
PRIMAL-DUAL HEURISTICS FOR SOLVING

THE SET COVERING PROBLEM

by

BELMA YELBAY

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Fall 2009

PRIMAL-DUAL HEURISTICS FOR SOLVING

THE SET COVERING PROBLEM

APPROVED BY

Assoc. Prof. Ş. İlker Birbil ..
(Thesis Supervisor)

Assist. Prof. Kerem Bülbül ...
(Thesis Co-advisor)

Assist. Prof. Nilay Noyan ..

Assist. Prof. Güvenç Şahin ..

Assist. Prof. Hüsnü Yenigün ..

DATE OF APPROVAL: ..

c©Belma Yelbay 2009

All Rights Reserved

to my son

Acknowledgments

I owe my deepest gratitude to my thesis advisor Assoc. Prof. Ş. İlker Birbil for his

invaluable support, supervision, advice and guidance throughout the research.

I gratefully acknowledge my thesis co-advisor Assist. Prof. Kerem Bülbül for his

advice, supervision and crucial contribution to my thesis. This thesis would not have

been possible without my advisors’ encouragement and support.

I am indebted to all my friends from Sabanci University for their motivation and

endless friendship. My special thanks go in particular to Figen for her endless patience

and valuable support. Many special thanks go to İbrahim, Ceyda, Nurşen, Taner,

Mahir, Duygu, Birol, Vildan, Halil, Semih, Merve, Nimet and Selin.

My parents deserve special mention for their invaluable support and gentle love.

Words fail me to express my appreciation to my son whose love always encourages and

motivates me. Lastly, I would like to thank my husband for his dedication, love and

persistent confidence in me.

PRIMAL-DUAL HEURISTICS FOR SOLVING

THE SET COVERING PROBLEM

Belma Yelbay

Industrial Engineering, Master of Science Thesis, 2009

Thesis Supervisors: Assoc. Prof. Ş. İlker Birbil

Assist. Prof. Kerem Bülbül

Keywords: combinatorial optimization, set covering, primal-dual approach, heuristics

Abstract

The set covering problem (SCP) is a well known combinatorial optimization problem
applied widely in areas such as; scheduling, manufacturing, service planning, network
optimization, telecommunications, and so on. It has been already shown that SCP
is NP-hard in the strong sense [15]. Therefore, many heuristic and enumerative al-
gorithms have been developed to solve SCP effectively. The primary purpose of the
present study is to develop an effective heuristic for SCP. The heuristic is based on
a primal-dual approach which is commonly used in the literature for approximating
NP-hard optimization problems.

In this study, we present numerical results to evaluate the performance of the heuris-
tic as well as our observations throughout the development process. Our results indicate
that the heuristic is able to produce good results in terms of both solution quality and
computation time. Moreover, we show that the proposed heuristic is simple, easy to
implement and has a potential to solve large-scale SCPs efficiently.

KÜME ÖRTÜLEME PROBLEMLERİNİN ÇÖZÜMÜ İÇİN TEMEL-EŞLENİK

SEZGİSELLER

Belma Yelbay

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2009

Tez Danışmanları: Doç. Dr. Ş. İlker Birbil

Yrd. Doç. Dr. Kerem Bülbül

Anahtar Kelimeler: birleşi eniyileme, küme örtüleme, temel-eşlenik yaklaşım,

sezgiseller

Özet

Küme örtüleme problemi çizelgeleme, üretim, hizmet planlama, ağ eniyilemesi,
uziletişim gibi pek çok alanda uygulanan iyi bilinen bir birleşi eniyileme problemidir.
Küme örtüleme probleminin NP-zor olduğu kanıtlanmış olup, problemin etkin bir
şekilde çözümüne yönelik çok sayıda birerleme algoritmaları ve sezgiseller geliştirilmiştir.
Bu çalişmanın temel amacı küme örtüleme problemi için etkin bir sezgisel geliştirmektir.
Sezgisel temel-eşlenik yaklaşımına dayalı olup literatürde NP-zor birleşi eniyileme prob-
lemlerini yaklaşıklamak için kullanılmaktadır.

Bu çalışmada, sezgiselin başarımını değerlendirmek için sayısal çözümlemelerle bir-
likte sezgiselin geliştirilme aşamalarında elde ettiğimiz gözlemler sunulmaktadadır.
Elde edilen sonuçlar sezgiselin çözüm kalitesi ve hesaplama zamanı açısından iyi sonuçlar
verdiğini göstermektedir. Bunun yanısıra sezgiselin basit, kolay uygulanabilir, ve büyük
ölçekli problemleri etkin bir şekilde çözme potansiyeli olduğunu göstermektedir.

Table of Contents

Abstract vi

Özet vii

1 INTRODUCTION AND MOTIVATION 1
1.1 Contributions . 2
1.2 Outline . 3

2 BACKGROUND AND RELATED WORK 4
2.1 Exact Algorithms . 4
2.2 Heuristics . 5

2.2.1 Greedy Algorithms . 6
2.2.2 Linear Programming and Lagrangian Relaxations 6
2.2.3 Search Algorithms . 7
2.2.4 Primal-Dual Algorithms . 8

3 PROPOSED PRIMAL-DUAL HEURISTICS 11
3.1 Main Algorithm . 11
3.2 Methods for Improving The Main Algorithm 14

3.2.1 Changing Primal Variable Selection Rules 14
3.2.2 Generating Dual Variable Sequence by a Greedy Approach . . . 15
3.2.3 Changing Dual Variable Sequence Dynamically 16
3.2.4 Finding Complementary Primal Solution 17

3.3 Effects of Dual Sequence Selection . 22
3.4 Some Approaches to Improve Computational Speed 23

4 COMPUTATIONAL STUDY 25

5 CONCLUSION AND FUTURE WORK 34

Bibliography 38

viii

List of Figures

3.1 Positions of primal, dual objective function values and IP, LP optimal
objective function values on the real axis 12

4.1 Performance profile for the algorithms on standard benchmark instances
in terms of solution quality . 26

4.2 Performance profile for the algorithms on standard benchmark instances
in terms of computation time . 28

4.3 Performance profile for the algorithms on randomly generated instances
in terms of computation time . 30

4.4 Performance profile for the algorithms on randomly generated instances
in terms of solution quality . 32

5.1 Solution before and after post processing 36
5.2 Set of possible worst case instances . 37

ix

List of Tables

3.1 Percentage gaps for benchmark problems 13
3.2 Average percentage gaps for instances having Euclidean and Manhattan

distances . 13
3.3 Percentage changes after applying the selection rules for standard non-

unicost benchmark instances . 15
3.4 Percentage changes in primal and dual objective function values with

dynamic sequence for standard benchmark instances 17
3.5 Percentage changes in IP gap with complementary primal solution ap-

proach for benchmark and random instances 21

4.1 Summarized results for the solution quality for benchmark instances . . 27
4.2 Comparisons of computation time for benchmark instances(in seconds) 31
4.3 Comparisons of solution quality and computation time for all instances 32
4.4 Comparisons of solution quality and computation time for all instances 33

x

CHAPTER 1

INTRODUCTION AND MOTIVATION

The set covering problem is a well known combinatorial optimization problem applied

widely in areas such as; scheduling, manufacturing, service planning, network optimiza-

tion, telecommunications, and so on. Given a collection S of sets over a finite universe

U , a set cover C ⊆ S is a sub-collection of the sets whose union is U . When each set

in the collection has a cost, then the set covering problem is about finding a set cover

C such that the cost is minimized.

The integer programming (IP) formulation of the set covering problem (SCP) is as

follows:

minimize
∑
j∈S

cjxj (1.1)

subject to
∑
j∈S

aijxj ≥ 1, i ∈ U , (1.2)

xj ∈ {0, 1}, j ∈ S. (1.3)

and cj > 0 is the coverage cost of the jth set. xj is a binary variable which equals 1 if

j ∈ C, and 0 otherwise. Sj is the set of items that can be covered by set j. aij is a binary

constant which equals 1 if i ∈ Sj, and 0 otherwise. Constraints (1.2) ensure that each

item is covered by at least one set, and constraints (1.3) are the integrality restrictions.

If the cost of coverage is the same for each set, that is c1 = c2 = · · · = cn with n = |S|
then the problem is referred to as the unicost set covering problem. Since, solving the

model is hard, some algorithms use the optimal solution of the LP relaxation or its

dual to find a lower bound to the optimal solution or find a near-optimal solution. In

the subsequent part of the thesis, we refer to the following LP relaxation model

1

minimize
n∑

j=1

cjxj (1.4)

subject to
n∑

j=1

aijxj ≥ 1, i ∈ U , (1.5)

xj ≥ 0, j ∈ S. (1.6)

The corresponding dual problem then becomes

maximize
m∑

i=1

yi (1.7)

subject to
m∑

i=1

aijyi ≤ cj, j ∈ S, (1.8)

yi ≥ 0, i ∈ U . (1.9)

and cj −
m∑

i=1

aijyi is the value of the jth dual slack variable or the reduced cost of the

jth the primal variable. It has been already shown that SCP is NP-hard in the strong

sense [15]. Therefore, many heuristic and enumerative algorithms have been developed

to solve SCP effectively.

1.1 Contributions

The primary purpose of the present study is to develop an effective heuristic for SCP.

The following list shows the contributions of this study:

• In this study, we present a heuristic for SCP. The heuristic is based on a primal-

dual approach which is commonly used in the literature for approximating NP-

hard optimization problems.

• The heuristic has a potential to solve large-scale SCPs in a reasonable time

through column generation.

• We show that despite the fact that the theoretical performance of the heuristic

is poor, the empirical performance is quite well.

• The heuristic is simple, easy to implement and fast.

2

• We present numerical results to evaluate the performance of the heuristic as well

as our observations throughout the development process.

