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ABSTRACT 
 

DEVELOPMENT AND OPTIMIZATION OF A MICROWAVE-ASSISTED PROTEIN 
HYDROLYSIS METHOD TO PERMIT AMINO ACID PROFILING OF CULTIVATED 
AND WILD WHEATS AND TO RELATE THE AMINO ACID TO GRAIN MINERAL 

CONCENTRATIONS 
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Biological Sciences and Bioengineering 

PhD Thesis, 2010 
 
 

Thesis Supervisor: Assoc. Prof. Levent Öztürk 
 
 

Key Words: microwave-assisted protein hydrolysis, amino acid profiling, wheat, mineral 
nutrients 

 
 

Wholegrain flour from durum wheat (T.durum, cv. Balcali-2000) was subjected to amino acid 
analysis following microwave-assisted acid hydrolysis. To optimize this new method, a range 
of sample masses (100-500 mg), incubation temperatures (130-170oC) and time intervals (1-
4h) were assessed. Overall, the greatest recovery of amino acids was obtained when 200 mg 
of wheat flour sample was hydrolyzed at 150oC for 3 h. The developed microwave hydrolysis 
method was confirmed to yield comparable findings with classic reflux methods. Integration 
of all amino acid signals corresponded to 85 % of the total protein content calculated by total 
N. The highest signal reflected the combined contributions of glutamic acid and glutamine, in 
accord with previous findings. Also as expected, proline was found to rank in second place. It 
follows to reason that an optimized microwave-assisted hydrolysis method may describe a 
rapid means to compare the constitution of different genotypes of wheats and may further 
show merit and general applicability towards the rapid analysis of commercially important 
crops and their end-products. 
 
In all wheat species and genotypes Glu was the most abundant amino acid, followed by Pro, 
whereas Met sln, Lys and Thr were the most limited. The quantities and ratios of individual 
amino acids were consistent with the literature data and the quantitative order of major and 
minor amino acids did not change in genotypes or species. However, amino acids exhibited 
significantly high variations among genotypes and species which can be exploited to enhance 
specific and/or total amino acids (i.e. protein) in high yielding cultivated wheats through 
selection, breeding and targeted molecular approaches. Although the existence of significant 
associations between a few amino acids and mineral nutrients, it was not possible to define or 
explain a co-transport or co-accumulation mechanism. Future research should focus on the 
phloem transport and mobility of metal binding proteins and organic ligands, rather than 
individual amino acids. A major finding of this study was the augmentation of correlations 
(among amino acids, nutrients and amino acids with nutrients) upon prescreening for 
contrasting grain N (or protein) concentration. Advancements in increasing the grain protein 
content of wheat can significantly contribute to enrichment of grains with almost all mineral 
nutrients except K and Ca. 
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MIKRODALGA-YARDIMLI HĐDROLĐZ METODU GELĐŞTĐRĐLMESĐ VE 
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Tez Danışmanı: Doç. Dr. Levent Öztürk 
 
 

Anahtar Kelimeler: mikrodalga-yardımlı protein hidrolizi, amino asit profillemesi, buğday, 
mineral besinler 

 
 

Durum buğdayından (T. durum, Balcalı 2000) elde edilen tam buğday unu mikrodalga-
yardımlı asit hidroliz sonrasında amino asit analizine tabi tutulmuştur. Bu yeni metodun 
optimizasyonu için farklı numune ağırlığı (100-500 mg), inkübasyon sıcaklığı (130-170oC) 
ve süresi (1-4 h) irdelenmiştir. Sonuç olarak amino asitlerin en yüksek geri kazanımı 200 mg 
buğday unu numunesinin 150oC’de 3 saat hidrolizinde elde edilmiştir. Geliştirilen mikrodalga 
hidroliz yöntemi klasik reflü yöntemine benzer sonuçlar verdiği teyit edilmiştir. Elde edilen 
amino asitlerin toplamı, toplam N ile hesaplanan protein kapsamının % 85’ine karşılık 
gelmiştir. Önceki çalışmalarla benzer olarak glutamic asit ve glutamin toplamı en yüksek 
değere sahip olmuştur. Yine beklendiği üzere prolin de ikinci sırada yer almıştır. Sonuçlar 
optimize edilmiş mikrodalga-yardımlı hidroliz metodu ile farklı buğday genotiplerinin amino 
asit kapsamlarının hızlı şekilde karşılaştırılabileceğini ve metodun diğer tahıl türlerinde ve 
bunlardan üretilen ürünler için de kullanılabileceğine işaret etmektedir. 
 
Tüm buğday türlerinde en fazla miktarda bulunan amino asit Glu olarak bulunurken bunu Pro 
takip etmiş, Met sln, Lys ve Thr ise en düşük değerleri almıştır. Amino asitlerin bireysel 
miktar ve oranları literatür verileri ile uyumlu bulunmuş, majör ve minör amino asitlerin 
miktarsal sıralaması tür ve genotipler arasında değişim göstermemiştir. Buna karşın, tür ve 
genotiplerin amino asit konsantrasyonları arasında, bireysel ve/veya toplam amino asitlerin 
(proteinin) yüksek verim kapasiteli çeşitlerde seleksiyon, ıslah ve hedeflenmiş moleküler 
yöntemlerle arttırılmasına olanak sağlayacak düzeyde önemli varyasyon olduğu 
gösterilmiştir. Bazı amino asitler ve mineral besin elementleri arasında önemli ilişkiler 
bulunmasına karşın, bunların birlikte taşınması ve biriktirilmesine dair mir mekanizmanın 
tanımı veya açıklaması mümkün olmamıştır. Gelecekte yürütülecek çalışmalar bireysel amino 
asitlerden çok, metal bağlayan protein ve organik ligandların floem taşınımı ve mobilitesi 
üzerine odaklanmalıdır. Bu çalışmanın ortaya koyduğu önemli bulgulardan biri ön eleme ile 
tane N konsantrasyonu bakımından farklı genotiplerin seçilmesi sonucunda korelasyonlarda 
gözlenen artışlar (amino asitler arasında, besin elementleri arasında ve amino asitlerle besin 
elementleri arasında) olmuştur. Buğdayda tane protein kapsamının arttırılmasına yönelik 
çalışmalar, K ve Ca dışında tüm mineral besinlerin tanede zenginleşmesine katkı yapabilir. 
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1 I"TRODUCTIO" 

 

1.1 Relevance of Proteins to Life 

 

Protein is an important key stone in body functions such as formation of antibodies, wound 

repair, protein synthesis (Suryawan, et al., 2009), modulation of gene expression (Palis, et al., 

2009), intestinal integrity (Wang, et al., 2009) and regulation of cellular signaling pathways 

(Rhoads, et al., 2009). Protein, together with micronutrient malnutrition is predominant in 

developing countries where cereals are the main source for protein intake while meat, rich in 

protein, iron and other vital micronutrients, is the main source in the developed countries 

(FAO, 2009; Ranum, 2001).  

 

Cereals have the biggest share among the dietary components in total energy consumption of 

the whole world with an average of 47% and in many countries such as Bangladesh strikes to 

more than 70%. Among the cereals, wheat is consumed the most which provides a huge 

proportion in the nutrition of both human and livestock (FAO, 2009; Shewry, 2009). 

  

Green revolution was successful in decreasing the hunger of the world`s poor. This success 

has kept cereal as the most available and cheap source of energy and protein, but it has also 

reduced the diversity of food intake especially in the developing countries (Welch, et al., 

1999; Demment, et al., 2003). Cereal production exceeded 2100 million tons in the year of 

2005. Maize, wheat and rice accounted for 85% of the total cereal production. USDA World 

Wheat Collection screening showed that the protein content varied from 7% to 22% in 

different wheat lines. Third of this variation is due to genetic factors and two-thirds are due to 

non-genetic factors involving mainly environmental conditions (Vogel, et al., 1978). Many 

mutagenesis and conventional breeding attempts were carried out to increase the wheat 

protein content, such as the selection studies performed at CIMMYT which resulted in 

opaque-2 lines with high concentration of lysine (Shewry, 2007; Prasnna, et al., 2001; 

Gibbon, et al., 2005). Wheat grain includes all essential amino acids including Histidine, 

Isoleucine, Leucine, Lysine, Cysteine, Methionine, Phenylalanine, Tryptophan, Tyrosine, 

Threonine, and Valine which human body needs but can not synthesize (Moose, 1990; Tamis, 

et al., 2009). However, the content of lysine, threonine, and sulfur containing amino acids 

(cysteine and methionine) is low in wheat compared to food from animal origin (Elango, et 
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al., 2009). This is very important for children, who need more essential amino acids than 

adults for their development and growth, and also for people in the developing countries that 

rely more on cereals and particularly wheat for their protein and calorie intake (Tamis, et al., 

2009).  

 

Reproducible and quick separation and determination of amino acids, after hydrolyzing the 

peptide bonds that joins the amino acids together, helps in identifying, quantifying and 

characterizing the protein. In the case of wheat protein, the current method of choice is based 

on the traditional reflux method, which requires approximately 24 hours to achieve analysis-

quality hydrolysates (Basak, et al., 1993; Weiss, et al., 1998). Rapid hydrolysis of proteins 

coupled with high recovery rate of all of the amino acids offers a powerful tool in protein 

research, nutritional, and biochemical investigations.  

 

Many important functions are carried out by proteins such as the transport of molecules in 

body fluid. Movement of the cells and the whole organism depends on muscles which are in 

fact contractile proteins. Most of the biochemical reactions are catalyzed by enzymes that are 

consistent of large and complex protein molecules. Likewise, signaling molecules, hormone 

receptors and transcription factors that switch the genes on and off are also proteins (Kimball, 

2009; Rhoads, et al., 2009). Antibodies that have an important physiological role in 

defending both the plant and animal tissue from pathogens are proteins. Conjugated proteins, 

as those combined with chlorophyll and nucleic acids, have an important role in 

photosynthesis and gene replication (Spurway, 2008). From these examples listed, it is 

obvious that the normal functioning of a given organism is totally dependent on the synthesis 

and availability of free amino acids, which are the building blocks of proteins. 

 

1.2 Wheat Grain Proteins 

 

A mature wheat grain contains nutrients and products of biosynthesis accumulated over the 

grain’s life time. Proteins and carbohydrates are synthesized from water and nutrients that 

were taken up from the soil by the root and shoot, and the carbon taken up from the 

atmosphere (Spurway, 2008). 
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The mature wheat grain is composed mainly of high starch content, around 72% of the total 

dry weight present only the endosperm, and the protein content is between 6-16% and 

distributed all over the grain (Shewry, 2007). 

 

Wheat flour contains more than thousand proteins that can be detected by 2-D gel 

electrophoresis. But many have minimal importance in the quality of the bread. The major 

wheat flour protein types are albumins, globulins, gliadin monomers and the low and high 

molecular mass glutenin subunits (Wang, et al., 2007). 

 

Also, wheat grain proteins differ in solubility, albumin is water soluble, globulins are 

insoluble in water but soluble in salt solutions, moreover, gliadins are soluble in 70-90% of 

ethanol, and glutenins are insoluble in saline or neutral aqueous solutions but soluble in 

alcohol as monomers, dimmers, or even small polymers. Glutenins are present in flour as 

insoluble, large polymeric aggregates that surround the granules of the starch having the 

highest effect on the bread making quality of flour (Osborne, 1907; Dupont, et al., 2005). 

 

The globulins and albumins are the cytoplasmic and metabolically active proteins, but 

glutinins and gliadins are mostly storage proteins. The metabolically active proteins are 

present in the germ and pericarp-aleurone layers, but the storage proteins are found in 

endosperm (Lasztity, 1996). There are major differences between the storage and the 

cytoplasmic proteins and their amino acid compositions. Large proportion of the storage 

proteins is glutamic acid and proline and a small proportion of arginine, lysine, tryptophan, 

and threonine. The metabolically active proteins contain much less glutamic acid and proline, 

and higher proportions of arginine and lysine which allow these proteins to have higher 

nutritive value, and less functional properties (Spurway, 2008). 

 

Proteins that are metabolically active, mainly globulins and albumins, are formed in initial 

stages of kernel development. This is associated with the early development of the embryo 

and the aleurone layer, and makes the aleurone layer be separated from the outer layer of 

endosperm cells at about 12-14 days after synthesis. These proteins, in total, make up less 

than 20% of the fully made kernel. Storage proteins appear first in the developing endosperm 

around 10 days after synthesis and kept synthesized until the kernel become mature (Buttrose, 

1963; Jenings, et al., 1963; Simmonds, 1978).  
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Most of the wheat utilized by humans is processed from the white flour, as a result of milling 

to remove the germ (embryo) and the bran (testa, pericarp, nuclear layer, and aleurone layer). 

The flour is mainly consisted of the endosperm which contains a high proportion of starch 

and gluten proteins. The gluten proteins make a continuous matrix in the cells of the mature 

dry endosperm. When the water is added to the flour to form dough, the protein matrices in 

the endosperm cells are brought together to a continuous network. This provides the visco-

elastic property of the dough and the expansion characteristic during fermentation and baking 

into bread or processed into noodles and pasta. The strong dough (highly visco-elastic) 

contains large amounts of high molecular mass polymers of glutenins (Shewry, et al., 2002; 

Field, et al., 1983). Payne et al have demonstrated that allelic variations in the structure of the 

high molecular weight (HMW) prolamins (HMW subunits of glutenin) was highly correlated 

with differences in bread making quality of European bread wheat (Payne, 1987).  

 

Human body can synthesize most of the essential amino acids except arginine (important for 

the young but not for the adults), histidine, leucine, isoleucine, lysine, methionine, threonine, 

phenylalanine, valine, and tryptophan. The essential amino acids are supplied by foods, 

mainly by cereals and particularly by wheat (Ozman, et al., 2009). High protein content is 

generally accepted as the primary quality parameter and the main guideline for wheat trade 

transactions. Glutamine and proline constitute almost half of the wheat grain proteins, but the 

other amino acids which are considered essential for the human diet are considerably low 

such as lysine, tryptophan, methionine, isoleucine and threonine (Acquistucci, et al., 1995).  

 

Amino acid composition and protein content in the wheat grain depends mainly on the 

genotype and characteristics of the environment, such as nitrogen-application time, nitrogen-

fertilization rate, nitrogen concentration in the soil, availability of soil- moisture and 

temperature through grain-filling (Luis, et al., 2007). 

 

In order to estimate the protein content in cereal grains, the classical approach is to analyze 

the total nitrogen (N) concentration and convert this to protein by multiplying with a 

nitrogen-to-protein conversion factor. When the whole N is assumed as protein-bound, the 

conversion factor is 6.25 based on the estimation that their proteins contain approximately 

16% N. For wheat usually 5.83 is used for N-to-protein conversion (Merrill AL, Watt BK. 

1973) although some studies claim that even 5.83 is still high. Due to differences in amino 

acid composition and the presence of non-protein compounds that contain N, the use of a 
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specific conversion factor will introduce significant errors. Examples of compounds that 

contain N beside proteins are ammonia, urea, nucleic acids, nitrates, vitamins, phospholipids, 

alkaloids, and nitrogenous glycosides (Dupont, et al., 2005; Fujihara, et al., 2008). 

 

According to the World Health Organization, around 160 million children under five years of 

age lack adequate protein intake leading to health and economical problems for the societies. 

The two main types of wheat, hexaploid wheats (used primarily for bread) and the tetraploid 

wheats (used primarily for pasta) almost account for 20% of all calories utilized worldwide 

(Uauy, et al., 2006). On a yearly basis world wheat production is about 620 million tons 

providing about 62 million tons of protein. It has been claimed that only a little progress 

could be achieved in increasing wheat protein, Zn and Fe content due to environmental and 

genetic factors (Uauy, et al., 2006). 

 

1.3 Zinc and Iron and Their Relevance to Life 

 

Zinc and Fe are essential nutrients for maintaining the normal functioning of the human body. 

Many studies have indicated that almost three billion people are affected by Fe deficiency 

(Welch, et al., 1999), and almost one third of the population of the developing countries may 

have Zn deficiency. When both deficiencies are considered almost half of the world’s 

population is thought to be affected (Hotz, et al., 2004). Both Zn and Fe deficiencies may 

cause severe health troubles such as growth retardation, impairments in mental development 

and high susceptibility to infectious diseases among children, also defects in the immune 

system, cognitive and mental development, physical growth, iron deficiency anemia and 

increase in both mortality and morbidity (Black, 2003; Walker, et al., 2009; Ozturk, et al., 

2006). Beside health effects, micronutrient deficiencies may also be associated with 

decreased work productivity and reduced national income especially in developing countries 

(Bouis, 2003). 

 

Zinc deficiency in soils and plants occurs worldwide; about 50% of the soil samples from 25 

different countries are proved to be low in Zn concentration. Turkey is one of those countries 

with almost 14 million hectares of cultivated land have shown to be Zn deficient, which in 

turn leads to decrease in the yield of wheat grain. In one hand, Zn deficiency decreases the 

nutritional quality of the grain, and in the other hand it decreases the cereals resistance to 

diseases and affects the nutritional quality of the grain (Cakmak, et al., 1999). 
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It has been found that Zn is an important mineral in maintaining and enhancing mammalian 

immunity. For a long time, it was well known that Zn was essential for both animals and 

plants, but about 40 years ago it was also found to be essential for human health (Prasad, 

2008). 

 

In general, wild and less-advanced wheat species were used to improve the quality of the 

modern wheat. They were utilized as a source for genes to enhance the modern wheat quality. 

As an example; the A-genome in primitive and wild diploid wheat has been used to increase 

the disease resistance of cultivated wheats (Kerber, et al., 1973; Valkoun, et al., 1986; 

Hussien, et al., 1997). Also, the D genome absence in tetraploid wheat may explain why it is 

low in Zn. The genes responsible for the Zn expression most likely locate on many 

chromosomes of the D genome. That is why transfer of the whole genome from Aegilops 

tauschii (source of the D genome of hexaploid wheat) improves the growth of tetraploid 

wheat under Zn deficient, but not under Zn sufficient conditions (Cakmak, et al., 1999).  

 

Human health in many countries especially in the developing ones is also affected by 

micronutrient deficiencies. About 50% of the 6-month old children, 50% of women at their 

reproductive age, and 30% of children at their school age have iron deficiency anemia 

(Initiative, 2009). 

 

According to Cakmak et al, an important reason for the widespread of the micronutrient 

deficiencies is the high intake of diet with little diversity usually containing one or two staple 

foods. In the developing countries due to poverty, many people rely on cereal-based food to 

obtain their energy and protein, and the animal based food with high  amounts of 

micronutrient is not common (Cakmak, et al., 2004). In less developed countries, wheat, rice, 

and maize are the main staple food in the diet and about 60% of the daily calorie intake is 

supplied by wheat. Therefore; an increase in Fe and Zn concentrations in the wheat seeds will 

decrease their deficiencies in humans and animals that are dependent to wheat as the staple 

source of food and energy. Besides that wheat, rice, and maize contain low Fe and Zn, they 

are also rich in compounds that limit the bioavailability of these micronutrients such as high 

fiber and phytate (Frossard, et al., 2000; Welch, et al., 2004). 
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One way of correcting the micronutrient malnutrition problem in populations is suggested to 

be by food fortification and supplementation with the vital micronutrients, however it is an 

expensive way and hard to apply especially in the developing countries, and in particular, the 

rural areas (Bouis, et al., 2000; Bouis, 2003). Instead; traditional plant breeding and genetic 

engineering methods are being used to enrich the cereals with Fe and Zn which is considered 

as more cost-effective and sustainable (Frossard, et al., 2000; Cakmak, et al., 2002; Welch, et 

al., 2004). 

