
PROXY-SECURE COMPUTATION MODEL:

APPLICATION TO K-MEANS CLUSTERING

IMPLEMENTATION, ANALYSIS AND IMPROVEMENTS

by Erman Pattuk

Submitted to the Graduate School of Sabanci University

in partial fulfillment of the requirements for the degree of

Master of Science

Sabanci University

August, 2010

PROXY-SECURE COMPUTATION MODEL:

APPLICATION TO K-MEANS CLUSTERING

IMPLEMENTATION, ANALYSIS AND IMPROVEMENTS

APPROVED BY:

Assoc. Prof. Dr. Erkay Savaş

(Thesis Supervisor)

Assist. Prof. Dr. Cemal Yılmaz

Assoc. Prof. Dr. Yücel Saygın

Assoc. Prof. Dr. Albert Levi

Assoc. Prof. Dr. Cem Güneri

DATE OF APPROVAL:........................

ii

c© Erman Pattuk 2010

All Rights Reserved

PROXY-SECURE COMPUTATION MODEL:

APPLICATION TO K-MEANS CLUSTERING

IMPLEMENTATION, ANALYSIS AND IMPROVEMENTS

Erman Pattuk

CS, Master’s Thesis, 2010

Thesis Supervisor: Erkay Savaş

Keywords: Multi-party Computation, Cell processor, Data mining

Abstract

Distributed privacy preserving data mining applications, where data is

divided among several parties, require high amounts of network communica-

tion. In order to overcome this overhead, we propose a scheme that reduces

remote computations in distributed data mining applications into local com-

putations on a trusted hardware. Cell BE is used to realize the trusted

hardware acting as a proxy for the parties. We design a secure two-party

computation protocol that can be instrumental in realizing non-colluding

parties in privacy-preserving data mining applications. Each party is rep-

resented with a signed and encrypted thread on a separate core of Cell BE

running in an isolated mode, whereby its execution and data are secured by

hardware means. Our implementations and experiments demonstrate that a

significant speed up is gained through the new scheme. It is also possible to

increase the number of non-colluding parties on Cell BE, which extends the

proposed technique to implement most distributed privacy-preserving data

mining protocols proposed in literature that require several non-colluding

parties.

iv

VEKİL GU̇VENLİKLİ HESAPLAMA MODELİ

K-MEANS GRUPLAMA UYGULAMASI:

UYGULAMA, ANALİZ VE GELİŞTİRMELERİ

Erman Pattuk

CS, Yüksek Lisans Tezi, 2010

Tez Danışmanı: Erkay Savaş

Anahtar Kelimeler: Çok-Partili Hesaplama, Cell İşlemcisi, Veri Madencilig̃i

Özet

Verinin birden fazla partiye bölünmüş oldug̃u dag̃ıtılmış veri madencilig̃i

uygulamaları yüksek miktarda ag̃ üzerinden haberleşme gerektirir. Bu yükten

kurtulmak için önerdig̃imiz modelde, uzaktan yapılan hesaplamaları güvenli

bir donanım üzerinde yerel hesaplamalara dönüştürüyoruz. Partilerin çalışması

için vekil ortam olarak Cell BE seçildi. Modelin performansını ölçmek amacıyla,

daha önceden oluşturdug̃umuz güvenli iki-partili hesaplama protokolü üzerinde

uygulamalar tasarladık. Hesaplamadaki her parti kendi uygulamasını yazdıktan

sonra, imzalayıp şifreleyerek vekil ortama yollamakla yükümlü. Yolladıkları

uygulamalar Cell BE işlemcisi üzerinde kendileri için ayrılmış izole durum-

daki SPE çekirdeg̃ine yollanır. Uygulamanın çalışması öncesinde, esnasında

ve sonrasında herhangi bir bilgi açıg̃a çıkması Cell BE işlemcisinin sunmuş

oldug̃u güvenlik özelliklerinden dolayı çok zordur. Yapmış oldug̃umuz deneyler,

sunmuş oldug̃umuz modelin büyük hızlanma sag̃ladıg̃ı sonucunu ortaya koymuştur.

Cell BE platformu içinde yeterli çekirdek oldug̃u sürece hesaplamadaki parti

sayısını arttırmak mümkündür.

v

Acknowledgements

With all my heart, I wish to express my gratitute to my supervisor Erkay

Savaş, for his support, patience and guidance through my graduate education.

I wouldn’t be able to finish my work without his help.

I would also like to thank Albert Levi, Hüsnü Yenigün, Cemal Yılmaz,

Cem Güneri, and Ali Alpar. It was wonderful to work with such brilliant

professors.

For their support in my thesis, I would like to thank IBM Turkey. If they

had not given Playstation 3 machines, I wouldn’t have finished my thesis :)

Special thanks goes to my friends. Erdal Mutlu, Burcu Özçelik, Og̃uzcan

Mercan, Şeyma Ketenci, Ahmet Onur Durahim, Duygu Karaog̃lan, Emine

Dumlu, Leyli Javid, Barış Altop, Murat Ergun, Hüseyin Ergin, Oya Şimşek,

Cengiz Örencik, İsmail Fatih Yıldırım, Osman Kiraz, Nazım Öztahtacı, Sarp

Çakır, Kemal Hatipog̃lu, Emre Kaplan and many many others. Without you

all my life would be meaningless.

The last and the most important thanks goes to my family. Every member

of my family gave me enough support through all my education. Sabahat,

Kirkor, Müge, Arman, Serpil and Harudyun Pattuk. Loves and kisses to you

all.

vi

Contents

1 Introduction 1

1.1 Contribution of the Thesis . 3

1.2 Organization of the Thesis . 4

2 Related Work 6

3 Cell Broadband Engine Architecture 8

3.1 Technical Details . 9

3.1.1 Power Processor Element 11

3.1.2 Synergistic Processor Element 11

3.2 Security Features . 14

3.2.1 Secure Processing Vault 16

3.2.2 Runtime Secure Boot 17

3.2.3 Hardware Root of Secrecy 19

3.3 Key Hierarchy . 21

3.3.1 Application Trust Chain 22

3.3.2 Application Encryption Chain 24

3.4 Building Secure Applications 24

4 Simple Secure Two-Party Computation Model 26

4.1 Rivest Oblivious Transfer . 27

4.2 Addition . 28

4.3 Multiplication . 29

4.4 Comparison . 30

4.4.1 Equality of Bits . 31

vii

4.4.2 Comparison of Bits . 32

4.4.3 Comparison of Numbers 32

4.4.4 Comparison of Secrets 33

5 K-Means Clustering 36

5.1 General K-means Clustering Algorithm 37

5.2 Privacy Preserving K-means Clustering Algorithm 41

6 Proxy-Secure Computation Model 47

6.1 PC Implementation . 49

6.2 CBEA Implementation . 50

7 Results 54

7.1 Secure Two-Party Computation Model 55

7.2 Privacy Preserving K-means Clustering Algorithm 57

8 Conclusion 67

viii

List of Figures

1 Cell Broadband Engine Architecture Overview 10

2 Isolated SPE in CBEA . 16

3 Secure application in isolated SPE 20

4 Encrypted storage in an isolated SE 21

5 Authentication chain . 23

6 Rivest OT . 29

7 Multiplication . 31

8 Equality of bits . 32

9 Comparison of bits . 33

10 Comparison of Secrets . 35

11 K-means clustering: Initial positions 39

12 K-means clustering: The end of first iteration 39

13 K-means clustering: Final positions 41

14 CBEA Implementation: Secure two-party computation model 51

15 CBEA Implementation: Privacy preserving k-means cluster-

ing algorithm . 53

16 Comparison of CBEA and PC implementation for different

number of players . 59

17 Comparison of CBEA and PC implementation for different

number of clusters . 60

18 Comparison of PC implementations, k = 8, r = [4-11], band-

width = 400k bps, latency = 6 ms 61

19 Comparison of PC implementations, k = [2-16], r = 8, band-

width = 400 kbps, latency = 6 ms 62

ix

20 Comparison of PC implementations, k = 8, r = 8, bandwidth

= 400kbps, latency = [24-120] ms 63

21 Comparison of CBEA implementation, k = [8-16], r = [4-11] . 64

22 Comparison of CBEA implementation, k = [2-16], r = [5-10] . 66

x

List of Tables

1 Timings for Secure Two-Party Computation Model on PC

Platform . 55

2 Timings for Secure Two-Party Computation Model on CBEA

Platform Including SPE Overhead 57

3 Timings for Secure Two-Party Computation Model on CBEA

Platform Excluding SPE Overhead 58

xi

List of Algorithms

1 Calculate Distance 1 . 38

2 General k-means clustering . 40

3 Privacy preserving k-means clustering 43

4 Calculate Distance 2 . 44

5 Securely Compute Closest Cluster 45

6 Securely Find Minimum Index 46

xii

1 Introduction

Distributed privacy-preserving data mining applications that require the par-

ticipation of more than one parties that are physically distanced suffer from

huge overhead due to network communication. Data to be mined can be

partitioned vertically or horizontally, but the fact does not change: exchang-

ing messages via network increases the computation time. The overhead can

become larger as the physical distance between parties increases. If the op-

erations involved in data mining applications are performed on multiple data

warehouses, then the network communication becomes a major problem, ren-

dering the already time-consuming computations infeasible to complete in a

reasonable time frame.

One of the actual reasons behind the network communication overhead

can be given as the need of trust. The lack of trust between parties motivates

them to physically isolate their data and processing environment from other

parties, forcing them to keep their data private and to run their part of the

computation on their own servers.

Distributed privacy-preserving data mining applications, nonetheless, re-

quire a high degree of interaction among the participating parties that want

to keep their data private. Each party needs to make sure that other par-

ties cannot even deduce any information about his/her data from messages

exchanged. To guarantee security and privacy requirements, parties need to

use secure algorithms/protocols as well as secure and trusted computing plat-

forms. In this respect, secure multi-party computation model where parties

are semi-trusted (in the sense they are honest but curious) suits the needs of

distributed privacy-preserving data mining applications.

1

We address these problems by proposing a novel proxy-secure computa-

tion model, whereby parties execute their applications on a Cell Broadband

Engine Architecture (CBEA) platform that provides a secure and trusted

execution environment. Instead of a distributed application where differ-

ent parts of the application running in physically distanced computers of

each participant, these applications execute on trusted hardware where they

are isolated from each other by hardware means. Namely, each application

is executed on a different core of the architecture, that are physically iso-

lated. Since the applications run on the same integrated circuit, this greatly

enhances the performance by replacing network communication with direct

memory access operations.

