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ABSTRACT

The one-dimensional Schrédinger operator L(y) = —y” + v(z)y, considered on R
with 7-periodic real-valued potential v(x), is self-adjoint, and its spectrum has a
gap-band structure- the intervals of continuous spectrum are separated by spectral
gaps. In this thesis, we study the asymptotic behaviour of the spectral gaps of L.
In the case of the Mathieu potential v(z) = 2a cos (2x), we give an alternative proof
of the result of Harrell-Avron-Simon about the precise asymptotics of the lengths of

spectral gaps.



OZET

R iizerinde m-periyodik reel potansiyel fonksiyonu v(z) ile diigiiniilen, 1 boyutlu
Schrodinger operatorit L(y) = —y” + v(x)y Oz-egleniktir ve spektrumu bogluklu
yapidadir- siirekli spektrumu spektral bosluklarla ayrilmigtir. Bu tezde, L op-
eratoriiniin spektral bogluklarinin asimtotik davranisini inceliyoruz. Mathieu potan-
siyel fonksiyonu v(z) = 2acos(2z) durumunda, Harrell-Avron-Simon’in spektral
bosluklarin uzunluklariyla ilgili kesin asimtotik sonuclarina esdeger bir ispat veriy-

oruz.
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1 Introduction

The one-dimensional Schrédinger operator L(y) = —y” + v(z)y, considered on R
with 7-periodic real-valued potential v(x), is self-adjoint, and its spectrum has a

gap-band structure; namely, there are points
M <A SN <A KA <A <M <A <M<

such that

[e.9]

Sp(L) = U P1s A

n=1

and the intervals of the spectrum are separated by the spectral gaps

(=00, AD), AT AT ) (AT ),

n»’'n

Our goal is to investigate the asymptotic behaviour of the lengths of the spectral

gaps
Te=AT =N, n=12....

First, we give some basics about general Floquet theory which is used to determine
the points AT as follows: for even n, the numbers A\* are eigenvalues of the eigenvalue
problem

—y'+o(@)y=2XAy, 0<z<m,

subject to periodic boundary conditions

and for odd n, the numbers \F are eigenvalues of the eigenvalue problem
—y" +ou(x)y=Ny, 0<z<m,

subject to antiperiodic boundary conditions

In the case of Mathieu potential

v(z) = 2acos2x, a real,



Levy and Keller [4] established the asymptotics of v, = 7, (a), for fixed n as a — 0;

namely

S L o
= o = gL+ Ola)

Almost 20 years later, Harrell [3] found, up to a constant factor, the asymptotics of
the spectral gaps of the Mathieu potential as n — oo (a fixed). Avron and Simon
[1] gave another proof of Harrell’s asymptotics and found the exact value of the

constant factor, which led to the following formula:

B (0(3)

In this thesis we give an alternative proof of the result of Harrell-Avron-Simon about
the precise asymptotics of the lengths of spectral gaps using the method developed
in [2].

2 Floquet Theory

In this section, we give some basics about Floquet theory, which are going to be
used to establish the structure of spectral gaps.

A second-order linear differential equation
ao(2)2"(z) + ar1(x)2 () + az(z)2(z) =0, ag # 0, (2.1)

is called Hill’s equation if the coefficients a;(x) are periodic, say a;(x + m) = a;(x),
for i = 0,1,2.

Lemma 1. If a;(x)/ag(x) have a piecewise continuous derivative, then (2.1) can be

reduced to an equation of the form

y'(x) +v(x)y(r) =0, (2.2)

where v(x) is a real-valued periodic function.

Proof. Consider the substitution

with




Then, we have

and

2 /
—1k(2) 1 Gl(.ZC) . l a1<£ll') 9.4
+ e 2"y (x) [4 (ao(x) > \ao(a) . (2.4)
If (2.1) is multiplied by 2" {ag(z)}~, and (2.3),(2.4) are substituted inside, then

the equation becomes

o[- ) -3 ) -

which has the form (2.2) since the coefficient of y(x) is periodic. O

Consider the Hill’s equation

—y"(x) +v(@)y(z) = 0, (2.5)

where v(z) is a real-valued L?([0, 7])-function and v(z + 7) = v(z).

From the FEzistence-Uniqueness Theorem for ordinary differential equations with
L'-coefficients [6], there are solutions u;(x) and uz(z) of (2.5) satisfying the initial

conditions

(75} (0)
U,Q(O)

1, ' (0) =0, (2.6)
0, W (0) = 1 (2.7)

Then every non-trivial solution y(z) has the form y(z) = cyui(z) + coua(x), where

c1 and ¢y are not both zero’s.

Let us look for non-trivial solutions of (2.5) with the property:

y(x+m) =py(z), p#0. (2.8)



In order to get the property (2.8), the following must hold:

cui(x + ) + coug(z + ) = p(crur(x) + coua(x)),
a1ty (v + ) + cuy(x + ) = pleruy () + cauy(T)).

Evaluation at the point x = 0 leads to the system:

()0

M = (“,1(”) “/2(”)> . (2.10)

where

The matrix M is known as the Monodromy matriz. Observe that (2.9) means that

c
p is an eigenvalue of M and ( 1) is an eigenvector of M corresponding to p.
Ca

C1

The system (2.9) has a non-trivial solution ( ) if and only if p is a root of the

C2
equation det(M — pI) = 0.

Observe that

U1 (7T) U9 (7'(')

det(M) = = W(uy,uz)(m) = W(uy,ug)(0) =1,

ui(m) uy(m)

in which W (uy,us) denotes the Wronskian of u; and uy. Therefore, the equation
det(M — pI) = 0 can be written in the form

p° — [ur () + uhy(m)]p + 1 =0. (2.11)
Equation (2.11) is called the characteristic equation.

Case 2.1. First, consider the case where (2.11) has two distinct roots p; # po. Let

y1(z) and ya(x) be, respectively, the solutions corresponding to p; and ps as in (2.8).

Then
ye(x + ) = pryr(x), k=1,2.



By (2.11), p1p2 = 1, so p1,p2 # 0. Therefore, there are numbers 71, 75 such that

p1 = €™ and ps = ™. Notice that, 7, = —75.
We set
op(z) = yp(x)e™ ™ k=1,2. (2.12)
Then,
1
pr( +m) = g+ m)e ) = pkyk(iv)ewmp— = on(), (2.13)
k
which shows that ¢ (z) is m-periodic and
yp(x) = ep(x)e™™, k=1,2. (2.14)

As a conclusion, there are two linearly independent solutions y(x) and ys(x) of
(2.5) such that y;(z) = p1(z)e™ and yo(x) = @o(x)e™*, where 7y, 75 are non-zero

constants and o1 (), ¢2(x) are periodic with period .

Case 2.2. Now, suppose that (2.11) has a repeated root p. Then, there exists a

number 7 so that ™ = p.

