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Abstract

Estimation of the minimum distance of cyclic codes is a classical problem in cod-
ing theory. Using the trace representation of cyclic codes and Hilbert’s Theorem 90,
Wolfmann found a general estimate for the minimum distance of cyclic codes in terms
of the number of rational points on certain Artin-Schreier curves. In this thesis, we
try to understand if Wolfmann’s bound can be improved by modifying equations of
the Artin-Schreier curves by the use of monomial and some nonmonomial permutation

polynomials. Our experiments show that an improvement is possible in some cases.



DEVIRSEL KODLARIN MINIMUM UZAKLIGI

Leyla Isik
Matematik, Yiiksek Lisans Tezi, 2011

Tez Danigmani: Dog. Dr. Cem Giineri

Anahtar Kelimeler: Sonlu cisimler, devirsel kodlar, iz gosterimleri, permiitasyon

polinomlari

Ozet

Devirsel kodlarin minimum uzakliklarini sinirlama, kodlama teorisinin klasik prob-
lemlerinden biridir. Wolfmann, iz gosterimleri ve Hilbert 90 Teoremini kullanarak, de-
virsel kodlarin minimum uzakliklar: i¢in bazi Artin-Schreier egrilerinin rasyonel nokta
sayilart cinsinden alt smir buldu. Bu tezde Artin-Schreier egrilerinin denklemleri
degistirilerek Wolfmann’in sinirinin iyilegtirilip iyilestirilemeyecegi anlagilmaya caligildi.

Deneylerimiz iyilestirmenin bazi durumlarda miimkiin oldugunu gosterdi.
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Cyclic Codes and Permutation Polynomials

We introduce the preliminaries in coding theory and permutation polynomials in this
chapter. Section 1 and 2 introduce cyclic codes and their trace representation. The
trace representation yields a relation with algebraic curves which we outline. We refer
to [4], [5], [2], [6] for further details on cyclic codes and their relation to algebraic curves.
In Section 3, we prove a result of Zieve [7] which will be used to produce permutation

polynomials other than monomials.

1.1 Cyclic Codes

Let F, denote the finite field with ¢ elements, where ¢ = p°® for a prime number p and
a nonnegative integer s. A subset C' of Fy is called a g-ary code of length n. Elements
of C' are called codewords.

For v = (z1, %2, ..., 7n), ¥ = (Y1,Y2, .-, Yn) € Fy, define

d(z,y) = {1 <i <n; a; # yi}|.

The function d defines a metric on Fy,

the Hamming distance, we define the minimum distance d(C') of C as

which is called the Hamming distance. Using

Amin = min{d(z,y)| v,y € C,z # y}.
The weight of an element x = (1, g, ..., ¥,) € Fy is defined as
wt(z) = d(x,0) := [{1 <i<n; 2 £ 0}

Throughout this thesis, we will consider linear codes. This means that C' C Fy will
be an F,-subspace. We will use the term “code” for linear codes. The dimension of C
as an [F -vector space is called the dimension of the code. The length, dimension and
the minimum distance are three important parameters of a code. We denote a code of

length n, dimension & and minimum distance d as [n, k, d| code.
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Proposition 1.1. For a linear code C, the minimum distance is equal to the minimum

nonzero weight in C.

Proof. 1t follows from the definitions that w(x) = d(0, ) and that d(z,y) = w(x — y).
Let ¢ be a codeword of minimum nonzero weight. Then w(c) = d(0, ¢) and since 0 is
a codeword we have d,;; < Wnin. On the other hand, if ¢; and ¢y are codewords at
minimum distance, we have d(¢, ¢2) = w(c; — ¢2) and since ¢ — ¢y is again a codeword

we get Wpin < dpin. Therefore, d(C) is the minimal weight of C'. n

Definition 1.2. A [n, k]-code C over F, is called cyclic if (co, c1, ..., cp—1) € C implies
that (¢,_1,coy .oy Cr2) € C.

It is useful to represent codewords as polynomials. The codeword
c:=(co,C1yeeey Cn1)
is represented by the polynomial
clx) =co+ar+...+cp 2™

Note that this assignment yields a map

n—1
i
(a07 Qay, ..., a’nfl) — a;r
=0
n—1
where g a;x' denotes a coset representative.
i=0

Proposition 1.3. ¢ is an F,-linear isomorphism.

Proof. Let a = (ap,ay, ..., an-1), b= (bo,b1,...,0n—1) € Fy and k € F,. Then we have
the following

i
L

o(ka+0b) =Y (ka; + b))z’

Ing

. I

1

— n—1
{ kaixi} + { Z bl-xi}
=0 =0
n—1 n—1
SO 3
=0 =0

= ky(a) + o(b).

Therefore ¢ is a Fg-linear map. It is easily seen that Ker(p) = {a € Fy| ap + a1 +

o+ a,_1z" 1} = {0}. This shows that ¢ is one-to-one. Also ¢ is surjective since for
each polynomial with degree less than n there is an n-tuple vector which is obtained

by the coefficients of that polynomial. Hence we have proved our assertion. O



Theorem 1.4. A linear code C C Fy s cyclic if and only if C is an ideal of
Folz]/(z" —1).

Proof. (<) If C'is an ideal and (ag, a1, ..., a,—1) € C, then also
z(ag+ a1z + ... + ap12™ ) = apz + a1 + ...+ ap_oz™ " +a,_, €C.

This implies (a,_1, ag, ..., a,_2) € C.
(=) If (ag,ai,...,an—1) € C implies (a,_1, ag, ..., an—2) € C, then for every codeword

a(z) = ag + a1z + ... + a,_12"' € C we have za(z) € C, hence also x%a(x) € C,

z3a(z) € C, so on. Therefore b(x)a(x) € C for any polynomial b(z); that is C' is an

ideal. ]
Definition 1.5. If C'is an [n, k] code we define the dual code C+ by
Cr={ueF!|lu-v=0,VYveC}
where - denotes the usual inner product on Fy.
Note that C* is also a linear code whose dimension is n — dim(C).
Proposition 1.6. If C' is cyclic then the dual code C* is also cyclic.

Proof. Note that the shift operator

s:C — C

<007C17~-7Cn—1) = (Cn—luc()v‘”acn—Q)
on a cyclic code C is a bijection. Let (dy,ds, ...,d,_1) € C*+. Then,
(do,dl, ...,dn_1> : (Co,Cl, ...,Cn_l) =0, for any (Co,Cl, ...,Cn_l) e C.

This implies that (d,_1,do,...,dn_2) - (¢n_1,¢0, .-, n2) = 0. Since s is a bijection this

means (d,_1, do, ..., d,_2) is orthogonal to every codeword in C'. O

Next, we analyze the polynomial representation of a cyclic code. Note that F [z]/(z"—
1) is a principal ideal ring. Hence, any cyclic code C' in F,[z]/(z™ — 1) has a unique
monic polynomial (codeword) g(x) of lowest degree such that C' is generated by g(x)
as an ideal. This polynomial is called the generator polynomial of C'. Note that the
generator polynomial g(z) of a cyclic code C' of length n must divide the polynomial
" — 1 in F,[z]. Hence one can list all g-ary cyclic codes of length n by listing all

possible divisors of 2™ — 1.

Proposition 1.7. Let C be a cyclic code of length n over F, with the generator poly-
nomial g(x). If deg(g(x)) =k, then dim(C) =n — k.