CBEA, whose security features and isolation technology are explained in

[1] and [2], provides a secure and trusted hardware platform where partici-

pants’ codes can run securely and in an isolated fashion. Since each code runs

in an isolated core of CBEA and protected by cryptographic techniques and

hardware means, no information can leak outside. Furthermore, isolation is

implemented by hardware means so that no software based attacks (bugs,

trojans, malwares, etc.) can override the protection.

Using the isolation and security properties of the CBEA, parties develop

their part of the application on their own, digitally sign and encrypt it, and

send it to a CBEA platform which is in the possession of a semi-trusted

authority. Since the applications running on the platform are completely

free of external threats, they can communicate more efficiently and more

securely with each other inside the Cell Processor.

This execution model is also useful in securing cloud computing appli-

2

cations where the security and privacy of applications and data are serious

concerns since the data and applications are held on the hardware of third

parties. Our proposal is beneficial to alleviate some of these concerns by

providing a practical framework.

In order to demonstrate the advantage of the model proposed in this

thesis, a distributed data mining application which is time consuming and

requires a high degree of interaction is selected. K-means clustering algorithm

fulfills these requirements and it is also very common in various branches of

computer science. General and modified versions of k-means clustering are

described in [3] and [4]. The k-means clustering algorithm that protects the

privacy of the participants’ data, mentioned in [4], necessitates a secure multi-

party communication (SMC) protocol between the parties. In Section 4, an

efficient two-party communication protocol that can be used as a primitive

in our application is described in details.

1.1 Contribution of the Thesis

In this thesis, we focus on several issues for building a fast and secure plat-

form and framework for massive computational problems. The computations

involve participations of more than one party and their private data, where

each party owns a part of the data that the operation will be performed on,

and doesn’t want to give away any information about it by any means.

The first issue we focus on is to assure that a secure and trusted hardware

(i.e. CBEA in our work) provides reliable security solutions to software

developers that will protect their applications from any hardware or software

level of attacks since these application will run on a platform owned by a third

3

party. The second issue is to propose a proxy-secure computation model and

a framework, by offering parties to use a trusted execution platform, whereby

they can securely deploy and execute their applications. Naturally, trust

between parties is a major concern in this setting and in the proposed model,

neither contributing parties nor the platform owner can learn a sensitive

information which they don’t know already. In the model, the parties do not

have to trust each other, and during the development stage they do not even

have to collaborate except for interfacing issues that allow their applications

to talk to each other. Conforming to the protocol steps is sufficient for the

computation to succeed, to guarantee the privacy of parties, and to produce

the correct results.

The proposed model gives superior performance results compared to the

works in [3] and [4], by replacing network communication with direct memory

access operations, which greatly accelerates the computation. Moreover, it

is shown that security of the application and data is completely preserved in

our model by cryptographic techniques and hardware means.

To best of our knowledge, the proposed model and framework that allow

a secure multi-party computation to be performed in the same hardware

platform are unprecedented.

1.2 Organization of the Thesis

In Section 3, Cell Broadband Engine Architecture is explained with its techni-

cal details and security features. Detailed information is given on the types

of cores that exist within a Cell processor. In Section 3.2, three different

features of CBEA that enable the isolation of an application are explained

4

separately. And in Section 3.3, the key hierarchy used in the authentication

and encryption mechanisms in the process of building, deploying and execut-

ing the application is explained. Finally, Section 3.4 gives information as to

how to develop applications that uses these security features.

In Section 4, a secure two-party computation model is given in details,

which constitutes the basis for implementing non-colluding parties in pri-

vacy preserving clustering algorithm. Addition, multiplication and compari-

son operations in the secure two-party computation model that are essential

in many privacy preserving data mining applications are defined, and the

overhead of every operation is given separately.

In Section 5, an example data mining application that requires massive

computations is introduced: k-means clustering algorithms over distributed

spatio-temporal data. The k-means clustering algorithm is first explained in

its general form in Section 5.1. An extension to this algorithm is presented

in Section 5.2, which handles the multi-party and privacy preserving case.

In Section 6, implementation details are given for secure two-party com-

putation model and clustering algorithm on two platforms. First, implemen-

tation on a PC is explained in Section 6.1, and then details are given about

the implementation in our proxy-secure computational model on CBEA in

Section 6.2.

Finally in Section 7, performances of our implementations are given and

compared to the results of related works. The results are calculated for secure

two-party computation model, as well as for the privacy preserving clustering

algorithm.

5

2 Related Work

The multiplication operation in our secure two-party computation model uses

multiplication triples, which represents the three ring elements created by the

trusted third party. This technique has been previously used in [5, 6].

In the operation of bitwise comparison, oblivious transfer (OT) described

in [7] is used. Previously, works in [8, 9, 10] also use OT in order to perform

comparison of bits operations. Moreover, the idea of having a third trusted

party in the operations is used in [11, 5, 6].

Previously, several algorithms have been proposed for privacy preserv-

ing data mining operations on vertically partitioned data, which uses secure

multi-part computation (SMC) models. Work of Vaidya and Clifton [3] is an

example of privacy preserving k-means clustering over vertically partitioned

data. Vaidya et al. were aware of the communication overhead induced

by SMC on large amounts of data. Therefore, they proposed to use a sub-

set of SMC functionalities. However, public key cryptography (PKC) was

used on this work, which increased the computation time of their protocol

prohibitively.

In another work by Kantarcioglu and Clifton, SMC is used again, but this

time they utilized commutative encryption property of RSA encryption [12].

Due to the usage of PKC again in these two works, the computation overhead

was high, which caught the attention of Wright and Yang. In their work, they

proposed to use secret sharing instead of PKC [13]. Additive secret sharing

with SMC has been used in order to compute Bayesian network.

Work by Doganay et al. also focuses on k-means clustering on vertically

partitioned data, using SMC and secret sharing [14]. However, their work

6

suffers from high network communication due to the usage of SMC. The

number of messages exchanged increases quadratically based on the number

of participants (data owners). Yildizli et al. address this issue, and manages

to decrease the communication overhead by taking the advantage of non-

colluding assumption [4].

In this thesis, we focus on removing the network communication over-

head completely by moving the entire computation to a trusted and secure

hardware, namely Cell Broadband Engine Architecture (CBEA). This way,

the runtime of any data mining application will experience a major decrease,

since memory transfer operations are faster compared to long-distance net-

work communication. Previously, privacy preserving clustering on CBEA

was proposed in [1]. However, this work is performed on unpartitioned data,

while SMC and secret sharing are not used in the process.

7

3 Cell Broadband Engine Architecture

Cell Broadband Engine Architecture is a multi-core processor architecture,

which was designed in 2004. Main reason for the development of CBEA was

the need of a new processor for the upcoming Playstation 3 game console,

owned by Sony Computer Entertainments Inc.. Together with IBM and

Toshiba, a new architecture was developed, whose performance metrics for

media processing are far better than existing desktop processors such as 32-

bit Intel Architecture processors [15].

Although high performance was the primary goal during the design pro-

cess of CBEA, another important aspect of CBEA is its hardware-based

security features, developed mainly for protecting the intellectual properties

of software developers. Nearly none of the existing processor architectures

in the market provides a complete hardware-based support for secure com-

putation; in other words security of the data and execution of a program is

protected by not hardware means, but mostly software means. The problem

with this approach is that software is much more vulnerable to attacks com-

pared to hardware. CBEA focuses on this issue, and proposes an isolation

feature of the cores, whereby an isolated core in CBEA separates itself from

the rest of the system by hardware means [16].

In this section, a brief information about the technical details of CBEA

is given. Two different types of cores are described with their properties

and their usage in our project. This is followed by a detailed description

of the separate security features supported in the CBEA. Subsequently, key

hierarchy used in the security features is explained, and an outline is given

on how to design secure applications for CBEA.

8

3.1 Technical Details

As mentioned in Section 3, three companies participated in the design pro-

cess of CBEA: IBM, Toshiba and Sony. Sony’s primary aim was to use Cell

Broadband Engine processor (Cell processor) in their newest game console,

i.e. Playstation 3, and other consumer products such as high definition tele-

vision sets, where intensive data processing is needed [17]. On the other

hand, IBM had other plans on the usage of Cell processor. They desired

an architecture that can be used in the mainframes, servers, even in the

supercomputers [15].

With these defined aims, three companies designed Cell Processor, which

features one power processor element (PPE), and eight synergistic processor

elements (SPE). Compared to other multi-core processors, PPE and SPEs

have different technical properties [15]. For instance, PPE has the authority

to use the whole system memory, which is 256 MB in the Playstation 3

configuration of Cell processor, while SPEs have limited memory of 256 Kb.

Having different technical properties is not the only difference between the

cores, they also differ in their usage style. In a Cell processor, PPE can be

considered as the rider, while SPEs are computational work horses. SPE’s

technical properties makes it ideal for bulk data processing, where there is an

extreme level of data-level parallelism. And if this data processing capability

is utilized appropriately, CBEA offers 200 GFlops on single precision values,

while 32-bit Intel Architecture processors give a performance of 25 GFlops on

single precision [15]. In addition to the performance of a single Cell processor,

one can cluster several Cell processors via high-speed connection, and achieve

significant floating point and vector processing power [15].

9

Due to having multiple cores in CBEA, a coherent and fast way of com-

munication between the elements is an important issue. Architects designed

what is called Element Interconnect Bus (EIB) to handle data and instruction

transfer between cores, main memory, and I/O devices. EIB has the ability

to handle 16 simultaneous data transfer requests, called direct memory ac-

cess (DMA). This property improves the parallel processing power of Cell

processor, since SPEs can issue DMA requests at the same time. However,

there are still some limitations in the DMA requests. The largest amount of

data in a DMA request can be 16 KB, while the smallest amount is 16 B for

performance concerns [15]. Figure 1 gives an overview of the CBEA, with 8

SPEs, a PPE and EIB that connects the components of CBEA.

Figure 1: Cell Broadband Engine Architecture Overview

10

3.1.1 Power Processor Element

Power Processor Element (PPE) is a dual-threaded, dual-issue 64-bit core,

with the clock frequency of 3.2 GHz [16]. It has 32 KB L1 instruction and

data cache memories, and a 512 KB L2 cache [18, 19]. Designers aimed

to optimize clock frequency, and power efficiency by using relatively shorter

pipelines, and limited communication delays [15]. Despite having consider-

ably high clock frequency, working only with PPE without utilizing SPEs

may not give optimal performance results. In order to achieve better perfor-

mances, managerial role of the PPE should be kept in mind, and SPEs data

processing power must be used.

3.1.2 Synergistic Processor Element

Synergistic Processor Element (SPE) is a 32-bit processor, with a RISC-style

128-bit SIMD instruction set [19]. Every SPE contains 128 128-bit registers

to execute SIMD instructions. SPE has separate instruction set from PPE.

Its instruction set is optimized for performance on compute-intensive data,

by featuring vector instructions to perform the same operation on multiple

data [15].

