
HANDWRITEN MATHEMATICAL EXPRESSION RECOGNITION USING
GRAPH GRAMMARS

by

Mehmet Çelik

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of
Master of Science

Sabancı University

Spring 2010

HANDWRITEN MATHEMATICAL EXPRESSION RECOGNITION USING
GRAPH GRAMMARS

APPROVED BY:

Assoc. Prof. Berrin Yanıkoğlu, (Dissertation Supervisor)

. .

Prof. Aytül Erçil

. .

Assis. Prof. Hakan Erdoğan

. .

Assis. Prof. Hüsnü Yenigün

. .

Assis. Prof. Cemal Yılmaz

. .

DATE OF APPROVAL: .

c© Mehmet Çelik 2010

All Rights Reserved

Abstract

This thesis presents a graph grammar approach for the recognition of handwritten

mathematical expressions. Pen based interfaces provide a natural human computer

interaction; interfaces for entering mathematical expressions are no exception to that.

The problem is challenging, as it includes the sub-problems of character recognition

(OCR) and 2-dimensional structure understanding. Thus, on top of the problems

of the standard OCR systems, such as high variation in character shapes, the two

dimensional nature of a mathematical expression brings further ambiguity.

We use graph grammars for structural understanding of the expressions in order

to represent as much information as possible in the parse process. Representing

input expression as a graph protects the geometrical relations among the symbols

of the input, while alternatives include methods for linearization of the input which

may introduce critical errors into the parse process. Also graph grammars have the

advantage of flexibility over procedurally coded parse systems. Another important

aspect of our system is the fact that all alternative parses are evaluated and the one

with maximum likelihood is selected as the intended expression. The likelihoods are

estimated according to OCR confidence scores and structural relationships statistics.

The segmentation step precedes the parse process, and segments and groups

strokes collected from the Tablet input, according to timestamps and distance in

space respectively. Then, the segmented symbols are recognized by the OCR engine

which uses offline (image) features to allow for flexibility in time dimension, such

as adding extra strokes and symbols anytime during the equation. The extracted

features are used in an ANN and SVM combination engine returning top-3 character

alternatives and confidence values. The parse process expands the graph by gener-

ating new tokens with repeated application of grammar rules. At the end, one or

more tokens contain the full expression, along with a confidence value based on the

iv

2-dimensional layout of the symbols in the expression and the associated statistics

of geometrical relations between symbols. These and the OCR confidence scores are

used in disambiguating alternative parses.

Our approach is more powerful compared to graph re-writing systems in that all

alternative parses are evaluated, rather than selecting the most likely rule application

at a particular step, in an irreversible fashion. This also eliminates the need for

specifying rule precedences, making system development or use of alternate grammars

easier. The only limitation of our system is that segmentation errors are irreversible.

That is, the parse process does not handle alternate segmentations, in order to keep

the complexity of the parse process down. We alleviate this problem by providing

feedback to the user as the segmentation proceeds, in real time.

Our user interface gives error correction tools to the user to correct OCR errors

and it can generate LATEX code, and MathML codes and graphical rendering of the

input handwritten mathematical expression.

An extensive collection of mathematical expression and isolated symbols are col-

lected from 15 users for 57 different expressions from a 70-character alphabet. There

are, in total, 1710 mathematical expressions and 10500 isolated characters. All sam-

ples are in the natural writing styles of the users.

iv

Özet

Bu tez matematik ifadelerin tanınması için çizge gramerlerine dayalı bir iskelet sun-

maktadır. Kalem temelli arabirimler daha doğal bir insan bilgisayar etkileşimi sunar,

matematik ifadelerin kaydedilmesi için kullanılan arabirimler buna bir istisna değildir.

Bu problemin zorluğu karakter tanıma ile ilgili problemlerle beraber iki boyutlu yapı

tanımayı da içermesindendir. Bu durumda, alışılagelmiş karakter tanıma sistem-

lerinin çözmesi gereken sorunların üstüne, örneğin değişken karakter şekilleri, matem-

atik ifadelerin iki boyutlu doğası da çözümlenmelidir.

Sistemimizde çözümleme süreci içerisinde girdi tarafından sağlanmış bilgilerin

mümkün olduğunca korunabilmesi için çizge gramerleri kullanılmıştır. Matematik

ifadenin bir çizge olarak temsil edilmesi ifadenin sembolleri arasındaki geometrik

ilişkilerin korunmasını sağlamaktadır. Diğer alternatifler yöntemler girdinin doğrusal

hale getirilmesini içermektedir ve bu çözümleme sürecine kritik hataların dahil edilme-

sine sebep olmaktadır. Ayrıca, gramerler sahip oldukları esneklik ile yordamlara

dayanan sistemlere karşı üstünlük göstermektedir. Sistemin bir diğer önemli yönü de

çözümleme sırasında gramerin tanıyabileceği tüm alternatif çözümlemelerin korun-

ması ve daha sonra en yüksek olasılıklı olanın seçilmesidir.

Çözümlemenin öncesinde gelen kesimleme işleminde karakterler zaman etiketleri

ve uzayda uzaklıklarından yararlanılarak bölünmekte ya da gruplanmaktadır. Daha

v

sonra, kesimlenmiş semboller zaman boyutunda esnekliği sağlamak için çevrim dışı

özellikler kullanılarak karakter tanıma motorunda tanınmaktadır. Sistemde bir yapay

sinir ağı ve bir destek vektör makinesi beraber kullanılmakta ve ilk 3 sonuç güvenilirlik

değerleri ile döndürülmektedir. çözümleme süreci, çizge grameri kurallarının ard arda

uygulanıp ilk oluşturulan çizgenin genişletilmesi şeklinde ilerlemektedir. İşlemin so-

nunda bir ya da birden fazla sonuç muhtemel çözümleme oluşturulmakta ve bun-

lar arasında sembollerin 2 boyutlu düzlemde dağılımlarından hesaplanan olasılıklara

bakılarak tercih yapılmaktadır.

Yaklaşımımız çizge yeniden yazma yöntemlerine kıyasla alternatif ifade tanımları-

nın da saklanabilmesi ile daha güçlüdür. Çizge yeniden yazma yöntemlerinde çizge

geri döndürülmeyecek şekilde değiştirilmektedir. Çizge grameri kullanımı ayrıca

kurallar arasında öncelik belirleme zorunluluğunu ortadan kaldırmakta ve grameri

değiştirme ya da geliştirmeyi kolaylaştırmaktadır. Sistemimizin eksikliği karakter

tanıma aşama- sından gelen hatalara geri dönülemiyor olmasıdır. Bu sistemin karma-

şıklığını düşürmek için yapılıştır. Doğacak problemler de kullanıcıya karakter tanıma

hataları ile ilgili gerçek zamanlı geribildirim yapılarak azaltılmıştır.

Kullanıcı arabirimimiz optik karakter tanıma hatalarının düzeltilmesine imkan

vermekte, LATEX kodu MathML kodu ve el yazısı ifadenin makine yazısına çevrilmiş

halini üretebilmektedir.

vi

Proje çerçevesinde 15 kullanıcıdan 57 farklı matematik ifade ve 70 farklı sem-

bolden oluşacak şekilde örnekler toplanmıştır. Toplam olarak 1710 matematik ifade

10500 münferit sembol bulunmaktadır. Örneklerin tamamı kullanıcıların doğal el

yazılarına sağdık kalınarak toplanmıştır.

vii

Acknowledgements

I would like to thank my advisor Berrin Yanıkoğlu for providing the motivation and

the resources for this research to be done.

I am also grateful to Prof. Aytül Erçil, Assis. Prof. Hakan Erdoğan, Assis.

Prof. Hüsnü Yenigün, Assis. Prof. Cemal Yılmaz for their participation in my thesis

committee.

Especially, I would like to than my parents, Ali Çelik and Gülten Çelik, and

my sister Ayşe Çelik for their unwavering support during this work and in all my

academic pursuits.

