen to be the position P (x, y, z) and yaw angle

(ψ), for LQR controller design. The dynamic equations of the vehicle are

linearized symbolically using MAPLE. A, B and C matrices of the linearized

system are computed as follows:

A =




∂f1(X,u)
∂X1|x=xn

· · · ∂f1(X,u)
∂X12|x=xn

...
. . .

...

∂f12(X,u)
∂X1|x=xn

· · · ∂f12(X,u)
∂X12|x=xn




B =




∂f1(X,u)
∂u1|u=un

· · · ∂f1(X,u)
∂u4|u=un

...
. . .

...

∂f12(X,u)
∂u1|u=un

· · · ∂f12(X,u)
∂u4|u=un




C = I

45



where I is 12× 12 identity matrix. The linear model for any operating point

can be obtained by putting the states of the operating point into the linear

model matrices. After obtaining the desired linear model a controller in the

form:

u(t) = −K(X(t)−Xref ) (13)

is selected to stabilize the system, where Xref is the reference state. The

feedback gain matrix K is found by minimizing the following cost function

J =

∫ ∞

0

[(X(t)−Xref )
T Q(X(t)−Xref ) + u(t)T Ru(t)]dt (14)

where Q and R matrices are semi-positive definite and positive definite weight

matrices of the state and control variables respectively. Solution of the min-

imization problem implies the well known Riccati equation,

PA + AT P + Q− PBR−1BT P = 0 (15)

which in turn implies

K = R−1BP (16)

By tuning the Q and R matrices the reference tracking characteristics

and control effort characteristics can be determined for each state variables

and control variables independently.

The K gains of the LQR controller are calculated for each 4o increment

of yaw (ψ) angles in 360o, for a full range control of yaw angle. This way

an interpolation of K gains according to the yaw angle of the vehicle is

accomplished. The structure of the LQR controller is given in Fig. 4.3.
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Figure 4.3: Block diagram of the LQR controller

4.3 Transition Between Vertical Flight and Horizontal

Flight

The transition process between vertical and horizontal flight modes is

established under the assumptions of synchronous change of angle of attacks

(θ1 = θ2 = θ3 = θ4). The altitude control input u1 consists of the total lift

force generated by propeller thrusts and aerodynamic lift forces. Referring to

the forces derived in Chapter III, the aerodynamic lift force FLift is calculated

as a function of vx, vy and θi, namely

FLift = F 1
L + F 2

L + F 3
L + F 4

L (17)

For transition mode the altitude control input u1 is modified by subtract-

ing FLift from u1 such that u1 only consists of the thrust component along z

direction in the presence of a tilt angle.

û1 = u1 − FLift (18)

The z and x components of the thrust force Fi are shown in Fig. 4.4. The

control inputs u2,3,4 of attitude stabilization are fed to the system without

any modification. Similar to virtual input decomposition for VTOL mode

(θi = 90o) in equation (4), a new control input matrix involving tilt angles is
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Figure 4.4: Forces acting during transition

obtained from equations (6) and (8), namely

û =




û1

u2

u3

u4




=




−sθ1 −sθ2 −sθ3 −sθ3

lssθ1 − λ1cθ1 −lssθ2 − λ2cθ2 lssθ3 − λ3cθ3 −lssθ4 − λ4cθ4

llsθ1 llsθ2 −llsθ3 −llsθ4

lscθ2 + λ1sθ1 −lscθ2 + λ2sθ2 lscθ3 + λ3sθ3 −lscθ4 + λ4sθ4







F1

F2

F3

F4




(19)

The thrust forces are obtained by using the inverse of 4x4 matrix in equa-

tion (19). With this approach during a transition from vertical to horizontal

flight mode the altitude of the vehicle is maintained by transferring the lift

from rotor thrust to aerodynamic lift generated by wings. A first draft of the

proposed transition controller will appear in [69].