• We show that the problem structure affects the performance of the heuristic.

This provides some insight into the behavior of the primal-dual heuristic.

1.2 Outline

The thesis is structured as follows. We start with the the combinatorial optimization

literature on SCP in Chapter 2. We introduce the proposed primal-dual heuristics and

present our observations in Chapter 3. In Chapter 4, the computational study is given.

The thesis ends with Chapter 5 which includes conclusions and directions for future

work.

3

CHAPTER 2

BACKGROUND AND RELATED WORK

The combinatorial optimization literature on the set covering problem is immense.

Studies related to the set covering problem are divided into two major groups. Re-

searchers in the first group try to solve stochastic/probabilistic set covering problems,

whereas in the second group the focus is on deterministic set covering problems. Our

goal in this chapter is to analyze the deterministic set covering problems. Thus, we

only focus on the deterministic set covering literature. Methods can be analyzed under

two main headings as exact algorithms and heuristics. Our algorithm falls under the

second heading so the literature that is closely related to our work will be given in

Section 2.2.4.

2.1 Exact Algorithms

Exact algorithms generally rely on the branch and bound method to obtain the opti-

mal solution. As a bounding procedure, a common approach is to apply Lagrangian

relaxation to the coverage constraints (1.2). After Lagrangian relaxation, the objective

function of IP model (1.1-1.3)becomes

max
λi≥0,
i∈U



 min

xj∈{0,1},
j∈S

n∑
j=1

(
cj −

m∑
i=1

λiaij

)
xj +

m∑
i=1

λi



 , (2.1)

where the Lagrange multiplier for the coverage constraint of item i is denoted by λi

and m = |U|.
It is well-known that the optimal value of (2.1) for a fixed set of λi, i ∈ U , can

be used as a lower bound for the optimal IP solution. This lower bound is easily

calculated for a given set of λi, because the value of xj depends only on the sign of

the coefficient of xj in the objective function. The value of xj is equal to 1, if the

sign of the coefficient is negative, and 0; otherwise. The objective is to find the best

4

set of Lagrange multipliers that yield the tightest lower bound. This is achieved by

changing the values of the multipliers, solving the Lagrangian relaxation model, and

then updating the lower bound iteratively. In the literature, there are several methods

to calculate the multipliers like the subgradient approach.

Beasley [4] uses subgradient optimization and a heuristic algorithm to give a lower

and an upper bound for the SCP. At each iteration, the Lagrangian relaxation model is

solved by the current set of Lagrange multipliers. The subgradient procedure is used to

update the Lagrange multipliers and improve the lower bound. The value of the initial

Lagrange multipliers is calculated by a dual ascent procedure, which relies on finding a

feasible solution to the dual (1.7-1.9) of the linear programming relaxation of the SCP.

Then, the solution obtained after the subgradient procedure is used to find the optimal

integer solution of SCP by using a tree search procedure. Beasley and Jornsten [7]

use the same method but improve the solution quality through Gomory f-cuts with

a better branching strategy. Fisher and Kedia [14] use a primal and a dual heuristic

to find an upper and a lower bound for the branch-and-bound procedure. Similarly,

Balas and Carrera [2] use a primal and a dual heuristic for upper and lower bounding

procedure, but they iteratively improve the bounds by fixing some of the variables at

1 and then changing the current set of Lagrange multipliers by a dynamic subgradient

procedure.

2.2 Heuristics

Solving large SCPs optimally through exact algorithms takes excessively long time.

Therefore, especially for those kind of problems, sacrificing optimality by using a heuris-

tic rather than an exact algorithm is more preferable, because heuristic algorithms

give near-optimal solutions in a reasonable time. Caprara et al. [11] and Grossman

and Wool [17], and Gomes et al. [16] give lists of various heuristics and approximation

algorithms, and they all test their performances on some instances. Results show that

although the theoretical (worst case) performance bounds are poor, their empirical

performances are quite well. In the literature, there are several approaches to develop

a heuristic algorithm. Among these, we have greedy algorithms, linear programming

and Lagrangian relaxations, randomized search, primal-dual methods. In the subse-

quent sections, we review these approaches and some of the related studies in the SCP

literature.

5

2.2.1 Greedy Algorithms

Greedy algorithms can be used to solve large scale set covering problems very quickly

but their myopic nature may easily yield suboptimal solutions. Greedy algorithms use

some rules to determine the variable xj that will be set to 1 at each iteration. For

example:

• Each constraint is checked and if it is not satisfied then all the xj variables of

that constraint are set to 1.

• The variable corresponding to the set, which contains the largest number of

uncovered elements, is set to 1.

• The ratio cj/kj is calculated for each variable, where kj denotes the number of

currently uncovered items that could be covered by set j. Then, the variables

are sorted in nondecreasing order according to their cj/kj values and the variable

having the minimum value of cj/kj is set to 1.

In the literature, there are similar greedy algorithms, with different selection crite-

ria. Some examples are cj/k
2
j , cj/kj log(1+kj), c

1/2
j /kj, and cj/k

1/2
j [22]. Algorithms

proposed by Lan et al. [22] and Vasko and Wilson [27] use the combinations of those

ratios and select one of them randomly at each iteration.

2.2.2 Linear Programming and Lagrangian Relaxations

The optimal solution of the linear programming (LP) relaxation of SCP (1.4-1.6) can

be used to find a solution for SCP. Algorithms using the solution of the LP relaxation

model can be summarized as follows:

• In Hochbaum’s algorithm [20], the variable having value x∗j ≥ 1/f is set to 1,

where f denotes the maximum number of ones per row and x∗j is the optimal

solution of the LP relaxation model (1.4-1.6).

• Peleg et.al. [25] sort the x∗j variables in a nonincreasing order. If the first

unchecked variable in the list is included in an unsatisfied constraint, then the

value of that variable is set to 1.

• In an alternate algorithm, Hochbaum [20] adds jth variable to the cover, if x∗j > 0.

6

An alternate method is to use the optimal solution of the dual of the LP relaxation

model. Hochbaum [20] obtains an optimal solution y∗ to the dual of the LP relaxation.

If the constraint that corresponds to the jth primal variable is tight, that is
m∑

i=1

aijy
∗
i =

cj, then value of the jth primal variable is set to 1.

Since, solving the LP model optimally takes time especially for large SCPs, the La-

grangian relaxation model can be used as an alternate method to LP relaxation model.

Ceria et al. [12] use a Lagrangian-based heuristic to solve large scale set covering prob-

lems. They iteratively use a subgradient approach to calculate the set of Lagrangian

multipliers λi and the corresponding reduced costs. Then, they reduce the problem by

eliminating some columns whose reduced costs are above a given threshold. After that

they add some columns to the reduced problem to guarantee that a feasible solution

can be obtained by solving the reduced problem, and this new problem is called the

core problem. Finally, a heuristic algorithm is used to find a feasible solution to the

core problem. Caprara et al. [10] also use a Lagrangian based heuristic to solve large

scale set covering problems. They perform several subgradient iterations to find the

best set of multipliers that give the best lower bound. Then, similar to Ceria et al. [12],

they use a greedy heuristic to find a feasible solution to the core problem. As a dif-

ferent approach, they use reduced costs instead of actual costs in the selection rules of

the greedy algorithm, and they apply a column fixing approach based on fixing those

variables that have reduced costs below a certain threshold value.

2.2.3 Search Algorithms

The main idea behind the search algorithms is to find a good solution that is not

a necessarily optimal until a satisfactory improvement is obtained or a user defined

time bound is elapsed. In the literature, there are many heuristic algorithms that are

based on search algorithms to find near-optimal solutions especially for large-scale set

covering problems. In addition to those, there are some heuristics, which use search

algorithms to improve the heuristics solutions.

Jacobs and Brusco [21] use a local search heuristic based on the simulated anneal-

ing algorithm to solve large scale non-unicost SCPs. They use a greedy algorithm to

generate an initial feasible solution. After constructing the initial feasible solution,

some of the columns in the solution are eliminated randomly, and new columns are

identified to restore feasibility. Brusco et al. [9] use a simulated annealing heuristic

for cost and coverage correlated set covering problems (problems in which there is a

7

correlation between the cost of a column and the number of items covered by that

set). They modify the simulated annealing heuristic such that they measure the sim-

ilarities between two columns by calculating the fraction of covering the same item,

called coverage index, and by interchanging only the columns having similar indices.

Haouari and Chaouachi [19] propose a probabilistic greedy search algorithm, which

gives satisfactory results for solving large scale set covering problems. They introduce

randomness and this property sometimes enables to prioritize a column with higher

cost against another one with lower cost. They extend the search region by using

perturbed costs instead of the original costs, and introduce a penalization procedure

to expand the search towards unexplored regions. Similarly, the meta-heuristic devel-

oped by Lan et al. [22] uses randomness and penalization. The flexible structure of

this algorithm gives satisfactory results for both uni-cost and non-unicost SCPs as well

as multi-dimensional knapsack problems, traveling salesman problems and resource

constrained project scheduling problems.

In the literature, there is a number of genetic algorithms proposed for the SCP.

Beasley and Chu [5] present a genetic algorithm to solve the non-unicost SCP. Authors

modify the classical genetic algorithm by using a fitness based crossover operator and a

variable mutation rate. They use a heuristic to convert the solution of the genetic algo-

rithm to a feasible solution. The proposed algorithm solves small instances optimally

and generates high quality solutions for the large scale set covering problems. Lorena

and Lopes [23] use a similar genetic algorithm to solve difficult SCPs by introducing a

local search algorithm to find an initial feasible solution. They test the performance of

the algorithm by generating hard instances such that each row has exactly three ones,

and for each column pair j and k, there is only one row i such that aij = aik = 1.

