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Abstract

With the advancement in video and display technologies, recently flat panel High
Definition Television (HDTV) displays with 100 Hz, 120 Hz and most recently 240 Hz
picture rates are introduced. However, video materials are captured and broadcast in
different temporal resolutions ranging from 24 Hz to 60 Hz. In order to display these
video formats correctly on high picture rate displays, new frames should be generated
and inserted into the original video sequence to increase its frame rate. Therefore,
Frame Rate Up-Conversion (FRUC) has become a necessity. Motion Compensated
FRUC algorithms provide better quality results than non-motion compensated FRUC
algorithms. Motion Estimation (ME) is the process of finding motion vectors which
describe the motion of the objects between adjacent frames and is the most
computationally intensive part of motion compensated FRUC algorithms. For FRUC
applications, it is important to find the motion vectors that represent real motions of the
objects which is called true ME. In this thesis, an Adaptive True Motion Estimation
(ATME) algorithm is proposed. ATME algorithm produces similar quality results with
less number of calculations or better quality results with similar number of calculations
compared to 3-D Recursive Search true ME algorithm by adaptively using optimized
sets of candidate search locations and several redundancy removal techniques. In
addition, 3 different complexity hardware architectures for ATME are proposed. The
proposed hardware use efficient data re-use schemes for the non-regular data flow of
ATME algorithm. 2 of these hardware architectures are implemented on Xilinx Virtex-4
FPGA and are capable of processing ~158 and ~168 720p HD frames per second
respectively.
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OZET

Video ve ekran teknolojilerindeki ilerlemeler sayesinde, yakin zamanlarda 100
Hz, 120 Hz, ve en yeni olarak da 240 Hz goriintii hizlarina sahip diiz ekran Yiiksek
Coziintirliiklii Televizyon (YCT) ekranlar1 piyasaya cikarildi. Fakat video goriintiileri
24 Hz'den 60 Hz'e degisen farkli zamansal ¢oziintirliikklerde kaydedilmekte ve
yayinlanmaktadir. Bu farkli video bigimlerini yiiksek goriintii hizli ekranlarda dogru bir
sekilde goriintiilemek i¢in, yeni kareler yaratilmali ve goriintii hizin1 artirabilmek igin
video diziminin i¢ine eklenmelidir. Bu yiizden Goriintii Hiz1 Artirnmi (GHA) bir ihtiyag
olmustur. Hareket Destekli GHA algoritmalari, hareket destegi olmayan GHA
algoritmalarina oranla daha yiiksek kaliteli sonuglar vermektedir. Hareket Tahmini
(HT), nesnelerin ardisik kareler boyunca hareketlerini tanimlayan hareket vektorlerini
bulma islemidir ve de Hareket Destekli GHA algoritmalarinin islemsel olarak en yogun
kismini olusturur. GHA uygulamalart icin dnemli olan nesnelerin gergek hareketlerini
ifade eden hareket vektorlerinin bulunabilmesidir. Buna Gercek HT denir. Bu tezde
Uyarlanir Gergek Hareket Tahmini (UGHT) algoritmast oOnerilmektedir. UGHT
algoritmas1 kullanildiginda, en uygun hale getirilmis aday arama konumlari
kiimelerinden ve de birtakim artiklik azaltici tekniklerden uyarlanir bir sekilde
yararlanilip, 3-D Recursive Search Gergek HT algoritmasiyla karsilastirildiginda daha
az islem yapilarak benzer kalitede sonuglar veya da benzer sayida islem yapilarak daha
yuksek kalitede sonugclar elde edilmektedir. Ek olarak, UGHT igin degisik karmasikliga
sahip 3 farkli donamim mimarisi Onerilmektedir. Onerilen donammlarda UGHT
algoritmasinin diizenli olmayan veri akisi i¢in verilerin verimli yeniden kullanimi igin
yontemler uygulanmaktadir. Bu tasarimlardan 2'si Xilinx Virtex-4 FPGA (zerinde
ger¢eklenmis ve de saniyede sirasiyla yaklasik olarak 158 ve 168 720p YC cerceve
isleyebilmektedirler.
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Chapter 1

INTRODUCTION

The advancements in VLSI technology enabled the production of many
multimedia products which introduced many video formats with different spatial and
temporal resolutions. These formats include two main Standard Definition (SD) TV
broadcast formats (50 Hz and 60 Hz with 625 and 525 lines respectively), and High
Definition TV (HDTV) formats (720p and 1080i). The movie materials are recorded at
24, 25 or 30 frames per second. On the other hand, the advancement in display
technologies enabled the production of large flat panel High Definition Television
(HDTV) and PC displays with up to 100, 120 and most recently 240 Hz non-interlaced
picture rates.

In order to display these formats correctly on high picture rate panels, new frames
should be generated and inserted into the original sequence to increase its frame rate.
Therefore, Frame Rate Up-Conversion (FRUC) has become a necessity [1]. An example
FRUC scheme in which the frame rate of the input video sequence is multiplied by 4 is

shown in Figure 1.1.

14
Frame Rate
Up-Conversion

F-304) FO-1H) Fit+1) el

FiH) f o 1) FEA) F) RO+ P+

Figure 1.1: An Example FRUC System



The existing FRUC algorithms are mainly classified into two types [2]. First class
of algorithms does not take motion of the objects into account, like frame repetition [3]
or linear interpolation [4]. These algorithms are easy to implement without any
significant computational cost, however at high spatial and temporal resolutions, these
algorithms produce visual artifacts [5] like motion judder (if the difference between
input and output frame rate is below 30 Hz) and motion blur (for higher differences).
Figure 1.2 [1] shows the effect of these two situations.

In Figure 1.2(a) the original sequence is shown, where the linear motion of an
object is illustrated as a straight line for 3 frames. In Figure 1.2(b), the case where the
motion of the object is recorded by a 24 frames per second (fps) camera and displayed
on a 60 Hz display is shown. When picture repetition is applied, some frames will be
displayed two times and some will be displayed three times. This is called a 2-3 pull
down [6]. In this case the viewer will experience an irregular or jerky motion which is
called motion judder. On the other hand, in Figure 1.2(c), the case where a 50 Hz video
is displayed on a 100 Hz display using picture repetition is shown. In this case, the
viewer will experience a smooth motion, as the difference between input and output
frame rates is higher than 30 Hz. However, the object will be perceived in both
positions moving in parallel simultaneously, which will result in a double or blurred

object. This is called motion blur.

position position pusition

A A 4

- -
time tima . time

(@) (b) (©)
Figure 1.2: Effect of Picture Repetition (a) Original sequence (b) Picture repetition
from 24 Hz to 60 Hz (c) Picture repetition from 50 Hz to 100 Hz.

Second class of FRUC algorithms takes the motion of objects into account to
reduce these artifacts and construct higher quality interpolated frames [2]. These Motion
Compensated Frame Rate Up-Conversion (MC-FRUC) algorithms consist of two main

stages, Motion Estimation (ME) and motion compensated interpolation (MCI). In ME, a
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Motion Vector (MV) is calculated between successive frames, and in the MCI step this
MYV data from the previous step is used to generate a new frame to be inserted between
the initial two successive frames, thus doubling the frame rate. This operation can be
repeated to further increase the frame rate. In addition to the two main steps, there may
be intermediate steps to improve the quality of the interpolated video output. These
intermediate steps generally involve refinement of the MV field by various algorithms
like Motion Vector Smoothing and Bilateral ME Refinement.

Among several ME algorithms, Block Matching (BM) is the most preferred
method, which divides the frames of video sequences into NxN pixel blocks and tries to
find the best matching block according to a cost function from previous frames inside a
given search range. The most common cost function is Sum of Absolute Differences
(SAD), because of its low computational cost.

There are various BM algorithms proposed in the literature. Full Search (FS)
algorithm has the best performance as it exhaustively searches every location in the
given search range [1]. However, its computational complexity is very high, especially
for HD videos. On the other hand, many fast block matching algorithms are available
[7-10], which have much less computational complexity while producing acceptable
quality results. When motion vectors are generated for FRUC applications, it is
important that the vectors represent real motions of the objects [1]. This is called the
true motion. Although, these algorithms find the best SAD match which is sufficient for
video compression, this does not guarantee that those vectors represent the true motion
of the object. Therefore, generally, these algorithms perform poorly when used in frame
rate up-conversion applications.

There are several ME algorithms [11-15] which aim to extract the true motion
information between the frames of video sequences. These algorithms depend on two
assumptions. The objects are larger than blocks so that surrounding neighbors of a block
should have similar motions, and motions are continuous and spread through a duration
of time so that blocks in successive frames of a video sequence should have similar
motions. A recursive search algorithm takes advantage of these assumptions, and for the
current block evaluates the motion vectors of spatial and temporal neighboring blocks
instead of doing an exhaustive or static patterned search. 3-D Recursive Search (3DRS)
[11] is one of the best implementations of these assumptions, and produces a smooth

and accurate motion vector field suitable for MC-FRUC applications.



In this thesis, an adaptive true motion estimation algorithm (ATME) based on
3DRS is proposed. The candidate locations set of the 3DRS algorithm is optimized
using a multi-objective genetic algorithm optimization [16], in order to produce high
quality results with low computational costs. The optimized search location candidates
are then integrated into an adaptive recursive search algorithm, which applies
appropriate sets of search candidates, according to the smoothness and quality of the
previous vector field. In addition, several computational complexity reduction and
redundancy removal techniques are used for reducing the number of SAD calculations
in single and multiple passes of the algorithm. One of these techniques also implicitly
results in increasing smoothness of the motion vector field. Simulation results show that
ATME algorithm generates similar quality results with lower computational costs or
higher quality results with same computational costs compared to the 3DRS algorithm.

In addition, 3 different complexity hardware architectures for ATME are
proposed. The first architecture is a basic implementation of ATME algorithm and is
able to process ~158 720p HD frames per second. The second architecture uses an on-
chip memory for efficient data re-use of pixel data for MVs that are close in value
reducing the number of accesses to the off-chip SRAM which is costly both in terms of
latency and power consumption. This architecture processes ~168 720p HD frames per
second. Finally, a more complex architecture for use with large number of candidate
search locations and large size video frames is proposed. This architecture uses a large
on-chip search window memory for implementing a highly efficient data re-use scheme.
The pixels are placed diagonally [17] in this search window memory to enable single
cycle access to a row or column at any location inside the search window.

The rest of the thesis is organized as follows. In Chapter 2, ME algorithms, MCI
algorithms, and several refinement steps used in MC-FRUC systems are explained in
detail. In addition, video quality evaluation methods and metrics are presented. In
Chapter 3, the ATME algorithm and its performance evaluation is presented. In
addition, the software developed for implementation and testing of FRUC algorithms is
explained. In Chapter 4, hardware implementations for ATME are presented in detail.

Finally, Chapter 5 concludes this thesis.



Chapter 2

MOTION COMPENSATED FRAME RATE UP-CONVERSION

2.1 Motion Estimation

Motion estimation is the process of determining motion vectors that describe the
transformation from one video frame to another, usually between adjacent frames in a
video sequence. In Figure 2.1, a motion vector (MV) is shown as the motion trajectory
which is the line that connects identical parts in adjacent frames. The estimation of these
MVs is a difficult problem as the motion is in three dimensions but the images are a
projection of the 3D scene onto a 2D plane. The MVs may relate to the whole image
such as global motion, zooming or panning, or specific parts such as rectangular blocks,
arbitrary shaped objects or even a pixel [1].

Frame n Frame n+1

Figure 2.1: Motion Trajectory



Frame n Frame n+1

(2,1) N /

Figure 2.2: Motion Vector in BM Algorithms

Pixel based ME methods [18] involve significant calculations which makes them
hard to implement both in software and hardware. Object based motion estimation [19]
is an emerging method. But, the initial requirement of object based ME, the object
segmentation, is a computationally demanding task. The block based motion estimation
is the most preferred method in the literature and also in the industry due to its easy
implementation and high quality results. The block based ME methods use Block
Matching (BM) Algorithms, which divide the frames of video sequences into NxN pixel
blocks and try to find the best matching block according to a cost function from
previous frames inside a given search range. An example MV found by a BM algorithm
is shown in Figure 2.2. The most common cost function is Sum of Absolute Differences

(SAD) shown in Equation (2.1), because of its low computational complexity. The
pixels inside a block B(X) are assumed to have the same MV, which is assigned to

B(X) by BM algorithms.
SAD(3,X,n) = Yiepy | F@n) — F@E@—3,n— 1) (2.1)

Full Search (FS) algorithm is based on computing SADs at all possible locations
in a given search window. It takes a block B()?) in the current frame n, whose top left
pixel is at position X and compares it to every block in the previous frame, n-1, inside a

pre-defined search area SA()?) which is also centered at X. The motion trajectory

connecting the best matching block (with the minimum SAD) in the previous frame

with the current block B()?) is assigned as the Motion Vector V of B()?). This process is

illustrated in Figure 2.3 [1]. The definition of full search is given in Equations (2.2) and

6



(2.3), where C denotes the candidate motion vectors pointing to possible search
locations inside the search area SA, N and M denotes width and height of SA

respectively, V denotes the selected MV.