Proof. Note that

C=<g@)> = {mx)g(x) |m(x) € Fyla] , deg(m(z)) <n — &}
= {(mo+miz+ ...+ mu_p12" " g(z) | m; € F,}
= {mog(z) + mizg(z) + ... + my_p_12" " g(z) | m; € Fy}
= spang,{g(x), 29(x), .., a" " g(x)}

Since the degrees of the polynomials in the spanning set are different, this set is [Fy-
independent. Thus {g(x),zg(z),...,2" " 1g(x)} is a basis for C. ]

Remark 1.8. We will assume throughout that n = ¢™—1 for some m > 1. This implies
that the polynomial 2™ — 1 is separable. In particular, the generator polynomial g(x)
of a g-ary cyclic code C' of length n is also separable since g(z) divides 2z — 1. In this

case, we have dim C' = n — k and dim C* = k, where k is the number of roots of g(z).

Note that the cyclic code C of length n whose generator polynomial is ”E;(;)l is not C*
but it can be obtained from C* by a change of coordinates of codewords (see [4], page
84). In this case, the two codes C' and C* are said to be equivalent. Hence the weights

in C and C* are identical.

Let F,m denote the degree m extension of F, and a € F,m be a primitive element.
This means that « generates the multiplicative group Fj.. or equivalently « is a prim-
itive n' root of unity. Note that the roots of g(z) are powers of a. Suppose that g(z)

factors into irreducible polynomials over [, as

g(x) = myir () -+ Mgis (), (1.1)

where m,_i; (z) € Fy[z] denotes the minimal polynomial of s over F,. In this case, the
other roots of g(x) are obtained from o, ..., a® by raising to ¢* powers. Namely, the

roots of g(x) are

(1.2)
azs’ anS’ e y a{qd57

J

where d; = deg(m, ;) for all 1 < j < s. It’s clear that the generator polynomial g(z)
of C, hence the code C' itself, can be described by listing all the roots of g(z) as in

(1.2) or just one root of each irreducible factor.

Definition 1.9. Let C be a g-ary cyclic code of length n = ¢™ — 1 with the generator
polynomial as in (1.1). Then:

(1) The set Z(C') defined by (1.2) is called the zero set of C,



(1) A basic zero set of C' is defined by
BZ(C) = {a",a™,...,a"}.

Note that one can write different basic zero sets for C' by changing the roots of each
irreducible factor in the generator polynomial.

A classical problem in coding theory is to determine the minimum distance of a
given family of codes. This is in general a difficult problem. Therefore one is also
satisfied if one can find general bounds. In the case of cyclic codes, the following

bound is simple and very well-known.

Theorem 1.10 (BCH Bound). Let C' be a cyclic code of length n over F, and « be a

primitive n'" root of unity. If Z(C) contains §—1 consecutive powers ab,a’+1, ... ab+0-2

of a, then d(C) > .

We need a well-known fact for the proof of the BCH bound. Let aq,...,as be
elements in a field F. The s x s matrix V = [v;,], where v;; = Oz;-_l is called a

Vandermonde matriz.

1 1 1

aq %) Qg

_ 2 2 2
V= a7 o5 o
oz‘f_l a%‘l a‘;*l

Lemma 1.11. We have det(V) = H (oj — ;). In particular, V' is nonsingular if

1<i<j<s

the elements oy, ..., as are distinct.

Proof of Theorem 1.10. Let ¢(z) be a nonzero codeword in C' of weight w, and let
c(x) = Zcijxij , ci; 70 Vj.
j=1
Assume to the contrary that w < §. By assumption c(a!) =0 for b <1 <b+6§— 2,
c(a®) = ¢, " 4 ¢, + . ¢ 0 =0

C(OébJrl) _ Cila(bJrl)h + Ci2a(b+1)¢2 Tt alttie —

C<ab+5—2) — cila(b+(5—2)21 + Ci2a(b+5—2)12 + .. _|_ Ciw()é(b+6_2)lw — 0



Then we have Au = 0, where

O{bil abig o Oébiw
) ab+H)i otz (b
obtw=1ir  (btw-D)is ) (b+tw—1)iy
and
Cil
Ciz
u =
Ciw

Since u # 0, A is a singular matrix and hence det A = 0. But det A = q(1+iztFiw)b det V|

where V' is the Vandermonde matrix

1 1 1
alt a2 atv
V=
ah(wfl) aig(wfl) O{iw(wfl)
Since a% are distinct, det V' # 0 and this yields a contradiction. O

1.2 Trace Representation of Cyclic Codes and Wolf-

mann’s Bound

We start by introducing an important function.
Definition 1.12. The map defined by
TT[qu JF, - Fgm — By
ar—a+al+...+a’"
is called the trace map.

We will denote this map simply by 7T'r unless otherwise stated. It is easy to see
that the trace map is an F-linear surjection. The following theorem is important and

will be useful for our purposes.

Theorem 1.13 (Hilbert’s Theorem 90). For m > 1 and a € Fym, we have that

Tr(a) =0 if and only if there exists b € Fym such that b7 — b = a.



Proof. (<) If there exists b € Fym with 7 — b = a then

Tr(a) =Tr(b? —b)
= (b7 —b) + (b1 — )T + ...+ (b — )T

m

=07 —b=0, sincebe Fym.

(=) Let a € Fym with Tr(a) = 0 and let b be a root of the polynomial
flx)=27—2z—a €Fym[z]

in some extension of F,. The same calculation above shows that such b is an element
Of qu . D

There are two common ways to construct a code over F, from a given code over

F .

Definition 1.14. Let D be a linear code of length n over F m.

(i) The restriction of D to F, is defined by

Dlg, : = {c=(c1,....,cn) € D | ¢; € F, for all i}

=DNEF.

(7) The trace code of D is defined by

Tr(D) :={(Tr(c1),....Tr(ca))] (c1, ...,cn) € D}.

Note that both the restriction and the trace codes are F,-linear. The following

theorem relates these two codes in a nontrivial way.

Theorem 1.15 (Delsarte). For any code C' over Fym, we have (C|g,)" = Tr(C*).

qm

Proof. Let - denote the canonical inner product on both Fy and F7... In order to prove
(Clg,)*" 2 Tr(C*) we need to show that

u-Tr(v) =0 for allu € Clp, and v € C™. (1.3)

Write u = (uq, ..., u,) and v = (vq, ..., v,); then

w-Tr(v) :Zui~Tr(vi) :TT(ZUM) =Tr(u-v) =Tr(0) =0.



Here we obtained the result by using IF-linearity of the trace and the fact that u-v =0
(since u € C and v € C*t). Therefore we have proved (1.3). Now we show that
(Clg,)* C Tr(C*). This statement is equivalent to

Tr(CH)* C Cls,. (1.4)
Suppose to the contrary that (1.4) does not hold. Then there exists some a € Tr(C+)*\C,

hence an element b € C* with a-b # 0. Since Tr : Fyn — F, is not the zero map,
there is an element v € Fym such that 77 (y(a - b)) # 0. Then we obtain

a-Tr(vb) =Tr(a-+b) = Tr(y(a-b)) # 0.

But also we know a - Tr(yb) = 0 because a € Tr(C*+)* and vb € C+. So we get a

contradiction and this gives (1.4). O
Next, we present a trace representation for an arbitrary cyclic code. We denote by
<T7" (a(a:))) a vector of length ¢ — 1 over F, which is defined by
xEFZm

(Tr (a(x))) = (Tr (a(a%),Tr(a(al)),....,Tr (a(aqm_2))>.

