
ON THE MINIMUM DISTANCE OF CYCLIC CODES

by

LEYLA IŞIK

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Fall 2010



ON THE MINIMUM DISTANCE OF CYCLIC CODES

APPROVED BY

Assoc. Prof. Dr. Cem Güneri ..............................................

(Thesis Supervisor)

Prof. Dr. Henning Stichtenoth ..............................................

Prof. Dr. Alev Topuzoǧlu ..............................................

Assoc. Prof. Dr. Wilfried Meidl ...............................................

Assoc. Prof. Dr. Albert Levi ...............................................

DATE OF APPROVAL: February 4, 2011



c©Leyla Işık 2011

All Rights Reserved



ON THE MINIMUM DISTANCE OF CYCLIC CODES

Leyla Işık

Mathematics, Master Thesis, 2011

Thesis Supervisor: Assoc. Prof. Dr. Cem Güneri

Keywords: Finite fields, cyclic codes, trace representations, permutation polynomials.

Abstract

Estimation of the minimum distance of cyclic codes is a classical problem in cod-

ing theory. Using the trace representation of cyclic codes and Hilbert’s Theorem 90,

Wolfmann found a general estimate for the minimum distance of cyclic codes in terms

of the number of rational points on certain Artin-Schreier curves. In this thesis, we

try to understand if Wolfmann’s bound can be improved by modifying equations of

the Artin-Schreier curves by the use of monomial and some nonmonomial permutation

polynomials. Our experiments show that an improvement is possible in some cases.



DEVİRSEL KODLARIN MİNİMUM UZAKLIĞI

Leyla Işık

Matematik, Yüksek Lisans Tezi, 2011

Tez Danışmanı: Doç. Dr. Cem Güneri

Anahtar Kelimeler: Sonlu cisimler, devirsel kodlar, iz gösterimleri, permütasyon

polinomları

Özet

Devirsel kodların minimum uzaklıklarını sınırlama, kodlama teorisinin klasik prob-

lemlerinden biridir. Wolfmann, iz gösterimleri ve Hilbert 90 Teoremini kullanarak, de-

virsel kodların minimum uzaklıkları için bazı Artin-Schreier eğrilerinin rasyonel nokta

sayıları cinsinden alt sınır buldu. Bu tezde Artin-Schreier eğrilerinin denklemleri

değiştirilerek Wolfmann’ın sınırının iyileştirilip iyileştirilemeyeceği anlaşılmaya çalışıldı.

Deneylerimiz iyileştirmenin bazı durumlarda mümkün olduğunu gösterdi.



Anneme



Acknowledgements

I would like to express my deep and sincere gratitude to my advisor, Assoc. Prof.

Dr. Cem Güneri, who gave me the opportunity to work in this study. This thesis would

not have been possible without his support and guidance. Also his wide knowledge and

logical way of thinking have been of great value for me.

My special gratitude is due to my family members, especially my parents, for their

loving support throughout this thesis.

I finally thank all my friends at office and dormitory for their kindness and helping

me get through the difficult times.

vii



Table of Contents

Abstract iv

Özet v

Acknowledgements vii

1 Cyclic Codes and Permutation Polynomials 1
1.1 Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Trace Representation of Cyclic Codes and Wolfmann’s Bound . . . . . 6
1.3 Permutation Polynomials Over Finite Fields . . . . . . . . . . . . . . . 13

2 Improvements on Wolfmann’s Bound 16
2.1 Substitution / Reduction Method . . . . . . . . . . . . . . . . . . . . . 16
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 28

viii



1

Cyclic Codes and Permutation Polynomials

We introduce the preliminaries in coding theory and permutation polynomials in this

chapter. Section 1 and 2 introduce cyclic codes and their trace representation. The

trace representation yields a relation with algebraic curves which we outline. We refer

to [4], [5], [2], [6] for further details on cyclic codes and their relation to algebraic curves.

In Section 3, we prove a result of Zieve [7] which will be used to produce permutation

polynomials other than monomials.

1.1 Cyclic Codes

Let Fq denote the finite field with q elements, where q = ps for a prime number p and

a nonnegative integer s. A subset C of Fnq is called a q-ary code of length n. Elements

of C are called codewords.