SA={C|U-N) <G <X +N), (X, -M) <C, < (X, +M)} (22

V=arg min, c;{SAD (7, X, n)} (2.3)

FS guarantees finding the minimum SAD value inside a given search range.
However, it is not designed to extract the true motion of the objects between frames and
it is computationally expensive as it exhaustively evaluates every possible MV

candidate.

A V-position candidate vector

| search area

y-M._ e s s Tt -~

1 ¥ /"
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Figure 2.3: Full Search ME

The high computational complexity of the FS algorithm created the need for fast
ME methods which try to achieve similar quality results with less computational
complexity. There are many proposed fast ME methods [7-10] in the literature. For

example, N-step search methods initially apply coarse search patterns, and continue



with finer patterns starting with the location found in the previous step. 3-step search
pattern [7] is illustrated in Figure 2.4 [1].
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Figure 2.4: 3-Step Search Pattern

2.2 True Motion Estimation

The physical three-dimensional motion projected onto two-dimensional space is
referred to as true motion. The ability to track true motion by observing changes in
luminance intensity is critical to many video applications such as FRUC [20]. Different
from the other motion estimation algorithms like FS, a true motion estimation algorithm
should also take other measures into account like spatio-temporal consistency of the
MYV field around objects. This is based on two assumptions. Objects are larger than
blocks so that MV field around a block should be smooth and objects have inertia, i.e.
object motions are spread through time to several frames. Therefore, motions of the
objects can also be tracked by analyzing previous frames.

8



There are several true motion estimation algorithms in the literature [11-15] that
check the spatio-temporal consistency around blocks to obtain the true motion of the
object containing that block. Three Dimensional Recursive Search (3DRS) [11] is one
of the best implementations of these two assumptions. Instead of evaluating all possible
candidate locations in a search window, 3-D recursive search algorithm uses spatial and
temporal predictions to select only a few candidate vectors from the 3-D neighborhood
(spatial and temporal neighbors) of the current block, thus reducing computational
complexity of ME which is the most computationally expensive part of MC-FRUC and
also resulting in a smooth and accurate true MV field.

There are two problems with the first assumption in 3DRS. First, because of the
processing order of the blocks (starting from top-left block and ending with the bottom-
right block), not all of the spatial neighboring blocks of the current block (CB) are
available, e.g. the blocks to the right of the CB and the blocks that are below the CB.
This problem is solved with the second assumption. Since the motion of the object
continues over several frames, instead of the motion vectors of the spatial neighboring
blocks that are not yet calculated the motion vectors of the corresponding temporal
neighboring blocks are used.

Second, all vectors are zero or undefined at initialization. Therefore, the motion
vector of the object cannot be found in any of the neighboring blocks in the first frame.
This problem is solved by adding random update vectors from a pre-defined set of noise
vectors, filling the MV field with not accurate but possible motion data. In [21], it is
proposed to use the candidate set shown in Equation (2.4) and illustrated in Figure 2.5.
Squares marked as S are vectors taken from spatial neighbors and square marked as T is

the vector taken from the previous frame. CB denotes the current block.
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following update set:

Ui()_()» n) = 1 ((1))(—01)((1))(_01) > 2.5)

2.3 Intermediate FRUC Steps

In addition to the two main FRUC steps, additional steps such as motion vector
smoothing or bilateral motion estimation can be performed before MCI to improve the
quality of the estimated motion vectors by refining them to obtain a smoother and more
accurate MV field.
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2.3.1  Motion Vector Smoothing

Motion fields are usually smooth functions except at object boundaries. However,
there are cases where even true motion estimation may produce unreliable motion
vectors. Therefore, outliers can occur as shown in Figure 2.6 (b). These outliers should

be eliminated for FRUC applications.

(@) (b) ©)
Figure 2.6: Motion Vector Smoothing (a) Smooth region (b) Outlier MV
(c) Object boundary

There are many approaches for motion vector smoothing. One of them is Vector
Median Filtering (VMF) [22] which eliminates outliers while preserving boundaries
between different objects.

Let, MVF = {mv;,mv,,...,mvy} be the set of MVs inside the smoothing
window. Then the median vector mv,,.4;., 1S defined as the element in the set, which

satisfies the inequality,
MVpedian € MVF

N N
Z”mvmedi(m - mvi”p < Z”mv] - mvi”p :j = 1:2: ---;N
i=1 i=1

(2.6)

where the norm || - ||, defines the metric used to convert a vector to a scalar value. For

Il
the norm operation generally the L1 norm (p = 1) is used since it has low computational
complexity and it is an effective method for checking vector similarity [10]. L1 norm is

defined as,

11



n
Il = ) I
i=1

where x; is the i™ component of the vector .

(2.7)

The size of the smoothing window is selected as 3x3 in practical applications. The
block currently being processed is placed in the center of the window, and the 8
surrounding neighbors are used in the filtering process, making a total of 9 vectors in

each window as shown in Figure 2.7.

1 2 3
5
4 5 6
Current
7 8 9 Block

Figure 2.7: 3x3 Smoothing Window

An example application of motion vector smoothing is shown in Figure 2.8. The
outliers in the boundary region cannot be processed because of the unavailability of

some of the neighboring MVs.
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Figure 2.8: Example Application of Motion Vector Smoothing
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2.3.2  Bilateral Motion Estimation

One of the potential problems with BM algorithms for FRUC is the possible hole
and overlapped areas in the interpolated frames. Since a new frame is generated by
interpolation between previous frame (PF) and current frame (CF) based on motion
vectors (MV) and these vectors are obtained by ME which assumes that objects move
along the motion trajectory, holes and overlapped areas may be produced in the
interpolated frames due to no motion trajectory passing through and multiple motion
trajectories passing through, respectively [23]. This degrades the quality of generated
frames as shown in Figure 2.9. This problem can be solved by median filtering
overlapped pixels [24], using spatial interpolation methods for holes [25], or prediction
methods by analyzing MV fields for covered and uncovered regions [23][26]. However,
these methods have high computational complexity and give unsatisfactory results,
especially in cases of non-static backgrounds and camera motions. To overcome this
problem more efficiently, Bilateral Motion Estimation (Bi-ME) methods are proposed
[27]-[30], which construct a MV field from the viewpoint of the to-be-interpolated

frame, and therefore do not produce any overlapped areas or holes during interpolation.

BIEMENS (/I

£

Figure 2.9: (a) Hole and Overlapping Regions (b) Frame Generated by Bilateral
ME

In other ME algorithms, an NxN size block from CF, CB, is kept stationary and a
match for this CB is searched inside a search window in PF. In Bi-ME, an imaginary
frame is assumed to exist which will be the intermediate frame after it is interpolated,
and ME is performed from the viewpoint of this frame. Therefore, the block inside the
to-be-interpolated frame is kept stationary and a match for this block is tried to be found
both in CF and PF at symmetric locations to each other. The trajectory connecting two
symmetric blocks in CF and PF always passes through the stationary block inside the
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to-be-interpolated frame. When the best match is found, the trajectory between two
symmetric blocks is assigned as the MV to the block that will be interpolated. The Bi-
ME process is shown in Figure 2.10.

P 4BV BT
P -

Previous frame f;. Intermediate frame f;

Following frame f.,

Figure 2.10: Bilateral Motion Estimation

Bi-ME, when used exclusively as the ME step, does not yield acceptable results
for MC-FRUC applications due to its lack of true motion estimation capability. It is

proposed in [27] that Bi-ME can be used as a refinement step to a ME algorithm as
shown in Figure 2.11.

Previous
Frame ¢ Initial * Bilateral ¢ Interpolated
Motion MV Field i MV Field Frame
. . ——— | Refinement MCI
— > Estimation
Current
Frame f f f

Figure 2.11: Bilateral ME as a Refinement Step

2.4 Motion Compensated Interpolation

The last step of a MC-FRUC system is the Motion Compensated Interpolation
(MCI) step, which interpolates the pixel data of the intermediate frame using the motion
vectors generated by the ME step between the previous and current frames. A robust

MCI algorithm is as important as a robust ME algorithm. Even if the ME cannot
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accurately estimate the true motion of the object like in the cases of covering and
uncovering of different objects, MCI algorithm may detect these cases and be able to

generate a high quality video output.

2.4.1  Motion Compensated Field Averaging

Motion Compensated Field Averaging (MC-FAVG) [1] is the most basic MCI
method. MC-FAVG algorithm combines two adjacent frames linearly, with each block
in the PF is shifted towards the CF according to the value of its MV, and similarly each
block in the CF is shifted towards PF along its motion trajectory. The algorithm is
shown in Equation (2.8)

1 q ,
Frea G+ a) = Z(F(R—aV,n) +F(E+ 1 -a)V,n+1)); 0<a<1

(2.8)
where F (¥, n) denotes the intensity value of the pixel at location X in frame n, a denotes
the up-conversion ratio (0.5 for doubling the frame rate), and V is the MV associated

with that pixel.

2.4.2  Static Median Filtering

In some cases when a wrong MV is assigned to stationary objects like text areas,
MC-FAVG produces blocking artifacts. This problem can be solved by Static Median
Filter (SMF) algorithm [1]. In SMF, two inputs of a median filter is fed with two pixel
values, one from the PF and one from the CF, both from the same location of the current
pixel to be interpolated. The third input is connected to the output of the MC-FAVG
algorithm. With this scheme, in cases of stationary fields, values of the two stationary
pixels will be similar. This would result in the selection of one of those pixels. On the
other hand, when there is a temporal discontinuity, values of the stationary pixels will
be apart, therefore the MC-FAVG result will be used. The SMF algorithm is shown in
Equation (2.9).

Fous (X,n + @) = med{F(¥,n), F(X,n + 1), Fyee (X,n + a)} (2.9)

2.4.3  Dynamic Median Filtering
Dynamic Median Filter (DMF) [1] also uses a 3-point median filter scheme.

However, in DMF, two inputs of the filter is fed with motion compensated pixel values
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from previous and current frames each taken from respective locations that the MV of
the to-be-interpolated pixel points to. The third input is the non-motion compensated
average of two pixels taken from the same location of the to-be-interpolated pixel both
from CF and PF. The DMF is shown in Equation (2.10).

o - 1
Fims En+a)= med{F(a’c’— aV,n),F(J_c’+ A-a)V,n+ 1),§(F(5c’,n) + F(X,n+ 1)}

(2.10)

In cases where the motion vector is accurate, the compensated pixels will have
about the same values, and therefore the median filter will select either of them. But if
the motion vector is unreliable, then it is likely that values of the compensated pixels
will be apart from each other, therefore the uncompensated input will be selected.

2.4.4  Two-Mode Interpolation

Two-Mode Interpolation (2MI) [1] algorithm aims at a relatively better
interpolation at a reduced operation count. This algorithm is based on occlusion
detection to have information about whether there is a covering or an uncovering
situation in the frame or not. This detection is done by analyzing the MV field seeking
significant discontinuities between neighboring vectors. When a discontinuity is found,
it is assumed that borders of objects are reached, therefore MVs of those blocks are less
reliable and MCI should be done with more caution. On the other hand, when the MV
field is smooth, a simpler MCI algorithm like MC-FAVG is sufficient. For the occlusion
detection, the difference between the MV values of the left and right blocks and the
difference between the MV values of the top and bottom blocks are checked. If any of
them is higher than a pre-defined threshold value, an occlusion is assumed to be found
and the MCI is handled by DMF. Otherwise, MC-FAVG is used for that block. 2Ml is
shown in Equation (2.11).

