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Keywords: speaker verification, Gaussian mixture models, within-session variability,

session invariant

Abstract

In text-independent speaker verification, studies focused on compensating intra-speaker

variabilities at the modeling stage through the last decade. Intra-speaker variabilities

may be due to channel effects, phonetic content or the speaker himself in the form of

speaking style, emotional state, health or other similar factors. Joint Factor Analysis,

Total Variability Space compensation, Nuisance Attribute Projection are some of the

most successful approaches for inter-session variability compensation in the literature.

In this thesis, we criticize the assumptions of low dimensionality of channel space in these

methods and propose to partition the acoustic space into local regions. Intra-speaker

variability compensation may be done in each local space separately. Two architectures

are proposed depending on whether the subsequent modeling and scoring steps will also

be done locally or globally.

We have also focused on a particular component of intra-speaker variability, namely

within-session variability. The main source of within-session variability is the differences

in the phonetic content of speech segments in a single utterance. The variabilities in

phonetic content may be either due to across acoustic event variabilities or due to differ-

ences in the actual realizations of the acoustic events. We propose a method to combat

these variabilities through random sampling of training utterance. The method is shown

to be effective both in short and long test utterances.



KONUŞMACI DOĞRULAMA İÇİN YEREL BETİMLEMELER VE RASGELE

ÖRNEKLEME
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Tez Danışmanı: Hakan Erdoğan
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Özet

Son on yılda, metin bağımsız konuşmacı tanıma alanında yapılan çalışmalar konuşmacı

içi değişintileri modelleme esnasında giderme üzerine odaklanmıştır. Konuşmacı içi

değişintiler kanal etkilerinden, fonetik içerikten, veya konuşma stili, duygusal durum,

sağlık ve benzeri sebeplerle konuşmacının kendisinden kaynaklanabilir. Ortak Faktör

Analizi, Toplam Değişkenlik Uzayı, Sıkıntı Öznitelik İzdüşümü literatürde oturumlar

arası değişkenlikleri gidermede kullanılan yöntemlerin en başarılılarındandır.

Bu çalışmada, önerilen metodlardaki kanal uzayının düşük boyutlu olma varsayımını

irdeledik ve akustik uzayı yerel bölgelere ayırmayı önerdik. Konuşmacı içi değişintiler

her yerel bölgede bağımsız olarak bastırıldı. İleriki modelleme ve skorlama safhalarının

yerel mi yoksa global mi yapılacağına bağlı olarak iki farklı yapı önerildi.

Konuşmacı içi değişintinin elemanlarından biri olan oturum içi değişkenlikler üzerinde

de çalışıldı. Oturum içi değişkenliklerin ana kaynağı bir ses dosyasının farklı kısımları

arasındaki fonetik içerik farklılıklarıdır. Fonetik içerik farklılıkları, akustik birimler

arası değişintilerden kaynaklanabileceği gibi aynı akustik birimin farklı çıkarımlarından

da kaynaklanabilir. Bu değişintileri giderme amaçlı olarak, eğitim verisinin rasgele

örneklenmesine dayalı bir metod önerdik. Önerilen metodun hem kısa hem de uzun

test verilerinde etkin olduğu gösterildi.
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Chapter 1

Introduction

Speaker recognition is a generic term for extracting information regarding the identity of

the person speaking in a given speech utterance. This problem can be divided into two

subproblems, namely speaker identification and speaker verification, according to the

possible number of target speakers. Speaker identification concerns with determining

the identity of the speaker of a given test utterance from a pre-built target speaker

database. On the other hand, speaker verification is a binary classification problem

where we are given a test utterance and a claimed speaker id, and required to decide

whether the speakers match or not. Speaker recognition may be text-dependent if we

are only required to identify the target speaker when uttering a specific text or may be

text-independent when no restriction is put on the content of the speech utterance.

Speaker verification is commercially more attractive than identification since it finds a

significant place of usage in telephone based access-control systems, forensic applications,

and investigation systems used by police forces and intelligence organizations. The focus

of this thesis is text-independent speaker verification.

1.1 General Structure of Speaker Verification Systems

Speaker verification may be stated as a binary hypothesis test where the two hypothesis

are:

• H0: Test speech utterance X is from the claimed speaker S,

1



Chapter 1. Introduction 2

• H1: Test speech utterance X is not from the claimed speaker S.

The optimum test to decide between two hypothesis is a likelihood ratio test given as:

p(X|H0)

p(X|H1)
=











> θ accept H0

< θ accept H1,
(1.1)

where p(X|H0) is the likelihood of the hypothesis H0 and p(X|H1) is the likelihood of

H1 given X. Most of the approaches in speaker verification may be viewed as a Likelihood

Ratio Detector. The block diagram for such a system is given in Figure 1.1. The front-

end processing block represents the components used for extracting features carrying

speaker-specific information. The features extracted are then scored with the claimed

speaker model to test H0 hypothesis and with an alternative model for H1 hypothesis.

There is usually a last step where score normalization and/or calibration is performed.

Figure 1.1: Likelihood ratio detection based speaker verification system.

Depending on the features used, speaker verification systems may be divided into two

broad categories as: low-level systems and high-level systems. In low-level systems,

features extracted from overlapping windows of 20-32 ms. of speech data are used.

Common examples of these features are Mel Frequency Cepstral Coefficients (MFCC),

Linear Frequency Cepstral Coefficients (LFCC), and Linear Predictive Cepstral Coeffi-

cients (LPCC). These features are typically augmented with their first and sometimes

second derivatives. Silence frames are discarded using a voice activity detector and ini-

tial channel compensation is applied using one or more of the techiques like Cepstral

Mean Normalization (CMN), Feature Warping [1], RASTA [2] and Feature Mapping [3].

These methods are based on the assumption that linear channel effects will shift the

mean of cepstral coefficients and additive noise will modify their variance. In CMN, the

mean of the data for each utterance is calculated and subtracted from all of the frames
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in the utterance. In Feature Warping, channel effects are eliminated by making the dis-

tribution of all the data the same. Since the channel distribution is unknown, Normal

distribution is taken as the target distribution. The features are made short-time Gaus-

sian by making the cumulative distribution of the cepstral coefficients approximately the

same as that of the Normal distribution. In RASTA, a bandpass filter is used to remove

spectral components that change more slowly or quickly than the typical range of change

of speech. In Feature Mapping, the channel is modeled as a discrete variable and only

finite number of possible channel values (like telephone,GSM,CDMA) are accepted. A

training set with channels labeled, is needed for this purpose. First a general Gaussian

Mixture Model (GMM) is trained using all of the data, and then the channel GMMs are

obtained by MAP adaptation of this global GMM model using channel specific data.

The global model and channel models are used to obtain transformation functions that

map each channel data to global data. All of the frames in training and test are first

mapped to the same channel (global GMM channel) and used afterwards. To find which

transformation will be applied for mapping, top-1 scoring with channel GMMs are used

and the channel giving the highest likelihood is accepted as the channel of the utterance.

High-level systems use features that represent long-span speaker characteristics. Tokens

that represent speaking habits of speakers are extracted from speech utterances. Exam-

ples of high-level features are pitch and energy gestures [4], phone n-grams [5], phone

binary trees [6], word n-grams and prosodic statistics. High level systems typically need

more training data than low-level systems and depending on the token used may need a

phone or speech recognizer working in parallel. Their classification accuracy is usually

lower than that of low-level systems, but they fuse well with them at the score level [7].

In this thesis, we will only study on low-level speaker verification systems.

For speaker modeling both generative and discriminative approaches have been pro-

posed. The most commonly used generative technique for speaker verification is GMM,

while the most widely used discriminative technique is Support Vector Machines (SVM).

In generative techniques, the alternative hypothesis may be represented with a set of

speakers obtained for each subject (also known as cohort speakers) or with a single

model obtained from data of a large speaker population. Although SVM does not fit

into likelihood ratio detection based speaker verification systems, impostor utterances

used in training may be seen as representatives of alternative hypothesis.
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Methods compensating for intra-speaker variabilities that are due to effects like channel,

spoken text, microphone used, speaking style, etc., are used at every level of speaker

verification; front-end processing, modeling and scoring. Methods in the modeling stage

typically works on very high dimensional supervectors obtained by concatenation of

GMM mean vectors. Joint Factor Analysis (JFA) is one of the most successful generative

technique that models both the inter-speaker and intra-speaker variabilities. Nuisance

Attribute Projection (NAP) is used with Support Vector Machines (SVM) to remove the

nuisance directions responsible for intra-speaker variabilities from supervectors. These

methods all work on very high dimensional supervector space and typically assume that

intra-speaker variabilities lie in a low dimensional subspace. These methods will be

described in detail later in Chapter 2.

In scoring stage, after the likelihood ratio (or more generally score) is obtained, score

normalization algorithms are applied to use a single threshold independent of nonspeaker

factors for decision taking. The reason for this is based on two observations:

• The distribution of scores for a speaker changes with the channel (e.g. microphone

used) and,

• Optimal thresholds for different speakers may differ.

Score normalization aims to compensate these variabilities by removing biases and scale

factors estimated beforehand. Several approaches have been proposed for this objective,

Zero normalization (Z-norm) and Test normalization (T-norm) being the most widely

used ones [8]. Both Z-norm and T-norm, normalize the score Λ(X) by:

Λnorm(X) =
Λ − µ(X,S)

σ(X,S)
, (1.2)

where µ(X,S) is the mean and σ(X,S) is the variance of impostor scores (scores coming

from hypothesis H1) estimated for speaker S, while they differ in how these parameters

are estimated. The normalization in Equation 1.2 shifts both impostor (hypothesis

H1) and true (hypothesis H0) score distributions using mean and variance of impostor

distribution. The impostor distribution of each speaker becomes normal with zero mean

and unit variance, while true score distributions are shifted accordingly.
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In Z-norm, µ(X,S) and σ(X,S), are estimated at the enrollment stage by scoring the

target speakers’ model with a preselected database of impostor utterances. The log-

likelihood scores are used to estimate speaker specific mean µ(X,S) and variance σ(X,S)

for the impostor (H1) distribution. The advantage of Z-norm is that the estimation of

normalization parameters is performed off-line during training. In T-norm, they are

estimated at scoring stage, by scoring the test utterance with a pretrained impostor

models (T-norm models) in addition to claimed speaker. The mean µ(X,S) and variance

σ(X,S) of the log-likelihood scores of these impostor models for the test utterance are

used as normalization parameters. The two methods may be used cascaded, ZT-norm

(first Z-norm then T-norm) being the more used one. For the full success of these

methods, Z-norm utterances must match the properties of test utterances while T-norm

models must be close to the speaker model.