Let y; be a non-trivial solution corresponding to p as in (2.8). Then,

yi(z + ) = pyr (). (2.15)

Let y2 be any solution of (2.5) which is linearly independent of y;. Since yo(x + )

also satisfies (2.5), there exists constants ¢y, co such that
Yo(z + ) = c1y1 () + caya(x). (2.16)
We now calculate ¢o. By (2.15) and (2.16), we have

pyi(x) cyi(w) + caya(x)
pyi () ey () + cayh(e)|

Wy, y2) (7 + ) =

yi(x+7) yolz+ 7r)|
yi(x+ ) yy(r + )

which leads to

(@) ya()

W(y1,y2)(x + ) = pey ) = peaW (y1, y2) ().

yi(xz) yh(z

Since W (y1,y2) is constant, it follows that pco = 1. Since p is a double root of



(2.11), we have p* = 1, so it follows that ¢y = p.

Then, (2.16) gives us
ol + 1) = ex1n (&) + pule). (2.17)

Now, there are two cases to be considered.

First, if ¢; = 0, we have ya(x 4+ 7) = pya(z). This together with (2.15) shows that
we have the same situation as in the Case 2.1 but with p; = ps = p. Therefore,
(2.5) has solutions

T T

yi(7) = @1(x)e™,  ya(z) = po(v)e™,

where @1 () and po(z) are periodic functions with period .

Second, if ¢; # 0, define

Then by (2.15) and (2.17),
Yi(+m) =Ty (@ 4 7) = e e pyi (x) = ey (2) = i (2),
and

Yoz +m) = e_T(””)yg(x +7) — ;—;(x + )y (T + )

€1 Cl _rx

=e —cy(x) + e ya(r) — —we My (x) — —e Ty ()
p pr p

_ —TX o 2 —TXT

=e ys(x) ml’e y1(x)

= tho(x)

which shows that v (x) and 5 (z) are both m-periodic. Therefore,

n(x) = o (2),
(o) = (L) + (o)



are two linearly independent solutions where ;(z) and 19(x) are periodic with

period .

3 Stability Zones

In this section, we will relate the spectrum of the Schrdodinger operator
L(y) = =y" + v(z)y (3.1)
on the real line with the eigenvalue equation
—y" +ou(x)y =Xy, z€l0,n] (3.2)

subject to, respectively, periodic (Per™) or antiperiodic (Per~) boundary conditions

where

Per™: y(0) =y(m), y'(0)=y'(m), (3-3)
Per: y(0) = —y(r), ¥ (0) = —y/(m). (3.4)

We will study the Hill’s equation in the form (3.2), where X is a parameter and v(z)

is a real valued periodic function with period 7.

In order to indicate the dependence on A which occurs in (3.2), we denote by u;(x, \)

and ug(z, A) the solutions of (3.2) which satisfy the initial conditions

Then, the corresponding characteristic equation will be
p*—DNp+1=0, (3.5)

where

D(A) = up(m, \) + uh(m, N), (3.6)

In order to investigate Sp(L), we look at the operator

(A— L) : Dom(L) — L*(R)



where Dom(L) = {y € L*(R) : Ly € L*(R),y” € L*(R),y' is absolutely continuous }

denotes the domain of the operator L.

If (A — L)™' exists, then for every f in L%*(R), there exists an element y in the
Dom(L) so that (A — L)y = f, which is equivalent to saying that

y'+ A —v@)y =f (3.7)

and we will get y = (A — L)' f.

It is well known that if y; (2, A) and y,(z, A) are solutions of the homogenous differ-
ential equation

—y" + (A —v(x))y =0, (3.8)

then by The Method of Variation of Constants, the general solution y(z, \) of (3.7)

has the form

y(z, A) = m(z, Nyi(z, A) + me(z, Nya(z, A), (3.9)
where
mle ) = g [ F€ule, N dg (3.10)
and
mle ) =1 [ HOm(E N &, (3.11)

with W = W (y1, y2)(z, A) = constant(\). Then, y(x, \) will be
v ) =1 [ NN ©d+ i [ mNnlE Qe (32

In order to determine the solutions y;(z, A) and yo(z, A) of (3.8), the roots of the
characteristic equation (3.5) should be analyzed. Therefore, y;(z, A) and yo(z, \)
depend on the values of D(\) = uy(m, \) 4+ ub(m, A).

Whether A is real or complex, since uy(x, A), uz(x, \) and their z-derivatives are an-

alytic functions of A, for fixed z, D()\) is an analytic function of A and in particular,



D()) is a continuous function of .

In this section, unless stated otherwise, A will be regarded as real and A-dependence

will not be presented explicitly in the formulas.

The roots of (3.5) are

P12 =

Case 3.1. If D(X) > 2, then both roots p;, pe are real, positive and distinct but not
equal to 1. Then, by Case 2.1, we have solutions

yi(e) = eTpi(),  ya(a) = e pa(r), T>0, (3.13)

where ¢ (z) and @o(x) periodic functions with period 7.

Then, the solution y(z) of (3.7) will be

1

y(r) = W /@T(x_f)%(x)%(f)f(f) d¢ + / " o1 (&) pa () f(€) dE

T —00

Now, define an operator S on L?(R) by S(f) = y(x). We will show that the operator

S is a continuous linear operator such that y(x) € Dom(L).
S is clearly a linear operator from its definition.

Since ¢1(z) and @9(z) are periodic functions on R, they are bounded so there exist

positive real numbers M; and M, such that
lo1(z)| < My and  |pa(z)| < M. (3.14)

Furthermore, by Cauchy-Schwarz inequality we have

2

7 7 TS| f(€)| de| dar < 7 7 |F()PeT ) de 7 T dg | du
_ % 77|f(§)|267<f—f> dé da. (3.15)



On the other hand, by Fubini’s Theorem, we obtain

00 00 00 €

» [ [ioreevaca— - [ [eeoa ) irep
L e
Y NIGIRE
1 2
= 1B (3.16)

Then, combining results in (3.14), (3.15) and (3.16) shows that

17 1 M, M.
7 [T On @O | < 5 I (317)
T 2
Accordingly, a similar argument gives us
1 1 MM
7 [ @@ | < R (318)
e )
Therefore, from (3.17) and (3.18), it follows that
2 MM,
15Fllz < 37— 1 £ll2, (3.19)

which shows that S : L?*(R) — L?*(R) is a continuous linear operator which is the

inverse operator of A — L.

One can easily see that y' is absolutely continuous , y” € L*(R) and Ly € L*(R).
Therefore, y(z) € Dom(L).

Hence, we conclude that if D(X) > 2, then A\ &€ Sp(L).
Case 3.2. If D()\) < —2, then the situation is the same as in Case 3.1 except both
roots p; and ps are negative but not equal to -1. Hence, 7 should be replaced by

T+ in (3.13).