F(X%,n+ a)
- — = 1 — —
med {F(?c) —al, n),F(x +(1-a)V,n+ 1),5 (F(x,n) + F(x,n + 1)},occlusion
1 > — — )
> (F(x —aV, n) +F(1-a)V,n+ 1)) , otherwise

(2.11)
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This adaptation yields a generally improved output compared to each method
individually. The operation count is reduced roughly 30% compared with that of the
dynamic median filter, since dynamic median filtering is needed for a relative small

portion of pixels in the image (on average less than %10). [1]

2.45  Overlapped Block Motion Compensation

The block based ME uses the assumption that all the pixels in a block have the
same motion as there exists a single motion vector for each block. However, different
parts of objects that move in different directions can be in the same block or MV field
generated by the ME step may not represent the correct motion of the objects due to ME
errors. In these cases, conventional block based interpolation may produce blocking
artifacts or block boundary discontinuities that reduce the quality of the video both in
subjective and objective metrics.

Overlapped Block Motion Compensation [31] is developed in order to avoid these
blocking artifacts and increase the quality of the resulting frame in MC-FRUC. It is also
used in video compression standards such as H.263 [32]. The main idea of OBMC is
based on determining the motion of each pixel in a block by considering the motion
vector of the block itself as well as the motion vectors of its neighboring blocks.

A simple OBMC technique is implemented in [27]. It employs OBMC during the
interpolation stage by enlarging every NxN block in the to-be-interpolated frame to
(N+2w) x (N+2w) block which form overlapped areas of width w in every block as
shown in Figure 2.12. The purpose of this operation is having a smooth transition
between adjacent blocks. The pixels at the corners of an NxN block are located in the
overlapped area of the 4 neighboring blocks. The intensities of these pixels are
calculated by averaging the intensity values generated by the motion vectors of each
respective block. The intensities of the pixels that are located at the side boundaries of
the interpolated block are calculated by averaging the intensity values generated by the
motion vectors of the interpolated block and the adjacent block. The remaining
interpolation is done by only using the motion vector of the to-be-interpolated block.

For example, in Figure 2.12, OBMC is not applied to the pixels in R1 regions as
these pixels belong to a single block. The pixels that are located in R2 regions should be
interpolated by taking motion vectors of both adjacent blocks into account, as these

pixels belong to both blocks. The pixels in R3 region are in the overlapped area of 4
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neighboring blocks, therefore the interpolations of these pixels are performed by using 4

different motion vectors.

PSP LRI T y——" F R R ————

; N, N, Ny
g N i
=z : T !
[S— - i
‘ Ng N, Ng :
3

R1 . R2 . R3
Figure 2.12: Overlapping Regions in OBMC

The interpolation of the block B is defined in Equations (2.12), (2.13) and (2.14)
where the neighboring blocks are Ni= 1, 2... 8, 17(9?) refers to the motion vector of the
block B at position X and F,,., (%, I7(B)) denote the motion compensated field averaging

for pixel at ¥ using motion vector V of block B.

1. For R1:
F(%) = Epy (% € R1,V(B)) (2.12)
2. ForR2:
1
F) = 5 {Fea (% € RV (B)) + Frca (£ € RZV (W)}
where Ni e{Nz, N4, N5, N7}. (213)
3. For R3:
1
F(Z) = { o (x € R3, V(B)) + Sk} k=1234
(2.14)

where Sy is the sum of the MC-FAVG results for the neighboring blocks

overlapped with B in R3 and defined by:
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(2.15)

The quality of the generated frame can further be improved by giving weights to
pixels of neighboring blocks according to their spatial distance from the current block
[28], favoring the CB’s pixels inside that block, giving 50% weight to both blocks at the
edge of two blocks, and decreasing the weight while moving away from the CB. The
quality of the generated frame can also be improved by assigning weights to the
neighboring blocks according to the reliability of their motion vectors, i.e. the
smoothness of the MV field around the CB [29].

2.5 Evaluation Methods and Metrics

In this thesis, the performances of FRUC algorithms are evaluated as follows.
Every even numbered frame is omitted from the sequence and ME is employed between
odd frames. Then, MCI step is applied using these MVs to re-synthesize the even
numbered frames as shown in Figure 2.13. After all even numbered frames are
generated, the original even numbered frames and interpolated even numbered frames
are compared as shown in Figure 2.14. The comparison is done using Mean Squared
Error (MSE) metric by calculating the differences of each pixel at the same locations in
the original and interpolated frames and summing the squares of these values as shown
in Equation (2.16). After all MSEs for all even numbered frames are found, the
corresponding Peak Signal-to-Noise (PSNR) ratios are found as shown in Equation

(2.17).

N-1
1

NM
i=0

E

-1

MSE = (I, ) — 0@, N)?

-
Il
o

(2.16)
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where N and M denote the image height and width respectively, | is the interpolated

frame and O is the original frame.

2

MAX MAX
PSNR = 10.l0g10 M_SE = 20.log10 (\/ﬁ)

(2.17)
where MAX is the maximum possible error between two pixels. If pixel intensities are
represented by 8 bits, then MAX is 255.

PSNR is a widely used evaluation metric for the quality of video sequences.
PSNR is accepted as a good objective measure of quality. However, the perceived
quality of the video is not always directly related to its objective quality. A viewer can
identify a sequence as a low quality sequence because of its unpleasing artifacts around
object edges even though every other pixel would have been interpolated perfectly thus
having a very high PSNR value. On the other hand, a video can have a low PSNR value
like in a case of blurring but that blurring could be unnoticeable by the viewer
especially in scenes where objects move in high velocities. Therefore, when evaluating
the performances of FRUC algorithms, subjective quality assessments should also be

made along with objective quality assessments.

Motion Motion
Compensation Compensation

Frame 1 Generated Frame 3 Generated Frame 5
Frame 2 Frame 4

Figure 2.13: Generation of Even Numbered Frames

Frame 2 Frame 4
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Figure 2.14: Comparison of Even Numbered Frames
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Chapter 3

ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM AND MOTION
COMPENSATED FRAME RATE UP-CONVERSION SOFTWARE

3.1 Adaptive True Motion Estimation Algorithm

In this thesis, Adaptive True Motion Estimation Algorithm (ATME) is developed
based on 3DRS. It is observed by analyzing the MV fields generated by 3DRS that the
two main assumptions of recursive true motion algorithms are indeed correct, the
objects are bigger than blocks and motions of the objects are continuous. Therefore, the
candidate locations that will be evaluated by 3DRS for the current block will be close in
value or even the same in many cases. In addition, multiple passes of 3DRS are
observed to improve the smoothness of the MV field at each pass hence improving
visual quality. The probability of being selected again as the best matching candidate
for a block is quite high for a MV which was selected as the best matching candidate for
that block in the first pass of the algorithm. Based on these facts, in order to reduce the
computation cost of 3DRS, ATME algorithm avoids the evaluations of the same and
similar MV candidates by applying computational complexity reduction and
redundancy removal techniques. In addition, when the SAD value of the best match is
decided not sufficient to be selected, ATME algorithm evaluates additional locations to
improve the quality of the MV field. Using these techniques, it obtains similar quality
results by less number of computations or better quality results by similar number of
computations compared to 3DRS.

To obtain an optimal candidate set for the proposed ATME algorithm, a multi-
objective genetic algorithm [16] is applied to all of the candidate locations, located
(£5,+5) blocks around the current block. Populations in this genetic algorithm have 25

individuals, each representing a candidate set containing a minimum of one search
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location to a maximum of 20 search locations. Objectives of this test are defined as
maximizing the PSNR of the up-converted video sequences using the candidate sets of
best-individuals in the population, and at the same time minimizing the total number of
SAD calculations, which converges to the optimal set of candidates producing high
quality results with small amount of work. This algorithm is run on a set of 10 video
sequences® having various spatial resolutions from QCIF to HD for 100 generations,
and the candidate sets which are on the pareto-front of the resulting population are
noted down. It is observed that neighboring blocks which are closer to the current block
are better candidates, whereas in cases where candidate sets contain small number of
search locations, convergence is obtained faster by selecting candidates from opposite

directions of the current block, as proposed in [33].

i - -

CB CB
T
K
() (b) (©)

Figure 3.1: Candidate Vector Sets (a) 3DRS candidate set proposed in [21], (b)
ATME minimal candidate set, (c) ATME extended candidate set shown in gray.
The extended candidate set also contains no-motion vector, not shown in the
figure.

The ATME algorithm uses two different sets of search locations which are applied
adaptively based on several run-time checks. The minimal search location set consists

of a small number of search locations to be used in the first two steps of the algorithm,

and the extended search location set consists of more locations including the 0 vector
which represents zero motion, to be used in the third step when the smaller set does
produce sufficient results. The minimal and extended search location sets, proposed in

this thesis based on the multi-objective genetic algorithm optimization, are shown in

! The video sequences used for this experiment are: Foreman(QCIF), Flower(SIF), Football(SIF),
Mobile(CIF), CrowdRun(720p), NewMobCal(720p), ParkRun(720p), SthimPan(720p), InToTree(720p),
OldTownCross(720p).
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Equations (3.1) and (3.2), and Figure 3.1(b) and Figure 3.1(c), respectively. The zero

motion vector 0 is not shown in Figure 3.1(c).

X

(e (2)m).

V(% +(2)n-1)

7 (%
(

(
CSmin (X)' n) = l

CSore (X, 1) =

(3.1)

(3.2)

else

_—
for each search location Lm in minimal set CSmin

candidates,;,[@ to Nm] = MV of the block at (E + Z;Z)

if all L1 Norms between candidates <= Vth

vector® = median of all candidates
vectorl = vector® + random update vector
calculate SADs for vectore and vectorl
assign MV producing bestSAD to block B

add random update vector to last candidate,;,
calculate SADs between all candidates,;, and B
if bestSAD > SADth
for each search location Le in extended set CSext

candiates.[0 to Ne] = MV of the block at (§ + ZE)
add random update vector to last candidate.,:
calculate SADs between all candidates.: and B
assign MV producing bestSAD to block B

Table 3.1: Pseudo-code for ATME

The pseudo-code for ATME algorithm is given in Table 3.1. The ATME

algorithm first checks whether the vectors in the minimal search location set are

consistent with the motion of the current block, i.e. belonging to the same object and

representing similar motions. This is done by taking the L1 Norm of these 3 vectors. If

the norm is below a predefined threshold value (Vy), this means that the motion

associated with surrounding blocks is likely to be same as the motion of the current

block. Therefore, the median of this minimal set is assigned to the current block without

further SAD calculation. However, because of the recursive behavior of vector
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selection, without an additional update vector, this scheme may converge to an
invariable vector field. Therefore, the median vector and its random update vector
added version are evaluated based on the SAD criterion, and the vector with the
minimum SAD is selected and assigned to the current block. This step reduces the
number of SAD calculations in a spatio-temporally smooth video sequence without a
significant PSNR loss and at the same time smoothes the vector field because of the
median operation, which is used as a separate step in many FRUC algorithms. As a
result of this motion vector field smoothing at a reduced cost, increased PSNR values
are observed in some cases, while none of the cases resulted in significant PSNR losses.

If the L1 Norm of the minimal search location set is not below the threshold Vy,
this means that there are inconsistent MVs around the current block, and therefore all 3
MVs in the minimal candidate set are searched individually. If the minimum SAD
resulting from this step is below a predetermined SAD threshold, SADy, then the
motion represented by the minimum SAD producing MV is assigned to the current
block. However, if the minimum SAD obtained by evaluating the minimal search
locations set is not below SADy, then the motion vector representing the motion of the
current block is probably not available in that candidate set, and therefore additional
search locations should be evaluated. In this case, extended search locations set
consisting of 5 new search locations is introduced and SAD calculation is done for the
MVs of the neighboring blocks at these new search locations. If the minimum of these
SAD values are smaller than the result of the minimal search location set, then that
motion vector is assigned to the current block, otherwise the result of the minimal set is
used.