−4 −3 −2 −1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Distributions Before Score Normalization

Speaker S1

 

 

−4 −3 −2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Distributions After Score Normalization

Speaker S1

 

 

−4 −3 −2 −1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Speaker S2

 

 

−4 −3 −2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Speaker S2

 

 

impostor

true

impostor

true

impostor
true

impostor
true

Figure 1.2: Impostor and true score distributions for two speakers before and after
score normalization applied.

The effect of score normalization is shown for a hypothetical case in Figure 1.2. Here

the impostor and true score distributions for two speakers, S1 and S2, are shown before

and after score normalization. The plots in the first column show distributions before

score normalization. Note that mean values of impostor and true distributions for the

two speakers differ greatly, and it is impossible to select a single threshold giving certain

false alarm and false reject rates for the two speakers. The plots in the second column

show distributions after score normalization. Now the impostor distributions of both
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speakers become zero mean and unit variance, and true distributions shifted accordingly.

In this case, it is possible to use a single threshold for both speakers.

1.2 Contributions of This Thesis

This work first presents a recipe to build a state of the art GMM supervector SVM

system. Taking this system as a baseline, two methods as explained below are realized

to improve performance.

• Two architectures to compensate inter-session variabilities separately at local re-

gions in the acoustic space are proposed. Advantages of working at local subspaces

and ways to incorporate existing methods in these architectures are discussed. A

local version of GMM supervector SVM system with NAP channel compensation

is realized.

• Ways to compensate within-session variabilities caused by across acoustic event

variabilities and differences in actual realizations of acoustic events are investi-

gated. A method using random sampling that targets mainly variabilities in actual

realizations of acoustic events is proposed for GMM supervector SVM system. De-

pending on the size of short segments generated by random sampling, the method

is also viable for across acoustic event variabilities. Performance improvements are

shown both in short and long test utterances.

1.3 Outline of Thesis

This thesis consists of seven chapters. Chapter 1 defines the speaker verification problem

and gives an overview of typical speaker verification systems. Chapter 2 describes the

state of the art approaches to speaker verification. Chapter 3 describes the protocols

and corpora used in NIST Speaker Recognition Evaluations (NIST SRE) which has a

great impact on accelaration of the studies in this field. NIST SRE also provided the

researchers with the necessary databases that includes most of the challenges of speaker

verification in a controlled manner. Since we have participated in NIST SRE 2010 as

part of the studies in this thesis, and we use mainly the NIST databases and protocols,

it is important to have a brief knowledge of NIST SREs.
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Chapter 4 describes the system we used for participating in NIST SRE 2010. This

system also defines our baseline for the following chapters. The system description gives

detailed recipes for building well performing GMM - UBM and GMM supervector SVM

systems.

In Chapter 5, we propose our method for local implementations of intra-speaker vari-

ability compensation and speaker modeling. Chapter 6 describes our proposal of using

random sampling for compensating within-session variabilities caused by differences in

actual realizations of acoustic events and across phone variabilities. Finally, we conclude

with Chapter 7.



Chapter 2

State of the Art Speaker

Verification Methods

In this chapter, we give brief descriptions for state of the art low-level speaker verification

methods. The section begins with Gaussian Mixture Model - Universal Background

Model (GMM-UBM) method [9], which has been very popular after its proposal and

become a starting point for more complicated systems. Joint Factor Analysis, which

has shown great performance improvements over GMM-UBM method especially in case

of significant session variabilities, is described next. Total Variability Analysis (TVS),

which may be seen as the current best performing system, is a new improvement over

JFA. Last, but not least, methods using Gaussian supervectors and Support Vector

Machines are also mentioned briefly, including the channel compensation algorithms

they utilize.

2.1 Gaussian Mixture Model - Universal Background Model

Method

Gaussian Mixture Model is the most widely used generative approach for text-independent

speaker verification. GMMs have the ability to approximate complicated probability

density functions whose actual forms we do not know. For a D dimensional feature

8
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vector, o, the GMM density is defined as:

p(o|λ) =
M
∑

i=1

wipi(o). (2.1)

Each pi(o) is a Gaussian density, with D × 1 dimensional mean vector µi and D × D

dimensional covariance matrix Σi, given by

pi(o) =
1

(2π)D/2 |Σi|1/2
exp

[

−1

2
(o − µi)

T Σ−1
i (o− µi)

]

. (2.2)

The mixture weights, wi should sum up to one:
∑M

i=1 wi = 1. So the parameters of

the GMM are denoted by λ = {wi, µi,Σi}, where i= 1, ..., M. In general, diagonal

covariance matrices are used in text-independent speaker verification. This avoids the

need to invert D×D matrices, and a density represented by mixtures with full covariance

matrices may equally well be represented by diagonal covariance mixtures if we increase

the number of mixtures. Indeed, in [9], no significant performance gain is observed using

full covariance Gaussian mixtures for text-independent speaker verification.

In [9], a likelihood-ratio detector based method using GMMs is proposed. In this method,

a large GMM is trained from all the data of a pool of speakers. This GMM is called the

Universal Background Model (UBM) or the world model. UBM is used for representing

and calculating the likelihood of the alternative hypothesis. Separate UBMs may be

trained for subpopulations. A classical example is having separate male and female

UBMs.

UBM is also used to obtain reliable speaker models from small amount of training data.

In [9], a new MAP adaptation algorithm called relevance MAP is proposed for this

purpose. In the expectation step of relevance MAP, sufficient statistics for each mixture

in the UBM are extracted from training data of the speaker. These sufficient statistics

are the counts, first and second moments for each mixture. In speaker verification usually

only the means of the UBM mixtures are adapted since adapting other parameters has

not yielded any performance gain. In the second step of relevance MAP, these new

sufficient statistics are combined with the previous statistics of the UBM using a data-

dependent mixing coefficient. By using a data-dependent mixing-coefficient we try to

update the mixtures with large amounts of speaker training data more, and the mixtures

with few training data less. After adaptation, the mixtures who have no or few data will
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be nearly identical to the corresponding well-trained mixtures of the UBM. To achieve

this goal, we first apply a soft alignment of speaker training vectors, X = {o1, . . . ,oT },
to the UBM mixture components. Let p(i|ot) be the probability of the ith mixture given

ot:

p(i|ot) =
wipi(ot)

∑M
j=1 wjpj(ot)

. (2.3)

The sufficient statistics for the mean parameter are the count, ni(X), and the first order

moment Ei(X). These are calculated as:

ni(X) =

T
∑

t=1

p(i|ot), (2.4)

Ei(X) =
1

ni(X)

T
∑

t=1

p(i|ot)ot. (2.5)

These new statistics obtained from the training data are used to update the old UBM

statistics for the mixture i to create the new mean vector, µ̂i,

µ̂i = αiEi(o) + (1 − αi)µi. (2.6)

The data-dependent mixing coefficients αi are given by:

αi =
ni(X)

ni(X) + r
. (2.7)

Here r is a fixed quantity, called relevance factor, that controls the amount of adaptation

from the UBM. The higher the relevance factor, the more training data is needed to adapt

from the UBM.

Note that there is a tight coupling between the mixtures of the UBM and the mixtures of

an adapted speaker model. This has an advantage in scoring since it makes a fast-scoring

scheme called Top-N scoring possible. When a feature vector is scored against a large

GMM, it is observed that only a few mixture components give high probability values,

while the others contribute nearly nothing to the overall likelihood. Since the UBM and

speaker mixtures are tightly coupled, it may be assumed that the same mixtures are

active for a given frame in the UBM and the target speaker model. Using these two

facts, in [9], a fast scoring method is proposed as:



Chapter 2. State of the Art Speaker Verification Methods 11

• For each frame, first score only with the UBM and obtain the top performing N

mixture components,

• Evaluate only with these N mixtures for the speaker and approximate the likelihood

ratio by the top-N performing mixtures.

Using this method, for each frame we evaluate the likelihood of only M+N mixtures,

where N ≪ M , instead of 2×M mixtures. The effect is more dramatic if T-norm score

normalization is also used.

2.2 Joint Factor Analysis

Despite the success of GMM - UBM approach in text-independent speaker verification,

it has been observed that the performance degrades by mismatches in training and test

data, known as inter-session variabilities. The source of these variabilities is commonly

stated as channel effects (transmission environment, microphone used), but it is actually

broader including variations due to phonetic content of the utterance and speakers’

speaking style, emotional state, health, etc. These inter-session variabilities may also be

called intra-speaker variabilities. During the last decade, studies in speaker verification

focused on compensating these variabilities. The first attempts were at the feature and

score levels, some examples of which are given in Chapter 1. Later, compensations at

the modeling stage became more popular with the invention of Joint Factor Analysis by

Patrick Kenny [10]. In [11] a model of session variability which is known as eigenchannel

MAP is proposed. In [10, 12], eigenchannel MAP is integrated with standard models

of inter-speaker variability, namely classical MAP [9] and eigenvoice MAP [13]. The

resulting model of speaker and session variability is known as Joint Factor Analysis,

outlined below:

Let C be the number of mixture components in the UBM and D be the dimension of

the feature vectors. A CD × 1 dimensional vector, known as supervector, is formed by

concatenating D dimensional mean vectors of a GMM for each utterance. In JFA, it is

assumed that, this speaker and channel dependent supervector M, can be decomposed

into a speaker supervector s, and a channel supervector c, where s and c are statistically
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independent and normally distributed. That is,

M = s + c. (2.8)

Furthermore the distribution of the speaker supervector is in the form:

s = m + vy + dz, (2.9)

where m is a CD×1 speaker-independent mean vector, v is a CD×Rs rectangular matrix

of low rank (Rs ≪ CD), y is a normally distributed random vector, d is a CD × CD

diagonal matrix and z is a normally distributed CD dimensional random vector. This is

equivalent to saying that s is Gaussian distributed with mean m and covariance matrix

d2 + vv∗. This is actually a combination of classical MAP where only dz component

is used and eigenvoice MAP where only vy component is used. When large amount

of training data exists, classical MAP seems to be the most appropriate choice. But

it has the disadvantage that only the mixture components that have training data can

be updated. Since d is diagonal it does not take the correlations between mixture

components into account. In eigenvoice MAP we use a full but low-rank covariance

matrix, and good adaptation can be achieved even with small amount of adaptation

data. The disadvantage of eigenvoice MAP is that the speaker supervectors are assumed

to lie in a linear manifold of low dimension known as the speaker space, and this space is

spanned by the training speakers’ supervectors. Even if the speakers’ supervector stays

elsewhere, eigenvoice MAP cannot estimate it no matter how much adaptation data is

at hand. In JFA, these two components are used jointly to utilize the advantages of

both methods. In first implementations of JFA, the speaker supervectors obtained are

usually described by the vy component, and the dz component generally had no effect.

In [12], the authors stated that this is an artifact of training procedure and proposed a

recipe to decouple the estimation of v and d so that both terms will be beneficial.