Then, A\ € Sp(L).

10



Case 3.3. If =2 < D(XA) < 2, then both roots p;, pa are non-real and distict. Since

p1p2 = 1 and they are complex conjugates, by Case 2.1, we have solutions

yi(z) = epi(r),  wa(w) = e () (3.20)

for some real number 7 with 0 < 7 < 1 where ¢;(z) and po(z) are periodic functions

with period 7.

Consider the equation (3.9) with ny(x,A) and n;(z, A) as they are in (3.10) and
(3.11), respectively.

Take f(z) = x[0,1)(z) € L*(R). Then, we have

(

Ch ifx <0
m(z) = %flyg(ﬁ)df fo<z<l
\0 ife>1
and )
0 ifx <0
1(r) = %Ofyl(g)dg if0<a<1
\02 ifx>1

where C] and Cy are constants.
Observe that if x € (—o0, 0], by (3.9) and (3.20) we have

y(z) = Ciyr(z) = Cleim%(l’),

for some real number 7 with 0 < 7 < 1 where ¢;(x) is a periodic function with

period .

Accordingly, on (—o0, 0],
ly(z)| = Cilpa ()]
Hence, y(z) € L*((—o0,0]), which implies that y(z) ¢ L*(R).

Therefore, if —2 < D(A) < 2, then A € Sp(L).

11



Case 3.4. If D(A) = 2, then p; = py = 1. Therefore, the Floquet solutions are
periodic. In this case, for even n, the numbers A\F are eigenvalues of the eigenvalue
problem

—y" +ou(@)y=ly, 0<zr<m

subject to periodic boundary conditions

If D(\) = =2, then p; = po = —1. Hence, the Floquet solutions are antiperiodic

and for odd n, the numbers A\ are eigenvalues of the eigenvalue problem
— +ov(x)y=Xy, 0<z<m

subject to antiperiodic boundary conditions

The numbers AE constitute the boundary of Sp(L) in the light of Case 3.1, Case 3.2
and Case 3.5. Since Sp(L) is compact, it follows that Af € Sp(L).

Theorem 2. (Oscillation Theorem) (see [5], Theorem 2.1)
The periodic and antiperiodic spectra of L are discrete, and moreover, there is a

sequence of real numbers
+ - + — + — + - +

such that A and X, correspond to Per™ if n is even and to Per™ if n is odd.

The intervals (—oo, Ag) and (A, A1) are called spectral gaps (instability zones) in
which (3.2) has unbounded solutions when A lies in one of them, and Sp(L) is
the complement of union of these open intervals. They refer to zero’th and n’th
spectral gaps, respectively, and the lenght of n’th-spectral gap is denoted by 7,, i.e.

T =N = A

12



4 Projection Method (Lyapunov-Schmidt)

Consider the operator
LYy = —y, (4.1)

defined on [0, 7].

Let LY . and L} _ denote, respectively, the operator L’y = —y” considered, re-

spectively, with periodic (Per™), or antiperiodic (Per~) boundary conditions.

Define

Dom(L%,,.+) = {y € L*(R) : y is absolutely continuous,
y" € L*([0,7]), and y satisfies Per™}

and

Dom(L%,,-) = {y € L*(R) : y is absolutely continuous,
y" € L*([0,7]), and y satisfies Per™}.

We consider the eigenvalue problem —y” = Ay subject to periodic (Per™), or an-

tiperiodic (Per~) boundary conditions.

A number A € C is eigenvalue of LY _ . if there exists y so that —y” = Ay, y # 0
with y(0) = y(7) and y/'(0) = /(7).

Similarly, a number X € C is eigenvalue of L}, if there exists y so that —y” = Ay,
y # 0 with y(0) = —y(m) and y'(0) = —y/ ().

In the next proposition, we use the fact that every solution of the second order
differential equation y”+ Ay = 0 is of the form y = cre~ VA 4oV AT with c1,co € C.
Proposition 3. Let the operator L° be defined as in (4.1). Then,

(i) Sp(LY,,+) ={n®:n € 2N} and Sp(LY,,-) = {n*:n €1+ 2N}.

(i) Sp(L%, ) and Sp(L%,,.-) are both pure point spectrum.

Proof. (i) Here, we only give a proof for the periodic case because a proof for the

antiperiodic case could be handled similarly.

13



Any solution y satisfies Per™ if and only if the coefficients ¢; and ¢, satisfy the

system:

—V=Am +C26\/?>\7r
—V/=Am +CQ€\/TAW

c1 + cy = e

—C1 + o = —Ce

Adding up and subtracting these equations gives, respectively, co(1 — e\/j“) =0
and ¢;(1 — e V=) = 0. Since y # 0 identically only if eV~ = 1, it immediately
follows that v/—\ = 2ki and A = (2k)?, k=0,41,42,....

This shows that the periodic spectrum of L is discrete and we have Sp(LOPeﬁ) =

{n? : n even}. As mentioned before, a similar argument can be used to show that
Sp(LY,,.-) ={n®:n odd}.

(1i) Indeed, it is possible to consider L° : *(Z) — (*(Z). Let f € L*([0,7]), then

f _ Z fkeikz‘

ke2Z

If A Sp(LY,,+) then (A — LY _ )" exists.

Hence,

_ 0 —1r _ fk ikx
y_(A_LPerJF) f_Z)\_er

ke27

exists only if A # k% with k € 2Z. Therefore, the periodic spectrum of L° coincides

with its periodic point spectrum.

The result for the antiperiodic spectrum L° can be obtained by changing the bound-
ary conditions to Per~ and changing the basis to e;, = e’** with k € 1 + 2Z. O]

On the other hand, each eigenvalue n? # 0 is of multiplicity 2, and e_, = e~

Z are corresponding normalized eigenfunctions to n?. Hence, if peri-

and e, = e
odic boundary conditions are considered, then A = 0 is the only eigenvalue of L°
of multiplicity 1, and the constant function eq = 1 is the corresponding normalized

eigenfunction.

14



If L*([0, 7]) is considered with the scalar product

(o) =1 [ F@)s@ e

0

then each of the families of functions {e_,,e, : n € 2Z} and {e_,, e, : n € 1+ 2Z}
is an orthonormal basis in L?([0,7]). The basis {e*** : k € Z} (respectively
{e@k=Diz . k¢ 7Z} ) is used when we study the periodic (respectively antiperi-
odic) spectra of L.

The Hill operator
L=L°"+v(x) (4.2)

can be considered as a perturbation of L° and it is possible to use the Perturbation
theory of operators to study the spectrum of L.
Proposition 4. (Localization of spectrum)(see [2], Proposition 1)

(i) If ||v|| < 1/4, then

Mol < A4|lv|| and N5 —n? <4|v|, forneN.