Since the recursive true ME algorithms depend on the evaluation of some MVs at
spatial and temporal neighboring locations, convergence of the MV field can be
obtained by applying the true ME algorithm to the same frame more than one time. This
multiple pass technique increases the quality of the FRUC by generating a smoother
MV field, i.e. representing the true motion of the objects more correctly [34]. After each
pass of ME, some of the incorrect vectors will converge to better vectors, whereas most
of the time, they will keep their values from the previous pass. Therefore, if the SAD
values of the vectors are kept between each pass of the algorithm, instead of
redundantly calculating the same SAD value, the SAD value from the previous iteration
can be used. This redundancy removal technique is used in ATME algorithm. It resulted

in significant reduction in computation amount while producing exactly same results.
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3.2 Motion Compensated Frame Rate Up-Conversion Software

There was a need for a robust, fast, flexible and easily modifiable software for the
implementation and testing of FRUC algorithms. Therefore, in this thesis, a FRUC
software environment is implemented using C. The backbone of the software consists of
a loop which reads image data from YUV files stored locally on the hard disk. For
memory efficiency, instead of reading all frames of the video sequence into memory,
one frame at a time is read and stored in two static arrays, one for the previous frame
(PF) and one for the current frame (CF). In addition, instead of reading two frames in
one iteration, the pointer to the CF at the previous iteration is set to be the PF at the
current iteration and the new frame is read to the location of the PF at the previous
iteration and its pointer is set to be the CF at the current iteration. This double buffering
technique significantly increases the performance of the software.

Inside the main loop, before any calculation, the PF is resized by mirroring pixel
data at all of the four edges to provide valid data for MVs pointing out of frame bounds
of the image. The resize amount is set by a user defined parameter. Figure 3.2(a) shows
an example resize scheme where an 8x6 pixel image is resized with resize amount set to
3. The numbers inside cells denote the pixel positions in the original frame. Figure

3.2(b) shows the first frame in the ForemanCIF sequence with resize amount set to 32.

19 18 17 (17 18 19 20 21 22 23 24|24 23
1 10 S5 (9% 10 11 12 13 14 15 16|16 15

3 2 1 1 2 3 4 5 6 7 8 8 7

3 2 111 2 3 4 5 & 7 8|8 7

1 10 9|9 10 11 12 13 14 15 16|16 15

15 18 17|17 18 19 20 21 22 23 24|24 23

27 26 25| 25 26 27 28 2% 30 31 32|32 31

35 34 33133 34 35 36 37 38 39 40|40 39

43 42 41]41 42 43 44 45 46 47 48| 48 47

43 42 41|41 42 43 44 45 46 47 48| 48 47
35 34 33|33 34 35 36 37 38 39 40| 40 39

27 26 23|25 26 27 28 23 30 31 32|32 31

@) )

Figure 3.2: Resizing of Frames (a) 8x6 frame with resize amount = 3 (b) First
frame of ForemanCIF sequence with resize amount = 32
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Another important parameter in the software is, replace switch. It is defined to
control the main behavior of the software whether to replace all even numbered frames
for testing purposes or to perform a full FRUC to double the frame rate. After all
pointers are set, ME, MCI and other steps if scheduled are applied to the image data. All
of the ME and MCI operations are defined by individual C functions passing relevant
data from one another. The functions that will be used are selected by user-defined
parameters. This is a very efficient and flexible implementation as the user could easily
change the order of operations or define additional operations without actually having to
worry about the underlying data transfer as long as same set of data structures are used.

Instead of hard-coding all user defined parameters before each run of the
software, a dynamic text parser is implemented so that the software can be run with
many different configurations without rebuilding the whole project again. This parser
reads all of the parameters from a configuration file which can be manually edited by a
regular text editor. New parameters can easily be added by adding a few lines to the
parser code. The parameters inside the configuration file includes, video frame size
(QCIF, CIF, SIF, 4CIF, 720p HD, and 1080p HD), frame count, block size, frame resize
amount, search window size, refinement window size, all of the input and output file
names, operational switches like replace or early termination, the ME and MCI
algorithms to be used, number of ME passes for recursive algorithms. In addition,
parameters for individual algorithms like search candidate locations for 3DRS or ATME
are defined in this configuration file. The screen shot of an example configuration file is
shown in Figure 3.3.

During ME, MVs for each block are kept in a dynamic array for recursive usage at
next ME iteration and they are also written into a text file for external use like MV
visualization. During MCI, each pixel is interpolated using the MV of the block it
belongs to and the resulting intensity value is written as a pixel value of the intermediate
frame.

After the completion of the main loop, i.e. all frames are processed, and the output
video is generated, the comparison begins. If the replace switch is set to true, the
software compares the original even numbered frames with the interpolated even
numbered frames by calculating MSE and then PSNR values. The PSNR value and the
total number of calls to SADCalculate function, SAD Count, are written to a log file. If

the replace switch is set to false, only SAD Count is written to log file.
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This software is a robust and flexible environment for implementing and testing
FRUC algorithms. It is used by two senior graduation projects [35-36] which developed

and implemented their own ME and MCI algorithms using this software.

2 //INPUT VIDEO ParkRun400.yuv //500 frames

10; INPUT_VIDEC NewMobCal400. yuv / /500 frames

11 //INPUT_VIDEO football sif.y4m.yuv //124 frames

1 //INPUT_VIDEO mobile cif.yuv /{300 frames
//INPUT_VIDEQ ParkJoy 720p 50 400.yuv
//INPUT_VIDEO ParkJoy_1080p_50_400.yuv
//INPUT_VIDEO irobot.yuv
//INPUT_VIDEO spiderman.yuv
IKINPUT_VIDED gladiator.vuv

J/input parameters

IMG SIZE T720p
FRAMECCUNT 4
BLOCESIZE 16
FSWIN 386
BSWIN 5
fiflags
REPLACE L] fiu=se to replace even numbered frames with interpolated ones
FIRST F5 1] J/lapply full search to first frame pair
30; ALL FS 4] S fapply full search to entire sequence
31, BI_FS a J//apply bilateral search
32: UPDATE 1 J//enable updating mechanism for 3DRS
CCCLUSION TH 2 J/occlusion detection threshold
PRS5_COUNT 1 /S /number of 3DRS passes
EARLY TERMINATE O //enable early termination for no-motion wvectors
361 NEW3DRS 1 J//apply new 3DRS
38, UC_ALGO FRVE //select interpolation algorithm: FAVG,DYNM, TWOM,BI_FAVG, OBMC,MC
J/filenames
OUTIPUT_VIDEC output . yuwv
MVs_FILE BI bi MVs.txt
MVs_ FILE MVs.txt
MV_X_FILE MV_X.txt
MV_Y FILE MV _Y.txt
RESULTS results.txt

SAD THEESHOLD 65536
VECTOR_THRESHOLD 2

J/3DR5 parameters
CRNDIDRTE_CGUNT 3
EXT CRWDIDATE COUNT 4

//SERRCH LOCS -1 0 2 2 a0 -1 1 -2 2 -1 -2 -2 oo a -2 3 -1
//SERRCH LOCS -1 0 o -1 2 2 -1 0 //UPDATED
SERRCH_LOCS -1 0 -1 21
//SERRCH LOCS o2 -1 -1 1 -1 //haan min
5% //SERRCH_LOCS -1 0 o0-1 -21 01 o0 21 10
60: //EXT SERRCH LOCS a0 2 -1 -2 -2 1-2-33 0 -2
6 EXT_SEARCH LOCS -21 01 a0 10

o

J/3DRS weight definitions
SPATIARL CCEF 1.0
TEMPCORAL CCEF 1.045

on
T

o
I’

o
n

Figure 3.3: Configuration File
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In the current version of the software the following algorithms have been implemented.

ME Algorithms:
Full Search

Search window size is parameterized.

3DRS
The number of search candidates, their locations and update location are parameterized.
The user can also select whether to fill the initial MV field by random update vectors or

apply a Full Search between the first two frames.

Bi-ME

In a senior graduation project [35], we collaboratively proposed a new adaptive
bilateral motion estimation algorithm to be used as a refinement step to improve the
quality of the MVs found by true motion estimation algorithms. By employing a spiral
search pattern [37] and by adaptively assigning weight coefficients to candidate search
locations, the proposed algorithm refines the motion vector field between successive
frames which results in a better interpolation of the intermediate frame. As a result of
this search scheme, by favoring the candidate search locations near the center where the
initial MVs point to, true motion property of the motion vector field is conserved. In this
software, Bi-ME can be both used as a standalone ME step or as a refinement step after
a true ME algorithm. Both regular FS and spiral search patterns are implemented. The
Bilateral Search Window size and the threshold values used for adaptivity are

parameterized.

ATME
The proposed Adaptive True Motion Algorithm is implemented. The vector threshold
and SAD threshold values are parameterized. In addition, minimal set and extended set

search location counts and their locations are configurable.
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MCI Algorithms:

Motion Compensated Field Averaging
MC-FAVG is implemented as in Equation (2.8). When 3DRS is selected as the ME

algorithm and the update switch is set to false, all of the MVs for the first frame will be

set to zero and they will not be updated in the following frames. Therefore, in this case,
MC-FAVG will function as non-motion compensated field averaging, i.e. linear

interpolation.

Static Median Filter

SMF is implemented as in Equation (2.9).

Dynamic Median Filter

DMF is implemented as in Equation (2.10).

Two-Mode Interpolation

2MI is implemented as in Equation (2.11). An occlusion detection function checks
whether the difference between MVs of surrounding blocks are greater than a
parameterized occlusion threshold value. If occlusion is detected then DMF is called,
else MC-FAVG is called.

oBMC

Basic OBMC and sinusoidal OBMC algorithms are implemented with parameterized

window overlap amounts. In addition, weighted coefficient OBMC algorithm (WC-
OBMC) which is developed in collaboration with a senior graduation project [36] is
implemented. This algorithm assigns weights to motion vectors of neighboring blocks.
This results in higher quality video output than the other two OBMC algorithms.
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Utilities:

The video sequences used for evaluating all of these algorithms are taken from
video quality expert ftp sites such as university archives and video quality experts group
[38]. However, especially the HD video sequences are distributed in several different
color spaces and formats (AVI, YUV2, ABEKAS), some of them have leading and
trailing empty frames, and some of them are divided into image files which contain only
one frame. Therefore, using MATLAB and C, these video sequences are all processed
and converted to 4:0:0 and 4:2:2 YUV formats.

In addition, several utilities are developed using MATLAB. One of them, playyuv,
using Image Processing Toolbox, can read many different YUV formats, convert them
back to RGB, which the computer screens can display, and open them inside a media
player interface as a playable video. Another utility is plotMV, which can parse the MV
file generated by the FRUC software, generate a block grid, and plot each MV
according to their direction and magnitude on this grid as shown in Figure 3.4. It then
generates images for every frame pair showing the flow of MVs, and combines them to
a playable video. This motion vector visualization tool is useful for testing ME
algorithms, as erroneous MVs can be easily seen when they are visualized. The
performances of different ME algorithms can also be compared by analyzing the flow of

MVs from one frame pair to another.

Sl ROELMAS SR o 2e 0B Bield e 0E B ogno o

Figure 3.4: Motion Vector Visualization

31



3.3 Performance Results

Several video sequences with different resolutions are used for evaluating the
performance of the ATME algorithm. One 176x144 pixel resolution (QCIF) video
sequence, one 352x288 pixel resolution (CIF) video sequence, one 352x240 pixel
resolution (SIF) video sequence, five 1280x720 pixel resolution (720p) video sequences
and three 1920x1080 pixel resolution (1080p) video sequences are used. All video
sequences are composed of 8-bit luminance (Y) data.

First 100 frames of each video sequence are used, therefore, 49 even numbered
frames are synthesized by applying ME and MCI algorithms to the odd numbered
frames, and the 100" frame is taken from the original video sequence. For ME, 16x16
pixel block size is used. For the last 8 pixels of 1080p video sequences, which do not fit
into the 16x16 pixel block grid, non-motion compensated frame interpolation, i.e. linear
interpolation, is used. For all other cases, Motion Compensated Field Averaging is used
as it is the most basic MCI method using motion estimation. The random update vector
selections are done by using a 23*-1 pseudo-random number sequence.

SAD calculation is the most computationally demanding part of ME algorithms.
In order to calculate the SAD value for one search location, three arithmetic operations
(one subtraction, one absolute value calculation and one addition) have to be performed
for each pixel in a block. Therefore, the number of SAD calculations is a good metric
for determining the computational complexity of a ME algorithm.