The channel component of M, c, is assumed to be distributed according to:

c = uf , (2.10)

where u is a CD×Rc dimensional rectangular matrix of low rank (Rc ≪ CD), and f is

a normally distributed random vector. That is c is normally distributed with zero mean
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and covariance matrix uu∗. Furthermore, it is assumed that the speaker and channel

subspaces do not overlap except at origin.

The JFA framework gives us the opportunity to obtain a speaker model immune to the

channel effects in the training data, and to obtain the likelihood of a test utterance under

a claimed speaker model without getting affected from the channel mismatches. During

enrollment of a speaker, posterior distributions of y and z can be obtained. For training

algorithms of JFA and their derivations, see the reference [10]. The likelihood of a test

utterance X, can then be obtained by integrating over the posterior distributions of y

and z, and the prior distribution of f, although MAP point estimates are usually used

in practice. Scoring is done by computing the likelihood of the test utterance against

session compensated speaker model (M−uf). For description and comparison of possible

scoring methods in terms of performance and computational load, see reference [14].

2.3 Total Variability Space

In [15], Dehak et al. proposed an alternative to JFA where instead of the two separate

speaker and channel spaces of JFA, only a single subspace is estimated. This space,

called Total Variability Space (TVS), is both speaker and channel dependent. In TVS,

each utterance is represented by a GMM supervector M given by;

M = m + Tw, (2.11)

where m is a CD × 1 speaker and session independent mean vector, T is a CD × R

rectangular matrix of low-rank (R ≪ CD) and w is a normally distributed random

vector. M is assumed to be normally distributed with mean m and covariance matrix

TT∗. Training procedure of T is the same as the training procedure of v in JFA,

except in TVS each utterance is treated as coming from a different speaker. In this

model factor analysis is used as a front-end to extract new features, w vectors, which

are called total factors or identity vectors (i-vectors in short). Note that unlike JFA,

TVS does not apply any inter-session variability compensation. Instead, compensations

are applied after extraction of i-vectors. Since the total variability space is significantly

smaller then the original supervector space, manipulations like modeling, compensation
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and scoring become more tractable and computationally efficient. In [16], three compen-

sation algorithms are applied on i-vectors prior to scoring; linear discriminant analysis

(LDA), nuisance attribute projection (NAP), and within class covariance normaliza-

tion (WCCN). The best performance is achieved by sequential application of LDA and

WCCN. Both SVMs and cosine distance scoring has been tried, cosine scoring giving

the better performance.

To train the T matrix for the telephone case, enormous amount of data has been used

in [16]. Such a large amount of data is not at hand for microphone case. In [17],

Senoussaoui et al. proposed a method to obtain a T matrix that works well both for

telephone and microphone data.

2.4 Support Vector Machine Based Methods

Support Vector Machine is a maximum-margin classifier that finds a hyperplane which

separates two classes using sums of a kernel function K(·, ·);

f(x) =

N
∑

i=1

αitiK(x,xi) + d (2.12)

where the ti are the ideal outputs for support vectors xi,
∑N

i=1 αiti = 0, and αi > 0. The

ideal outputs are -1 or 1 depending on the class of the corresponding support vectors.

Support vectors are found by an optimization process which maximizes the margin, the

minimal distance between the hyperplane seperating the two classes and the closest

datapoints (support vectors) to the hyperplane. For classification, a decision is made

depending on whether the value of f(x) exceeds a threshold or not.

The kernel K(·, ·) is constrained to have certain properties known as Mercer conditions

so that K(·, ·) can be expressed as:

K(x,y) = b(x)T b(y), (2.13)

where b(x) is a mapping from the input space to a possibly infinite dimensional SVM

expansion space.
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GMM supervector can be seen as a mapping between a speech utterance and a high

dimensional space [18]. Note that speech utterances are in varying lengths, but we want

to use fixed size vectors in kernel computation. Sequence kernels [19], solves this problem

by first applying a mapping b(·) between an utterance and a high dimensional space and

then applying the kernel at this new (fixed dimensional) space as in Equation (2.13).

In case of GMM supervector representation, a GMM for each utterance is obtained by

MAP adaptation of the UBM, and an approximation to KL divergence is applied as

a distance metric since KL divergence itself does not satisfy Mercer conditions. The

resulting kernel function for two mean only adapted GMMs for utterances Xa and Xb

becomes:

K(Xa,Xb) =

M
∑

i=1

wim
a
i Σ

−1
i mb

i =

M
∑

i=1

(√
wiΣ

− 1

2

i ma
i

)t(√
wiΣ

− 1

2

i mb
i

)

, (2.14)

where Σi and wi are the common covariance matrix and weight for the ith mixture,

and ma
i , and mb

i are the mean vectors of the ith mixture for utterances Xa and Xb

respectively. The kernel in Equation (2.14) is linear in the GMM supervector. The

mapping b(X) generating the supervector from the utterance for this kernel becomes:

b(X) =
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. (2.15)

A useful aspect of this kernel is that we can use the model compaction technique from

[19]. The SVM in Equation (2.12) can be summarized as:

f(x) =

(

N
∑

i=1

αitib(Xi)

)t

b(X) + d = wtb(X) + d, (2.16)

where w is the quantity in the parantheses. This means that once we obtained the

support vectors in training, we can compute w and get rid of the support vectors. Then

we only have to compute a single inner product between the target model and the GMM

supervector to obtain a score.



Chapter 2. State of the Art Speaker Verification Methods 16

2.4.1 Nuisance Attribute Projection

The Nuisance Attribute Projection (NAP) method [20] works by removing subspaces

that cause variability in the kernel. NAP constructs a new kernel,

K(X,Y ) = [Pb(X)]t [Pb(Y )] = b(X)tPb(Y ) = b(X)t
(

I − vvt
)

b(Y ) (2.17)

where P is a projection (P2 = P), each column of v is a direction being removed from

the SVM expansion space, and b(·) is the SVM expansion. The design criterion for P

and correspondingly v is

v∗ = argmin
v

∑

i,j

Wi,j‖Pb(Xi) − Pb(Xj)‖2 (2.18)

where Xi’s are utterances in the training dataset. Typically we select Wi,j as 1 if we

want b(Xi) and b(Xj) to be closer in the expansion space, -1 if we want b(Xi) and b(Xj)

to be distant in the expansion space and 0 otherwise. For example if session variability

is the nuisance variable, then we can pick Wi,j = 1 if Xi and Xj belong to the same

speaker, and Wi,j = 0 otherwise. In [18], it is shown that in this case NAP produces the

same subspace as Factor Analysis.

2.4.2 Within Class Covariance Normalization

In [21], Hatch and Stolcke examined kernel selection for tasks involving one-versus-all

classification problems. They worked on generalized linear kernels in the form:

K(x,y) = xTRy, (2.19)

where x and y are vectors in the input space, and R is a positive definite matrix. They

first constructed a set of upper bounds on the rates of false positives and false negatives

at a given score threshold. They showed that minimizing these bound leads to the closed

form solution, R = W−1, where W is the expected within-class covariance matrix of

the data given by:

W =
1

S

S
∑

i=1

1

ni

ni
∑

j=1

(

b(Xi
j) − µi

) (

b(Xi
j) − µi

)T
. (2.20)
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Here S is the number of training speakers, ni is the number of utterances for the ith

speaker, µi is the mean supervector for the ith speaker, and b(Xi
j) is the supervector

obtained from the jth utterance of the ith speaker. In order to keep inner product nature

of the kernel K(·, ·), a mapping function H(·) can be defined as:

H(b(X)) = Atb(X), (2.21)

where A is obtained using a Cholesky decomposition of the matrix R. While NAP

achieves channel and session compensation through removing nuisance directions, WCCN

optimally weights each of these directions to minimize a particular upper bound on error

rate.

2.5 Evaluation Metrics for Speaker Verification

There are two types of trials in speaker verification; target trials where the claimed

speaker is the actual speaker, and impostor trials where the claimed speaker is not

speaking in the test utterance. A speaker verification system gives two outputs: a

decision (either true or false) and a likelihood showing the systems level of confidence

in the decision. Two types of errors may occur in this scenario; false rejects and false

alarms. The false rejection rate (PFR|target) is the percent of target trials labeled as

impostor incorrectly. The false alarm rate is (PFA|impostor) the percent of impostor

trials labeled as target trials incorrectly. Several evaluation metrics have been proposed

that represent these two trials. Here, we will describe those that are widely used in

speaker verification community, namely Detection Cost Function (DCF), Equal Error

Rate (EER), and Decision Error Tradeoff (DET) Curves.

DCF is the basic performance measure used in speaker recognition evaluations coordi-

nated by National Institute of Standards and Technology (NIST).The CDet cost is a

weighted sum of the two error rates:

CDet = CFR ∗ PFR|target ∗ Ptarget + CFA ∗ PFA|impostor ∗ Pimpostor, (2.22)

where CFR is the cost of a false rejection, Ptarget is the prior probability of a target trial,

CFA is the cost of a false alarm, and Pimpostor is the prior probability of an impostor
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trial. This cost function is made more intuitive by normalizing it so that a system with

no discriminative capability is assigned a cost of 1.0.

EER is the false reject (at the same time false alarm) rate at the operating point where

the two error rates are equal. While EER and DCF being single number measures, DET

plot is a graph plotting error rates for all the operating points of a system. An individual

operating point corresonds to a threshold used to take decisions for trials as either true

or false. By sweeping over all possible thresholds and calculating the two error rates,

all of the operating points of a system are generated. DET plot is a variant of receiver

operating characteristic (ROC) curve used by NIST, where the two axes are the two

error rates.



Chapter 3

NIST Speaker Recognition

Evaluations

The speech group at the National Institute of Standards and Technology (NIST) has

been coordinating evaluations of text-independent speaker recognition technology since

1996 [22]. By providing explicit evaluation plans, common test sets, standard measure-

ments of error, and platforms for participants to openly discuss algorithm success and

failures, the NIST series of Speaker Recognition Evaluations ( NIST SRE’s) has pro-

vided a means for accelerating and recording the progress of text independent speaker

recognition performance. The evaluations were conducted annually up to 2006 and every

two years after then. The main task at NIST SRE’s is speaker detection, although other

tasks like speaker segmentation and tracking has also been investigated from period to

period. The speaker detection task is defined as determining whether a specified speaker

is speaking during a given segment of conversational speech. NIST evaluations focused

primarily on conversational telephone speech but recent evaluations also considered cross

channel data, where a telephone conversation is simultaneously recorded using several

sensors of varying types, and interview data where face to face conversations with an

interviewer have been recorded in a special room with several types of microphones.

There are certain evaluation rules that are applicable to nearly all recent NIST SRE’s.