For x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Fnq , define

d(x, y) :=
∣∣{1 ≤ i ≤ n; xi 6= yi}

∣∣.
The function d defines a metric on Fnq , which is called the Hamming distance. Using

the Hamming distance, we define the minimum distance d(C) of C as

dmin := min{d(x, y)| x, y ∈ C, x 6= y}.

The weight of an element x = (x1, x2, ..., xn) ∈ Fnq is defined as

wt(x) = d(x, 0) :=
∣∣{1 ≤ i ≤ n; xi 6= 0}

∣∣.
Throughout this thesis, we will consider linear codes. This means that C ⊆ Fnq will

be an Fq-subspace. We will use the term “code” for linear codes. The dimension of C

as an Fq-vector space is called the dimension of the code. The length, dimension and

the minimum distance are three important parameters of a code. We denote a code of

length n, dimension k and minimum distance d as [n, k, d] code.

1



Proposition 1.1. For a linear code C, the minimum distance is equal to the minimum

nonzero weight in C.

Proof. It follows from the definitions that w(x) = d(0, x) and that d(x, y) = w(x− y).

Let c be a codeword of minimum nonzero weight. Then w(c) = d(0, c) and since 0 is

a codeword we have dmin ≤ wmin. On the other hand, if c1 and c2 are codewords at

minimum distance, we have d(c1, c2) = w(c1− c2) and since c1− c2 is again a codeword

we get wmin ≤ dmin. Therefore, d(C) is the minimal weight of C.

Definition 1.2. A [n, k]-code C over Fq is called cyclic if (c0, c1, ..., cn−1) ∈ C implies

that (cn−1, c0, ..., cn−2) ∈ C.

It is useful to represent codewords as polynomials. The codeword

c := (c0, c1, ..., cn−1)

is represented by the polynomial

c(x) := c0 + c1x+ ...+ cn−1x
n−1.

Note that this assignment yields a map

ϕ : Fnq → Fq[x]/(xn − 1)

(a0, a1, ..., an−1) 7→
n−1∑
i=0

aix
i

where
n−1∑
i=0

aix
i denotes a coset representative.

Proposition 1.3. ϕ is an Fq-linear isomorphism.

Proof. Let a = (a0, a1, ..., an−1), b = (b0, b1, ..., bn−1) ∈ Fnq and k ∈ Fq. Then we have

the following

ϕ(ka+ b) =
n−1∑
i=0

(kai + bi)x
i

=
{ n−1∑

i=0

kaix
i
}

+
{ n−1∑

i=0

bix
i
}

= k

n−1∑
i=0

aix
i +

n−1∑
i=0

bix
i

= kϕ(a) + ϕ(b).

Therefore ϕ is a Fq-linear map. It is easily seen that Ker(ϕ) = {a ∈ Fnq | a0 + a1x +

... + an−1x
n−1} = {0}. This shows that ϕ is one-to-one. Also ϕ is surjective since for

each polynomial with degree less than n there is an n-tuple vector which is obtained

by the coefficients of that polynomial. Hence we have proved our assertion.

2



Theorem 1.4. A linear code C ⊆ Fnq is cyclic if and only if C is an ideal of

Fq[x]/(xn − 1).

Proof. (⇐) If C is an ideal and (a0, a1, ..., an−1) ∈ C, then also

x(a0 + a1x+ ...+ an−1x
n−1) = a0x+ a1x

2 + ...+ an−2x
n−1 + an−1 ∈ C.

This implies (an−1, a0, ..., an−2) ∈ C.

(⇒) If (a0, a1, ..., an−1) ∈ C implies (an−1, a0, ..., an−2) ∈ C, then for every codeword

a(x) = a0 + a1x + ... + an−1x
n−1 ∈ C we have xa(x) ∈ C, hence also x2a(x) ∈ C,

x3a(x) ∈ C, so on. Therefore b(x)a(x) ∈ C for any polynomial b(x); that is C is an

ideal.