 

There are many factors that play a role in increasing the micronutrient concentration in cereal 

grains. The genetic variations for Fe and Zn among cereal species and genotypes are a major 

factor. Other factors are related with the environment and may have more impact than the 

genetic variations, such as fertilizer management, water availability and soil properties. There 

are preliminary studies that indicated both wild and primitive wheats (as Triticum 

monococum, Triticum dicoccon, and Triticum dicoccoides) may be good genetic donors for 

enhancement of micronutrients in the cultivated wheats. Triticum dicoccoides, a wild wheat 

germplasm, have shown the highest concentration and the largest variation of micronutrients 

particularly for Zn, and represents as a very good donor to increase the concentrations of Fe 

and Zn in cultivated wheat (Cakmak, et al., 2000; Cakmak, et al., 2004). 

 

1.3.1 Role of zinc in the function of human immune system  

 

Effect of Zn on health has been studied in the last four decades. Zinc deficiency in humans 

could be mild moderate or severe, affecting immunological, biochemical, and clinical 

functions. Severe Zn deficiency has been found in patients with enteropathica (a genetic 

disorder), acrodermatitis, excess alcohol intake and penicillamine therapy. The signs and 

symptoms of severe zinc deficiency in humans are various including diarrhea, dermatitis, 

emotional disorders, weight loss, intercurrent infections because of cell-mediated immune 

dysfunctions, neurosensory disorders, delay in healing of ulcers and hypogonadism in males. 

The conditions may become fatal in untreated patients. Moderate zinc deficiency symptoms 

include hypogonadism in adolescents, growth retardation, rough skin, mental lethargy, poor 

appetite and cell mediated immune dysfunctions. In mild zinc deficiency, signs and 

symptoms include oligospermia, decreased serum testosterone level, decreased interlukin-2 

activity, decreased natural killer cell activity, decreased thymulin activity, decreased dark 

adaptation, hyperammonemia, and decreased lean body mass (Prasad, et al., 1988; Beck, et 
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al., 1997). Thymulin is produced from the thymus and it plays a role in T-cell activity and 

requires zinc for its function. It binds with T cell receptors promoting its functions as 

production of interlukin-2, cytotoxicity and suppressor capability (Prasad, et al., 1988). There 

are studies that estimated almost 2000 transcription factors are affected by zinc (Prasad, et al., 

2001). 

 

Zinc deficiency is favored in people with high cereal protein consumption due to excess 

phytate content in cereal based foods. Phytate is defined as an anti-nutrient which prevents 

absorption and thus bio-availability of Fe and Zn (Cakmak et al 2010). 

A sufficient level of Zn is required to inhibit the plasma membrane-bound NADPH oxidases 

that catalyze the production of superoxide radical (O2
.-) from oxygen. The superoxide radical 

is a toxic reactive oxygen species (ROS) that enhance oxidative stress either by itself or by 

involving in the production of other ROS species such as the hydroxyl radical (OH-) and 

hydrogen peroxide (H2O2). Zinc is important in production of metallothionein that is rich in 

cystine amino acid and considered to be an excellent scavenger of OH-. Also, inflammatory 

cytokines, such as tumor necrosis factor (TNF) and interlukin-1B, produced by activated 

macrophages and known to generate ROS. Such inflammatory cytokines are found to be high 

in patients with low zinc concentration (Prasad, et al., 1993; Ozaki, et al., 1987; Prasad, et al., 

2004).  

 

1.4 Interactions of protein, zinc and iron during senescence, 

source-sink relations, phloem transport and seed 

deposition of nutrients 

 

Senescence is the last stage of leaf development and induces remobilization of nutrients 

(simple sugars, amino acids and mineral nutrients) to the grain (Feller, et al., 1994; 

Marschner, 1995). Mobilization of photo-assimilates from mature leaves to the grain through 

natural senescence is a significant physiological process occurring at the generative stage of 

cereal crops. In general, micronutrient deficiency symptoms initiate in the young leaves and 

this phenomenon is explained by the absence of senescence at the early growth stages which 

could favor the transport of micronutrients from old to young plant parts (Marschner, 1995). 

The organic N content of wheat leaf is mainly composed of rubisco protein, which is almost 

totally hydrolyzed during leaf senescence. Prior to remobilization from leaves towards the 

grain, leaf proteins are firstly hydrolyzed to peptides and amino acids (Gepstein, 2004). 
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Simple sugars remobilized from shoot into grain during the senescence process are stored as 

starch in the endosperm whereas remobilized amino acids are used in synthesis of grain 

proteins (albumin, globulin, gliadin, glutenin) in the embryo, aleurone and the endosperm 

(Lasztity, 1996; Barneix, 2007). The most common limitation to protein synthesis is the low 

nitrogen availability. In general, an increase in the availability of nitrogen will lead to an 

increase in yield as well as the grain protein content. Grain proteins are synthesized at the end 

of the plant growth cycle; therefore; grain protein content is highly affected by the N supply 

rate (Spurway, 2008). 

 

Since there is no grain-xylem connection in wheat all mineral and organic nutrients are 

transported via the floem (Welch, 1986; Pearson, et al., 1995). Also the high pH (7.5-8.0) of 

phloem is proposed to inhibit transport of cationic micronutrients and their transport in 

phloem is facilitated by chelating with organic ligands (Marschner, 1995). However, there is 

no detailed study in the literature addressing the transport forms of micronutrients in the 

phloem, particularly for Zn and Fe. It was proposed that nicotianamine and S-containing 

amino acids such as cysteine and methionine and their protein residues have a high Zn 

binding affinity. For this reason these compounds could be the main Zn carrier ligands in the 

phloem. During senescence large quantities of protein is hydrolyzed in the leaves and stems 

of matured wheat plants. Although there is no experimental evidence, it is proposed that Zn-

amino acid ligands may play an important role in deposition of Zn into the grain (Von Wiren, 

et al., 1999; Dudev, et al., 2003; Haydon, et al., 2007; Torrance, et al., 2008). Also, reduction 

of grain protein, Fe, and Zn concentrations are related with decrease in their translocation 

from the leaves (Uauy, et al., 2006). Fisher et al have demonstrated that the composition of 

amino acids in the wheat phloem and in the wheat grain is similar (Fisher, et al., 1986).   

 

It has been confirmed that high positive correlations exists among the grain concentrations of 

protein, Fe and Zn. Although durum wheat grain is harder and more adaptive to hot and dry 

conditions than bread wheat and contain more Zn, Fe and protein, it is not as rich as its wild 

progenitor emmer wheat (Triticum dicoccoides). T. dicoccoides has higher concentrations of 

Fe, Zn and protein; therefore; it became a feasible genetic resource to improve mineral and 

protein content of the cultivated wheat. Durum wheat nutritional quality is suggested to be 

enhanced by breeding and full use of the genetic diversity of Zn and Fe concentrations in 

synthetic and wild parents (Peleg et al,, 2008; Cakmak, et al., 2010; Ferney et al., 2010). 
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Availability and solubility of Zn and Fe in the soil is negatively affected by high soil pH, low 

moisture, low amount of organic matter and high CaCO3; but positively affected by high N, 

Zn and Fe-containing fertilizers. Supply of adequate N seems to be a prerequisite for higher 

root uptake and mobilization of Zn and Fe by increasing the expression level of Fe and Zn 

transporter proteins such as the ZIP family transporter proteins located on the root cell 

membranes. Fe and Zn are transported into the shoot through xylem vessels either chelated 

with a low-molecular organic compounds or free ions. N has also a positive role in the root-

to-shoot transport of Fe and Zn either by chelating with nitrogenous compounds in the xylem 

such as nicotianamine and phytosiderophores or by increasing the levels of proteins 

contributing to xylem loading. Methionine is the precursor of nicotianamine. Zn and Fe 

transporter proteins located in the root cell membranes were also identified in the plasma 

membranes of the wheat phloem which may indicate their involvement in the Zn and Fe 

transport into seeds. Although high phloem pH may interfere with the Zn and Fe transport but 

their possible chelation with nicotianamine and amino acids may facilitate the process 

(Cakmak, et al., 2010). 

 

Bioavailability and solubility of grain’s Zn and Fe for humans are adversely affected by 

phytate, another grain component, but positively affected by the grain contents of cysteine, 

methionine and histidine, a well proposed sink for Zn and Fe (Cakmak, et al., 2010). 

 

Zhao et al have found a very high positive correlation between both Fe and Zn and protein 

content among the bread wheat lines. They have suggested a possible link between these two 

trace elements and grain protein. They have found that the positive correlation between Fe 

and protein is higher than that of Zn and protein (Zhao, et al., 2009). Embryo and aleurone, 

the protein rich parts of the grain seed, are also rich in Zn where as the endosperm, which has 

low concentration of protein, is also low in Zn (Marschner, 1995). Ozturk et al, by using a 

Zn-staining method, had demonstrated that Zn is accumulated more in the embryo and 

aleurone than the endosperm (Ozturk, et al., 2006). Distelfeld et al have shown that the grain 

protein content-B1 (Gpc-B1) locus from wild emmer wheats affects the concentrations of 

both Fe and Zn and the grain protein content. The function of this locus is to encode �AC 

transcription factor (�AM-B1) which increases remobilization of nutrients from leaves to the 

grains by accelerating senescence. It is hypothesized that Gpc-B1 locus increase the 

remobilization of micronutrients and proteins from senescing tissues into the seeds. However, 

the grain Zn concentration can, also be increased by delayed senescence by extending the 
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grain filling period in the presence of high nitrogen supply (Kutman, et al., 2010). There are 

three �AM genes in the wheat genome and modern wheat lines carry a non functional a�AM-

B1 allele which causes delayed leaf senescence resulting in decreased levels of grain protein, 

Zn, and Fe under limited N supply (Distefeld, et al., 2007; Cakmak, 2008). 

 

1.5 Structure of Wheat Seed 

 

Wheat seed is composed mainly of three parts that have different functions; bran, endosperm 

and germ. Bran is the brownish hard outer part of the grain. It protects the grain against 

whether changes, mold, insects, and bacteria. It consists of many layers that represent the 

concentrated source of dietary fiber in the grain. The layer of cells between the bran and the 

endosperm is called aleurone. 

 

Aleurone is composed of single layer of cells surrounding the endosperm of the cereal seeds. 

It is a concentrated source of minerals, vitamins, proteins and other nutrients. This tissue 

synthesizes and releases some hydrolytic enzymes in response to gibberellic acids (GA3) in 

which α- amylase is the most abundant of all. There are two isoforms of α- amylase in wheat 

seeds that are encoded by two different structural genes. α- amylase is secreted into the 

starchy endosperm of the germinating seed where breakdown of the starch into maltose and 

glucose is accomplished (Bernal-Lugo, et al., 1999). 

 

The endosperm is the inner part of the seed. It provides readily-usable energy and nutrients to 

the growing seedling. Endosperm is the main storage part of carbohydrates in the seed. 

Carbohydrates represent about 50-75% of the endosperm whereas 8-18% is consisted of 

protein. White flour is mainly produced from the endosperm by separating the bran and germ 

through milling processes. 

 

Wheat germ contains the embryo and represents 2-3% of the total seed dry weight. Fatty 

acids, B and E vitamins are found in the germ.  
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Figure  1-1 illustrates the structure of wheat grain. The protein fraction of durum wheat and 

common wheat have a very high concentration of two amino acids, glutamate and proline, but 

very low for many essential amino acids such as threonine and lysine, and also low in 

tryptophan, isoleucine and methionine (Acquistucci, et al., 1995).  

 

 

 

 

 

 

 
 

Figure  1-1 :Wheat grain parts (Milling, 2007) 
 

 

 

 

The protein content of the wheat grain is distributed all over the kernel parts, but unevenly. 

The largest amount of protein is found in the endosperm, but the high concentration is found 

in the embryo. Table  1-1 shows the distribution and the concentrations of protein in the wheat 

grain parts. 
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Table  1-1: Wheat seed parts and the distribution of protein and starch as 
weight percent (Spurway, 2008) 

 

Seed Part % of seed weight % of total starch % of total protein 

Bran (Pericarp)  8  0  4.5  

Aleurone  7  0  15.5  

Endosperm  82.5  100  72  

Embryo (Germ)  2.5  0  8  

 
 

 

1.6 Protein Hydrolysis 

 

Proteins are composed of amino acids that are linked together via the peptide bonds. The 

amino group of a single amino acid molecule is attached with the carboxyl group of the 

second one. During peptide bonding the amino group loses a hydrogen atom and the carboxyl 

group loses both hydrogen and oxygen atoms yielding a molecule of water. It is for this 

reason the peptide bond is called a hydration bond (Ozman, et al., 2009). 

 

The most accurate way of analyzing the total protein content is to precisely analyze all the 

individual amino acids and then take the sum to yield total protein content. However, the 

success of this process depends on the proper and complete hydrolysis of proteins into 

individual amino acids. Reproducible and quick separation of amino acids after breaking (or 

hydrolyzing) the peptide bonds helps in identifying, quantifying and characterizing the 

proteins (Weiss, et al., 1998). Amino acid analysis of a given material can not be expected to 

be successful without a proper hydrolysis step prior to analysis. There exist a number of 

protocols for protein hydrolysis that differ according to the end-use of the hydrolysates. 

 

Usually, the hydrolysis is achieved by heating the sample in high concentrations of acids 

(usually HCl) using either thermal or microwave radiation energy. However, the success of 

this process depends on the proper and complete hydrolysis of proteins into amino acids. 
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The differences in the stability of amino acids are due to their side chains involvement in 

building the total structure as well as effect of the nonproteinaceous components which have 

a role in the hydrolysis conditions. The ultimate hydrolysis conditions are those that in one 

hand break all the peptide bonds and in the other hand cause no destruction of any amino 

acids (Zumwalt, et al., 1987). 

 

1.6.1 Role of HCl concentration in amino acid recovery 

 

Albin et al had investigated the effect of different HCl concentrations on the hydrolysis 

performance of Soya bean products. The recovery of certain amino acids was not affected 

with different HCl concentrations which include lysine, aspartic acid, threonine, and 

phenylalanine. Valine and isoleucine were recovered more by using HCl greater than 6 M, 

whereas histidine, glycine, arginine, alanine, leucine, proline, lysine, and phenylalanine were 

recovered more by HCl concentrations close to or lower than 6 M. Threonine recovery was 

maximized at 9 M HCl, however acid hydrolysis with 9M HCl resulted in degradation of 

tyrosine. Glutamic acid showed an increase in the recovery from 1 M to 3 M HCl but remain 

constant until 12 M HCl (Albin, et al., 2000).  

 

Zhong et al had found that both microwave irradiation and acid type and concentration have 

an effect on peptide hydrolysis of membrane proteins. Short irradiation time (e.g., 2 min) and 

low acid concentration (e.g., 0.1 M HCl) resulted in fragments containing N-and/or C- 

terminus. Upon increasing irradiation time and acid concentration, more fragment ions as 

well as the N- and C- terminal fragment ions were found. At a longer irradiation time (e.g., 

10 min) and higher HCl concentration (e.g., 1.5 M HCl) increased nonspecific cleavage 

formation was detected. Further increase in irradiation time and acid concentration generated 

hydrolytic peptides from both the internal fragmentation and the N- and C- terminus. Among 

strong acids, HCl does not react with the amino acids. Conversely, many other acids such as 

H2SO4 and HNO3 react as oxidizing agents on amino acids whereas acetic acid modifies the 

N-terminus of peptides (Zhong, et al., 2005). 

 

1.6.2 Protein oxidation before hydrolysis 

 

Since acid hydrolysis can cause partial oxidation of amino acids, it is very important to 

optimize the hydrolysis conditions of hard samples such as cereal grains or feedstuff material, 
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particularly for the accurate quantification of sulfur-containing amino acids cystine and 

methionine. The oxidation of such materials prior to acid hydrolysis with a strong oxidant 

(i.e. performic acid) allows the accurate quantification of cystine as cysteic acid and 

methionine as methionine sulphone (Mason, et al., 1980). Although oxidation is very 

important in regard of accurate quantification of sulfur-containing amino acids, this 

inevitably results in oxidation of other amino acids (e.g. phenylalanine, tyrosine, histidine and 

arginine) and prevents their accurate quantification. For this reason, the practice of a sample 

oxidation step is adopted in many labs prior to classical HCl hydrolysis when sulfur-

containing amino acids are needed to be analyzed using amino acid analyzer instruments.  

 

1.6.3 Methods of protein hydrolysis 

 

1.6.3.1 The classical reflux hydrolysis 

 

The setup of a classical reflux hydrolysis is illustrated in  

Figure  1-2. In this method, usually a small amount of sample (i.e. containing <10 mg N) is 

placed into a 100 ml bottom rounded Pyrex flask and added with 50 ml of 6 N HCl. The flask 

is then constantly heated at 110oC for 24 hours during which the evaporated HCl is 

continuously condensed back (refluxed) in to the flask by cooling the flask neck. After 24 h 

of reflux, HCl is removed by lyophlisation, rotary evaporation or by drying down over 

sodium hydroxide. Then, if necessary, the sample is diluted with pH 2.2 loading buffer and 

filtered through 0.22 µm membrane filter (Messia, et al., 2008). 

 

The classical method of protein hydrolysis by the reflux method is time consuming and low 

in productivity. However, it is currently the most widely accepted method by official 

organizations and legislations (EU Comisson directive 98/64/EC, 1998, AOAC Official 

Method 994.12, 1995) and has been extensively used to determine the level of hydrolyzed 

amino acid composition of samples from diverse origins (Basak, et al., 1993; Hirs, et al., 

1954; Lupano, 1994, Lames and Fontaine, 1994).  
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Figure  1-2: The setup of a classical reflux analysis. 
 

 

1.6.3.2 Closed tube method 

 

This method is similar to the open reflux method as far as the hydrolysis temperature and 

time, but the tubes containing the sample and the HCl are sealed under vacuum prior to 

hydrolysis. The sealed tubes are heated at 110oC for 24 hours in temperature controlled 

ovens. The closed tube method is advantageous to open reflux for small amount of samples 

and also it is high in productivity. However, the recovery rates of the amino acids are very 

similar to the open reflux method (Pierce, 2006). 

 

1.6.3.3 Microwave-assisted hydrolysis 

 

Rapid hydrolysis of proteins coupled with high recovery rate of all of the amino acids offers a 

powerful tool in protein research, nutritional, and biochemical investigations. Roach et al had 

reported that protein hydrolysis of ribonuclease and bovine serum albumin for 4 hours at 

145oC had yielded comparable results with the classical reflux method (Roach, et al., 1970).  

Microwave technology offers cheap, clean, and convenient method for heating which results 

in high recovery and shorter times of reaction (Phani, et al., 2006). 
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Microwaves are electromagnetic radiation locating in the electromagnetic spectrum between 

the infrared and the radio waves with the following characteristics: wavelength (in 

centimeters): 10 - 0.01, frequency (in Hertz): 3 x 109 - 3 x 1012, and energy (in electron 

volt): 10-5 - 0.01 (Pozar, 1997). The microwave irradiation theory was predicted in 1864 but 

physically demonstrated in 1888. Magnetron, the high-energy machine that was used to 

generate microwave energy, was invented as part of the radar detection system during the 

World War II. In 1946, the microwave irradiation was discovered as a heating method. The 

first commercial microwave was introduced in 1950s. Over the past three decades, a lot of 

improvements have been done to the laboratory microwaves to include models specific for 

polymer synthesis, peptide synthesis and process control. Figure  1-3 illustrates an up-to-date 

laboratory microwave system that is capable of heating up to 40 closed vessels per run with 

self regulated pressure control and processor controlled temperature. 