Aickelin [1] proposes a quite different algorithm. The genetic algorithm is used only

to generate a permutation of rows rather than a permutation of columns and this row

sequence is converted to a feasible column sequence by another procedure. Finally, the

solution is improved by a post-processing procedure.

2.2.4 Primal-Dual Algorithms

The primal-dual approach is commonly used for approximating NP-hard optimization

problems that can be modeled as integer programming problems. The primal and dual

approaches in Section 2.2.2 are based on using the optimal solution of the primal (1.4-

1.6) and dual (1.7-1.9) of the LP relaxation model. Since both approaches need to

8

find an optimal solution to a linear programming model, the computation time of the

algorithms using those approaches is high especially for large-scale problems. On the

other hand, the primal-dual approach is based on finding only a feasible solution to

the dual of the LP relaxation model (1.4-1.6); using this solution, an integral solution

for the SCP is found. It is not necessary to solve a linear programming problem to

optimality. Therefore, the performance of the algorithms using primal-dual approach is

usually better than others in terms of computation time. However, it has already been

proven that [18], the worst case performance of the primal-dual algorithm given by

Algorithm 1 is known to be fz, where z denotes the optimal primal objective function

value. Hall and Vohra [18] give a worst case instance that shows that the theoretical

bound fz is attainable.

Vazirani [28] gives a list of problems, for which this approach is appropriate to apply.

This list includes the metric traveling salesman problem, the Steiner tree problem, the

Steiner network problem, and the set covering problem. Bar-Yehuda and Even [3]

are the first researchers who consider a primal-dual approach to approximate the set

covering problem with Algorithm 1.

Algorithm 1 Primal-Dual Algorithm

1: Initialize:
2: yi = 0 ∀i ∈ U
3: c̄j = cj −

∑m
i=1 aijyi = cj ∀j ∈ S

4: J = ∅ // J will contain the set of indices picked for the cover
5: xj = 0 ∀j ∈ S
6: while there are uncovered items do
7: pick an uncovered item i ∈ U // thus all xj with i ∈ Sj must be 0
8: pick an index k = arg min

j
{c̄j|i ∈ Sj}

9: yi = c̄k

10: for j ∈ {j|i ∈ Sj} do
11: c̄j = cj −

∑m
i=1 aijyi // this will make c̄k = 0

12: end for
13: xk = 1 and J = J ∪ {k}
14: end while
15: return the sets Sj with j ∈ J

The algorithm starts with a dual feasible solution by setting all of the dual variables

to 0 and iterates while maintaining the dual feasibility. At each iteration, a dual

constraint j with the minimum additional reduced cost c̄k is selected (Algorithm 1,

line 8) and one of the dual variables in that constraint is set to the value of c̄k to make

the constraint binding. The value of primal variable corresponding to that constraint is

set to 1 and the c̄k values are updated. The algorithm ends when all items are covered.

9

Since at least one additional item is covered at each iteration, the number of iterations

can be at most m. Using this approach, all the following conditions are satisfied at

each iteration:

1. xj ∈ {0, 1}, ∀j ∈ S.

2. yi ≥ 0 ∀i ∈ U and c̄j=cj −
m∑

i=1

aijyi ≥ 0 ∀j (dual feasibility).

3. xj > 0 ⇒ c̄j = 0 ∀j ∈ S (complementary slackness).

4. yi > 0 ⇒ ∑n
j=1 aijxj ≥ 1 ∀i ∈ U ,

Bertsimas and Vohra [8] propose a primal-dual algorithm that is similar to Algo-

rithm 1. The only difference is that at each iteration, instead of selecting an uncovered

element, a set k that has a minimum reduced cost, i.e., k = arg mini∈Sj
{c̄j}, is selected.

Next, one of the uncovered items i that could be covered by the set k is determined.

Therefore, the number of iterations can be at most n, that is xj may be set to 1 even

if this set covers no additional uncovered item. Williamson [26] uses Algorithm 1 but

introduces a post-processing procedure. This procedure searches and eliminates the

redundant columns in the solution as long as the elimination does not violate the pri-

mal feasibility. At each iteration of Algorithm 1, only one dual variable is increased

(or saturated). As a different method, Williamson permits multiple saturation in one

iteration. Melkonian [24] uses a similar algorithm to Williamson’s, but he combines the

interior point method and the primal-dual approach. This method keeps the dual solu-

tion in the interior feasible region rather than on the boundary. This can be provided

by increasing value of the dual variable until the value of the dual variable is λ times

the reduced cost of the corresponding constraint (yi = λc̄k) where 0 < λ < 1. The

advantage of this method to prevent the solution from getting stuck with a solution

of high objective function value. Since the dual objective function value is smaller,

the approximation ratio is 1/λ times worse than the original algorithm. However, it is

expected to obtain a lower primal objective function by applying this method.

10

CHAPTER 3

PROPOSED PRIMAL-DUAL HEURISTICS

Our main heuristic resembles the primal-dual heuristic described in the previous chap-

ter (Algorithm 1). As an alternate approach, we consider a dual variable selection

method and expect that this method decreases the primal objective function value

when compared to the solution found by Algorithm 1.

3.1 Main Algorithm

We know that the following two properties are satisfied by the Algorithm 1:

• Property 1. C = {j ∈ J |cj =
m∑

i=1

aijyi}

• Property 2.
n∑

j=1

cjxj =
∑
j∈C

cj =
∑
j∈C

m∑
i=1

aijyi

Property 2 shows the relationship between the value of the primal objective function

and the dual variables. Since the value of the objective function depends on the number

of times an item appears in the sets in C, we want to avoid including an item in several

sets that are selected. Hence, items or dual variables are sorted in nondecreasing order

according to the number of sets in which they appear. The item that appears in the

minimum number of sets is selected first in step 7 of Algorithm 1. In this way, we expect

to decrease the primal objective function value. The pseudocode of our algorithm is

given in Algorithm 2.

We first start with conducting a preliminary computational study to observe the

performance of the main algorithm. The algorithm is set to solve 45 non-unicost and

5 unicost benchmark instances from Beasley’s OR Library [6] with sizes ranging from

500 variables (sets) and 50 constraints (items) to 4000 variables to 400 constraints.

Algorithm 2 provides a feasible solution to the dual of the LP relaxation of SCP, and

an integer feasible solution to SCP. The associated objective function values are denoted

as “Dual” and “PrimalInt” in Table 3.1. Columns 2-4 in Table 3.1 show the percentage

11

Algorithm 2 Main Algorithm

1: Initialize:
2: yi = 0 ∀i ∈ U
3: U∗ = U // U∗ is the set of currently uncovered items
4: c̄j = cj −

∑m
i=1 aijyi = cj ∀j ∈ S

5: J = ∅ // J will contain the set of indices picked for the cover
6: xj = 0 ∀j ∈ S
7: for i = 1 to m do
8: calculate counti // total number of sets that cover item i

9: end for
10: sort the indices i in nondecreasing order of their respective counti values, and put

them into a list
11: while there are uncovered items do
12: pick the first uncovered item in the list
13: pick the smallest index k = arg min

j
{c̄j|i ∈ Sj}

14: yi = c̄k

15: for j ∈ {j|i ∈ Sj} do
16: c̄j = cj −

∑m
i=1 aijyi // this will make c̄k = 0

17: end for
18: xk = 1, J = J ∪ {k} and U∗ = U∗ \ Sk

19: remove all items in set Sk from the list
20: end while
21: return the subsets Sj with j ∈ J

gaps between the LP relaxation optimal value (LPOPT) and the dual objective function

value (Dual), IP optimal value (IPOPT) and LPOPT, the primal objective function

value (PrimalInt) obtained by the algorithm and IPOPT, respectively. Figure 3.1 shows

the relative positions of the Dual, LPOPT, IPOPT, PrimalInt on the real axis. We

expect that IP solution of the algorithm is close to IPOPT.

Figure 3.1: Positions of primal, dual objective function values and IP, LP optimal
objective function values on the real axis

Algorithm 2 gives a set cover C as an output but this set cover may not be a minimal set

cover. Thus, post-processing may be needed to check if the number of sets in C may be

decreased without violating the coverage constraints. The largest decrease in objective

function value after any kind of post-processing, over the selected columns found by

the algorithm, cannot be better than solving SCP optimally. The last column in Table

3.1 shows the percentage gap between this best result we can get after any kind of post-

processing (PostProc) and IPOPT. Table 3.1 shows the statistics for 45 non-unicost

problems. The results show that by using this algorithm, the gap is 18.91% on average.

12

On the other hand, this gap is calculated as 16.03% for the non-unicost instances.

When the instances are examined individually, it is observed that for the instances that

IPOPT and LPOPT are close, this percentage gap decreases considerably. For example,

there are three instances that IPOPT and LPOPT are equal and the gap between

PrimalInt and IPOPT for these cases are 6.29%, 7.44%, and 7.55%, respectively.

Table 3.1: Percentage gaps for benchmark problems

Statistics LPOPT-Dual IPOPT-LPOPT PrimalInt-IPOPT PostProc-IPOPT
Avg 20.14% 2.68% 45.56% 18.91%

Median 18.49% 1.41% 44.29% 17.35%
Min 8.40% 0.00% 21.16% 6.25%
Max 43.95% 10.08% 89.66% 46.38%

In addition to the standard benchmark instances, we have generated 320 cost and

coverage correlated SCP instances with sizes ranging from 1560 variables and 40 con-

straints to 9900 variables to 100 constraints to test the performance of the algorithm.