Some of the important rules are listed below:

19
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• Each decision is to be based only upon the specified test segment and target speaker

model. Use of information about other test segments and/or other target speakers

is not allowed.

• Knowledge of the telephone transmission channel type and of the telephone instru-

ment type used in all segments is not allowed, except as determined by automatic

means.

• Listening to the evaluation data, or any other experimental interaction with the

data, is not allowed before all test results have been submitted.

• Knowledge of language used in all segments and of the gender of the target speaker

is allowed. There are no cross-gender trials.

Various factors affecting performance of speaker verification has been explored during

NIST evaluations. These may include gender, language used, microphone type (electret

vs. carbon button), channel type (landline, cellular, different handsets), duration of

training and testing utterances, speaking style and vocal effort of the speaker. Up to

2004, effect of duration has been investigated using two task conditions; limited data and

extended data conditions. Limited data meant that the training and test segment data

for each trial consisted of two minutes or less of concatenated segments of speech data,

with silence intervals removed, while extended data meant that each of these consisted of

an entire conversation side, or for training, multiple conversation sides. At NIST SRE

2004 and the following NIST SRE’s, this distinction has been removed and instead,

multiple testing conditions have been offered involving the amount and type of data

available for both the training and the test segments. NIST selects one of the conditions

as core condition and expects all the participants to complete this task while completing

other tasks is optional. Sites participating in one or more of the speaker detection tests

must report results for each test in its entirety. For each trial the decision (as true or

false) and a likelihood score must be provided. NIST uses a detection cost function

(DCF) for performance measurement. Decision Error Tradeoff (DET) curves are also

produced. A log likelihood ratio based cost function is also performed on submissions

whose scores are declared to represent log likelihood ratios.
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In the next sessions of this chapter, the datasets used in NIST SRE’s and the training

and test conditions in recent NIST SRE’s will be introduced. For further information

see the relevant years NIST SRE Evaluation Plans [22].

3.1 Corpora used in NIST SRE’s

The first NIST SRE’s used Switchboard databases for speaker verification [23]. The

challenges presented by this data include limited bandwidth, channel noise from vari-

ous sources, the use of different microphones, recordings from different locations, and

recordings collected over a period of time [24]. In several Switchboard phases, subjects

were asked to complete calls within a variety of environments including quiet offices,

public places and moving vehicles.

Mixer Corpus has been used for NIST SRE’s since 2004. This corpus adds two di-

mensions to the traditional Switchboard collection: language and channels. Mixer is

a corpus of multilingual and cross-channel speech data. Like previous speaker recog-

nition corpora, the calls feature a multitude of speakers conversing on different topics

and using a variety of handsets types. Unlike previous studies, a large subset of the

subjects were bilingual. Further distinguishing Mixer from previous studies, some calls

have also been recorded simultaneously via a multichannel recorder using a variety of

microphones. There has been 5 phases up to now for Mixer corpus collection. Mixer

studies include a number of separate tasks. All studies require the core collection of a

small number (usually 10) of short calls (approximately 6 minutes) from a large number

of subjects. In unique handset task, subjects are asked to make four calls from handsets

that they use exactly once in the study. Once a handset reappears in the study, it is no

longer considered unique. Extended Data task refers to collection of 20 or more calls

per subject. In Transcript Reading task, subjects read samples from transcripts of their

calls and calls from other subjects. Mixer 5 focuses on cross-channel recordings of face

to face interviews where the goal is to elicit speech within a variety of situations. Table

3.1, taken from reference [25], summarizes the tasks completed on Mixer phases.

In Mixer 1 a large subset of the subjects were bilingual and conducted their conversa-

tions in Arabic, Mandarin, Russian and Spanish as well as in English. In both Mixer

1 and 2 subjects were allowed to initiate calls that were simultaneously recorded via
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Tasks SB M1 M2 M3 M4 M5

Core Calls(8+) x x x x x
Variable Environments x
Unique Handset(4+) x x x x x x
Extended Data(20+) x x x x
Multilingual(4+) x x x
Cross Channel(4+) x x x
Transcript Reading(2+) x x
Interviews(6) x

Table 3.1: Tasks within Switchboard and Mixer collection efforts

eight different microphones selected and placed to represent a variety of microphone

and channel conditions. The multichannel sensors were side-address studio microphone,

podium microphone, hanging microphone, PZM microphone, dictaphone, computer mi-

crophone, and two cellular phone headsets [26, 27]. Mixer 3 addresses needs for both

language recognition and speaker recognition [25]. 3918 subjects completed 19951 calls.

More than 2900 Mixer 3 subjects each made a call in one of 19 languages including

Bengali, 4 dialects of Chinese, 3 dialects of English, Farsi, Hindi, Italian, Japanese, Ko-

rean, Russian, Spanish, Tagalog, Thai, Urdu, and Vietnamese. Mixer 4 consists of core

telephone and cross channel data [25, 28]. All subjects are required to be native speakers

of American English but there are dialect differences. The 8 microphone configuration

built for Mixer 1 and 2 has been replaced with a system that can handle 16 channels

though only 14 are used in Mixer studies.

Mixer 5 focused on cross-channel recording of face to face interview data. Each subject

participates in 6 thirty minute interview sessions spread over at least three days, with

at least 30 minutes rest between sessions that occur on the same day. In order to

elicit multiple repetitions of a small amount of speech in which the same words appear,

each of the six sessions begins with the subject answering the same questions. In the

first session a warm-up part follows this with the kind of conversation characteristics

of first meetings since the subject meets the interviewer the first time and enters to

an unknown environment. The next part includes personal and family history of the

subject. Informal conversations make up a large portion of the study and spans all of

the interview sessions. The interviewer engages the subject in informal conversation

exploring a variety of topics in search of those that the subject shows interest. In

transcript reading the subject, using a natural speaking voice and style, reads individual
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utterances taken from transcripts of phone conversations collected in earlier studies at

LDC. In story reading the subject reads stories containing phonetically balanced text.

For sentence reading, the subject reads a subset of the TIMIT sentences in a natural

reading voice and style. In phrase/word list reading, the subject reads from lists that are

designed to produce speech that in which the vernacular is most easily heard. In the low

vocal effort call the subject participates in a brief 5 minute telephone call characterized

by low vocal effort as a natural result of a loud and clear telephone circuit in which

the subject’s voice is feed back through the headset. Since the subject hears his own

voice through the headphone he/she automatically reduces his effort. In the high vocal

effort call the subject participates in a brief telephone call where the subject’s side tone

and the remote caller’s voice are weak and noisy. The addition of the noise causes the

participant to increase his vocal effort. Table 3.2, taken from [28] shows the breakdown

of speech act in Mixer 5. For further information on Mixer studies, please refer to

references [25–28].

Session Number 1 2 3 4 5 6 Min

Repeating Questions 1 1 1 1 1 1 6
Warm-up 4 4
Family Personal 5 5
Informal Conversation 20 9 14 9 9 10 71
Transcript Reading 20 15 10 15 10 70
Story Reading 5 5
Sentence Reading 5 5
Phase/Word List Reading 5 5
Low Vocal Effort 5 5
High Vocal Effort 4 4
Total/Session 30 30 30 30 30 30 180

Table 3.2: Breakdown of Minutes/Speech Act/Session

3.2 Training and Test Conditions in Recent NIST SRE’s

Each NIST SRE has several task conditions depending on the type and duration of the

data used in training and testing. Since we use the recent NIST SRE’s databases and

task conditions throughout this thesis, these conditions are briefly described below.
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3.2.1 NIST SRE 2006 Task Conditions

The five training conditions in NIST SRE 2006 are:

• A two-channel (4-wire) excerpt from a conversation estimated to contain approxi-

mately 10 seconds of speech of the target on its designated side.

• One two-channel (4-wire) conversation, of approximately five minutes total dura-

tion, with the target speaker channel designated.

• Three two-channel (4-wire) conversations involving the target speaker on their

designated sides.

• Eight two-channel (4-wire) conversations involving the target speaker on their

designated sides.

• Three summed-channel (2-wire) conversations, formed by sample-by-sample sum-

ming of their two sides.

The four test segment conditions are the following:

• A two-channel (4-wire) excerpt from a conversation estimated to contain approxi-

mately 10 seconds of speech of the putative target speaker on its designated side

• A two-channel (4-wire) conversation, of approximately five minutes total duration,

with the putative target speaker channel designated.

• A summed-channel (2-wire) conversation formed by sample-by-sample summing of

their two sides.

• A two-channel (4-wire) conversation, with the usual telephone speech replaced by

auxiliary microphone data in the putative target speaker channel. This auxiliary

microphone data is supplied on 8 kHz 8 bit µ-law form.

3.2.2 NIST SRE 2008 Task Conditions

The six training conditions in NIST SRE 2008 are:
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• 10sec: A two-channel excerpt from a telephone conversation estimated to contain

approximately 10 seconds of speech of the target on its designated side.

• short2: One two-channel telephone conversational excerpt, of approximately five

minutes total duration, with the target speaker channel designated or a microphone

recorded conversational segment of approximately three minutes total duration

involving the target speaker and an interviewer.

• 3conv: Three two-channel telephone conversational excerpts involving the target

speaker on their designated sides.

• 8conv: Eight two-channel telephone conversation excerpts involving the target

speaker on their designated sides.

• long: A single channel microphone recorded conversational segment of eight min-

utes or longer duration involving the target speaker and an interviewer.

• 3summed: Three summed-channel telephone conversational excerpts, formed by

sample-by-sample summing of their two sides.

The four test segment conditions are the following:

• 10sec: A two-channel excerpt from a telephone conversation estimated to contain

approximately 10 seconds of speech of the putative target speaker on its designated

side.

• short3: A two-channel telephone conversational excerpt, of approximately five

minutes total duration, with the putative target speaker channel designated or a

similar such telephone conversation but with the putative target channel being

a (simultaneously recorded) microphone channel or a microphone recorded con-

versational segment of approximately three minutes total duration involving the

putative target speaker and an interviewer.

• long: A single channel microphone recorded conversational segment of eight min-

utes or longer duration involving the putative target speaker and an interviewer.

• summed: A summed-channel telephone conversation formed by sample-by-sample

summing of its two sides.
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3.2.3 NIST SRE 2010 Task Conditions

The four training conditions in NIST SRE 2010 are:

• 10sec: A two-channel excerpt from a telephone conversation estimated to contain

approximately 10 seconds of speech of the target on its designated side.

• core: One two-channel telephone conversational excerpt, of approximately five

minutes total duration, with the target speaker channel designated or a micro-

phone recorded conversational segment of three to fifteen minutes total duration

involving the interviewee (target speaker) and an interviewer. In the former case

the designated channel may either be a telephone channel or a room microphone

channel; the other channel will always be a telephone one.