The number of SAD calculations done and the resulting PSNR value for different
video sequences processed by the original 3DRS algorithm (3 candidates with 2 update
vectors added) [21], 3DRS algorithm using minimal search location set (3 candidates

with one update vector added), 3DRS algorithm using all search locations in both

minimal and extended set including 0 (8 candidates with 2 update vectors added), and
Full Search (FS) algorithm are shown in Tables 3.2 and 3.3. Search window size used
for FS is (x64,%64) pixels for 720p and 1080p sequences, and (x32,+£32) pixels for the
other sequences. Non-motion-compensated pixel averaging results are given as
reference. Since only the re-synthesized frames are compared with the original frames,
the PSNR and SAD count values are calculated for 49 frames.

As it can be seen from Tables 3.2 and 3.3, minimal candidate set performs better

than the original candidate set with the same number of SAD calculations and full set
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gives higher PSNR results compared to other two sets with the cost of doing more SAD
calculations in a single pass. In addition, multiple passes of each set clearly improves
the FRUC results. However, generally two or three passes produce highest
improvements, while the benefit of multi passes diminishes after more than three

passes.

3 Candidate Sets 8 Candidate Set Es
(3DRS Original and Minimal Sets) (3DRS Full Set)

No. of Passes | 1 Pass | 2 Pass | 3 Pass | 4 Pass | 5Pass | 1 Pass | 2 Pass | 3Pass | N/A
QCIF 0.01 0.03 0.04 0.06 0.07 0.04 0.08 0.12 | 19.87
CIF 0.06 | 0.12 | 0.17 | 0.23 029 | 0.15 0.31 0.46 | 79.48

SIF 0.05 | 0.10 | 0.14 | 0.19 024 | 0.13 0.26 0.39 | 66.23
720p 052 | 1.05 | 158 | 211 264 | 1.38 2.79 420 | 2890
1080p 1.16 2.34 3.52 4.70 5.89 3.09 6.24 9.39 | 6455

Table 3.2: Number of 10° SAD Calculations Done by ME Algorithms

In the first stage of the ATME algorithm, an adaptive decision is made based on
whether L1 Norms of candidate MVs are above or below a predetermined threshold
value, Vi. Since MVs have 1 pixel resolution, the Vi metric is defined in pixels. In
order to determine the threshold value, 5 different values for Vi, (0, 1, 2, 3, 4 pixels) are
tested using only the first stage of the ATME algorithm on 4 different video sequences.?
SAD Count value is normalized by 10*log;o to be comparable to PSNR. Figure 3.5
shows PSNR/SAD Count efficiency versus Vg. The average PSNR/SAD Count
efficiency versus Vi, based on the results from Figure 3.5, is shown in Figure 3.6. As it
can be seen from these Figures, the maximum efficiency is obtained when Vy, is 2

pixels.

2 The sequences used in this experiment are: ParkJoy(720p), NewMobCal(720p), Foreman(CIF),
SthimPan(720p).
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3DRS Original Set 3DRS Minimal Set 3DRS Full Set FS Ref

No. of Passes 1Pass | 2Pass | 3Pass | 1Pass | 2Pass | 3Pass | 4Pass | 5Pass | 1Pass | 2Pass | 3Pass | N/A N/A
ForemanQCIF 3229 | 3279 | 3317 | 33.09 | 3350 | 33.82 | 33.62 | 33.76 | 33.75 | 34.27 | 3451 | 32.70 | 32.36
ForemanCIF 3050 | 31.28 | 31.61 | 31.92 | 3244 | 3261 | 3256 | 32.60 | 32.02 | 32.88 | 33.08 | 31.62 | 29.86
FootballSIF 20.35 | 20.73 | 20.81 | 20.63 | 20.89 | 21.02 | 21.14 | 21.10 | 21.16 | 21.48 | 21.65 | 21.32 | 19.89
ParkJoy720p 22.58 24.31 24.80 24.23 25.81 25.86 26.08 26.09 25.11 25.93 26.21 | 25.63 | 20.11
NewMobCal720p 31.84 32.62 33.01 33.70 34.08 34.06 34.09 34.07 33.69 34.11 34.11 | 32.58 | 29.76
SthimPan720p 33.11 33.96 34.22 33.98 34.83 34.90 34.89 34.89 34.10 35.03 35.06 | 30.40 | 23.96
INToTree720p 3471 | 3497 | 3511 | 3560 | 3578 | 3579 | 3582 | 3581 | 3582 | 36.02 | 36.03 | 31.16 | 31.87
CrowdRun720p 25.75 | 26.26 | 26.43 | 26.94 | 27.26 | 27.30 | 27.30 | 27.31 | 27.41 | 28.01 | 28.18 | 26.43 | 24,51
ParkJoy1080p 2332 | 2453 | 25.08 | 2413 | 2526 | 26.01 | 26.16 | 26.22 | 2470 | 25.63 | 26.02 | 25.39 | 20.15
InToTreel080p 33.92 34.11 34.17 34.40 3451 3451 3451 3451 34.50 34.61 34.62 | 31.52 | 30.97
CrowdRun1080p 26.32 26.98 27.21 27.19 27.75 27.87 27.89 27.91 27.64 28.31 28.50 | 26.33 | 24.24

Table 3.3: Comparison of Modified 3DRS Algorithms Using Optimized Sets of Candidate Locations along with Full Search
and Non-Motion Compensated Interpolation Results

Table cells show PSNR values in dB.
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Figure 3.6: Average PSNR/SAD Count for Vector Threshold Selection

Tables 3.4 and 3.5 present the impact of the redundancy removal and
computational complexity reduction techniques used in ATME algorithm. Table 3.4
shows the impact of the redundancy removal and computational complexity reduction in
only the first stage of ATME algorithm. In this test, extended set of candidates and the
redundancy removal technique for multiple passes of the algorithm are not used. Two
different candidate sets are used, the minimal set which contains 3 candidates and the

full set which contains the minimal set and the extended set including zero-motion

vector 0. As it can be seen from Table 3.4, when Vg, is 0, ATME algorithm produces
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exactly the same PSNR results compared to reference algorithms in which redundancy
removal technique is not used, and the number of SAD calculations is reduced up to
20% and 38% for minimal and full sets respectively for a single pass. When 3 passes are
done, the number of SAD calculations is reduced up to 25% and 43% for the minimal
and full sets respectively.

When Vy, is 2 pixels, the number of SAD calculations is further reduced (up to
31%) with 0.7 dB PSNR loss in one case and with 0.2 dB PSNR loss on average for the
minimum candidate set. For the full candidate set case, median filtering larger number
of candidates to a single candidate results in up to 61% reduction of SAD calculations
with 0.9 dB PSNR loss in one case and with 0.3 dB PSNR loss on average for a single
pass of the algorithm. When three passes are done, the number of SAD calculations is
reduced up to 64% with up to 0.5 dB PSNR loss and 0.2 dB PSNR loss on average. In
addition, when Vi, is set to a non-zero value, in some cases such as SthimPan video
sequence, the implicit motion vector smoothing behavior of the median filter in ATME
improves the quality of the output video.

In Table 3.5, the impact of the redundancy removal technique for multiple passes
of the ATME algorithm is presented. For this test, SADy, parameter is set to 2500 which
produces high quality results with low amount of computation. In order to determine the
impact of only the multi-pass redundancy removal technique, the Vy, parameter is set to
a negative value so that all candidate vectors are evaluated. Two different cases with 3
and 5 passes of ATME algorithm are compared. Columns labeled “Red.” show the
number of SAD calculations when redundancy removal technique is not used. Columns
labeled “Rem.” show the number of SAD calculations when redundancy removal
technique is used. Columns labeled “%” show the reduction percentage. As it can be
seen from Table 3.5, the multi-pass redundancy removal technique reduces the number
of SAD calculations by 25% on average in 3 passes case and 30% on average in 5

[passes case.

36



No. of Passes 1 3 1 3
Algorithm 3DRS ATME 3DRS ATME 3DRS ATME 3DRS ATME
Min 2 Stage / Min Min 2 Stage / Min Full 2 Stage / Full Full 2 Stage / Full
Vth N/A 0 2 N/A 0 2 N/A 0 2 N/A 0 2

ForemanQCIF 33.09 | 33.09 | 33.08 | 3382 | 3382 | 3385 | 33.75 | 33.75 | 33.63 | 3451 | 3441 | 34.39
0.01 0.01 0.01 0.04 0.04 0.03 0.04 0.03 0.03 0.12 0.11 0.08
ForemanCIF 3192 | 31.92 | 31.77 | 3261 | 3261 | 3250 | 32.02 | 32.02 | 3197 | 33.08 | 33.02 | 3294
0.06 0.06 0.05 0.17 0.16 0.15 0.15 0.15 0.13 0.46 0.42 0.35
FootballSIF 20.63 | 20.63 | 20.57 | 21.02 | 21.02 | 2092 | 21.16 | 21.16 | 21.02 | 21.65 | 2165 | 21.64
0.05 0.04 0.04 0.14 0.13 0.12 0.13 0.11 0.10 0.39 0.33 0.29
ParkJoy720p 2423 | 2423 | 2408 | 2586 | 2593 | 2583 | 2511 | 2511 | 2474 | 26.21 | 2594 | 25.68
0.52 0.50 0.44 1.58 1.44 1.25 1.38 1.32 1.09 4.20 3.63 2.74
NewMobCal720p 33.70 | 33.70 | 3293 | 34.06 | 34.06 | 3352 | 3369 | 33.69 | 3272 | 3411 | 3411 | 33.63
0.52 0.42 0.36 1.58 1.19 1.08 1.38 0.87 0.54 4.20 2.42 1.52
SthimPan720p 3398 | 3398 | 34.02 | 3490 | 3490 | 34.83 | 34.10 | 34.10 | 3421 | 35.06 | 3509 | 35.10
0.52 0.43 0.39 1.58 1.29 1.18 1.38 0.97 0.70 4.20 3.00 2.12
INToTree720p 3560 | 3560 | 3541 | 3579 | 3579 | 3562 | 3582 | 3582 | 3549 | 36.03 | 36.03 | 35.86
0.52 0.48 0.40 1.58 1.43 1.21 1.38 1.18 0.71 4.20 3.43 211
CrowdRun720p 2694 | 2694 | 2661 | 27.30 | 2730 | 2691 | 2741 | 2741 | 27.07 | 28.18 | 2821 | 27.96
0.52 0.50 0.42 1.58 1.43 1.26 1.38 1.30 1.02 4.20 3.63 2.94
ParkJoy1080p 2413 | 2413 | 2425 | 26.01 | 26.01 | 2596 | 24.70 | 24.70 | 2446 | 26.02 | 2592 | 25.80
1.16 1.14 1.04 3.52 3.27 2.90 3.09 3.01 2.66 9.39 8.36 6.69
INToTree1080p 3440 | 3440 | 3429 | 3451 | 3451 | 3444 | 3450 | 3450 | 3434 | 3462 | 3462 | 3454
1.16 1.10 0.92 3.52 3.23 2.76 3.09 2.79 1.82 9.39 7.99 5.19
CrowdRuN1080p 2719 | 2719 | 27.10 | 27.87 | 27.87 | 27.77 | 27.64 | 27.64 | 2750 | 2850 | 2851 | 2843
1.16 1.13 1.01 3.52 3.26 2.98 3.09 2.96 2.60 9.39 8.26 7.31

Table 3.4: Performance of the First Stage of ATME Algorithm
In each table cell, upper value is the PSNR value in dB and the lower value is the number of SAD calculations scaled by 10°.
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No. of Passes 3 Pass 5 Pass
Red. Rem. % Red. Rem. %

ForemanQCIF 54 40 26% 90 61 32%
ForemanCIF 208 161 23% 345 249 28%
FootballSIF 274 211 23% 455 333 27%

ParkJoy720p 2656 1951 27% 4385 2969 32%
NewMobCal720p | 1810 1087 40% 3021 1573 48%
SthimPan720p 1620 1103 32% 2707 1669 38%
InToTree720p 1607 1222 24% 2684 1907 29%
CrowdRun720p 2759 2076 25% 4588 3239 29%
ParkJoy1080p 5755 4381 24% 9454 6701 29%
InToTree1080p 3561 2792 22% 5947 4384 26%
CrowdRun1080p 5768 4489 22% 9558 7022 27%

Table 3.5: Multi-pass Redundancy Removal Performance
The values inside the cells of Red. and Rem. columns are the number of SAD
calculations scaled by 10°.