One of the main differences between SPE and PPE is that every SPE

has a local memory called Local Store (LS) and no cache. LS of an SPE

is used to keep the data and instructions of the program that will run on

the SPE, and it has a capacity of 256 KB. Before starting the execution,

SPE should transfer the program (set of instructions), and data to its LS

by requesting DMA operations from PPE. LS of an SPE can only be used

by the owner SPE, other SPEs cannot use it to store instructions. However,

11

some mechanisms are proposed to enable memory transfer between different

SPEs. LS of each SPE is mapped in the system memory, which enables the

transfer of data between SPEs and PPE [16].

In addition to DMA requests, there are two more alternatives for commu-

nication between SPEs and PPE. Mailboxing is the first of these alternatives.

Each SPE has four incoming, and two outgoing mailboxes, whereby every

mailbox holds a 32-bit data. Signalling is the second alternative that can

only be used for synchronization purposes, while mailboxing can be used for

data transfer, but with higher overhead compared to DMA.

An SPE can run in three different modes. The first mode is the normal

mode, in which LS of an SPE running in this mode can be accessed by PPE

or other SPEs. While operating on normal mode, other elements in the

architecture can issue a DMA request, and get data from that SPE’s LS.

Although memory of an SPE is limited by 256 KB, size of an SPE program

is not limited in normal mode. Overlays can be used and programs with size

larger than 256 KB can be loaded into the LS and executed [2].

The second mode is the isolated mode, in which SPE isolates itself from

the rest of the system using hardware support. An SPE running in isolated

mode has full control over its LS, meaning that it can issue DMA requests

from/to its LS. On the other hand, other elements in the architecture cannot

issue any DMA request from/to the LS of SPE running in isolated mode.

DMA request from other elements is the only method of communication

that is not allowed in the isolated mode, i.e. SPE can receive mails or signals

from the rest of the system in the isolated mode. Restriction of the DMA

operation enables the isolation of the program execution from the system,

12

and ensures security of the data and instruction in the isolated SPE. No data

can be retrieved from the isolated SPE, not even the contents of hardware

performance counters [17].

Program size is also limited on an isolated SPE. The static size of the

program and data should not exceed 167 KB, while the runtime application

size can be extended to 247 KB [20]. For an SPE application to run in the

isolated mode, it must be encrypted and signed after being developed. Before

execution it must be first verified and decrypted so that it is ensured that

the application has not been altered or compromised. If the program fails to

verify, it is not loaded into the SPE and the execution stops.

The last mode is the emulated isolated mode. A program running in this

mode will be again verified and decrypted before execution. But this time,

SPE is not physically isolated from the rest of the system [17]. Emulated

isolated mode enables the software developer to debug SPE application, and

to read or set program counters, unlike isolated mode. However, just like

isolated mode, static program and data size is limited to 167 KB. This mode

is only for debugging purposes, and it is not used in general execution.

One final remark should be made on the the number of SPEs in different

configurations of CBEA. A regular Cell processor contains 8 SPEs, while the

Cell processor in Playstation 3 can only use its 6 SPEs because of power

consumption issues. On the hand a Cell Blade contains two Cell processor,

in which all 8 SPEs are active in each Cell processor.

13

3.2 Security Features

In cryptography context, three important security services should be achieved

in a platform, system or a program itself. The first service is authentication,

in which the authenticity of a program is checked so that unauthorized al-

terations in the program are detected. After an application has been built

and deployed, attackers may try to capture the application and make some

changes in it. In order to avoid this kind of malicious modifications, devel-

oper may choose to apply digital signatures, which enable the end-user to

check the authenticity of the application.

Confidentiality is the second security service, whereby data and applica-

tion are encrypted so that unauthorized entities cannot access the content.

Developers may choose to encrypt their application in order to prohibit other

developers from learning the details of the program. Moreover, the processed

data may be sensitive or just too valuable to disclose, so that it should be kept

secret. In both cases, an encryption key must be used to fulfill encryption

requirement.

The last security service can be described as the isolation of an application

in a processing environment. Even under the assumption that encryption and

authentication mechanisms achieve their objectives and a legitimate applica-

tion starts running on the platform, it should still be checked that memory

addresses read or written by that application can’t be accessed by any other

application. Operating system is usually held responsible for this control,

since it is the supervisor, and it can operate the applications so that isola-

tion aim is achieved.

For all these three security services, various solutions at software level

14

have been proposed. But all these solutions suffer from a major security flaw

that can lead to serious problems. A piece of software can be designated as

the authenticator by the operating system, and it can be used to authenticate

programs before their execution starts. But the problem with designating a

piece of software as the authenticator is the vulnerability of the software

itself. Once the authenticator application is verified, it can be altered after

some time and be used to authenticate malicious softwares.

Encryption mechanism has a different type of problem. A key, used to

encrypt data, must be kept safely in the system. This arises the problem of

recursive encryption, whereby we have to encrypt the first key with another

key so that the system stays secure. No matter how many keys are used,

we end up having a key kept in the plaintext form, which is already used to

encrypt other keys or data. Compromise of this key will lead to a breakdown

in the encryption mechanism, since acquiring it means acquiring the other

keys and the data. This key must be kept in a very secure location.

As previously mentioned, operating system can isolate one process from

another by software means and it can succeed doing so up to a certain level.

But, there is an unrealistic assumption in this approach that the operating

system is not compromised and is bug-free. If somehow an attacker gets

control of the operating system, one can no longer talk about isolation of

the applications. Therefore, in this approach software-only enforced type of

isolation cannot be fully trusted.

CBEA provides hardware-based solutions to these problems by introduc-

ing the isolated mode of execution of SPE. In section 3.1.2, isolated mode

of an SPE is explained briefly. It is mentioned that when an SPE runs in

15

the isolated mode, elements in the rest of the system cannot read data inside

the isolated SPE, or send data to it through DMA requests. In the following

three sections, the solutions proposed by CBEA to these security problems

are explained.

3.2.1 Secure Processing Vault

Figure 2: Isolated SPE in CBEA

Secure Processing Vault feature of CBEA is the actual feature that en-

ables the physical isolation of SPE from the rest of the system [1]. When an

SPE enters the vault, it disengages itself from the bus not in software, but

in hardware means. Figure 2 illustrates two SPEs that are in the isolated

mode and separated itself from other processor elements. This separation

allows the isolated SPE to discard any DMA request that is originated from

any other element in the architecture. Other elements in the system can

communicate with the isolated SPE only by mailboxing and signaling, but

16

since these operations can’t read from the isolated LS, it is assured that the

isolated SPE is the only element that can access its LS [20]. However, this

does not imply that the isolated SPE is completely separated from the sys-

tem. The isolated SPE opens some part of its LS to other elements, so that

the parties can communicate. When the isolated SPE issues a DMA in or

out request, the data is first gathered on the open part of the isolated SPE’s

LS, and than based on the request, data is moved to its target [2]. When

running in the isolated mode, application should be held responsible for the

incoming data. The application should not allow any instruction or data that

can risk the data in the isolated LS, or leak the data outside.

Secure Processing Vault feature protects the data and program confiden-

tiality and runtime integrity in the presence of the compromised operating

system problem by giving the operating system only one access in the isolated

mode, which is the cancel command. If an SPE is running in the isolated

mode, even the supervisor, PPE, cannot access, modify or read the data in

the isolated LS [1]. PPE can only tell the isolated SPE to stop execution.

But even in that case, before canceling the execution, isolated SPE deletes

all data and instruction in its LS and leaves no trace behind, which means

that PPE can’t learn anything after issuing cancel command. Therefore,

even if the operating system becomes compromised by an attacker, data and

application in the isolated SPE are kept safe and secure.

3.2.2 Runtime Secure Boot

Secure Processing Vault keeps the application isolated from the rest of the

system; however having only this feature in an architecture is not sufficient.

17

What if the application itself is attacked and modified, so that when it goes

into the isolated SPE, it sends out the sensitive information? The system

should check whether the application has been altered during the deploy-

ment process or not. Authentication comes into play at this point. There

are existing solutions to check the authenticity of a program before start-

ing its execution. Secure Boot Technology is an example of such solutions,

whereby starting from the power-on time every piece of code is authenticated

through hardware means [2]. The authentication by hardware is performed

until authenticating the operating system itself. After the authentication of

the operating system, the duty of authenticating new applications is passed

from the hardware to the operating system. This approach may seem invul-

nerable at first sight; but it should be noted that most of the attacks are

executed during the runtime, operating system may be compromised after a

certain amount of time since the boot, and therefore it can still be used to

authenticate malicious software [2].

Runtime Secure Boot is the feature proposed by CBEA, whereby the

authentication of an application is done directly by the hardware; more than

once, and at any time during the execution of the application [20]. Even if the

application is attacked after completing the initial authentication process,

this attack can be detected in the later repetitions of the authentication.

Moreover, since the authentication is done by hardware means, a break in

the authentication chain is caught and necessary measures are taken, which

is basically to cancel the execution.

Runtime Secure Boot is implemented in conjunction with the Secure Pro-

cessing Vault mechanism. If an application wants to work in an isolated SPE,

18

first it is loaded into the isolated part of the LS, and then goes into the au-

thentication process [1]. If the authentication fails, the application is erased

from the isolated LS, and execution stops. Otherwise, the application can

start in the isolated SPE.

3.2.3 Hardware Root of Secrecy

In order to encrypt data or applications, an encryption key should be used,

which reduces the security of the system to the protection of this key. En-

crypted data or application is kept safe as long as this key is not captured

by any attacker. This issue arises the question on where and how to keep

the encryption key. One can choose to encrypt this key with another key,

but that does not solve the problem; there should always be a key that is

kept in plaintext form. Locating this key, which is called the root key, on

the hard-disk makes the encryption chain vulnerable to all sorts of attacks,

which implies that the root key should be kept somewhere safe. In CBEA,

the root key is embedded into the hardware, and can not be retrieved, read

or modified by any means [1], which is the basis of the third security feature,

Hardware Root of Secrecy.

Before deploying the application, developer may choose to encrypt the

data and application with a derivative of the hardware key, so that infor-

mation is kept secret from any other entities in the process. This encrypted

application and data can only be decrypted using the hardware key, which

is very hard to read or modify by attackers [2]. The data in the encrypted

application may contain other encryption keys that will be used for various

purposes, but since the whole package is sent in encrypted form, an attacker

19

learns nothing after capturing this package. Figure 3 gives a representation

of an isolated application.