• 8conv: Eight two-channel telephone conversation excerpts involving the target

speaker on their designated sides.

• 8summed: Eight summed-channel excerpts from telephone conversations of ap-

proximately five minutes total duration formed by sample-by-sample summing of

their two sides.

The three test segment conditions are the following:

• 10sec: A two-channel excerpt from a telephone conversation estimated to contain

approximately 10 seconds of speech of the putative target speaker on its designated

side.

• core: One two-channel telephone conversational excerpt, of approximately five

minutes total duration, with the putative target speaker channel designated or

a microphone recorded conversational segment of three to fifteen minutes total

duration involving the interviewee (target speaker) and an interviewer. In the

former case the designated channel may either be a telephone channel or a room

microphone channel; the other channel will always be a telephone one.

• summed: A summed-channel telephone conversation of approximately five min-

utes total duration formed by sample-by-sample summing of its two sides.
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In each evaluation, in addition to these task conditions, NIST has specified one or more

common evaluation conditions, subsets of trials in the core test that satisfy additional

constraints, in order to better foster technical interactions and technology comparisons

among participating sites. The performance results on these trial subsets are treated

as the basic official evaluation outcomes. Because of the multiple types of training and

test conditions in the 2010 core test, and the likely disparity in the numbers of trials

of different types, it is not appropriate to simply pool all trials as a primary indicator

of overall performance. Instead the below common conditions have been considered as

primary performance indicators by NIST:

1. All trials involving interview speech from the same microphone in training and

test

2. All trials involving interview speech from different microphones in training and

test

3. All trials involving interview training speech and normal vocal effort conversational

telephone test speech

4. All trials involving interview training speech and normal vocal effort conversational

telephone test speech recorded over a room microphone channel

5. All different number trials involving normal vocal effort conversational telephone

speech in training and test

6. All telephone channel trials involving normal vocal effort conversational telephone

speech in training and high vocal effort conversational telephone speech in test

7. All room microphone channel trials involving normal vocal effort conversational

telephone speech in training and high vocal effort conversational telephone speech

in test

8. All telephone channel trials involving normal vocal effort conversational telephone

speech in training and low vocal effort conversational telephone speech in test

9. All room microphone channel trials involving normal vocal effort conversational

telephone speech in training and low vocal effort conversational telephone speech

in test
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Throughout this thesis, when the test is performed on NIST SRE 2010 dataset, the

performance will be measured separately for each of these common evaluation conditions.



Chapter 4

TUBITAK UEKAE - SABANCI

University System for NIST SRE

2010

As a part of our study for this thesis, we have participated in NIST SRE 2010 with

the GMM Supervector SVM baseline system we have developed. This was our first

participation in NIST SRE’s and it required a lot of effort for us to complete the necessary

data preparation, text processing, algorithm implementation and server utilization tasks.

This chapter describes the submitted system and it also describes the baseline system

for the next chapters. We begin by describing the database utilization. The front-end

including our voice activity detector comes next. Universal background model (UBM)

is a key component nearly for all the low-level feature based systems. It is a large

GMM trained over a huge database and this necessitates a carefully designed algorithm

for Expectation Maximization based training. We will give the recipe we use for such

a training algorithm. The next part describes our supervector extraction and SVM

training phases. Finally the results in terms of DET plots are given for each of the 9

common evaluation conditions of NIST SRE 2010 and our achievements will be listed.

29



Chapter 4. TUBITAK UEKAE - SABANCI University System for NIST SRE 2010 30

4.1 Database Organization

NIST SRE06 and SRE08 databases are used to build our system. From SRE06, 1

conversation 2 channel (4-wire) and 1 conversation auxiliary microphone data are used.

From SRE08, data of short2, short3 and long conditions are used. Since NIST also wants

a decision for each trial we need to select a threshold from a development set. For this

purpose we split the SRE08 database into two parts. The first part used in training and

the second part used in testing. The training part of SRE08 includes 300 unique male

and 500 unique female speakers. The test part includes 182 unique male and 341 unique

female speakers. We have used approximately 323 hours of speech for male, and 463

hours of speech for female UBMs. 1095 utterances used as impostors for male speakers

whereas 1695 utterances used for female speakers. In Z-norm score normalization 1258

utterances used for male speakers and 1832 utterances used for female speakers. T-norm

score normalization is not applied due to time constraints. In Table 4.1 the breakdown

of speech data for world model generation is given. Table 4.2 and 4.3 shows breakdown

for impostor and Z-norm utterances, respectively.

Speech Type Male Female

SRE06 phone 2538 3164
SRE06 microphone 1256 1424
SRE08 phone 2600 4700
SRE08 microphone 396 504
SRE08 interview 975 1375

Total 7765 11167

Table 4.1: Breakdown of Speech Data for World Model Training

Speech Type Male Female

phone 652 1116
microphone 213 288
interview 230 291

Total 1095 1695

Table 4.2: Breakdown of impostor utterances



Chapter 4. TUBITAK UEKAE - SABANCI University System for NIST SRE 2010 31

Speech Type Male Female

phone 663 1130
microphone 238 262
interview 375 440

Total 1258 1832

Table 4.3: Breakdown of Z-norm utterances

4.2 Front-End

MFCC feature vectors are used for acoustic vector representation. 19 dimensional static

vectors are extracted for every frame of 20 ms duration with 10 ms overlap using only the

300-3400 Hz bandwidth. Delta and delta-energy components are appended producing a

39 dimensional feature vector for each frame. Feature warping with a sliding window of 3

seconds is applied to these MFCC features. Voice activity detection algorithm explained

below has been used to remove non-speech frames.

4.2.1 Voice Activity Detection

Our voice activity detector (VAD) uses a bi-Gaussian model trained for each utterance

using log-energies of the frames. The log energy for a frame is calculated as :

E(i) = log(1 +

K
∑

j=1

Ri(j)). (4.1)

where Ri(j) is the jth component of the magnitude of the Fourier transform of the

ith frame. A bi-Gaussian model is trained using the log-energies of all frames. The

frames with a log-energy greater than a threshold are accepted as containing speech.

The threshold is calculated using the parameters of the Gaussian with lower mean and

is equal to:

th = µ + 1.5 ∗ σ. (4.2)

where µ is the mean of the lower energy Gaussian and σ is its variance. The resulting

labels are postprocessed to remove speech and silence segments whose lengths are less

than 180 ms.
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For the interview data in NIST SRE08 database, NIST provides the estimated intervals

where the target speaker is speaking, as determined by an energy based segmenter

utilizing the audio signals from lavalier microphones worn by each of the two speakers.

We take the portion of the utterance that is labeled as belonging to the target speaker by

NIST and at the same time labeled as speech by our VAD. For the interview segments in

NIST SRE10, the provision of the interviewer’s head mounted close-talking microphone

signal in a time aligned second channel, with speech spectrum noise added to mask any

residual speech of the interviewee, is provided by NIST. So we processed both channels

using our VAD and labeled the frames that contain speech in the first channel and

nonspeech in the second channel as speech belonging to the target speaker.

4.3 Universal Background Modeling Recipe

Universal Background Model (UBM) is one of the key components of most of the suc-

cessful speaker verification methods. In GMM-UBM framework, it is both used to obtain

a well trained model from small amounts of target speaker data and to model the al-

ternative speaker hypothesis. In JFA, it is used to extract necessary statistics from the

utterance. UBM is generally trained from large amount of data collected from corpo-

ras like Switchboard and NIST SREs. In [9], it is mentioned that same performance

is achieved from a UBM trained from 6 hours of speech and a UBM trained with 1

hour of speech from the same speaker set of the first UBM. It seems that the number

of distinct speakers is a more important aspect than the amount of data. The data for

UBM training must be representative of the target speaker population, the channel and

microphone types that the system may encounter. Since UBM is a huge GMM trained

from a very large database (typically several hundreds of hours of speech data), the EM

training algorithm must be carefully implemented possibly using some tricks to enforce

the model to better generalize the data. Below is our recipe for UBM training. This

recipe is followed to obtain gender-dependent UBMs for NIST SRE10 evaluation as well

as for all other experiments in this thesis.

• The UBM is initialized by a single Gaussian with its mean equal to the mean of

the overall data and its variance equal to the variance of the overall data.
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• At each following step the number of mixtures is incremented by a factor of two

and a maximum of 25 EM iterations are applied to obtain a GMM with the current

number of mixtures. Variance flooring is applied to guarantee that variance values

do not go beyond some percent of the overall variance of the data.

• Random sampling is used at each EM iteration to select 2 percent of each of the

utterance. So at each EM iteration only 2 percent of the data is used and different

portions of the data is seen by the algorithm at each iteration. Note that since

different data is used at each EM iteration, it is no more guaranteed that the log-

likelihood will increase at each iteration and the algorithm may terminate before

it reaches the maximum number of iterations which is 25. This random sampling

procedure greatly speeds up the training procedure which is a very time consuming

task. It may also help to obtain a better generalizing model.

• To increment the number of mixtures by a factor of two, we first evaluate a condi-

tion number for each mixture. This condition number is a function of the variance

of the mixture and, together with the mixture weights, is used to determine the

mixtures suitable to splitting. The condition number for mixture i is given by:

ci = D log (2π) + log |Σi| (4.3)

where D is the dimension of the feature vectors and Σi is the diagonal covariance

matrix of mixture i. The mean µc and standart deviation σc of the condition

numbers are evaluated and a threshold is evaluated as thc = µc − 3 ∗ σc. The

mixtures whose condition numbers are less than this threshold or whose weights

are less than a predefined threshold are labeled as unsuitable for splitting and

preserved in the new GMM. The remaining mixtures are split into two until a new

GMM with the desired number of mixtures is obtained. When a mixture is split

into two, the new mixtures have the same variance vector as their parent, but the

mean vector is 1.2 times the parents’ mean vector for one child mixture and 0.8

times the parents’ mean for the other mixture. Their weights are equal and half

of their parents’ weight. For each mixture we keep the number of previous splits

which is 0 for all mixtures at the beginning. After a splitting, the child mixtures’

splitting number will be 1 more than that of the parents’. The next mixture to be
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splitted is the one for which

log (w) − ns (4.4)

is maximum where w is the weight of the mixture and ns is the number of previous

splits. The ns term will make previously splitted mixtures less probable to be

splitted again.

Two gender-dependent UBMs, each with 2048 mixtures, are trained using the above

recipe for NIST SRE10 evaluations. 323 hours of speech for male UBM,and 463 hours

of speech for female UBM is used from NIST SRE06 and NIST SRE08 databases.