Theorem 1.16. Let m > 1 and C be a q-ary cyclic code of length n = q™ — 1. Let «

zG]F;m

be a primitive element of Fym and {a', a2, ...,a'} be a basic zero set of the code C,

where i; > 0 for all j. Then

Oi — {(T?"()\L’Ezﬁ + /\QJ]iQ + ...+ Asxis)) | /\17 ceey )\5 € qu}.

xEF;m
Proof. We know that C' is an ideal in F [z]/(z" — 1) and
C' = (Miir (T) Mgz () - - - Mgia (2) ),

where m_ i, (x) is the minimal polynomial of s over Fy, for all j. Let D be the code

over F,m of the same length with the zero set Z(D) = {a™, a2, ..., a' }, ie.
D = <(ac —a")(z— ) (z — ozis)> C Fymz]/(2™ —1).
Then C' = D|r, and by Delsarte’s Theorem we have C*+ = Tr(D™+).

n—1

Let d(x) = Zdia:i be any codeword in D. Then we have d(a%) = 0, for all
i=0
7 =1,...,s. We can also write these equalities by using the usual inner product in

n-space as follows:

0

(d07 d17 crey drﬁl) : (17(0/1)17 St (Oéil)nil)
(do, di, ... dn-1) - (1,(a®)', ., (a®)"7)

0

(do, i, .ovdns) - (L(a™)', ..., (a")" 1) = 0.



By vector representation of cyclic codes, this implies that the following vectors are

codewords in D+ :

The generator polynomial of D yields that the F n-dimension of D* is s. We want
to show that {uy,...,us} forms an F m-basis for D*. Since « is a primitive element

—2

m . .
of Fgm, 1,a,a4,...,01 are all elements in F... So, we can represent each u; in a

different way as follows;
Uj = ("Eij>w€1Fj;m> j=12..5s

The notation hesre is similar to the one introduced before the statement of this theorem.

Suppose that Z djuj = 0 for some 6; € Fym. This means that
j=1

12 + o2 + ...+ 62 =0 for all z € Fym.

Since i; < ¢™ for all j, this is possible if §; = ... = §; = 0. This proves that {us, ..., us}
forms a basis for D+. Therefore D+ is of the form

DY = (g, yug)y = {) Ny | A €Fyn},
j=1

or
Dl = {()\L’L’Zﬁ + ...+ /\S‘ris);BEFZm : )\1, . /\s € qu}

Hence,

CH =Tr(D*Y) = {(Tr(Ma™ + ... + Az™)) A, ey A € Fym b

xe]F;m

Consider a codeword ¢ of the cyclic code C' in Theorem 1.16.

Suppose that
c= (Tr(/\lznil +...+ )\Sasis)>
xe]l*‘;m
for some Ay, ..., \s € Fym. Set f(x) := Mz + ... + A\;z'. By Hilbert’s Theorem 90, we
have that for any x¢ € Fym with Tr(f(zo)) = 0, there exists yy € Fym such that
Yo — Yo = f(x0)-

9



Note that for any a € F,, we also have

(Yo +a)? — (yo +a) =y — yo + (a? — a)

Therefore, for each zy € Fym with Tr(f(zo)) = 0, there exist ¢ distinct yo € Fym with

yS —yo = f(x0).

Hence,
w(e) = (¢"—1) = [{zo € Fyu ; Tr(f(x0)) = 0}
= (¢m—1) - (1.5)
g — N

q

where N denotes the number of solutions (zg,yp) € Fym x Fym to the equation

y! —y = f(x). (1.6)

An equation of the form (1.6) is said to define an Artin-Schreier (A-S) curve over Fym
and N is called the number of affine Fym- rational points of this curve. Hence, weights
of codewords in C' are related to the number of affine F,n- rational points of members

in the following Artin-Schreier family F consisting of equations of the form
y? —y = N + .+ A
where \q, ..., \s are arbitrary elements in Fym.

Theorem 1.17. Let X be an A-S curve over Fym defined by y? —y = f(x), where
F(x) € Fynle) and (deg(f), q) = 1.

(1) The genus of X is
1
g = 5(61 — 1)(deg(f) — 1). (See [2], Example 2.4.)
(i1) (Hasse-Weil). The number N of affine Fym-rational points of X satisfies
%

N <q™+2gq2. (See [5], Theorem 5.2.3.)

Using the trace representation and the Hasse-Weil Theorem, we obtain the following

bound on the minimum distance.

10



Theorem 1.18 (Wolfmann, [6]). Let C' be a g-ary cyclic code of length n = ¢™ — 1

whose dual’s basic zero set is
BZ(Ch) ={a", -+ o},

where « is a primitive n'" root of unity and 1 < iy < ... < iy are integers that are

relatively prime to q. Then,
d(C) > q" — ¢ = (¢ = 1)(is — 1)g= ",

Proof. Let w be any nonzero weight in C. Then by (1.5) and (1.6), we have
N

w:qm—g,

where N is the number of affine [F m-rational points of the curve defined by

Yl —y = f(z) = Ma® + ... + At (1.7)
By Hasse-Weil bound
N < q™+2gq%.
Hence N
q" — q >q" —q" = 29q%

To estimate the minimal weight (minimum distance), we consider the curve in the form

(1.7) with the largest genus. The largest genus is (by Theorem 1.17 (i))

(¢ —1)(is — 1)
5 :

Hence, the result follows. n

Example 1.19. Let ¢™ = 2° and ¢ be a primitive element of F3;. When we factor
23 —1 into irreducible polynomials over Fy, we get the following irreducible polynomials

and corresponding roots in Fss.

r+1:1
a4 1 £ €2 el 68 gl
@ a1 g5 €2 2T 2 30
P a4 €7 M 19 25 %
Prat a1 0,69 €10 18 ¢
P a1 £ g8 g2 22 2

I5+ZE4+I3+ZL‘2+1 . €3a§67€127€177§24'

11



Let C' be the binary code of length 31 whose generator polynomial is
g@) =@+ 22+ D@+ 2+ 22 o+ )@+t + 2P e+ )@+t 2P+ 2+ 1).

Then, C* is equivalent to the cyclic code C with the generator polynomial h(z) =

(x4 1)(2° + 22+ 1)(z° + 2* + 23 + 22 + 1), and BZ(C) = {1,£,€%} (cf. Remark 1.8).
Then by Theorem 1.18, we get the following inequality.
d(C) >2° =2 — (2-1)(3 —1)25"!
~16 — 2(2,8)
~10, 4.

Hence d(C) > 11. On the other hand we get d(C) > 7 by applying the BCH Bound,
since Z(C) contains 6 consecutive powers £18 €19 .. ¢23. So, Wolfmann’s bound per-
forms better than the BCH bound in this example.

Next let ¢™ = 3 and ¢ be a primitive element of Fy;. In this case we have 10

irreducible factors of 226 — 1 over F3 and corresponding roots in Fy; as follows:

r+1:2
r+2:1
P2 +1 (G
:E3+21E+2 . C147<16a€22
$3+I2—|—2 . C47C107<12
et fr+2 700
e +a?+2w4+1 (¢
$3+2£L‘2—|—1 . C177C237C25
IL’3+21’2+$—|—1 . CS’C157<19

w? 20 +20+2 0 5,00, ¢

Let C' be the 3-ary cyclic code of length 26 with the generator polynomial
g(x) = (x + 1)(z +2) (2 + 22 + 2)(2® + 2° + 2z + 1) (2® + 22° + 1)(2° + 22° + 22 + 2)
Arguing as above, we obtain
d(C) >3 —32—(3-1)-(5—1)32""

>9.