Figure 3: Secure application in isolated SPE

Another aspect of this feature is its use during the execution of an ap-

plication running in an isolated SPE. If an application is running in the

isolated SPE, its initial data and final outcome should also be kept safe from

any attackers. When this application tries to write some piece of data to

the hard-disk, where every application have access, the outcome is first en-

crypted using a derivative of the hardware root key, where this derivative key

is special to the application itself [20]. This property keeps even the results

of the data safe from all attackers. As shown in Figure 4, if this application

wants to retrieve previously encrypted data from the hard-disk, data is first

fetched and moved to the open area of the isolated LS, decrypted by the

derivative key and placed into the protected part of the isolated LS [1].

Similar to Runtime Secure Boot, in order to use the hardware root key,

20

Figure 4: Encrypted storage in an isolated SE

an application should run in the Secure Processing Vault, which also implies

that the application must be authenticated beforehand. Unauthenticated

applications are not given access to the hardware root key mechanism. It

should be noted that even the authenticated applications cannot learn any-

thing about the root key [20].

3.3 Key Hierarchy

In CBEA, the security of the keys that are used throughout the encryption

and authentication process relies on the security of the root key. Protecting

this key by hardware means (i.e. the root key is hardwired to the processor)

makes it safer compared to software means of security [1]. Different keys used

in the processes are kept in a format determined by an industry standard,

X.509 [20] and their protection is achieved by a key hierarchy whose top

is occupied by the root key. In the following two sections, key hierarchy

and keys that are used in the authentication and encryption mechanisms are

explained.

21

3.3.1 Application Trust Chain

Three distinct parties participate in the authentication process. The first

party is the Root Certificate Authority (Root CA), which may be the man-

ufacturer or the distributor of the Cell processor system. The Root CA has

the power to decide which Certificate Authorities (CA) can sign the devel-

opers’ certificates. The second party in the mechanism is the CA, which can

be more than one. Their role is to sign application developers’ certificates,

so that the applications developed by these verified developers can run in

the isolated mode [20]. The last player is the application developer. In order

to ensure secure delivery and isolated execution of its application, developer

should create a pair of application authentication keys with public and pri-

vate parts. The public part of the application authentication key should be

signed by an approved CA.

In addition to three parties, we can also speak of three key components

that are used in the authentication process. The first component is the SPE

Secure Loader, which is loaded into the isolated SPE before the application

and verifies the authenticity of the application. This component contains the

public counterpart of the Root CA key pair [20]. The second component is

the loader key ring. It contains the public keys of CA’s that are allowed to

sign application developers’ certificates. This component is only accessed by

the SPE Secure Loader. The last component is the application image. It

contains the application binary in encrypted form, public counterpart of the

application authentication key, and the signature value.

The authentication process starts with the authentication of Root CA’s

public key, located in the SPE Secure Loader. Once this key is verified, SPE

22

Secure Loader loads up the loader key ring. At the same time, application

is loaded into the isolated SPE. Public key of the CA is verified by the SPE

Secure Loader. The next step is to use the verified public key of CA, and

authenticate the public key of application authentication key pair. Finally,

public counterpart of the application authentication key is used to authen-

ticate the application itself. If any stage of the authentication procedure

fails, the execution stops and application is removed from the isolated SPE.

Otherwise, application starts executing. Figure 5 gives an outline of the

authentication mechanism.

Figure 5: Authentication chain

23

3.3.2 Application Encryption Chain

The application is encrypted in the build-time, and decrypted in the run-time

before the execution starts [20]. At build-time, the application is encrypted

by two keys. The application is first encrypted by the private counterpart

of the application authentication keys. This encrypted application binary

is placed into the application image as described in Section 3.3.1. Finally

the whole application image is encrypted using the public counterpart of

the application decryption key pair, where the private counterpart of this

key is located inside the SPE Secure Loader [1]. Public counterpart of the

application decryption key pair comes with the software development kit of

CBEA.

In the run-time, application is loaded into the isolated SPE first. After the

authentication procedure succeeds, it is decrypted by the private counterpart

of the application decryption key pair, followed by the decryption of the

application image using the public part of the application authentication key

pair. If the decryption mechanism fails at some point, the execution stops

just like in the authentication process.

3.4 Building Secure Applications

In order to develop a secure application, which uses the isolation feature of

CBEA, developer should first create an application authentication key pair

[1]. The public counterpart of this pair should be signed by an authorized

CA, so that the application is authorized to run in isolated mode. Once

the application authentication keys are created and signed, they are used to

24

create the application image as described in Section 3.3.1. The application

can be called a secure application after this point [20]. A very important

remark about the secure applications is that it can only run in an isolated

SPE. If the developer signs and encrypts its application, it is completely

guaranteed that this application will definitely not run in normal SPE mode,

where data and instructions of the applications can be retrieved by other

elements in the system.

Generating the application authentication keys and building the appli-

cation image do not suffice for the developer. Communication between the

isolated SPE and other elements should be considered and planned in a way

that, other elements in the architecture will not have DMA read or write

requests to the isolated SPE. Otherwise, bus error will occur, which ends the

execution of the application.

25

4 Simple Secure Two-Party Computation Model

Secure multi-party computation is the process of evaluating an operation be-

tween semi-honest parties over a previously agreed protocol [21, 22]. Through-

out the evaluation of the operation, parties do not want to reveal any kind of

information about their secret data to the other parties involved in the pro-

cess. Due to being semi-honest in the process, parties obey to the protocol

and perform the necessary steps, while trying to gain as much information

as possible from the messages received or observed. Because of this fact,

messages sent and received between parties should not reveal any kind of

information about the secrets held.

In this section, a secure two-party computation protocol is outlined, which

contains only two parties; Alice and Bob respectively. Parties in this se-

cure two-party computation model are also semi-honest, which implies that

the model should address privacy concerns of the parties. Three operations

are defined in this model: Addition, multiplication and comparison. Rivest

Oblivious Transfer (OT) is used in order to implement the comparison op-

eration [7]. Comparison is also divided into sub operations, which are the

equality of bits, comparison of bits, comparison of numbers, and comparison

of secrets.

In the multiplication and comparison operations, there is also a third

party (TP), which does not involve in the computation, but serves as a

random number generator under a scheme. This party gives random numbers

to Alice and Bob according to the operation they want to perform. Just like

Alice and Bob, TP is also semi-honest.

The proposed computation model uses additive secret sharing as the secu-

26

rity primitive, which is homomorphic with respect to the addition operation

[23, 24]. The secret value, on which the operations will be done, can be di-

vided into two pieces additively. For instance, to divide a secret value x into

two pieces, one can generate a random number x0, and calculate x1 = x−x0,

where x, x0 and x1 are elements of ring ZN and N is an integer. Neither

x0, nor x1 gives any information about the secret data x since they are sim-

ply random numbers independent of x. We define [x] = (x0, x1), such that

x0 + x1 ≡ x ∈ ZN , where x, x0 and x1 are elements of ZN . Furthermore, x0

can be thought as the share of Alice, while x1 is Bob’s for simplicity.

Throughout this work, following notations will be used for computing

shares, where c is a constant value, and operations are done in ZN :

[x] + [y] = (x0 + y0, x1 + y1) = [x+ y] (1)

c[x] = (cx0, cx1) = [cx] (2)

c+ [x] = (x0 + c, x1) = [x+ c] (3)

In the proposed model, the results are also secretly shared, meaning that

at the end of the operation parties need to open their own part of the result

to the opposing party in order to learn the actual result.

4.1 Rivest Oblivious Transfer

Oblivious Transfer is a cryptographic primitive, in which the receiver obtains

one of the N messages offered by the sender, but learns nothing about the

other unchosen messages [21]. OT allows the receiver to choose one of the

messages and learn the information in it, while the sender cannot learn the

27

choice of the receiver. In our model, an efficient implementation of OT is

needed, and Rivest OT is chosen for its practicality and suitability to our

setting [7].

In our implementation, Alice has the role of sender, while Bob is the

receiver. Alice has two messages to send to Bob, m0 and m1. Bob chooses

the message based on its input bit c. Rivest OT starts with the setup phase,

where TP generates three random bits r0, r1, d, and then calculates a fourth

bit according to the formula rd = (r0 ∧ ¬d) ⊕ (r1 ∧ d). Then, TP sends r0

and r1 to Alice, while rd and d are sent to Bob. Both parties learn nothing

about the opposing party’s bits, since the values are randomly created.

After the completion of the setup phase, Bob calculates e = c ⊕ d, and

sends e to Alice. After getting e, Alice first calculates re = (r0∧¬e)⊕(r1∧e)

and reinv = (r0∧e)⊕(r1∧¬e), and then sends f0 = m0⊕re and f1 = m1⊕reinv
to Bob. Finally, Bob computes mc = fc ⊕ rd.

At the end of the process, Alice learns nothing about c, the input bit of

Bob. Moreover, Bob learns nothing about m¬c. As shown in Figure 6, the

total overhead of this operation is 4 bits sent by TP, 1 bit sent by Bob, and

2 bits sent by Alice, resulting in 7 bits exchanged in total.

4.2 Addition

Addition is the simplest operation in our model, since there is not any com-

munication between parties and only one single addition is needed. Alice

has x0 y0, and Bob has x1 y1, where parties want to compute [x] + [y]. As

previously mentioned, only one operation per party is done. Alice calculates

result0 = x0 + y0, and Bob calculates result1 = x1 + y1. All the numbers

28

Figure 6: Rivest OT

calculated and used in the addition are elements of ring ZN . Since the par-

ties have only random shares of the result, they need to open their results to

the opposing party to learn the real end-result. Addition has no overhead of

communication and TP is not used in this operation.

4.3 Multiplication

Multiplication is more complicated compared to the addition operation. Alice

has [x], Bob has [y], and they want to compute [z] = [x][y]. TP creates two

random ring elements [a] and [b], and calculates [c] = [a][b]. After that, TP

splits [a], [b] and [c] into a0, a1, b0, b1, c0 and c1. Finally, TP sends a0, b0, c0

29

to Alice, and a1, b1, c1 to Bob.

After getting inputs from TP, Alice calculates x10 = x0−a0 and y10 = y0−

b0, while Bob calculates x11 = x1−a1 and y11 = y1−b1. Then, they share their

results of x1 and y1 with the opposing party. Finally, Alice computes its share

of the result as result0 = c0 + x1y1 + y1a0 + x1b0. Bob does the computation

of result1 = c1 + y1a1 + x1b1. All the values used in the computation are

elements of the ring ZN .

The proposed model computes the multiplication operation correctly as

shown below:

result = result0 + result1 (4)

result = c0 + x1y1 + y1a0 + x1b0 + c1 + y1a1 + x1b1 (5)

result = [c] + x1y1 + y1[a] + x1[b] (6)

result = ([x1] + [a])([y1] + [b]) (7)

result = [x][y] (8)

As shown in Figure 7, the communication overhead of the multiplication

operation is 6 ring elements sent by TP, 2 ring elements sent by Alice and 2

ring elements sent by Bob, resulting in 10 ring elements exchanged in total.