 

 

 

 

 
 

Figure  1-3: A modern laboratory microwave reaction system by CEM 
Co. Matthews, US (Model: MARSXpress). 

 

 

 

The mechanism of microwave catalysis depends on three main categories: dipole 

rotation/polarization, conduction, and interfacial polarization which all cause agitation of 
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polar molecules and thus increase their temperature without causing rearrangement of 

molecular structure (Yao, et al., 2008).  

 

In previous studies microwave radiation was used to conduct hydrolysis of purified proteins 

like bovine serum albumin or methionyl human growth hormone (m-HGH Protropin1) and 

exposing protein or acidic peptide solutions to microwave irradiation accelerated release of 

amino acids and thus decreased the time of the hydrolysis procedure (Pecavar, et al., 1990; 

Lill, et al., 2007). Precision and accuracy that were achieved in short-time microwave-

assisted hydrolysis (5-15 min) were almost equivalent to those that were achieved by using 

conventional heating at 110oCfor 24 h (Lill, et al., 2007 and the references therein). Evidence 

from literature indicates that microwave-assisted hydrolysis of proteins yields comparable 

results to that of the classical open reflux hydrolysis. However, microwave hydrolysis is 

expected to replace the open reflux or sealed tube methods due to significant reduction in 

hydrolysis time, energy and chemical reagent consumption. 

 

To our knowledge, microwave-assisted hydrolysis was not studied in complex samples such 

as cereal grains, flour or feedstuff that are rich in carbohydrates and dietary fiber. Therefore, 

part of this thesis study includes optimization of a new expedient method for microwave-

assisted hydrolysis of wheat proteins and amino acid profiling of wild, primitive and 

cultivated wheat. Correlations between the resulting amino acid profiles and Zn, Fe and 

protein concentrations in different wheat species were analyzed and discussed in a separate 

chapter. 

 

1.6.3.4 Enzymatic digestion 

 

Peptide bonds are cleaved by proteolytic enzymes that have specific and well-defined 

activities as carboxypeptidase, trypsin, chymotrypsin, thermolysin and papin. 

Enzymatic hydrolysis has the advantage of total and full amino acid recovery including 

asparagine and cystiene (which are usually destroyed in both conventional heating method 

and microwave-assisted method), also it is preferred when sequencing of certain proteins is 

required. This method is not widely applied, especially for the unpurified proteins, due to 

hard accessibility. Usually, it takes a long time, 18-24 hours, and requires many enzymes to 

accomplish a full hydrolysis. Enzymes are usually expensive. (Fountoulakis, et al., 1998). 
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1.6.3.5 Alkaline hydrolysis 

 

During acid hydrolysis tryptophan is totally degraded by HCl, and the commonly used way to 

recover it is by the alkaline hydrolysis method, which is also used when the sample contain 

high amount of carbohydrates. Alkaline hydrolysis is usually performed with either NaOH or 

KOH, and, rarely, with barium hydroxide. The major disadvantage of this method is the 

destruction of threonine, serine, cysteine and arginine. Therefore, alkaline hydrolysis methods 

are almost dedicated to recover tryptophan only (Fountoulakis and Lahm, 1998). 

 

1.7 Amino Acids 

 

Amino acids are important units of all organisms from bacteria to mammals. They are bound 

together to form proteins which are vital to life. An optimum protein intake provides all the 

20 amino acids, essential for both human and animal life, in the correct proportions to fulfill 

the diverse needs of the body for metabolic functions including modulation of gene 

expression (Palis, et al., 2009), intestinal integrity (Wang, et al., 2009) and protein synthesis 

(Suryawan, et al., 2009). 

 

Amino acids are structures that contain amine group, carboxylic acid and side chain. The key 

elements are oxygen, hydrogen, nitrogen and carbon. There are many different amino acids, 

but the important ones to living processes are only 20, and around 10 of them are essential to 

human body. High number of amino acids is bound together by peptide bonds to form large 

polypeptides (proteins). The analysis of the amino acids can be realized following liberation 

of the peptide bonds by hydrolysis (Johnson, et al., 1958). 

 

1.7.1 Features of amino acids 

 

The amino acids are crystalline solids with high melting points. Their melting and 

decomposition tend to be in the range of 200-300oC (Clark, 2007). Amino acids are organic 

compounds that have both carboxylic acid -COOH and amine group –NH2 (therefore; they 
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are called amino acids). Both groups are attached to a carbon atom, by which hydrogen atom 

and side chain attached. The side chain (called R group) gives each amino acid its unique 

properties. Also, this side chain gives each amino acid its specific charge distribution which 

is used as the basis for the ion exchange chromatography. Amino acids are different in their 

recovery upon protein hydrolysis at any given temperature. Proline, threonine, methionine, 

arginine and serine are the most sensitive to heat. Leucine, isoleucine and valine are the most 

stable amino acids and require about 70 h at 110oC for maximum recovery (Roach, et al., 

1970). So far, no method is introduced that is capable of fulfilling both complete recovery 

and zero degradation of all individual amino acids. 

 

Proline and hydroxyproline, the imino acids, have no primary amino groups. Nitrogen reacts 

with the R group forming a five-membered pyrrolidine figure. Most amino acids at pH 7 are 

dipolar ions (zwitterions), the carboxyl group loses its hydrogen and the amino group is 

protonated. Another feature about amino acids is that all of them are chiral except glycine. 

They superimpose their mirror image and they exist in either mirror image. One mirror image 

is termed D (dextro or right) and the other mirror image is termed L (laevo or left) (Rawn, 

1989; Johnson, et al., 1958). The names, symbols, and structures of amino acids and structure 

of the side chains are shown in Table  1-2 and Table  1-3. 
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Table  1-2: Classification of the common amino acids based on the chemistry of the 
R group  (Condon, 1986) 

 

 

 

 
ALIPHATIC AMI"O ACIDS                   "O"-ALIPHATIC AMI"O ACIDS 
                                                                       
Monoamino-dicarboxylic acids 
Glutamic acid 
Aspartic acid 
 

Aromatic Amino Acids 
Tyrosine 
Phenylalanine 

Hydroxy-monoamino-monocarboxylic 
acids  
Serine 
Theronine 

Monoamino-dicarboxyl-co-amides 
Aspargine 
Glutamine 

  
Monoamino-monocarboxylic acids 
Alanine  
Glycine 
Isoleucine 
Valine Leucine 

Diamino-monocarboxylic acids 
Lysine  
Arginine 
Ornithine 

  
 Heterocyclic Amino Acids  

Histidine 
Tryptophan 
Proline, Hydroxyproline 
Tryptophan 

  
 Sulphur-Containing Amino Acids 

Cystine 
Methionine 
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Table  1-3: Amino acid structures (Condon, 1986) 

 
Amino Acid Symbol Structure Formula Weight 

Aliphatic Amino acids 
Glycine Gly(G) NH2-CH2-COOH 75.07 
L-valine Val(V) (CH3)2-CH-CH(NH2)-COOH 117.15 
L-alanine Ala(A) CH3-CH(NH2)-COOH 89.09 
L-leucine Leu(L) (CH3)2-CH-CH2-CH(NH2)-COOH 131.17 
L-isoleucine Ilu(I) CH3-CH3-CH(CH3)-CH(NH2)-COOH 131.17 
L-aspargine Asn(N) H2N-CO-CH2-CH(NH2)-COOH 132.12 
L-proline Pro(P) NH-(CH2)3-CH-COOH 115.13 
L-glutamine Gln(Q) H2N-CO-(CH2)2-CH(NH2)-COOH 146.15 
    

Sulphur-Containing Amino Acids 
L-methionine Met(m) CH3-S-(CH2)2-CH(NH2)-COOH 149.21 
L-cysteine Cys  c HS-CH2-CH(NH2-COOH-COOH 121.16 
    

Hydroxylated-Amino Acids 
L-threonine Thr(t) CH3-CH(OH)CH(NH2)-COOH 119.12 
L-serine Ser(s) HO-CH2-CH(NH2)-COOH 105.09 
    

Aromatic Amino Acids 
L-phenylalanine Phe(p) C6H5-CH3-CH(NH2)-COOH 165.19 
L-tryptophan Trp(w) C6H4-NH-CH=C-CH2-CH(NH2-COOH 204.23 
L-tyrosine Tyr(y) HO-C6H4-CH2-CH(NH2)-COOH 181.19 
    

Acidic Side Chains 
L-glutamate Glu(e) HOOC(CH2)2-CH(NH2)-COOH 147.13 
L-aspartate Asp(d) HOOC-CH2-CH(NH2)-COOH 133.1 
    

Basic Amino Acids 
L-lysine Lys(k) CH3-CH3-CH(CH3)CH-NH2-COOH 146.19 
L-arginine Arg r HN=C(NH2)-NH-(CH2)3CH(NH2)-COOH 174.2 
L-histidine His (h) NH-CH=N-CH=C-CH3-CH(NH2)-COOH 155.16 
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Amino acids biosynthesis is controlled by the nucleotide sequence of the DNA and the 

corresponding mRNA.  The individual codons and their corresponding amino acids are listed 

in Table  1-4.  

 
 

Table  1-4: Amino acid genetic code (Ozman, et al., 2009) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7.2 Zinc-binding amino acids 

 

Almost one-third of the proteins that are defined in the Protein Data Bank (PDB) contains 

metals and therefore named as metalloproteins. Metals play a critical role in the functions, 

structure and stability of metalloproteins (Bernstein, et al., 1977). In eukaryotic organisms, Fe 

and Zn are the most abundant metals playing catalytic and structural roles in many biological 

functions (Coleman, 1992). 

TTT Phe TCT Ser TAT Tyr TGT Cys 
TTC Phe TCC Ser TAC Tyr TGC Cys 
TTA Leu TCA Ser TAA Stop TGA Stop 
TTG Leu TCG Ser TAG Stop TGG Trp 
 
CTT leu CCT Pro CAT His CGT Arg 
CTC Leu CCC Pro CAC His CGC Arg 
CTA leu CCA Pro CAA Gln CGA Arg 
CTG Leu CCG Pro CAG Gln CGG Arg 
 
ATT Ile ACT Thr AAT Asn AGT Ser 
ATC Ilu ACC Thr AAC Asn AGC Ser 
ATA Val ACA Thr AAA Lys AGA Arg 
ATG Met ACG Thr AAG Lys AGG Arg 
 
GTT Val GCT Ala GAT Asp GGT Gly 
GTC Val GCC Ala GAC Asp GGC Gly 
CTA Val GCA Ala GAA Glu GGA Gly 
GTG Val GCG Ala GAG Glu GGG Gly 
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Shu et al have developed a method to predict the zinc-binding sites in proteins by combining 

homology-based predictions and support vector machine (SVM). Their method has predicted 

zinc-binding Histidine, Cysteine, Glutamic acid, and Aspartic acid with 75% precision (Shu, 

et al., 2008). 

 

1.7.3 Amino acid analysis techniques 

 

1.7.3.1 Historical perspective 

 

The major breakthrough in the field of chemistry and biochemistry of amino acids, peptides, 

and proteins was achieved in 1910 by Siegfried Ruhemann by revealing the ninhydrin 

reaction. He wrote, “The further study of triketohydrindene hydrate led to results which 

appear to be of great interest. It was found that a deep blue color is produced on warming a 

mixture of aqueous solutions of this compound with aliphatic or an aliphatic-aromatic amine- 

which contains the amino group in the side chains” (Ruhemann, 1910). One year later in 

1911 Abderhalden and Schmidt had collaborated with Ruhemann and studied the reaction of 

a large number of different compounds with this reagent in order to determine the extent to 

which the reaction is typical with different classes of compounds (Abderhalden and Schmidt, 

1911). Among 26 compounds that had been investigated, 2 proteins and 23 amino acids 

produced typical blue-purple color, but the color was yellow with proline. These initial 

observations were followed by further studies to extend the usefulness of the ninhydrin 

reaction (Abedrhalden and Schmidt, 1913; Ruhemann, 1910). In the following years studies 

with ninhydrin influenced many scientists to explore its reaction with amino acids. The most 

important advancement in the history of the ninhydrin reaction was probably the automation 

of chromatography in 1958 by Stein and Moore (Stein and Moore, 1958). This had helped in 

enabling quick assays of all amino acids in protein hydrolysates at nanomole levels (Moore, 

1968). 

 

An important contribution to ninhydrin detection came from Dent. It was the use of ninhydrin 

sprays to develop 60 ninhydrin-positive compounds on thin layer paper chromatograms 

which, nowadays, are widely used with paper and silica gel plates (Condon, 1986). 
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Stein and Moore had spent a considerable amount of time in the separation of amino acids. In 

1958, along with Spackman, they published their view of an automated instrument for the 

separation and quantitative of compounds that were ninhydrin-positive (Spackman, et al., 

1958).In 1972, they were awarded the Noble Prize for their contribution to the understanding 

of the connection between chemical structure and catalytic activity of the active centre of the 

ribonuclease molecule. 

 

Since 1958, many authors had published improvements, but not basic changes to this 

technique. These papers showed the effort and success toward faster and more sensitive 

analyses (Piez, et al., 1960; Bohlen, et al., 1982).Also, there have been improvements to the 

detection reagent, 2-methoxyethanol that was used until Moore replaced it by 

dimethylsulphoxide (Moore, 1968). Since 1981, ethylene glycol was recommended by 

Biochrom Co., UK to become the solvent for ninhydrin, and nowadays it is widely used. 

 

Fluorescent reaction with amino acids was first investigated with a fluorophore called 

fluorescamine. This compound was not widely used because of the development of an 

improved and cheaper fluorophore, o-phthaladehyde (OPA). Since both reagents (OPA and 

fluorescamine) do not react with imino acids, sodium hypochlorite was used to oxidize imino 

acids before reaction with OPA to end up with a fluorescent product. Since hypochlorite 

partially oxidizes some of the amino acids, it is introduced during the elution of imino acids 

(Condon, 1986; Davis, 1986). 

 

1.7.3.2 Paper chromatography 

 

As all kinds of chromatography, in paper chromatography there is a stationary phase and a 

mobile phase. Amino acids can be separated on layers of cellulose paper. This is an 

economical method as well as it has been widely used. Several samples can be run at the 

same time and then visualized by spraying ninhydrin, diaminobenzaldehyde or 

trinitrobenzensulphonic acid. This method is qualitative but not quantitative (Chemguide, 

2007; Davis, 1986). 
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1.7.3.3 Thin-layer chromatography 

 

The thin-layer chromatography (TLC) method depends on the partition of a solute (e.g. 

protein hydrolysate) between a moving and a stationary phase. Usually the moving phase is 

an organic solvent, and the stationary phase is a layer of water attached to a solid support-

silica gel or aluminum oxide. The first step is loading a small spot of protein hydrolysate on 

the stationary phase. The second step would be inserting the plate in a moving phase which is 

a chamber containing a layer of organic solvent. The protein hydrolysate sits just above the 

organic solvent. As the organic solvent moves across the plate by capillary action and touches 

the stationary phase, the amino acids will be separated between the stationary phase and the 

organic solvent. Those amino acids that have higher affinity to silica gel will stay in the 

stationary phase or move slowly up the plate, where as the others that have higher affinity to 

the organic solvent (e.g. hydrophobic amino acids) will move quickly up the plate (Rawn, 

1989). 

 

1.7.3.4 Electrophoresis 

 

Separation of amino acids based on their charge is possible by electrophoresis. The solution 

has certain pH at which some amino acids will migrate toward the negative electrode or 

toward the positive one and the amino acids that are neutral at that pH will not move. As an 

example, at pH 7, alanine is neutral and will not move, arginine is positive, and glutamic acid 

is negative. Consequently, the number of amino acids that are investigated by electrophoresis 

is limited (Davis, 1986). 

 

1.7.3.5 Ion-exchange chromatography 

 

This method depends on the differences in net charges of the amino acids at a certain pH. In 

ion-exchange chromatography, the stationary phase consists of an insoluble matrix (e.g. 

synthetic resin granules) packed in a column. The resin is named either a cation-exchange 

resin or an anion-exchange resin according to the charged groups attached to the matrix 

granules. The pH of the buffer that is used to elute the column may have a role in the charge 

of the resin. Once the protein hydrolysate is added to a column filled with cation-exchange 



27 
 

resin, ions that have greater positive charge bind stronger to the resin than those of the 

negative ones. Since amino acids have different charges at a given pH, the amino acids elute 

at different times (Rawn, 1989). 

 

1.7.3.6 High-performance liquid chromatography (HPLC) 

 

High-performance liquid chromatography (HPLC) has replaced ion-exchange and thin-layer 

chromatography in many laboratories. In HPLC the eluent flow is pushed under a hydrostatic 

pressure of 350-700 kg cm-2 through a stainless steel column. The driving force of hydrostatic 

pressure is achieved by high pressure pumps which increase the performance of regular 

column chromatography that uses gravity as the driving force. In HPLC column, the particles 

are very finely divided with excellent mechanical strength. The separations obtained in HPLC 

are much better than in the conventional chromatography and smaller samples can be 

analyzed (Rawn, 1989). 

 

1.7.4 Biochrom-30 amino acid analyzer 

 

The Biochrom-30 amino acid analyzer is actually an HPLC instrument dedicated for 

quantification of amino acids. The sample contain a mixture of amino acids is loaded to a 

column filled with cation-exchange resin. The amino acids are separated by buffers of 

different pH and ionic strength (mobile phase) that are pumped into the column (stationary 

phase). The column temperature is controlled accurately to produce the required separation.  

 

The resin in the column has a negative charge and the amino acids are loaded to the resin 

mixed in low pH citrate buffers (i.e. pH 2.2-4.25) ensuring all amino acids to be positively 

charged for a strong binding to the resin. The use of buffers with different pH enhances 

separation of amino acids by changing the isoionic points of individual amino acids. A 

picture for the Biochrom 30 amino acid analyzer is illustrated in  

Figure  1-4. 

 

As an example, the ionization state of aspartic acid as a function of pH is shown in  

Figure  1-1 (Condon, 1986). At pH 1 aspartic acid has a net positive charge and as the pH 

increases to 2.8 the α carboxyl group loses a proton, thus the molecule gets negatively 

charged and called to be at the isoionic state. The carboxyl group in the side chain is less 
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acidic than α carboxyl group and the hydrogen ion concentration is still enough to prevent its 

ionization. When the pH reaches 6.6 the side chain carboxyl group is now ionized with two 

negative charges and one positive charge. At pH 11 the molecule has two negative charges 

and no positive one (Condon, 1986). 

 

 

 
 

Figure  1-4: Biochrom 30 amino acid analyzer 
 

 

Another example is the lysine in which the side chain is an amino group. The isoionic point is 

9.7 and it is the side chain amino group that gets charged at pH 9.7, it is more basic than the α  

amino group as illustrated in Figure  1-6. 

 

 

 
 

Figure  1-5: Ionization state of aspartic acid as a function of pH (Condon, 1986) 
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Figure  1-6: Ionization of lysine as function of pH (Condon, 1986) 
 

 

The temperature of the analytical column plays an important role in the resin amino acid 

reaction and therefore precisely controlled with peltier elements. Increasing the column 

temperature decreases the retention time (the time that amino acids stay in the column) for 

the amino acids. Also, the addition of the organic solvents to buffers helps in separation of 

some amino acids. They change the affinity of the amino acids to the resins, which then 

changes the retention time. For example, both threonine and serine have similar isoionic 

points but their side chains are different, threonine has one extra methyl group which makes it 

more hydrophobic. The resolution between those amino acids can be improved by addition of 

1-2% isopropanol to the first analytical buffer which causes faster elution for the more 

hydrophobic amino acids (Condon, 1986). 