This thesis is supported by TÜBITAK (The Scientific and Technical Research

Council of Turkey), under project number 107E271.

viii

TABLE OF CONTENTS

Abstract iv

Özet v

Acknowledgements viii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Literature Review . 2

2 Methodology 12

2.1 OCR . 13

2.1.1 Character Segmentation . 13

2.1.2 Character Recognizer . 14

2.2 Structure Recognition . 17

2.2.1 Graph Grammars . 18

2.2.2 Proposed Grammar . 19

2.2.3 Parsing . 23

2.2.4 Disambiguating the Parse Alternatives 25

3 Implementation 28

3.1 Data Collection Interfaces . 28

3.2 Mathlet Interface . 30

4 Data Collection 32

4.1 Mathematical Expressions . 32

ix

4.2 Isolated Characters . 32

5 Evaluation 38

5.1 Evaluation . 38

5.2 Future Work . 41

A Complexity Analysis 43

B Grammar Rules 45

x

List of Tables

2.1 The characters that are difficult to discriminate without context infor-
mation . 15

2.2 Confused character with current feature set and classifier 15

4.1 Greek letters and symbols included in the character set 33

5.1 Results from 40 expressions from 10 users 39

5.2 Reported success rates from the literature 40

xi

List of Figures

1.1 Example PPC parse tree . 6

2.1 System overview . 13

2.2 Sample intersections . 14

2.3 Characters 9 and g from different users 16

2.4 Before (a) and after (b) normalization 16

2.5 Graph g′ after rule r applied to graph g. Embedding rule is graphically
represented: only edges towards c and edges outgoing a are kept. . . . 18

2.6 Angles between bounding boxes for the first relation 22

2.7 Angles between bounding boxes for the second relation 22

2.8 Generated nodes in each round, along with their component edges. . . 24

2.9 Graph after round 1, of Figure ?? shown in 3 parts: a) spatial edges,
b) component edges, c) production edges. 24

2.10 Rules used for sample parse. ”|” depicts ”or” 25

2.11 Sample disambiguations . 26

2.12 States of the graph when parsing the expression a2 + b 27

3.1 Character collection interface . 29

3.2 Expression collection interface . 29

3.3 MathML and LATEX codes for expressions x4 30

3.4 Mathlet interface . 31

4.1 Samples from collected expressions (user 1) 34

4.2 Samples from collected expressions (user 1) 35

xii

4.3 Samples from collected expressions (user 2) 36

4.4 Samples from collected expressions (user 2) 37

5.1 Correctly recognized expressions with Mathlet interface 41

B.1 Cartesian plane given for angle values 45

B.2 Example for superscript relation . 47

xiii

1 INTRODUCTION

Inspite of the ever-growing place of computers and other digital devices in our lives,

pen and paper still remains the most convenient way for communicating or record-

ing information or making small calculations. The linear input of a keyboard or a

point and click device such as a mouse or a trackball is not very convenient for the

preparation of complex documents with graphs, figures, tables and mathematical ex-

pressions. However as the price of graphic tablets and touch screens decrease, pen

based computing has become more viable, leading to increased research on pen based

recognition systems.

Today’s recognition systems perform very well with machine print text, but there

is much work to be done in handwritten text recognition, especially with complex

structures such as sketches, graphs or mathematical expressions. Mathematical ex-

pressions have a greater number of symbols to distinguish in comparison to handwrit-

ten text, and more importantly, the meaning of symbols in mathematical expression

differs according to the spatial relations between them.

Mathematical expression recognition would greatly simplify the task of writing

scientific articles that contain mathematical formulas. There are several commercial

scientific writing platforms, such as Scientific WorkPlace R© or Microsoft R©’s Equation

Editor. Although they use relatively similar input languages for mathematical ex-

pressions, there is still a learning curve for a platform to fully utilize its capabilities

and yet they are not as convenient or natural as handwriting. With a pen based

input system, anyone who can write a mathematical expression can do so on a pen

computing platform without learning a new language or software for each platform.

1

Furthermore, there are large databases of scientific and technical papers in both on-

line and offline form in archives. Without a mathematical expression recognition tool,

processing these documents to machine understandable format would be impossible.

Thus, a system that is capable of recognizing mathematical expressions is of great

use for both online and offline recognition tasks.

As a problem, mathematical expression recognition is more complicated than it

may first seem. An optical character recognition system, which is a problem that

have room for improvement even with the state-of-the-art systems, is the first step

of a mathematical expression recognition system. Thus, a mathematical expression

recognition system inherits all the problems that an OCR system has: base line de-

tection or correction, segmentation, user variations and so on. On top of these, a

mathematical expression recognition system has to recognize geometrical relations

between input symbols that are governed by the grammar rules of mathematical no-

tations. Furthermore, in text recognition, the use of a lexicon can recover certain

errors. For example, a segmentation error of an OCR system may be corrected by

checking the words in a given language for matches. To be able to do a similar kind of

error correction for mathematical expression recognition, a dictionary of mathemat-

ical expression is needed which is not feasible. For example, for a simple summation

operation there is unmanageably many possibilities for the two numbers in opera-

tion. This is in fact the main reason for low accuracy of mathematical expression

recognition systems, as there is no lexicon and no redundancy in the expressions.

1.1 Literature Review

Work on mathematical expression recognition has been conducted especially in the

last 10-15 years, with the advances in tablet technologies. Since this is a difficult

problem, significant results have been obtained as a result of long term research by

2

various groups. Below we provide a literature review which is organized by research

groups.

DRACULAE (EFES)

One of the active groups in mathematical expression recognition is Zannibi et al.

[1, 2]. In one of their later publications [2], mathematical expressions are transformed

into a baseline structure tree. The overall system works in three stages. The first

stage builds the baseline structure tree by analyzing the baselines of the components.

In this tree, each node has three children: below, inline, and above. The second

stage groups and labels compound groups (e.g. ”sin”, ”123”’), from among the inline

components. In the last stage, the expression analyzer analyses the expression syntax

and produces an operator tree that describes an ordered application of operators to

operands. Zanibbi’s implementation is named Diagram Recognition Application for

Computer Understanding of Large Algebraic Expressions (DRACULAE) and uses the

Freehand Formula Entry System (FFES) as user interface and for symbol recognition.

Worst case time complexity of DRACULAE with n symbol input is O(n2logn).

In another paper [1], they apply compiler techniques to diagram recognition. The

steps are summarized as below:

• Find linear structures in the input: Baselines are detected in the expression.

• Organize these linear structures into a tree: tree structure from baselines are

generated for later compiler like processing.

• With a fixed control structure, divide the processing into lexical, syntactic and

semantic analysis.

• Analysis are done on attribute trees and tree transformation techniques are

used.

3

MathPAD(Now in MathPaper)

LaViola’s system [3], MathPad, is a user-dependent mathematical illustration ap-

plication. It utilizes a pairwise recognition method in conjunction with Microsoft’s

character recognition engine. With the pairwise recognition method instead of one

classifier to recognize all symbols, many classifiers are used to determine whether a

symbol is one letter or another. For example, a classifier is used to determine a sym-

bol is ”a” or ”b”. The parsing algorithm is based on two methods: a 2D grammar

and procedurally coded syntax rules. Coded syntax rules implement a context free

grammar [4]. The success rate of symbol recognition system is 95.1% while correct

parsing decision rate is % 90.8 for eleven subjects with 36 expressions. With a new

version of the project, now the system can identify matrices with % 91.6 accuracy

[5].

MathBrush

Similar to [2], the system is developed by Labahn et al[6] and based on tree rewriting.

In four steps, they transform a baseline tree into an expression tree. The work is ex-

tend Zanibbi’s work, in that, system uses a symbol database for storing the structural

and semantic type of a symbol. The structural information is used to determine the

center of the symbol and refine the baseline finding process; the semantic type is used

to determine the grammatical structure of an expression. The structural analysis step

of their algorithm repeats itself until the combination of structural confidence value

and recognizer confidence value reach a threshold.

MathFoR

In their approach [7], Tapia et al consider an entire mathematical expression as a

connected weighted graph with each bounding box center as a node. The algorithm

4

starts with a minimum spanning tree and modifies this tree in successive iterations,

with predefined rules such as dominance, being on the right, and distance between

symbols. Grammar rules are implicitly defined in attributes of the symbols. For

example, numeric symbols subscript positions are not defined and for operators like

”+” no script position is defined. These implicit rules are used to find operator

dominance. The system is also able to recognize matrix structures by the reserved

symbols ”[” and ”]”.