Table 3.6 shows the PSNR obtained and the number of SAD calculations done by
the ATME algorithm with vector threshold values V=0 and Vy=2. For all the
experiments, SADy, value is set to 2500. In each table cell, upper value shows the PSNR
obtained and lower value shows the number of SAD calculations done for that video
sequence. For Vy=0, ATME algorithm generates higher quality results with same
computational costs or similar quality results with lower computational costs compared
to 3DRS minimal set. For Vi, = 2 pixels, the median filtering in first stage of the ATME
algorithm results in fewer SAD calculations while producing similar quality results.
Moreover, in some cases such as SthimPan video sequence, the implicit motion vector
smoothing resulting from the median filtering produces higher PSNR results. The

number of SAD calculations can further be decreased by using higher Vy, values.
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Vth=0 Vth=2

No. of Passes 1Pass | 2Pass | 3Pass | 4Pass | 5Pass | 1Pass | 2Pass | 3Pass | 4Pass | 5Pass
33.73 34.28 34.39 34.39 34.24 33.40 34.00 34.18 34.17 34.09
0.02 0.03 0.04 0.05 0.06 0.01 0.02 0.03 0.04 0.05

32.11 32.73 33.00 33.03 33.03 31.95 32.46 32.76 32.99 32.97

ForemanQCIF

ForemanCIF 007 | 011 | 016 | 020 | 024 | 006 | 010 | 015 | 018 | 0.22
ootballSIE 2120 | 2150 | 21.67 | 21.77 | 21.83 | 2090 | 21.39 | 2163 | 2164 | 21.72
009 | 015 | 020 | 026 | 032 | 007 | 013 | 019 | 024 | 030

parkloy20p | 2910 | 5.9 | 2621 | 2632 | 2631 | 2490 | 2560 | 2606 | 2621 | 26.25
086 | 132 | 1.76 | 220 | 264 | 065 | 101 | 135 | 168 | 201

NewMobCal720p | 2366 | 3409 | 3410 | 3410 | 3408 | 3207 | 3350 | 3350 | 3366 | 3372

0.45 0.67 0.89 1.10 1.32 0.37 0.57 0.77 0.95 1.15
3410 | 3498 | 3505 | 3504 | 3505 | 3414 | 3503 | 3505 | 35.00 | 35.05
0.44 0.71 0.99 1.26 1.54 0.40 0.65 0.89 1.14 1.38
3571 | 3589 | 3590 | 3590 | 3590 | 3541 | 3566 | 3572 | 35.68 | 35.73

SthimPan720p

InToTree720p | 549 | 083 | 117 | 151 | 184 | 040 | 070 | 098 | 127 | 156
CrowdRun720p | 2740 | 2798 | 2813 | 2821 | 2826 | 2690 | 2749 | 2160 | 27.70 | 2778
087 | 142 | 197 | 251 | 306 | 066 | 111 | 156 | 1.99 | 243

parkloytosop | 2469 | 2557 | 2602 | 2608 | 2635 | 2464 | 2521 | 2587 | 2618 | 2626
195 | 307 | 411 | 516 | 619 | 164 | 254 | 334 | 415 | 495

nToTreelosop | 3444 | 3456 | 3456 | 3457 | 3457 | 3432 | 3446 | 3448 | 3449 | 3450
111 | 191 | 270 | 349 | 427 | 0903 | 162 | 230 | 297 | 364

CrowdRuntosop | 2797 | 2828 | 2846 | 2856 | 2860 | 27.44 | 2812 | 2829 | 2838 | 28.45

1.88 3.12 4.34 5.55 6.77 1.59 2.70 3.77 4.83 5.88

Table 3.6: Performance of the ATME Algorithm
In each table cell, upper value is the PSNR value in dB and the lower value is the number of SAD calculations scaled by 10°.
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PSNR and computational complexity comparison of two typical configurations of
ATME algorithm, where Vy, is set to 0 and 2, SADy, is set to 2500 and 3 passes are done,
with reference algorithms is shown in Table 3.7. The positive values in PSNR columns
show the PSNR improvement by ATME algorithm. The positive values in “Red%”
columns show the percentage reduction of SAD calculations by ATME algorithm. It can
be seen from this table that ATME algorithm reduces the number of SAD calculations
up to 82% with up to 0.59 dB PSNR loss. There are several cases where the number of
SAD calculations is reduced more than 70% with less than 0.02 dB PSNR loss. In
several cases, ATME algorithm produces higher PSNR results than reference algorithms
while at the same time reducing the number of SAD calculations up to 58%. Therefore,
ATME algorithm produces high quality video sequences with significantly lower

computational cost.

Vth =0/ Min Vth =0/ Full Vth =2/ Min Vth =2/ Full

PSNR | Red.% | PSNR | Red.% | PSNR | Red.% | PSNR | Red.%

ForemanQCIF 0.57 9% -0.11 66% 0.35 22% -0.33 71%

ForemanCIF 0.39 8% -0.08 65% 0.15 16% -0.31 69%

FootballSIF 0.65 -42% 0.02 47% 0.61 -29% -0.02 52%

ParkJoy720p 0.35 -12% 0.00 58% 0.26 14% -0.09 68%

NewMobCal720p | 0.04 44% -0.01 79% -0.49 51% -0.54 82%

SthimPan720p 0.15 37% -0.01 7% 0.14 43% -0.02 79%

InToTree720p 0.11 26% -0.13 2% -0.08 38% -0.32 T71%

CrowdRun720p 0.82 -25% -0.05 53% 0.28 2% -0.59 63%

ParkJoy1080p 0.00 -17% 0.00 56% -0.15 5% -0.15 64%

INToTree1080p 0.05 23% -0.06 71% -0.03 35% -0.15 76%

CrowdRun1080p 0.59 -23% -0.04 54% 0.42 -1% -0.21 60%

Table 3.7: PSNR and Computational Complexity Comparison of ATME with
Reference Algorithms

Although PSNR is a good metric for objective quality, the perceived quality of a
video is not always same with its objective quality. Therefore, for evaluating the
performance of FRUC algorithms, subjective quality assessments should also be made
along with objective quality assessments. The same frame taken from the Foreman CIF
sequences generated by Full Search, 3DRS as proposed in [21] and ATME with V=2
and SAD=2500 is shown in Figures 3.7, 3.8 and 3.9, respectively. MC-FAVG is used

as the MCI algorithm in these three cases.
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Figure 3.7: Full Search Subjective Quality Assessment

In Figure 3.7, it is clearly seen that even though FS finds the best matching SAD
for each block, these MVs may not represent the true motions of the objects these
blocks belong to. MV fields generated by FS are not smooth, therefore the possibility of
blocking artifacts is high. On the other hand, when a true ME algorithm such as 3DRS
is used, the resulting MV field is smoother, and therefore the blocking artifacts are not
very likely. However, there may still be blocking artifacts when ME fails to find the true
motion associated with each block. In Figure 3.8, these errors can be seen on the mouth,
on the right side of the neck, on the top side of the helmet and on the text “Siemens”.
These errors decrease both objective and subjective qualities of the generated video.
Figure 3.9 shows that ATME algorithm performs better than 3DRS. As it can be seen
from this figure, the blocking artifacts are eliminated by correct estimation of true

motion vectors.
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Figure 3.8: 3DRS Subjective Quality Assessment
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Figure 3.9: ATME Subjective Quality Assessment

More complex MCI algorithms can eliminate unpleasing artifacts and therefore
improve the visual quality of the video sequence generated by FRUC. In Tables 3.8-
3.12, the performances of 3DRS algorithm as proposed in [21], ATME algorithm and
Full Search algorithm with 3 more complex MCI algorithms for 5 video sequences are
presented.®> MC-FAVG and non-motion compensated pixel averaging results are also
given as references. As it can be seen from these tables, more complex MCI algorithms

® The sequences used in this experiment are: Foreman(CIF), NewMobCal(720p), SthimPan(720p),
ParkJoy(1080p), InToTree(1080p).
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increases the objective quality of FRUC results when a non-true ME algorithm such as
FS is used. On the other hand, these MCI algorithms do not always increase the

objective quality of FRUC results when a true ME algorithm is used.

3DRS ATME FS
MCI Algo. lpass | 3pass | 1pass | 3pass | N/A
MC-FAVG 30.50 31.61 31.95 32.76 31.62
Sta. Med. 31.45 32.07 31.87 32.39 32.39
Dyn. Med. 30.96 31.69 31.56 32.22 32.16
Two-Mode 30.79 31.68 31.86 32.62 32.44
Non-MC 29.86

Table 3.8: PSNR (dB) Results of MCI Algorithms for “Foreman CIF” Sequence

3DRS ATME FS
MCI Algo. lpass | 3pass | 1pass | 3pass | N/A
MC-FAVG 31.84 33.01 32.97 33.59 32.58
Sta. Med. 31.72 32.02 3191 32.03 32.24
Dyn. Med. 31.78 32.34 32.24 32.49 32.36
Two-Mode 31.96 32.99 33.05 33.55 33.32
Non-MC 29.76

Table 3.9: PSNR (dB) Results of MCI Algorithms for “NewMobCal 720p”

Sequence
3DRS ATME FS

MCI Algo. lpass | 3pass | 1pass | 3pass | N/A
MC-FAVG 33.11 34.22 34.14 35.05 30.40
Sta. Med. 27.35 27.49 27.45 27.56 27.18
Dyn. Med. 31.39 32.09 32.96 33.38 31.00
Two-Mode 32.92 34.02 34.08 34.97 31.61

Non-MC 23.96

Table 3.10: PSNR (dB) Results of MCI Algorithms for “SthimPan 720p” Sequence
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3DRS ATME FS
MCI Algo. lpass | 3pass | 1pass | 3pass | N/A
MC-FAVG 23.32 25.08 24.64 25.87 25.39
Sta. Med. 22.03 22.53 22.25 22.64 22.61
Dyn. Med. 22.92 24.15 23.79 24.79 24.75
Two-Mode 23.25 24.96 24.59 25.83 25.62
Non-MC 20.15

Table 3.11: PSNR (dB) Results of MCI Algorithms for “ParkJoy 1080p” Sequence

3DRS ATME FS
MCI Algo. lpass | 3pass | 1pass | 3pass | N/A
MC-FAVG 33.92 34.17 35.43 35.71 31.52
Sta. Med. 33.00 33.11 33.17 33.24 33.04
Dyn. Med. 33.55 33.75 33.85 33.99 32.36
Two-Mode 33.95 34.20 34.41 34.57 32.52
Non-MC 30.97

Table 3.12: PSNR (dB) Results of MCI Algorithms for “InToTree 1080p”
Sequence

The same frame taken from Foreman CIF sequences which are processed by
ATME algorithm (Viy=2, SAD#=2500) and interpolated by 4 different MCI algorithms
are shown in Figures 3.10-3.13. The MCI algorithms used are MC-FAVG, Static
Median Filtering, Dynamic Median Filtering, and Two Mode Interpolation (occlusion
threshold = 2 pixels) respectively. In Figure 3.14, the same frame interpolated by non-
motion compensated pixel averaging method is given as reference. It can be seen from
these figures that blocking artifacts resulting from ME errors are removed by complex
MCI algorithms. For example, errors in the stationary parts on the left side of the neck
in Figure 3.10 are removed by Static Median Filter. Similarly, errors in the moving parts
above the mouth are removed by Dynamic Median Filter. Two Mode Interpolation
algorithm, by adaptively switching between Dynamic Median Filter and MC-FAVG,
obtains a smoother image.
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Figure 3.13: Subjective Assessment of MCI Algorithms — Two Mode Interpolation

46



I_ E: 7
Figure 3.14: Subjective Assessment of MCI Algorithms — Non-Motion
Compensated Interpolation
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Chapter 4

ADAPTIVE TRUE MOTION ESTIMATION HARDWARE DESIGN

Three different complexity hardware architectures for implementing the ATME
algorithm are proposed. In all three hardware, memory elements, MV and position
values are designed to process 1080p HD frames and control signals are parameterized

for processing smaller size frames.