4.4 GMM Supervector - SVM Training

Target speaker GMM models are obtained using mean-only relevance MAP algorithm

with a relevance factor of 8. To obtain the GMM supervector, for each mixture we

evaluate
√

wiΣ
−1/2
i (µs

i − µUBM
i ). (4.5)

and concatenate these into a single GMM Supervector (GSV). This GSV is then normal-

ized to be unit norm. For the core condition of NIST SRE10 we have a single training

utterance for each target. 1095 male and 1695 female utterances from NIST SRE06 and

NIST SRE08 databases are used as impostor utterances for SVM training. Z-norm score

normalization used with 1258 male and 1832 female utterances.

4.5 Results

We will give DET plots of our system for each of the common evaluation conditions. In

Figure 4.1 DET plots for condition 1 (interview-same microphones in train and test) and

condition 2 (interview- different microphones in train and test) is shown. It seem that

there is a large performance degradation when we use different microphones in interview

data. This is something we have expected due to two reasons: first; our system does

not utilize any channel compensation method except feature warping and secondly we

have few interview data in Z-norm and impostor utterances. Besides we do not compute
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separate Z-norm parameters for each data type (phone , microphone and interview)

which most likely will improve performance.
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Figure 4.1: DET Plots for Condition 1 and 2.

Figure 4.2 shows DET plots for condition 3 (interview-normal vocal effort telephone)

and 4 (interview - normal vocal effort microphone). We have performance degradation

when simultaneously recorded room microphone data is used in testing. Due to the same

reasons mentioned above this is something expected.
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Figure 4.2: DET Plots for Condition 3 and 4.

Figure 4.3 shows DET plot for condition 5 (normal vocal effort - normal vocal effort

different telephone). This case was the main target of NIST evaluations for years. It

seem that our system does pretty well in this condition even though it does not utilize

channel compensation.
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Figure 4.3: DET Plots for Condition 5.

Figure 4.4 shows DET plots for condition 6 (normal vocal effort - high vocal effort

telephone) and 7 (normal vocal effort - high vocal effort microphone). Comparing this

with 4.3 shows that mismatch in vocal effort degrades performance. Note that low and

high vocal effort data is unique to NIST SRE10 database and our system has never

utilized this kind of data.
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Figure 4.4: DET Plots for Condition 6 and 7.

Figure 4.5 shows DET plots for condition 8 (normal vocal effort - low vocal effort tele-

phone) and 9 (normal vocal effort - low vocal effort microphone). Comparing this with

4.3 shows that actually our system has better performance with mismatch in vocal effort

in the form of normal versus low case. This was the case for nearly all of the systems
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submitted to NIST SRE10 and it was quite surprising. Some debate on this surprising

result has been made in NIST SRE workshop but the reason is not still clear.
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Figure 4.5: DET Plots for Condition 8 and 9.

Table 4.4 gives EER values for our system and average EER values for systems showing

best performances in NIST SRE 2010. Note that these systems usually employ fusion of

several systems, typically implemented by several cooperating sides, at the score level.

The worst performing systems obtained EER values in the range 20-40 nearly for all

conditions.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Our System 5.67 10.94 6.98 8.03 7.63 13.57 14.76 3.69 5.17

Best Systems 1.2-3 2-4 1.5-2 2-4 2-4 2-4 3-6 1 1-3

Table 4.4: EER values for our system and average EER values of best performing
systems.

4.6 Conclusion

NIST SRE is the most compelling and the highest-ranking evaluation for speaker verifica-

tion. Our participation in this evaluation gave us the opportunity to work on databases

that contain most of the practical problems of speaker verification. We developed a

baseline system for this thesis and during the evaluation timeline obtained great exper-

tise in training GMM and SVM based speaker verification systems as well as working

with large databases. It became apparent that we should spend more effort on chan-

nel compensation algorithms such as Nuisance Attribute Projection and Within Class
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Covariance Normalization. It also showed us that choosing a right threshold for a sys-

tem is a very important and a very difficult task. Mismatches in development and test

databases can result in uncalibrated systems. Calibrating our classifiers is at least as

important as developing better classifiers.



Chapter 5

Local Representations for

Channel Robust Speaker

Verification

The main speaker verification methods combatting with channel effects have two main

assumptions: speaker and channel spaces are low dimensional, and these spaces do not

overlap. These assumptions are more practical than theoretical. Joint Factor Analysis

(JFA), Nuisance Attribute Projection (NAP), and Within-Class Covariance Normaliza-

tion (WCCN), all work on very high dimensional supervectors produced by concatena-

tion of Gaussian mixture means. They need an eigendecomposition in this high dimen-

sional space and the maximum possible rank is determined by the number of individual

utterances which is much smaller than the dimension of the supervectors. As noted by

Patrick Kenny in [29], there is no theoretical proof for low dimensionality of channel

and speaker spaces, instead we are forced to use these assumptions since sufficiently

high rank covariance matrices are impossible to estimate and calculate with. Working

in such a high dimensional space has also the drawback that the compensations and

modeling become less tractable. Some methods like fully Bayesian ones and nonlinear

manifold learning algorithms can not be applied. Due to the problems working in such a

high dimensional space, Total Variability Space method [15], uses JFA as a front-end to

reduce dimensionality and the supervectors are projected to a speaker and channel de-

pendent low-dimensional space. Channel compensation, modeling and scoring methods

39
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are then used in this low-dimensional space.

Most of the main speaker verification algorithms can also be seen from a geometric point

of view. GMM Supervector - SVM NAP method uses kernel values which may be seen as

distances between speaker supervectors to learn discriminating hyperplanes. JFA algo-

rithm, though usually implemented in a probabilistic sense, tries to learn eigenspeakers

and eigenchannels in the supervector space. The speaker and channel factors may be

seen as projections to these eigenvectors. Another method called Anchor Modelling de-

scribes each target speaker with a Speaker Characterization Vector (SCV) which is a

vector of distances between the target speaker and a set of pre-selected speakers named

anchor models. This method is also based on calculating distances between speaker

models. In all of these methods we calculate a single value for the distance between

speaker models. This is questionable because distance between two speakers in different

portions of the high dimensional space we are working on may be significantly different.

As an example take two hypothetical speakers using different dialects of the same lan-

guage. The supervectors of these speakers will be closer to each other on the phonemes

common to the two dialects, whereas they will be more apart for the phonemes the

dialects differ.

Figure 5.1: Global versus Local Speaker Representation.

These arguments motivated us to work on local speaker and channel modeling methods.

If we can partition the acoustic space in a meaningful manner, we can work on each par-

tition separately. This is demonstrated in Figure 5.1. In global speaker representation

we obtain the speaker supervector by concatenating all the mean vectors of the target
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speakers’ GMM, whereas in local speaker representation we partition the space into sub-

regions and local speaker vectors are obtained for each partition by concatenating the

mean vectors in the subregion. Subsequent channel compensation and/or speaker mod-

eling and scoring steps may be applied in these low-dimensional local spaces. Depending

on how local systems are combined, ways to several alternative methods will be opened.

Working on local spaces will make it possible to estimate full rank covariance matrices

whose maximum rank is not determined by the number of data at hand, but by the

intrinsic dimensionality of the space we are modeling. It will also make it possible to

implement algorithms for learning the manifold of the data.

Most of the current state of the art algorithms may be implemented in a local fashion.

In the next section, we will discuss several scenarios for redesigning the architectures of

current high-ranking speaker verification algorithms to support local speaker modeling

and channel compensation. Next, we will propose a partitioning method for the acoustic

space. A GMM Supervector SVM system with local channel compensation will be

presented and experimental results will be given on NIST SRE10 dataset. Finally, this

chapter concludes with a discussion.

5.1 Architectures for Local Speaker Representation and

Channel Compensation

In this section, we discuss architectures to implement local versions of the current speaker

verification algorithms. Figure 5.2 shows one possible architecture (will be called Ar-

chitecture 1 from now on) for this purpose. This architecture proposes to concatenate

channel compensated local vectors to obtain a new supervector for the target speaker

where we apply speaker modeling and scoring tehniques. Now, we describe the steps

to implement one of the state of the art speaker verification systems, namely GMM

Supervector SVM system, using this architecture.

In GMM Supervector SVM, GMM local vectors will be concatenated after local channel

compensation and scored with a previously trained SVM. The “Local Channel Compen-

sation” blocks may include a variety of possible techniques used for SVM based system.

This may include local versions of NAP and WCCN algorithms. In WCCN, and also

in NAP when session variability is selected as the nuisance variable, we calculate the
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Figure 5.2: Local System Architecture 1.

within speaker covariance matrix C given as:

C =
1

N
XXT , (5.1)

where N is the number of training utterances, and X is a matrix whose columns contain

mean removed training utterances obtained by:

x
j
i − µi, (5.2)

µi being the mean supervector for the ith speaker, and x
j
i is the supervector for one

of his training utterances. In NAP we calculate the top M eigenvectors of C as our

nuisance space and remove the projections on this nuisance space from the supervectors

to perform channel compensation. Let V be the matrix whose columns are the top M

eigenvectors. The NAP projection P becomes

P = I − V V T , (5.3)

and the NAP kernel becomes

K(x, y) = (Px)T Py = xT P T Py = xT Py. (5.4)

Note that the dimension of C is F × F where F is the dimension of the supervector

which is quite large. It is not possible to directly calculate the eigenvectors of C, and

instead we calculate the eigenvectors of D given as;

D =
1

N
XT X. (5.5)

Note that the dimension of D is N ×N . The eigenvalues of D and C are equal, and the
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relation between vi, the ith eigenvector of C, and ui, the ith eigenvector of D, is given

by:

vi =
1

(Nλi)1/2
XT ui, (5.6)

where λi is the ith eigenvalue.

In WCCN, we calculate the inverse of C, namely R = C−1 and use this in kernel

calculations as:

K(x, y) = xT Ry. (5.7)

The rank of C and the number of eigenvectors is limited with the number of utterances in

the dataset. Since WCCN needs the inverse of C which is impossible to calculate, kernel

principal component analysis is usually used first to reduce dimension and WCCN is

carried on this much smaller space [30]. PCA-complement of the supervector is appended

after WCCN to prevent the removal of valuable speaker information by such a sharp

dimension reduction.

For the local versions of these algorithms none of these is necessary since the dimension

of each of the local spaces is small and the rank is not determined by the number

of training utterances. Inverse of C can hopefully be calculated and used for channel

compensation. Note that working on local spaces leads to block-diagonal versions of the

original algorithms. Let for each supervector x, we extract K local vectors {x1, x2, ..., xK}
according to our partitioning method, where K is the number of local partitions. In this

case, the within speaker covariance matrix C becomes;

C =

























C1

. . .

Ci

. . .

CK

























, (5.8)

where Ci is the within speaker covariance matrix for the ith local partition. The NAP

projection P also becomes block-diagonal,
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where Vi is the top-M eigenvector matrix of the ith local partition. Each block may

be solved and applied separately. Similarly in WCCN inverse matrix R becomes block-

diagonal and each local system can be solved on its own.