Items are the points which are located in two dimensional space. Sets are defined as

the combination of some points in the plane such that one point is the center and the

others are located around the center. The cost of a set is determined by the farthest

point from the center, and all the points in the set are covered when that set is se-

lected. That is, the cost of coverage cj is given by maxk∈Sj
{dα

ik} where α is a scalar, i

is the center point and dik is the distance between items i and k. These instances are

solved for different α values and for two different distance metrics, Euclidean (E) and

Manhattan (M), to see the effects of these parameters on the solution quality. Table

3.2 gives the summary of the results. The results show that the algorithm gives better

results for this type of problems compared to Beasley’s instances, especially for large

α values. In addition, the percentage reduction in PrimalInt for (E) and (M) type

instances is higher than standard benchmark instances. When we compare the perfor-

mance for Euclidean and Manhattan distance metrics, it can be seen that algorithm

performs slightly better for Euclidean type instances.

Table 3.2: Average percentage gaps for instances having Euclidean and Manhattan
distances
E/M α LPOPT-Dual IPOPT-LPOPT PrimalInt-IPOPT PostProc-IPOPT

E 2 2.84% 0.03% 104.26 % 14.55 %
E 3 1.17% 0.02% 65.82 % 9.70 %
M 2 3.85% 0.11% 95.94 % 16.14 %
M 3 1.49% 0.02% 61.29 % 9.81 %

13

After obtaining these results, we have investigated the behavior of the algorithm

to figure out the underlying reasons behind the relative success of the algorithm for

the instances having Euclidean and Manhattan distances. The main characteristic of

these problem instances is that the cost of coverage is assumed to be monotonically

increasing with the distance. That is, it costs more to cover points within a greater

coverage radius. Empirical analysis showed that IPOPT and LPOPT are close to each

other and the items/points are prone to be clustered for this kind of problems. The

proposed algorithm tries to cluster the points in such a way that items that are located

farther are selected first. In addition, while the dual feasibility is maintained at each

iteration, a set with the lowest cost is selected among the sets that cover the same

items. Consequently, this behavior of the algorithm reduces the coverage cost.

3.2 Methods for Improving The Main Algorithm

In this section, we describe the methods to increase the solution quality of the algorithm

and compare the resulting variants with the original algorithm.

3.2.1 Changing Primal Variable Selection Rules

Our first attempts are intended to decrease the primal objective function value to de-

crease the gap between this value and the optimal IP objective function value. The

main algorithm always selects the set having the smallest index as a tie breaker. For

example, if there are several candidate primal variables each of which attains the mini-

mum remaining slack value (c̄j) in the corresponding dual constraint, then the set with

the smallest index is selected. Changing the set selection rule may change the primal

objective function value. Thus, the following alternate rules were tested on standard

benchmark instances.

• Random Selection: With this rule, when a tie occurs (more than one dual

constraint may be tight in one iteration), the set is selected randomly among all

alternatives.

• Maximum Element Coverage: With this rule, the set that could cover more

within the set of currently uncovered items is selected. Ties are broken by the

smallest index.

• Minimum Additional Cost: We know by Property 2 that
n∑

j=1

cjxj =
∑
j∈C

m∑
i=1

aijyi.

Therefore, at each iteration the primal objective function value increases by the

14

sum of the dual variables in the selected set. With this rule, for each of the al-

ternate sets, the sum of the dual variables is calculated and then, the set having

the smallest value is selected.

The effect of these rules on the primal objective function value is summarized in

Table 3.3. The figures in the table show the average percentage changes after applying

these selection rules to standard non-unicost benchmark instances (compare against

the second row of Table 3.1).

It is observed that only the random rule leads to a decrease on average, and this

decrease is just 0.33%. We have observed that this minor improvement is obtained

because of the low frequency of tie occurrences at each iteration. The average number

of primal variables that tie at one iteration is only 1.32 per instance.

Table 3.3: Percentage changes after applying the selection rules for standard non-
unicost benchmark instances

Set Selection Rule
Statistics Random Selection Max. Element Coverage Min. Additional Cost
Average -0.33% 2.24% 0.00%

3.2.2 Generating Dual Variable Sequence by a Greedy Approach

Our next attempt is to change the dual variable selection by incorporating the Greedy

Approach discussed in Section 2.2.1 to our algorithm. The idea behind the greedy

algorithm is to select the set that minimizes the cost per additional element covered at

each iteration. At each iteration, f(cj, kj) = cj/kj is calculated, where kj is the number

of uncovered items that could be covered by set j, and then the set which minimizes

f(cj, kj) is selected. In a similar way, the algorithm is modified so that at the first

iteration, for each item i, the value f(
∑
i∈Sj

cj,
∑
i∈Sj

kj) is calculated once (Algorithm 2

line 7), and then items are ordered according to f(
∑
i∈Sj

cj,
∑
i∈Sj

kj) values in nondecreasing

order (Algorithm 2 line 10). Algorithm after this modification is given as Algorithm

3. After applying this rule, we compare our results with Algorithm 2 and observe that

the dual objective function value decreases by 7.85%, whereas, the primal objective

function value increases by 2.83% on average.

15

Algorithm 3 Modified Algorithm (Greedy Approach)

1: Initialize:
2: yi = 0 ∀i ∈ U
3: U∗ = U // U∗ is the set of currently uncovered items
4: c̄j = cj −

∑m
i=1 aijyi = cj ∀j ∈ S

5: J = ∅ // J will contain the set of indices picked for the cover
6: xj = 0 ∀j ∈ S
7: for i = 1 to m do
8: calculate f(

∑
i∈Sj

cj,
∑
i∈Sj

kj) // expected cost per additional item

9: end for
10: sort the indices i in nondecreasing order of their respective f(

∑
i∈Sj

cj,
∑
i∈Sj

kj) values,

and put them into a list
11: while there are uncovered items do
12: pick the first uncovered item in the list
13: pick the smallest index k = arg min

j
{c̄j|i ∈ Sj}

14: yi = c̄k

15: for j ∈ {j|i ∈ Sj} do
16: c̄j = cj −

∑m
i=1 aijyi // this will make c̄k = 0

17: end for
18: xk = 1, J = J ∪ {k} and U∗ = U∗ \ Sk

19: remove all items in set Sk from the list
20: end while
21: return the subsets Sj with j ∈ J

3.2.3 Changing Dual Variable Sequence Dynamically

Our next method is related to changing the dual variable selection order as in Section

3.2.2. Pseudocode of the algorithm using this method is given as Algorithm 4. Here,

items or dual variables are sorted in nondecreasing order according to the number of

sets in which they appear. Algorithm 2 is modified so that, rather than selecting the

first uncovered item from the original list, items are selected from a candidate list

(CL) based on a priority rule. First r uncovered elements in the original sequence

are kept in a list (CL), where r is a parameter that is determined by the user. At

each iteration, we try each uncovered element i ∈ CL, determine the associated dual

variable yi, and then select the dual variable i by {i = arg max
i∈CL

{yi}}. At each iteration,

new uncovered items in the original sequence are added to CL such that the size of CL

is always r as long as the number of uncovered items is greater than r. Table 3.4 shows

the percentage changes in the primal (P Change) and the dual (D Change) objective

function values between Algorithm 2 and Algorithm 4. Performance of the algorithm is

tested on the non-unicost standard benchmark instances when the number of items in

CL is 10, 20, and 40. The results show that, using this method, minor improvements

16

may be obtained in both the dual and the primal objective function value. Moreover,

percentage decrease in the primal objective function value changes with different r

values. Table 3.4 shows that r = 20 seems to be a good balance for standard non-

unicost benchmark instances with the number of items ranging from 200 and 400.

Table 3.4: Percentage changes in primal and dual objective function values with dy-
namic sequence for standard benchmark instances

r=10 r=20 r=40
P Change D Change P Change D Change P Change D Change

-2.96% 0.19% -2.72% 1.35% 0.78% -2.89%

Algorithm 4 Modified Algorithm (Dynamic Sequence)

1: Initialize:
2: yi = 0 ∀i ∈ U
3: U∗ = U // U∗ is the set of currently uncovered items
4: c̄j = cj −

∑m
i=1 aijyi = cj ∀j ∈ S

5: J = ∅ // J will contain the set of indices picked for the cover
6: CL = ∅
7: xj = 0 ∀j ∈ S
8: for i = 1 to m do
9: calculate counti // total number of sets that cover item i

10: end for
11: sort the indices i in nondecreasing order of their respective counti values, and put

them into a list
12: while there are uncovered items do
13: pick the first min{|L|, r− |CL|} uncovered items in the list and put it into

CL
14: pick item i = arg max

i∈CL
{yi}

15: pick the smallest index k = arg min
j
{c̄j|i ∈ Sj}

16: yi = c̄k

17: for j ∈ {j|i ∈ Sj} do
18: c̄j = cj −

∑m
i=1 aijyi // this will make c̄k = 0

19: end for
20: xk = 1, J = J ∪ {k} and U∗ = U∗ \ Sk

21: remove all items in set Sk and CL from the list
22: end while
23: return the subsets Sj with j ∈ J

3.2.4 Finding Complementary Primal Solution

The experiments performed so far indicate that the dual objective function value is

closer to the optimal IP objective function value. Thus, we reckon that if we can find a

primal solution whose objective function value is closer to the dual objective function

value, then we may find an integer primal solution that is closer to the optimal.

17

Simplex Point of View

We first observe that at each iteration of our algorithm, a dual basic feasible solution

can be obtained for

maximize ye (3.1)

subject to

yA + sI = c, (3.2)

y, s ≥ 0, (3.3)

where A is an n×m 0-1 matrix, e = (1, 1, . . . , 1), I is the n× n identity matrix, and

s is a row vector that represents the slack variables. This gives us the opportunity to

obtain the complementary primal solution, which would have exactly the same solution

as the dual solution. The proposed primal-dual algorithm follows the following simplex

iterations for m steps or less.