(it) If V(0) = £ [T v(x)dx =0, then there is a constant No = No(v) such that

IAE—n?| <1, forn> N,.
Here, V' denotes the operator of multiplication by v(x), i.e. (Vy)(z) = v(x)y(z).

Note that the assumption that V' (0) = 0 leads to no loss of generality, because any
shift of the potential by a constant shifts the spectrum by the same constant, and

thus the spectral gaps remain the same.

By Proposition 4, it follows that if ||v|| is small then A is close to 0, and A} A\ are

n)»'n

close to n?.

The operator L = L%+ v(z) is considered on the Hilbert space 5 = L*([0, 7]). Let

—inT

E° = Span{e_, = e ¢, = e™®} be the eigenspace of L corresponding to the

eigenvalue n?, and let PV be the orthogonal projection onto E?, i.e.

Pz = (z,e_p)e_n + (7,6,)en, (4.3)

15



for x € .

Set Q2 =1—P? so # = E°® H!, where H! is the range of Q° and the symbol &

denotes the orthogonal sum of two spaces.

Consider the eigenvalue equation (A— L) f = 0, where A = n?+z with |z| < 1. With
fi=P%f and fo = QO f, this equation is equivalent to the system:

P/(A =L =V)(fi+ f) =0,
QuA =L =V)(fi + f2) = 0.

Since

P£f1=f1, Loflznth Q?Lflzoa
Plf, =0, L°f, € H, Q% fo = fo,

the system reduces to

2fi =PV i— PV f=0, (4.4)
QVHi+QVf—A=L"f=0 (4.5)

The restriction n? + 2z — L on H! is invertible. We define an operator D,, by

1 .
Dnek _ mek if k §£ +n

0 if k= +n.

Notice that D, |1 = [(n* + z — L)|;n]". The matrix representation of D, is

mékm it k,m e (n+27Z)\ {£n}

0 if k,m=4n
where 0y, = 0 for k # m and 6, = 1 for k = m.
From (4.5), it follows that fo = D,QV f1 + D, QOV fs.
Let us call
T, := D,Q"V. (4.7)

16



Then, provided that ||T,] < 1;

Let V : L*([0,7]) — L?*([0, 7]) be the operator of multiplication by the potential

v(z) = V(k)e* (4.9)

ke2Z

where V (k) are the Fourier coefficients of v(z), z € ([0, 7]).

Throughout the paper we assume that
1 s
V(o) =~ / o(z) dz = 0. (4.10)
0

Lemma 5. The matriz representation of the operator V, where (Vy)(x) = v(z)y(z),

is giwen by Vi, = V(k —m).

Proof. Indeed,

1 ) .
Vim = Ve, er) = = v(x)e™ e R dy

v(z)e M dy = V(k — m) (4.11)

S|~

/
/

]

Now, it follows from (4.6), (4.7) and (4.11) that the matrix representation of T, is

given by
Ve if keym o€ (n+2Z) \ {£n}
(Tn)km = nR (412)
0 iftk=+n

and T, : # — H}.

Lemma 6. For each n € N, and |z| < n,

Y <
|TL2—]€2+Z|2 n2'

k#+n
ken+27Z

17



Proof. Let |z| <n,and k € (n+ 2Z) \ {£n}. Then, we have
In* — k*| = |n — k||n + k| > 2n,

which leads to .
In? — k> + 2| > |n® — k?| — |2| > §|n2—k2|. (4.13)

Therefore,

1 4
- < JE—
Z ‘nQ — k2 + Z|2 - Z ‘n2 _ k2‘2

k#+n k#tn
ken+2Z ken+27Z
1 [ 2 2 ]
< = + : (4.14)
n? k;ézin (n—k)? (n+k)?
ken+27

which follows from the elementary identity

Lo 11
n2—k2 om\n—-k n+k)’

and inequality
(a+b)* < 2a” + 2b°.

Since
> -5
-9 - _7
ey 3
we have
2 2 } > 1 72
> + <4y — < (4.15)
AV 2 2
ol {(n k) (n+k) e m 3
ken+27Z me227
Then, by (4.14) and (4.15), we obtain
1 2 4
> LT 4 (4.16)
2 _ 1.2 2 2 2
ol |n? — k2 + z| 3n? " n
ken+2Z

Lemma 7. Let the operator T,, be defined as in (4.7). Then
ITall <1, forn > 2]v]|.
Proof. Tt is well-known that the £2-norm of an operator 1" does not exceed its Hilbert-
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Schmidt norm which is defined as

ITs = Y I Texl® =) [(Tex, em) .
k k m

In view of (4.12),

2 |V (k —m)|”
k,men+27

For |z| < 1, by (4.16) and the Parseval’s identity, it follows that

TIPS Y —5——s > Vk-mPP<—5-<1
|| || = et |n2 — k2 Z|2 men+22| ( m)| = n2
ken+27

when n > 2||v]|.

]
If we substitute (4.8) in the equation (4.4), we get
Zfl - Pr?vfl - PgV(l - Tn)_lTnfl = 07
or equivalently
(z—8)f, =0, (4.17)
where
S=PV+PV(1-T,)'T,: E>— E (4.18)
Observe that f; # 0 (Otherwise, fo = 0, which implies that f; + fo =0 = f).
By (4.18), we have
S=PV+PVY T
m=0
=PV + Y PVTI'D,QV. (4.19)
m=0

Since S is a 2-dimensional operator defined on E?, it can be considered as a 2x2

matrix with entries;

St = (Se_n,en), 512 = (Sen,e-n), (4.20)
S = (Se_p, e), 522 = (Sep, €,). (4.21)
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Then, fi; # 0 together with (4.17) implies;

y— Sll 512

o L gn| =0 (4.22)

Lemma 8. Entries of the operator S can be represented as follows:
S4(n, z) = ZS,ij(n, z), i,7=12,
k=0

where

Si =S =0, SP=V(-2n), S'=V(n),

and for each k =1,2, ...,

11 _ Vi=n =)V = J2) - V(ka = je)V Uk + 1)
= 2 S R e e N

J1se kN
V(n— )V (G — o) V(s — i)V G =
S]?Q(na Z) = Z ( 1()712 (_1 <2 —|—2)Z) I (<n§_1 <2 _i)z)( . >7 (424>
J1se kN Ji Tk
V(== )V s = o) - Vs — )V (G —
e J1 Jk
V(n =)V — o) V-1 — ) Vk +n
St (n,2) = Z 1()712(_1 5 jl)(;zk_l 2 jL) - ) (4.26)
J1yeekFEN Ji T
Proof. By (4.20), (4.21), we have
ST=>"87, ij=12 (4.27)
k=0
where
Spt = (PWVTre_n,e_p), St = (PVTFren e_p), (4.28)
St = (PVTEe_,, e,), S22 = (PVTre,, e,). (4.29)
Accordingly, we have
Sél = (P,?Ve,n, €-n), 5[1)2 = (Pr?vem €-n); (4.30)
St = (PWe_,, en), S22 = (PWey,,en). (4.31)
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In light of (4.3) and (4.11), we calculate P’Ve_,, and P’Ve,, respectively, as follows:

PO

P— Z V(jr+n)ej, ——V(0)e_, +V(2n)e, =V (2n)e,,

Jk
0
e, —~ Z V(jx —n)ej, LV (=2n)e_n + V(0)en = V(=2n)e_n.
Jk

Then by (4.30) and (4.31), we get
Sit=52=0, SE=V(-2n), Sat =V (2n). (4.32)

Now, by making use of (4.6), (4.11) and (4.12) in view of (4.20) and (4.21), we look
at how the operator
POVTE = POVTF'D,QLV,

for k > 1, acts on an arbitrary base element e,,;

en ——— DV —me,

Q5
— ) V(i —m)ey,
Jr#En
D, V(jr —m)
—r

V= )+ Vi = m)
Dy S RNy L

PRV Vin—j)V(ji—j2) - V(jx — 1)
2 (n? =jt +2)-- (0 = ji +2)

n

J1yenJkFEN
Vien — iV (i — i) V(i
D S e
Jlseees ]k;éin n jl < n jk <
Accordingly, above calculations can be performed as replacing m = n and m = —n.

Hence, by (4.33) and (4.29) it follows that

22 _ Vin—g1)V(jr—J2) - V(k=1 — &)V (jx — 1)
= 2 Gy R R o e R

for each k = 1,2, ....

SH(n, z), S}?(n, z), and S#'(n, 2) can be calculated in a similar way. O
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Lemma 9. (i) For any (complez-valued) potential v,

St (n,2) = 5**(n, 2).

(i1) If v is a real-valued potential, then
§12(n, z) = §%(n, 7).
Proof. (i) By (4.23) and (4.24), the change of summation indices
ls = —Jra1-s, S=1,....k,
explains that S}'(n, z) = S2%(n, 2). Thus, in view of (4.27) and (4.32), we get
S (n,2) = 5%*(n, 2).

(i1) If v is real-valued, we have for its Fourier coefficients V(—m) = V(m). By
(4.32), it follows

Si3(n,z) =V (—2n) = V(2n) = Sg1(n, 2).

By (4.25) and (4.26), for each k = 1,2, ..., the change of summation indices
is = _jk+1—87 § = 17 s ka
proves that S'2(n,z) = S?'(n,z). Hence, in view of (4.27), we get

S¥2(n,z) = S2(n, 7).

O
Now, we consider the determinant (4.22). For convenience, let us denote
an(z) == S (n, 2) = S*(n, 2), (4.34)
and
B (2) := 8% (n,2), B, (2):=5%n,z). (4.35)
If z is real, then 3, (z) = B (z) and accordingly,
1B () = 187 (2)]- (4.36)
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We analyze the equation derived from (4.22):

(2 — an(2))* = B, (2) By (). (4.37)

Hence, A = n? + z is an eigenvalue of L, with |z| < 1, if and only if z is a solution

of (4.37).

Before we present estimates for the derivatives of a,(2) and 3Z(z), let us recall a

basic fact which gives an estimate for the derivative of a bounded analytic function.

Lemma 10. Let U be an open set of the complex plane, K C U be compact and
f:U — C be an analytic function. If

sup | f(2)] < C < o0,
zeU

then

sup | f'(z)] <
zeK

=1 0

where R = dist(K,0U).
Proof. Let z € K and take a circle I'(t) = z + Re®, for 0 < t < 2. Then by Cauchy

integral formula;

1/ f(©) 1 C

C

! = — < —— < —.

sup /'(2) su}g 2mi ) ((—2)? dc 2ri < R
T

zeK zE€

— 27 R2

]

Lemma 11. Let o, (2) and 3(2) be defined as in (4.34) and (4.35), respectively.
Then,

(i)

3 3
sup o (2)] < —[o]f?, sup |65 (2) — V(£2n)| < —[Jof?,
|z|<n/2 n |z|<n/2 n
(1)
d 6 d . ‘ 6
sup |[—a,(2)] < —=|v]|%, sup |—0.(2)] < —=||v]|%,
s |02 < ol s |05 < Sl

forn > 4fjv||.

Proof. We prove both statements only for a,,(z) because the result related to 5 (z)

can be obtained by repeating the same argument.
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(i) Recall from the definitions (4.27) and (4.23) that we have

an(z) = St (n, 2) = Z St(n, 2) (4.38)

> V(i—n—70)V(j1—72) - V(k-1 — Jr)V(r +n)
Z Z (n2—ji+z)---(n?>—ji+2) '

Let |z| < n. Then, from (4.13) and the Cauchy-Schwarz inequality, it follows

e

Si= ) V(== i)V =P Ve = ),

and

V(je +n)|?
SR S (]

R IR R

Observe that (4.9) implies

<Y VEn =)l Y VG =) D> V3G — ) = ol

J1F#En JeFEN JkFEN
(4.40)
On the other hand, by (4.9) and Lemma 6, we obtain
B Y e X e | P
]17é:|:n — Jk—1#+n Jk—1
ANF
3 IR (a.41)
2
(];ﬁin ‘7 +Z‘ >

Allin all, using (4.40) and (4.41), which are the estimates for ¥; and ¥, respectively,
the inequality (4.39) gives us

2
<4 4k
= 2k

Z V(=n =)V (i —Jja) - V(r—1 — 3)V Uk + n)

W2 (4.42
(N — 2+ 2)--(n2— 2+ 2) o]l (4.42)
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Then, in view of (4.38), the inequality (4.42) leads to

o

4+ 4 1 8
(2P < o2 ) 4 < = 2
’Oé (’Z)’ — (Z an”UH > TLQHUH 1 o %HUHQ nQHUH )

k=1

for n > 4]v]|.

Hence, we get

3
sup o (2)] < —lv]|*. (4.43)
|z|<n/2 n

(i1) In consideration of part (i) and Lemma 10, it follows from (4.43) that

d 6,
~an(2)| £ Il

sup
|2|<n/2

]

As a particular case, if we consider Mathieu potential, then we have a better estimate

for o, (z) which is expressed in the following lemma.

Lemma 12. In the case of Mathieu potential, for fixed a,

(i) 2

+ < C
’CYTL(Zn)’ = 12?7/2’

Cy constant.

(i) n

1B (20| < 02%7 Cy constant.
Proof. (i) Recall the definition of a,(z,}) expressed in Lemma 11(i).
When k = 1, we have either
jhi=n+2 or j3=-n-—2.