Definition 1.5. If C is an [n, k] code we define the dual code C⊥ by

C⊥ = {u ∈ Fnq | u · v = 0, ∀v ∈ C},

where · denotes the usual inner product on Fnq .

Note that C⊥ is also a linear code whose dimension is n− dim(C).

Proposition 1.6. If C is cyclic then the dual code C⊥ is also cyclic.

Proof. Note that the shift operator

s : C → C

(c0, c1, ..., cn−1) 7→ (cn−1, c0, ..., cn−2)

on a cyclic code C is a bijection. Let (d0, d1, ..., dn−1) ∈ C⊥. Then,

(d0, d1, ..., dn−1) · (c0, c1, ..., cn−1) = 0, for any (c0, c1, ..., cn−1) ∈ C.

This implies that (dn−1, d0, ..., dn−2) · (cn−1, c0, ..., cn−2) = 0. Since s is a bijection this

means (dn−1, d0, ..., dn−2) is orthogonal to every codeword in C.

Next, we analyze the polynomial representation of a cyclic code. Note that Fq[x]/(xn−
1) is a principal ideal ring. Hence, any cyclic code C in Fq[x]/(xn − 1) has a unique

monic polynomial (codeword) g(x) of lowest degree such that C is generated by g(x)

as an ideal. This polynomial is called the generator polynomial of C. Note that the

generator polynomial g(x) of a cyclic code C of length n must divide the polynomial

xn − 1 in Fq[x]. Hence one can list all q-ary cyclic codes of length n by listing all

possible divisors of xn − 1.

Proposition 1.7. Let C be a cyclic code of length n over Fq with the generator poly-

nomial g(x). If deg(g(x)) = k, then dim(C) = n− k.

3



Proof. Note that

C =< g(x) > = {m(x)g(x) | m(x) ∈ Fq[x] , deg(m(x)) < n− k}
=

{
(m0 +m1x+ ...+mn−k−1x

n−k−1)g(x) | mi ∈ Fq
}

=
{
m0g(x) +m1xg(x) + ...+mn−k−1x

n−k−1g(x) | mi ∈ Fq
}

= spanFq{g(x), xg(x), ..., xn−k−1g(x)}

Since the degrees of the polynomials in the spanning set are different, this set is Fq-
independent. Thus {g(x), xg(x), ..., xn−k−1g(x)} is a basis for C.

Remark 1.8. We will assume throughout that n = qm−1 for some m > 1. This implies

that the polynomial xn − 1 is separable. In particular, the generator polynomial g(x)

of a q-ary cyclic code C of length n is also separable since g(x) divides xn − 1. In this

case, we have dimC = n− k and dimC⊥ = k, where k is the number of roots of g(x).

Note that the cyclic code C̃ of length n whose generator polynomial is xn−1
g(x)

is not C⊥

but it can be obtained from C⊥ by a change of coordinates of codewords (see [4], page

84). In this case, the two codes C̃ and C⊥ are said to be equivalent. Hence the weights

in C̃ and C⊥ are identical.

Let Fqm denote the degree m extension of Fq and α ∈ Fqm be a primitive element.

This means that α generates the multiplicative group F∗qm or equivalently α is a prim-

itive nth root of unity. Note that the roots of g(x) are powers of α. Suppose that g(x)

factors into irreducible polynomials over Fq as

g(x) = mαi1 (x) · · ·mαis (x), (1.1)

where mαij (x) ∈ Fq[x] denotes the minimal polynomial of αij over Fq. In this case, the

other roots of g(x) are obtained from αi1 , ..., αis by raising to qth powers. Namely, the

roots of g(x) are

αi1 , αqi1 , ... , αq
d1−1i1

...

αis , αqis , ... , αq
ds−1is

(1.2)

where dj = deg(mαij ) for all 1 ≤ j ≤ s. It’s clear that the generator polynomial g(x)

of C, hence the code C itself, can be described by listing all the roots of g(x) as in

(1.2) or just one root of each irreducible factor.

Definition 1.9. Let C be a q-ary cyclic code of length n = qm − 1 with the generator

polynomial as in (1.1). Then:

(i) The set Z(C) defined by (1.2) is called the zero set of C,

4



(i) A basic zero set of C is defined by

BZ(C) = {αi1 , αi2 , ..., αis}.