4.4 Comparison

Comparison is the most complicated operation among operations defined in

our security model. It cannot be efficiently implemented using only addition

and multiplication. In this section, first comparison and equality check of

the bits are explained. Using these two primitives, an algorithm for compar-

ison of two numbers is explained. Finally, an algorithm for comparison of

30

Figure 7: Multiplication

secretly shared values using the previously mentioned comparison operations

is provided.

4.4.1 Equality of Bits

Let a, b ∈ Z2 be the private bits of Alice and Bob respectively. Two private

bits are equal if a ⊕ b ⊕ 1 is 1. So Alice and Bob perform a multiplication

operation, where Alice’s secrets are a ⊕ 1 and 1, Bob’s secrets are b and 0.

If the result of multiplication is 1, then the bits are equal. Otherwise, the

result will be 0, which implies that bits are different.

As shown in Figure 8, the overhead of this operation is 1 multiplication,

necessitating an exchange of 10 ring elements in total.

31

Figure 8: Equality of bits

4.4.2 Comparison of Bits

Let a, b ∈ Z2 be the private bits of Alice and Bob respectively. Alice and Bob

may want to compute the secret of sharing of the comparison a > b, which

is 1 if a is bigger than b, 0 otherwise. They can compute the result with one

call to OT as follows. Alice creates a random bit z, and sets input messages

of OT as z and z⊕ a. Bob makes 1⊕ b as its input bit for OT. At the end of

the OT process, Alice keeps z as the output, while Bob gets z′ = a(1⊕b)⊕z.

The addition of the results, z + z′ = a(1⊕ b), is 1 if a is 1 and b is 0.

As shown in figure 9, total amount of communication in this process is

equivalent to exchanging of 7 bits in total due to one call to the OT.

4.4.3 Comparison of Numbers

Let a, b ∈ Zn be the private numbers of Alice and Bob respectively. In order

to calculate the inequality of these numbers, we split the comparison into

smaller comparisons recursively. Let m = d
√
ne, we split a and b into ah, al,

bh and bl, where a = ahm + al and b = bhm + bl. After this step, it can be

32

Figure 9: Comparison of bits

stated that a > b if and only if (ah > bh) ∨ ((ah = bh) ∧ (al > bl)). In terms

of secret sharing, we can write as:

[a > b] = [ah > bh] ∨ ([ah = bh] ∧ [al > bl]) (9)

At the bottom of the recursion, when Zn has the order of n = 2, compar-

ison and equality check of the bits are used, which were explained in Section

4.4.1 and 4.4.2. The final result of the number comparison can be computed

by opening the shared results to the opposing party.

4.4.4 Comparison of Secrets

Comparison of numbers may seem sufficient in our two-party model. How-

ever, this operation cannot be used to compare secret shared values, where

Alice and Bob knows some part of the data. An efficient protocol should be

designed to compare [a] and [b], where Alice knows a0 b0, and Bob knows

a1 b1. At the end of the comparison, each party gets a secret sharing of the

33

result, [a > b].

Since additive secret sharing is used in our model, the problem of com-

puting [a > b], is actually a0 + a1 > b0 + b1. This problem is also equivalent

to computing a0 − b0 + (n − 1) > b1 − a1 + (n − 1), where (n − 1) is added

to prevent any negative operand. At this point, if one of the secrets, [x], is

shared such that, x0 ≥ n − x1, the result of the comparison will be wrong.

To overcome this issue, following three calculations must be performed:

• If a0 ≥ n − a1 but not b0 ≥ n − b1, compute a0 − b0 + (n − 1) >

b1 − a1 + (n− 1) + n

• If b0 ≥ n − b1but not a0 ≥ n − a1, compute a0 − b0 + (n − 1) + n >

b1 − a1 + (n− 1)

• Otherwise, compute a0 − b0 + (n− 1) > b1 − a1 + (n− 1)

Since the results of the comparisons a0 ≥ n − a1 and b0 ≥ n − b1 are

secretly shared among the parties, all three calculations should be performed

to get the true result. The comparison of secrets protocol consists of the

following operations in order:

[α] = [x0 ≥ n− x1] = ¬[n− x1 > x0]

[β] = [y0 ≥ n− y1] = ¬[n− y1 > y0]

[c0] = [x0 − y0 + (n− 1) > y1 − x1 + n+ (n− 1)]

[c1] = [x0 − y0 + n+ (n− 1) > y1 − x1 + (n− 1)]

[c2] = [x0 − y0 + (n− 1) > y1 − x1 + (n− 1)]

34

Figure 10: Comparison of Secrets

[x > y] = [c0] · ([α] · ([β] + 1)) + [c1] · ([β] · ([α] + 1)) + [c2] · ([α] + [β] + 1)

It is important to note that the results of comparison are in Z2, while the

computations for c0, c1, c2 are done in Z4n to accommodate a possible overflow

due to the addition of three numbers (i.e. c0, c1, and c2 ∈ Zn). Figure 10

gives an outline of the secret comparison operation. The overall cost of the

secret input comparison is 5 comparison of numbers and 5 multiplication

operations.

35

5 K-Means Clustering

Clustering of a set of data into smaller subsets is a commonly used technique

in applications such as pattern recognition, statistics, data mining and image

processing [25]. The problem consists of partitioning a set of data, into

smaller homogeneous groups of data, called a cluster, where data points in

the same group have closer/similar attributes. Clustering data, and finding

the centers of separate clusters can be used in daily life, as well as academic

purposes. One can think of a situation, in which a company holds a set of

spatio-temporal data of people in a city. The company can use this data to

place its advertisements, such that the advertisements are placed on cluster

centers. This necessitates an efficient clustering algorithm, since data can

grow rapidly in size and become unmanageable.

There are various algorithms proposed to solve the clustering problem,

and k-means clustering algorithm is one of the most popular [26]. Briefly, it

is simply based on assigning every entry in the data into a cluster, based on

its distance from the centers of clusters [26]. However, the problem with this

approach so far as the distributed case is concerned is that it assumes the

data is owned by only one entity. Several modifications should be applied to

the algorithm in order to cluster partitioned data among several data holders.

In a vertically partitioned data, an entry is divided into r parts, and

each part is owned by a different entity, where r is the number of entities

[4]. During the process of assigning an entry into a cluster, every entity pro-

ceeds according to a previously agreed protocol, and shares his/her partial

distances so that the actual distance can be calculated. At this point, an

entity may choose not to share its data, or partial distance data for privacy

36

concerns since the former is sensitive and the latter may betray some infor-

mation on the former. Privacy preserving k-means clustering algorithms are

used in these circumstances, where general k-means clustering algorithms fail

to protect privacy [4].

In this section, two algorithms are explained briefly that efficiently pro-

duce clustered data. The first algorithm is the general k-means clustering

algorithm, which may be used in the existence of only one entity. Secondly,

a privacy preserving k-means clustering algorithm will be given that han-

dles the case of vertically partitioned data, where parties do not want to

reveal any information about their data to other parties. Note that the pri-

vacy preserving variant of the k-means clustering algorithm is of the focus

of this thesis, since it is assumed that the spatio-temporal data is vertically

distributed among a set of data owners.

5.1 General K-means Clustering Algorithm

In this algorithm, data is composed of m entries, where each entry consists

of t attributes. This set of data is grouped into k different clusters, where

cluster n has a cluster center µn and µn also consists of t attributes. Let µc

be the cth cluster center, µci, i ∈ {0, .., t}, represents the ith attribute of the

cluster mean.

The algorithm may be composed of fixed or variable number of rounds.

Before the first round, cluster centers are randomly initialized, i.e. each

attribute of each cluster is given an initial random value. In each round,

each entry in the data is assigned to the closest cluster based on a distance

metric. Generally, Euclidean distance is used to calculate which cluster is the

37

closest [3]. As shown in formula 10, square of a distance between an entry

and a cluster center is the sum of the square of sub-distances between the

corresponding attributes, or so called dimensions. Algorithm 1 illustrates of

an efficient way of computing Euclidean distance.

||ex − µy||2 =

p=t∑
p=1

||exp − µyp||2 (10)

Algorithm 1 Calculate Distance 1

Require: entry e is the first parameter

Require: cluster center µ is the second parameter

Require: t is the number of attributes

1: TempDistance = 0

2: for i from 0 to t by 1 do

3: TempDistance += ||ei − µi||2

4: end for

5: return
√
TempDistance

At the end of a round, every cluster center is updated based on the values

of entries the cluster currently contains. Depending on whether the exit

criteria is met or not, algorithm continues with another round, or terminates.

Figure 11 gives an example set of data, points positioned on an area.

Before starting to cluster data, three cluster centers are positioned ran-

domly on the area, shown as black dots in Figure 12. At the end of the first

iteration, data points belonging to each cluster are separated by a delimiter

on the area.

The cluster indices of each point can change after each iteration as shown

38

Figure 11: K-means clustering: Initial positions

Figure 12: K-means clustering: The end of first iteration

in Figure 13. Some of the data points now belong to different clusters.

The general k-means clustering algorithm is given in Algorithm 2. The

performance heavily depends on the initial values of the cluster means [4].

The cluster centers may be initialized very close to each other, which can

influence the number of rounds to be computed and therefore, the execution

time of the algorithm. Moreover, final result is also affected by the random-

ness. Consider a case, where a cluster is centered on a highly populated

position, while other cluster centers are far away from the data entries.

39

Algorithm 2 General k-means clustering

Require: m is the number of entries

Require: k is the number of clusters

1: for c from 0 to k by 1 do

2: µc = random

3: µ1
c = 0

4: end for

5: repeat

6: for x from 0 to m by 1 do

7: minIndex = 0

8: minDistance = CalculateDistance(ex, µ0)

9: for i from 1 to k by 1 do

10: tempDistance = CalculateDistance(ex, µi)

11: if tempDistance < minDistance then

12: minIndex =i

13: minDistance = tempDistance

14: end if

15: end for

16: ClusterIndex[x] = minIndex

17: Add values of ex to µ1
minIndex

18: end for

19: for c from 0 to k by 1 do

20: Calculate µc based on µ1
c and number of entries in cluster c

21: end for

22: until Termination criteria is met

40

Figure 13: K-means clustering: Final positions

5.2 Privacy Preserving K-means Clustering Algorithm

In order to achieve k-means clustering, where privacy of each entity is con-

served, algorithm in [4] is chosen and implemented in this work. The selected

algorithm, to some extend, similar to the general k-means clustering algo-

rithm. There are again m data entries and k clusters, where each entry and

cluster center consist of t attributes. Moreover, unlike the case in general

k-means clustering, there is a number of r entities/data holders. For every

entry ex, x ∈ {0, ..,m}, party i, i ∈ {0, .., r}, holds a subset of the attributes,

where exi is the projection of entry ex onto the attributes of party i.