Infty

The work by Suzuki et al [8] uses a parsing process that finds a spanning tree in a

virtual network. In this network, vertices correspond to symbols and edges indicate

possible relationships between two symbols. Each symbol has different recognition

candidates and there is more than one possible relation between two symbols; thus

there is more than one edge between each vertex, defining both parent and child

recognition and the spatial relation between them. Each edge also has a cost value

calculated from relative position distributions of symbol pairs. Since there is several

possible values for each vertices and edges, this network called a virtual network.

After the completion of network generation, spanning trees are generated and the

one with the lowest cost is selected as the parse tree. They report a 90% percent

success rate for recognizing 123 different formulas, with an average of 34.7 characters.

Later with [9], they introduced a formula description grammar to select the correct

parse tree among candidate parse trees produced by the previous structural analysis

step. The grammar used in this system is one dimensional, so each tree is converted

into a string before checking with the grammar rules.

5

Sexton et al.

In [10], Sexton et al use a database driven character recognizer and two different

structural analysis methods. The first one is the projection profile cutting (PPC).

This work is based on off line formulas so profile cutting is fairly robust. They use

successive horizontal and vertical profile cuts on the formula to generate a parse

tree. If a horizontal(vertical) cut separates an individual symbol, that symbol is put

in a leaf node; if a cut creates a multi-symbol node, that node is processed again

with a vertical(horizontal cut). The resulting tree is a parse tree that specifies the

subcomponent relationship of the expression.

Figure 1.1: Example PPC parse tree

The second method they use is graph rewriting. They generate the initial graph

6

with edges that are generated on a line of sight basis. The graph rewriting process

tries to apply all rules to all symbols and generates non-terminal nodes. This process

repeats itself until no rule can be applied. Then a non-conflicting sequence of rewrites

is converted into a parse tree.

Garain et al.

In the system of [11], the structural analysis system is divided into on line and off line

phases. The online phase generates bounding boxes and center points for the symbols

along with a level value which is 0 at the base level and has positive and negative

values above and below base level. Also the meaning of ambiguous symbols such as

dot or horizontal line and function names such as ”sin”, ”log” are determined in the

online phase. A finite automata is maintained to detect the function names. The

offline phase utilizes a projection profile cutting technique where the whole expression

is divided into vertical and horizontal stripes recursively until no further segmentation

is possible. Finally, a context free grammar guides the merging process of segmented

symbols. Success rate is 74.92% because system does not have the ability to recover

from placement errors.

Grammar rules are given as follows:

E -> ES | S

E -> S^{S} | S_{S} | \frac{S}{S} | \sqrt{S}

| \stackrel{S}{S} | \overline{S} | \underline{S}

| \overbrace{S} | \ underbrace{S}

| \mathcal{RL} | \ELLIP | \ ACCENT

| \begin{array} MAT \end{array}

| AN | RL | GS | MS | PM | FW | HN | HL |

Where AN = Arabic numerals, RL = Roman letters, GS = Greek symbols, MS

7

= mathematical symbols, PM = punctuation marks, FW is function words, HN is

Hindu numerals and HL is Hindu letters.

Yeung et al.

In [12], Yeung et al define precise replacement rules with a definite-clause grammar

(DCG). Due to backtracking, DCG parsers are inefficient so some methods (e.g.

left factored rules, binding symbol preprocessing and hierarchical decomposition) are

developed to speed up the process. Left factoring grammar rules are designed in

a way to prevent repetitive searches for the same term. The grammar is defined

on strings but they do not clarify how they generate strings from two dimensional

expressions. Detecting binding symbols (e.g. =) and decomposing the expression

into sub expressions shortens the problem size for each run of the algorithm. For

large sized expressions (about 30 symbols), the processing time is reported to be 0.24

seconds, while small expressions are processed under 0.05 seconds.

Others

The system of [13] uses a one-pass dynamic programming based symbol decoding

and graph generation algorithm for symbol recognition. Then the system uses an

A*-like tree search algorithm to generate N-best hypotheses. the search starts from

a terminal node and works backwards (right to left direction).

D. Prusa and V. Hlavac introduced a system[14] where the process runs in two

phases: elementary symbol detection phase and structural analysis phase. In the

elementary symbol detection phase, strokes are grouped according to some distance

constraint and each group is kept under 4 elements. Each candidate is processed

by a freely available OCR tool and all candidates are sent to the structural analysis

phase with returned labels without any elimination. The second phase is based on

8

a parsing algorithm that uses a 2D grammar. There is a general definition for the

grammar but authors do not mention their production rules. A success rate of 97%

is obtained, excluding OCR errors, but no information is given about the nature of

the test expressions, e.g. number of symbols, number of mathematical constructs.

In general, 2D grammar based algorithms are slower (exponential with respect to

number of symbols); they report an average 0.082s for a formula recognition, but

without the information about the number of symbols in each tested formula.

Vuong et al.[15] developed a progressive recognition and analysis method. Pro-

gressiveness is defined chronologically and based on two assumptions: users do not

continue a higher level expression without finishing sub expressions and users do not

make any corrections on the previously written expression parts. Strokes are recog-

nized into symbols and symbols are updated into mathematical expression trees in

real time as they are written by the user. Character recognition is based on original

elastic structural matching [16]. Multi-stroke symbols are recognized with the help

of a list of previously written strokes for possible groupings. Without taking into

account the errors coming from the symbol recognizer, they have a 100% recognition

rate for expressions with less than 10 symbols. However success rate drops to 80% if

the expression has more than 30 symbols.

Our Approach - Mathlet

The system developed in this thesis follows a previous Master’s Thesis by Büyükbayrak

on mathematical expression recognition, called Mathlet[17]. This system is a proce-

durally coded system where symbols where the parse process starts by sorting every

symbol according to its x-coordinate; it then goes over each symbol to find struc-

turally significant ones, such as summation sign or fraction sign. Each such significant

symbol divides input expression into subexpressions, in a recursive fashion. The user

9

interface provides a complete environment to write a scientific article with ease, using

the Tablet PC API for text recognition, a user interface for separating figures and

mathematical expressions; providing feedback and corrections. While the system is

quite successful for a careful user, it has certain limitations that constrain the natural

writing style: it assumes that symbols consists of single strokes as in the Graffiti sys-

tem on Palm PDA OS. Furthermore, it requires that structurally significant symbols

(e.g. summation sign) comes before the related symbols in the x-coordinate ordering.

Finally, the procedural parsing system makes code change difficult.

Putting restrictions on the order of symbols or the number of strokes are ways

that are commonly used to reduce the complexity of the problem, but they result

in considerable diversion from the natural handwriting of expressions. Based on the

experiences obtained with the original Mathlet, we aimed to reduce input constraints

to minimum to give a more natural interface and flexibility and to be able to modify

the system without much complication. As a result, in the current system, the only

assumption about the writing is that symbols either do not intersect in space, or

that they are well-separated in time. In order to make future improvements manage-

able, we decided to use use a method based on grammars rather than a procedural

approach.

Another main principle set forth for the current work was to select the most likely

parse alternative from among the possible alternatives. Handwritten mathematical

expressions may be locally ambiguous, but they correspond to an unambiguous global

expression. Existing mathematical expression recognition systems typically work by

making the best possible decision in a greedy fashion during the parse process. As a

result, they choose what seems to be the best parse in parts of the expression and can

not recover from early mistakes. Our aim was to eliminate any strict decisions so as

to select the statistically most likely parse alternative at the end of the parse process.

10

While this creates extra overhead, we chose this approach over the sub-optimal greedy

approaches.

11

2 METHODOLOGY

For mathematical expression recognition and especially handwritten expressions there

may be ambiguities in the interpretation of the expression. However, this ambigui-

ties stems from the handwriting style of the user or sloppiness of the handwriting,

while underlying mathematical expressions are unambiguous. The main idea of our

approach is that if input symbols are a mathematical expression then it is unambigu-

ous and has an interpretation. Thus, without relying on what there should be, the

system can deduce the whole meaning from geometrical relations between symbols.