12



For the same code, the BCH bound yields d(C') > 6 since there are 5 consecutive powers
¢ .., ¢* in Z(C). This time the BCH bound performs better than Wolfmann’s
bound.

1.3 Permutation Polynomials Over Finite Fields

Definition 1.20. A polynomial f € F,[z] is said to be a permutation polynomial if the

associated function f : ¢ — f(c) from F, into F, is a permutation of FF,.

The following statement characterizes permutation monomials. The proof is imme-
diate.

Proposition 1.21. The monomial z™ is a permutation polynomial of ¥, if and only if
ged(n,g — 1) = 1.

Permutation polynomials other than monomials are not as easy to find. We will
use the following theorem of Zieve ( [7], Theorem 1.2) in the next chapter. Note that

paq denotes the set of d* roots of unity in the algebraic closure of F,.

Theorem 1.22. Let d,r be positive integers and d|(q—1). Assume that ¢ = qi* satisfies
q = 1 (mod d) and dlm. Let h € Fylx]. Then f(z) := 2"h(z@=V/9) permutes F, if
and only if ged(r, (¢ — 1)/d) =1 and h has no roots in pg.

We need the following lemma and corollary in order to prove this theorem.

Lemma 1.23. Let d,r be positive integers with d|(q¢ — 1), and let h € F,lx]. Then
f(x) := 2" h(x@=V/4) permutes B, if and only if both

(1) sed(r, (g — 1)/d) = 1 and
(2) z"h(z) V9 permutes .

Proof. (=) Let (¢ —1)/d = s. Firstly, we want to show that if f permutes F, then
ged(r, s) = 1. Let 3 € u, be a primitive s root of unity and assume that ged(r, s) =
k > 1. Then we have

f(B%x) = B f(x) = f(),
unless k = 1, ¥ # 1. Hence we obtain f(3%z) = f(x) with 3%z # . Therefore f is

not one-to-one and this contradicts the assumption that f permutes F,.

Observe that
e F, — pa

S

(1.8)

T = T
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is a multiplicative homomorphism since (%) = 2971 = 1. We have Ker(p) = {z €
Fy | 2® =1} = ps, and hence
I, [ s = fhg.

In particular, pg = (IF})*. Set g(x) = 2"h(z)* and note that for v € 14, we have

9 =7"h(y)* = h(y)T ! =1, (1.9)

unless () = 0. Let v = 6° for § € F}; and note that if h(y) = h(6°) = 0, then f(0) =0
for § # 0. However, f(0) = 0 as well, and this contradicts the assumption that f
permutes F;. So, h(y) # 0 for any v € yg and by (1.8), g sends piq to puq.

It is left to show that g permutes py. We have f(z)® = 2" h(2®)* = g(2°) and since
f(z) takes all values in I} then g(2°) = f(x)* also takes all values in (F})® = uq. Hence
g(x) is onto on puyg.

(<) Note that

f(a,/,)s — xTSh($S)S — g(ws)

Hence, Im(f(x)®) = Im(g(2®)). Since (F})® = pq and g permutes ji4, we obtain that
Im(f(x)®) = pg. This implies that Im(f(z)) consists of the st roots of elements in jig
and there are ds = ¢ — 1 such roots. Hence, |Im(f(x))| = g — 1, which means f is a

permutation polynomial of F,. L]

Corollary 1.24. Choose d,r,n > 0 with d|(¢ — 1), and let h € Fy[z]. Assume
h(¢) 4 D/d = (" for all ¢ € pg. Then f(x) := a"h(x9=Y/Y) permutes F, if and only if
ged(r +n,d) = ged(r, (¢ —1)/d) =1

Proof. (=) Suppose f(x) := 2"h(z(%~V/4) permutes F,. Then by the above lemma we
know that ged(r, 1) = 1. We also know by the same lemma that g(z) = 2"h(z)

permutes 4. By assumption, we have

9(¢) = ¢"h(¢)* = ", for any ¢ € pg.

So, for g(x) to permute ug we must have ged(r +n,d) = 1.
(<) It is enough to show that g(z) = a2"h(x)® permutes uq. Let ¢ be any element
in pg. Then g(¢) = ("h(¢)* = ("™ permutes pq since ged(r +n,d) = 1. O]

Now, we can prove Theorem 1.22.
Proof of Theorem 1.22. (<) Since qp = 1 (mod d), we have

d—]_ d—1 '
D =N g =gl g +1=0 (mod d). (1.10)
=0

qgo—1

1+1+4...+1=d.1

Since d | m, we can write m = de, for e € Z*. Then,
e—1)d e—2)d
@ —l=q—1=(gf — D "+ "+ +p+1)

14



Hence, (¢gd — 1) | (g5 — 1) = ¢ — 1 and this implies (¢¢ —1)/d | (" —1)/d = (¢ — 1)/d.
We know (qo — 1) | (¢g¢ — 1)/d follows from (1.10). Then the hypothesis d | (g — 1)
implies d | (¢ — 1/d). Since ged(r, (¢ — 1)/d) = 1, this yields ged(r,d) = 1.

Let ¢ € pg. Since d | go — 1, we have (*~! = 1. So (% = ¢ and this means ¢ € F,.
Therefore, we conclude that h(¢) € F,. Now, suppose ( is not a root of h(z). By
previous computations we know (go — 1)|(¢ — 1)/d, which yields h(¢)l@~V/¢ = 1. By
Corollary 1.24 with n = d, we have k()@ V/4 = (4 = 1 for every ¢ € pq. Also, we
have ged(r,d) = 1. Then ged(r + d,d) = 1 and the result follows from Corollary 1.24.
(=) It follows from Lemma 1.23 that ged(r, s) = 1. The same lemma also implies that
g(x) = 2"h(z)® permutes p4. Suppose that h(y) = 0 for some v € py. Then,

9(v) =~"h(7)* =0,
which contradicts the permutation property of g(z). So, h can not have a root in .
Example 1.25. Let ¢ = 64 and ¢ be a primitive element in Fgq which is a root of
2°+2* +2° + 241 (minimal polynomial).