Working on a low-dimensional space also gives us the opportunity to investigate other

channel compensation schemes not used in GMM Supervector SVM systems up to now.

One example may be the LDA + WCCN method used in TVS systems after reducing

dimensionality with Factor Analysis. Note that there may be speaker-specific data loss

in this dimensionality reduction step of TVS, this is not the case for local channel

compensation schemes.

Figure 5.3 shows the other architecture (will be called Architecture 2 from now on)

proposed. In this architecture speaker modeling and scoring is performed on each of

the channel compensated local vectors separately and the scores are fused to obtain

the overall score. Logistic Regression algorithm typically used in speaker and language

recognition for system combination may be a suitable choice for the fusion step.

Figure 5.3: Local System Architecture 2. Systems using this architecture are not
implemented in this thesis due to time constraints.

We can accept the speaker modeling and scoring blocks in both architecture as separate

classifiers. The inputs to these blocks are the channel compensated speaker-dependent

local vectors. In Architecture 1, we do an “early fusion” by concatenating these local

vectors (features for the scoring system) and training a single classifier for the whole. In

Architecture 2, “late fusion” is performed by training a separate classifier for each local

space and combining the scores to obtain the final score and decision. In fact there is

one more alternative, at least for the SVM classifiers, which is named Multiple Kernel

Learning (MKL) and considered as “intermediate fusion” [31, 32]. In MKL, instead of

using a single kernel or a fixed combination of kernels, we use a parameterized (by the

weights of the kernels) combination of multiple kernels and the weights are also learned

during training. We can use different kernel types on the same data, or we can use the
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same type of kernel with different parameters each focused on separate portions of the

feature space. In our case there may be as many kernels as the local spaces and we

can learn the weights of the kernels during training. These weights are learnt for SVM

of each target speaker, hence they are speaker specific. This will give us the chance to

learn whether the discriminating capability of each local space is speaker dependent or

not.

In this thesis, we have only built GMM Supervector SVM systems using Architecture

1. Local NAP has been investigated. See the Experiments section for the details of the

system.

5.2 Partitioning the Acoustic Space

When we decide to work on local spaces separately, the question of how to partition the

acoustic space arises. One obvious choice is to use Gaussian mixtures of the UBM as

building blocks. If we continue with this choice new questions appear like:

• What will be the merging criterion for obtaining local spaces from UBM mixtures?

• Will the number of mixtures in a local group be fixed or estimated for each group,

and if fixed how will it be determined?

• Will we give permission to local groups to contain overlapping mixtures (same

mixture in several local groups)?

Although these questions seem worthy to work on (especially trying to find a merging

criterion suitable for our later goal : channel compensation), we will follow a basic

solution for this task. We know from GMM-UBM systems that only several mixtures

are “active” for a given speech frame which gives rise to Top-N scoring where N is

typically 5 or 10. We, therefore, choose to group UBM mixtures according to distances

between them. For each UBM mixture we evaluate mi as:

mi =
√

wiΣ
−1/2
i µs

i . (5.10)
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and the distance between mixtures i and j is the cosine distance between mi and mj

given by
mi · mj

‖ mi ‖‖ mj ‖
. (5.11)

After calculating the distances between mixtures we apply a greedy algorithm to group

the mixtures and obtain the local spaces. The algorithm takes a fixed number for the

mixtures in a local space and begins with the closest two mixtures. We select one of

these mixtures as the base mixture and add to the group the next closest mixture to

this base mixture. This process continues until the given fixed number of mixtures are

added to the group. We do not accept overlap between local groups so these mixtures

are marked as used and will not be added to the subsequent local groups. The process

lasts when all the mixtures are put in a local group.

5.3 Experiments

We have built a GMM Supervector SVM system using Architecture 1 shown in Figure

5.2. The system uses Local NAP for channel compensation. The front-end, voice-

activity detector and the 2048 mixture gender dependent UBM’s are the same as those

in Chapter 4. For the training of NAP transform we used NIST SRE06 and NIST SRE08

databases. The breakdown of the data used is shown in Table 5.1.

Speech Type Male Female

phone 2469 3744
microphone 984 1195
interview 1344 1827
Total 4797 6766

Table 5.1: Breakdown of Speech Data for Local NAP Training.

We applied Z-norm score normalization for both systems. The breakdown of Z-norm

and impostor utterances are listed in Tables 5.2 and 5.3, respectively.

We have used 64 mixtures in each local group and since each GMM mean is 39 dimen-

sional, the local vectors’ dimension is 2496. Plot of the eigenvalues of the covariance

matrix C in Equation 5.1, is given for a local group of male UBM in Figure 5.4. The

percentage of energy versus the percentage of eigenvectors kept is given in Figure 5.5
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Speech Type Male Female

phone 1053 1267
microphone 303 398
interview 336 588
Total 1692 2253

Table 5.2: Breakdown of impostor utterances for local systems.

Speech Type Male Female

phone 663 1130
microphone 238 262
interview 375 440
Total 1258 1832

Table 5.3: Breakdown of Z-norm utterances for local systems.

for the same local group. We can see that none of the eigenvalues go to zero and the di-

mension of the channel space is equal to the total dimension of the local space, although

the first eigenvalues are significantly larger than the subsequent ones.
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Figure 5.4: Plot of eigenvalues for local group 8 of the male UBM.

We have tested our systems on core condition of NIST SRE10 dataset. When ap-

plying Local NAP, the dimension of the removed nuisance space is selected as 40 for
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Figure 5.5: Plot of energy versus eigenvectors kept.

all local regions. In Figure 5.6, the DET plots for conditions 1 (interview-interview

same microphone) and 2 (interview-interview different microphone) are given. In Fig-

ure 5.7, the DET plots for conditions 3 (interview-normal vocal effort telephone) and 4

(interview-normal vocal effort microphone) are given. Local NAP only slightly improves

performance for the same microphone case (condition 1). In the other three conditions,

where significant channel variations between training and test utterances exist, Local

NAP greatly improves the performance.

In Figure 5.8, the DET plot for condition 5 (normal vocal effort-normal vocal effort

different telephone) is given. In Figure 5.9, the DET plots for conditions 6 (normal

vocal effort-high vocal effort telephone) and 7 (normal vocal effort-high vocal effort

microphone) are given. In Figure 5.10, the DET plots for conditions 8 (normal vocal

effort-low vocal effort telephone) and 9 (normal vocal effort-low vocal effort microphone)

are given. Local NAP improves performance on all of the cases and at every operating

point on the DET plots. This shows the power of Local NAP for intra-speaker variability

compensation especially when significant channel variations exist between train and test

utterances.
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Figure 5.6: DET Plots of Local NAP vs baseline for Conditions 1 and 2.
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Figure 5.7: DET Plots of Local NAP vs baseline for Conditions 3 and 4.

In Tables 5.4 and 5.5, equal error rate (EER) and minimum DCF (minDCF) values

are given for all conditions. Relative improvements between 15% to 30% are achieved

in EER except condition 1. The results are similar in the minDCF case where we are

evaluating the performance for very low false alarm rates.
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Figure 5.8: DET Plots of Local NAP vs baseline for Condition 5.
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Figure 5.9: DET Plots of Local NAP vs baseline for Conditions 6 and 7.

5.4 Discussion

In this chapter, we have proposed to partition the acoustic space into local regions to

better compensate channel effects and model speakers. We have discussed two possible

architectures for local systems where current state-of the art speaker verification systems

can easily be adapted. In this thesis, we have only built a system within the proposed

Architecture 1 which uses NAP for channel compensation in local regions. Significant
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Figure 5.10: DET Plots of Local NAP vs baseline for Conditions 8 and 9.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Baseline 3.95 9.69 6.86 7.99 7.20 12.24 13.42 3.36 4.89

Local NAP 3.76 7.76 5.57 6.42 5.08 10.25 10.33 2.06 3.80

Table 5.4: EER values for the baseline and Local NAP systems for all conditions.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Baseline 5.849 8.338 8.595 7.622 6.097 9.466 8.858 6.109 5.940

Local NAP 5.109 7.729 7.038 6.983 5.812 9.272 8.217 5.202 3.586

Table 5.5: minDCF values (×10−4) for the baseline and Local NAP systems for all
conditions.

performance improvements are achieved for all conditions where substantial channel

variations exist.

Working on local regions of low-dimensionality gives the ability to build more tractable

systems and parameters like channel eigenvectors may more correctly be calculated.

Moreover, it gives the opportunity to apply techniques not used before like LDA with-

out previous dimensionality reduction or nonlinear manifold learning type algorithms.

Partitioning the acoustic space is also an issue desiring further research. In this sense,

the subject is not over yet and there seems to be much way to go in this direction. We

plan to increase our efforts to apply other algorithms in a local sense and to find better

ways of partitioning the acoustic space.



Chapter 6

Random Sampling for Acoustic

Event Variability Compensation

For years, speaker verification studies focused on removing unwanted variabilities (chan-

nel, session, etc.) at the modeling stage. Joint Factor Analysis has given great improve-

ment on this purpose. Despite its success for conditions typical in NIST SRE core trials

with utterance lengths of 2-3 minutes in average, it is shown in [33] that the same perfor-

mance could not be obtained for utterances of smaller lengths in training and/or testing

like the ones in 10sec conditions of NIST SREs. For small sized utterances speaker fac-

tors still showed positive impact, whereas performance degradation has been observed

with the addition of channel factors. The authors, in a subsequent work [34], observed

that obtaining the session variability matrix U of JFA from training utterances with

lengths matched with evaluation conditions improves the performance. This means that

session variabilities depend on the utterance length. Since it is assumed that the session

subspace carries mostly variabilities due to nuisances like transmission channel, handset

and microphone used, this situation seems to be contradictive.

Actually, this perception of contradiction is due to the habit of using channel and session

interchangeably in the speaker verification literature. In [35], the authors suspected that

another source of session variability is becoming dominant for short utterances which

could not be modeled by the U matrix typically learned from the NIST SRE utterances of

longer length. They suggested that phonetic variability is the source of this performance

degradation and propose to divide the session variabilities into two subsets as intersession

52
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variabilities and within-session variabilities. They divide each utterance into a sequence

of N short segments and obtained a separate GMM supervector from them. For the short

segment GMM supervectors the intersession characteristics are the same while they vary

in a low dimensional within-session subspace. Under this proposal, JFA model for a short

segment sn becomes:

sn = m + V y + dz + UIx + UW wn. (6.1)

While x, y, and z will be the same for all short segments of an utterance, they will

have different within-session factors wn. The authors used a phone recognizer to obtain

the short segments. They have been able to obtain a JFA system flexible to be used

for all utterance lengths. That is, their JFA system with within-session variability

compensation gave better or comparable results with JFA systems of matched utterance

length. However, significant performance improvements compared to the baseline could

not be achieved.