General structure of the two algorithms in Section 5.1 and 5.2, namely

classical k-means clustering algorithms and its privacy-preserving variant are

very similar. However, due to privacy concerns, there are two major differ-

ences. The first difference is in the distance calculation step. In general

k-means clustering, distance is calculated using Euclidean metric, and the

calculated distance reflects the actual result. But in privacy preserving clus-

tering, since each party holds some part of the data, distances are calculated

based on projection onto the owned attributes. Formula 10 is transformed

41

into the Formula 11 as follows.

||ex − µy||2 =

p=r∑
p=1

||exp − µyp||2 (11)

Algorithm 3 gives the outline of the privacy preserving k-means clustering

algorithm. For each cluster, all parties initialize the cluster attributes that

they own in parallel. After that, the closest cluster is computed, and each

party updates the cluster mean attributes in parallel.

Algorithm 4 explains how the distance metric is calculated. When a party

i, i ∈ {0, ..., r}, calls this function, since it has limited number of attributes,

it calculates the sub-distance based on the projection of its attributes on the

cluster mean and entry.

Algorithm 5 describes as to how the parties compute the closest cluster

for entry x, x ∈ {0, ...,m}. In the first phase of the algorithm, each party

creates an array of size k, MyDistanceVector, and calculates the sub-distances

between cluster c, c ∈ {0, ..., k}, and the current entry based on the attributes

it owns. In the second phase, all parties other than party-1 and party-2 use

additive secret sharing to divide their distance array into two equal-sized

arrays, and send these arrays to party-1 and party-2 respectively. Since party-

1 and party-2 get the secret shares of the distance data, they don’t learn

anything about the actual distance values. In the last stage, as described

in Algorithm 6, party-1 and party-2 receive the distance data from other

parties, add the received data to their own distance array. Then, using the

comparison operation described in Section 4.4, they compute the smallest

value, i.e. closest cluster index.

42

Algorithm 3 Privacy preserving k-means clustering

Require: m is the number of entries

Require: k is the number of clusters

Require: r is the number of players

1: for all i from 0 to r in parallel do

2: for c from 0 to k by 1 do

3: µci = random

4: µ1
ci = 0

5: end for

6: end for

7: repeat

8: for x from 0 to m by 1 do

9: minIndex = SecurelyComputeClosestCluster(x)

10: ClusterIndex[x] = minIndex

11: for all i from 0 to r in parallel do

12: for c from 0 to k by 1 do

13: Add values of exi to µ1
minIndex−i

14: end for

15: end for

16: end for

17: for all i from 0 to r in parallel do

18: for c from 0 to k by 1 do

19: Calculate µci based on µ1
ci and number of entries in cluster c

20: end for

21: end for

22: until Termination criteria is met

43

Algorithm 4 Calculate Distance 2

Require: cluster index c is the first parameter

Require: entry index x is the second parameter

Require: function is called by party i

Require: t is the number of attributes owned by party i

1: TempDistance = 0

2: for j from 0 to t by 1 do

3: TempDistance += ||exij − µcij||2

4: end for

5: return
√
TempDistance

44

Algorithm 5 Securely Compute Closest Cluster

Require: the first parameter x is the index of the entry

Require: k is the number of clusters

Require: r is the number of players

1: for all i from 0 to r in parallel do

2: for c from 0 to k by 1 do

3: MyDistanceVector[c] = CalculateDistance(c, x)

4: end for

5: end for

6: for all i from 2 to r in parallel do

7: Secret share MyDistanceVector into arrays D1 and D2

8: Send D1 to party-1

9: Send D2 to party-2

10: end for

11: for all i from 0 to 2 in parallel do

12: for j from 2 to r by 1 do

13: Recieve my part of party j’s distance vector, and add it to MyDis-

tanceVector

14: end for

15: minIndex = SecureFindMinimum(MyDistanceVector)

16: end for

17: return minIndex

45

Algorithm 6 Securely Find Minimum Index

Require: the first parameter DistVector contains distance data

Require: Party-1 and Party-2 participate, they have separate distance data

Require: k is the number of clusters, and the size of the array DistVector

1: minIndex = 0

2: for i from 1 to k by 1 do

3: compResult = Compare(DistV ectorminIndex, DistV ectori)

4: Open compResult to other party, and add final result to compResult

5: if compResult = 1 then

6: minIndex = i

7: end if

8: end for

9: return minIndex

46

6 Proxy-Secure Computation Model

In Section 3, technical properties and isolation facilities of CBEA are ex-

plained. An application can run in an isolated SPE, as explained in Section

3.2 and 3.4,it is turned to a secure application. In order to do so, an appli-

cation authentication key pair should be created under a scheme, and then

be used to sign and encrypt the application binary and data. By this way, a

developer will ensure that the integrity and confidentiality of its application

and data are preserved during the deployment, and furthermore throughout

the execution and thereafter. As described in section 3.4, a secure appli-

cation can run only in an isolated SPE, meaning that PPE cannot run the

application in an open SPE and then obtain any kind of data from that SPE.

With these features in mind, this thesis proposes a proxy-secure compu-

tation model, where parties agree to work on a semi-trusted CBEA platform

that may be located in a separate location from all the parties. Each con-

tributing party in the model is given an isolated SPE core on the CBEA

platform, so the number of parties is limited by the number of SPEs on the

platform. Before deploying their applications, each party creates its own ap-

plication authentication key pair, signs and encrypts its application. Since,

data needs to travel over network before being processed, it should be sent

by the party and received by the SPE application in an encrypted form. This

forces each party to embed an AES key, which is known only to the owner,

and used to decrypt sensitive data before being processed and encrypt the

results before sending them back. Secure processing vault and hardware root

of secrecy ensures that this AES key is not exposed and acquired by any

other entity in any stage of the operation.

47

All parties, including the CBEA platform owner, are semi-honest, in other

words they follow the protocol steps and are honest but curious; namely they

try to get maximum information about the secrets of other parties if they leak

as a result of protocol/implementation failure or any other means. In other

words, information leak can occur only if the underlying secure multi-party

computation protocol or its implementation is faulty. As described in Section

4, the proposed multi-party computation model and our framework, if they

are followed precisely, do not leak any information through the messages sent

and received.

The proxy-secure computation model offers to replace high-latency net-

work communication with memory transfer between isolated SPE cores as

much as possible. This way, the overhead on the processing time due to

network communication will be significantly decreased, which in turn de-

creases the total processing time. On the other hand, the model does not

aim to decrease the number of packets exchanged during the computation.

The number of exchanged packets depends on the nature of the data mining

application, and the chosen algorithms.

In order to see improvement in the performance that is gained after replac-

ing network communication with DMA operations, both the secure two-party

computation model in Section 4 and privacy preserving k-means clustering

algorithm in Section 5.2 are implemented. Implementations are made on two

separate platforms. The first platform is the PC platform, where no hard-

ware level of security measure is taken, security being relied on software level

of encryption and authentication mechanisms and network communication

is used for all interactions between the participants. The second platform

48

is a cluster of two Playstation 3 game consoles, consisted of 2 PPEs and 12

SPEs.

In this section, implementation details on PC platform will be explained

at first. Details are given about the network simulator that is used for realistic

time measurements. Secondly, detailed information will be provided about

the implementation on Playstation 3 cluster.

6.1 PC Implementation

In implementations of basic arithmetic operations in the secure two-party

computation model, the number of players is fixed to 3; two players and a

trusted party. Each party’s application is coded and built separately and

independently from each other. Since parties are assumed to work on their

own environment, they don’t have to encrypt the data they will work on.

On the other hand, in the implementation of the clustering algorithm,

there is a lower bound for the number of participants imposed by the al-

gorithm design. There can be at least two players due to the need for two

non-colluding parties, while there is not an actual upper limit. Four different

types of applications were implemented for four different type of participants.

The first two types of implementations, named as party-1 and party-2, imple-

ment two non-colluding parties in the secure two-party multiplication model.

The third type of implementation, party-N, implements all the other partic-

ipants (i.e. data holders participating in the protocol) except for two non-

colluding parties, namely party-1 and party-2. It calculates the sub-distances

of an entry from all clusters, secret share the distance data into two parts and

send it to the corresponding parties, party-1 and party-2. Therefore, they do

49

not have to implement functionalities of the secure two-party computation

model such as computing secure multiplication, comparison etc. All other

participants except for party-1and party-2 implements the same functional-

ity. The last application is for the trusted party, which acts as a random

number generator under a scheme. TP application could be developed by a

trusted party or by a coalition of participants in the system and needs to be

trusted.

In order to get the performance results of data mining application on PC

platform, a network application simulator (NAS) is used as described in [4].

NAS is a discrete event simulator, in which bandwidth and latency of the net-

work can be adjusted. The simulator reports accurate timing measurements,

by concentrating on point-to-point network communication between the ap-

plications. On the other hand, NAS is not used to measure performance

of secure two-party computation model. For simplicity, all applications are

executed on the same machine, with infinite bandwidth and no latency.

6.2 CBEA Implementation

In CBEA implementation, we use the proxy-secure computation model, in

which parties agree to run their secure applications on a remote, trusted

CBEA platform which is in the possession of a semi-trusted third party.

Each party builds its own application, encrypts and signs it before deploying

it to the platform. Moreover, data processed by the application is sent to

the platform in encrypted form; either off-line or on-line.

As in the case of PC implementation, the number of parties for the imple-

mentations of secure operations in the secure two-party computation model

50

is again limited to 3. Party-1, party-2 and third party (TP) develop secure

applications. Party-1 and party-2 receive their shares of sensitive data in

encrypted form, and performs decryption before starting to process them.

Figure 14 illustrates an outline of the implementation. Applications of Alice

and Bob (i.e. party-1 and party2, respectively) are placed into isolated SPEs.

Moreover, TP application is also a secure one, and it’s placed into an empty

isolated SPE.

Figure 14: CBEA Implementation: Secure two-party computation model

Similar to the case in PC implementation, the number of parties (besides

the TP) should be at least 2 in the clustering algorithm implementation.

However, this time, there is an upper limit on the number of maximum play-

ers. Since the implementations are developed for a cluster of two Playstation

3, and each Playstation 3 offers 6 SPEs, total number of executing applica-

tions can be 12 at most. Trusted party occupies one of these SPEs, which

51

gives an upper limit of 11 players in the clustering algorithm in our imple-

mentation. There are again four different type of applications implemented.

The first and second applications implement party-1 and party-2, since they

are deciding the minimal distance. The third application implements the

parties other than party-1 and party-2. The last application is for TP.