Consider qo = 4 and m = 3 in Theorem 1.22. It is easy to see that d = 3 since d
should satisfy d|3 and also 4 = 1 (mod d). Now we need to select h(z) € Fy[z] such
that h has no root in uz = {1,&%,£%2}. The polynomial h(z) = 2% + x + £ satisfies
this condition. If we pick r with ged(r,21) = 1, then by Theorem 1.22 we obtain the

following 36 permutation polynomials over Fg, :

56'43 —|—$22 +£21.I' 3743 +€21Z’22 T 5211,43 +SC22 T

$44 _|_$23 +£21$2
.Z'46 +$25 +£21$4
1’47 +x26 +£21$5
{L‘50 +ZE29 +€21$8
{L‘52 +ZL‘31 +§21[E10
I53 + {L‘32 4 §2IZL’H
.7355 _|_$34 +§21x13
$58 _|_$37 +£21$16
1'59 +Q?38 +£21$17
$61 _|_$40 +£21$19

[L’GZ _|_$41 +521$20

1,44 +€21x23 —|—.T2
.’13'46 —|—£21£E25 +$4
1,47 +€211L'26 —|—{l§'5
1,50 + 5211,29 + {L‘S
£L‘52 _’_5211,31 —f—ZElO
I53 +§21$32 +ZEH
1355 +£21.Z‘34 +ZE13
.],’58 +£21$37 —|—l‘16
.1'59 +§21£C38 +3717
.7761 +£21$40 +$19

[L’62 —|—£21$41 +$2D
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5211,59 4 56'38 4 1'17
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2

Improvements on Wolfmann’s Bound

In this chapter we use permutation polynomials to modify Artin-Schreier curves related
to weights of codewords in cyclic codes. Our hope is to lower the genus of the related
curves, improve the Hasse-Weil bound and hence improve the Wolfmann’s minimum
distance estimate in some cases. We carry out some experiments using the computer
algebra software Magma [1]. Section 1 explains the method and presents an example
in which the related Magma code is provided Section 2 has some examples where the

performance of the method is given. We finish with concluding remarks in Section 3.

2.1  Substitution / Reduction Method

Let C' be a g-ary cyclic code of length n = ¢™ — 1. For a primitive element o of Fym,
let
BZ(CF) = {a™,...,a"},

where 0 < i1 < ... < i,. Then, an arbitrary codeword ¢ € C' has the form

c= (Tr(Mz" + ...+ \a™)) (2.1)

xe]FZm

for some Ay, ..., Ay € Fym. (cf. Theorem 1.16). Recall that the weight of ¢ is related to
the Artin-Schreier curve defined by

Yl —y = Ma" + .+ At (cf. (1.5) and (1.6))

Moreover, Wolfmann’s bound (Theorem 1.18) estimates the weight w(c) in terms of

the degree i, of the polynomial
fo(z) =M™ + .+ A, (2.2)

If p(x) € Fym[z] is a permutation polynomial with p(0) = 0, then p(z) permutes the
elements of ... Hence, if we substitute p(z) in place of x in the trace representation
(2.1), the resulting vector of length n will be different than ¢ but its weight will be the
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same as w(c). What we do by this substitution is nothing but shuffling the coordinates
of c.

Let us denote the polynomial f. (p(x)) by f.(z). Clearly deg f.(x) > deg f.(z) if
degp(z) > 1. Let f.(z) be the polynomial obtained from f.(z) by reduction modulo
2™ — 1. Note that the value sets of f.(z) and f.(z) are identical on [}, Therefore, the

vector

7= (Tr(70) e,
also has the same weight as ¢. Hence one can estimate the weight of the codeword
¢ € C by the degrees of f.(z), f.(z) and f.(z). Our hope is that after this reduction,
we get

deg ﬁ(aj) < deg fc(x),

hence Wolfmann’s estimate for w(c) gets better. If such a decrease in degree can
be achieved for the trace representation of each codeword ¢ € C', then the minimum
distance of the code d(C') can be estimated by a better lower bound than the original
bound. We call this method the substitution - reduction method.

Let us present this idea by using the following example.

Example 2.1. Let ¢™ = 2% and n = 63. Let o be a primitive element of Fgy. Irre-

ducible factors and corresponding roots for 2% — 1 are as follows :

z+1 1

22 4+x+1 oot a2,

P+l : o al® o’

P L o o5,

26441 L 08, a0, a7 a0 o3 a0
PR a7, ot a2 0 049 056
St 441 : a0, ob b b (2.3)
P+t +1l 0 0?0t b alf 0,
PR a2, 02 o1 16 058 58
D42+ 22+ +1 0 ol a?? a®, o, o, ™,
S+ +241 a0, 0P, o, a2,
St 41 ol a2 o ot 052
2+t 22 +1 0 od 0l at? a0 a3 o

Let C' be the binary cyclic code of length 63 whose dual’s generator polynomial is

h(z) =2 +2* + 2% + o + 1.

17



This implies that for ¢ € C', we have

c = (Tr(Az")) (2.4)

2€Fg,
for some A € Fgy. With our notation before this example,
fo(z) = \a'.

In Example 1.25, we listed some nonmonomial permutation polynomials of Fgs which
are obtained from Zieve’s result. We try each of these permutation polynomials p(z)

in our substitution and obtain
fe(@) = fo(p(2)) (mod 2% — 1),
For each f.(x) of deg(f.(z)) =15 (i.e. A # 0), the permutation polynomial
p(x) = 2% + 2% + o 2! € Fgy[7]

yields f.(z) with
deg(fe(w)) = 3 < 15 = deg(f(x)).

Hence, for all nonzero codewords ¢ € C', Wolfmann’s estimate for the weight becomes
w(c) > 64 —32— (3 —-1)2%!
=32-28
=24

With the original trace representation (2.4), we had

w(c) >64—32—14-4

= -2

for all nonzero codewords of C'. Hence, substitution/reduction method enables us to

conclude
d(C) > 24.

The Magma code that we use to obtain nonmonomial permutation polynomials of
Fgs in Example 1.25 and to implement substitution/reduction in this example is given
below. Part I of the code determines the permutation polynomials and Part II applies

substitution / reduction.

18



Fq:= GF(q,m); for a,b in Fq do;

R < x >:= Polynomial Ring(Fq); fi=func<z|axx? +bxxl® >;
e := PrimitiveElement(Fq); d := deg(f(x));
n:=qm—1; u = [a, b];
i :=0; P :=0;
S:=1] for 4 in [1..1] do;
I:=ideal < R| 2™ —1>; pi = S[i];
Q <y>=R/L z:= f(pi); i
F:=map<R—Q|z:— x>; redz := F(z);

k := deg(redz);

h:= func < x| z% + 2+ 2! >;
if k It d then;
g := h(z*");
d:=k;
for r in [1..n] do;
, P = pi;
if ged(r, 21) eq 1 then;
end if;
=1+ 1;
I end for;
m:= (z") * g;
i = F ;
% (m) if d It deg(f(x)) then;
A d( S, s;);
ppend( S, si) Write(” outcome.txt”, f(x));
end if .
Write(” outcome.txt”, deg(f(z)));
end for; .
Write(” outcome.txt”, P));
1:=18|; Write(” outcome.txt”, d);
end if;
end for;

2.2 Examples

We use the substitution / reduction method on certain cyclic codes defined over Fo, F3
and F5. The length of our codes are determined by the extensions of the fields in which
we can find permutation polynomials provided by Zieve’s result (Theorem 1.22). We
use both monomial and nonmonomial permutation polynomials in the examples. The
codes we present have duals with 1 or 2 elements in the basic zero set so that the trace
representations contain only 1 or 2 terms and, hence, the computations are feasible.
In the tables, we present the codes by the polynomial f(x) that appear in their
trace representations (cf. (2.2)). Note that these polynomials also describe the basic
zero set of the dual codes. The polynomial obtained after substitution / reduction is

denoted by f(x) as in Section 2.1.