• At the first iteration of the Simplex, B and A−1
B are given where B is current set

of basic variables and A−1
B is the inverse of the current basis. At the first iteration

of the main algorithm, yi = 0, ∀i ∈ U (Algorithm 2 line 2). All y variables are

non-basic and all slack variables are basic at iteration 0. Therefore, A−1
B = I and

B = {s1, · · · , sn}.

• The current basic feasible solution of Simplex is x̄B = A−1
B b. The value of all

non-basic variables are zero. On the other hand, main algorithm computes them

as follows: If i ∈ B, then yi = c̄k, otherwise yi = 0 (Algorithm 2 line 14).

• Simplex selects the variable t within the set of nonbasic variables, where c̄t < 0,

and N = {1, · · · , n} \ B. The main algorithm selects the variable based on the

dual selection sequence. Since, the objective function value increases or stays the

same at each iteration, c̄i ≤ 0.

• Simplex selects the leaving variable by applying minimum ratio test. However,

algorithm uses a selection rule which maintains the feasibility in (Algorithm 2

line 13). Since yi = c̄k (Algorithm 2 line 14), sk = 0, and kth slack variable leaves

the basis.

• Simplex follows these iterations until an optimal solution is obtained. However,

algorithm iterates until
∑n

j=1 aijxj ≥ 1, ∀i ∈ U . At each iteration, at least one

18

of the item is covered, so the number of iteration can be at most m.

It is clear that algorithm and simplex iterations are equivalent. Therefore, we can

conclude that algorithm gives a dual basic feasible solution at each iteration. The

main idea at this point is to obtain the complementary primal solution by using the

dual basic feasible solution. Clearly, unless we attain optimality for the LP relaxation,

this complementary primal solution is infeasible. The source of the infeasibility is the

violation of the non-negativity constraints for the variables x or some of the coverage

constraints. If this primal infeasibility could be repaired and the integrality be imposed

without increasing the primal objective function value considerably, then the solution

of the algorithm might get closer to the IP optimal solution. The algorithm after the

modification is given as Algorithm 5.

At each iteration, a dual variable i (i /∈ Sj for all j ∈ C) enters the basis and yi is

set to a non-negative value. The slack variable corresponding to the set covering item

i leaves the basis. Entering and leaving dual variables are determined as in the main

algorithm (Algorithm 2). In the main algorithm, a dual variable i enters the basis,

if yi ≥ 0 and i /∈ Sj for all j ∈ C. The value of xk corresponding to the kth binding

constraint covering item i is set to 1. However, in the modified algorithm, the value

of xk is the kth element of the row vector cBB−1 where cB is a row vector including

the objective function coefficients of the dual basic variables (Algorithm 5, line 29).

After finding the complementary solution, if the solution is primal feasible and integral,

then the complementary primal solution is optimal. If some of the primal variables are

negative or some of the coverage constraints are violated, then the infeasibility must be

repaired. After some empirical analysis, the following rule was determined as a way of

restoring primal feasibility. If xj > 0, then the value of xj is set to 1, otherwise it is set

to 0 (Algorithm 5, lines 30-36). If there are some uncovered items left (Algorithm 5,

line 39), additional sets are selected by using a greedy algorithm mentioned in Section

2.2.1. Using this variant of our algorithm, we have solved 45 benchmark instances and

160 randomly generated (Euclidean and Manhattan) instances. Computational results

can be seen in Table 3.5. ”PrimalInt-IPOPT (old)” is the IP gap when the original

algorithm is applied to those instances and ”PrimalInt-IPOPT (new)” is the IP gap

when the new method is applied. It is observed that, the new method provides 5%

decrease in the solution of the main algorithm.

After obtaining the first results, the effects of the dual variable selection are ana-

lyzed. We have used the method explained in Section 3.2.3 to the same 205 instances,

19

Algorithm 5 Modified Algorithm (Complementary Primal Solution)

1: Initialize:
2: yi = 0 ∀i ∈ U
3: U∗ = U // U∗ is the set of currently uncovered items
4: A−1

B = In×n

5: cB = (0, · · · , 0)
6: c̄j = cj −

∑m
i=1 aijyi = cj ∀j ∈ S

7: J = ∅ // J will contain the set of indices picked for the cover
8: xj = 0 ∀j ∈ S
9: for i = 1 to m do

10: calculate counti // total number of sets that cover item i

11: end for
12: sort the indices i in nondecreasing order of their respective counti values, and put

them into a list
13: while there are uncovered items do
14: pick the first uncovered item in the list
15: pick the smallest index k = arg min

j
{c̄j|i ∈ Sj}

16: yi = c̄k

17: cB(k) = 1
18: update A−1

B

19: for j ∈ {j|i ∈ Sj} do
20: c̄j = cj −

∑m
i=1 aijyi // this will make c̄k = 0

21: end for
22: xk = 1, J = J ∪ {k} and U∗ = U∗ \ Sk

23: remove all items in set Sk from the list
24: end while
25: calculate x = cbA

−1
B

26: for i = 1 to m do
27: if xj > 0 then
28: xj = 1
29: else
30: xj = 0
31: end if
32: end for

33: U∗ = U∗ \




n⋃

k=1,
xk=1

Sk




34: if U∗ 6= ∅ then
35: Use greedy algorithm until U∗ = ∅
36: end if
37: return the subsets Sj with j ∈ J

20

Table 3.5: Percentage changes in IP gap with complementary primal solution approach
for benchmark and random instances

PrimalInt-IPOPT (old) PrimalInt-IPOPT (new)
Benchmark 17.82% 12.35%
Euclidean 11.52% 7.19 %
Manhattan 13.45% 7.78%

All 13.65% 8.55%

where r is taken as 10% of the number of items. This modification decreases the primal

objective function value in some of the instances, but it increases the IP optimality

gap on average. When this modification is applied to Algorithm 2 and Algorithm 5,

PrimalInt-IPOPT values are calculated as 17.79% and 10.50% on average. Table 3.5

shows that this gap is 13.65% and 8.55% before the modification. In Section 3.2.3, we

have concluded that this method improves the solution quality for fixed r (see Table

3.4) for standard benchmark instances. Then, we test the algorithm on both the stan-

dard benchmark and random instances with r = m/10 and observe that this method

on this set of instances gives poor results.

After finding a complementary primal solution, we know that the source of primal

infeasibility is the basic variables having negative values or not satisfying the coverage

constraints. An alternate modification is checking the value of the original basic primal

variables at each iteration, and then moving the dual variable to the end of the dual

selection sequence whenever it causes at least one of the original primal basic variables

to become negative. If all of the remaining dual variables in the list cause infeasibility,

then dual variables are selected from the list as usual. After this modification, the

solutions obtained by the modified algorithm have improved for some problems, but on

average this modification has not performed well. When this modification is applied

to Algorithm 2 and Algorithm 5, PrimalInt-IPOPT values are calculated as to 13.37%

and 8.54%. Table 3.5 shows that this gap is 13.65% and 8.55% before the modification.

This modification changes the dual variable selection order as well, and we know that

changing the sequence also changes the solution. Therefore, we cannot conclusively

state whether the lack of improvement is due to the modified dual variable sequence

or over method of repairing infeasibility in the primal.

We have tried different methods to improve the performance of the algorithm and we

have seen that finding the complementary solution method improves the performance

of the algorithm in terms of solution quality. Since updating the dual basis at each

iteration, increases the solution time, performance of the Algorithm 5 is worse than

21

Algorithm 2. We know that Algorithm 2 and Algorithm 5 gives the same set of original

basic variables as a solution. However, all xj values are set to 1 in the main algorithm

and they can take any value in Algorithm 5. We have performed some analysis on the

instances and solutions to develop a better infeasibility repairing method. However, the

value or sign of the basic variables have not give insight to develop a better method.

One of the reason behind Algorithm 5 is that some of the primal basic variables in

the solution are dropped, and new solution is found by interchanging the columns.

Thus, we can conjecture that we may obtain a similar improvement by applying a

neighborhood search to the primal solution at the end of Algorithm 2.

3.3 Effects of Dual Sequence Selection

In this section, we analyze the effect of the dual variable selection sequence on the

solution. First, a computational study is performed to see whether we can obtain zero

dual-LP-OPT gap when all possible permutations of the dual variables are tried. We

have generated 100 problems with 6 items and 50 sets. This yields 6!=720 different

orders. These problems are solved by using Algorithm 5 and then by Algorithm 2.

Only for 12 problems, we have not obtained a zero Dual-LPOPT gap. We make the

following observations:

• When Dual-LPOPT gap is zero, then IPOPT is equal to LPOPT for all instances.

• For those problems, where IPOPT is equal to LPOPT, there is always a sequence

that gives an optimal IP solution.

• Optimal integer solutions are obtained by using both methods in 98 out of 100

problems. One of the remaining two problems is solved optimally by the algo-

rithm using the complementary primal method, and the other is solved optimally

by the main algorithm.

• Small Dual-LPOPT gap does not necessarily imply that the algorithm would find

a good integer solution. We have observed that in some instances, the algorithm

finds good integer solutions, despite large Dual-LPOPT gap.

The most important conclusion regarding these results is that the dual variable

selection sequence is a critical part of the algorithm and it is possible to decrease the

value of the primal objective function by changing this sequence.

22

Clearly, the complexity of the algorithm increases when the number of items in-

creases. Therefore, it is not practical to evaluate all possible permutations of dual

variables. We can obtain m(m − 1)/2 different sequences by carrying out a single

pairwise interchange of the dual variables. In this case, the complexity of searching

all pairwise interchanges increases polynomially with the problem size. To analyze the

effects of the pairwise interchange, 100 instances with size 30 items and 300 sets are

created randomly. The IP-LP gap for these problems is ranging from 0% to 15.5%.