4.4 Attitude Estimation Using Kalman Filtering

Kalman filters within quaternion framework [70], extended Kalman filters

[71] with nonlinear dynamics and sigma point Kalman filters [72] have been

implemented in the literature for attitude estimation. These filters incorpo-

rate highly coupled rotational dynamics and require cumbersome Jacobian
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calculations which are hard to implement for real-time processing in a mi-

croprocessor unit. Feasible options are complementary filters [73, 74], 1D

Kalman filters [75] and stabilized angle calculations [76] that give fast and

useful attitude estimations around hover conditions. In order to implement

a robust attitude estimator the gyroscope, accelerometer and magnetometer

characteristics of Sparkfun IMU are explored.

Gyroscopes

A gyroscope outputs the magnitude of rotational velocity around its axis

and this output can be used to find the angle of rotation around that axis via

integration methods. The IDG300 gyroscopes from InvenSense output the

rotational velocities up to 500 deg/sec [77] with a bandwidth of 96 Hz [38].

In ideal conditions the zero rotational velocity corresponds to a digital out-

put of 512 whereas a ±500 deg/sec rotational velocity corresponds to 0-1023

readings. As the ideal conditions do not hold in reality, with several exper-

iments it is shown that the zero rotational velocity readings range between

450 and 550 (Fig.4.5).

The gyroscope readings in static environment have shown very good noise

characteristics which are bounded by ±2 increments from the mean value of

0 rotational velocity. The noise characteristics of the gyroscopes are also

investigated on the aerial vehicle with four rotors running. It is observed

that the high frequency vibrations do not affect the gyroscope sensitivity in

a great manner and the jitter is bounded by ±5 increments (Fig. 4.6).

In several measurements it is observed that the mean value of 0 rotational

velocity drifts ±15 increments from the initial value over as short as 50

49



0 50 100 150 200 250

440

460

480

500

520

540

560

sample [n]

di
gi

ta
l o

ut
pu

t

 

 
y
z
x

Figure 4.5: Gyroscope readings around x,y,z axes
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Figure 4.6: Gyroscope readings around x,y,z axes while rotors are running

sec runtime. Because this drift problem is unavoidable, the integration of

rotational velocity causes to an accumulative error in angle estimation. A

compensation method for the drift problem such as Kalman filtering [78] or

complementary filtering [74] is necessary for a good attitude estimation.

50



Accelerometers

An accelerometer outputs the magnitude of acceleration acting on its

axis. Therefore the gravity vector which is pointing down to the center of

the earth can be used to find the roll and pitch angles using three accelerom-

eter readings. In a static environment where there is no acceleration due to

the external forces acting on the sensors, the roll and pitch angles can be

estimated very precisely. The sensory data from MMAQ7260 accelerometers

in the Sparkfun IMU V4 are available with an output bandwidth of 350 Hz

for the x and y axes, and 150 Hz for the z axis [38]. However the accelerom-

eters are very sensitive to high frequency noise and they require very narrow

bandwidth low pass filters in order to eliminate the noise effects. That results

to a slow response compared to gyroscope measurements.

The MMAQ7260 accelerometers can output accelerations up to 6g [79]

whereas 1.5g, 2g and 4g sensitivity levels are also selectable for better preci-

sion. Using the 1.5 g setting for the best precision, 1 g acceleration reading is

expected to be 853 on a 0-1023 scale ideally. However, in experiments under

static environment conditions, it is observed that the 1 g acceleration of the

earth resulted to a sensor reading of 750 (Fig. 4.7).
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Figure 4.7: Accelerometer readings around x,y,z axes
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In several experiments it is observed that the noise characteristics of the

accelerometers under static conditions have high S/N ratio (Fig. 4.7), but

under high frequency vibrations (while rotors are running) the measurements

become useless (Fig. 4.8). Therefore a low pass filter with 10 Hz cut-off
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Figure 4.8: Accelerometer readings around x,y,z axes during hover

frequency is added to the circuit before analog to digital conversion and the

S/N ratio is improved as seen in Fig. 4.9. To obtain a higher S/N Ratio the

cut-off frequency of the low pass filter is changed to 0.6 Hz. Fig. 4.10 below

shows the clean accelerometer measurement data during hover.