Cyclic Codes over [, of Length 63:
Let o be a primitive element of F},. The irreducible factors of 2% — 1 over Fy were
listed in Example 2.1. Monomial pemutations of Fg, are obtained by Proposition 1.21

and Zieve type permutations of g4 were listed in Example 2.1.
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Case 1 :One Basic Zero for the Dual Code

’ ‘ Zieve polynomial ‘ deg(¥) ‘ monomial ‘ deg(f) ‘

Cy: f(x) = x?7 | 247 + 226 + 2125 9 b 9

Co: f(z) = Aa'® | 259 + 238 4 21217 3 217 3

Cs: f(z) = Aa?3 - - xtl 1

Cy: f(z) = A3t - _ 261 1

Cs: f(z) = \a13 - - x34 1

Cs : f(z) = A\ - - x38 1
Table 1

For the code C}, whose dual’s basic zero set is BZ(C{) = {a®"} and the dual

generator polynomial is h(z) = 2% + 22 4+ 1, Wolfmann’s bound is
d(Cy) > 32— 26 - 4.

Since the right-hand side is negative, this estimate is useless. After substitution/reduction

by the polynomial 247 4+ 226 4+ o'z and by the polynomial z°, the degree of the re-

sulting polynomial f(a:) in the trace representation decreases to 9. Hence, Wolfmann’s
bound becomes

d(Cy) >32—8-4=0.

Let us note that there are other monomial and Zieve permutation polynomials that

lower the degree to 9 but we do not write them in the table. Although we achieve the

aimed decrease in the degree, the new Wolfmann bound is not useful either.
Wolfmann’s bounds for the other five codes before and after substitution/reduction

are as follows :

’ ‘ before ‘ after ‘
Ca | d(C2) > —24 | d(C2) > 24
Cs | d(C3) > —56 | d(Cs) > 32
Cy | d(Cy) > —88 | d(Cy) > 32
Cs | d(Cs) > —16 | d(C5) > 32
Cs | d(Cs) >16 | d(Ce) > 32

Table 2

Observe that the Zieve permutation does not yield any decrease in deg(f) for Cs,
Cy, C5 and Cg whereas monomial permutations do.

Note that Table 1 also implies that codes Cs, Cy, C5 and Cy are all equivalent to
the binary cyclic code C' of length 63 whose dual’s basic zero set is BZ(Ct) = {a}.

Hence, these codes are also equivalent to each other.
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Case 2 : Two Basic Zeros for the Dual Code

’ ‘ ‘ Zieve polynomial ‘ deg(f) ‘ monomial ‘ deg(f) ‘

C1: f(x) = Mx? + X222t | A\ #0, 2 #0 | 252 + 231 + 21210 21 z10 21
A #0,22=0 252 4 31 4 21410 9 z° 9
AL =0,M2 #£0 - -

Co: f(x) = \x?" + X2z | A\ # 0,22 #0 | 27 + 226 + o21ab 12 x® 12
M #0222 =0 | 2% +220 2145 9 xd 9
A =02 #0 | 259 4238 4 21217 3 x17 3

Cs: f(z) = a3t + 222 | M1 #0,X2#0 - - x*3 10
M #0,A2=0 - - 261 1
M =022 #£0 § -

Cy: flx) = Mx?" + 22223 | M1 #0,X2#0 - - 47 10
M #0,X2=0 | 2% 4220 42145 9 xd 9
A1 =0,X2#0 - - a1l 1

Table 3

For Cy, the dual has BZ(Cy) = {a'®,a*"} and h(z) = (2% + 2 + 22 + 2 + 1)(2® +
x? + 1). The codewords with both Aj, Ay nonzero in the trace representation have
corresponding polynomials with the degrees lowered to 12 after sunbstitution/reduction
with Zieve and monomial permutation polynomials. Polynomials corresponding to
(A # 0,Ay = 0) and (A; = 0, Ay # 0) reduce to degrees 9 and 3, respectively, with
both types of permutation polynomials. Since we should take the maximum degree

into account in Wolfmann’s bound (cf. Theorem 1.18), we conclude
d(Cy) > 32 —26-4 = —48.

before substitution/reduction and
d(Cy) >32—11-4=—12.

after substitution/reduction. So, our improvement in degrees do not yield anything
useful for the minimum distance estimate.

The same is the case for the remaining 3 codes, i.e. we are able to lower the
polynomials degrees but the improvement is not good enough to say anything useful
about the minimum distances. Therefore, we do not write a table for Wolfmann’s

bound in these examples.

Cyeclic codes over F3 of length 80:
Let 3 be a primitive element of ;. Irreducible factors of 2% — 1 and the corre-

sponding roots over 5 are listed below.
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rx+1

T +2

z2 +1

22+ x+2

22 42+ 2

xt +z+2

zt 4+ 2242

xt + 2242

2t + a2+ r+1
zt+ 2?42 +1
xt 4222 42

xt 423 42

zt 4’ 42041
a4 22 4+1

Zieve type permutations

1’41 —|—5101‘

1743 +610$3
11747 +510[E7
.T49 +510$9
I‘51 +ﬁ10l’11
.T53 +B10$13
1'57 +510$17

.1'59 4 510$19

,320, 560

BSU, ﬂ70

510’ 530
6537/871)ﬂ773 679
61376317/6371 639
ﬁ257 5357 6657 ﬁ75
1322, ,634, 5387 ﬁGG
,326, ﬂ62, 6747 ﬁ78
5575157 6457/355
641:643, 5497 /367
647/6121 6287/636
614,542,,@467 ﬁ58

I‘Gl _|_510$21
$63 +510x23
ZL’67 +510$27
ZE69 +610x29
x?l +610x31
.T}73 +510$33
1'77 +510£C37

.1'79 +510$39

4+ a3+ a2+ +1

zt+ a3+ 22+ 242
z* + 2% 4 222 + 22 + 2

xt 223 4+ 2

xz* 4223 42
x4 + 223 42
4 + 223 4+ 2
xt 4223 4+ 2

2t 423 4z +1

2t + 223 422 +1

zt 4228 4?42
xt 4+ 223 + 22 + 22+ 1
x4 223 4222 + 2+ 2

of [Fg; are as follows :

Case 1 : One Basic Zero for the Dual Code

5101‘41 +

510$43 +$3
510:):47 +ZL’7
510x49 +[L’9
ﬁloljl +LL’11
5103753 +.T13
5103357 +Z‘17

510$59 4 le

ﬂlG7 63275487564
5775217ﬁ297 B63
ﬁ17,,3517559,ﬁ73
ﬁ,ﬁ3,,89,527
,8,53,,39,ﬂ27
B,ﬂ?’w@g,ﬂ27
ﬁ,ﬂ?’, 697/627
57537/697527
544“352”668,576
ﬂQ,ﬁG, 518,ﬂ54
ﬁ237 ,847, ﬁGl’ 669
,38,524,ﬂ56, /372
6117 61975337/657

510$61 +$21
5101E63 +$23
510x67 +ZE27
BIOZEGQ +ZL’29
ﬁle'?l —|—l’31
5103373 +I33
5105C77 +Z’37

510$79 +$39

‘ Zieve polynomial ‘ deg(f) ‘ monomial ‘ deg(f) ‘

Cr:f

44 241 + 51050

4 xll

4

Cay: f

_ A1

_ 237

(

(
Cs: f(x

(

- z7

1
2
1

Table 4
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We list the performance of Wolfmann’s bound before and after substitution / re-

duction below.