Hence,

Z V(—n—jl)V(n+j1) . CLQ i G2
n? —ji +z} n?—(n—=22+zF n?—(n+2)0?+zf

n#En

9 1 1
= Q —
dn —44+2zF  4An+4 -z
) 8 — 22 a?

T )4 o
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If we pick the first term out and repeat the same argument in Lemma 11(1), we get

2
<O~
’Oén<2n)| — 2n2

(7i) Recall from (4.26) and (4.27) that in the general case we have

BH(=H) = V(2n) +Z Z V<n_jl)v<jl_j2)"'v(jk—l_jk)v(jk‘{'n)‘

k=1 j1,....j#En (n2—]12+z)(n2—jz+z)

However, in the case of Mathieu potential

oy Vi(n =)V —Jj2) - V-1 — )V (k + n)
By (zy) = ;jh”%&n (2 — 2+ 2) (2 — 2+ 2) .

because if we let
Ty =n—Ji, To=Js—Ji, T3=7J3—J2,---, Tp = Jn_1tN,
then there are no 1, xs,...,x, € {—2,2} such that 21 + 2o + -+ + 2, = 0.

When k£ = n, we have

n

(n? —ji+25) - (n? —j2 +27) nn’

J1,J250+ ]’n#in

Repeating the same argument in part (i) gives us

an
1BF(zh)] < Oﬁ’ C constant.

O
Theorem 13. Let A} =n? + 2z and \,, =n?+ z,. Then, for n > ny,
2130 (1- ) <o <mipn (14 o)
with some absolute constant C'.
Proof. Consider the function
((2) =z — an(2). (4.45)
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Then, by (4.22), we have

(4.46)
((2)" = (7 = an(2))” = B (2)8, (20);
and
Vo= =X =2t — 2. (4.47)
First, we estimate ~,, from above.
By (4.46), we have
C(zn) = Clz,) _/" 1- ian(Z) dz
" " dz ’
where by Lemma 11(ii),
d 1
— — <1
fal|sD Hsy
for n > ng, and some constant C; = 6]|v]|2.
Therefore,
_ Ch _ _ &
-l (1-G) <kED - <l - a1 (14 5) . ay

Since \X, 27 and 2, are real, by Lemma 9(ii),

no n

185 ()] = 187 ()],

which leads to
ISP =18, (z0) B ()| = 181 ()P,

and accordingly

¢zl = 187 (2.
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Therefore,

1C(zn) = C(z) < ISz + 16 ()] < 187 (z0)] + 18y (20

Cy
+
<23+
In view of (4.48), this implies
(. C Cy .
=l (1= 53 ) <2 G0+ Sat = 52

SO
_ Cy
=l (1-23 ) <2501
Hence,

C
= laf = sl < 25D (1445 )z
n

Now, we estimate -, from below.

By (4.46) and (4.47),

Therefore,

=) — ¢l < o — 2| sup d

[2n 2]

dz

By Lemma 11(i1),

sup

d +
S| P (2)

From here it follows, for z € [z, 2],

n» n

185 ()] < 185 ()] + 187 (=) — 85 (=)

<18y (@D + |2 — 2l

< B () + |t = 20l

28

|70 — 2

B () 0n (2) 4 B ()5 (2)]

nl

(4.49)

(4.50)



By (4.48) and (4.50), it follows

=l (1 53 ) D+ < et =1 (18501 0D+ 158 = 22153 )

n? n?

which implies
_ 6C'
CED + CED S 28 EDIESL 0z m,

Thus, from (4.48) we have

s =l (1 53 ) 216062 = 0l 2 260201 = 16(6) + GG
> 2501 (1- 5.

Hence,

12C
mr:\z:—znrzz|ﬁ:<z:>|(1— ) - (451)
n

Combining the inequalities (4.49) and (4.51), we obtain

2150 (1- L) <o, <apgpen (14 0l4h).

n2

for some constant C' = 12.

5 Asymptotics of Spectral Gaps in case of the
Mathieu Potential

In this section, making use of the general asymptotic formula (4.44), we analyze the
asymptotic behaviour of the spectral gaps of the Schrodinger operator L which is
defined in (3.1), with the Mathieu potential v(z) = 2acos (2x), where a is a real

constant. In other words, we deal with the operator
L(y) = —y" + 2a cos (22)y. (5.1)

First, we find the asymptotics of 7, = 7,,(a) as a — 0 (n fixed). Then we give the
asymptotics of the spectral gaps of the Mathieu potential as n — oo (a fixed).

On the way of finding both of the asymptotics, we use the results obtained in the
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previous section.

In order to apply the formula (4.44), we deal with 3 (z). Recall that, in the general
case, by (4.26) , (4.27) and (4.35), we have

Bi(z) =V(2n)+ ) ou(n, 2), (5.2)

ou(n, 2) = Z Vin—g)V(jr—Jg2) - V(jr—1 — Jx)V(x + 1)

(n?—j2+42)--(n2— 2+ 2) : (5.3)

Observe that each nonzero term in (5.3) correspond to a k-tuple of indices (ji, ..., jk)
such that

(n+g1) + (G2 —J1) + -+ (G — Jr—1) + (n — jx) = 2n. (5.4)

If we write the Mathieu potential in terms of Fourier coefficients with respect to

basis elements, we have

v(x) = 2acos 2z = ae ** + ae*™”,

which implies that

a if m= 42,
V(im) = (5.5)
0 otherwise.

Therefore, we have a non-trivial term in (5.3) if and only if

(n +j1>’ (j2 - j1)7 AR (]k _jk—l)v (n - ]k) S {:|:2} (56>

Consider all possible walks from —n to n. Each such walk is determined by the

sequence of its steps

xr = (.Tl, "'Jxl/-‘rl)?

or by its vertices
k
jk: —n+z,’]j“ k/‘: 17...,1/. (57)
i=1

Furthermore, if we know the vertices ji, ..., j, then the corresponding steps are given

by the formula
Ty =n+J1; T =Ji— Ji-1, =2,V Ty =N — ]
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Let X,, denotes the set of all walks from —n to n that have no vertices n, and no
zero steps. Accordingly, let X,,(p) denotes the set of all walks from —n to n with p

negative steps.

Consequently, in consideration of (5.4) and (5.6), there is one-to-one correspondence
between the nonzero terms of o, (n, 2) and the walks z = (z(¢))/4} € X,,.

Notice that, by (5.4),
v+1

> x(t) =2n.

Therefore, it follows that

Biz) =) hx,2), (5.8)

{l‘GXn

where

V(z)V(xg) - V(v, 1)

h = )
S (L B R Gy R

Clearly, X,,(0) has only one element which is the walk of minimal number of steps,

say
=8, &) =2 (5.9)
In other words, X,,(0) = {¢}.