 

The ion exchange process that occurs in the Biochrom amino acid analyzer can be 

summarized as: 

 

SO3 Na+—MATRIX—H3
+N—CHR—COOH= MATRIX—SO3 

-H3
+ N—CHR—COOH+ Na+ 

 

Separation of the amino acids from the matrix is influenced by increasing the pH to move the 

equilibrium towards the left. 

 

The resin used in Biochrom amino acid analyzer is composed of spherical polystyrene beads. 

The chains of the polystyrene beads are cross linked by divinylbenzene groups (DVB) and 

are also sulphonated to provide them with negative charge. 
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The ninhydrin is pumped to the heated reaction coil to get mixed with eluent. In the reaction 

coil, the amino acids react with the ninhydrin to form colored compounds which are directly 

proportional to the quantity of the amino acid present. The eluent-ninhydrin mixture present 

in the reaction coil is then pumped to the photometer unit to determine the amount of each 

colored compound by measuring the amount of light absorbed at two wavelengths, 440 nm 

and 570 nm. 

 

The photometer output is linked to 2 channels computer-based integration system. One 

channel for the output of the 440 nm photometer, and the other is for the output of the 570 nm 

photometer. The concentrations of the amino acids are recorded as a series of peaks. Each 

amino acid is identified by its retention time, and the quantity of each amino acid is indicated 

by the area under the peak. Since the amino acid analyzer is a comparative instrument, a 

calibration run should be performed with known standards at regular intervals (e.g. in every 

batch of 15-20 analysis). Following each sample analysis, the column is flushed by pumping 

a strong base through it followed by a low pH buffer, which equilibrates the column before 

the next analysis (Davis, 1986). 

 

 

1.7.5 Detection systems in amino acid analyzers 

 

1.7.5.1 Fluorescence detection 

 

Fluorescence detection is a highly sensitive method where the fluorescence intensity is 

proportional to the quantity of the light absorbed and the photoluminescence efficiency. Only 

few of the common amino acids have their own fluorescence, and in order to form a 

fluorescent compound, amino acids are required to be reacted with fluorogenic reagent. The 

fluorogenic reagents that are widely used in amino acid analysis are fluorescamine and OPA. 

Usually, the detection of the fluorophores takes place with an excitation filter between 340 

nm and 370 nm and a long pass emission filter of 425 nm. 

 

Fluorescence detection systems have many disadvantages which need to be overcome for 

maximum response. Such disadvantages as: 
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• System overheating (insufficient cooling of the source). 

• Isoindoles structures are formed in the fluorogenic reaction of OPA 

and amino acids. They have excitation maximum at 280 nm (below 

the range of some sources). 

• Fixed slit widths do not allow optimization of sensitivity and 

reduction in stray light. 

 

1.7.5.2 "inhydrin detection 

 

Ninhydrin is a strong oxidizing agent and leads to the oxidative deamination of the amino 

group freeing ammonia, carbon dioxide, aldehyde with one less carbon atom, and 

hydrindantin (reduced form of nihydrin). Ammonia, one of the outputs of the ninhydrin 

reaction with amino acids, reacts with hydrindantin and another molecule of ninhydrin to 

produce a purple substance called Ruhemann’s purple with an absorption maxima at around 

570 nm. This absorbance is a linear function of the amount of the α-amino groups present 

enabling quantitative and convenient colorimetric assay for all organic compounds with  the 

α-amino groups. The reaction is catalyzed at high temperatures, and Biochrom analyzer has 

post column reactor that is controlled at 135Co for short time. This allows stable and 

reproducible detection. It looks like that hydrindantin is required in the detection reagent to 

stop a side reaction that may reduce the amount of Ruheman’s purple formed (Lamothe, et 

al., 1973). 

 

Upon reaction of ninhydrin with the imino acids (that do not have free amino groups), such as 

proline and hydroxyproline, the product will be bright yellow with an absorption maxima at 

around 440 nm. Measurement of the imino groups below 440 nm does not provide true 

readings with a false response due to the absorbance of unreacted ninhydrin (Davis, 1986). 

 

1.7.6 Interpretation of amino acid analysis 

 

Amino acid analysis plays a major role in protein chemistry as it supplies the initial and 

important information for the analysis of the protein structures. By using recombinant DNA 
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technology many different proteins can be produced. At this point, amino acid analysis is 

significant to confirm the predicted structure. Post-transitional modifications generate 

hundreds of different amino acids. Such modifications include phosphorylation, acetylation, 

nitration, hydroxylation and others. Those amino acids are distinguished from the naturally 

occurring amino acids by retention time and also by 570/440 peak area ratios e.g. iodination 

and hydroxylation reduce the 570/440 ratio, and phosphorylation reduces the retention time 

(Hodisan, et al., 1998; Kadowaki, 1993). 

 

In humans, analysis of amino acid profiles allows assessment of nutritional and health 

disorders. It detects the classic homozygote amino acid disorder and gives an indication about 

the secondary disorders as well as mildly expressed inborn errors (Briddon, et al., 1987). 

Also, it helps in diagnosis and treatment of nervous and mental diseases caused by problems 

in metabolism of amino acids such as increased hydroxyproline, hyperlysinemia and 

hyperglycinemia may indicate mental retardation, high valboric acid, leucine, and isoleucine 

may cause coma (Lakhan, et al., 2008; Bazinet, et al., 2006).  

 

1.7.7 "inhydrin pharmacology and toxicology 

 

Upon ingestion by laboratory animals and cell cultures, ninhydrin has induced adverse and 

beneficial effects. It appeared to promote carcinogenesis in the multistage mouse skin 

carcinogenesis assay. Tumor promotion was accompanied by high activity of the enzyme γ-

glutamyl transpeptidase. But it appeared to be as anti-carcinogenic in Ehrlich ascitis 

carcinoma cells. Ninhydrin gave protection against the damage of the mucosa in the rats that 

may be induced by ethanol. The ninhydrin anti-ulcergenic activity may be due to its 

characterstic of oxidizing the SH groups to disulphide bonds. (Friedman, 2004; Al-Shabanah, 

et al., 2000). 

 

Although ninhydrin has not been proved to be diabetogenic, at low concentration it was toxic 

to rat beta cells, and at high concentrations destroyed all the islet cells. Ninhydrin inhibited 

the enzyme glucokinase in the pancreatic cells, probably by oxidation of SH groups of the 

enzyme. Ninhydrin destroys the pancreatic cells before it causes diabetes (Friedman, 2004) 

It has been reported that ninhydrin decreased the activity of the antioxidative enzymes 

(glutathione peroxidase, catalase, superoxide dismutase) in pancreatic cells, inhibited the 
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aconitase enzyme in the liver cells, and caused neurological changes in rodents (Picton, et al., 

2002). 

 

The observations cited by many scientists suggest that laboratory workers and others should 

take precautions and avoid exposure to ninhydrin (Friedman, 2004). 

 

1.7.8 Utilization of wheat proteins as food and feed 

 

Wheat grains contain little amount of protein with an average of about 6-16 % dry weight 

Nevertheless; they provide over 60 million tons of proteins annually for the nutrition of 

livestock and humans (Uauy, et al., 2006). Beside its nutritional importance, wheat seed 

proteins also promote the utilization of the grain in food processing; it is consumed by human 

after processing into bread and other foods. It is not surprising, therefore, that wheat proteins 

have been a hot topic of research for over two hundred years (Shewry, et al., 2002). 

 

As mentioned earlier, wheat proteins are composed of four different types of proteins; 

albumins, globulins, gliadins and glutenins. Glutamine and proline amino acids, constitute 

about 30-70% of the whole wheat proteins, form a viscoelastic network in dough and are 

responsible for the ability to process wheat to form food product such as bread and pasta 

(Shewry, et al., 2002).  

 

Normal growth of humans and maintenance of their health require all amino acids to be 

provided in suitable quantities as well as in biologically utilizable forms (bioavailability). All 

of the amino acids are supplied by wheat with variable concentrations. The most limiting 

amino acid in wheat is lysine (Elango, et al., 2009). 

 

Proteins are hydrolyzed in the stomach by proteases such as trypsin, chymotrypsin, pepsin, 

pepsinogen and others. Upon hydrolysis, amino acids are utilized in the body to help in 

different aspects. For example, they are utilized in hormones that influence the metabolism, 

utilized to make enzymes that catalyze biochemical reactions. Also, they are utilized to make 

hemoglobin to carry oxygen throughout the body and antibodies that help in fighting the 

infections and building the immune system. Amino acids even have role in building and 

repairing ligaments, muscles, tendons, organs, glands and nails. Moreover, some of them act 

as neurotransmitters to carry messages within the neurons. In other words, all of the amino 
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acids are important to human body functions and a deficiency in just one of them can 

negatively and severely affect our health (Spurway, 2008; Kimball, 2009; Rhoads, et al., 

2009).
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2 Materials and Methods 

 

 

2.1 Reagents, solutions and buffers 

 

Sodium citrate buffers (pH 2.2, 2.65, 3.35, 4.25 and 8.6) and ninhydrin solution were 

purchased from Biochrom Co., UK. Ninhydrin solution was prepared by mixing Ultra 

ninhydrin and Ultra Solve plus solutions and purged by N2 for 10 minutes as advised by the 

producer company Biochrom, UK. Amino acid standard was prepared by diluting the Sigma 

AAS18 standard with sodium citrate loading buffer (pH 2.2) to yield 5 nmol 20 µL-1 for each 

amino acid. 6 N HCl solution was prepared by adding 497 ml concentrated HCl (37%) to 503 

ml deionized water. Performic acid was prepared by adding 900 ml 88% formic acid with 100 

ml 30 % H2O2. All chemicals and buffers that were used are listed in Appendix A. 

 

2.2 Equipments 

 

All equipments that were used are listed in Appendix B. 

 

2.3 Materials 

 

Seeds of modern bread and durum wheats (T. aestivum and T. durum), primitive spelt wheats 

(Triticum aestivum ssp. spelta) and wild emmer wheats (T. dicoccoides) were kindly provided 

by Cukurova University Research Farm and Prof. Đsmail Çakmak. The spelt wheats were 

selected for either high or low grain N content (i.e. four low-N and five high-N genotypes) 

whereas modern and wild emmer wheats were selected randomly. Following drying at 40oC 

for 2 h all seeds were milled in a vibrating agate cup mill (Pulverisette 9, Fritsch GmbH, Idar-

Oberstein, Germany) for 5 min at 700 RPM. The resulting whole meal wheat flour was used 

in the experiments. In the optimization of the non-oxidized amino acid experiments T. durum 

cv. Balcali 2000 was used, whereas in the optimization of the oxidized amino acid 

experiments a standard reference material (SRM 8436 Durum Wheat Flour, National Institute 

of Standards and Technology, Gaithersburg, USA) was used. In experiments conducted to 
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reveal the relationships between amino acids, N, Fe and Zn, all seed materials were 

evaluated. A list of the seed materials used in all experiments is given in Table 2-1. 

 
 

 

Table  2-1:List of seed material used in the experiments 
 

Genotype Species/subspecies Used in experiment

Balcali 2000 T. durum AA profiling and correlation with nutrients, optimization of non-oxidized AA

Tuten T. durum AA profiling and correlation with nutrients

Gediz T. durum AA profiling and correlation with nutrients

EGE 2005 T. durum AA profiling and correlation with nutrients

Zenit T. durum AA profiling and correlation with nutrients

Meram  T. durum AA profiling and correlation with nutrients

Yelken T. durum AA profiling and correlation with nutrients

Kumbet T. durum AA profiling and correlation with nutrients

Selcuklu T. durum AA profiling and correlation with nutrients

Yilmaz T. durum AA profiling and correlation with nutrients

Karahan T. aestivum AA profiling and correlation with nutrients

Adana 99 T. aestivum AA profiling and correlation with nutrients

Ahmetaga T. aestivum AA profiling and correlation with nutrients

Alpu 1 T. aestivum AA profiling and correlation with nutrients

Gerek T. aestivum AA profiling and correlation with nutrients

Bezostaja T. aestivum AA profiling and correlation with nutrients

Tosun bey T. aestivum AA profiling and correlation with nutrients

Kirgiz T. aestivum AA profiling and correlation with nutrients

C-1252 T. aestivum AA profiling and correlation with nutrients

Sp 211 T. aestivum ssp. spelta AA profiling and correlation with nutrients

Sp 207 T. aestivum ssp. spelta AA profiling and correlation with nutrients

Sp 89 T. aestivum ssp. spelta AA profiling and correlation with nutrients

Sp 21 T. aestivum ssp. spelta AA profiling and correlation with nutrients

Sp 663 T. aestivum ssp. spelta AA profiling and correlation with nutrients

Sp 244 T. aestivum ssp. spelta AA profiling and correlation with nutrients

Sp 926 T. aestivum ssp. spelta AA profiling and correlation with nutrients

Sp 818 T. aestivum ssp. spelta AA profiling and correlation with nutrients

Sp 804 T. aestivum ssp. spelta AA profiling and correlation with nutrients

TD 536  T. dicoccoides AA profiling and correlation with nutrients

TD 531  T. dicoccoides AA profiling and correlation with nutrients

TD 510  T. dicoccoides AA profiling and correlation with nutrients

TTD  27  T. dicoccoides AA profiling and correlation with nutrients

TD 195 T. dicoccoides AA profiling and correlation with nutrients

TD 391 T. dicoccoides AA profiling and correlation with nutrients

TTD 28 T. dicoccoides AA profiling and correlation with nutrients

TD 390 T. dicoccoides AA profiling and correlation with nutrients

TTD 89 T. dicoccoides AA profiling and correlation with nutrients

TD 636 T. dicoccoides AA profiling and correlation with nutrients

TTD 86 T. dicoccoides AA profiling and correlation with nutrients

TTD 75  T. dicoccoides AA profiling and correlation with nutrients

TD 399 T. dicoccoides AA profiling and correlation with nutrients

TTD 18 T. dicoccoides AA profiling and correlation with nutrients
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2.4 Methods 

 

2.4.1 Mineral nutrient analysis of wheat flour samples 

 

Whole meal flour of wheat genotypes were analyzed for K, P, Mg, S, Ca, Fe, Mn, Zn and Cu 

concentrations by ICP-OES (Vista-Pro Axial; Varian Pty Ltd, Mulgrave, Australia) following 

acid digestion by a microwave digestion system (MarsExpress; CEM Corp., Matthews, NC, 

USA). Flour N concentration was measured by an automated N analyzer (TruSpec CN, 

LECO Corp., Michigan, USA). Protein concentration was calculated by multiplying the N 

concentration by 5.83 (Merrill and Watt, 1973) as needed. All results were validated by the 

certified values of a standard reference material (SRM 8436 Durum Wheat Flour, National 

Institute of Standards and Technology, Gaithersburg, USA). The same standard reference 

material (SRM 8436 Durum Wheat Flour) was also used in a round robin amino acid analysis 

in which two independent laboratories (i.e. Biochrom Co. and Ansynth Service B.V. 

laboratories) participated by utilizing the traditional 24 h reflux hydrolysis with 6 N HCl to 

compare the results of the oxidized and non-oxidized hydrolysis experiments. Currently, the 

24h reflux method is known as the most common method of protein hydrolysis that yields 

high recovery of amino acids (Basak, et al., 1993; Lupano, 1994). In view of its 

reproducibility and good yields, the method has been adopted by the EU and by many other 

countries as the accredited method of protein hydrolysis. The two laboratories Biochrom Co. 

and Ansynth Service B.V. had kindly agreed to assess the merit of our microwave assisted 

method against the classical reflux method. Three g of SRM 8436 Durum Wheat Flour was 

sent to each of these laboratories and the results were compared by linear regression analysis. 

 

2.4.2 Optimization of microwave-assisted hydrolysis conditions 

 

There are two methods that were optimized to gain high recovery of amino acids; the first one 

is to recover the non-sulfur containing amino acids (which is called non-oxidized method) 

and the second one was to recover the sulfur containing amino acids (which is called oxidized 

method). The non-oxidized and oxidized methods should be applied to each sample to 

recover both non-sulfur containing and sulfur-containing amino acids. As mentioned earlier, 

large amounts of methionine and cystine are lost due to degradation in the regular hydrolysis 
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method. Oxidation of those amino acids allows an accurate quantification of methionine as 

methionine sulphone (Met sln) and cystine as cysteic acid (Cyst acid). However, as this 

method causes a major loss of tyrosine, phenylalanine, histidine and arginine, it is typically 

used in parallel with the non-oxidizing methods to specifically quantify the sulfur-containing 

amino acids. 

 

2.4.2.1 Optimization of the non-oxidized method 

 

For optimization of microwave-assisted non-oxidized hydrolysis of wheat flour T. durum cv. 

Balcali 2000 was used as a model genotype. For this purpose, three variables were evaluated 

(i.e. sample mass, hydrolysis period and temperature) in three different experiments. For each 

variable tested, the obtained experimental results were presented along with the results 

obtained in the optimal conditions where 200 mg of wheat flour was hydrolyzed for 3 h at 

150oC. 

 

The closed-vessel microwave system used in the acid hydrolysis tests was purchased from 

CEM Co., USA (Model: MarsExpress). The system was capable of processing up to 40 

samples simultaneously by utilizing infrared sensors for temperature monitoring of individual 

vessels. Whole meal wheat flour samples (i.e. 100, 200, 300, 400 or 500 mg [±1 mg]) were 

hydrolyzed with 5 ml of 6 N HCl in 55 ml Teflon vessels with self-regulating pressure 

control. Vessels were capped immediately after purging the acid-sample suspension with N2 

for one minute to maintain an O2 free environment and prevent oxidation of amino acids 

during hydrolysis. The microwave systems was programmed for ramping to the desired 

temperature (i.e. 130, 150 or 170oC, [±5oC]) within 30 min and then stay constant for a given 

period of time (i.e. 1, 2, 3 or 4 h). Upon completion of the hydrolysis period, vessels were 

cooled down to room temperature in a water bath. The resulting hydrolysates were added to 

10 ml with 6 N HCl and spikes of 1 ml was added with 550 µl of 32 % NaOH (for adjusting 

the pH to around 2.2, [±0.2]) and 5 ml of sodium citrate loading buffer (pH 2.2) in a total 

volume of 6.55 ml. Finally the samples were filtered through 0.22 µm syringe-tip filters in to 

2 ml glass vials and stored at +4oC until analysis. 

 

Amino acids were analyzed by an automated amino acid analyzer (Biochrom 32 Oxidized 

Hydrolysate System, Biochrom Co., Cambridge, UK) with post column ninhydrin 
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derivatization. Sample injection volume was 20 µL for standards and samples. All essential 

amino acids were quantified except methionine, cysteine and tryptophan, which were 

destroyed during hydrolysis, asparagine and glutamine, which were converted to aspartic acid 

and glutamic acid respectively. In this method, the following amino acids were quantified: 

Aspartic acid (Asp), threonine (Thr), serine (Ser), glutamic acid (Glu), proline (Pro), glycine 

(Gly), alanine (Ala), valine (Val), isoleucine (Ile), leucine (Leu), tyrosine (Tyr), 

phenylalanine (Phe), histidine (His), lysine (Lys) and arginine (Arg). 

 

2.4.2.2 Optimization of the oxidized method 

 

Optimization of the oxidized method was conducted by three different experiments to 

evaluate the effect of three variables (i.e. sample mass, HCl volume and concentration) on the 

recovery of sulfur-containing amino acids. In the oxidized method, SRM 8436 Durum Wheat 

Flour (National Institute of Standards and Technology, Gaithersburg, USA) was initially 

subjected to an oxidation process by incubating the samples in performic acid at 0oC for 16 h 

prior to the hydrolysis treatments. For every 10-20 mg of protein (or to 25-200 mg of wheat 

flour), 5 ml of performic acid was added. Prior to hydrolysis, any residual performic acid was 

quenched by the addition of 0.84 g sodium metabisulphite in each sample. 