Magnetometers

Magnetometers measure the magnetic field strength and with a 3-axis

magnetometer the magnetic field vector showing the North Pole of earth can

be obtained. Honeywell HMC1053 magnetometers measure the magnetic

field with a sensitivity of 3.3mV/Gauss on 3.3 V operating voltage [80]. This

signal is then amplified on Sparkfun IMU sensor board with an op-amp by

100 to 0.33 V/Gauss [38]. According to NOAA[81] the earth’s magnetic field
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Figure 4.9: Accelerometer readings around x,y,z axes with 10 Hz low pass
filter during hover
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Figure 4.10: Accelerometer readings around x,y,z axes with 0.6 Hz low pass
filter during hover

at the location of the laboratory has a horizontal intensity of 24,725.2 nT

which corresponds to ∼0.25 Gauss. A 0.25 Gauss reading on a single axis

would show up as 0.0825 V which corresponds to 15 steps in analog to digital
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conversion. Thus for a 360o yaw turn in horizontal plane an x-y plot of a

circle with 30 step radius is expected. Several experiments have shown that

the magnetometer measurements are heavily affected by inherent noise. The

jitters magnitude go up to ±10 steps which is almost 66% of the maximum

measurement we can obtain. Such a low S/N Ratio gives very poor yaw

estimation. Low pass filters with very small bandwidth need to be used.
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Figure 4.11: Magnetometer readings around x,y,z axes

Kalman Filtering

Kalman Filter uses a combination of gyroscopes and accelerometers read-

ings to provide robust angle estimations. The key characteristics are, ac-

celerometers introduce a phase delay because of low-pass filters, but the

calculated angles do not drift over time, whereas gyroscopes give good an-

gle estimations in short time intervals. As one can see from Fig. 4.12, the

integration of rotational velocity from gyroscopes results in a drift in angle

estimation especially after repetitive cyclic motions. To obtain roll and pitch

angles of the aerial vehicle two 1D Kalman Filters are implemented with
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Figure 4.12: Roll and pitch angles obtained via integration

the assumption of negligible coupling between roll and pitch angles in hover

condition. For the linear dynamic model in the form

xk+1 = Axk + Buk

the discretized model of the angle integration from gyroscope data is obtained

as: 
angle

bias




k+1

=


1 −T

0 1





angle

bias




k

+


T

0


 uk (20)

In this equation T is the sampling time of the system, uk is the gyroscope

output at t = kT and the state vector contains the estimated angle and

the bias. The Kalman filter is to correct the bias term after each iteration

by comparing estimated angle with the angle obtained from accelerometer

measurements. The filter consists of prediction and correction stages. The

prediction stage is formulated as [78]:

x̂−k = Ax̂k−1 + Buk−1
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P−
k = APk−1A

T + Q

The error covariance matrix P−
k and state vector x̂−k from prediction stage are

then used to calculate the Kalman gain K and prediction in the correction

stage as:

Kk = P−
k HT (HP−

k HT + R)−1

x̂k = x̂−k + Kk(zk −Hx̂−k )

Pk = (I −KkH)P−
k

The Q and R matrices in Kalman filter equations are process noise covariance

and measurement covariance matrices respectively. Filter performance can be

improved tuning these parameters. Using the above explained equations two

separate one dimensional Kalman Filters are implemented in microprocessor

unit to estimate roll and pitch angles of the vehicle. As seen in Fig. 4.13 the

drift problem is eliminated.
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Figure 4.13: Roll and pitch angles obtained with Kalman filters
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4.5 Simulations

The nonlinear dynamic model derived in Chapter III is implemented in

Simulink/MATLAB environment (Fig. 4.14).

Figure 4.14: Simulink model of the SUAVİ

With this simulation model, switching between different controllers is

possible for performance evaluation.