4.1 Basic ATME Hardware

The block diagram of the first hardware, the Basic ATME hardware, is shown in
Figure 4.1. The architecture consists of 6 modules and 3 on-chip memories. The Current
Block contains 256x8 bits and holds the CB of size 16x16 pixels. It feeds this data to
Processing Elements (PE) inside the PE Array module and is loaded when the
processing for the next current block starts. The Search Block also contains 256x8 bits
and holds the PB of size 16x16 pixels. It also feeds this data to PE Array and is loaded
for each search location. MV Array holds the MVs for each block in a single frame. MV
Array sends the candidate MVs for the CB to the Address Generator module. MV Array

has two additional ports for address and data which enables external access to MV data.
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Figure 4.1: Block Diagram of Basic ATME Hardware

PE Array is the largest module and it contains 256 Processing Elements which are
responsible for SAD calculation between two 16x16 pixel blocks. Each PE is composed
of a comparator, two 2x1 multiplexers and an 8-bit subtractor. Each PE is responsible
for calculating the SAD value between two pixels, one from the CB and one from the
PB. The comparator determines which of the two pixels are greater in value. Based on
the result of this comparison, two multiplexers connected to the inputs of the subtractor
selects the proper pixels, the larger one to the first input and the smaller one to the
second input. This ensures that the resulting value will always be positive so that the
absolute difference between those two pixels is taken. This operation is done in one
clock cycle, therefore 256 PEs calculate the absolute differences between the 256 pixels
in CB and PB in one cycle. The outputs of PEs are connected to an adder tree to find the
sum of absolute difference between two blocks. The adder tree has three pipeline stages
for faster operation. Even though the SAD calculation for a single block takes 3 clock
cycles, after the first SAD calculation the throughput is 1 SAD calculation per clock
cycle. Therefore, the SAD calculation for 3 MVs takes 5 cycles.

MYV Selector module compares the SAD values of the MV candidates for CB and
selects the MV which gives the lowest SAD value. If the SAD of the selected MV is

larger than a certain parameterized threshold value (SADy,), it asserts a signal for using
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the extended search candidates set. After the final MV is selected, it is written to the
location of the CB in the MV Array. LFSR module contains a 15 bit linear feedback
shift register which generates a pseudo-random number sequence. For each block
evaluation, it outputs random update vectors selected from a lookup table by taking the
modulus of the LFSR value. Median Filter module finds the median of three MVs and
checks whether the pair-wise L1 norms of these three vectors are under Vy, or not.
Address Generator module generates read and write addresses for Search Block.
In addition, depending on the results of vector threshold and SAD threshold techniques,
it selects which MV will be evaluated next and adds random update vectors when
necessary. Controller module keeps track of state, the position of current block and

other control signals necessary for correct operation of the other modules.

4.1.1 Operation of Basic ATME Hardware

The operation of ATME hardware begins with the start signal. Controller keeps
the count and location of the CB. It provides the current position signal to MV Array
which is used as the write address of the MV selected for the CB. The processing of the
first frame is a special case, where MV Array is initially empty. Therefore, for each
block in the first frame a random update vector taken from LFSR is written to the
corresponding address in the MV Array. LFSR is a 15 bit linear feedback shift register
with a 2 tap primitive polynomial where 14" and 15" bits of the shift register are
XNORed. This LFSR produces a pseudo-random number sequence from 0 to 32766. In
the software implementation, the random update vector set contained 25 elements.
However, for modulus values other than the powers of 2, modulus operation requires a
division. Therefore, in order to simplify the modulus hardware, 7 more update vectors
are added to the random update vector set making a total of 32 elements.

When MV Array is filled with random vectors after the processing of the first
frame, frameend signal is asserted by Controller module. Then, processing of the next
frame starts. First, Current Block is filled with current block pixels in 32 cycles (8
pixels per cycle). After CB is filled, the control is handed to the Address Generator
module. First, it gets 3 MVs that will be evaluated for the CB from MV Array and sends
them to Median Filter module. Median Filter calculates the median of these 3 MVs and
sends it to Address Generator. Median Filter also calculates the pair-wise L1 Norms of
these MVs and sends a signal, underth, if all of them are under the vector threshold, V.

Address Generator then calculates the starting address of the Search Block pixels in off-
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chip SRAM, reads the search block pixels and stores them to Search Block. After SB is
filled with search block pixels in 32 cycles, SBFilled flag is set. Then currentMV is set
to the median MV and the SAD for the median MV is calculated. The next state
depends on the value of underth signal. If underth is 1, an update vector is added to the
median MV and assigned as currentMV. On the other hand, if underth is 0, an update
vector is added to the second MV and assigned as currentMV. Address Generator reads
the corresponding search block pixels from off-chip SRAM and stores them to Search
Block. After SB is filled, SBFilled flag is set and the SAD for the current MV is
calculated. If underth is 0, the SAD for the third MV is also calculated. After the SAD
values for the MVs are calculated, Address Generator informs MV Selector and waits
for the blockend signal.

MYV Selector stores all the MVs processed for the CB and their SAD values. For
each CB, either two or three MVs are processed. After all the MVs are processed for the
CB, depending on the value of the counter, MV Selector compares the SAD values of
these two or three MVs and outputs the MV with the minimum SAD. The minimum
SAD value is compared with the SADy, parameter. If the minimum SAD is higher than
the predetermined SAD threshold, then goextended signal is asserted. If this signal is
asserted, the SAD values for the MVs in the extended candidate set are calculated. After
the SAD values for all MVs are calculated, the MV with the minimum SAD is written
to current position address of MV Array.

MV Array is composed of 8 dual-port Block RAMs. The first port is used for
writing and reading MVs inside the ATME hardware. The second port is configured as
read only and provides MV data outside the ATME hardware. After the MV for the CB
is written, blockend signal is asserted and Controller starts processing the next block.
After all blocks in a frame are processed, frameend signal is asserted and Controller

starts processing the next frame.

4.1.2  Implementation Results of Basic ATME Hardware

The basic ATME hardware architecture is implemented in Verilog HDL. Since
the total number of cycles needed for processing a frame is not deterministic, in order to
find an average value, 10 frames from NewMobCal720p video sequence are processed
to double the frame rate. This operation took ~3807000 cycles, therefore on average a

frame is processed in ~380700 cycles.

51



The Verilog RTL code of the basic ATME hardware is synthesized to a
4vIx200ff1513 Xilinx Virtex-4 FPGA with speed grade -11 using Mentor Graphics
Precision RTL tool. The resulting netlist is placed and routed to the same FPGA using
Xilinx ISE tool. The hardware implementation is verified with post place and route
simulation using Mentor Graphics Modelsim tool. The hardware uses 13425 4-input
LUTs, 5327 Flip-Flops, 8 dual-port Block RAMs, and consumes 8% of the Slices. It
works at 59.86 MHz and is capable of processing ~158 720p HD frames per second

doubling the frame rate to ~316 fps which satisfies the real-time requirements.

4.2 ATME Hardware with Update Window

The block diagram of the ATME hardware with Update Window (UW) is shown
in Figure 4.2. The 22x22 pixel UW is constructed by enlarging the 16x16 pixel Search
Block by 3 pixels in each direction in order to implement an efficient data re-use
scheme. UW is implemented as a 22 22x1 pixel distributed memory block. There are
two reasons for using an UW of size 22x22. First, since true motion estimation creates
smooth MV fields around objects, the MVs that will be evaluated for a block are
expected to be similar. Second, a random update vector is always added to one of the
MVs in the ATME algorithm. Since the random update vector set consists of vectors in
[-3,+3] pixels range, the updated MV will always be inside the UW of the MV that is
updated. Therefore, before processing a CB, the UW is filled with pixels centered on the
location pointed by the median of the three vectors in the minimal set. If pair-wise L1
Norms of these three vectors are less than Vi, their median MV will be evaluated along
with its updated version, in which case all required pixels will be inside the UW. On the
other hand, if any L1 Norm is larger than Vy,, the pixels required for second and third
MVs in the set will probably be inside the UW. Address Generator fills the UW with
proper pixels based on the current MV, and checks whether the pixels required for the
next MV is inside the UW or not. If all the pixels are inside the UW, the SAD
calculation for that MV is done. However, if any pixel required for the SAD calculation
of that MV is not inside the UW, the SAD calculation is done after the entire UW is
refilled with the required pixels for that MV.
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Figure 4.2: Block Diagram of ATME Hardware with UW

In order to select the 16x16 pixel PB from the 22x22 pixel UW, horizontal and
vertical multiplexers are used. These multiplexers can select any 16x16 pixel block
inside the UW and sent it to the PE Array as the PB for SAD calculation. This selection
is implemented in two steps. First, a 7x16 multiplexer, the horizontal multiplexer,
selects the 16 columns of the UW which contain the columns of PB. Then, a 7x16
multiplexer, the vertical multiplexer, selects the 16 rows of the output of the horizontal
multiplexer. The select signals for horizontal and vertical multiplexers are sent by the
Address Generator. The resulting 16x16 pixel PB is sent to the PE Array.

The operation of UW is illustrated in Figure 4.3. This figure shows the case where
the UW is centered by the MV (1,1). Therefore, the center of UW, i.e. the 16x16 block
starting from the 4™ row and 4™ column of UW, contains the PB that is located (1,1)
away from the CB. The (-2,+1) random update vector is added to that MV, therefore the
next MV that will be evaluated is (-1,+2) and the PB pointed by this MV is inside the
UW. Since the columns of the 16x16 PB are located in 2™ column to 17" column of
UW, the select signal for the horizontal multiplexer sent by the Address Generator is 1.
Since, the rows of the 16x16 PB are located in 5™ row to 20™ row of UW, the select

signal for the vertical multiplexer sent by the Address Generator is 4.
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To show the advantage of using the UW, the number of pixels read from off-chip
SRAM by Basic ATME Hardware and ATME Hardware with Update Window are
shown in Table 4.1. The column labeled “Re-Use” show the data re-use percentage. The
ATME configuration is Vi = 2 pixels, SADy, = 2500, and a single pass is done. As it
can be seen from this table, other than 2 very static video sequences (SthimPan and
InToTree), the number of pixels read from off-chip SRAM is reduced. This increases

the performance and reduces the power consumption of the ATME hardware.

Sequence Basic (10°) | w/ UW (10°) | Re-Use
ForemanCIF 24998 24262 3%
ParkJoy720p 234890 227041 3%

NewMobCal720p 185530 173865 6%
SthimPan720p 198571 200823 -1%
INToTree720p 204040 220666 -8%

CrowdRun720p 246847 205649 17%
ParkJoy1080p 561073 541651 3%

INToTreel080p 464933 524882 -13%

CrowdRun1080p 603929 543362 10%

Table 4.1: Number of Pixels Read from Off-Chip SRAM

4.2.1  Implementation Results of ATME Hardware with Update Window

The ATME hardware with Update Window is implemented in Verilog HDL.
NewMobCal720p video sequence is processed for 10 frames to double the frame rate.
This operation took ~3740000 cycles, therefore on average a frame is processed in
~374000 cycles. The Verilog RTL code of the ATME hardware with Update Window is
also synthesized to a 4vIx200ff1513 Xilinx Virtex-4 FPGA with speed grade -11 using
Mentor Graphics Precision RTL tool. The resulting netlist is placed and routed to the
same FPGA using Xilinx ISE tool. The hardware implementation is verified with post
place and route simulation using Mentor Graphics Modelsim tool. The hardware uses
33773 4-input LUTSs, 7442 Flip-Flops, 8 dual-port Block RAMs, and consumes 21% of
the Slices. It works at 62.63 MHz and is capable of processing ~168 720p HD frames
per second doubling the frame rate to ~336 fps which satisfies the real-time

requirements.
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4.3 ATME Hardware with Search Window

In ATME Hardware with Update Window, the pixels in the 22x22 pixel UW are
re-used only when UW contains all the pixels in the block pointed by the current MV. If
any pixel in this block is not in the UW, then the entire 22x22 pixel UW is re-filled.
However, if most of the pixels in this block are inside the UW, instead of refilling the
entire UW, only the missing pixels can be loaded into UW. If the number of rows and
columns that should be loaded into UW is more than 22, it is inefficient to load them
into UW one at a time. However, if the number of rows and columns that should be
loaded into UW is less than 22, then by loading them one at a time and re-using the rest
of the pixels already in the UW, the number of accesses to off-chip SRAM can be
reduced, performance can be increased and power consumption can be reduced.

Therefore, ATME Hardware with Search Window implements this data re-use
technique. When this data re-use technique is used, the existing pixels in the rows or
columns of the UW are replaced with the new pixels. In this case, the addressing
scheme for the UW is rotated so that this replacement is not visible to the rest of the
hardware in terms of read and write addresses.