We will use the more general term “acoustic event variability” instead of phonetic vari-

ability. The acoustic events may be phones, broad phonetic classes or Gaussian mixtures.

The acoustic variability may be divided into two groups; the across acoustic event vari-

ability and the variabilities coming from the actual realization of the acoustic events.

The works in [35, 36] are mostly related with the across acoustic event variabilities where

they try to compensate the effects observing different acoustic events in train and test.

For long utterances in train and test, we will observe every acoustic event sufficiently

and hopefully across acoustic event variability will not be a significant problem, while

for short utterances this is not the case. The variabilities coming from the actual realiza-

tion of the acoustic event is part of the intra-speaker variability. Intra-speaker variability

does not come only from environmental effects like transmission channel or microphone

but also comes from the speaker himself. It is well known that factors like speaking style

and emotional state affects the speakers performance of the acoustic events.

In [37], a method to model intra-speaker variability for the Anchor Model based speaker

verification is proposed. In Anchor Modeling, each target speaker is represented relative

to a pre-trained speaker set called anchor models. The speaker is characterized by a

vector of log-likelihood ratios obtained by scoring target speaker training data with each

of the anchor models’ GMM and expressing the likelihood relative to UBMs’ likelihood.

This vector is called Speaker Characterization Vector (SCV) and speaker verification is
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performed by calculating the distance between clamimed speakers’ SCV and SCV of the

test data. This method lacks intra-speaker variability modeling and in [37], the authors

proposed to describe each speaker as a distribution on the anchor space rather than a

single point to remove this deficiency. Inspired by this work, in this chapter we propose

a simple method to compensate the acoustic event variabilities at the modeling stage of

a GMM Supervector SVM system. The next section will describe our method and we

will conclude with experimental results on the NIST SRE 2006 dataset.

6.1 Acoustic Event Variability Compensation for GMM

Supervector SVM System

In GMM Supervector SVM systems, when the target speaker has a single training utter-

ance, the SVM algorithm learns a boundary that separates the single positive supervector

from many negative supervectors of impostor utterances. That is we are representing the

speaker as a single point like the traditional Anchor Modeling. Inspired by [37], instead

of a single point in the space we want to represent possible locations where the speaker

might be. To achieve this goal, we propose to extract short segments from the utterance

and use them in SVM training. More specifically, for each short segment extracted, we

randomly select frames from the utterance until we reach a previously selected fixed

size. Let X = {o1,o2, . . . ,oT } be a training utterance of T frames. We obtain the

supervector x by concatenating the variance normalized mean vectors of the GMM ob-

tained by MAP adaptation of the UBM using frames in X. Let xi be the supervector

for the ith short segment Si =
{

oσi(1),oσi(2), . . . ,oσi(D)

}

, where {σi(1), σi(2), . . . , σi(D)}
are the randomly selected indices and D is the selected fixed size for the short segments.

We obtain GMM supervectors xi from each short segment as well as from the original

utterance itself. We use all of these GMM supervectors as positive examples in SVM

training. This will put within-session variability compensation in the modeling stage.

The motivation to use random sampling of the frames is to guarantee that each short

segment supervector contains information from most parts of the acoustic space. This

is especially important if we use relevance MAP adaptation rather than Eigenvoice

MAP adaptation for GMM training since relevance MAP will update only the mixture

components that it sees in the adaptation data. Using this procedure we expect to model
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the within-session variability coming from the variations in the actual realization of the

acoustic events. In our case acoustic events are Gaussian mixtures.

The fixed size chosen for the short segments is an important parameter. We do not

want it too long making the short segment GMM supervectors saturating to the overall

utterance supervector. The size of the supervector may also be a compromise between

modeling within-session variabilities coming from the actual realizations of the mixtures

or modeling across mixture variabilities. If we make the fixed size so small that only

few acoustic events can be represented, then across mixture variabilities will dominate.

Since in this thesis EigenVoice MAP has not been implemented, we prefer to choose the

size so that variabilities coming from actual realizations dominate and across mixture

variabilities are represented to some extent.

6.2 Experiments

To understand the effect of random sampling within an utterance we have run exper-

iments on the male portion of 1conv4w-10sec4w and 1conv4w-1conv4w conditions of

the NIST SRE06 dataset. We have trained a 1024 mixture gender-dependent Universal

Background Model from NIST SRE04 and Switchboard corpora using approximately

127 hours of speech. Same front-end is used as the one in Chapter 4. We use 500 ut-

terances selected from NIST SRE04 and Switchboard corpora for impostor utterances

and for Z-norm score normalization when applied. We use 274 speakers from the NIST

SRE05 dataset as T-norm speakers when T-norm score normalization is applied.

We have generated 10 short segments for each training utterance. Together with the

supervector obtained from the whole utterance, we have 11 true examples for each target

speaker in SVM training. We have tried two values for the fixed size; 10 sec and 24 sec.

For the 1conv4w-10sec4w condition, we first tried a baseline system where no score

normalization is applied. In Figure 6.1 the DET plots for this case is shown. It seems

that the system with 24 sec short utterances performed better than the baseline except

low false alarm region whereas 10sec fixed size system is generally worse than the baseline

and comparable to it on high false alarm rates. The EER and minDCF values are given

in Table 6.1.
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EER minDCF(×10−2)

Baseline 14.14 5.43

24sec 13.27 5.39

10sec 14.00 5.71

Table 6.1: EER and minDCF values for 1conv4w-10sec4w condition
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Figure 6.1: DET Plots for 1con4w-10sec4w condition.

We have applied T-norm score normalization to see how things change in case of score

normalization. In Figure 6.2 the results for this case is shown. Table 6.2 shows the EER

and minDCF values. T-norm score normalization improved the performance of all the

systems slightly, leaving the relative performances unchanged. The higher miss rates in

10 sec seem to be the effect of using relevance MAP in adaptation. Since we could not

update the mixtures we do not see in adaptation, using very short utterances causes

the rejection of 10 sec positive test trials distant to the 10 sec short segments of the

adaptation.

We also wanted to see how modeling within-session variabilities using random sam-

pling affects performance in long test utterances. For this purpose we have run test

for 1conv4w-1conv4w case. The baseline system has Z-norm score normalization in this
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EER minDCF(×10−2)

Baseline 14.00 5.16

24sec 12.97 5.17

10sec 13.85 5.48

Table 6.2: EER and minDCF values for 1conv4w-10sec4w condition after T-norm
score normalization.

  0.1   0.2  0.5    1     2     5     10    20    40  
  1   

  2   

  5   

  10  

  20  

  40  

  60  

  80  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

1conv−10 sec trials with tnorm

 

 
baseline+tnorm
size 24s+tnorm
size 10s+tnorm

Figure 6.2: DET Plots for 1con4w-10sec4w condition with T-norm score normaliza-
tion.

case. Figure 6.3 shows the DET plot comparing performances of baseline, 10 sec. fixed

size and 24 sec. fixed size systems and Table 6.3 shows the EER and minDCF values

obtained. Figure 6.4 and Table 6.4 show the case when T-norm is also added to all

systems. In this case both of the random sampling systems outperform the baseline

system. T-norm score normalization increases performance for all systems and do not

change the relative performances much. Random sampling seems to be effective even for

long utterance test segments. The system performances seem to saturate for high false-

alarm rates. We can conclude that adding short segments through random sampling

makes our system cope better with intra-speaker variabilities.
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Figure 6.3: DET Plots for 1con4w-1con4w condition with Z-norm score normalization.

EER minDCF(×10−2)

Baseline 4.69 2.15

24sec 4.22 2.06

10sec 4.27 2.03

Table 6.3: EER and minDCF values for 1conv4w-1conv4w condition with Z-norm
score normalization.

EER minDCF(×10−2)

Baseline 4.36 1.96

24sec 3.94 1.86

10sec 3.90 1.85

Table 6.4: EER and minDCF values for 1conv4w-1conv4w condition with ZT-norm
score normalization.

6.3 Conclusion

In this chapter we have tried to deal with one component of intra-speaker variability

through adding short utterances with random sampling in the modeling stage. We

tried to model the differences in actual realizations of the acoustic events and instead of
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Figure 6.4: DET Plots for 1con4w-1con4w condition with ZT-norm score normaliza-
tion.

representing the speaker as a single point in the space we give possible more locations

where the speaker may be found. The method may also be used to model across acoustice

event variabilities if a suitable adaptation algorithm like eigenvoice MAP is used. We

have obtained performance improvements both for short (10sec) and long (1conv: 2-

3 minutes) test utterances. One option that desires to be investigated is using short

utterances in training. In the future, we plan to incorporate eigenvoice MAP adaptation

to our system and work on this condition also. The method we proposed is a simple and

easy to implement one, yet seems to be effective for a wide range of test conditions.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have discussed the assumption of low-dimensionality of channel space

typical in current state-of-the art speaker verification systems. We have proposed to

partition the acoustic space into local regions where we can apply channel compensation

techniques separately. This would lead to more tractable solutions and gives a better

view of the channel and speaker spaces. We argued that obtaining a single number as the

distance between two speakers is questionable and using local regions may also support

better modeling of inter-speaker variabilities. We have proposed two architectures for

speaker verification in local regions in which current approaches can easily be used.

The two architectures both apply channel compensation locally and differ in where the

subsequent speaker modeling and scoring steps are realized. We have implemented a

GMM supervector SVM system with local NAP based on one of these architectures.

We have also worked on a special case of intra-speaker variability, namely within-session

variability. We have proposed a method to improve performance by compensating vari-

abilities mainly coming from actual realizations of phones as well as variabilities across

phones. We have shown that our technique not only improves performance for short

test utterances but also for long test utterances.

60
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7.2 Future Work

For future improvements on our proposals, we will focus on the below directions.

• Further studies on local region based speaker verification must be explored. We

want to apply other approaches like TVS, LDA + WCCN, and JFA in the local

architectures we proposed. In this thesis we only used one of the architectures

(Architecture 1) where only channel compensation is applied locally. It may be

interesting to model speakers and inter-speaker variabilities locally. We also want

to explore how well local systems may be fused in the score level. Since the

dimension of local regions are small enough we can leave the linearity assumption

and try to learn the manifold of speaker space.

• Better ways of partitioning the acoustic space is also worth working on. It will

be most beneficial if we can find a way to partition the space that will help in

subsequent steps of channel compensation.

• In this thesis we have used random sampling to generate short segments from the

training utterance. We tried to learn a better hyperplane by SVM taking phonetic

intra-speaker variabilities into account. As a future work, we plan to investigate

ways to remove these variabilities by feature transforms applied to the training

supervectors.
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