Note that one can write different basic zero sets for C by changing the roots of each

irreducible factor in the generator polynomial.

A classical problem in coding theory is to determine the minimum distance of a

given family of codes. This is in general a difficult problem. Therefore one is also

satisfied if one can find general bounds. In the case of cyclic codes, the following

bound is simple and very well-known.

Theorem 1.10 (BCH Bound). Let C be a cyclic code of length n over Fq and α be a

primitive nth root of unity. If Z(C) contains δ−1 consecutive powers αb, αb+1, ..., αb+δ−2

of α, then d(C) ≥ δ.

We need a well-known fact for the proof of the BCH bound. Let α1, ..., αs be

elements in a field F. The s × s matrix V = [vi,j], where vi,j = αi−1
j is called a

Vandermonde matrix.

V =



1 1 . . . 1

α1 α2 . . . αs

α2
1 α2

2 . . . α2
s

...
...

. . .
...

αs−1
1 αs−1

2 . . . αs−1
s



Lemma 1.11. We have det(V ) =
∏

1≤i<j≤s

(αj − αi). In particular, V is nonsingular if

the elements α1, ..., αs are distinct.

Proof of Theorem 1.10. Let c(x) be a nonzero codeword in C of weight w, and let

c(x) =
w∑
j=1

cijx
ij , cij 6= 0 ∀j.

Assume to the contrary that w < δ. By assumption c(αl) = 0 for b ≤ l ≤ b+ δ − 2,

c(αb) = ci1α
bi1 + ci2α

bi2 + ...+ ciwα
biw = 0

c(αb+1) = ci1α
(b+1)i1 + ci2α

(b+1)i2 + ...+ ciwα
(b+1)iw = 0

...

c(αb+δ−2) = ci1α
(b+δ−2)i1 + ci2α

(b+δ−2)i2 + ...+ ciwα
(b+δ−2)iw = 0.

5



Then we have Au = 0, where

A =


αbi1 αbi2 . . . αbiw

α(b+1)i1 α(b+1)i2 . . . α(b+1)iw

...
...

. . .
...

α(b+w−1)i1 α(b+w−1)i2 . . . α(b+w−1)iw


and

u =


ci1

ci2
...

ciw

 .

Since u 6= 0, A is a singular matrix and hence detA = 0. But detA = α(i1+i2+...+iw)b detV ,

where V is the Vandermonde matrix

V =


1 1 . . . 1

αi1 αi2 . . . αiw

...
...

. . .
...

αi1(w−1) αi2(w−1) . . . αiw(w−1)


Since αij are distinct, detV 6= 0 and this yields a contradiction. 2

1.2 Trace Representation of Cyclic Codes and Wolf-

mann’s Bound

We start by introducing an important function.

Definition 1.12. The map defined by

TrFqm/Fq : Fqm → Fq

a 7→ a+ aq + ...+ aq
m−1

is called the trace map.

We will denote this map simply by Tr unless otherwise stated. It is easy to see

that the trace map is an Fq-linear surjection. The following theorem is important and

will be useful for our purposes.

Theorem 1.13 (Hilbert’s Theorem 90). For m > 1 and a ∈ Fqm, we have that

Tr(a) = 0 if and only if there exists b ∈ Fqm such that bq − b = a.

6



Proof. (⇐) If there exists b ∈ Fqm with bq − b = a then

Tr(a) = Tr(bq − b)

= (bq − b) + (bq − b)q + ...+ (bq − b)qm−1

= bq
m − b = 0, since b ∈ Fqm .

(⇒) Let a ∈ Fqm with Tr(a) = 0 and let b be a root of the polynomial

f(x) = xq − x− a ∈ Fqm [x]

in some extension of Fq. The same calculation above shows that such b is an element

of Fqm .

There are two common ways to construct a code over Fq from a given code over

Fqm .

Definition 1.14. Let D be a linear code of length n over Fqm .

(i) The restriction of D to Fq is defined by

D|Fq : = {c = (c1, ..., cn) ∈ D | ci ∈ Fq for all i}

= D ∩ Fnq .