For example, in the expression xyz, both xy (y as a superscript) and yz (z as a sub-

script) are valid meanings. Then, recognizing xyz as y as a superscript and x and

z in the same level with each other will be backed by the previous hypothesis that

y is a superscript, which means that without assuming the general structure of the

expression, the system can find the most likely meaning for input expression.

With this approach, there is no emphasis on which order the system process

the symbols and there is no assumption about the structure. Furthermore, there

is no precedence between rules and the system keeps every possible interpretation

or possible subexpression without creating irreveresable mistakes. As in the given

example, ambiguity of the geometrical relationship between y and z can be solved

later in the process.

An overview of the system is give in Figure 2.1. Output of the system is a syntax

tree that represents the input mathematical expression. OCR system takes a list

of strokes and outputs a list of bounding boxes with recognition results. Structure

recognition takes a list of bounding boxes with recognition results and a list of gram-

12

Figure 2.1: System overview

mar rules and outputs a syntax tree. In this section the terms node and token are

used interchangeably.

2.1 OCR

First step of the OCR system is segmentation of the strokes to create a set of symbols.

The segmentation process uses both time and space information. The second step is

creating an image from strokes of a symbol, since our recognizer is based on offline

features. Here, every point in the strokes of the symbol is mapped into a 32 by 32

grid that will create the image, then points are connected by lines. Then, extracted

features gets fed into the classifiers. Resulting output is a list of bounding boxes with

top 3 recognition results.

2.1.1 Character Segmentation

The OCR system recognizes characters as they are written by the user. After each

stroke is written down, the new stroke is checked for intersections with previous

strokes. If there is an intersection and the difference between time stamps of those

strokes are within a certain limit, then those strokes are merged as a symbol. If there

is no intersection, the new stroke gets recognized as a single stroke character. For

example, in the process of writing the plus sign, after first stroke (either horizontal or

vertical one) is written that stroke gets recognized as a single stroke symbol. When

13

the second stroke is written down, which intersects with the previous one, it gets

merged with the first one and plus sign gets recognized as a symbol.

For example, if two strokes intersect by their time stamps are more than two

seconds apart then those to strokes processed separately as two different symbols.

Two possible intersections for an expression is shown in Figure 2.2. The intersecting

strokes that creates the plus sign have to be recognized as one symbol, but the

intersection between the letter y and fraction sign has to be ignored by the system.

By defining a proximity threshold for time dimension y and fraction sign can be

separated and plus sign can be recognized correctly.

Figure 2.2: Sample intersections

2.1.2 Character Recognizer

The OCR system takes the segmented characters as input and outputs top-3 alter-

natives with associated confidence scores, for each recognized character. The OCR

engine is developed using a Support Vector Machine (SVM) and an Artificial Neural

Network (ANN) in conjunction. The SVM used in our systems utilizes a polyno-

mial kernel, and the ANN uses sigmoid threshold functions, 1 hidden layer with 30

neurones.

Prior to recognition, preprocessing is first done to reduce size variations. This is

done on the online data to reduce artifacts whereby the coordinate of each point is

mapped into a fixed coordinate range. Then a character image is created from these

points by connecting them.

Feature extraction takes as input the image of the resized character, ignoring time

14

dimension. This is done to eliminate temporal variations in the drawing of characters,

as well as allowing user corrections of symbols and formula that may be done after

the equation is completed. For both classifiers input features are:

• horizontal, vertical and diagonal histograms of the symbol images

• horizontal, vertical and diagonal depths of the first black pixels of the symbol

images

• number of black pixels in an 8 by 8 windows over the whole symbol image

• ratio of width to height

Confusion in character recognition systems, without context information, is in-

evitable. Table 2.1 gives possible characters that may get confused by a recognition

system. Actual confusion information depends on the selected features for classi-

fication of the characters. With no context information, some confusion between

characters is accepted and can be handled by the parse process.

o ω 1 s + g 2
0 w l 5 t 9 z

)
∫

(
/

Table 2.1: The characters that are difficult to discriminate without context infor-
mation

v γ
u v
µ y

Table 2.2: Confused character with current feature set and classifier

15

Figure 2.3: Characters 9 and g from different users

Size Normalization

One goal of size normalization is to obtain a fixed size image from which to compute

features; while another one is to reduce size variations. Because very long ascenders

and descenders seriously degrade recognition performance, we aim to scale ascender/

descender and body parts separately, as done in [18]. This is done by scaling down a

long stroke inside the character more so compared to other parts and results in less

extreme ascenders/descender.

From every letter’s vertical histogram, if there is a long low value section in the

histogram it is rescaled differently than the rest of the letters. Low value section of

the histogram represents a vertical stroke, in the ascender and the descender letters

and if it is proportionally longer than rest of the letter, this means, for example, a

letter y has a long tail and it gets scaled down. The normalization process also checks

the average histogram value of the rest of the letter where an ascending or descending

part is found to protect thin symbols such as l or (.

Figure 2.4: Before (a) and after (b) normalization

Ascender-Descender Characters: In typography, an ascender character is a

character with a portion of it above the median line and a descender character is a

character with a portion of it under the base line. Simply if a letter is taller than

16

the letter x it is an ascender if it is goes lower than the letter x it is a descender

character.

OCR Test Results

The OCR system is designed to recognize lowercase letters, numbers, ’+’,’-’,’=’ signs,

summation, integral and square root symbols and parenthesis, from the 46-character

LaViola data set consisting of 20 samples of each letter from 11 users [19].

The success rate of the SVM system on this data is 92%. Although there are

methods to generate posterior probabilities from multi-class SVM classification [20],

we used a ANN to generate classification alternatives and obtain reliable recognition

confidence. The ANN classifier we used is a 1-hidden layer feed-forward neural net-

work with 30 hidden neurons. The performance of this classifier is lower compared

to the SVM, with top-1 and top-3 recognition rates of 88% and 97%, respectively.

Since the SVM is more successful in the top-1 performance, the OCR system uses

the SVM output as the top-choice and gets the next two choices and the confidences

from the ANN.

2.2 Structure Recognition

Mathematical expressions are, at least in the same field of mathematics, designed

to be unambiguous; thus, expressions are highly structured which means they are

governed by a grammar. The recognition process of mathematical expressions has

to be guided by some kind of rule set, whether it is explicitly defined such as graph

rewriting algorithms or implicitly implemented in a procedural parsing process. The

first logical step is, designing a grammar for the intended range of mathematical

expressions.

Our grammar has been designed with the observation that every grammatical

17

relation between symbols or symbol groups is defined between neighboring ones.

Simply, if there is a relation between two symbols or a symbol group, there are no

other symbols between them. So, each grammar rule has one central symbol and

a number of neighboring relations. For example the summation symbol has three

neighbors: one above, one below and one on the right of the symbol.

2.2.1 Graph Grammars

Graph grammars are first introduced separately by [21] and [22]. They provide

formalism for grammatical processing of multi-dimensional data which cannot be

achieved by string grammars. Despite the fact that they are introduced to solve pic-

ture processing problems, since their introduction, graph grammars have been used

in areas such as concurrent systems, databases, programming languages and biology

[23].

Figure 2.5: Graph g′ after rule r applied to graph g. Embedding rule is graphically
represented: only edges towards c and edges outgoing a are kept.

A graph grammar G = (N, T,E,R) consists of a set of rules R that are defined

on a graph that consists of a set of terminal and non-terminal nodes N and T that

are connected with a set of edges E. A rule r = (gl, gr, C, Em) consists of a left-

hand side graph gl and a right-hand side graph gr, an applicability predicate C, and

an embedding rule Em. The applicability predicate C (application condition) ,these

conditions are constrains on attribute values of nodes and/or edges, and non-existence

18

of certain edges. With applicability predicates, a production rule can be restricted

even if it has a match in the input graph. A production is the application of a rule

r to graph g to produce g′, which is denoted as g ⇒r g
′. With a production g ⇒r g

′,

an occurrence of a subgraph gl of g is replaced with a subgraph gr to produce g′,

according to embedding rule Em, if the applicability predicate C is satisfied.