 

Following the oxidation of flour samples of different masses (i.e. 25, 50, 100 or 200 mg) the 

samples were then hydrolyzed in 5 ml 6 N, 10 ml 6 N and 5 ml 12 N HCl for 3 hours at 

150oC in a closed-vessel microwave system (CEM Co., USA, Model: MarsExpress). After 

adding all hydrolysates to 10 ml with 6 N HCl, sample preparation for amino acid analysis 

was finalized by spiking of a 1 ml hydrolysate, adjusting the pH to around 2.2 (± 0.2) and 

adding the loading buffer as follows: (i) for 5 ml 6 N HCl hydrolysates, 1 ml of hydrolysate 

was added with 5.175 ml sodium citrate loading buffer and 375 µl of 32% NaOH, (ii) for 10 

ml 6 N HCl hydrolysates, 1 ml of hydrolysate was added with 5.1 ml sodium citrate loading 

buffer and 450 µl of 32% NaOH, (iii) for 5 ml 12 N HCl hydrolysates, 1 ml of hydrolysate 

was added with 4.9 ml sodium citrate loading buffer, 630 µl of 32% NaOH and 20 µl of 6 N 

HCl. The resulting oxidized hydrolysates were then quantified for cysteic acid and 

methionine sulphone with Biochrom 30 amino acid analyzer as described in section 2.4.2.1. 

Additionally, SRM 8436 Durum Wheat Flour was analyzed for cysteic acid and methionine 
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sulphone by two independent laboratories (i.e. Biochrom Co. and Ansynth Service B.V. 

laboratories). 

 

2.4.2.3 Standard preparation 

 

Mixed amino acids standard was used the same way all over this project and it was prepared 

as the following: 

 

The total amino acids standard was prepared by adding the following volumes together: 

 

• 1 volume of AAS 18(sigma std) concentration=2.5 µ mole/ml. 

• 1 volume of methionine sulphone, concentration= 2.5 µ mole/ml. 

• 1 volume of methionine suphoxide, concentration= 2.5 µ mole/ml. 

• 1 volume of cysteic acid, concentration =2.5 µ mole/ml. 

• 1 volume of ornithine, concentration= 2.5 µ mole/ml. 

• 5 volumes of sodium citrate loading buffer with pH=2.2 

 

Final concentration for all amino acids = 5 nmole 20 µl-1, except cystine= 2.5 nmole 20 µl-1. 

 

• Methionine sulphone (2.5 µ mole/ml) preparation: 

=2.5 x 181.21(MW) x 10-6 ml-1 =0.000453 g ml-1 or 0.0453 g in 5ml loading buffer, then take 

50 µl from the mixture and add it to 950µl loading buffer. 

 

• L-Ornithine (2.5 µ mole ml-1) preparation: 

2.5x168.62(MW)x10E-6= 0.000422 g ml-1 loading buffer  or 0.0422 in 5 ml buffer, then take 

50 µl from the mixture and add it to 950 µl loading buffer. 

 

• Methionine sulphoxide (2.5 µ mol ml-1) preparation: 

2.5x165.21 (MW)x10E-6=0.000413 g ml-1 loading buffer, or 0.0413 g in 5 ml loading buffer, 

then take 50 µl from the mixture and add it to 950 µl loading buffer. 

 

• Cystic acid (2.5µ mole ml-1) preparation: 
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2.5x187.13(MW)x10E-6= 0.000468 g ml -1loading buffer, or o.o468 g in 5 ml loading buffer, 

then take 50 µl from the mixture and add it to 950 µl loading buffer. 

 

2.4.2.4 Statistical analysis of results 

 

In the optimization experiments, each treatment consisted of three independent replications. 

Analysis of variance procedure in JMP statistical package (version 5.0.1a, SAS Institute Inc., 

Cary, NC, 1989–2002) was used to test for treatment effects. Means were separated by 

Student’s least significant difference (LSD) test when a significant (P<0.05) difference 

occurred. 

 

2.4.2.5.Calculations 

 

In order to have the final result of each amino acid and their total in units of g/100 g WF, the 

calculations were conducted as follows: 

• Weight of sample used = W 

• Total volume of hydrolysate= V 

• Injection volume= 20 µl 

• Amount of hydrolysate used + Buffer+ NaOH = 1000+5000+550=6550 µl 

• 1 mole = 1000000000 n moles  

• The result for each amino acid that is obtained from the AA analyzer in nano mole= 
X 

• Molecular weight of each amino acid =M  

• Amount of amino acid( in grams) for any amino acid found in 100 g wheat flour 
(100000 mg) =F 

• F=10-9 x M x X x 100000 / (W x 20/(10 x 6550)) 

 

 

Example: if the molecular weight for specific amino acid is 150, result obtained from the AA 

analyzer is 5, total volume of hydrolysate is 10, then F= 1.22 g/100 g WF for that specific 

amino acid. 
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3 RESULTS 

 

 

3.1 Results of non-oxidized hydrolysis method 

 

3.1.1 Optimization of temperature 

 

Performing the hydrolysis at different temperatures (i.e. 130, 150 or 170oC) affected the 

recovery rates of individual amino acids (Table 3-1). Most of the amino acids showed highest 

recovery at the 150oC hydrolysis temperature, however the recovered concentration values 

for Arg, Glu, Gly, His, Pro, Thr and Tyr were not statistically different following hydrolysis 

at 130, 150 or 170oC. Nevertheless, the absolute concentrations of 12 out of 16 individual 

amino acids were higher and accordingly the sum of all amino acids was significantly higher 

at 150oC (Table 3-1). Under the given conditions 150oC is suggested to be the optimum 

hydrolysis temperature for majority of the amino acids in wheat flour with a few exceptions. 

Increasing the hydrolysis temperature from 150 to 170oC positively affected liberation of Val 

and Ile and significantly increased Leu concentration. On the contrary, concentration of Asp 

was severely reduced at 170oC. Reduction of hydrolysis temperature to 130oC resulted in 

decline of concentration values for all amino acids except Tyr. Although not statistically 

significant, recovery of Tyr was increased with reduction in hydrolysis temperature from 170 

to 130oC. 
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Table  3-1Amino acid concentration (g/100 g of whole wheat flour) as influenced by 

hydrolysis temperature 

Amino acid 130 
o
C 150 

o
C 170 

o
C 

Ala  0.42
a
±0.01

b
 B
c
fg
d
 0.44±0.02 Ah 0.43±0.01 ABfg 

Arg 0.44±0.01 Af  0.54±0.03 Aef 0.53±0.06 A de 

Asp 0.53±0.04 Ade 0.59±0.02 Ae  0.31±0.04 Bhi 

Glu 3.34±0.07 Aa 3.70±0.13 Aa 3.47±0.19 Aa 

Gly 0.45±0.03 Aef 0.48±0.02 Agh 0.45±0.04 Af  

His 0.29±0.02 Ahij 0.32±0.01 Ai 0.31±0.04 Ahi 

Ile 0.27±0.06 Bj 0.36±0.05 ABi 0.45±0.03 Af  

Leu 0.64±0.04 Cc 0.72±0.02 Bc 0.80±0.02 Ac 

Lys 0.29±0.00 Bij 0.35±0.02 Ai 0.34±0.03 ABhi 

Phe 0.35±0.06 Bjhi 0.47±0.03 Agh 0.37±0.02 Bgh 

Pro 1.03±0.03 Ab 1.16±0.06 Ab 1.15±0.10 Ab 

Ser 0.59±0.05 Acd 0.65±0.01 Ad 0.47±0.08 Bef 

Thr 0.30±0.02 Ahij 0.36±0.02 Ai 0.31±0.04 Ahi 

Tyr 0.37±0.09 Afgh 0.33±0.01 Ai 0.28±0.03 Ai 

Val 0.34±0.10 Bghij 0.52±0.06 Afg 0.59±0.03 Ad  

Total
e
 9.65 C 11.00 A 10.27 B 

Recovery
f
 (%) 75.0 85.5 79.8 

 

aMean value and b standard deviation of three independent analysis results. c Lack of capital letters in 

common indicate differences (p < 0.05) between hydrolysis temperatures within a given amino acid 

and d lack of small letters in common indicate differences (p < 0.05) between amino acids within a 

given hydrolysis temperature (Fisher’s LSD). 

 

3.1.2 Optimization of hydrolysis period 

 

Among the variables investigated to find the optimum hydrolysis conditions, changing the 

hydrolysis period was the most effective on the liberation of amino acids from the wheat 

flour matrix. The total recovery was highest (i.e. 85.5 %) in the 3 h hydrolysis treatment 

(Table 3-2).Consequently, concentrations of all individual amino acids (except Pro) were 

significantly higher in the 3 h hydrolysis treatment. Reducing (i.e. 1 and 2 h) or prolonging 

the hydrolysis time (i.e. 4 h) resulted in significant reductions in the recovery rates of amino 

acids, revealing that 3 h was the optimum period of time for microwave-assisted hydrolysis 

of wheat flour (Table 3-2). The second most abundant amino acid Pro in the wheat flour 

exhibited an exceptional insensitivity to hydrolysis time. Within 2 to 4 h of hydrolysis period, 
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there was no significant change in Pro concentration (Table 3-2); however at 1 h hydrolysis 

treatment Pro concentration and thus recovery rate was reduced significantly. In contrast, the 

most abundant Glu, together with Ala and Gly concentrations were highly affected by the 

duration of hydrolysis (Table 3-2). A similar and significant reduction was detected in the 

recovery rates of individual amino acids at the 2 or 4 h hydrolysis treatments compared to the 

optimum period of 3 h. Obviously, 1 h was totally insufficient for the hydrolysis of wheat 

flour matrix, particularly for Phe, Ser, Tyr and Thr and concentrations of these amino acids 

were 3-3.5 fold higher at the optimum hydrolysis period of 3 h (Table 3-2). 

 

 

 

Table  3-2: Amino Acid Concentration (g/100 g of Whole Wheat Flour) as 
Influenced by Hydrolysis Period 

 

Amino acid 1 h 2 h 3 h 4 h 

Ala  0.20
a
±0.02

b
 D

c
de

d
 0.28±0.01 Bgh 0.44±0.02 Ah 0.26±0.00 Cg 

Arg 0.20±0.01 Cdef 0.34±0.02 Bef 0.54±0.03 Aef 0.32±0.01 Bef 

Asp 0.21±0.03 Cde 0.37±0.01 Bde 0.59±0.02 Aef 0.34±0.00 Be  

Glu 1.85±0.09 Da 2.67±0.08 Ba 3.70±0.13 Aa 2.43±0.02 Ca 

Gly 0.18±0.02 Ddefg 0.31±0.01 Bfg 0.48±0.02 Agh 0.27±0.00 Cg 

His 0.13±0.02 Cfgh 0.21±0.00 Bi 0.32±0.01 Ai 0.20±0.00 Bhi 

Ile 0.17±0.01 Befgh 0.19±0.02 Bi 0.36±0.05 Ai 0.21±0.02 Bh 

Leu 0.34±0.03 Cc 0.53±0.02 Bc 0.72±0.02 Ac 0.51±0.01 Bc 

Lys 0.14±0.01 Cefgh 0.21±0.01 Bi 0.35±0.02 Ai 0.20±0.00 Bh 

Phe 0.13±0.02 Cfgh 0.26±0.04 Bh 0.47±0.03 Agh 0.30±0.04 Bf 

Pro 0.94±0.10 Bb 1.16±0.01 Ab 1.16±0.06 Ab 1.06±0.03 ABb 

Ser 0.19±0.06 Cdef 0.41±0.01 Bd 0.65±0.01 Ad 0.37±0.01 Bd 

Thr 0.12±0.01 Cgh 0.22±0.01 Bi 0.36±0.02 Ai 0.21±0.00 Bh 

Tyr 0.10±0.01 Ch 0.19±0.01 Bi 0.33±0.01 Ai 0.17±0.00 Bi 

Val 0.25±0.02 Bd 0.29±0.03 Bgh 0.52±0.06 Afg 0.30±0.02 Bf 

Total
e
 5.14 C 7.66 B 11.00 A 7.16 B 

Recovery
f
 (%) 40.9 59.5 85.5 55.6 

 
a Mean value and b standard deviation of three independent analysis results. c Lack of capital 
letters in common indicate differences (p < 0.05) between hydrolysis periods within a given 
amino acid and d lack of small letters in common indicate differences (p < 0.05) between 
amino acids within a given hydrolysis period (Fisher’s LSD). 
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3.1.3 Optimization of sample mass 

 

Among the range of sample masses evaluated (100-500 mg), it was clearly shown that 200 

mg was the optimum by yielding the highest recovery rate. With the exception of Tyr, His 

and Leu, liberation of all amino acids analyzed were significantly higher when a sample mass 

of 200 mg was used in the given hydrolysis conditions (Table 3-3). Variations in sample mass 

in the range of 100 to 500 mg had no significant effect on recovery of Leu. In the case of Tyr, 

100 mg sample mass yielded the highest recovery and the recovery rate reduced with the 

increase in sample mass. In general, the values determined for individual amino acids were 

enhanced by increasing the sample mass from 100 to 200 mg. However, increasing the 

sample mass over 200 mg and up to 500 mg favored incomplete hydrolysis conditions, 

particularly for His, Tyr, Phe, Ser and Thr. At the 500 mg sample level, the concentration 

values and thus recovery rates were significantly reduced for all amino acids analyzed (Table 

3-3). In the optimum sample mass conditions of 200 mg, Glu, Pro and Leu were the most 

abundant amino acids in the wheat flour whereas lowest concentrations were determined for 

Lys, Tyr and His (Table 3-3). 
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Table  3-3:. Amino Acid Concentration (g/100 g of Whole Wheat Flour) as 
Influenced by Sample Mass 

 

Amino acid 100 mg 200 mg 300 mg 400 mg 500 mg 

Ala  0.40
a
±0.02

b
 B
c
fg
d
 0.44±0.02 Ah 0.41±0.03 Bdef 0.41±0.02 Bef 0.38±0.01 Bef 

Arg 0.45±0.03 BCef 0.54±0.03 Aef 0.46±0.06 Bdef 0.42±0.01 BCef 0.38±0.02 Cef 

Asp 0.55±0.02 Ad 0.59±0.02 Aef 0.55±0.05 Acde 0.52±0.04 ABd 0.46±0.06 Bde 

Glu 3.21±0.19 ABa 3.70±0.13 Aa 3.12±0.53 Ba 3.22±0.12 ABa 2.87±0.14 Ba 

Gly 0.46±0.01 ABef 0.48±0.02 Agh 0.39±0.11 ABdef 0.43±0.03 ABe 0.38±0.04 Bef 

His 0.34±0.01 Agh 0.32±0.01 ABi 0.30±0.02 Bf 0.13±0.04 Ci 0.16±0.02 Cj 

Ile 0.18±0.02 Ci 0.36±0.05 Ai 0.27±0.05 Bf 0.28±0.02 Bh 0.26±0.05 Bghi 

Leu 0.66±0.04 Ac 0.72±0.02 Ac 0.70±0.15 Abc 0.77±0.03 Ac 0.70±0.04 Ac 

Lys 0.32±0.02 ABh 0.35±0.02 Ai 0.26±0.07 BCf 0.27±0.01 BCh 0.24±0.01 Cij 

Phe 0.48±0.02 Ae 0.47±0.03 Agh 0.35±0.05 Bef 0.36±0.01 Bfg 0.34±0.01 Bfgh 

Pro 0.95±0.06 Bb 1.16±0.06 Ab 0.90±0.21 Bb 0.95±0.03 Bb 0.87±0.05 Bb 

Ser 0.61±0.03 ABcd 0.65±0.01 Ad 0.61±0.05 Acd 0.58±0.05 ABd 0.49±0.11 Bd 

Thr 0.28±0.02 Bh 0.36±0.02 Ai 0.31±0.05 ABef 0.30±0.01 Bgh 0.25±0.03 Bhi 

Tyr 0.58±0.01 Ad 0.33±0.01 Bi 0.33±0.01 Bef 0.28±0.04 Bh 0.21±0.05 Cij 

Val 0.34±0.01 Bgh 0.52±0.06 Afg 0.39±0.11 Bdef 0.36±0.04 Befg 0.35±0.07 Bfg 

Total
e
 9.80 B 11.00 A 9.34 B 9.27 B 8.34 C 

Recovery
f
 (%) 76.1 85.5 72.6 72.0 64.8 

 
a Mean value and b standard deviation of three independent analysis results. c Lack of capital letters 
in common indicate differences (p < 0.05) between hydrolysis periods within a given amino acid and 
d lack of small letters in common indicate differences (p < 0.05) between amino acids within a given 
hydrolysis period (Fisher’s LSD). 
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3.2 Results of oxidized hydrolysis method 

 

As shown in Table 3-4 the recovery of cysteic acid (Cyst acid) was highest when 10 ml 6 N 

HCl was used to hydrolyze either 25 mg or 50 mg of flour sample. Expressed in a decreasing 

order, the next highest recovery corresponded to 50 mg sample hydrolyzed in 5ml 6 N HCl 

followed by 100 mg samples in 10 ml 6 N HCl, 25mg samples in 5 ml 12 N HCl, 25 or 100 

mg samples in 5 ml 6 N HCl, 200 mg sample in 10 ml 6 N HCl, 50mg sample in 5 ml 12 N 

HCl and lastly 200 mg samples in 5 ml 6 N HCl (Table 3-4). 

 

The recovery of methionine sulphone (Met sln) was highest when 50 mg of flour sample was 

hydrolyzed with either 5 or 10 ml of 6N HCl. Additionally, 5ml 12 N HCl yielded the highest 

recovery rate when 25 mg of sample was used. Met sln recovery was significantly lower in 

treatments with 5 ml 6 N HCl to hydrolyze 25, 100 or 200 mg samples and 10 ml 6 N HCl to 

hydrolyze 25 or 200 mg sample, as well as 5 ml 12 N HCl to hydrolyze 50 or 200 mg sample.  

The lowest recovery for Met sln was detected when 100 mg of flour was hydrolyzed in 10 ml 

6N HCl and 5 ml 12 N HCl (Table 3-4). 

 

On the basis of the results above, the highest simultaneous recovery of both Cyst acid and 

Met sln was achieved by the use of 10 ml of 6N HCl and 50 mg of flour sample (Table 3-4). 
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Table  3-4:effects of different hcl volumes and concentrations and sample mass on hydrolysis 
of cysteic acid and methionine sulphone in NIST wheat flour. 
 

HCl treatment Mass treatment mg Cyst acid (g/100 mg) Met sln (g/100 mg) 

    

5 ml 6 N 

25 0.607
a
±0.033

b
 CD

c 0.233±0.040 AB 

50 0.719±0.012 AB 0.249±0.022 A 

100 0.636±0.016 CD 0.227±0.006 AB 

200 0.528±0.020 E 0.239±0.021 AB 

    

10 ml 6 N 

25 0.745±0.081 A 0.231±0.068 AB 

50 0.738±0.094 A 0.252±0.036 A 

100 0.655±0.010 BC 0.198±0.006 B 

200 0.610±0.006 CD 0.215±0.015 AB 

    

5 ml 12 N 

25 0.643±0.033 BC 0.246±0.003 A 

50 0.562±0.028 DE 0.235±0.004 AB 

100 0.301±0.011 G 0.118±0.012 C 

200 0.441±0.063 F 0.214±0.035 AB 

    

 
a Mean value and b standard deviation of three independent analysis results. c Values in columns not sharing a 
common letter are significantly different. 