’ ‘ before ‘ after ‘
Cy | d(Cy) > —204 | d(Cy) > 36
Co | d(Co) > —186 | d(Cy) > 54
Cs | d(C3)>—96 | d(C3) > 48
Cy | d(Cy)>-T78 | d(Cyq) > 54
Table 5
Case 2: Two Basic Zeros for the Dual Code
’ ‘ ‘ Zieve polynomial ‘ deg(f) ‘ monomial polynomial ‘ deg(f) ‘
Cr: f(z) = A1x3 4+ X225 | A1 £0,X2 #0 277 4 p1037 45 77 5
A #0,A2=0 277 4 p10g37 41 x77 1
A =022 #0 — - z13 5
Co: f(x) = Mx® 4+ X220 | A\ £0,X2 #0 7T 4 51037 42 277 2
A #0,A2=0 277 4 p10g37 41 x77 1
A1 =0,22#0 - _ 237 2
Cs: f(x) = M0 + X220 | Ay #£0,M2 #0 | 253 + g10213 — 241 4 3104 10 - -
AL #0,A2=0 - - z!3 10
A =0, #£0 - - - R

Table 6

Here is the table showing Wolfmann’s bounds for these codes.

|| before [ after |

Cq d(C1) > —258 d(Cl) > 30
Co | d(C2) > —258 | d(C2) > 48
Cs | d(C3) > —240 | d(C3) >0

Table 7

Cyclic Codes over [; of Length 624:

624

The irreducible factors of £°* — 1 over F5 are listed below.
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z+1

z2 42

22 + 22+ 3

22 +4x+1

zt 4+ +4

zt + 2242

2t + 224 3x 42

zt 4222 420+ 1

% + 322+ 3

x4+ 322+ 4z +3

z* + 422+ 22+ 1

zt + 2344

2t 4+ 23+ 3z +2

4+ a3+ a2+ +3
zt b 42?4442
2t + a3+ 202 + 20+ 1
x* + 23+ 322+ 1

x + 23 4+ 322 + 4z + 4
2t + 23+ 4x? + 4z 41
2ttt 444

zt 4+ 223 4+ 40 42
223 422 43z +1
x4+ 223 + 222+ x4+ 1
xt +223 + 322 4+ x4+ 1
z* +22% 4322432 +3
x4+ 228 + 422 422 + 2
zt 4+ 323 +4

% + 323 + 3z + 2

2t + 323 + 22+ 20+ 1
x4+ 323 + 222 + 1
x4+ 323 4222 44+ 1
z* + 328 4322 422 +3
x4 4+ 323 4+ 422 + 1

x4 4+ 323 4+ 422 + 32 + 2
zt 42 4z 42

xt + 423 + 4 +3

x* +4a3 + 22 + 3z + 4
zt +4a8 4222 4+ 4
x4+ 428 4+ 222 4+ 4o + 2
xt + 423 4+ 322 + x4+ 2
zt +4ad 442 1

T+ 2

z2+3

2+ 22 +4

22 +4x+2

xt + 22+ 4
241
zt+22+3z+3

zt + 222 4204+ 3

xt + 322+ +1

xt + 422 + 2

x* + 422 + 3z + 1
zt+ad+a+3

zt+ a3+ +1

4+ a3+ 22 +a+4
xt 28 4222 42

x4+ 23 + 222 + 22 + 2
x4+ 23+ 322 +3
a3 4z + 2

x4+ 23 + 422 + 42+ 3
24 4223 + 22+ 1

zt 4223 4 22 42

zt + 223 422 + 3z +4
xt + 223 + 222 + 22+ 2
x4+ 223 + 322 4z + 2
x* 4+ 228 + 322 + 4 + 4
z* +22% 4422 + 32+ 3
zt + 323 4z +2

x* +323 + 42 +3

xt + 323 + 22 + 20+ 4
x* + 323 + 222 4+ 3
2%+ 323 + 322 + 2

x* +32% + 322+ 3z + 4
x4 + 323 + 422 + 2+ 3
xt 4+ 323 4+ 422 + 42 + 4
zt + 423 4+ 20 42

ot +4a3 + 22+ 1

x* + 423 + 2% + 42+ 3
x4+ 428 4222 422 + 4
xt + 428 4222 442 + 3
xt + 423 + 322+ + 4
xt + 42 4 422 + 2 + 3

z+3

2?2+ x+1

2 +3x+3

xt +2

x* +3x+4

xt + a2 420 +2
2+ 22 442+ 1

zt 4222 + 3z + 1

z* +322 +z+3

xt +4a? 4+ 2

xt + 422 + 4o+ 2

zt+ 23420 +3

zt + 23 +dx +2

zt + a3+ 22 +2x+4
xt 4 xd 4222 42
xt + a3+ 222 + 3z + 4
xt + a3+ 322+ 20+ 1
at + a3 4?41
x4+ 223 44

2 4+ 223 + 22 + 2

at 4223 42 22+ 1
x4+ 223 4222 + 1

xt + 223 + 222 + 22 + 4
x* + 223 + 322 + 22 + 4
xt 4+ 228 + 422 + 1

xt + 228 + 422 + 3z + 4
x* +323+22+3

x4+ 323 4 4z 44

xt + 323 + 22 + 30+ 1
x* + 323 + 222 + 3z + 2
x* + 323 + 322+ +4
ax* + 328 + 322 + 4+ 1
x4 + 323 + 422 + 22+ 3
xt 4423 + 4

xt + 423+ 32 +3

xt +4ad + 22 x4 2
xt +4ad + 22 +4x + 4
x* +4a% 4222+ 3z + 1
x* + 428 + 322 + 1

xt + 423 + 322+ 3z + 1
x4 4a3 4 422 F 4+ 1

r+4

24z +2

2 +3x+4

z* +3

x* +4x+4

zt+ 22422 +3

z? + 222 4+ 3

x* +222+3z2+3

x4+ 322 442+ 1

xt +4x2 +x+3

xt + 422 + 4 +3

zt + a3 420 +4
zt+ad 4?41

xt + 23+ 22 +3x+3
zt + a3+ 222 +x+3
ot + 23+ 222 + 4z + 4
x4+ 23 4+ 322 + 4z + 2
at + a3 4’ x4
zt + 228+ +3

z* + 223 +3z+3

xt 4223 + 22 422+ 3
x4+ 223 4222 + 3

xt + 223 + 322 + 2

x* + 223 + 322 + 3z + 2
xt + 228 + 422 4+ 4
xt + 228 + 422 + 42+ 3
x* +323 + 32+ 1

xt + 323 + 22+ 2

xt + 323 + 22 + 325+ 3
x* + 323 + 222+ 3z +4
x* + 323 + 322 + 22+ 2
x* + 328 + 322 + 4 + 2
x4+ 323 + 422 + 22+ 4
zt 4 4x3 x4+ 1

x4+ 423 + 3z 4+ 4

xt + 423 + 22+ 20+ 3
x* + 4a% + 222 + 2

x* +4a% + 222 + 3z + 2
xt + 423 + 322 + 3

ot + 423 + 422 4+ 2

xt 4+ 43 + 422 + 42 + 4

Monomial permutations of Fgo5 are obvious and Zieve type permutations of Fgos

are listed below:
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21:313 ta

2x317 5

+ x

2xBIQ 7

+ x

23:323 + xll

23:329 + x17

23:331 + x19

23:335 + 123

239337 + ac25

239341 29

+ x

2z343 31

+ x

2z34’7 35

+ x

2z349 37

+ x

2z353 + z41

2z355 43

+ x

47

2x + x

21361 + 1;49

21:365 + z53

2zi?»G’T

2$371 + z"