In string grammars, the placement of the production is obvious, but in graph

grammars, placement of production graph gr has to be specified. Embedding rule

Em describes how to handle dangling edges (edges that lose one of their nodes after

the gl is removed from the graph) and how to connect the produced graph gr to the

existing graph. A derivation from graph g to graph g′ of grammar G is a sequence of

productions where g ⇒r g1 ⇒r g2... ⇒r g
′. A graph g = (n, e) is in graph grammar

G iff n ⊆ N and e ⊆ E and there exists a derivation that can generate g with rules

R.

In our case, there is only one embedding rule because all rules follow the same

embedding. Normally a graph grammar rule indicates that gl is replaced by gr; here

gr ∪ gl is added to the graph.

2.2.2 Proposed Grammar

In the proposed graph grammar, nodes represent recognized symbols and edges are

spatial relationships between symbols. Node attributes include the bounding box

of the symbol, position and size and the center of the symbol. These attributes are

used in the applicability predicates of the rules. The parser checks every node against

every grammar rule to find a matching rule and applies this rule to the graph. The

parse process continues until there is no valid production.

Nodes: A node is a tuple n = (t, c, i, A) where t is the type of the node, c is

the identifier of the rule that constructed the node, i is a unique identifier and A is

19

a set of attribute values. The type of a node t is the lexical type of the symbols,

such as number, letter, operator or type of the expression if node is non-terminal.

The construction c is used to keep track of the rules that have been used: each node

knows which rule constructed itself, so if needed, the whole history can be generated.

Each box in figures 2.8 and 2.9 represents a node in the graph.

Edges: An edge is tuple e = (t, n1, n2) where t is the type of the edge, n1 and n2

are nodes that are connected together by the edge. There are three types of edges:

• Spatial relationship edges: if two nodes are neighbors, they are connected with

this type of edge(Figure 2.9,a).

• Component edges: edges between a non-terminal node and its components

(Figure 2.9,b), used to help generation of syntax trees after the parse process.

For example, a node representing a2 will have component edges to nodes a and

2.

• Production edges: edges to the produced non-terminal node from terminal

node (or another non-terminal node) (Figure 2.9,c). Only center node of the

rule graph gets the component edge after production. For example, after the

generation of the node represents a2 node representing a will have a production

edge to node a2, since the center node of the rule that matched is base of the

superscript relation.

First step of initial graph construction is token generation. Tokens are nodes of the

graph that represents symbols of the input expression. It should be noted that later in

the recognition process graph nodes represents recognized expressions. Tokens carries

the information comes from the OCR, bounding boxes and recognition results. In

addition to these, typographical centers and type information, (e.g. number, letter,

sign etc.) is added to the tokens.

20

Second step is generating edges to connect nodes of the graph. In initial graph

only neighborhood edges are generated. Edges also contains the distance information

between symbols.

When the initial graph is generated from a list of symbols, spatial edges are

generated between two nodes if they are neighbors, defined as having a clear line of

sight between the center points of their bounding boxes. The initial graph have no

production or component edges; those are added to keep track of the past productions

as the parse process goes on.

Production edges and component edges are trivial to generate as rules are applied,

but spatial relationship edges can not be easily generated. Edges between products

of the neighbors of the component nodes and product node are generated if there is

no intersection between those nodes.

Spatial relationship edges do not have any attributes. In other words, the exis-

tence of a spatial relationship edge between two nodes do not give any information

about the nature of the relationship, such as being above or below each other. The

advantage of our approach is that by associating spatial relationship attributes with

applicability predicates, as opposed to defining global definitions for spatial relation-

ships, each rule can have its own definition for spatial relationships categories. For

example the angle to be recognized as a superscript can be selected differently for

different rules.

Applicability Predicates: The most important part of the decision when it

comes to applying a rule, comes from applicability predicates. For most rules, the

angle and/or distance between symbols are checked.

There is two kinds of angle calculation between bounding boxes to solve the

following problem. Since our predicates also will be used on produced tokens, we

can not guarantee a size or width to height ratio for our token bounding boxes. As

21

shown in Figure 2.6, this increases the variability of the angles for same grammatical

relation. First angle calculation method calculates the angle between the centers of

two bounding boxes, as shown in Figure 2.6. Second one calculates the angle between

the center of the closest squares that can be fitted into those bounding boxes, as shown

in Figure 2.7.

Figure 2.6: Angles between bounding boxes for the first relation

Figure 2.7: Angles between bounding boxes for the second relation

Some rules may have further checks on attribute values. For example, for the rule

that checks for fractions, gl has a central node which represents the horizontal line

symbol. To be able to determine the precedence, if one of the matched neighbors

comes from another fraction production, its fraction symbol (a horizontal line) has

to be smaller than the fraction symbol to be included in the current production. Any

constraints used in the applicability predicates are very loose, in order to keep all

likely interpretations of the mathematical expression.

Since the matched nodes are kept in the graph, each rule also has a predicate that

also checks the non-existence of a production edge that connects to a node which is

same as gr of the rule, to prevent matching same nodes again and generating the

same product. This complicates the parse process and increases the complexity but

removes the need for defining precedence between rules.

22

The geometrical relations for x2,y2 or b2 are different, ascender, descender infor-

mation is also determined and used in the parsing process of the system. Each letter

has a center point for geometrical relations. In our work this point is set to the center

of the bounding box for normal characters, to one third of the length below the top

for descender character and to one third of the length from the bottom for ascender

characters.

2.2.3 Parsing

Our parse algorithm is a fairly straight forward bottom-up process. Basically two

tasks have to be done by the parser: finding a match for pattern graphs of the rules

and embedding the resulting product graph. Since the pattern graph of any rule is

a star graph (a graph that has a central node and surrounding neighboring nodes

connected only to the central node), when processing a node, the parser looks for a

matching rule which has the same center node. Then it checks for the neighboring

nodes and applicability predicates to finalize the matching process.

Once a match is found, a new node is generated according to the rule, which

then gets connected to the existing graph with component and production edges.

Spatial relationship edges are generated among newly produced nodes after no pos-

sible production is left in the existing graph. Each new node inherits the neighbors

of its components and spatial relationship edges between new nodes are generated

separately. A parse process is depicted in Figure 2.8 and a state of the graph is given

during the parse process in Figure 2.9. Nodes shown in the Figure 2.9 are duplicated

to increase readability. In fact there is only one graph which has three kinds of edges.

The output is a graph where all productions are present. If the input can be

defined by the grammar, then at least one node which covers all input symbols will

be in the output graph. At this point our framework foresees the evaluation of

23

Figure 2.8: Generated nodes in each round, along with their component edges.

Figure 2.9: Graph after round 1, of Figure 2.8 shown in 3 parts: a) spatial edges,
b) component edges, c) production edges.

the possible interpretations (all nodes that cover all the input symbols) in terms of

their likelihood according to pre-learned spatial layout and OCR output probability

distributions. However this step is currently not completed and we only have an

unranked list of alternatives. Since component edges keep the history of productions,

an expression tree can be generated if one of the alternative interpretation nodes is

selected as the root and component edges are followed until it reaches a terminal

node. Even if process cannot produce a node without spatial relationship edges,

existing productions can be seen as hypothesis and can be used for further analysis.

Like most graph grammar parse algorithms, this has exponential time complexity in

the number of symbols.

The first step of the parser is generating the graph representing the input. Nodes

come from a class and each carry a bounding box and recognition information, all

node attributes and three lists of edges for three different edge type. Then all nodes

connected to each other with the spatial relationship edges with the conditions men-

tioned previously. This generates the input graph, a graph of terminal nodes. At

24

Figure 2.10: Rules used for sample parse. ”|” depicts ”or”

this the stage parser traverses through all the nodes in the graph and tries to match

a rule. During the implementation, each rule is inherited from a base rule class,

where all can be called by parser without difference and without a need for modifi-

cation. When a rule is matched, the product of that rule gets added to the graph

with component and production edges, but without spatial relationship edges. After

every node is tested against grammar rules, spatial relationship edges are generated

for produced nodes. Then the parser starts to traverse the node with the added new

nodes. When no rule can be applied after one iteration of the graph parser stops

and the nodes covering all the input symbols is returned. Since each node has the

record of its components and what production created it, the component edges can

be followed from a node to the terminal nodes to generate the syntax tree.