These instances are solved once for each sequence, by Algorithm 2 and Algorithm 5. In

97 out of 100 problems, there is a sequence such that both algorithm found an optimal

solution, whereas in 2 out of the remaining three problems, there is a sequence such

that either Algorithm 2 or Algorithm 5 finds the optimal solution. In only one problem,

optimal solution could not be found by any of the algorithms and the IP optimality

gap was 3.51% for both problems. These results emphasize the importance of the dual

variable selection sequence. It seems possible to obtain near optimal solutions by a

pairwise interchange instead of considering all possible sequences.

We have shown that changing dual sequence plays a critical role to find a good

solution. Thus, through a well designed neighborhood search procedure on the dual

sequence it is possible to improve the performance of the algorithm in terms of both

time and solution quality. Since, the dual sequence partially changes through neigh-

borhood search, we can find the new solution by modifying the dual solution at the

previous iteration. This feature of the algorithm may improve the efficiency of the

neighborhood search. Similarly, algorithm has a potential to solve large scale SCP

with column generation method effectively. At each iteration, new columns and new

rows are introduced to the primal and the dual problem respectively. With a new row

in the dual problem, some of the counti values increase by one whereas some of them do

not change. That is, new rows that are added to the problem result in minor changes

in the dual sequence. With a well designed algorithm and data structures, it may be

possible to find a new solution, without re-applying the algorithm from scratch.

3.4 Some Approaches to Improve Computational Speed

In addition to the attempts to increase the solution quality, we have also tried pre-

processing and post-processing procedures to decrease the computation time of the

algorithm. There are different methods in the literature for pre-processing. In this

research, the method proposed by Beasley [4] is used. He introduces a computationally

23

efficient method that is based on column domination. Any column j whose rows can be

covered by other columns for a cost less than cj is deleted from the problem. Formally,

any column j for which cj >

m∑
i=1

diaij j = 1, · · · , n is deleted from the problem where

di = min
j∈S

{cj|aij = 1}.
A post processing procedure is the elimination of the redundant columns in the

solution. The common method in the literature is to order the sets in the cover in

nonincreasing order of respective costs cj, and eliminate the set whose elimination does

not violate the coverage constraints. In this research, the same method used in the

post-processing procedure. The pseudocode of the proposed heuristic after including

the pre-processing and post-processing procedures is given in Algorithm 6.

Algorithm 6 Proposed Primal-Dual Heuristics

perform pre-processing procedure to the original problem
S = S \ j if column j is deleted from the problem
Initialize:
yi = 0 ∀i ∈ U
U∗ = U // U∗ is the set of currently uncovered items
n = |S|
c̄j = cj −

∑m
i=1 aijyi = cj ∀j ∈ S

J = ∅ // J will contain the set of indices picked for the cover
xj = 0 ∀j ∈ S
for i = 1 to m do

calculate counti // total number of sets that cover item i
end for
sort the indices i in nondecreasing order of their respective counti
while there are uncovered elements do

pick the first uncovered element in the list
pick an index k = arg mini∈Sj

{c̄j}
yi = c̄k

for j = 1 to n do
c̄j = cj −

∑m
i=1 aijyi // this will make c̄k = 0

end for
xk = 1, J = J ∪ {k} and U∗ = U∗ \ Sk

remove all items in set Sk from the list
end while
perform post-processing procedure to the original problem
return the subsets Sj with j ∈ J

24

CHAPTER 4

COMPUTATIONAL STUDY

In this chapter, we evaluate the performance of primal-dual heuristic (PDH) against six

algorithms on standard benchmark instances [6] and 320 randomly generated instances

described in section 3.1. In this study, Intel(R) Celeron(R) 1.6 GHz computer is used

to obtain all computational studies. All of the algorithms are implemented in C++

and optimal LP and IP solutions are solved by ILOG IBM CPLEX 12.1.

Algorithms are as follows:

• PR: LP rounding algorithm by Hochbaum [20] uses optimal solution of the primal

LP model (x∗j > 0 ⇒ xj → 1).

• PR2: LP rounding algorithm by Hochbaum [20] uses optimal solution of the

primal LP model (x∗j > 1/f ⇒ xj → 1).

• DR: LP rounding algorithm by Hochbaum [20] uses optimal solution of the dual

LP model. (
m∑

i=1

aijy
∗
i = cj ⇒ xj → 1)

• GR: Randomized greedy algorithm by Lan et al. [22]. Columns are selected based

on the following priority rules cj/kj, cj/k
2
j , c

1/2
j /kj, cj/k

1/2
j and rule is determined

randomly at each iteration.

• BE: Primal-dual approximation algorithm (Algorithm 1). Items/dual variables

are selected randomly among the currently uncovered items.

• PDH2: Primal-dual heuristic using complementary primal solution (Algorithm

5).

Table 4.1 provides a summary of comparison on the solution quality for all bench-

mark algorithms. Performance of the PDH is worse than the algorithms using the

optimal solution of the LP model. However, there are some instances that are high-

lighted in the table in which the objective function values are the same or better than

25

PR2. In addition, PDH2 dominates PDH for all instances in terms of solution quality.

Last 5 instances are the uni-cost SCP instances and GR dominates other algorithms.

Figures in this section are called performance profiles [13] which show the fraction

of problems for which the algorithm is within a factor of the best CPU time, or the

best solution. Figure 4.1 compares the performance of the algorithms on non-unicost

benchmark instances in terms of solution quality. It is shown in the figure that algo-

rithm PR is the best of all in 90% of the instances. Solutions found by PDH is at

most 1.6 times worse than the best solution and in 90% of the instances, performance

of the algorithm is at most 1.2 times worse than the best solution. PDH2 outperforms

PDH for all instances, and in approximately 5% of the instances, PDH2 dominates all

algorithms.

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PR
PR2
DR
GR
PDH
PDH2
BE

Figure 4.1: Performance profile for the algorithms on standard benchmark instances
in terms of solution quality

Table 4.2 reports the computation time of the algorithms on benchmark instances.

The same pre-processing and post-processing procedures are applied to each instance

and computation times are recorded. Figure 4.2 compares the performance of bench-

mark algorithms. Computation time of PDH2 is higher than other algorithms. There-

fore, two sub-figures are used to compare the relative performance of each algorithm

in terms of computation time. It shows that since GR and PDH do not solve LP opti-

mally, they outperform the others. In approximately 90% of the instances, algorithms

solving LP optimally are at most 6 times slower than the fastest algorithm. Since

finding a complementary primal solution takes time, PDH2 is the worst among all in

terms of computation time. In approximately 80% of the instances, computation time

26

Table 4.1: Summarized results for the solution quality for benchmark instances

Instance Row Column IP OPT PR PR2 DR GR PDH PDH2 BE
1 200 1000 429 429 449 448 459 462 450 472
2 200 1000 512 512 559 556 595 592 548 595
3 200 1000 516 516 539 528 569 609 591 598
4 200 1000 494 495 533 501 567 557 546 583
5 200 1000 512 512 527 517 584 567 540 544
6 200 1000 560 568 608 572 731 649 623 659
7 200 1000 430 430 444 436 523 447 439 463
8 200 1000 492 504 509 502 659 568 535 532
9 200 1000 641 688 697 688 858 706 689 735
10 200 1000 514 516 572 518 596 533 531 603
11 200 2000 253 255 279 260 295 279 270 253
12 200 2000 302 330 326 342 363 375 352 354
13 200 2000 226 226 245 243 256 242 228 242
14 200 2000 242 252 252 252 271 269 264 285
15 200 2000 211 211 227 217 223 238 241 245
16 200 2000 213 213 239 217 252 243 216 241
17 200 2000 293 308 323 323 331 337 328 333
18 200 2000 288 298 312 301 326 321 297 339
19 200 2000 279 279 317 292 345 308 306 362
20 200 2000 265 265 274 287 359 289 278 302
21 200 1000 138 154 152 152 175 172 174 164
22 200 1000 146 156 160 156 187 180 166 176
23 200 1000 145 154 160 154 184 178 168 190
24 200 1000 131 138 140 136 145 141 136 136
25 200 1000 161 182 192 182 176 215 192 186
26 300 3000 253 260 263 263 271 308 275 298
27 300 3000 252 268 278 268 361 285 275 277
28 300 3000 232 243 251 245 276 255 245 265
29 300 3000 234 239 258 240 268 266 259 276
30 300 3000 236 243 245 243 297 270 259 264
31 300 3000 69 77 83 80 87 80 81 78
32 300 3000 76 84 88 84 84 102 92 90
33 300 3000 80 87 85 86 89 92 89 97
34 300 3000 79 88 90 88 96 85 88 79
35 300 3000 72 74 81 74 99 95 93 72
36 400 4000 227 239 234 238 314 245 240 227
37 400 4000 219 233 240 235 257 264 246 240
38 400 4000 243 266 269 265 293 283 282 243
39 400 4000 219 235 243 235 264 265 246 265
40 400 4000 215 223 228 224 325 244 237 215
41 400 4000 60 63 63 64 83 70 69 76
42 400 4000 66 72 76 72 74 80 77 86
43 400 4000 72 79 83 79 87 92 86 80
44 400 4000 62 71 66 71 83 74 69 71
45 400 4000 61 65 72 65 68 78 78 77
46 50 500 5 9 8 9 6 8 8 8
47 50 500 5 7 9 7 6 7 6 7
48 50 500 5 7 8 7 5 8 7 6
49 50 500 5 8 7 8 5 7 6 7
50 50 500 5 6 7 6 6 7 6 7

27

of PDH2 is at most 80 times worse than the fastest algorithm.