Particularly, notice that in the Mathieu potential case, by (5.5), we have
V(z;) = a, i=1,--- v+ 1. (5.10)

In this section, unless stated otherwise, v(z) will be regarded as the Mathieu poten-
tial. In other words, all computations and results will be based on the case when
the potential v(x) = 2a cos (2x) with nonzero real number a. According to this, it
will be the case that

au+1

h(z,z) = n2—732+2)n2—j3+2)---(n?2—j2+2)

(5.11)

Lemma 14. Let h(z, z) and & be defined as in (5.11) and (5.9), respectively. Then,

4(a/4)"

N TR
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Proof. Since £(t) = 2, and V(£(t)) = V(2) = a, for t = 1,...,n, we have

n

a
h(&,0) = . 5.12
O = B =) - ) 12
From (5.7), it follows that
J2 = (—n +2k)* = n® — dnk + 4K*,
for k=1,2,....n — 1. Then,
n—1
H (n* — j3) H4k‘ (n—
k=1
n—1
k=1 \k=1
= 4" (n - 1)
Therefore, we obtain
a” 4(a/4)"
h = = .
SO D " fw- P
m

Proposition 15. Let 31 (z), h(z, z) and & be defined as in (5.8), (5.11) and (5.9),
respectively. Then,

h(€,z) = h(&,0)(1 4 O(a)),

i.e. h(&,0) gives the main term of the asymptotics of 51 (z) as a — 0, for fized n.

Proof. First, let us compute ||v||.

Since we have v(x) = 2a cos 2z, it follows that

1/2

= V2al.

17 1
vl =2lal | = | cos®2zdx = 2la|—
Joll = 2lo ”0/ 5

Hence, for small a, we have ||v|| < 1/4. By Proposition 4, it follows that

\zﬂ = |>\ff—n2| < Alv|| §4\/§|a|, n € N. (5.13)
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Now, we fix n € N, and work with the identity

n—1 n—1
1 1 1
— = : . 5.14
| ey (n?—g;%u%ﬁ) o

By Taylor’s formula, we have

1 z 22 z
:1— .2—1— — - 4+ ...

Ry ARy LN

Hence, from (5.13) and (5.14), it follows that

n—1 n—1
1 ( 1 ) .

In particular, multiplying both sides with a”, and in view of (5.11) and (5.12), we

obtain
h(& z) = h(& 0)(1 + O(a)).
O

Now, we prove one of the main results in this section. We give the asymptotics of

Yn = Yn(a) as a — 0 (n fixed).

Theorem 16. Let v, n € N, be the lengths of instability zones of the Hill operator
Ly = —y" +2acos (2z)y, a€R.

If n is fized and a — 0, then

_ 8(lal/4)"

= oy 0

Proof. Fix n € N, and take x € X,,(p). Then, by (5.10) and (5.11),

ha. 2 (5.15)
T,z) = - - . 5.15
(n?—j7+2)--(n?— .]727,+2p—1 + 2)
Then, by (4.13) and (5.15),
2 n+2p
Wz, 2)| < (2a) | (5.16)

(n? — 912) o (n? = j72l+2p71)
where z € X, (p).
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Therefore,

D> [z, 2)] = [1(£,0)|0(|al?),

zeXn\{¢}
where ¢ is the walk defined in (5.9).

(5.17)

Then, in view of Lemma 14 and Proposition 15, combining the results (5.8) and

(5.17) leads to

Z h(z, z)

zeX,,

1By (2)| = = [n(&, 0)[(1 + O(a))

ey
BRI

Hence, in consideration of Theorem 13, for fixed n, above equation yields

_ 8(jal/4)"

n [(n—l)!]2(1+0(a))’ as a — 0.

]

Now, we analyze the asymptotic behaviour of the spectral gaps of the operator L

with Mathieu potential v(z), as it is defined in (5.1) when a is fixed and n — oo.

D h(x,z) =) ay(n,2),

QTGXn

where

op(n,z) = Z h(n, z).
chXn(p)
Lemma 17. In the case of Mathieu potential, for large enough n,
C
|2F| < =, C constant.
n

Proof. From the equalities (4.36) and (4.37) it follows that

|20 — an(z)] = 18, ()]
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On the other hand, by Lemma 12 we have

Cy

C
| (25)] < n_21 and |35 (zh)| < . C, Cy constants.

Hence,
C
20| <z — alz))] + |a(z))] < —, C constant.
n

]

Lemma 18. Let h(z,z), £ and o,(z, z) be defined as in (5.11), (5.9) and (5.19),

respectively. Then, as n — oo (a fized),

W€, 2) = oo(n, 2) = h(€,0) (1 +0 (%)) |

Proof. First, recall from Lemma 14 that

an

(n? = jH)(n* = j3) -~ (n* = ji4)

h(€,0) =

Now, fix a € R.

As in Proposition 15, we use the identity (5.14), namely:

Since

it follows that,

1 2
H —\zlS H <1+2n2|i’j2)§exp Z 2‘Z|'2

IR ] nc —
o<linl<n 1 T W37 o<lirl<n 0<liel<n Tk
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Therefore, by Lemma 17 we get

1 1
H —~14C ogn7 C' constant.
|=| n3

0<jx|<n 1 - n2—;2

As a consequence,

n—1 n—1
1 1 1
e i) (o)
k=1 Tk k=1 Tk

In particular, multiplying both sides with a”, and in view of (5.11) and (5.12), we

%mﬂy:mgm(1+o($>).

obtain

O
Lemma 19. Forn € N,
n—1 1 _ 1
“—~ (k=1Dk(n—Fk)(n+1-k) ~ 4n?’
Proof. Rewriting the quotients
1 1 /1 n 1
kn—k) n\k n—k)’
and
1 1 1 N 1
(k—Dn+1—-k) n\k—1 n+l1-k)’
leads to the following equality:
n—1 1 B i n—1 l . 1 1 . 1
k‘ZZ(k:—l)k(n—k)(n—i—l—k:)_an:2 k- n—k k=1 n+1-k)°
(5.20)
We now investigate the series
— /1 1 1 1
- . 21
k2<k+n—k><k—1+n+1—k) (5:21)
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Observe that the following two series telescope;

n—1 1 B n—1 1 1 (5 22)
k(k—1) E—1 &k ‘
k=2 k=2
=1- 1 <1,
n—1
and
n—1 n—1
1 1 1
= — (5.23)
—~(n—k)(n+1-k) kzz(n—k n+1—k;>
1
=1- <1
n—17—

Now, we consider the series

”Z‘l 1 IS SR S SR L
—k(n+1-k) 2n-—1) I(n+1-1) 2n—1)" | 2
<o Lty b 1
— \2(n—-1) 3(n-—2) (n+1—1)