2.2.4 Disambiguating the Parse Alternatives

The parse process may construct more than one node that covers all of the input

symbols. In order to be able to chose the best parse alternative, likelihoods of the

nodes corresponding to different parses of the equation are calculated while they

are constructed in the parse process. These likelihoods are calculated using the

spatial distributions of size and distances of the symbols related to the grammar

rule. For instance, in Figure 2.11 similar parses are constructed for the two samples.

Disambiguation is done by calculating their likelihoods for the considered meanings

from the spatial distributions of the components and selecting the parse with higher

likelihood. For the right hand side sample, the position of the plus sign makes it

25

Figure 2.11: Sample disambiguations

more likely to be in the same line with the superscript 2.

In order to extract spatial distribution statistics, data is collected for the spa-

tial distributions between symbols from a set of mathematical expressions written

by different users. For example we used differences in x and y coordinates of the

closest corners of the bounding boxes of letters for superscript relationship. For each

such parameter, histograms are calculated from this data which are then used to

approximate the likelihood functions for the spatial relationships described in each

grammar rule. With each relation has a likelihood, this values are used to calculate

a log likelihood for each rule production.

Bin widths for the histograms that calculated to approximate the likelihoods varies

depending on the range and the distribution of the data but for a given histogram

bin width is constant. Distribution of the data is taken into account to generate

histograms that do not have empty bins.

Apart from the first nodes generated after symbol recognition, likelihood of each

node is the average log likelihood of the relations that generated the node and the

likelihoods of the components.

26

Figure 2.12: States of the graph when parsing the expression a2 + b

27

3 IMPLEMENTATION

The implementation of the prototype system is done with C# in the .Net framework.

With the TabletPC SDK, the Visual Studio development environment provides very

useful tools for the user interface, data structures and pen interface. Character

recognition methods utilize the LibSVM’s [24] .Net1 implementation as a classifier.

The system is designed in a modular way to be able to make future improvements

easier. Token class implementation is based on the reference type classes of C#

language, so throughout the parse process the same token object is not created more

than once; instead references to those objects are used. This causes fewer object

creation operations. Grammar rules are coded as objects and they are all derived

from a base rule class; thus, rules can be implemented without changing anything

in the parser structure. Utility functions such as calculating angles between lines or

checking intersections are also carried by the base classes.

3.1 Data Collection Interfaces

There are separate software parts that are written to collect isolated characters and

mathematical expressions. For both programs, list-box GUI components are used to

show the progress of data collection and to navigate through data items. Collection

can be done by any pointing device, Microsoft TabletPC SDK supports this, but it

is intended to be used on a tablet PC or with a stylus.

Both the character collector and mathematical expression collector uses a similar

XML based file format. Each file has user, date and comment fields. In addition

1http://www.matthewajohnson.org/software/svm.html

28

to those, character collector files has a collection with ink and label fields for each

character. For expression collector each data item also has segments and relations

fields. Segments fields carries bounding boxes and labels of the characters of the

expression, relations fields are used to record the relations between characters to

later extract statistics from. Stroke information is stored in Microsoft’s Ink Serialized

Format (ISF), Every parameter coming from the tablet can be saved in ISF format

along with application specific information.

Figure 3.1: Character collection interface

Figure 3.2: Expression collection interface

29

3.2 Mathlet Interface

The interface has basic capabilities: writing and deleting strokes. Outputs of the

interface are LATEX code and MathML2 code of the expression and the rendering of

the expression. Rendering is done by an open source MathML rendering tool named

gNumerator3.

All generated tokens are shown in a tree list box with theirLATEX codes. Selecting

them updates the MathML code and the rendering with the code of the selected

token. Since the control is a tree list component tokens are also listed under each

token.

Interface also supports some error correction for OCR. Right clicking a written

symbol shows a list of alternatives for the recognition of the symbol. Those alterna-

tives are generated by the ANN. Also, if real time OCR is selected user can see the

recognition result as he writes the symbols.

Figure 3.3: MathML and LATEX codes for expressions x4

2Mathematical Markup Language (MathML) is an application of XML for describing mathematical
notations and capturing both its structure and content. It aims at integrating mathematical
formulas into World Wide Web documents. It is a recommendation of the W3C math working
group.

3http://numerator.sourceforge.net

30

Figure 3.4: Mathlet interface

31

4 DATA COLLECTION

4.1 Mathematical Expressions

Even for machine printed letters geometrical relations between symbols are varied,

this is even more pronounced for hand written expressions. A set of mathematical

expressions is collected to be able to generate statistics about the geometrical relations

between the symbols of a mathematical expression. There are expressions in this set

from different fields of mathematics to be more comprehensive. A list of samples

from the collected data is shown in Figures 4.1, 4.2, 4.3 and 4.4.

There are 57 expressions and those expressions are written two times by 15 people.

All samples are written in natural hand writing of the users. Base lines are not fixed

and there are cursive letters. Most of the expressions are taken from [25] which is

a collection of mathematical expressions taken from Standard Mathematical Tables

and Formulae[26].

4.2 Isolated Characters

The character set that collected is very similar to the one defined in Kosmala [27].

The set consists of 70 characters, which are lower case letters, digits, the Greek letters

and symbols that are shown in Table 4.1. Selected Greek letters and symbols are

frequently used in mathematical literature as can be seen in So & Watt [28].

For isolated characters there are two sets of data, one as a training set one for

testing. Training set is collected from 15 people with 10 samples from each user.

Training set is collected from 6 users and each user has written 4 samples.

32

α β γ λ µ π ε τ φ
θ ∆ Π Σ ∞

∫
= ≈ 6=

≥ ≤ < > → ↔ { } () ,
+ - : /

√

Table 4.1: Greek letters and symbols included in the character set

33

Figure 4.1: Samples from collected expressions (user 1)

34

Figure 4.2: Samples from collected expressions (user 1)

35

Figure 4.3: Samples from collected expressions (user 2)

36

Figure 4.4: Samples from collected expressions (user 2)

37

5 EVALUATION

5.1 Evaluation

There is no standard way of evaluation for mathematical expression recognition, and

evaluations have issues similar to graphic recognition [29]. Most used performance

measure is number of expressions correctly recognized from a set of expressions.

Those expression sets lack standardization and mostly not publicly available. This

mostly makes comparing performance of the systems very difficult. Evaluating user

experience is an option but very few system is publicly available and information

about coverages, in terms of recognizable symbols and mathematical expression do-

mains, are limited and even not reported [30].

The collected set of mathematical expressions is aimed at extracting statistics

from natural handwriting of the users. Thus the set does not meet the input re-

quirements of our recognizer. We selected few shorter expressions from the set to

evaluate the system. The limitations of the system mostly comes from the simplistic

nature of segmentation and recognition processes, since the focus of the study is the

recognition of the expressions. We also tested with manually labeled expressions.

Table 5.1 shows the results. Recognition times are ranging from less than a second

to 10 minutes. Number of symbols is most influential for the time complexity of the

system, also number of neighbors for symbols effects the time spent.

As shown on Table 5.1, our structure recognition rate is %32.5, where OCR errors

are present but not effected the parse process to produce a wrong recognition. Effect

of OCR results on parse process can be put into two categories, first and most impor-

38

tant is recognition errors of critical symbols, such as fraction symbol or parathesis.

If a recognition error occurs for these symbols, correct structural analysis is not pos-

sible. Second effect is on the determination of the baselines of the symbols. Baseline

of a symbol will be different if it is recognized as an ascender or a descender symbol,

and this information is used in our graph grammar rules, such as rules for subscripts

and superscripts.

To observe the behavior of our parse algorithm we also tested with ground truthed

expression and our correct recognition rate is %85. This shows that with a state-of-

the-art OCR system, success of our mathematical expression recognition system can

be greatly improved. Errors are caused by slanted expressions and user variations for

geometrical relations.