 

 

3.3 Results of the round robin laboratory test of "IST 

wheat flour 

 

In the round robin amino acid analysis, very similar results were found among the 

laboratories and the hydrolysis methods (i.e. 24 h reflux vs. 3 h microwave) (Table 3-5). For 

example results from the 3 h microwave hydrolysis (i.e. Sabanci University) for the most 

abundant amino acids Glu and Pro fell in the middle of three laboratories. In the case of Lys, 

the most limited amino acid in wheat flour, three labs had produced identical results. The 

recoveries of sulfur-containing amino acids were even higher when the oxidized method was 

combined with the microwave-assisted hydrolysis performed at the Sabanci University 

laboratory (Table 3-5). In addition very high correlations were found among the results of 

laboratories involved in the round robin testing of SRM 8436 Durum Wheat Flour (Figure 

3.1).  
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Table  3-5: Amino acid analysis results from laboratories 
involved in the round robin testing of SRM 8436 Durum Wheat 
Flour (National Institute of Standards and Technology, 
Gaithersburg, USA). The same flour sample (SRM 8436 Durum 
Wheat Flour) was hydrolyzed either by the classical 24 h reflux 
method (i.e. Biochrom Co. and Ansynth Service B.V. 
laboratories) or by the optimized 3 h microwave-assisted method 
(i.e. Sabanci University). 
 

 
Amino acid Biochrom Co. Sabanci Univ. Ansynth B.V. 

 (g/100g WF) 

Asp 0.50 0.49 0.52 

Thr 0.34 0.33 0.36 

Ser 0.62 0.63 0.59 

Glu 4.55 4.66 4.73 

Pro 1.45 1.46 1.51 

Gly 0.46 0.45 0.47 

Ala 0.38 0.38 0.38 

Cyst(e)ine 0.68 0.74 0.29 

Val 0.57 0.46 0.55 

Methionine 0.19 0.25 0.21 

Ileu 0.45 0.37 0.48 

Leu 0.89 0.85 0.95 

Tyr 0.38 0.30 0.41 

Phe 0.59 0.66 0.64 

His 0.26 0.28 0.26 

Lys 0.24 0.24 0.24 

Arg 0.46 0.41 0.48 

TOTAL 13.00 12.95 13.07 
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Figure  3-1: Correlations among the results of amino acid analysis from laboratories 
involved in the round robin testing of SRM 8436 Durum Wheat Flour (National 
Institute of Standards and Technology, Gaithersburg, USA). The same flour sample 
(SRM 8436 Durum Wheat Flour) was hydrolyzed either by the classical 24 h reflux 
method (i.e. Biochrom Co. and Ansynth Service B.V. laboratories) or by the 
optimized 3 h microwave-assisted method (i.e. Sabanci University). 

 

 

 

 

3.4 Amino acid profiles and their correlations with mineral 

nutrients in modern, primitive and wild wheat 

genotypes 

 

3.4.1 Analysis of modern wheat genotypes 

 

Nineteen modern wheat genotypes were evaluated for the concentrations of Cyst Acid, Meth 

sln, Asp, Thr, Ser, Glu, Pro, Gly, Ala, Val, Ile, Leu, Tyr, Phe, His, Lys and Arg. The modern 

wheat genotypes were grouped into two as nine bread and ten durum genotypes. Each amino 

acid and the sum of the amino acids have been investigated to find out the possible 

correlations with the mineral nutrients (i.e. N, K, P, Mg, S, Ca, Fe, Mn, Cu and Zn) analyzed 

in the whole meal flour of the genotypes. 
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Among the amino acids analyzed concentration of Glu was the highest in both bread and 

durum wheat genotypes (Tables 3.6 and 3.7). In bread wheat genotypes, Glu ranged between 

3.31 and 4.80 g/100g wf and in average constituted about 34% of the total amino acids. In 

durum wheat genotypes Glu ranged between 2.49 and 4.20 g/100g wf and in average 

constituted 33% of the total amino acids. The second highest amino acid was Pro and ranged 

between 0.98 and 1.53 g/100 g wf in bread and 0.79 and 1.25 g/100 g wf in durum wheat 

genotypes (Tables 3.6 and 3.7). The share of Pro in total amino acid concentration was 11% 

in bread and 10% in durum wheat genotypes. In bread wheat genotypes, Met sln had the 

lowest amino acid concentration ranging between 0.193-0.319 g/100 g wf, whereas Met sln 

was the second lowest amino acid in the durum wheat genotypes. In durum wheat genotypes 

Ile had the lowest concentration ranging between 0.132-3.55 g/100 g wf. 

 

When the variations among the genotypes are investigated, it can be seen that Cyst acid was 

highly stable among both bread and durum wheat genotypes with only a little variation (% 

cv: coefficient of variation) of about 8-9 % (Tables 3.6 and 3.7). Among the bread wheat 

genotypes, Ser and Thr expressed the highest variation. For example Ser and Thr was 3.3 and 

2.3 fold higher in Karahan compared to Bezostaja. The total amino acid content ranged 

between 9.7 g/100 g wf (Alpu 1) and 14.8 g/100 g wf (Karahan) with an average of 10.7 in 

the bread wheat genotypes. Among the durum wheat genotypes total amino acid content 

ranged between 8.3 g/100 g wf (Gediz) and 11.8 g/100 g wf (Selcuklu) with an average of 

10.0. The coefficient of variation for the total amino acid content was calculated as 14 % for 

both bread and durum wheat genotypes (Tables 3.6 and 3.7). 
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Table  3-6:Concentration of amino acids in modern bread wheat genotypes. 
 

Genotype Cyst acid Met sln Asp Thr Ser Glu Pro Gly Ala Val Ile Leu Tyr Phe His Lys Arg Total

Karahan 0.753 0.319 0.737 0.418 0.741 4.80 1.53 0.610 0.527 0.529 0.403 0.958 0.367 0.716 0.369 0.398 0.636 14.8

Adana 99 0.666 0.217 0.633 0.362 0.640 3.89 1.15 0.483 0.437 0.458 0.339 0.758 0.284 0.565 0.276 0.319 0.498 11.4

Ahmetaga 0.703 0.235 0.608 0.282 0.616 3.83 1.23 0.553 0.442 0.329 0.256 0.717 0.398 0.604 0.366 0.298 0.467 11.7

Alpu 1 0.633 0.193 0.482 0.187 0.248 3.31 0.98 0.414 0.410 0.424 0.311 0.642 0.231 0.484 0.240 0.291 0.429 9.7

Gerek 0.688 0.245 0.655 0.352 0.643 4.17 1.34 0.524 0.445 0.452 0.341 0.820 0.330 0.644 0.319 0.349 0.531 12.7

Bezostaja 0.639 0.250 0.421 0.181 0.225 3.95 1.21 0.483 0.445 0.529 0.381 0.766 0.255 0.561 0.271 0.305 0.667 10.9

Tosun bey 0.762 0.259 0.639 0.363 0.677 4.47 1.41 0.568 0.478 0.435 0.314 0.821 0.416 0.681 0.381 0.322 0.482 13.1

Kirgiz 0.686 0.204 0.556 0.291 0.552 3.51 1.19 0.438 0.380 0.373 0.261 0.688 0.292 0.581 0.273 0.285 0.383 11.0

C-1252 0.738 0.246 0.528 0.285 0.598 4.03 1.40 0.456 0.380 0.309 0.254 0.726 0.408 0.594 0.349 0.254 0.427 11.7

mean 0.627 0.217 0.526 0.272 0.494 3.59 1.15 0.453 0.394 0.384 0.286 0.690 0.298 0.543 0.284 0.282 0.452 10.7

stdev 0.047 0.037 0.097 0.081 0.185 0.45 0.16 0.065 0.046 0.078 0.054 0.092 0.069 0.069 0.052 0.041 0.095 1.5

cv (%) 8 17 18 30 37 13 14 14 12 20 19 13 23 13 18 15 21 14

g/100 g wf

 
 

 

Table  3-7: Concentration of amino acids in modern durum wheat genotypes 
 

Genotype Cyst acid Met sln Asp Thr Ser Glu Pro Gly Ala Val Ile Leu Tyr Phe His Lys Arg Total

Tuten 0.572 0.236 0.458 0.199 0.453 2.60 0.80 0.351 0.320 0.164 0.149 0.553 0.336 0.516 0.192 0.220 0.316 8.4

Gediz 0.686 0.204 0.456 0.194 0.420 2.49 0.79 0.349 0.318 0.143 0.149 0.521 0.330 0.478 0.251 0.216 0.324 8.3

EGE 2005 0.615 0.271 0.487 0.222 0.470 2.84 0.91 0.382 0.358 0.221 0.168 0.559 0.338 0.513 0.274 0.237 0.328 9.1

Zenit 0.623 0.187 0.582 0.278 0.583 3.82 1.21 0.449 0.427 0.173 0.214 0.746 0.408 0.654 0.315 0.274 0.394 11.1

Meram  0.591 0.275 0.549 0.304 0.604 3.54 1.14 0.421 0.392 0.387 0.320 0.674 0.305 0.624 0.298 0.301 0.471 9.3

Yelken 0.594 0.259 0.495 0.242 0.516 3.40 1.08 0.397 0.357 0.285 0.198 0.599 0.309 0.542 0.276 0.260 0.379 10.2

Kumbet 0.664 0.223 0.409 0.186 0.456 2.66 0.83 0.372 0.310 0.192 0.132 0.525 0.329 0.489 0.277 0.203 0.290 8.5

Selcuklu 0.555 0.254 0.600 0.323 0.593 3.84 1.23 0.482 0.409 0.431 0.313 0.782 0.307 0.617 0.305 0.341 0.505 11.8

Yilmaz 0.714 0.252 0.573 0.239 0.580 4.20 1.25 0.428 0.439 0.290 0.330 0.731 0.407 0.643 0.317 0.271 0.408 11.5

Balcali 2000 0.726 0.230 0.535 0.332 0.571 3.61 1.18 0.425 0.406 0.151 0.355 0.805 0.291 0.608 0.292 0.314 0.502 11.3

mean 0.634 0.239 0.514 0.252 0.525 3.30 1.04 0.406 0.374 0.244 0.233 0.650 0.336 0.568 0.280 0.264 0.392 10.0

stdev 0.060 0.029 0.063 0.054 0.069 0.61 0.19 0.043 0.047 0.102 0.087 0.111 0.041 0.067 0.037 0.046 0.079 1.4

cv (%) 9 12 12 22 13 18 18 11 13 42 37 17 12 12 13 17 20 14

g/100 g wf

 
 

 

Among the macro nutrients analyzed, concentrations of Ca (range: 0.020-0.049 % in bread 

genotypes and 0.0 21-0.040 % in durum genotypes) and P (range: 0.215-0.368 % in bread 

genotypes and 0.235-0.366 % in durum genotypes) showed the largest variation (Tables 3.8 

and 3.9). There was no significant variation in the N, K, Mg or S concentrations within bread 

or durum wheat genotypes; however average K and P was %19 higher in durum wheat 

genotypes compared to bread wheat (Tables 3.8 and 3.9). Focusing on the micronutrients, 

concentration Fe and Mn were found similar within and among the bread or durum wheat 

genotypes, however Cu (range: 3.69-6.10 mg kg-1 in bread genotypes and 3.74-8.76 mg kg-1 

in durum genotypes) and Zn (range: 11.4-21.3 mg kg-1 in bread genotypes and 9.9-36.0 mg 
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kg-1 in durum genotypes) showed a higher variation, particularly in the durum wheat 

genotypes (Tables 3.8 and 3.9). In addition to the higher, average concentrations of Cu and 

Zn was also %28 higher in durum wheat compared to bread wheat genotypes (Tables 3.8 and 

3.9). 

 

 

Table  3-8 : Concentration of mineral nutreints in modern bread wheat genotypes 
 

Genotype N K P Mg S Ca Fe Mn Cu Zn 

Karahan 2.69 0.341 0.221 0.117 0.172 0.039 30.9 30.5 4.39 20.4

Adana 99 2.28 0.409 0.359 0.131 0.146 0.049 41.8 45.2 4.45 19.4

Ahmetaga 2.60 0.396 0.368 0.150 0.158 0.042 48.1 44.0 5.29 16.0

Alpu 1 2.12 0.386 0.326 0.132 0.139 0.039 35.0 35.1 3.95 17.6

Gerek 2.48 0.374 0.215 0.134 0.153 0.039 35.6 35.3 3.76 21.3

Bezostaja 2.41 0.354 0.232 0.101 0.145 0.030 35.5 32.6 3.69 18.4

Tosun bey 2.81 0.342 0.270 0.132 0.167 0.027 34.9 31.4 3.99 16.9

Kirgiz 2.24 0.347 0.278 0.131 0.149 0.031 32.5 35.2 3.69 11.4

C-1252 2.57 0.409 0.256 0.121 0.165 0.020 36.1 35.0 6.10 13.1

mean 2.22 0.336 0.253 0.115 0.139 0.032 33.0 32.4 3.93 15.5

stdev 0.23 0.028 0.058 0.014 0.011 0.009 5.2 5.2 0.83 3.3

cv (%) 10 8 23 12 8 28 16 16 21 21

% mg kg
-1

 
 

 

 

Table  3-9: Concentration of mineral nutreints in modern durum wheat genotypes 

Genotype N K P Mg S Ca Fe Mn Cu Zn 

Tuten 1.85 0.438 0.339 0.108 0.116 0.032 30.9 32.8 4.22 20.5

Gediz 1.79 0.420 0.366 0.124 0.115 0.033 32.9 33.9 8.76 22.3

EGE 2005 2.07 0.399 0.356 0.121 0.129 0.032 35.5 29.0 4.66 23.2

Zenit 2.55 0.401 0.303 0.123 0.154 0.026 31.5 32.4 7.52 36.0

Meram  2.07 0.445 0.274 0.122 0.139 0.035 33.7 34.4 5.93 25.7

Yelken 2.16 0.349 0.235 0.100 0.123 0.022 29.9 24.9 4.21 10.0

Kumbet 1.91 0.380 0.267 0.113 0.127 0.021 33.1 30.0 3.74 9.9

Selcuklu 2.19 0.426 0.265 0.117 0.129 0.029 28.8 30.2 5.07 24.4

Yilmaz 2.76 0.454 0.364 0.136 0.161 0.028 44.4 30.4 5.27 16.0

Balcali 2000 2.21 0.431 0.337 0.109 0.137 0.040 35.0 43.3 4.25 28.2

mean 2.16 0.414 0.311 0.117 0.133 0.030 33.6 32.1 5.36 21.6

stdev 0.30 0.032 0.048 0.010 0.015 0.006 4.4 4.8 1.62 8.0

cv (%) 14 8 15 9 11 19 13 15 30 37

% mg kg
-1

 
 

 

Correlations in individual amino acids of bread wheat genotypes are provided in table 3.10. 

Among the bread wheat genotypes there existed a highly significant correlation (P<0.001) 

between Cyst acid, Tyr and His concentrations. Similarly, a high correlation was also evident 
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among Met sln, Pro and Glu and among Asp, Thr and Ser (P<0.001). Besides Pro and Met 

sln, Glu also significantly correlated with Leu and Phe. Phe was interesting because it had the 

highest number of correlations with other amino acids. Phe correlated well with 13 out of 16 

amino acids analyzed. Among the amino acids present in the wheat flour Val, Ile and Arg had 

the fewest number of correlations with other amino acids including Phe. For example Val and 

Arg had only one significant correlation each, they both correlated significantly with Ile only 

(P<0.001). In the bread wheat genotypes, sum of all amino acids (without Trp) correlated 

well with 14 out of 17 amino acids, but did not correlate significantly with Arg, Ile and Val. 

 

 

Table  3-10: Correlation among amino acids in bread modern genotypes 
 

 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 
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Correlations between the amino acids and mineral nutrient concentrations in bread wheat 

genotypes are provided in table 3.11. Among the macro nutrients, N and S had significant 

positive correlations with Cyst acid, Met sln, Glu, Pro, Gly, Tyr, Phe, His and the sum of all 

amino acids (Table 3.11). There was no correlation present among amino acids and the micro 

nutrients Fe, Mn and Cu. However, Zn showed a significant correlation (P<0.05) with Ala, 

Val, Lys and Arg. Although not significantly correlated, amino acids expressed a negative 

relationship particularly with K, P, Fe and Mn concentrations (Table 3.11).  

 

 

Table  3-11: Correlation between amino acids and nutrients in the bread modern genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 

 

When the relationships among macro and micro nutrients are evaluated, it is found that N and 

S had the highest correlation (r=0.916, P<0.001) within the bread wheat genotypes. 

Following this, the second highest correlation was found in Fe and Mn (r=0.877, P<0.01). 

Grain Mn concentrations also correlated well with K and P (P<0.05) and also Fe correlated 

well with P (P<0.05). The remaining nutrients Mg, Ca and Cu had no correlation with the 

other nutrients. 
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Table  3-12: Correlation among nutrients in the bread modern genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 

 

 

 

Correlations among individual amino acids of durum wheat genotypes are provided in Table 

3-13. There was no correlation between any of the amino acids with both Cyst acid and Tyr. 

Met sln and Val correlated with each other (P<0.05); however both Met sln and Val had no 

correlation with any other amino acids. On the contrary, Asp correlated well with all amino 

acids except Tyr and Val. Thr, Ser, Glu, Pro, Gly, Ala, Ile, Leu, Phe, His, Lys and Arg 

correlated well with each other with the exceptions of His - Lys and His - Arg. The sum of all 

amino acids correlated well with all the individual amino acids except Cyst acid, Met sln, Val 

and Tyr. 
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Table  3-13: Correlation among amino acids in durum wheat genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 

 

 

 

 

Correlations between the amino acids and mineral nutrient concentrations in durum wheat 

genotypes are provided in Table 3-14. Among the macro nutrients, N correlated positively 

with Asp, Ser, Glu, Pro, Gly, Ala, Leu, Tyr, Phe, His and the sum of the amino acids. Also, S 

correlated positively well with Asp, Ser, Glu, Pro, Ala, Ile, Leu, Phe, His and the sum of the 

amino acids. There was no correlation found between any other nutrient with any of the 

amino acids except between Mg and Tyr and between Fe and Cyst acid. There was a 

tendency of a negative relationship between the P and amino acid concentration of the durum 

wheat genotypes (Table 3-14). 
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Table  3-14: Correlation between amino acids and nutrients in durum wheat genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 

 

 

 

 

Evaluation of the relationships among nutrients in durum wheat genotypes (Table 3-15) have 

shown that that N and S had the highest correlation (r=0.885, P<0.001). The second highest 

correlation was found between Mn and Ca (r=0.820, P<0.01). Ca correlated well with K 

(P<0.05) and Fe also correlated well with both Mg and S (P<0.05). The remaining nutrients 

had no correlation with any of the nutrients. 
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Table  3-15: Correlation among nutrients in durum wheat genotypes 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 

 

 

 

3.4.2 Analysis of spelt wheat genotypes 

 

Nine spelt wheat genotypes were evaluated for the concentrations of Cyst Acid, Meth sln, 

Asp, Thr, Ser, Glu, Pro, Gly, Ala, Val, Ile, Leu, Tyr, Phe, His, Lys and Arg. Each amino acid 

and the sum of the amino acids have been investigated to find out the possible correlations 

with the mineral nutrients (i.e. N, K, P, Mg, S, Ca, Fe, Mn, Cu and Zn) analyzed in the whole 

meal flour of the spelt genotypes. 