21:373 + 1;61

21:379 67

—+ x

21:383 71

+ x

22385 + 173

22389 T

+ x
2:1:391 + 179
2:1:395 + :ESS
21‘397 + x85
2:113401 + 7)89

2:12407 + x95

29:409 + x97

23:413 + xlOl

-
23:410 + ac103

233419 + ac107

239421 109

+x

21425 113

+ x

427 115

2x + x

2z431 119

+x

433 121
x

2z +

437 125

2x + x

21439 127

+ x

443 131

2x + x

21;445 + z133

21449 137

+x

5 E
2$4o1 + z139

457 145

2x + x

2z461 149

—+ x

21:463 + z151

22467 + 1155

2£v469 + w157

21473 161

+ x

2:1?475 + mlGS

2x479 + :19167

2x485 + x173

233487 + 1175

233491 + x179

22:493 + xlSl

233497 185

+x

22:499 187

+x

23:505 193

+x

21509 197

+x

2z511 199

+x

2z515 + 1203

23:587 275

21589 277

+x

2z593 281

+x

59 283
T

5

2z

599 287

2z x

21601 z289

60

o

+ o+ + o+ o+ o+ o+ o+

2% z293

5 5
21607 ZQQO

2:0613 z301

21617 z305

2z619 z30’7

2z623 1311
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313
x
317
x
319
x
323
x
329
x
331
x
335
x
337
x
x341
343
x
347
x
349
x
353
T
355
T
359
T
361
T
365
x
367
T
371
x
373
x
379
x
383
x
385
x
389
x
391
x
395
x
397
x
401
x
407
x
409
x
413
x
415
x
419
x
421
x
425
x
427
x
431
x
433
T
437
T
439
T
443
T
445
T
449
T
451
T
457
T
461
T
463
T

467
x

+ 2z
+2z°
—+ 2:197
4 oogl!
42217
1 o2g19
12423
42425
12229
4 2231
10438
12437
TP

+ 2143

+ 2147

+ 2$49
+ 2153
+ 2155
+ 2159

+ 2z61

+ 2z67

Pl
4 2s73
42277
4+ 2270
4 2453
4 2455
42289
4 2495

42297

+ 21101

+ 2‘,‘EIOB

+ 2x107

+ 2$109

+ 2z113

+ 2z115

+ 2z119

+ 2z121

+ 21125

+ 2112’7

+ 21:131

+ 2z133

+ 21:137

+ 2z139

n 2z145

+ 2z14'9

+ 21:151

+ 21:155

469
x
473
x
475
x
479
x
485
x
487
x
491
x
493
x
1497
499
x
503
x
505
x
509
x
511
x
515
x
517
x
521
x
523
x
527
x
529
x
535
x
539
x
541
x
545
T
547
x
551
x
553
x
557
x
563
x
565
x
569
x
571
x
575
x
1:577
581
x
583
x
587
x
589
x
593
x
595
x
599
x
601
T
605
x
607
x
613
x
617
x
619
x

623
x

n 2x157

n 2x161

+ 2.7?163

+ 2w167

+ 23:173

+ 2:):175

+ 23:179

+ 2‘7:181

+ 22:185

n 22:187

+ 2z191

n 2z193

+ 2z197

n 2z199

n 21203

+ 21205

+ 21209

+ 21;211

+ 212215

+ 2z217

+ 22223

+ 22227

n 21:229

n 21:233

n 21235

n 2x239

n 2x241

+ 23?245

+ 2w251

+ 2x253

+ 2:):257

+ 232259

+ 22:263

+ 22:265

+ 22:269

+ 21271

n 2z275

+ 2z277

+ 2z281

n 21283

+ 21287

+ 21289

n 21293

+ 2$295

+ 212301

+ 22305

+ 22307

n 21:311



Case 1 : One Basic Zero for the Dual Code

‘ Zieve polynomial ‘ deg(f) ‘ monomial poynomial ‘ deg(f) ‘

C1: f(x) = \abt 22361 4 249 16 %9 16
02 . f(:l?) — )\I474 2I443 +SC131 6 SC79 6
03 . f(ac) — )\%242 2m517 + Jj205 2 $49 2
04 . f($) — )\$212 21,365 +$53 4 $53 4
05 . f(.’L') — )\m374 2m463 +1.151 2 .CB307 2
Ce : f(z) = 108 27341 4 729 12 z29 12
07 . f(CC) — )\I222 2:0409 + 1‘97 6 I149 6
CB . f($) — )\117164 2$449 +$137 4 1‘137 4
Cg . f(l‘) — )\.1’56 2.1’379 +.7367 8 $67 8
Cio : f(z) = Az30 27347 4 235 12 z35 12
Ci1 @ f(x) = X368 22329 4 217 16 27 16
012 . f(x) — )\CE158 21:547 +CC235 2 5679 2
Table 8
Wolfmann’s bound for these codes are as follows:
’ ‘ before ‘ after

Cy | d(C1)>—-760 | d(Cy) > 200

Cy | d(C2) > —8960 | d(C3) > 400

Cs | d(C3) > —4320 | d(C3) > 480

Cs | d(C4) > —3720 | d(C4) > 440

Cs | d(Cs)>—6960 | d(Cs)> 480

Cs | d(Ce) > —1640 | d(Cs) > 280

Cr | d(C7) > —3920 | d(C7) > 400

Cs | d(Cg) > —2760 | d(Cg) > 440

Co | d(Co)>—600 | d(Co)> 360

Cio | d(Cio0) > —200 | d(Cio) > 280

Ci1 | d(C11) > —5840 | d(C11) > 200

Ciz | d(Cir2) > —2640 | d(C12) > 480

Table 9

Case 2 : Two Basic Zeros for the Dual Code

‘ Zieve polynomial ‘ deg(f) ‘ monomial ‘ deg(f) ‘

26

C1: f(x) = M2 + 2225 | A1 #£0,X2 #0 22517 4 5205 16 49 16
A1 #0,A2=0 2z517 4 5205 2 z49 2
A1 =0,X2 #0 2361 4 749 16 z9 16
Co: f(z) = Ax?18 + XaxB2 | A #£ 0,00 #0 2491 4 £179 22 z23 22
A1 #0,X2 =0 22385 4 £73 2 z229 2
AL =0,A2#0 2605 4 5,293 2 z137 2
C3: f(x) = A28 + oz’ | X\ £0,02 #0 27463 4 4151 4 x307 4
A1 #0,X2 =0 27163 4 4151 2 z307 2
A =022 #0 24463 4 4151 4 z151 4
Table 10




Here are the Wolfmann’s bound for these codes.

] et [ et |

Ci | d(C1) > —4320 | d(C1) > 200
Cy | d(C2) > —3840 | d(Cs) > 80
Cs | d(C3) > —6960 | d(Cs) > 440

Table 11

2.3 Conclusions

The examples in Section 2.2 indicate that by the substitution / reduction method, one
can improve Wolfmann’s bound in some cases. Note that if the length of the cyclic
code (equivalently, the extension of the base field) is small, then it is sometimes difficult
to obtain improvements or useful estimates. This was witnessed for the binary cyclic
codes of length 63 whose duals have two basic nonzeros.

There are two constraints that limit the experiments. Firstly, it is not possible to
obtain Zieve type permutation on any finite field. Therefore we restricted our attention
to the cases investigated in Section 2.2. Secondly, if the field size (code length) is too

big then Magma code slows down and we do not get results.
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