Correct recognition: 1/40 %2.5
Correct structure recognition: 13/40 %32.5
Segmentation error: 16/40 %40
OCR error in expression: 40/40 %100
Correct structure recognition on manually labeled input: 34/40 %85

Table 5.1: Results from 40 expressions from 10 users

Table 5.2 shows the reported results from the groups we mentioned in the lit-

erature review. For those results, expression sets used in the evaluations are not

available. Evaluation strategies are also different among research groups. For exam-

ple, MathPad systems is tested after users are given a list of sample symbols that can

be recognized by the system, to be informed about the correct way to write the sym-

bols (limitation of the recognizer) and given some time to get used to the interface

and learn the capabilities of the system by trying out some simpler expressions[4].

Differences in the interface also effects the evaluation. Interface of the Infty systems

gives the recognition result after each stroke is written, thus user gates feedback as

he writes the expressions[8]. Correct structure recognition results given in Table 5.1

39

so
u
rc

e
su

cc
es

s
ra

te
ex

p
la

n
at

io
n

#
d
iff

.
ex

p
r.

#
sa

m
p
le

s
#

u
se

r
Z

an
ib

b
i

et
.

al
.

[2
]

%
27

C
or

re
ct

re
co

gn
it

io
n

ra
te

73
1

-
L

aV
io

la
et

.
al

.[
4]

%
90

.8
C

or
re

ct
p
ar

si
n
g

d
ec

is
io

n
ra

te
36

1
11

L
ab

ah
n

et
.

al
.

[6
]

-
in

te
rv

ie
w

w
it

h
u
se

rs
-

-
-

T
ap

ia
et

.
al

.
[7

]
-

-
-

-
-

S
u
zu

k
i

et
.

al
.

[8
]

%
99

C
or

re
ct

st
ru

ct
u
re

re
co

gn
it

io
n

4
-

24
G

ar
ai

n
et

.
al

.
[1

1]
%

74
.9

2
C

or
re

ct
re

co
gn

it
io

n
ra

te
-

55
00

-
Y

eu
n
g

et
.

al
.

[1
2]

%
97

.9
9

C
or

re
ct

st
ru

ct
u
re

re
co

gn
it

io
n

15
4

10
P

ru
sa

et
.

al
.

[1
4]

%
97

-
-

-
-

T
a
b
le

5
.2

:
R

ep
or

te
d

su
cc

es
s

ra
te

s
fr

om
th

e
li
te

ra
tu

re

40

of our system is most comparable with those results. But it should be noted that our

test set is limited because our grammar is simple compared to our collected data.

Expression samples shown in Figure 5.1 are correctly recognized expressions by the

Mathlet interface. There is also error correction capabilities which further increase

the usability of the system. Current implementation supports super-script and sub-

scripts, fractions, summations, integrals and square root expressions.

Figure 5.1: Correctly recognized expressions with Mathlet interface

5.2 Future Work

A comprehensive evaluation of the system by direct user interaction is left as a future

work. An evaluation strategy similar to LaViola [4] can be followed, where users are

given a list of recognizable characters as they should be written and given some time to

get use to the system, then they are instructed to write down a list of expressions. Also

there can be improvements on OCR system, tools can be implemented to help graph

grammar design, improvements can be made on efficiency of the implementation and

41

system can be integrated with other software.

Improvements can be made on character recognition processes to reduce the char-

acter recognition errors. Different feature sets can be tested and online features can

be added to the recognition process. Our implementation gives opportunity to sepa-

rate grammar rule codes and the parser itself. This way grammar rules can be easily

tuned to increase the success of parse process.

Graph grammars are inherently hard to design and debug, since they are hard

to visualize, due to their multi-dimensional nature. This can be another avenue of

future work, developing an interface to design and visualize graph grammar rules.

Also, with a graph grammar visualization interface rules can be saved and loaded to

programs as external files and this gives the users ability to manipulate the grammar

rules.

Most time consuming part of our technique is determining neighborhoods between

tokens when initializing the graph and later in the parse process. To increase the

speed, a modified kd-tree data structure can be used to be able to utilize sweeping

line algorithm which is more time efficient to check intersection between lines.

Furthermore, current interface of Mathlet can be turned into a Microsoft Office

add-on. Pen interface can be used to enter mathematical expressions in existing

Office applications. New hardware and computer designs gives opportunity to use

standard keyboard, touch and pen interfaces at the same time, such as HP TouchS-

mart computers or laptops with touch screens.

42

A COMPLEXITY ANALYSIS

Complexity analysis for graph parsing algorithms is out of the scope of this study.

However we can show the number of possible rule applications in a simplified graph

grammar system. Which certainly does not give a tight bound but gives an idea of

the general complexity of the problem. If we assume every input symbol is neighbors

of each other (connected graph) and we assume all grammar rules have two symbols

in their body then:

Where N = {n1, n2, ...} is input symbols and

R = {r1, r2, ...} is grammar rules

number of possible token generation operations is (1+|R|)|N|−1
|R|

{ni} →
(
|N |
1

)

{ni, rx, nj} →
(
|N |
2

)
|R|

{ni, rx, nj, ry, nk} →
(
|N |
3

)
|R|2

...

+

(
|N |
1

)
+

(
|N |
2

)
|R|+ . . .+

(
|N |
|N |

)
|R||N−1| =

(1 + |R|)|N | − 1

|R|

This shows, for a given grammar (number of rules |R| are constant) number of

43

possible token generation is exponential in the number of input symbols |N |. In this

analysis we do not calculate the probability of rule matches and we assume all rules

can be applied in all parts of the input graph. This shows that graph grammar itself

is the deciding factor for the complexity of the parser. Since we can represent string

grammars with graph grammars, there is polynomial time complexity graph grammar

parser. However, two dimensional nature of mathematical expressions guarantees

complexity is higher than polynomial for our grammar.

44

B GRAMMAR RULES

The grammar rules used in our system is given in this section. Rules are grouped

according to their center symbols which is show in the left top corner of each grouping.

In addition to the grammar rules, the accepted angle ranges are given for different

rules. Those values are based on the Cartesian space used by .Net framework which

is rotated in contrast to generally used plane.

Figure B.1: Cartesian plane given for angle values

List of terminals

op : ∗| − | : |.|x| − |/

eq : = | < | > | ≤ | ≥ | →

α : (a...z)|α|ε|π|γ|µ|τ |∞

n : (0...9)

f : sin|cos|tan|cot

g1 :
∑
|
∏

g2 :
∫

g3 : lim

45

List of rules
op :

< α, n, nα,Et, Ef , Efr, Emt, Eg > op < α, n, nα,Et, Ef , Efr, Emt, Eg, Eop >⇒ Eop

eq :

< α, n, nα,Et, Ef , Efr, Emt, Eop, Eg > eq < α, n, nα,Et, Ef , Efr, Emt, Eop, Eg, Eeq >⇒ Eop

α :

α
<α,n,nα,Et,Ef ,Efr,Emt,Eop>

α<α,n,nα>

⇒ Et

α < α, n, nα,Et, Ef , Efr, Emt, Eop >⇒ nα

n :

n
<α,n,nα,Et,Ef ,Efr,Emt,Eop> ⇒ Et

f :

f
<α,n,nα>

< α, n, nα,Et, Ef , Efr, Emt, Eop >⇒ Ef

g1 :

<α,n,nα,Et,Ef ,Efr,Emt,Eop>
g1

<α,n,nα,Et,Ef ,Efr,Emt,Eop>
< α, n, nα,Et, Ef , Efr, Emt, Eop, Eg > ⇒ Eg

g2 :

<α,n,nα,Et,Ef ,Efr,Emt,Eop>
g2

<α,n,nα,Et,Ef ,Efr,Emt,Eop>
< α, n, nα,Et, Ef , Efr, Emt, Eop, Eg >

g2 < α, n, nα,Et, Ef , Efr, Emt, Eop, Eg >

⇒ Eg

g3 :

g3
<Eeq>

< α, n, nα,Et, Ef , Efr, Emt, Eop, Eg > ⇒ Eg

Et :

Et < Et, Emt >⇒ Emt

Et
<α,n,nα,Et,Ef ,Efr,Emt,Eg,Eop> ⇒ Et

Ef :

Ef < Ef , Emt >⇒ Emt

46

Efr :

<α,n,nα,Et,Ef ,Efr,Emt,Eop,Eg>

fr
<α,n,nα,Et,Ef ,Efr,Emt,Eop,Eg>

⇒ Ef r

Et,Ef ,Efr,Emt,Eg,Eop,Eg :

< (> E <) > ⇒ Et

Figure B.2: Example for superscript relation

Following is the list of constraints used as applicability predicates in our graph

grammar. Angle values should be viewed with the given Cartesian plane.