4.5.1 Visualization Using VR Toolbox

An important part of the simulation environment is the developed Vi-

sualization Toolbox. Using the CAD drawing of the aerial vehicle a vrml

model is created in VRealm Builder Environment which is integrated with

VR Toolbox of Matlab.
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Figure 4.15: Take-Off visualization using VR toolbox

This visual model is connected to the dynamic model of the aerial vehicle

through Simulink and the simulations are visualized in real-time with the

update of actual attitude and position parameters along the wing tilt angles.

With the help of this visualization toolbox the vehicle dynamics can easily

be observed and the performance evaluations can easily be made. The point

of view of visualization can be fixed such that it will move with the Body

Frame B or remain in place bound to the world frame W for different analysis

of the aerial vehicle.
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Figure 4.16: Flight modes visualization using VR toolbox
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4.5.2 Simulation Results

PID Controller Simulations

The performance of the PID controller is evaluated on the nonlinear

dynamic model of the vehicle given by (2) in MATLAB/Simulink. The con-

troller variables Kp,Ki and Kd for roll, pitch, yaw and altitude control are

selected as,

Roll: Kp = 1,Ki = 0.001,Kd = 0.5
Pitch: Kp = 1,Ki = 0.001,Kd = 0.5
Yaw: Kp = 0.5,Ki = 0.001,Kd = 0.9

Starting with the initial configuration Pw = (0, 0, 0)T and αw = (0, 0, 0)T of

the vehicle, the simulation results given in Fig. 4.17 show the variation of the

attitude variables under random disturbance for the reference inputs given

from joystick inputs.
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Figure 4.17: Attitude control using PID
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Note that position and angle references are tracked with small steady

state errors and the tracking response of roll and pitch angles from user

inputs is fast enough to achieve desired maneuvers. The lift forces generated

by each rotor for this controller are shown in Fig. 4.18.
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Figure 4.18: Forces created by rotors (PID)

The control effort is bounded by ±2 N from the nominal thrust, and is

in the physical limitations of the rotor thrust.

The PID attitude stabilization keeps the vehicle in level during flight

however drifting along x and y directions is unavoidable with this controller

alone. To keep the aerial vehicle stationary cascade PID structure that con-

trols the x and y position of the vehicle over pitch and roll angles is used.

Fig. 4.19 and 4.20 show the stabilization of attitude over Pref = (0, 0, 0)T

position reference.
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Figure 4.19: Position control using cascade PID
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Figure 4.20: Attitude control using cascade PID

Although good attitude stabilization performance is achieved the position

controllers have large position errors and weak disturbance rejection. The
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degraded performance of the position control is probably due to the ignorance

of nonlinear couplings between attitude and position states. Fig. 4.21 shows

the forces created with cascade PID control. The control effort is similar to

attitude stabilization alone.
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Figure 4.21: Forces created by rotors (Cascade PID)

LQR Controller Simulations

The performance of the LQR controller is evaluated on the nonlinear

dynamic model of the vehicle given by (2) in MATLAB/Simulink. Q and R

matrices used in LQR design are selected as

Q = 10−1 · I12x12
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R = diag(10−1, 10, 10, 10)

With this selection of Q and R matrices the state variables have equal weight

whereas the altitude control variable has less weight compared to roll, pitch

and yaw state variables.

Starting with the initial configuration Pw = (0, 0, 0)T and αw = (0, 0, 0)T

of the vehicle, the simulation results given in Fig. 4.22 and Fig. 4.23 show

the variation of the position and attitude variables for the step reference

inputs Pref = (5,−5,−10)T and ψr = −π/2 under random disturbance.
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Figure 4.22: Position control using LQR

Note that position and angle references are tracked with small steady

state errors. The lift forces generated by each rotor are shown in Fig. 4.24.

It is important to note that the control effort is small and the magnitude

of the forces that need to be generated don’t exceed the physical limits ('
16 N) of the rotors and remain in the ±%20 margin of the nominal thrust.