 

In spelt genotypes, Glu concentration was the highest among the amino acids analyzed (Table 

3-16). The range of Glu was between 3.68 and 7.90 g/100 g wf and in average constituted 

about 34.5% of the total amino acids. The second highest amino acid was Pro and ranged 

between 0.83 and 2.48 g/100 g wf. Pro constituted about 10 % of the total amino acids 

concentration. Met sln had shown the lowest amino acid concentration ranging between 0.175 

and 0.336 g/100 g wf and Thr had the second lowest amino acid concentration ranging 

between 0.14 and 0.613 g/ 100 g wf (Table 3-16). 
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Concerning the variations of amino acids among the spelt wheat genotypes, it is noteworthy 

to state that Cyst acid had the lowest variation (cv: 19 %). The highest variations were found 

with Ile (cv: 48%) and Pro (cv: 46%) (Table 3-16). For example the second most abundant 

amino acid Pro was up to three fold different among the spelt genotypes (i.e. Sp 244 vs. Sp 

211) (Table 3-16). The total amino acid content ranged between 9.1 g/ 100 g wf (Sp 211) and 

22.4 g/100g wf (Sp 244). The coefficient of variation for the total amino acid content was 

calculated as 34 % for the spelt wheat genotypes (Table 3-16). 

 

 

 

Table  3-16: Concentration of amino acids in spelt wheat genotypes 

Genotype Cyst acid Met sln Asp Thr Ser Glu Pro Gly Ala Val Ile Leu Tyr Phe His Lys Arg Total

Sp 211 0.699 0.205 0.643 0.305 0.639 3.68 0.94 0.554 0.480 0.362 0.201 0.713 0.394 0.655 0.358 0.308 0.454 11.6

Sp 207 0.645 0.188 0.756 0.334 0.647 3.88 1.01 0.564 0.490 0.356 0.230 0.816 0.501 0.754 0.411 0.337 0.444 12.4

Sp 89 0.675 0.175 0.692 0.302 0.685 4.15 1.06 0.580 0.475 0.357 0.204 0.816 0.491 0.750 0.313 0.312 0.477 12.5

Sp 21 0.566 0.176 0.358 0.140 0.145 3.30 0.83 0.377 0.406 0.474 0.315 0.583 0.216 0.448 0.197 0.261 0.348 9.1

Sp 663 0.823 0.336 1.027 0.613 1.098 7.57 2.38 0.900 0.777 0.917 0.641 1.527 0.596 1.143 0.527 0.550 0.810 22.2

Sp 244 0.913 0.311 1.019 0.580 1.119 7.90 2.48 0.873 0.760 0.809 0.624 1.503 0.565 1.163 0.521 0.506 0.770 22.4

Sp 926 0.860 0.189 0.947 0.453 0.776 7.19 2.14 0.766 0.781 0.711 0.525 1.301 0.576 0.969 0.475 0.466 0.646 19.8

Sp 818 0.910 0.325 0.967 0.474 1.030 7.36 2.19 0.790 0.688 0.727 0.493 1.272 0.647 1.087 0.492 0.421 0.637 20.5

Sp 804 0.875 0.218 0.769 0.412 0.841 6.40 1.94 0.681 0.702 0.652 0.463 1.116 0.559 0.877 0.379 0.389 0.580 17.9

mean 0.697 0.212 0.718 0.361 0.698 5.14 1.50 0.609 0.556 0.537 0.370 0.965 0.455 0.785 0.367 0.355 0.517 14.8

stdev 0.129 0.068 0.219 0.149 0.302 1.91 0.68 0.172 0.152 0.214 0.177 0.351 0.130 0.242 0.109 0.099 0.156 5.1

cv (%) 19 32 31 41 43 37 46 28 27 40 48 36 29 31 30 28 30 34

g/100 g wf

 
 

 

 

Among the macro nutrients analyzed, concentrations of Ca (range: 0.020-0.06) showed the 

largest variation followed by N (range: 1.7-4.4 %) (Table 3-17). The lowest variation was 

found with K (range: 0.409-0.562). In regard of the micronutrients, concentration of Cu 

(range: 4.55-14.07 mg kg-1) showed the highest variation and the lowest variation was found 

with Fe (range: 35.0-84.1 mg kg-1) 
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Table  3-17: Concentration of mineral nutrients in spelt wheat genotypes 
 
Genotype N K  P Mg  S  Ca Fe  Mn  Cu Zn  

 % mg kg
-1
 

Sp 211 2.36 0.472 0.376 0.109 0.163 0.041 39.6 23.0 5.27 25.9 

Sp 207 2.48 0.435 0.353 0.096 0.153 0.030 35.0 30.5 4.55 25.7 

Sp 89 2.47 0.409 0.374 0.091 0.146 0.040 35.8 33.8 5.65 26.2 

Sp 21 1.70 0.445 0.331 0.113 0.176 0.060 44.6 19.1 6.76 37.4 

Sp 663 4.40 0.531 0.537 0.141 0.225 0.040 59.4 53.7 7.55 50.6 

Sp 244 4.23 0.440 0.534 0.184 0.243 0.020 79.4 52.8 11.51 66.3 

Sp 926 4.33 0.490 0.667 0.204 0.250 0.022 84.1 45.8 14.07 54.3 

Sp 818 4.25 0.562 0.612 0.202 0.252 0.020 70.2 47.4 12.11 53.4 

Sp 804 4.00 0.452 0.484 0.121 0.233 0.031 60.7 31.5 6.37 60.0 

mean 3.02 0.424 0.427 0.126 0.184 0.031 50.9 33.8 7.38 40.0 

stdev 1.08 0.049 0.122 0.045 0.044 0.013 18.8 12.8 3.45 15.8 

cv (%) 36 12 29 36 24 42 37 38 47 40 

 
Data were presented by Dr Ozturk at The Proceedings of the International Plant Nutrition Colloquium 
(Sacramento/Ca/USA, 26-30 Aug 2009) 

 

 

 

 

Correlations among individual amino acids of spelt wheat genotypes are provided in Table 3-

18. There was no correlation found between Cyst acid and Met sln. Also, there was no 

correlation found between Tyr and Met sln, Val and Ile. The remaining amino acids and the 

total amino acids correlated well with each other. Among all the amino acids, the highest 

correlations were found in Glu and Pro with the other amino acids, where as the lowest 

correlation was found with Met sln (Table 3-18). 
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Table  3-18: Correlations among amino acids in spelt wheat genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 
 
 
 
 
 
Correlations between amino acids and mineral nutrient concentrations in spelt wheat 

genotypes are given in Table 3-19. In spelt wheat K was the only nutrient which had no 

correlation with any of the amino acids except Met sln (r=0.687, P< 0.05). Among nutrients, 

N and Mn have shown significant positive correlation with all of the amino acids. P had 

shown significant positive correlation with all of the amino acids except with Met sln. Ca was 

found to correlate negatively with all of the amino acids except Val, Ile, Lys and Arg. Among 

Mg, S, Ca, Fe and Cu, the least significant correlation with amino acids was found with Cu. 
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Table  3-19: Correlations between amino acids and nutrients in spelt wheat genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 

 

 

When the relationships among macro and micro nutrients were evaluated in the spelt wheat 

genotypes, it has been found that K did not correlate with any of the other nutrients except P 

(r=0.67, P<0.05). In general grain Ca concentration tended to express negative correlations 

with the other nutrients. However, Cu and Zn. N, P, Mg, S, Fe, Mn and Cu have shown 

significant positive correlations among each other (Table 3-20). 

 

 

Table  3-20: Correlations among nutrients in spelt wheat genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 
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3.4.3 Analysis of wild wheat genotypes 
 
Fourteen wild wheat genotypes (T. dicoccoides) were evaluated for the concentrations of 

Cyst Acid, Meth sln, Asp, Thr, Ser, Glu, Pro, Gly, Ala, Val, Ile, Leu, Tyr, Phe, His, Lys and 

Arg. Each amino acid and the sum of the amino acids have been investigated to find out the 

possible correlations with the mineral nutrients (i.e. N, K, P, Mg, S, Ca, Fe, Mn, Cu and Zn) 

analyzed in the whole meal flour of the genotypes. 

 

As consistent with other wheat species, concentration of Glu was the highest among the 

amino acids ranging between 5.80 and 7.34 g/100g wf. In average, Glu constituted about 35% 

of the total amino acids in the wild wheat grains (Table 3-21). The second highest amino acid 

was Pro and ranged between 1.61 and 2.48 g/100 g wf. The share of Pro in total amino acid 

concentration was 11%. Met sln had the lowest amino acid concentration ranging between 

0.255 and 0.434 g/100 g wf. Lys had the second lowest concentration ranging between 0.316 

and 0.41 g/100 g wf. 

 

When the variations among the genotypes were investigated, it was found that Cyst acid was 

highly stable among amino acids analyzed showing only a little variation (% cv: 6) (Table 3-

21) which was consistent with modern and spelt wheat species. In addition to Cyst acid , Glu 

also had a very low variation among genotypes (% cv: 8). The highest variation was 

expressed with Arg with a cv of 26%, followed by Ile with a cv of 24 %. 

The total amino acid content ranged between 14.9 g/100 g wf (TD 536) and 21.1 (TTD 86) 

with an average of 18.3 g/100 g wf. The coefficient of variation for the total amino acid 

content was calculated as 11 %. 
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 3-21: Concentrations of amino acids in wild wheat genotypes 

Genotype Cyst acid Met sln Asp Thr Ser Glu Pro Gly Ala Val Ile Leu Tyr Phe His Lys Arg Total

TD 536  0.927 0.367 0.641 0.251 0.648 5.80 1.61 0.607 0.545 0.298 0.185 0.652 0.447 0.722 0.395 0.340 0.510 14.9

TD 531  0.869 0.363 0.783 0.395 0.876 6.98 2.04 0.665 0.607 0.616 0.475 1.142 0.627 1.046 0.416 0.379 0.546 18.8

TD 510  0.985 0.304 0.741 0.369 0.823 5.96 1.76 0.627 0.615 0.595 0.461 0.961 0.483 0.835 0.378 0.363 0.526 16.8

TTD  27  0.985 0.304 0.670 0.364 0.794 5.94 1.76 0.420 0.466 0.427 0.300 1.007 0.559 0.844 0.436 0.326 0.479 16.1

TD 195 0.870 0.255 0.862 0.475 0.887 6.08 2.18 0.696 0.832 0.598 0.532 1.312 0.728 0.967 0.419 0.392 0.736 18.8

TD 391 0.925 0.323 0.868 0.498 0.884 6.02 1.86 0.615 0.797 0.674 0.552 1.163 0.646 0.833 0.365 0.413 0.744 17.0

TTD 28 1.044 0.290 0.804 0.351 0.878 6.31 1.96 0.717 0.643 0.574 0.506 1.270 0.747 0.854 0.428 0.336 0.679 18.4

TD 390 0.989 0.300 0.829 0.470 0.901 6.37 2.09 0.667 0.696 0.615 0.565 1.349 0.695 0.970 0.423 0.407 0.903 19.2

TTD 89 0.903 0.287 0.892 0.487 1.003 6.86 2.32 0.790 0.904 0.641 0.574 1.415 0.841 1.051 0.457 0.376 1.099 20.9

TD 636 0.954 0.435 0.901 0.494 1.093 7.06 2.29 0.757 0.949 0.775 0.645 1.435 0.634 1.072 0.502 0.510 0.861 21.0

TTD 86 0.974 0.411 0.893 0.494 0.935 6.58 2.20 0.727 0.759 0.779 0.556 1.408 0.650 1.061 0.472 0.404 0.819 20.1

TTD 75  1.042 0.432 0.994 0.504 0.994 7.34 2.48 0.810 0.716 0.644 0.502 1.380 0.732 1.031 0.531 0.463 0.710 21.1

TD 399 1.004 0.434 0.670 0.293 0.548 5.80 1.89 0.631 0.861 0.712 0.536 1.119 0.372 0.682 0.364 0.472 0.662 17.0

TTD 18 0.876 0.266 0.388 0.305 0.739 6.25 1.78 0.514 0.675 0.674 0.557 0.772 0.386 0.544 0.269 0.316 0.523 15.8

mean 0.953 0.341 0.781 0.411 0.857 6.38 2.01 0.660 0.719 0.616 0.496 1.170 0.611 0.894 0.418 0.393 0.700 18.3

stdev 0.060 0.065 0.152 0.089 0.143 0.50 0.25 0.105 0.140 0.127 0.119 0.247 0.143 0.163 0.065 0.058 0.179 2.0

cv (%) 6 19 20 22 17 8 13 16 19 21 24 21 23 18 16 15 26 11

g/100 g wf

 
 

 

Among the macro nutrients analyzed in wild wheat genotypes, concentrations of Ca (range: 

0.054-0.091%) showed the largest variation (Table 3-22). There was no significant variation 

in the N, K, P, Mg or S concentrations. In regard of the micronutrients, concentration of Mn 

(range: 37.9-77.2 mg kg-1) and Cu (range: 3.07-8.40 mg kg-1) were found to have the highest 

variation Compared to Mn and Cu, concentration of Fe (range: 38.9-59.9 mg kg-1) and Zn 

(range: 69.6-40.6 mg kg-1) had less variation among the wild wheat genotypes analyzed. 

 

 
 3-22 : Concentrations of nutrients in wild wheat genotypes 
 
Genotype N K P Mg S Ca Fe Mn Cu Zn 

TD 536  3.70 0.530 0.590 0.140 0.220 0.0709 36.4 46.7 3.93 44.5

TD 531  4.40 0.520 0.580 0.140 0.230 0.0528 42.3 68.6 5.10 40.6

TD 510  3.80 0.501 0.565 0.130 0.240 0.0552 38.9 77.2 6.36 49.0

TTD  27  4.00 0.552 0.570 0.150 0.256 0.0769 49.1 65.1 6.34 69.6

TD 195 3.92 0.651 0.643 0.156 0.256 0.0913 53.5 45.4 5.48 67.7

TD 391 3.84 0.540 0.620 0.149 0.264 0.0541 58.6 75.7 5.18 52.1

TTD 28 4.45 0.539 0.579 0.155 0.272 0.0613 46.9 74.4 5.86 67.8

TD 390 3.99 0.540 0.612 0.163 0.260 0.0619 59.9 76.3 5.60 56.0

TTD 89 4.38 0.545 0.567 0.144 0.238 0.0563 47.9 71.9 5.39 67.8

TD 636 4.44 0.574 0.582 0.142 0.251 0.055 44.2 44.2 3.89 49.0

TTD 86 4.32 0.498 0.526 0.141 0.269 0.0625 49.7 47.9 4.85 56.0

TTD 75  4.99 0.619 0.617 0.159 0.270 0.0736 46.2 40.2 8.40 54.0

TD 399 3.97 0.633 0.619 0.148 0.250 0.0723 45.2 68.7 3.07 52.8

TTD 18 3.73 0.568 0.500 0.125 0.234 0.0599 38.9 37.9 4.77 54.6

mean 4.14 0.558 0.584 0.146 0.251 0.065 47.0 60.0 5.30 55.8

stdev 0.37 0.047 0.038 0.011 0.016 0.011 7.0 15.2 1.29 9.2

cv (%) 9 8 7 7 6 17 15 25 24 16

% mg kg
-1
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Correlations among individual amino acids of wild wheat genotypes are provided in Table 3-

23. There was no correlation found between either Cyst acid or Met sln with the remaining 

amino acids (except between Met sln and Lys). The third least correlating amino acid was 

Val which showed no correlation with 11 out of 16 amino acids. On the other hand, Leu, Gly 

and Thr showed the highest number of correlations; these had correlated with at least 12 out 

of 16 amino acids. There were also significant correlations among Asp, Thr, Ser, Glu, Pro, 

Gly, Leu, Tyr, Phe, His, Lys, and Arg, but with a few exceptions (i.e. Thr - Lys, Ser - Lys, 

Glu – Lys, Glu- Arg, Phe – Lys , His-Lys and His–Arg showed no correlation). The sum of 

all of the amino acids correlated well with all amino acids except Cyst acid and Met sln. 

 

 3-23: Correlations among amino acids in wild wheat genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 

 

Correlations between the amino acids and mineral nutrient concentrations in wild wheat 

genotypes are provided in Table 3-24. Among the nutrients, K, P, Mg, Ca, Mn, Cu and Zn 

showed no correlation with any of the 16 amino acids analyzed. However, concentration of N 

correlated positively well with all amino acids except Met sln, Thr, Ala, Val, Ile, Lys and 

Arg. There were also significant correlations with S and Cyst acid, Asp, Thr and Leu and 

with Fe and Thr, Leu, Tyr and Arg. Among the mineral nutrients, Ca in particular tended to 

have negative relationships with most of the amino acids. 
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 3-24: Correlations between amino acids and nutrients in wild wheat genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05,0.01,0.001 respectively 

 

The relationships among nutrients in the wild wheat genotypes are shown in Table 3-25. 

Among macro and micro nutrients positive correlations were found between Ca-K (r=0.692, 

P<0.01), Mg-S (r=0.71, P< 0.01), Mg-Ca (r=0.536, P< 0.05), Mg-Fe (r=0.665, P< 0.01), Fe-

S (r=0.681, P<0.01), and S-Zn (r=0.533, P< 0.05). No positive correlation was found among 

other nutrients. 

 

 

 3-25: Correlations among nutrients in wild wheat genotypes 
 

 
 
*,** and *** indicate significance at P≤0.05, 0.01, 0.001 respectively 
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4 Discussion 

 

Nutrition is the main requirement of all living organisms. The socioeconomic well-being of 

populations is directly related to the ease of access to adequate and nutritious food sources. 

During the past few decades, adoption of the green revolution cropping systems provided 

many nations with inexpensive and sufficient food. However, this has brought about the 

classical quantity or quality problem, leading to endless debates where increasing number of 

millions of malnourished people are on one side and others looking for enhanced low-calorie 

diets on the other. Having information about (Basak, et al., 1993; Hirs, et al., 1954) and 

increasing the nutritious value of staple food crops in a sustainable way (Welch and Graham, 

1999; Cakmak et al, 2002) is a challenging target in which both developed and developing 

nations can benefit. As discussed before, wheat constitutes a major portion of daily calorie 

intake particularly in the developing nations. The nutritious value of wheat is usually 

determined by the protein content. However, the amino acid profile itself rather than the bulk 

protein content is a distinct quality parameter together with grain mineral nutrient content. 

Currently grain protein is determined by instrumental analysis techniques mainly involving 

analysis of N. Once grain N is determined it is converted to protein by calculation using 

conversion factors and determination of individual amino acids is routinely applied for large 

number of samples (e.g. for screening purposes) mainly because of the need for investment of 

expensive instrumentation and lack of a rapid and practical method for hydrolysis of cereal 

grains. Therefore, the main focus of this thesis study was the development of an expedient 

hydrolysis method for the wheat grain, the major source of protein and calorie intake in the 

developing world. Following method development, modern, primitive and wild wheats were 

subjected to the newly developed rapid microwave-assisted hydrolysis and thereafter the 

amino acid profiles of wheat species and genotypes were determined to assess the 

relationships between individual amino acids and mineral nutrients in wheat. 