(ii) The trace code of D is defined by

Tr(D) :=
{(
Tr(c1), ..., T r(cn)

)
| (c1, ..., cn) ∈ D

}
.

Note that both the restriction and the trace codes are Fq-linear. The following

theorem relates these two codes in a nontrivial way.

Theorem 1.15 (Delsarte). For any code C over Fqm, we have (C|Fq)⊥ = Tr(C⊥).

Proof. Let · denote the canonical inner product on both Fnq and Fnqm . In order to prove

(C|Fq)⊥ ⊇ Tr(C⊥) we need to show that

u · Tr(v) = 0 for all u ∈ C|Fq and v ∈ C⊥. (1.3)

Write u = (u1, ..., un) and v = (v1, ..., vn); then

u · Tr(v) =
n∑
i=1

ui · Tr(vi) = Tr
( n∑
i=1

uivi
)

= Tr
(
u · v

)
= Tr(0) = 0.

7



Here we obtained the result by using Fq-linearity of the trace and the fact that u ·v = 0

(since u ∈ C and v ∈ C⊥). Therefore we have proved (1.3). Now we show that

(C|Fq)⊥ ⊆ Tr(C⊥). This statement is equivalent to

Tr(C⊥)⊥ ⊆ C|Fq . (1.4)

Suppose to the contrary that (1.4) does not hold. Then there exists some a ∈ Tr(C⊥)⊥\C,

hence an element b ∈ C⊥ with a · b 6= 0. Since Tr : Fqm → Fq is not the zero map,

there is an element γ ∈ Fqm such that Tr
(
γ(a · b)

)
6= 0. Then we obtain

a · Tr(γb) = Tr(a · γb) = Tr
(
γ(a · b)

)
6= 0.

But also we know a · Tr(γb) = 0 because a ∈ Tr(C⊥)⊥ and γb ∈ C⊥. So we get a

contradiction and this gives (1.4).

Next, we present a trace representation for an arbitrary cyclic code. We denote by(
Tr
(
a(x)

))
x∈F∗qm

a vector of length qm − 1 over Fq which is defined by(
Tr
(
a(x)

))
x∈F∗qm

=
(
Tr
(
a(α0)

)
, T r

(
a(α1)

)
, ..., T r

(
a(αq

m−2)
))
.

Theorem 1.16. Let m > 1 and C be a q-ary cyclic code of length n = qm − 1. Let α

be a primitive element of Fqm and {αi1 , αi2 , ..., αis} be a basic zero set of the code C,

where ij > 0 for all j. Then

C⊥ =
{(
Tr(λ1x

i1 + λ2x
i2 + ...+ λsx

is)
)
x∈F∗qm

| λ1, ..., λs ∈ Fqm

}
.

Proof. We know that C is an ideal in Fq[x]/(xn − 1) and

C =
〈
mαi1 (x)mαi2 (x) · · ·mαis (x)

〉
,

where mαij (x) is the minimal polynomial of αij over Fq, for all j. Let D be the code

over Fqm of the same length with the zero set Z(D) = {αi1 , αi2 , ..., αis}, i.e.

D =
〈
(x− αi1)(x− αi2) · · · (x− αis)

〉
⊂ Fqm [x]/(xn − 1).

Then C = D|Fq and by Delsarte’s Theorem we have C⊥ = Tr(D⊥).

Let d(x) =
n−1∑
i=0

dix
i be any codeword in D. Then we have d(αij ) = 0, for all

j = 1, ..., s. We can also write these equalities by using the usual inner product in

n-space as follows: (
d0, d1, ..., dn−1

)
·
(
1,(αi1)1, ..., (αi1)n−1

)
= 0(

d0, d1, ..., dn−1

)
·
(
1,(αi2)1, ..., (αi2)n−1

)
= 0

...(
d0, d1, ..., dn−1

)
·
(
1,(αis)1, ..., (αis)n−1

)
= 0.

8



By vector representation of cyclic codes, this implies that the following vectors are

codewords in D⊥ :

u1 = (1, (α1)i1 , ..., (αn−1)i1)

u2 = (1, (α1)i2 , ..., (αn−1)i2)

...

us = (1, (α1)is , ..., (αn−1)is).