Since two cluster nodes are used, and they need to communicate via net-

work, message passing interface (MPI) is used to handle the communication

between cluster nodes. SPEs in different Cell processors can not communi-

cate with each other directly. PPEs in two PS3s in the cluster should be

synchronized to handle SPE-to-SPE communication in separate machines.

Figure 15 illustrates an outline of the implementation scenario. In this ex-

ample, there are eight (8) players, five (5) on the first PPE, three (3) on the

second PPE. In each PS3 console, 2 SPEs cannot be used, since the PS3

game consoles are used, which provide access to only six (6) SPEs in its

configuration. All applications are secure applications, meaning that they

should work in an isolated SPE.

52

Figure 15: CBEA Implementation: Privacy preserving k-means clustering

algorithm

53

7 Results

As described in Section 6, arithmetic operations in secure multi-party com-

putation model and privacy preserving k-means clustering algorithm were

implemented both on PC with a network application simulator (NAS) for

desired network latency and bandwidth and on CBEA that offers to imple-

ment the proposed proxy-secure computation model. The PC platform that

we tested our work on features an Intel Core2 Quad 3 GHz processor with

2 GB of RAM. To simulate the network communication for different latency

and bandwidth values, and acquire realistic results, NAS is used as described

in Section 6.1.

On the other side, CBEA platform consists of two Playstation 3 game

consoles, which are connected to each other via Ethernet and using MPI for

inter-core communication across the PS3 consoles. Details about the configu-

ration of a Cell processor are given in Section 3.1. Since the clock frequencies

and architectures of two platforms are different, a benchmark program that

reflects the computational workload of k-means clustering algorithm is ex-

ecuted on two platforms to check if there is a significant difference in the

performances. Calculation of the distance of one entry from all clusters is

performed using this program for one million times, in order to benchmark

two computing platforms for the same application. When executed on both

platforms, program completes in 2.412 s on PC, and in 2.743 s on CBEA.

This is natural since a PC is expected to perform better for general-purpose

computing tasks than CBEA, whose SPEs are optimized for vector type op-

erations. This results clearly shows that computational advantage of CBEA

platform, which is reported in the following, is not due to the (micro-) archi-

54

Operation Time (ms)

Multiplication 0.85

Number Comparison 324

Secret Comparison 732

Table 1: Timings for Secure Two-Party Computation Model on PC Platform

tectural superiority of SPEs.

Performance results are measured for both of the algorithms in this thesis.

First, results acquired for implementation of the basic arithmetic operations

(i.e. multiplication, comparison, etc.) in the computation model are given

in the following section. Then, performance outcomes of the distributed

k-means clustering algorithm are shown and explained in details.

7.1 Secure Two-Party Computation Model

In order to evaluate the performance of the secure two-party computation

model in details, timings are taken for three different operations which are

described in Section 4, namely multiplication, comparison of numbers, and

comparison of secrets. Since addition requires no interaction in the setting,

its timing is not included in the table. Instead, only timings for comparison

of numbers, comparison of secrets, and multiplication are included. In all

tables, 100 experiments are done, and the average of the best 30 experiments

is taken. Moreover, since all applications are executed on the same machine,

the latency is zero, and the bandwidth is infinite.

As shown in Table 1, a multiplication operation, which has relatively less

communication overhead, takes 0.85 ms on average, while more complicated

55

number comparison takes 324 ms. This is expected, since the comparison

contains many number of multiplication operations in itself. Moreover, com-

parison of secret has a computation time of 732 ms, which is more than two

times of a comparison of number operation.

Timing results for the same operations are measured for Cell BE imple-

mentation as well: Table 2 lists the timing results which includes the time

spent on tasks such as loading threads to SPE and killing it after the compu-

tation is completed. Again, the results are average of 30 best of 100 opera-

tions. The first column in Table 2 contains the timings when the operands are

sent to the SPE one by one, SPE is not in protected mode and data and pro-

grams are not encrypted. The second column is serial implementation where

the integers are sent to SPEs in groups of 128 pair of integers. The third

and fourth columns list the timings of normal and serial implementations,

respectively when the SPEs work in isolated mode. The fifth (labeled En-

crypted Serial) column lists the timings when the data sent to SPEs in serial

is encrypted. And finally, the last column gives the timings when the SPEs

are in isolated mode and data are encrypted. Note that the SPE threads

in isolated mode are encrypted and signed. As one can easily observe from

the results in Table 2, the SPE isolation, data and program encryption does

not incur a discernible overhead. Serialization of data greatly increase the

performance. Secure two-party comparison operations on Cell BE is about

two orders of magnitude faster than the same operation in classical setting

(cf. Table 1 and Table 2).

Table 3 lists the same timing results when the time spent on SPE thread

management are excluded. These timings are naturally less than those in

56

Timing with Normal Serial Isolated Isolated Encrypted Isolated

SPE thread (ms) (ms) normal serial Serial Encrypted

management (ms) (ms) (ms) Serial (ms)

Multiplication 0.202 0.056 0.480 0.121 0.057 0.124

Comparison of 0.301 0.201 0.445 0.258 0.202 0.259

Number

Comparison of 0.789 0.824 0.828 0.886 0.826 0.887

Secret

Table 2: Timings for Secure Two-Party Computation Model on CBEA Plat-

form Including SPE Overhead

Table 2. The time spent on SPE thread management becomes less important

when larger sets of data is serialized.

7.2 Privacy Preserving K-means Clustering Algorithm

General and privacy preserving k-means clustering algorithms are heavily af-

fected by the initial conditions, i.e. initial cluster centers that are determined

randomly. This leads to a variable number of rounds as described in Section

5. In all of our experiments the number of rounds in a clustering algorithm

is fixed to six (6).

For the experiments, the same dataset is used, which is a spatio-temporal

dataset containing trajectories of private cars in Milan [4]. A subset of this

data is actually used, where there are 100 entries, or so called trajectories.

Each trajectory consists of 500 sample points, and each sample point has one

x and one y coordinate. Thus, each trajectory contains 1000 attributes, which

57

Timing without Normal Serial Isolated Isolated Encrypted Isolated

SPE thread (ms) (ms) normal serial Serial Encrypted

management (ms) (ms) (ms) Serial (ms)

Multiplication 0.026 0.007 0.254 0.018 0.007 0.017

Comparison of 0.091 0.160 0.238 0.173 0.160 0.173

Number

Comparison of 0.495 0.782 0.562 0.801 0.782 0.801

Secret

Table 3: Timings for Secure Two-Party Computation Model on CBEA Plat-

form Excluding SPE Overhead

are evenly vertically partitioned among the contributing parties. Therefore,

each party in the computation has same or near equal number of sample

points. Moreover, results of CBEA implementation includes the time spent

for data transfer. Each party puts its data in encrypted form to a web server.

Data is downloaded by the PPE using HTTP protocols, and then sent to the

corresponding SPE.

Performance of our PC implementation is compared with the results taken

from [3] and [4]. These two works also concentrate on privacy preserving k-

means clustering over vertically partitioned data.

Figure 16 shows the comparison of PC implementation and CBEA im-

plementation, while the number of clusters is eight (8), and the number of

players changes from four (4) to 11. For the PC implementation, band-

width is 400 kbps, and latency is 6 ms and 3 ms. There is not any change

in the number of messages exchanged for the two implementations. The

58

Figure 16: Comparison of CBEA and PC implementation for different num-

ber of players

only difference is the replacement of communication via network with mem-

ory transfer, due to our proxy-secure computation model. Running time of

CBEA implementation is between 4.523 s and 6.39 s, while the running time

of PC implementation is around 340.4 s when the latency is 6 ms. Runtime of

PC implementation drops down to 171.2 s when the latency is 3 ms. These

results show that our proposed model gives nearly 50 times better results

compared to implementation on PC.

Figure 17 shows the comparison of PC implementation and CBEA im-

plementation, while the number of players is eight (8), and the number of

clusters changes from two (2) to 16. For the PC implementation, band-

width is 400 kbps, and latency is 6 ms and 3 ms. The results of CBEA

implementation changes from 2.434 s to 11.878 s, while the running time PC

59

Figure 17: Comparison of CBEA and PC implementation for different num-

ber of clusters

implementation changes from 194.70 s to 729.02 s when the latency is 6 ms.

If the latency drops to 3 ms, then the PC implementation completes in 98.23

s to 365.10 s. Once again, our model performs much better compared to

the same implementation on PC platform. Running time the proxy-secure

computation model is nearly 70 times better than the PC implementation.

Figure 18 shows the comparison of three PC performances and one CBEA

performance, while the number of clusters is eight (8), the number of play-

ers is between four (4) and 11. For PC implementations bandwidth is 400

kbps, and latency is 6 ms. It can be seen that the work of Yildizli et al.

performs better than our implementation on PC and the work of Vaidya

and Clifton. However, comparing the PC implementations with the CBEA

60

Figure 18: Comparison of PC implementations, k = 8, r = [4-11], bandwidth

= 400k bps, latency = 6 ms

implementation shows that our proxy-secure computation model gives much

better results. The best PC implementation, work of Yildizli et al., performs

the computation between 224.56 s and 236.51 s, while running time of our

model changes from 4.52 s to 6.39 s.

Figure 19 shows the comparison of three PC implementation perfor-

mances and one CBEA performance, while the number of players is eight

(8), and the number of clusters varies from two (2) to 16. For PC implemen-

tations, bandwidth is 400 kbps, latency is 6 ms. Again work of Yildizli et

al. performs better than the other two PC implementations. However, when

we compare our CBEA implementation with all three PC implementations,

the figure shows that our model gives nearly 60 times better results than the

work of Yildizli et al..

61

Figure 19: Comparison of PC implementations, k = [2-16], r = 8, bandwidth

= 400 kbps, latency = 6 ms

Figure 20 shows the results, where the number of players and clusters

is eight (8), bandwidth is 400 kbps and latency varies between 24 and 120.

Since changes in latency will not have any effect on the result of CBEA im-

plementation, we fixed CBEA implementation’s result to 6.641 s, which is the

runtime for eight (8) clusters and eight (8) players. Once again, figure shows

that our proxy-secure computation model gives better results compared to

PC-based solutions.

Secure two-party computation model and privacy preserving k-means

clustering algorithm that are used in this thesis exchange only integers of

32-bits. Since the size of the packages is small, a change in the bandwidth of

the network will have minor effects on the runtime. Figure 5 in ?? shows a

similar work, where changing bandwidth has minor effects on the runtime.

62

Figure 20: Comparison of PC implementations, k = 8, r = 8, bandwidth =

400kbps, latency = [24-120] ms

All these results show that our implementation is not the best on the

PC platform. However, our aim is not to prove that our scheme performs

better in all platforms. Our aim is to show that the model we propose,

working securely on a CBEA platform, greatly enhances the performance by

replacing network communication with direct memory access operations.