A second simulation is done for evaluating the trajectory tracking perfor-

mance of the LQR controller. Again starting with the initial configuration
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Figure 4.23: Attitude control using LQR
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Figure 4.24: Forces created by rotors (LQR)

Pw = (0, 0, 0)T and αw = (0, 0, 0)T of the vehicle, the simulation results given

in Fig. 4.26 and Fig. 4.27 show the variation of the position and attitude

variables for the rectangular and helix trajectory given in Fig. 4.25.
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Figure 4.25: Rectangle and helix tracking
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Figure 4.26: Rectangle and helix tracking using LQR (position)

The position references are tracked with a 3 sec. phase shift, but the

trajectory points are followed and the path shape is preserved. The attitude

stabilization plots (Fig. 4.27) show us that although the vehicle has deviated

from the linear zone to nonlinear zone with roll and pitch angles of 20o, the

system is stabilized and the trajectory is followed. The lift forces generated

by each rotor are shown in Fig. 4.28. The physical limitations of the rotors
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Figure 4.27: Rectangle and helix tracking using LQR (attitude)

are not exceeded.
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Figure 4.28: Rectangle and helix tracking using LQR (rotor forces)
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Comparison of PID and LQR

The position control and attitude stabilization performances of cascade

PID controller are given in Fig. 4.19, 4.20. Another simulation is done

utilizing LQR controller under same reference and initial conditions. Fig.

4.29 and Fig. 4.30 show the position and attitude tracking performance of

the LQR controller. Forces generated during the simulation are shown in Fig.

4.31. Comparison of two controllers performances is made by quantifying
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Figure 4.29: Position control (LQR)

the control effort and state tracking errors with RMS values. Table 4.1 shows

the RMS values of force, position errors and attitude errors of two controllers.

The RMS values of forces are calculated after extracting the nominal thrust

values from measured thrust in order to quantify the control effort only. As

seen from Table 4.1 LQR controller has better position tracking performance

with less control effort. The attitude stabilization performance is also better
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Figure 4.30: Attitude control (LQR)

Table 4.1: Position control & attitude stabilization performances

Cascade PID LQR

F1 0.1366 0.0925
F2 0.1168 0.0623
F3 0.1099 0.0620
F4 0.0582 0.0541
φ 1.3990 1.016
θ 1.5967 0.884
ψ 1.0246 3.447
x 0.6477 0.3358
y 0.6404 0.1155
z 0.0233 0.0162

than the cascade PID controller with a single weakness in yaw control. This

is probably due to the large moment of inertia of the aerial vehicle around

z axis. Performance of yaw tracking can be improved with further tuning
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Figure 4.31: Forces created by rotors (LQR)

of weight matrices. As a result the LQR controller performs more optimally

than cascade PID.

Transition Between Vertical and Horizontal Flight Modes

In this simulation, the transition from vertical to horizontal and back

to vertical flight modes are commanded by joystick input. The proposed

transition method between flight modes regulates the altitude of the vehicle

in the presence of a tilt angle on the wings. Fig. 4.32 shows the change of

tilt angles.

For this tilt angle commands the airstream magnitude and its angle during
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Figure 4.32: Change of tilt angles

transition are given in Fig. 4.33. The variation of effective angle of attack αi
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Figure 4.33: Airstream magnitude and its angle during transition

which depends on airstream angle and tilt angle θi are shown in Fig. 4.34.

The total lift and drag forces that appear on the body due to the wing
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Figure 4.34: Effective angle of attack during transition

aerodynamics are given in Fig. 4.35.
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Figure 4.35: Lift and drag forces during transition

The thrust forces of actuators are given in Fig. 4.36.

As seen from Fig. 4.35 and Fig. 4.36 during transition from vertical

to horizontal flight mode the lift force is transferred from actuators to the
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Figure 4.36: Rotor forces during transition

wings. The altitude regulation performance during this transition is given in

Fig. 4.37.
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Figure 4.37: Altitude regulation during transition

As seen from Fig. 4.37 the altitude is maintained during transition pro-

cesses between vertical and horizontal flight modes.
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Chapter V

5 Experimental Results

Before starting with the experiments on the SUAVİ prototype, the per-

formance of the controllers are tested on a quadrotor platform that is very

rigid. This quadrotor platform is built such that it mimics the actual pro-

totype of SUAVİ in VTOL mode. It has the same physical dimension, same

weight of the actual prototype and a very close moment of inertias around

roll and pitch axis.