The generator polynomial of D yields that the Fqm-dimension of D⊥ is s. We want

to show that {u1, ..., us} forms an Fqm-basis for D⊥. Since α is a primitive element

of Fqm , 1, α, αq, ..., αq
m−2 are all elements in F∗qm . So, we can represent each uj in a

different way as follows;

uj = (xij )x∈F∗qm
, j = 1, 2, ..., s

The notation here is similar to the one introduced before the statement of this theorem.

Suppose that
s∑
j=1

δjuj = 0 for some δj ∈ Fqm . This means that

δ1x
i1 + δ2x

i2 + ...+ δsx
is = 0 for all x ∈ Fqm .

Since ij < qm for all j, this is possible if δ1 = ... = δs = 0. This proves that {u1, ..., us}
forms a basis for D⊥. Therefore D⊥ is of the form

D⊥ =
〈
u1, ..., us

〉
=
{ s∑
j=1

λjuj | λj ∈ Fqm

}
,

or

D⊥ =
{

(λ1x
i1 + ...+ λsx

is)x∈F∗qm
: λ1, ..., λs ∈ Fqm

}
Hence,

C⊥ = Tr(D⊥) =
{(
Tr(λ1x

i1 + ...+ λsx
is)
)
x∈F∗qm

: λ1, ..., λs ∈ Fqm

}
.

Consider a codeword c of the cyclic code C in Theorem 1.16.

Suppose that

c =
(
Tr(λ1x

i1 + ...+ λsx
is)
)
x∈F∗qm

for some λ1, ..., λs ∈ Fqm . Set f(x) := λ1x
i1 + ...+ λsx

is . By Hilbert’s Theorem 90, we

have that for any x0 ∈ Fqm with Tr(f(x0)) = 0, there exists y0 ∈ Fqm such that

yq0 − y0 = f(x0).

9



Note that for any a ∈ Fq, we also have

(y0 + a)q − (y0 + a) = yq0 − y0 + (aq − a)

= yq0 − y0

= f(x0).

Therefore, for each x0 ∈ Fqm with Tr(f(x0)) = 0, there exist q distinct y0 ∈ Fqm with

yq0 − y0 = f(x0).

Hence,

w(c) = (qm − 1)−
∣∣{x0 ∈ F∗qm ; Tr(f(x0)) = 0}

∣∣
= (qm − 1)− N−q

q

= qm − N
q

(1.5)

where N denotes the number of solutions (x0, y0) ∈ Fqm × Fqm to the equation

yq − y = f(x). (1.6)

An equation of the form (1.6) is said to define an Artin-Schreier (A-S) curve over Fqm

and N is called the number of affine Fqm- rational points of this curve. Hence, weights

of codewords in C are related to the number of affine Fqm- rational points of members

in the following Artin-Schreier family F consisting of equations of the form

yq − y = λ1x
i1 + ...+ λsx

is

where λ1, ..., λs are arbitrary elements in Fqm .

Theorem 1.17. Let X be an A-S curve over Fqm defined by yq − y = f(x), where

f(x) ∈ Fqm [x] and
(

deg(f), q
)

= 1.

(i) The genus of X is

g =
1

2
(q − 1)

(
deg(f)− 1

)
. (See [2], Example 2.4.)

(ii) (Hasse-Weil). The number N of affine Fqm-rational points of X satisfies

N ≤ qm + 2gq
m
2 . (See [5], Theorem 5.2.3.)

Using the trace representation and the Hasse-Weil Theorem, we obtain the following

bound on the minimum distance.

10



Theorem 1.18 (Wolfmann, [6]). Let C be a q-ary cyclic code of length n = qm − 1

whose dual’s basic zero set is

BZ(C⊥) = {αi1 , · · · , αis},

where α is a primitive nth root of unity and 1 ≤ i1 < ... < is are integers that are

relatively prime to q. Then,

d(C) ≥ qm − qm−1 − (q − 1)(is − 1)q
m
2
−1.