The process of replacement in UW for the case where UW is centered on location
(4,3) and the next MV that will be evaluated is (8,8) is shown in Figure 4.4. In this case,
in order for the UW to include the PB, two rows and one column should be replaced in
the UW. After the replacement in the UW, proper select signals are sent to the
horizontal and vertical multiplexers. In this hardware, 22x16 horizontal and vertical
multiplexers are used in order to be able select any 16x16 pixel PB. For the case shown
in Figure 4.4, the select signal for the horizontal multiplexer is 7, and the select signal

for the vertical multiplexer is 8. This selection process is shown in Figure 4.5.
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The number of pixels read from off-chip SRAM by three ATME hardware for
different video sequences are shown in Table 4.2. As it can be seen from this table, this

technique significantly reduces the number of off-chip SRAM accesses.

Sequence Basic (10°) | w/ UW (10%) | Re-Use | w/ SW (10% | Re-Use
ForemanCIF 24998 24262 3% 20733 17%
ParkJoy720p 234890 227041 3% 202666 14%
NewMobCal720p 185530 173865 6% 171547 8%
SthimPan720p 198571 200823 -1% 181274 9%
INToTree720p 204040 220666 -8% 195317 4%
CrowdRun720p 246847 205649 17% 180435 27%
ParkJoy1080p 561073 541651 3% 470774 16%
INToTree1080p 464933 524882 -13% 465308 0%
CrowdRun1080p 603929 543362 10% 436811 28%

Table 4.2: Number of Pixels Read from Off-Chip SRAM by ATME Hardware

The block diagram of ATME Hardware with Search Window is shown in Figure
4.6. Video frames are stored in the off-chip SRAM in row-major or column-major
order. Therefore, in order to be able to access proper pixels consecutively from rows
and columns of a frame in each cycle, an on-chip Search Window memory implemented
with dual-port Block RAMs is used in this hardware. SW size can be multiples of 22. In
this hardware, SW contains 88x88 8-bit pixels, centered on the position of CB. These
pixels are distributed into 22 dual-port Block RAMSs. This requires limiting MV values
to a range of [-36,+36] pixels. The necessary checks for this MV limitation are
implemented in the Address Generator module.
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Figure 4.6: Block Diagram of ATME Hardware with SW

The pixels are placed diagonally in the SW as shown in Figure 4.7 [17]. The
numbers in each cell indicate the Block RAM containing the corresponding pixel in
SW. Each Block RAM is configured as dual-port, one port is used for writing and the
other port is used for reading. Block RAMs in Xilinx FPGAs can be configured with
different port widths. In this hardware implementation, the write port is configured as
32 bits and the read port is configured as 8 bits. Therefore, 4 pixels can be written into
and 1 pixel can be read from each Block RAM in each cycle. A limited number of,
generally 64, bits can be read from off-chip SRAM in each cycle. Therefore, only 8
pixels can be written into SW in one cycle and each column of SW is filled in 11 cycles.

The placement of pixels in Block RAMs is shown in Table 4.3. The two numbers
inside each cell indicate the row and column of the SW the corresponding pixel belongs
to. The first 22 pixels in a column of SW are stored in a different Block RAM. After 22
pixels starting from the top left pixel of SW is written into 22 Block RAMs, the 23"
pixel is written into the next location of first Block RAM. Therefore, consecutive four

locations in a Block RAM contain four pixels from the same column of SW.
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Address | BRAM1 | BRAM2 | .. BRAM11 |BRAM12| .. BRAM21 | BRAM22

0 (1,1) | (21) | . (11,1) (12,1) | .. (21,1) (22,1)
1 231) | (241) | .. (33,1) (34,1) (43,1) (44,1)
2 451) | (46,1) | .. (55,1) (56,1) | .. (65,1) (66, 1)
3 (67,1) | (68,1) | .. (77,1) (781) | .. (87,1) (88,1)
4 222) | (1,2) | . (10,2) (11,2) (20,2) (21,2)
5 442) | (232) | . (32,2) (33,2) (42,2) (43,2)

170 | (47,43) | (48,43) | .. (57,43) (58,43) | .. (45,43) (46,43)
171 | (69,43) | (70,43) | .. (79,43) (80,43) | .. (67,43) (68,43)
172 (2,44) | (3,44) (12,44) (13,44) | .. (22,44) (1,44)
173 | (24,44) | (25,44) (34,44) (35,44) | .. (44,44) (23,44)
346 | (47,87) | (48,87) (57,87) (58,87) | .. (45,87) (46,87)
347 | (69,87) | (70,87) | .. (79,87) (80,87) | ... (67,87) (68,87)
348 (2,88) | (3,88 | .. (12,88) (13,88) | .. (22,88) (1,88)
349 | (24,88) | (25,88) (34,88) (35,88) | .. (44,88) (23,88)
350 | (46,88) | (47,88) (56,88) (57,88) | .. (66,88) (45,88)
351 | (68,88) | (69,88) (78,88) (79,88) | ... (88,88) (67,88)

Table 4.3: Locations of the SW Pixels in Block RAMSs

After the MV for CB is found, SW for the next CB should be loaded. The
proposed hardware refills the entire SW only for the first CB in each block row of the
input frame. Since the SW for CB and SW for the next CB have a 72x88 pixels overlap,
instead of reading entire 88x88 pixels of the SW from off-chip SRAM for the next CB,
the proposed hardware reads 16 non-overlapping columns from the off-chip SRAM and
writes them to the leftmost 16 columns in SW. This data re-use scheme requires rotating
read addresses for the SW for each new CB. This address rotation is handled by the
Address Generator.

The address rotation between the first CB and the next CB in a frame is illustrated
in Figure 4.8. In this figure, the numbers over the columns and the numbers to the left of
the rows show the actual positions of the columns and rows inside the video frame
respectively. The symbols inside the cells show the Block RAMs containing the
corresponding pixels. As it can be seen from Figure 4.8(a), for the next CB, 16 new SW
columns (89 to 104) are needed and SW columns 1 to 16 are not needed. Therefore, the

new 16 columns are written to first 16 columns of the SW as shown in Figure 4.8(b).
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Because of address rotation, other modules in the hardware perceive the SW as shown
in Figure 4.8(c).
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(b) (©)
Figure 4.8: Address Rotation for SW (a) Overlapping pixels in SWs (b) Actual
placement of pixels (c) Perceived placement of pixels.

In ATME algorithm, the access pattern for the SW depends on the values of the
MVs that are evaluated. For example, if the MVs that will be evaluated for the CB are
(1,0), (0,1) and (2,2), then PB is first accessed from the location one column right to
CB. The PB is next accessed from one row below CB, and finally PB is accessed from
two rows and two columns away from CB. Diagonal placement of pixels inside SW

allows accessing any 22 pixel row or column in the SW in one cycle.
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Address Generator calculates the starting addresses of the pixels that will be sent
to the UW and reads them from 22 Block RAMs. Because of the SW address rotation,
the starting address calculations are quite complex. For example, when the first pixel of
the UW is read from the 15" Block RAM, next 7 pixels in the column should be read
the same address of 16" to 22" Block RAMs. However, the next 13 pixels in the
column should be read from the next address of 1% to 14" Block RAMSs. Since a Block
RAM has 4 pixels from the same column, the addresses of the pixels in the following
columns are calculated by adding 4 to the address of the pixel on the same row of the
previous column.

In ATME Hardware with SW, large number of read accesses to off-chip SRAM is
done in order to fill the on-chip SW memory. The number of pixels read from SRAM

when the SW size is 66x66 pixels and frame size is 1080p HD is ((66x66x1) +

(16x66x119))x67 = 8,711,340 pixels per frame. For 100 frames (98 frames
processed) 8,711,340 x 98 = 853,711,320 pixels. The reason for 98 frames being
processed is that MVs for the first frame pair are assigned randomly and the 100" frame
is taken from the original video sequence, therefore SW is not filled in those two cases.
Similarly, the number of pixels read from SRAM when the SW size is 88x88 pixels and
frame size is 1080p HD is ((88x88x1) + (16x88x119))x67 = 11,744,832 pixels
per frame. For 100 frames (98 frames processed) 11,744,832 x 98 = 1,150,993,536
pixels.

Therefore, using an on-chip SW memory for the ATME algorithm with a
candidate set with small number of locations is not efficient. However, when a
candidate set with large number of locations is used to obtain higher quality videos,
using an on-chip SW memory becomes efficient especially for large frame sizes. For
example, when ParkJoy1080p sequence is processed for 100 frames by an ATME
algorithm with a candidate set with 14 locations and Vi, = 2, the number of pixels
accessed is 895,458,168. And, when InToTreel080p sequence is processed by the
same ATME algorithm, the number of pixels accessed is 934,038,534. If a 66x66 pixel
size SW is used, the number of accesses to off-chip SRAM is reduced for both
examples.

The ATME Hardware with SW is implemented in Verilog HDL. However, the
Verilog RTL code is not mapped to an FPGA.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this thesis, adaptive true motion estimation (ATME) algorithm based on 3-D
Recursive Search algorithm is proposed for frame rate up-conversion. By using multi-
objective genetic algorithm, an optimized set of candidate locations are obtained. The
experimental results show that this optimized set improves the results of the 3-D
Recursive Search algorithm up to 2 dB. In addition, an extended set of candidates is
proposed to be used in cases where the results of the first set of candidates are
unsatisfactory.

Several computational complexity reduction and redundancy removal techniques
are used in ATME algorithm to reduce the number of SAD calculations. The first
technique avoids the evaluations of the same MV candidates. The next technique avoids
the evaluations of the similar MV candidates. The similarity of the MVs is determined
by comparing their pair-wise distances to a predefined threshold value. When the
threshold is set to zero, the same quality results are obtained with a 20% reduction in
SAD calculations for a 3 candidate set and 38% reduction for an 8 candidate set. This
reduction is further increased when multiple passes of the algorithm are done. When the
threshold is set to a non-zero value, the number of SAD calculations is reduced up to
64% with an average PSNR loss of 0.2 dB.

A redundancy removal technique for multiple passes is used in the ATME
algorithm. The probability of evaluating the MV, which is selected as the best matching
candidate for a block in the first pass of the algorithm, in the next pass is quite high.
Therefore, this technique stores the best SAD value obtained in the previous pass for
each block and uses them in the next pass in order to avoid redundant SAD calculations.
This multi-pass redundancy removal technique reduces the number of SAD calculations

by 25% on average in 3 passes and 30% on average in 5 passes.
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The experimental results show that the ATME algorithm produces higher PSNR
results than reference algorithms while at the same time reducing SAD calculations up
to 58%. Furthermore, ATME algorithm reduces SAD calculations up to 82% with up to
0.59 dB PSNR loss. There are several cases where there is more than 70% reduction in
SAD calculations with less than 0.02 dB PSNR loss. Therefore, ATME algorithm
produces high quality video sequences with significantly lower computational cost.

In addition, in this thesis, three efficient hardware architectures for ATME
algorithm are proposed. The first hardware is a basic implementation of ATME
algorithm. Off-chip SRAM accesses are costly both in terms of latency and power
consumption. Therefore, the second hardware implements a data re-use scheme using a
22x22 pixel Update Window by exploiting the smoothness property of true motion
vector fields. The third hardware uses a technique for loading the Update Window with
only the pixels missing in the UW. An on-chip Search Window memory is used to
efficiently implement this technique. The pixels are diagonally placed into 22 dual-port
Block RAMs of the SW in order to provide single cycle access to any 22 pixel row or
column inside the SW.

All three ATME hardware architectures are implemented in Verilog HDL.
However, only two of them are mapped to Xilinx Virtex-4 FPGA. Basic ATME
Hardware consumes 8 Block RAMs and 8% of the Slices in that FPGA. It works at
59.86 MHz and is capable of processing ~158 720p HD frames per second, which is
sufficient for real-time processing. ATME Hardware with Update Window consumes 8
Block RAMs and uses 21% of the Slices in the same FPGA. It works at 62.63 MHz and
is capable of processing ~168 720p HD frames per second.

As future work, the third ATME hardware can be mapped to an FPGA. The
redundancy removal technique for multiple passes can be implemented and integrated
into the ATME hardware. A complete FRUC system can be built by designing and
implementing an MCI hardware and integrating it to the ATME hardware.
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