• Superscript: slope of the line segment between two token centers is 90 to 170

degrees.

• Subscript: slope of the line segment between two token centers is 10 to 60

degrees.

• Left-Right relation (e.g. +): slope of the line segment between the center token

and the token on the right is 60 to 130 degrees and with the one on the left is

-60 to -130 on other.

• Above-Below relation (e.g. fraction): slopes of the line segments are -40 to 0

and 0 to 40 degrees for the one below, -140 to -180 and 140 to 180 for the one

above of the center token.

• Same baseline relation: slope of the line segment between two token centers is

70 to 110 degrees.

47

• Summation symbols relations: slopes of the line segments are -40 to 0 and 0 to

40 degrees for the one below, -140 to -180 and 140 to 180 for the one above and

70 to 110 degrees for the one on right of the center token.

• Left-Right relation (for parenthesis): slope of the line segment between the

center token and the token on the right is 60 to 120 degrees and with the one

on the left is -60 to -120 on other.

• For square root relation applicability predicate do not use angle values. Union

of the two bounding boxes have to be smaller than a given threshold. Threshold

is a rectangle with the width and height values %50 bigger than the bounding

box of the square root symbol.

48

Bibliography

[1] D. Blostein, J. R. Cordy, and R. Zanibbi, “Applying compiler techniques to

diagram recognition,” in ICPR, 2002, pp. III: 123–126.

[2] R. Zanibbi, D. Blostein, and J. R. Cordy, “Recognizing mathematical expressions

using tree transformation,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 24,

no. 11, pp. 1455–1467, 2002.

[3] J. J. L. Jr., “An initial evaluation of a pen-based tool for creating dynamic

mathematical illustrations,” in Sketch Based Interfaces and Modeling, T. Sta-

hovich, M. C. Sousa, and J. A. P. Jorge, Eds. Vienna, Austria: Eurographics

Association, 2006, pp. 157–164.

[4] J. LaViolaJr., “Mathematical sketching: A new approach to creating and ex-

ploring dynamic,” Ph.D. dissertation, Brown University, Providence, RI, USA,

2005.

[5] C. J. Li, R. Zeleznik, T. Miller, and J. J. LaViola, “Online recognition of hand-

written mathematical expressions with support for matrices,” in ICPR, 2008,

pp. 1–4.

[6] G. Labahn, S. MacLean, M. Mirette, I. Rutherford, and D. Tausky, “Math-

brush: An experimental pen-based math system,” in Challenges in Symbolic

Computation Software, ser. Dagstuhl Seminar Proceedings, W. Decker, M. De-

war, E. Kaltofen, and S. Watt, Eds., no. 06271. Dagstuhl, Germany: Inter-

nationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss

Dagstuhl, Germany, 2006.

[7] E. Tapia and R. Rojas, “Recognition of on-line handwritten mathematical ex-

pressions using a minimum spanning tree construction and symbol dominance,”

49

in GREC, ser. Lecture Notes in Computer Science, J. Lladós and Y.-B. Kwon,

Eds., vol. 3088. Springer, 2003, pp. 329–340.

[8] Y. Eto and M. Suzuki, “Mathematical formula recognition using virtual link

network,” in ICDAR, 2001, pp. 762–767.

[9] S. Toyota, S. Uchida, and M. Suzuki, “Structural analysis of mathematical for-

mulae with verification based on formula description grammar,” in DAS, 2006,

pp. 153–163.

[10] A. Raja, M. Rayner, A. P. Sexton, and V. Sorge, “Towards a parser for mathe-

matical formula recognition,” in MKM, ser. Lecture Notes in Computer Science,

J. M. Borwein and W. M. Farmer, Eds., vol. 4108. Springer, 2006, pp. 139–151.

[11] U. Garain and B. B. Chaudhuri, “Recognition of online handwritten mathemat-

ical expressions,” IEEE Transactions on Systems, Man, and Cybernetics, Part

B, vol. 34, no. 6, pp. 2366–2376, 2004.

[12] K. F. Chan and D. Y. Yeung, “An efficient syntactic approach to structural

analysis of on-line handwritten mathematical expressions,” Pattern Recognition,

vol. 33, no. 3, pp. 375–384, Mar. 2000.

[13] Y. Shi and F. K. Soong, “A symbol graph based handwritten math expression

recognition,” in ICPR, 2008, pp. 1–4.

[14] D. Prusa and V. Hlavac, “Structural construction for on-line mathematical for-

mulae recognition,” in Iberoamerican Congress on Pattern Recognition, 2008,

pp. 317–324.

[15] B. Q. Vuong, S. C. Hui, and Y. L. He, “Progressive structural analysis for

dynamic recognition of on-line handwritten mathematical expressions,” Pattern

Recognition Letters, vol. 29, no. 5, pp. 647–655, Apr. 2008.

50

[16] K. F. Chan and D. Y. Yeung, “Elastic structural matching for on-line handwrit-

ten alphanumeric character recognition,” in ICPR, 1998, pp. Vol II: 1508–1511.

[17] H. Buyukbayrak, “Online Handwritten Mathematical Expression Recognition,”

Master’s thesis, Sabanc University, Turkey, 2005.

[18] B. Yanıkoğlu, “Segmentation and recognition of offline cursive handwriting,”

Ph.D. dissertation, Dartmouth College, Department of Computer Science, USA,

1993.

[19] J. J. L. Jr., “Mathematical sketching: A new approach to creating and exploring

dynamic illustrations,” Ph.D. dissertation, Brown University, Department of

Computer Science, 2005.

[20] M. Gönen, A. G. Tanugur, and E. Alpaydin, “Multiclass posterior probability

support vector machines,” IEEE Transactions on Neural Networks, vol. 19, no. 1,

pp. 130–139, 2008.

[21] A. Rosenfeld and J. L. Pfaltz, “Web grammars,” in IJCAI, 1969, pp. 609–619.

[22] H.-J. Schneider, “Chomsky systems for partial orderings, in German,” Friedrich-

Alexander-Universität Erlangen-Nürnberg, Tech. Rep. 3, 1970.

[23] H. Fahmy and D. Blostein, “A survey of graph grammars: theory and applica-

tions,” in ICPR, 1992, pp. II:294–298.

[24] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines,

2001, software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[25] B.-Q. Vuong, S. C. Hui, and Y. He, “Erratum to ”progressive structural anal-

ysis for dynamic recognition of on-line handwritten mathematical expressions”

51

[pattern recognition letters 29 (5) (2008) 647-655],” Pattern Recognition Letters,

vol. 29, no. 9, p. 1454, 2008.

[26] D. Zwillinger and B. Kellogg, “CRC standard mathematical tables and formu-

lae,” SIAM Review, vol. 38, no. 4, pp. 691–??, Dec. 1996.

[27] A. Kosmala, G. Rigoll, S. Lavirotte, and L. Pottier, “On-line handwritten for-

mula recognition using hidden markov models and context dependent graph

grammars,” in In Proceedings of the Fourteenth International Conference on

Pattern Recognition, 1999, pp. 1306–1308.

[28] C. M. So and S. M. Watt, “Determining empirical characteristics of mathemat-

ical expression use,” in MKM, 2005, pp. 361–375.

[29] I. T. Phillips and A. K. Chhabra, “Empirical performance evaluation of graphics

recognition systems,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 21, no. 9,

pp. 849–870, 1999.

[30] A. Lapointe and D. Blostein, “Issues in performance evaluation: A case study

of math recognition,” in ICDAR, 2009, pp. 1355–1359.

52