Proof. Let w be any nonzero weight in C. Then by (1.5) and (1.6), we have

w = qm − N

q
,

where N is the number of affine Fqm-rational points of the curve defined by

yq − y = f(x) = λ1x
i1 + ...+ λsx

is . (1.7)

By Hasse-Weil bound

N ≤ qm + 2gq
m
2 .

Hence

qm − N

q
≥ qm − qm−1 − 2gq

m
2
−1.

To estimate the minimal weight (minimum distance), we consider the curve in the form

(1.7) with the largest genus. The largest genus is (by Theorem 1.17 (i))

(q − 1)(is − 1)

2
.

Hence, the result follows.

Example 1.19. Let qm = 25 and ξ be a primitive element of F32. When we factor

x31−1 into irreducible polynomials over F2, we get the following irreducible polynomials

and corresponding roots in F32.

x+ 1 : 1

x5 + x2 + 1 : ξ, ξ2, ξ4, ξ8, ξ16

x5 + x3 + 1 : ξ15, ξ23, ξ27, ξ29, ξ30

x5 + x3 + x2 + x+ 1 : ξ7, ξ14, ξ19, ξ25, ξ28

x5 + x4 + x2 + x+ 1 : ξ5, ξ9, ξ10, ξ18, ξ20

x5 + x4 + x3 + x+ 1 : ξ11, ξ13, ξ21, ξ22, ξ26

x5 + x4 + x3 + x2 + 1 : ξ3, ξ6, ξ12, ξ17, ξ24.

11



Let C be the binary code of length 31 whose generator polynomial is

g(x) = (x5 + x3 + 1)(x5 + x3 + x2 + x+ 1)(x5 + x4 + x2 + x+ 1)(x5 + x4 + x3 + x+ 1).

Then, C⊥ is equivalent to the cyclic code C̃ with the generator polynomial h(x) =

(x+ 1)(x5 + x2 + 1)(x5 + x4 + x3 + x2 + 1), and BZ(C̃) = {1, ξ, ξ3} (cf. Remark 1.8).

Then by Theorem 1.18, we get the following inequality.

d(C) ≥25 − 24 − (2− 1)(3− 1)2
5
2
−1

∼16− 2(2, 8)

∼10, 4.

Hence d(C) ≥ 11. On the other hand we get d(C) ≥ 7 by applying the BCH Bound,

since Z(C) contains 6 consecutive powers ξ18, ξ19, ..., ξ23. So, Wolfmann’s bound per-

forms better than the BCH bound in this example.

Next let qm = 33 and ζ be a primitive element of F27. In this case we have 10

irreducible factors of x26 − 1 over F3 and corresponding roots in F27 as follows:

x+ 1 : 2

x+ 2 : 1

x3 + 2x+ 1 : ζ, ζ3, ζ9

x3 + 2x+ 2 : ζ14, ζ16, ζ22

x3 + x2 + 2 : ζ4, ζ10, ζ12

x3 + x2 + x+ 2 : ζ2, ζ6, ζ18

x3 + x2 + 2x+ 1 : ζ, ζ3, ζ9

x3 + 2x2 + 1 : ζ17, ζ23, ζ25

x3 + 2x2 + x+ 1 : ζ5, ζ15, ζ19

x3 + 2x2 + 2x+ 2 : ζ8, ζ20, ζ24

Let C be the 3-ary cyclic code of length 26 with the generator polynomial

g(x) = (x+ 1)(x+ 2)(x3 + 2x+ 2)(x3 + x2 + 2x+ 1)(x3 + 2x2 + 1)(x3 + 2x2 + 2x+ 2)

Arguing as above, we obtain

d(C) ≥33 − 32 − (3− 1) · (5− 1)3
3
2
−1

≥5.

12



For the same code, the BCH bound yields d(C) ≥ 6 since there are 5 consecutive powers

ζ20, ζ21, ..., ζ24 in Z(C). This time the BCH bound performs better than Wolfmann’s

bound.

1.3 Permutation Polynomials Over Finite Fields

Definition 1.20. A polynomial f ∈ Fq[x] is said to be a permutation polynomial if the

associated function f : c 7→ f(c) from Fq into Fq is a permutation of Fq.