 

4.1. Utilization of microwave-assisted protein hydrolysis for wheat 

 

The main focus of this study was to use microwave radiation to accelerate the processing and 

to improve the analysis quality of wheat protein hydrolysis. Microwaves are one sub-class of 

electromagnetic radiation, which have been used as a heating method. Unlike conventional 

heating methods, microwaves have the ability to penetrate samples and to heat uniformly and 

rapidly. Specific techniques related to laboratory microwaves have evolved over the past two 
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decades to include models specific to protein hydrolysis (break the peptide bonds under 

acidic conditions) (Lill, et al., 2007). Other developments about microwaves have been 

discussed in section Error! Reference source not found.. To the best of our knowledge, no 

microwave assisted hydrolysis method has been discussed in the literature that specifically 

describes the hydrolysis of wheat flour proteins. Accordingly, this study was focused on such 

proteins. In this study, the optimum conditions for the microwave-assisted hydrolysis of 

wheat flour protein were assessed using Balcali 2000 as model wheat flour. Parameters, 

which were specifically optimized, were the sample mass, hydrolysis time and temperature. 

 

As with the other acid-promoted hydrolysis methods, several unavoidable side-reactions were 

experienced in the use of microwave heating. Tryptophan, for instance, was completely 

destroyed. Glutamine and asparagine were converted to glutamic acid and aspartic acid; 

hence, the combined acid and amide forms were quantified with no possibility of achieving 

individual resolution. Cystine, cysteine and methionine were partially degraded by hydrolysis 

but they could be measured quantitatively in subsequent trials after pre-oxidizing the protein 

samples using performic acid at 0oC. Under such conditions, cysteine and cystine were 

smoothly converted to cysteic acid (Cyst acid), whereas methionine became methionine 

sulfone (Met sln). The chemistry of these sulfur amino acids will be discussed in a following 

section. All other amino acids were quantitatively measured by this method and the overall 

results were compared against traditional acid-based hydrolysis techniques such as the reflux 

method. 

 

Ninhydrin is known to react with the amino groups of all amino acids. That being said, the 

chemistry of ninhydrin differs between primary and secondary amino groups in the sense that 

the amino group of primary amines is cleaved to yield two molecules, namely, a 

chromophore and a carboxyaldehyde; in comparison, the pyrolidine-type amino group of 

proline forms an addition product with ninhydrin, yielding a single molecule as product. 

Moreover, primary amino groups yield a highly colored chromophore, namely, Ruhemann’s 

Purple (λmax = 570 nm) during reaction with ninhydrin, whereas proline, the only amino acid 

in proteins to bear a secondary amino group, produces a brightly colored yellow 

chromophore. More specifically, ninhydrin and proline form a 1:1 imino-bridged complex 

(λmax = 440 nm) over the course of this reaction (Laskar, et al., 2001; Friedman, 2004). 

Another interesting point is the fact that lysine, with twice the number of amino groups 
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compared to the other amino acids, displays an approximate ninhydrin color yield of only 1.2 

with respect to glycine. This discrepancy has been rationalized by the formation of a cyclic 

imine complex between the amino and aldehyde groups of the aminocarboxyaldehyde 

intermediate. Despite these interesting differences of chemistry, the chromatographic 

detection of ninhydrin-processed amino acids has been adequately optimized by fine-tuning 

of the reaction conditions as well as the use of carefully calibrated standards. Indeed, 

ninhydrin analyses using this intrinsically-sensitive chromophoric method for detection have 

easily permitted the sub-micromole detection of amino acids. In the work presented herein, 

ninhydrin was used as the detection reagent in a Biochrom 30 model amino acid analyzer 

(HPLC).  

 

This quantification method, like many other quantification methods, was consistent in its own 

right. Still, the nature of the wheat samples, just as in the case of other plant-based analytes, 

had introduced complexities that would not normally have been an issue in classic samples 

such as soluble and purified proteins. In particular, the recoveries expressed for wheat sample 

were prone to greater error, and therefore the apparent values indicated were typically used to 

make relative comparisons. For instance, acid hydrolysis was not, at least initially, a 

homogenous phase process. In order to hydrolysis to proceed, aqueous acid must have 

swollen and penetrated the wheat flour matrix; the acid solution must have found the target 

sites and achieved hydrolysis; and lastly, the hydrolyzed products must have diffused away in 

order to allow further penetration of acid. Expressed in more definite terms, the chemistry of 

hydrolysis was necessarily influenced by at least three factors. One limiting factor was 

conceivably the bulk-phase permeation of solution into the reaction sites; such an event 

would be necessary to establish a local hydrolysis zone, which would follow heterogeneous-

phase kinetics. Similarly, the same argument would apply for products yielded in this local 

hydrolysis zone; in order for any hydrolysis to continue, products presumably would need to 

escape the confines of the wheat matrix, which is again governed by bulk-phase diffusion. A 

third factor to consider would be the individual species diffusion of acid and water towards 

the amide bonds, as well as reverse diffusion of molecular products. The weight average of 

these three factors would define the apparent yield of accessible amino acids. Further 

compounding this issue was the color yield of ninhydrin. While ninhydrin is known to react 

effectively with amino acids, the hydrolysis environment of wheat would be expected to 

contain a great number of potential interferents in comparison to the hydrolysate of a typical 

purified protein. In particular, the in situ creation of aldehydes, arising from the destruction of 
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carbohydrates, lipids and nucleic acids, would be expected to compete with ninhydrin for the 

accessible amino groups, potentially causing an attenuated color yield. Hence, the “protein 

recovery” in the strictest sense can only be an apparent recovery, which is a weighted average 

of the accessible amino acid content of a sample (destroyed amino acids notwithstanding) and 

the ninhydrin color yield in the presence of interferents.  

 

Total wheat flour from a model durum wheat (T. durum) Balcali-2000 was subjected to 

microwave-assisted hydrolysis in 5ml 6 N hydrochloric acid. Samples weighing 100, 200, 

300, 400 and 500 mg were incubated at 130, 150 or 170oC for 1, 2, 3, 4 or 5h time intervals. 

The hydrolysates were passed through a 0.2um nitrocellulose filter and subjected thereafter to 

automated amino acid analysis. All amino acids were quantified with exception to 

methionine, cysteine and tryptophan, which were destroyed during hydrolysis. Asparagine 

and glutamine were quantified as converted to their respective carboxylic acids (i.e. aspartic 

acid: Asp and glutamic acid: Glu). Overall, the greatest ninhydrin color-yields were obtained 

after hydrolyzing 200 mg samples at 150oC for 3h. Samples exceeding 200 mg typically 

afforded increasingly lower ninhydrin color-yields. An exception was tyrosine, which 

displayed a notably maximum color yield at 100 mg of sample. The optimal hydrolysis 

temperature of 150oC appeared to strike a balance between liberating amino acids from the 

wheat matrix as well as limiting their premature destruction. Likewise, the optimum reaction 

time of 3h was observed to strike a balance between maximizing hydrolysis and minimizing 

sample loss, the latter aspect contributing more strongly at longer reaction times. 

Furthermore, a comparison against the total nitrogen content of these samples indicated that 

the overall ninhydrin color-yield was 85% (without Triptophan, Cysteine and Methionine) 

when compared with total protein result as calculated over total N. The highest amino acid 

content pointed to the combined contributions of glutamic acid and glutamine, in accord with 

previous findings. Also as expected, proline was found to rank in second place. It follows to 

reason that an optimized microwave-assisted hydrolysis method may describe a rapid means 

to compare the constitution of different genotypes of wheats and may further show merit and 

general applicability towards the rapid analysis of important cereals of commercial interest. 

 

Leu, Ile and Val are the most hydrophobic amino acids and for this reason, their 

juxtapositioning along the primary chain results in an exceptionally-resistant, hydrolytically 

stable bond (Roach, et al., 1970). This characteristic may have explained the finding that Leu 

was recovered more quantitatively, in relative terms, following treatment at 1700C as opposed 
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to 150oC or 130oC. While the reason for this finding was not conclusively determined, it 

would appear that the other amino acids were cleaved earlier in the hydrolysis reaction in 

view of their higher accessibility to acid: presumably, these residues, once freed, were 

subjected to the destructive effects of the environment for a longer period. Also, Ile was 

recovered more after treatment at 170 0C, followed by 150 0C and then 130 0C. Although the 

Val results were not statistically different at 150 and 170oC, the apparent recovery of Val 

hydrolyzed at 170 0C was clearly the highest (0.59 g/ 100 g wf), followed by 150 0C (0.52 g/ 

100 g wf) and finally 130 0C (0.34 g/ 100g wf) which had produced significantly lower 

values. 

 

Tyr recovery at 1300C (0.37 g/100 g w f) was higher than at 150 0C (0.33 g/100 g w f) or at 

170 0C (0.28 g/100 g w f). Again, while the underlying reason to explain this trend was not 

proven directly, the destruction of tyrosine by chlorination of the ring is a well-documented 

and thermally-promoted fact. For this reason, the considerably reduced, apparent recovery of 

tyrosine at 170oC or even at 150oC was not surprising. 

 

Looking to the effects of hydrolysis time, the apparent recovered quantities of all of the 

amino acids were significantly higher at 3h, revealing that 3h of hydrolysis at the given 

conditions was the optimum compared to 1, 2 or 4 h of microwave-assisted hydrolysis.  

 

Looking to the effect of sample mass, recovery of all amino acids (with exception to His and 

Tyr - which both had higher recoveries at 100 mg) were significantly higher when 200 mg of 

wheat flour was hydrolyzed at 150 0C for 3 h. 

 

The optimal hydrolysis temperature of 150oC appeared to strike a balance between liberating 

amino acids from the wheat matrix as well as limiting their premature destruction. Likewise, 

the optimum reaction time of 3h when using 200 mg mass of sample was observed to strike a 

balance between maximizing hydrolysis and minimizing sample loss.  

 

The theoretical total protein content of wheat flour is calculated by multiplying the %N with 

5.83 as mentioned in section  1.2. Balcali 2000 durum wheat %N is 2.207, therefore; the 

theoretical total protein is 12.87 g. The recoverable percentage is 85.5% for the sum of the 

amino acids that were assisted in the non-oxidized method leaving 14.5% for Trp, Cyst acid, 
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Meth sln, non proteinous nitrogenous compounds and the loss of amino acids during acid 

hydrolysis. 

 

Cysteine and methionine were substantially destroyed in the course of employing the classic 

hydrolysis conditions; hence, these amino acids were measured using a parallel method, 

which employed a pre-oxidation step using performic acid. Following performic acid 

oxidation and hydrolysis, cysteine and/or cystine was identified as cysteic acid whereas 

methionine could be identified as methionine sulfone. 

 

The highest recovery (or more precisely, the highest ninhydrin color yields) of samples 

containing both Cyst acid and Met sln was obtained by applying a 16 h performic acid 

oxidation to 50 mg of wheat sample at 0oC. Upon completion of oxidation, the performic acid 

was quenched as per the European Union protocol (EU Directive 98/64/EC, 1998) and the 

oxidized sample was hydrolyzed without delay by the addition of 10 ml 6 N HCl (3 h, 

150oC).  

 

Currently, the reflux method is the most common protein hydrolysis method, which has been 

adopted by the European Union and USA (EU Comisson directive 98/64/EC, 1998, AOAC 

Official Method 994.12, 1995). For the most part, it features a high percentage recovery and 

reliability. However, the reflux method is time consuming to the extent that it inadvertently 

detracts from the productivity of such analyses and in certain cases it may in fact determine 

the rate of more comprehensive work. By referring to Table 3.5 and Figure 3.1, it is clear that 

the Sabanci University laboratory hydrolysis method featured comparable, if not better, 

results as those that were obtained by the traditional reflux method. More importantly, the 

Sabanci University laboratory analyses were achieved in a fraction of the time, as the 

microwave-assisted hydrolysis method is much more rapid. 

 

4.2. Relationship of amino acids with mineral nutrients in the wheat grain 

 

Wheat is one of the oldest diets of mankind. It contains carbohydrates, proteins, vitamins and 

minerals (as Mg, Mn, Cu, P, Fe, Zn and others) (Chess, et al., 2001). There are four types of 

wheat proteins and they differ in their solubility: Albumins which are soluble in water, 

globulins which are soluble in salt solution but not in water, gliadins which are soluble in 70-
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90% ethanol and glutenins which are soluble in base but not in alcohol, saline solutions or 

neutral aqueous solutions (Osborne, 1907; Spurway, 2008). 

 

Amino acid composition is a key factor in determining the wheat grain nutritional quality. 

Wheat protein is usually low in essential amino acids that are important part of human diet, 

particularly Lys (the most deficient amino acid) and Thr (ranking second after Lys), in the 

other hand they are rich in Glu (the most abundant amino acid in wheat grain) and Pro (the 

second highest one). Protein and amino acid composition of wheat highly fluctuates with both 

genotype and environmental characteristics such as N application time, fertilization rate, 

residual soil N and temperature during grain-filling (Luis, et al., 2007). In all wheat species 

and genotypes tested throughout this study, grain amino acid concentrations were found 

highest in Glu followed by Pro. Concentration of Glu ,whereas Met sln, Lys, Thr and were 

the lowest amino acids (Tables 3-6, 3-7, 3-16 and 3-21). The quantities and ratios of 

individual amino acids detected by the hydrolysis method used in this study were consistent 

with the literature data (Boila et al., 1996) and the quantitative order of major and minor 

amino acids in wheat do not change considerably. As an example, the grain concentration of 

Cyst acid had an exceptionally high stability among all genotypes and species (see Tables 3-

6, 3-7, 3-16 and 3-21). Therefore, it seems there is little scope for selection or breeding for 

high cysteine content in wheat. However, other minor or major amino acids exhibited 

significantly high variations among genotypes and species. 

 

In wild wheats, the concentration of major (e.g. Glu and Pro) and minor amino acids (e.g. 

Met sln, Lys, His) were 1.5-2 fold higher than modern bread or durum wheat species (Tables 

3-6, 3-7 and 3-21). Accordingly, the average of total amino acids present in wild wheats was 

83% higher than durum and 71% higher than bread wheats. In previous studies wild emmer 

wheat (T. dicoccoides) was proposed to be an important genetic resource for increasing 

micronutrients in modern cultivated wheat (Cakmak et al., 2000, 2004; Peleg et al., 2008) 

because of the exploitable genetic variation in their grain nutrient concentration. Results 

presented in this thesis study show that the higher amino acid content of wild emmer wheats 

also constitutes as a valuable genetic resource for increasing individual or total amino acids 

(i.e. proteins) in modern wheats. 

 

The total amino acid concentration of selected spelt wheat genotypes fell in between modern 

and wild wheats. However, in spelt wheat genotypes the variations in individual or total 
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amino acids were substantially higher compared to modern or wild wheats mainly due to 

prescreening for high and low grain N (Table 3-16). Nevertheless, spelt wheat can also be 

considered as a breeding material for increasing the nutritional quality of cultivated wheats. 

The range of N concentration in spelt genotypes (i.e. four low-N and five high-N genotypes) 

provided by prescreening had affected not only the variation in amino acids, but also mineral 

nutrient concentrations (Tables 3-16 and 3-17). The contrasting N values were exposed with 

significant differences in virtually all nutrients (except Ca) as well as amino acids (Tables 3-

16 and 3-17). Moreover, varied grain N resulted in highly significant positive correlations 

among amino acid, amino acid-mineral nutrient and mineral nutrient concentrations of spelt 

genotypes (Tables 3-18, 3-19 and 3-20). Similarly, amino acids in modern and wild wheats 

also correlated well within and among each other. However, amino acids in both modern and 

wild wheats had noticeably fewer correlations with mineral nutrients (Tables 3-11, 3-14 and 

3-24). 

 

Among mineral nutrients only N and S and partly Zn and Fe had correlated well with only a 

few of the amino acids. In the case of spelt wheat, mineral nutrients (except K, Ca and Cu) 

had correlated well with a majority of amino acids including the sum of amino acids. 

Interestingly Ca had a significant but negative correlation with a majority of amino acids and 

mineral nutrients in spelt wheat (Table 3-24). Although not significantly expressed, this 

negative association of Ca with amino acids was also evident in modern and wild wheats. 

Currently there is no published data available on the relationship of grain Ca with protein or 

amino acids. Considering the well-documented poor phloem mobility of Ca (Marschner, 

1995), the negative correlations could hardly be associated with an inhibitory effect of Ca on 

transport of amino acids into wheat grain. On the contrary, the negative correlation of Ca 

with grain mineral nutrients and amino acids could be a consequence of an enhanced phloem 

loading (i.e. with amino acids and other mineral nutrients during senescence) which disturb 

phloem mobility and deposition of Ca into grains. 

 

This study characterizes the amino acid profiles of a number of cultivated and wild wheat 

genotypes. It is proposed that a substantial genetic variation is present in spelt and wild 

emmer wheats which can be exploited to enhance specific and/or total amino acids (i.e. 

protein) in high yielding cultivated wheats through selection, breeding and targeted molecular 

approaches. 
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Although the existence of significant associations between a few amino acids and mineral 

nutrients, these associations were not found consistent among species and genotypes. Thus, it 

was not possible to define or explain a co-transport or co-accumulation mechanism of 

specific amino acids with mineral nutrients. In light of this evidence, future research should 

focus on the phloem transport and mobility of metal binding proteins and organic ligands, 

rather than individual amino acids. 

 

A major finding of this study was the augmentation of correlations (among amino acids, 

nutrients and amino acids with nutrients) upon prescreening for contrasting grain N (or 

protein) concentration. It is concluded that advancements in increasing the grain protein 

content of wheat can significantly contribute to enrichment of grains with almost all mineral 

nutrients except K and Ca. 
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APPE"DIX A 

 

 

Chemicals and Buffers 

 

Absolute ethanol                                                      Riedel                32221 

Hydrochloric acid (37%)                                         Merck                100314 

Hydrogen peroxide (30 %)                                      Merck                107209 

Isopropanol                                                              Merck                1.09634 

Nitric acid (65%)                                                     Merck                1.00456 

Phenol                                                                      Merck                1.00206 

Sodium hydroxide                                                    Merck                1.06495 

Sulfuric acid (98%)                                                  Merck                1.00748 

Sodium disulfite                                                        Merck               1.06528 

Formic acid  (98%)                                                   Merck                1.00264 

Niterogen gas (N2)                                                    Linde 

Amino acid standard (AAS018)                                Sigma                029K0705 

l-Cystiec acid                                                             Sigma                30170 

L-Ornithine                                                                Sigma                 078k0732 

L-Methionine sulphone                                              Sigma                135G458 

Methionine sulphoxide                                               Fluka                  64430 

L-Tryptophan                                                             Sigma                  93659 

Sodium citrate loading buffer (pH=2.2)                      Biochrom 
 
Sodium citrate loading buffer (pH=2.65)                     Biochrom 
 
Sodium citrate loading buffer (pH=3.35)                     Biochrom 
 
Sodium citrate loading buffer (pH= 4.25)                     Biochrom 
 
Sodium citrate loading buffer (pH=8.6)                        Biochrom 
 
Ninhydrin solution                                                         Biochrom 
 
Ultrasolve plus                                                               Biochrom 
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APPE"DIX B 

 

Equipments 

 

Distilled water    Millipore,Elix-S, Fance, 
 
Milling machine   Pulverisette 9, Fritsch GmbH, Idar-Oberstein, Germany 
 
PH meter    HANNA 
 
CEM MARS Express microwave CEM  MARS Corporation, USA 
 
Biochrom 30 amino acid analyzer Biochrom Inc, England 
 
Inductively coupled plasma-optical 
Emission spectroscopy (ICP-OES) Varian, Vista-Pro ccd, Australia 
 
Magnetic stirrer   IKA-Werke, Germany 
 
Micro liter pipette   Eppendorf, Germany 
 
Balance    Denver instrument 

 

Ice machine    Scotsman Inc., AF20, USA 

 

N measure    Leco Truspec CN, USA 

 

Oven     Memmert D06062, Germany 

 

Refrigerator    +4 Arçelik, Turkey 

 