Figure 4.2: Performance profile for the algorithms on standard benchmark instances
in terms of computation time

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PR
PR2
DR
GR
PDH
PDH2
BE

(a) PDH2 is included

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PR
PR2
DR
GR
PDH
BE

(b) PDH2 is excluded

We also analyze whether the running time of the CPLEX decreases or not when the

solution of the algorithm is given as an initial integer solution. Column CPLEX(i.bas.)

and CPLEX denote the running time of the CPLEX with/without any initial solution,

respectively. There are some instances in which solution time decreases with if an

initial solution is given. These are highlighted in the table. However, the initial integer

solution does not increase the efficiency of CPLEX on average.

28

Figures 4.3 and 4.4 give the performance of the algorithm on the randomly gener-

ated instances in terms of solution quality and computation time. Figure 4.4 shows

that relative performance of PDH and PDH2 are better when compared to standard

benchmark instances. Conversely, GR is the worst among all algorithms on randomly

generated instances in terms of solution quality. Figure 4.3 shows that relative per-

formances of the algorithms are almost the same except PDH2. Although, there are

some instances which the computation time is approximately 180 times slower than

the fastest algorithm, in 80% of the instances, it is 50 times slower. This number is 80

for the standard benchmark instances.

Table 4.3 compares performances for the algorithms on all instances in terms of

solution quality. Instances are grouped based on their types benchmark (B) or ran-

dom (R) and their sizes. It is seen that the performance of all algorithms except

GR is relatively worse for B6 group which includes unicost instances. The solution

quality of the PDH is clearly better for random instances when compared to standard

benchmark instances. The columns PDH and BE show that the dual variable selection

sequence of Algorithm 2 increases the performance for only random instances. Using

complementary primal solution by PDH2 decreases IP gap.

Table 4.4 compares performances for the algorithms on all instances in terms of

computation time. Computation time of PDH is less than the heuristics solving LP

optimally. Since the most of the columns are deleted through pre-processing procedures

for highly cost and coverage correlated random instances, the size of the instances

decreases considerably. Therefore, computation times are very close for all algorithms

except PDH2. Although solution quality of PDH2 is better than PDH, computation

time is the highest among all algorithms.

29

Figure 4.3: Performance profile for the algorithms on randomly generated instances in
terms of computation time

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PR
PR2
DR
GR
PDH
PDH2
BE

(a) PDH2 is included

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PR
PR2
DR
GR
PDH
BE

(b) PDH2 is excluded

30

Table 4.2: Comparisons of computation time for benchmark instances(in seconds)

Instance CPLEX CPLEX(i.bas.) PR PR2 DR GR PDH PDH2 BE
1 0.59 0.69 0.54 0.48 0.593 0.1 0.09 0.874 0.093
2 0.4 0.43 0.18 0.19 0.172 0.04 0.06 1.779 0.047
3 0.34 0.45 0.17 0.17 0.156 0.05 0.13 1.576 0.047
4 0.34 0.53 0.39 0.24 0.312 0.04 0.08 1.419 0.063
5 0.52 0.56 0.17 0.17 0.219 0.05 0.07 1.497 0.078
6 0.49 0.75 0.19 0.19 0.203 0.05 0.06 1.638 0.078
7 0.3 0.34 0.16 0.18 0.14 0.05 0.07 1.107 0.063
8 0.59 0.72 0.18 0.21 0.203 0.04 0.11 1.669 0.063
9 0.55 0.56 0.19 0.5 0.203 0.04 0.1 1.966 0.062
10 0.29 0.44 0.13 0.14 0.203 0.04 0.06 1.482 0.062
11 0.35 0.77 0.24 0.22 0.219 0.04 0.05 1.638 0.047
12 0.72 0.62 0.32 0.3 0.39 0.06 0.07 2.277 0.063
13 0.49 0.5 0.34 0.21 0.327 0.05 0.07 1.451 0.063
14 0.64 0.61 0.34 0.25 0.421 0.05 0.07 1.685 0.062
15 0.33 0.36 0.21 0.23 0.25 0.05 0.08 1.466 0.062
16 0.3 0.44 0.38 0.28 0.218 0.05 0.06 1.357 0.062
17 0.55 0.99 0.24 0.23 0.234 0.06 0.11 1.653 0.063
18 0.53 0.63 0.26 0.44 0.265 0.06 0.09 2.013 0.078
19 0.39 0.4 0.22 0.23 0.405 0.05 0.08 1.716 0.078
20 0.52 0.58 0.22 0.23 0.265 0.05 0.07 1.997 0.078
21 0.76 0.71 0.14 0.17 0.25 0.13 0.15 1.716 0.14
22 0.83 0.81 0.16 0.16 0.375 0.14 0.18 2.153 0.172
23 0.65 0.74 0.16 0.16 0.203 0.14 0.17 1.685 0.156
24 0.43 0.47 0.22 0.15 0.172 0.12 0.2 1.154 0.156
25 0.68 0.96 0.17 0.19 0.187 0.15 0.3 2.278 0.172
26 1.16 1.31 0.29 0.22 0.25 0.07 0.12 5.647 0.125
27 1.01 0.86 0.19 0.34 0.608 0.15 0.16 6.13 0.156
28 1.63 0.85 0.65 0.4 0.952 0.2 0.19 5.414 0.25
29 1.23 0.82 0.36 0.33 0.608 0.15 0.19 6.91 0.156
30 1.79 0.61 0.4 0.34 0.499 0.19 0.17 6.209 0.234
31 1.89 1.97 0.24 0.65 0.437 0.25 0.3 6.458 0.358
32 3.61 3.6 0.3 0.31 0.546 0.14 0.29 6.162 0.265
33 2.03 1.94 0.42 0.34 0.608 0.15 0.47 7.972 0.266
34 5.51 5.31 0.4 0.38 0.452 0.15 0.28 6.583 0.25
35 2.25 2.19 0.36 0.35 2.262 0.15 0.26 5.85 0.265
36 1.35 1.02 0.41 0.42 0.733 0.12 0.21 9.875 0.172
37 1.54 1.46 0.39 0.46 0.593 0.12 0.23 11.357 0.187
38 4.02 3.89 0.39 0.43 0.764 0.16 0.3 13.572 0.187
39 2.82 2.55 0.49 0.42 0.624 0.12 0.23 11.576 0.187
40 1.42 1.3 0.33 0.31 0.624 0.12 0.23 11.122 0.203
41 3.47 3.19 0.57 0.38 0.858 0.23 0.67 18.969 0.436
42 10 9.79 0.33 0.32 0.671 0.34 0.51 24.494 0.562
43 7.43 8.04 1.03 1.12 1.279 0.32 0.81 24.615 0.546
44 15.42 14.7 0.75 0.78 1.482 0.32 0.62 17.807 0.546
45 2.51 3.2 0.31 0.87 1.42 0.29 0.53 16.823 0.546
46 0.97 0.85 0.11 0.11 0.124 0.08 0.15 1.795 0.156
47 1.18 0.93 0.11 0.1 0.156 0.11 0.3 2.005 0.156
48 1.3 1.08 0.1 0.1 0.359 0.11 0.18 1.645 0.156
49 1.15 1.17 0.38 0.11 0.296 0.09 0.19 1.823 0.141
50 1.09 1.32 0.12 0.12 0.249 0.08 0.16 2.1 0.156

31

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PR
PR2
DR
GR
PDH
PDH
BE

Figure 4.4: Performance profile for the algorithms on randomly generated instances in
terms of solution quality

Table 4.3: Comparisons of solution quality and computation time for all instances

Instance Group Average IP gap
Instance Size PR PR2 DR GR PDH PDH2 BE

B.1 200x1000 1.18% 6.44% 3.14% 19.84% 11.40% 7.53% 13.19%
B.2 200x2000 2.28% 8.61% 6.01% 17.15% 12.55% 7.85% 17.93%
B.3 200x1000 8.61% 11.24% 8.01% 20.29% 22.37% 13.16% 17.73%
B.4 300x3000 6.40% 10.53% 6.96% 21.77% 17.75% 13.41% 19.01%
B.5 400x4000 7.71% 10.03% 7.93% 26.50% 19.23% 14.69% 18.10%
B.6 50x500 48.00% 56.00% 48.00% 12.00% 48.00% 32% 40%
R.1 40x1560 0.00% 17.12% 1.68% 32.25% 7.94% 4.15% 14.79%
R.2 60x3540 0.12% 17.52% 2.73% 39.38% 9.90% 6.87% 15.97%
R.3 80x6320 0.03% 18.18% 3.08% 40.58% 8.21% 6.28% 19.46%
R.4 100x9900 0.22% 19.53% 2.76% 38.69% 10.36% 6.22% 18.74%

32

T
ab

le
4.

4:
C

om
p
ar

is
on

s
of

so
lu

ti
on

q
u
al

it
y

an
d

co
m

p
u
ta

ti
on

ti
m

e
fo

r
al

l
in

st
an

ce
s

In
st

an
ce

G
ro

u
p

A
ve

ra
ge

ru
n
n
in

g
ti

m
e

in
se

co
n
d
s

In
st

an
ce

S
iz

e
P

R
P

R
2

D
R

G
R

P
D

H
P

D
H

2
B

E
C

P
L
E

X
C

P
L
E

X
(i

.b
as

.)
B

.1
20

0x
10

00
0.

23
0.

25
0.

24
0.

05
0.

08
1.

5
0.

07
0.

44
0.

55
B

.2
20

0x
20

00
0.

28
0.

26
0.

30
0.

05
0.

07
1.

73
0.

07
0.

48
0.

59
B

.3
20

0x
10

00
0.

17
0.

17
0.

24
0.

14
0.

20
1.

82
0.

16
0.

67
0.

74
B

.4
30

0x
30

00
0.

36
0.

36
0.

72
0.

16
0.

24
6.

33
0.

23
2.

21
1.

95
B

.5
40

0x
40

00
0.

50
0.

55
0.

90
0.