1 -1
<2 =——m | .
- 2n+1-1
The term in the middle, [ < (n + 1)/2, leads to
1 i
<
—~k(n+1-k) ~ n+1-24
n—1
= <1 5.24
n+17 ( )
Finally, we analyze the series
— 1 o 1 1
(k—1)(n—k) n-—2 (l—=1)(n—=1) n—2
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If n is even, say n = 2m, then

— 1 _2( N SR 1 )
(k—Dn—-k “"\n—-2 2(n-3) (m—1)(n —m)

k=2
2 Im—2
2( =
n—2+ <2n—m)

2 4
=1 ——<1
n—2 n
If n is odd, say n = 2m + 1, then
— 1 PO 1 . 1
—~ (k—=1)(n—Fk) T \n-2 (m—1)(n —m) m(n — (m+1))
_ 2, (im-2y 1
T n-—2 2n—m m(n —m — 1)
2 +n—5+ 4 -1
T n—-2 n+l (n-12 7
Hence, in either cases we get
5 ! <1 (5.25)
(k—1)(n—k) ' '

B
||

2

In view of (5.21), combining the inequalities (5.22), (5.23), (5.24) and (5.25) yields

Sf 1+ 1 1 . 1 -4
kL n—=k Ek—1 n+1—k/)

k=2

From (5.20), we get

n—1

1 < 1
(k—Dk(n—k)(n+1—Fk) — 4n?’

k=2
O
Lemma 20. Let o,(n, z) be defined as in (5.19). Then,
o2 | a® (5.26)
op-1(n,z)| = 4n?’

Proof. First, consider the case p = 1.
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Recall that
oo(n, z) = h(§, 2),

where ¢ is defined in (5.9). Since

n—1
o1(n,z) = Z h(z,z) = Zh(xk, 2),
2€Xn(1) k=2

where x; denotes the walk with k& + 1’th step equal to -2.

Then,
2 ift#k
-2 ift=k

for 1 <t<n-+2.

Now, we figure out the connection between vertices of ¢ and x;, as follows:

]Oé(xk> :ja<€)7 a = 1727"'ak7

and

Jes1(@r) = Jr-1(8),  Jrr2(r) = Jr(§),

and
Jat2(Tr) = Ja(§), a=k+1,....,n—1

Then, by (5.11), we have

an+2

(n* = g1(wr)? + 2) - - (02 = Jnga (21)? + 2)

a2

(n* = jk-1(8)* + 2)(n* = jir()* + 2)°

h(zg, 2) =

= h(¢, 2)
Furthermore, from definition (5.7) of the vertices ji’s, we have
) =-n+2k k=2....,n—1.

Since x € X, (1) and £ € X,,(0), from (5.27) it follows that

i
L

a2

2 =h&2) 2 o okt o = (s 2k =2+ 2

e
[|

2
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where h(€, z) = o¢(n, 2).
Now, we estimate the quotient |oy(n, z)/0g(n, 2)|.

Observe that,

1 1

3
|
3
|

1 1 1

02— (—nt 20072 — (—n+ 2k — 27 16 2= (k— Dk(n—k)(n + 1 — k)’

£
I

2

b
||

since
n? — (—n +2k)* = 4k(n — k),

and
n?—(—n+2k—-22=4k—-1)(n+1—k).

Now, from Lemma 19, it follows that

—_

3

CL2 a2

N2 — (—n + 2k)?|[n?2 — (—n + 2k — 2)?] = 4n2’

T

2

In consideration of (5.28), the equality (5.27) leads to

CL2

— 4n?’

o1(n, 2)

oo(n, 2)

Next, we prove (5.26) for p > 2.

Consider a walk with p negative steps, say x € X, (p). We wish to relate = € X,,(p)
with Z € X,,(p—1) and the vertex ji where the first negative step of z is performed.

Define a map ¢
0: Xp(p) — Xu(p—1) x I, I={—n+4,-n+6,...,n—2},
by @(z) = (7, ), where

i 2(t) ifl1<t<k—1
2(t) =
z(t+2) fk<t<n+2p-—2

for k = min{t : x(t) =2, z(t+1) = =2}, and j = —n + 2k.
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The map ¢ defined as above is clearly injective. Hence, any x € X, (p) can be
related with Z € X,,(p — 1) and the vertex j; at which the first negative step of x is

performed in a one-to-one manner.
Now, we analyze the relation between o,(n, 2) and o,_1(n, 2).

Since any walk from —n to n with p negative steps can be related with a walk from
—n to n with p — 1 negative steps, (in other words; a walk with one less negative
step) and the vertex j where the first negative step of the former is taken, we have

the following correspondence;

an+2

(n* =1 ()% + 2) -+ (0% = Jna ()2 + 2)

a2

(n* = j* +2)(n* = (j —2)° + 2)°

h(z,z) =

(5.29)

= h(Z,z)
Since the mapping ¢ is injective, from (5.29) it follows that

op(n,z) = Z h(z, z) (5.30)

Z‘EXn(p)
n—1 9
a
FEXn(p—1) k=2 [n? — (=n + 2k)? + z][n? — (—n + 2k — 2)% + 2]
Now, recall that
h(E,2) = 0p-a(n, 2), (5.31)
zeXn(p—1)

and estimate the quotient |o,(n, 2)/0,-1(n, 2)|.

Observe that we are now in the same situation which we consider the quotient

lo1(n, 2)/oo(n, 2)|. Therefore, the same computations imply that

a2

— 4n?’

op(n, z)

op-1(n, 2)

Theorem 21. Let v,, n € N, be the spectral gaps of the Mathieu operator

Ly = —y" +2acos (2x)y, a€R.
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If a is fived and n — oo, then

Proof. First, recall the basic notions. From (5.8), we have
F(2) = hlx,2).

On the other hand, by (5.18) and (5.19), it follows that
Z h(z,z) = Z Z h(z,z) = Zap(n,z).
2€Xn p=0 X, (p) p=0

Now, we analyze the result in Lemma 20. An inductive argument immediately leads

to the following;

Therefore, it follows that

Z h(z, z) — oo(n, z)

IL‘GXn

<Xl < [t (55) ] @

Hence,

S bz, 2) = oo(n, 2) (1 +0 (%)) |

CEEXn

On the other hand, by Lemma 18;

h(E, 2) = oo(n, 2) = B(E,0) (1 e (%)) |

hence,

S iz, 2) = h(€,0) <1 +0 (%)) | (5.33)

reXn

In view of (5.8), the equality (5.33) shows that h(£,0) is the main term of the

asymptotics of 37 (z), z = 2z, with respect to n — oo (a fixed).

Therefore, in consideration of Lemma 14 and Lemma 18, combining the results (5.8)
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and (5.33) leads to

o1 = e (140 (35))

Making use of Theorem 13, for fixed a, the above equation yields

- 100(3) e
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