Figure 21 shows the implementation results of distributed k-means clus-

tering operation on a cluster of two Playstation 3 game consoles. The total

number of players has an upper limit of 11 since we can use total of 11 SPE

cores available in our cluster.

Performance for two different cases, where the number of clusters is eight

(8) and 16, are shown in Figure 21. For both cases, there are two interest-

ing points to mention. The first point is the decrease in the runtime, when

the number of players increase from four (4) to five (5), and from six,(6) to

63

Figure 21: Comparison of CBEA implementation, k = [8-16], r = [4-11]

11. When the number of players is four (4) or five (5), all computations are

done on a single machine. Since all SPEs can perform DMA operation simul-

taneously, increasing the number of players does not increase the runtime;

resulting in better utilization of available in EIB. On the other hand, slight

decrease can be explained by the fact that data is split into even smaller

subsets as the number of players increases. This, naturally, reduces the

computational load of each SPE, leading to a slight decrease in the overall

computation time.

A similar situation also occurs while the number of players increases from

six (6) to 11. Since the communication between the cluster nodes depends on

the number of clusters, an increase in the number of players does not affect

the communication overhead. The second interesting point is the increase in

64

the runtime, while the number of players increases from five (5) to six (6),

which is expected, since communication between the two cluster nodes that

happens through Ethernet contributes to the total execution time.

The runtime of CBEA implementation, when the number of clusters and

players are eight (8), is 6.641 s, which is far better than the value of 222.49 s

of Yildizli et al.’s work with the same configuration and 533.37 s of Vaidya

and Clifton’s work.

Figure 22 shows the performance of the CBEA implementation, where

the number of clusters change from two (2) to 16, and number of players

are five (5), eight (8) or 10. Again the case, where the number of players

is five (5), gives better results compared to other two cases, due to the fact

that all computations are performed on a single machine. When the number

of players exceeds five (5), computations expand to two machines and the

runtime increases by 2 s approximately.

Once again, CBEA implementation gives far better results than any PC

implementation. When the number of clusters is 16, and number of players

is eight (8), the runtime is 11.88 s, while implementation of Yildizli et al.

terminates in 490 s and implementation by Vaidya and Clifton does in 1100

s.

These results prove that our proxy-secure computational model provides

far better results than the existing PC platform solutions. In most of the

cases, our work gives at least 20 times improvement in performance com-

pared to the work of Yildizli et al., and Vaidya and Clifton. In addition to

increased performances, our model assures that privacy of data and applica-

tion is preserved throughout the execution. Once the applications and data

65

Figure 22: Comparison of CBEA implementation, k = [2-16], r = [5-10]

are sent to the CBEA platform in encrypted form, there is no possibility of

data leakage to hostile entities.

66

8 Conclusion

In this thesis, we propose a generic proxy-secure computation model for se-

cure multi-party computation applications, where the participants want to

protect their private data used as input to the computation. In the proposed

model, parties can develop, sign and encrypt their application, and send it

to a trusted computing platform along with their private data in encrypted

form where the private data can be sent off-line as well as on-line.

We selected to use CBEA (Cell Broadband Engine Architecture) by IBM,

Sony and Toshiba which is the only platform that provides the required secu-

rity features such as hardware-based process isolation, runtime secure boot

that authenticates programs any time by hardware means before execution,

and hardware root of secrecy. Thanks to the security features offered in

CBEA, no information can be extracted from the encrypted application and

data, and no runtime data is compromised unless intended for sharing. In

our security model all the involved parties are assumed to be semi-trusted;

they are honest but curious, namely they follow the protocol steps, but eager

to exploit leaked information. We assume that CBEA platform is in the pos-

session of a third party, so called supervisor, and even when the supervisor

of CBEA platform is compromised, data leakage to outside is prevented.

One other important advantage of our model is that parties develop their

applications independently, eliminating the need for collaboration during de-

velopment process. They only need ensure that their applications can talk to

each other and implements a specific interface conforming to the underlying

protocol and algorithm.

The computation/application of each party is delegated to a separate SPE

67

core which is isolated and therefore protected. By working on a CBEA plat-

form, applications will communicate using direct memory access operations,

which is much faster than network communication, and does not consume

the network bandwidth.

In order to demonstrate the usefulness of the proposed model, we selected

a distributed data mining application that requires high level of interaction

between the data owners that holds partial private data used in the compu-

tation. We implemented privacy-preserving distributed k-means clustering

algorithm in our model that processes spatio-temporal data obtained from

real world. The spatio-temporal data consists of 500 trajectories from Milan

taxi cabs, which is vertically partitioned to varying number of data own-

ers/parties. Data owners possess only a portion of every trajectory and they

want to learn which cluster each trajectory belongs to after the computation

without revealing their parts of trajectories to others.

Privacy-preserving distributed k-means clustering algorithm makes use of

our model and secure arithmetic operations. The algorithm necessitates ex-

change of prohibitively high number of messages, and the total computation

time increases to an unacceptable levels if conventional, high-latency network

communication is used. Our model alleviates this problem by turning net-

work communication to mostly core-to-core communication within the pro-

cessor that takes advantage of point-to-point, high-bandwidth, low-latency

communication infrastructure.

Our implementation results, both for basic arithmetic operations and for

complicated data mining application, show considerable speedup values for

each case. Furthermore, our model is especially useful for cloud computing

68

applications where a third party hosts the data and applications of other par-

ties. Our model not only solves the security and privacy problems associated

with cloud computing applications but allows secure interaction between dif-

ferent parties that want to perform certain collaborative computation in the

same cloud.

69

References

[1] H. Wang, H. Takizawa, and H. Kobayashi, “A performance study

of secure data mining on the cell processor,” Eighth IEEE interna-

tional symposium on cluster computing and the grid, 2008. http:

//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04534275.

[2] K. Shimizu, H. P. Hoftsee, and J. S. Liberty, “Cell broadband engine

processor vault security architecture,” IBM Journal of Research and

Development, vol. 51, 2007.

[3] J. Vaidya and C. Clifton, “Privacy-preserving k-means clustering over

vertically partitioned data,” In KDD 2003: Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 206–215, 2003.

[4] C. Yıldızlı, T. B. Pedersen, Y. Saygın, E. Savaş, and A. Levi, “Dis-

tributed privacy preserving clustering via homomorphic secret sharing

and its application to (vertically) partitioned spatio-temporal data,” Ac-

cepted.

[5] W. Du and M. J. Atallah, “Secure multy-party computation problems

and their applications: a review and open problems,” In proceedings of

the 2001 workshop on New security paradigms, pp. 13–22, 2001.

[6] I. Damgard and J. B. Nielsen, “Scalable and unconditionally secure mul-

tiparty computation,” CRYPTO 2007, pp. 572–590.

70

[7] R. L. Rivest, “Unconditionally secure commitment and oblivious trans-

fer schemes using private channels and a trusted initialize,” August 1999.

http://people.csail.mit.edu/rivest/Rivest-commitment.pdf.

[8] I. F. Blake and V. Kolesnikov, “Strong conditional oblivious transfer and

computing on intervals,” Lecture Notes in Computer Science, vol. 3329,

pp. 515–529, 2004.

[9] I. Damgard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Uncon-

ditionally secure constant-rounds multi-party computation for equality,

comparison, bits and exponentiation,” LNCS, vol. 3876, pp. 285–304,

2006.

[10] K. Ohta, “Multiparty computation for interval, equality, and comparison

without bit-decomposition protocol,” In proceedings of the 10th inter-

national conference on Practice and theory in public-key cryptography,

pp. 343–360, 2007.

[11] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-

preserving data mining,” The journal of Privacy and Confidentiality,

vol. 1, pp. 59–98, 2009.

[12] M. Kantarcioglu and C. Clifton, “Privacy-preserving distributed min-

ing of association rules on horizontally partitioned data,” IEEE Trans.

Knowl. Data Eng., vol. 16(9), pp. 1026–1037, 2004.

[13] R. Wright and Z. Yang, “Privacy-preserving bayesian network structure

computation on distributed heterogeneous data,” In Kdd 2004: Pro-

71

ceedings of the tenth acm sigkdd international conference on knowledge

discovery and data mining, pp. 713–718, 2004.

[14] M. C. Doganay, T. B. Pedersen, Y. Saygin, E. Savas, and A. Levi,

“Distributed privacy preserving k-means clustering with additive secret

sharing,” In Pais 2008: Proceedings of the 2008 international workshop

on privacy and anonymity in information society, pp. 3–11, 2008.

[15] A. K. Nanda, J. R. Moulic, R. E. Hanson, G. Goldrian, M. N. Day, B. D.

D’Amora, and S. Kesavarapu, “Cell/b.e. blades: Building blocks for

scalable, real-time, interactive, and digital media servers,” IBM Journal

of Research and Development, vol. 51, 2007.

[16] H. P. Hofstee, “Power efficient processor architecture and the

cell processor,” Proceedings of the 11th International Sym-

posium on High-Performance Computer Architecture, 2005.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.105.5650&rep=rep1&type=pdf.

[17] K. Shimizu, D. Brokenshire, and M. Peyravian, “Cell broadband en-

gine support for privacy, security, and digital rights management appli-

cations,” 2005. http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.115.2001&rep=rep1&type=pdf.

[18] N. Costigan and M. Scott, “Accelerating ssl using the vector proces-

sors in ibm’s cell broadband engine for sony’s playstation 3,” http:

//eprint.iacr.org/2007/061.pdf.

72

[19] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and

D. Shippy, “Introduction to the cell multiprocessor,” IBM Journal of

Research and Development, vol. 49, 2005.

[20] Security Software Development Kit 3.0: Installation and User’s Guide,

2007. https://www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/AEBFE7D58B5C36E90025737200624B33/$file/CBE_Secure_

SDK_Guide_v3.0.pdf.

[21] C. Crépeau, G. Savvides, C. Schaffner, and J. Wullschleger,

“Information-theoretic conditions for two-party secure function evalu-

ation,” Advances in Cryptology, vol. 4004, 2006.

[22] O. Goldreich, The Foundations of Cryptography - Volume 2, Basic Ap-

plications. Cambridge University Press, May 2004.

[23] J. C. Benaloh, “Secret sharing homomorphisms: Keeping shares of a

secret (extended abstract),” Advances in Cryptology, vol. 263, pp. 251–

260, 1987.

[24] A. Shamir, “How to share a secret,” Communications of the ACM,

vol. 22(11), pp. 612–613, November 1979.

[25] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering

algorithm,” Pattern Recognition, vol. 36, pp. 451–461, 2003.

[26] K. Alsabti, S. Ranka, and V. Singh, “An efficient k-means clustering al-

gorithm,” http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.44.518&rep=rep1&type=pdf.

73