21
0.

43
16

.0
2

0.
36

5.
00

4.
91

B
.6

50
x
50

0
0.

16
0.

11
0.

24
0.

09
0.

19
1.

87
0.

15
1.

14
1.

07
R

.1
40

x
15

60
0.

21
0.

20
0.

19
0.

06
0.

08
0.

73
0.

07
0.

33
0.

34
R

.2
60

x
35

40
0.

26
0.

26
0.

28
0.

13
0.

22
3.

9
0.

22
0.

36
0.

44
R

.3
80

x
63

20
0.

37
0.

35
0.

36
0.

29
0.

41
15

.0
4

0.
42

0.
36

0.
56

R
.4

10
0x

99
00

0.
55

0.
54

0.
53

0.
40

0.
55

25
.2

6
0.

55
0.

49
0.

83

33

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this study, we develop a heuristic that uses a primal-dual approach for solving SCP.

The heuristic finds a feasible solution to the dual of the LP relaxation of SCP. Then,

this dual feasible solution is used to obtain an integer solution for the SCP problem.

The proposed heuristics shows several interesting properties: it is simple, quite fast,

easy to implement, and robust.

We have implemented seven different heuristics. The results are compared on stan-

dard benchmark, Euclidean, and Manhattan type instances. The results exhibit that

the proposed heuristic is competitive in terms of the computation time and it is possi-

ble to improve the solution quality by using the complementary primal solution. Also,

we discuss that the solution quality has a potential to be improved through a well

designed neighborhood search algorithm.

Our computational study on the Euclidean and Manhattan type instances shows

that our primal-dual heuristic performs quite well. Based on our empirical evidence,

we conjecture that for Euclidean problems, we may find an approximation bound on

the worst case performance of the proposed primal-dual algorithm and expect that

this bound is lower than fz. In this section, we give a preliminary analysis about this

bound.

Let e(Q) be the eccentricity of any set of pointsQ ⊆ U as e(Q) = min
x∈Q

max
y∈Q

dist(x, y),

where dist(x, y) is the Euclidean distance between any two points x and y. Then, any

solution which is given by the proposed heuristic always satisfies cj ≤ e(U)2 given that

j ∈ C, where e(U) is the radius of the smallest circle covering all items and this circle

represents a constraint that covers all items with a cost of e(U)2. We know that the

algorithm always guarantees dual feasibility at each iteration. Therefore, c̄j value has

to be greater than 0 for the set j, if cj > e(U)2.

Figures 5.1 are given below to give an idea how some bad instances look like geo-

metrically. We can reduce the value of the objective function by eliminating subsets

34

in the solution. Figures 5.1 shows the solutions of the algorithm before and after

post-processing procedure respectively where ρ denotes the ratio of primal objective

function value over IP-OPT. In these figures, the red circles represent the constraints

selected by the algorithm, the blue circles represent the sets that are eliminated by the

post processing procedure and finally, the green circles represent the tight constraints

that are not selected by the algorithm.

When there are nested circles in the solution, the value of the primal objective

function is high compared to the optimal solution However, post-processing procedure

eliminates the subsets and reduces the value of the objective function for those kind of

instances. In addition, it is observed that when the number constraints that are tight in

the solution is high, then the value of the objective function is high. The reason is that

it is possible to increase the value of the primal objective function without increasing

the sum of the dual variables. If the items are located in such a way that the distance

among the adjacent items is equal, then for those instances the performance of the

algorithm is low. We believe that those kind of instances are the worst case instances

and we can find the approximation ratio by analyzing those instances. You see two

different geometry for the locations of the items in the plane Figure 5.2. For the

first geometry, the approximation ratio of the instances is 1, and 1.7143 when the

number of items is equal to 7, and 31. For the second geometry, you can see the

approximation ratio of two instances with m=25, 36 and 49. These figures show that,

if the locations of the items are on the grid points, then the approximation ratio is at

most 2.375. It can be seen that, it is not possible to decrease the objective function

through post-processing procedure in those instances. We believe that these instances

are the worst case instances, but then a new question arises: What is an upper bound

on the approximation ratio?

We are planning to complete this preliminary analysis by a theoretical proof in the

near future. In addition, as a future work, we can improve the performance of the

heuristic by developing a well designed neighborhood search algorithm. Finally, we

can modify the algorithm such that when a new dual sequence is given, it can modify

a solution without resolving the problem from the beginning.

35

Figure 5.1: Solution before and after post processing

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

10

12

14

(a) Instance 10 ρ = 2.00

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

10

12

14

(b) Instance 10 ρ = 1.48

−2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

8

10

12

(c) Instance 19 ρ = 2.80

−2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

8

10

12

(d) Instance 19 ρ = 1.30

−4 −2 0 2 4 6 8 10 12 14 16
−4

−2

0

2

4

6

8

10

12

(e) Instance 3 ρ = 2.2102

−4 −2 0 2 4 6 8 10 12 14 16
−4

−2

0

2

4

6

8

10

12

(f) Instance 3 ρ = 1.2035

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

(g) Instance 20 ρ = 2.48

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

(h) Instance 20 ρ = 1.30

36

Figure 5.2: Set of possible worst case instances

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

(a) ρ = 1.71

−1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

(b) ρ = 1.71

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

(c) ρ = 2.37

−2 0 2 4 6 8
−2

−1

0

1

2

3

4

5

6

7

8

(d) ρ = 1.92

37

Bibliography

[1] Aickelin U., An indirect genetic algorithm for set covering problems, Journal of

the Operational Research, 53 (10), 1118-1126, 2002.

[2] Balas E., Carrera M.C., A dynamic subgradient-based branch-and-bound pro-

cedure for set covering, Operations Research, 44(6), 1996.

[3] Bar-Yehuda R., Even S., A linear-time approximation algortihm for the weighted

vertex cover problem, Journal of Algorithms, 2, 198-203, 1981.

[4] Beasley J.E., An algorithm for set covering problem, European Journal of Op-

erational Research, 31, 85-93, 1987.

[5] Beasley J. E., Chu P. C., A genetic algorithm for the set covering problem,

European Journal of Operational Research, 94, 392-404, 1996.

[6] Beasley J. E., A Lagrangian heuristic for set covering problems, Naval Research

Logistics, 37,151-164.

[7] Beasley J.E, Jornsten K., Enhancing an algorithm for set covering problems,

European Journal of Operational Research, 58, 293-300, 1992.

[8] Bertsimas D., Vohra R., Rounding algorithms for covering problems, Mathe-

matical Programming, 80, 63-89, 1998.

[9] Brusco M. J., Jacobs L. W., Thompson G. M., A morphing procedure to

supplement a simulated annealing heuristic for cost- and coverage-correlated set-

covering problems, Annals of Operations Research, 86, 611-627, 1999.

[10] Caprara A., Fischetti M., Toth P., A heuristic method for the set covering

problem, Operations Research, 47, 5, 730-743.

[11] Caprara A., Toth, P., Fischetti, M., Algorithms for the set covering problem,

Annals of Operations Research 98, 353-371, 2000.

38

[12] Ceria S., Nobili, P., Sassano A., A Lagrangian-based heuristic for large-scale

set covering problems, Mathematical Programmimg, 81, 215-228, 1998.

[13] Dolan E. D., More J. J., Benchmarking optimization software with performance

profiles, Mathematical Programming, 91:201213, 2002.

[14] Fisher M.L, Kedia P., Optimal solution of set covering/partitioning problems

using dual heuristics, Management Science, 36(6), 1990.

[15] Garey, M.R., Johnson, D.S., Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, San Francisco, 1979.

[16] Gomes F. C., Meneses C. N., Pardalos P. M., Viana G. V. R., Experimen-

tal analysis of approximation algorithms for the vertex cover and set covering

problems, Computers and Operations Research, 33, 3520-3534, 2006.

[17] Grossman T., Wool A., Computational experience with aprroximation algo-

rithms for the set covering problem, European Journal of Operational Research,

101, 81-92, 1997.

[18] Hall N. G., Vohra R. V., Pareto optimality and a class of set covering heuristics,

Annals of Operations Research, 43, 279-284, 1993.

[19] Haouari M., Chaouachi J. S., A probabilistic greedy search algortihm for com-

binatorial optimization with application to the set covering problem, Journal of

the Operational Research Society, 53, 792-799, 2002.

[20] Hochbaum D.S., Approximation algorithms for the set covering and vertex cover

problems, SIAM Journal on Computing, 11, 555-556, 1982.

[21] Jacobs L. W., Brusco M. J, A local search heuristic for large set-covering

problems, Naval Research Logistics, 42, 1129-1140.

[22] Lan G., DePuy G.W., Whitehouse G.E, An effective and simple heuristic

for the set covering problem, European Journal of Operational Research, 176,

1387-1403, 2007.

[23] Lorena LAN, Lopes L. S., Genetic algorithms applied to computationally difficult

set covering problems, Journal of Operational Research Society, 48, 440-445,

1997.

39

[24] Melkonian V., New primal-dual algorithms for Steiner tree problems, Computers

and Operations Research, 34, 2147-2167, 2007.

[25] Peleg D., Schechtman G, Wool A, Approximating bounded 0-1 integer linear

programs, Proceedings 2nd Israel Symposium, Theory of Computing Systems,

Netenya, Israel, 69-77, 1993.

[26] Williamson D.P., The primal-dual method for approximation algorithms, Math-

ematical Programming, 91, 447-478, 2002.

[27] Vasko F.J , Wilson G. R., An efficient heuristic for large set covering problems,

Naval Research Logistics Quarterly, 31, 163-171, 1984.

[28] Vazirani V. V., Primal-dual schema based approximation algorithms, Theoretical

Aspects of Computer Science, LNCS 2292, 198-207, 2002.

40