Figure 5.1: SUAVİ prototype and the quadrotor test platform

5.1 Kalman Filter Experiments

The first experiments are done for verification of Kalman Filters imple-

mented for roll and pitch angles. To start with a static angle of 50o is applied



for roll and pitch angles (Fig. 5.2, 5.3), and it is observed that the angles

are converging to the actual values with a fast response. To verify the
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Figure 5.2: Roll estimation using Kalman filter (static)
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Figure 5.3: Pitch estimation using Kalman filter (static)

robustness of the algorithm the Kalman filters are tested again this time in

dynamic environment (Fig. 5.4, 5.5). As seen from the plots the angle

estimation from gyroscope integration is corrected over the trend line of the
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Figure 5.4: Roll estimation using Kalman filter (dynamic)
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Figure 5.5: Pitch estimation using Kalman filter (dynamic)

accelerometer angle measurement, thus the drift is eliminated and the angle

estimations can be used in control algorithms for vertical flight experiments.

5.2 Vertical Flight Experiments

The derived PID controller for attitude stabilization of SUAVİ is imple-

mented in onboard microprocessor of the vehicle. Because the drift of the

yaw angle cannot be corrected without an external measurement, velocity
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control is applied for the rotation around z-axis. The reference angles are

generated via an R/C Transmitter from a user pilot with the aim of holding

the vehicle stationary over a 3 m wide and 3 m long flight area. The tuning

of PID parameters are done iteratively flight after flight. Fig. 5.6 shows the

attitude stabilization performance of the aerial vehicle over a 15 sec. flight

interval.
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Figure 5.6: Attitude stabilization experiment using PID

As seen from Fig. 5.6, during the flight the roll and pitch angles remain

around ±3o and hovering is achieved. The velocity control on the yaw axis

works fine because there is no significant movement in yaw axis during hover

flight. The measurements after 15 sec. show the inclination of the ground

after landing. Several experiments are conducted to test the repeatability

of performance. Fig. 5.7 shows the attitude stabilization data of a 20 sec.

flight.
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Figure 5.7: Attitude stabilization experiment using PID

Similar performance of the controller is observed in this flight. Having

verified the repeatability a hovering experiment for longer time interval is

performed. Fig. 5.8 shows another flight with a hovering duration of 50 sec.
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Figure 5.8: Attitude stabilization experiment using PID
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From this flight it is observed that the attitude stabilization performance

is not degrading over time and the roll and pitch stabilization is realized

between angles ±5o. Fig. 5.9 shows flight scenes from hovering experiment

of SUAVİ prototype.

Figure 5.9: SUAVİ vertical flight experiment
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Chapter VI

6 Conclusion & Future Works

A new quadrotor Unmanned Aerial Vehicle with Tilt-Wing mechanism

(SUAVİ) with horizontal flight and vertical flight capabilities is presented in

this thesis. The actuator and sensor integration of the vehicle is established

and characterization of the sensor dynamics are made. Kalman filters are

implemented and robust attitude estimation of the vehicle are obtained for

control purposes.

The full mathematical model that incorporates the dynamics of horizontal

flight, vertical flight (VTOL) and the transition mode is developed. Because

the flight dynamics of the vehicle show very different characteristics in dif-

ferent flight modes, different control algorithms need to be implemented for

each mode. Position control and attitude stabilization is done for VTOL

mode and a method for transition from VTOL to horizontal flight mode is

proposed. The performance of the controllers are investigated in simulation

environment with 3D visualization and the results are promising. The LQR

position controller is not implemented on the vehicle because the full state

information is not available with the existing sensory data, but PID con-

troller’s performance for attitude stabilization are verified with VTOL flight

experiments.

Future works include incorporation of sonar sensors, higher resolution



magnetometers, GPS units and pitot tubes for state estimations and design

of flight controllers for horizontal flight mode and the transition mode of

SUAVİ.
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