The following statement characterizes permutation monomials. The proof is imme-

diate.

Proposition 1.21. The monomial xn is a permutation polynomial of Fq if and only if

gcd(n, q − 1) = 1.

Permutation polynomials other than monomials are not as easy to find. We will

use the following theorem of Zieve ( [7], Theorem 1.2) in the next chapter. Note that

µd denotes the set of dth roots of unity in the algebraic closure of Fq.

Theorem 1.22. Let d, r be positive integers and d|(q−1). Assume that q = qm0 satisfies

q0 ≡ 1 (mod d) and d|m. Let h ∈ Fq0 [x]. Then f(x) := xrh(x(q−1)/d) permutes Fq if

and only if gcd(r, (q − 1)/d) = 1 and h has no roots in µd.

We need the following lemma and corollary in order to prove this theorem.

Lemma 1.23. Let d, r be positive integers with d|(q − 1), and let h ∈ Fq[x]. Then

f(x) := xrh(x(q−1)/d) permutes Fq if and only if both

(1) gcd(r, (q − 1)/d) = 1 and

(2) xrh(x)(q−1)/d permutes µd.

Proof. (⇒) Let (q − 1)/d = s. Firstly, we want to show that if f permutes Fq then

gcd(r, s) = 1. Let β ∈ µs be a primitive sth root of unity and assume that gcd(r, s) =

k > 1. Then we have

f(β
s
kx) = β

sr
k f(x) = f(x),

unless k = 1, β
s
k 6= 1. Hence we obtain f(β

s
kx) = f(x) with β

s
kx 6= x. Therefore f is

not one-to-one and this contradicts the assumption that f permutes Fq.

Observe that

ϕ : F∗q → µd

x 7→ xs
(1.8)

13



is a multiplicative homomorphism since (xs)d = xq−1 = 1. We have Ker(ϕ) = {x ∈
F∗q | xs = 1} = µs, and hence

F∗q/µs ' µd.

In particular, µd = (F∗q)s. Set g(x) = xrh(x)s and note that for γ ∈ µd, we have

g(γ)d = γrdh(γ)sd = h(γ)q−1 = 1, (1.9)

unless h(γ) = 0. Let γ = δs for δ ∈ F∗q and note that if h(γ) = h(δs) = 0, then f(δ) = 0

for δ 6= 0. However, f(0) = 0 as well, and this contradicts the assumption that f

permutes F∗q. So, h(γ) 6= 0 for any γ ∈ µd and by (1.8), g sends µd to µd.

It is left to show that g permutes µd. We have f(x)s = xrsh(xs)s = g(xs) and since

f(x) takes all values in F∗q then g(xs) = f(x)s also takes all values in (F∗q)s = µd. Hence

g(x) is onto on µd.

(⇐) Note that

f(x)s = xrsh(xs)s = g(xs).

Hence, Im(f(x)s) = Im(g(xs)). Since (F∗q)s = µd and g permutes µd, we obtain that

Im(f(x)s) = µd. This implies that Im(f(x)) consists of the sth roots of elements in µd

and there are ds = q − 1 such roots. Hence, |Im(f(x))| = q − 1, which means f is a

permutation polynomial of Fq.

Corollary 1.24. Choose d, r, n > 0 with d|(q − 1), and let h ∈ Fq[x]. Assume

h(ζ)(q−1)/d = ζn for all ζ ∈ µd. Then f(x) := xrh(x(q−1)/d) permutes Fq if and only if

gcd(r + n, d) = gcd(r, (q − 1)/d) = 1

Proof. (⇒) Suppose f(x) := xrh(x(q−1)/d) permutes Fq. Then by the above lemma we

know that gcd(r, q−1
d

) = 1. We also know by the same lemma that g(x) = xrh(x)s

permutes µd. By assumption, we have

g(ζ) = ζrh(ζ)s = ζr+n, for any ζ ∈ µd.

So, for g(x) to permute µd we must have gcd(r + n, d) = 1.

(⇐) It is enough to show that g(x) = xrh(x)s permutes µd. Let ζ be any element

in µd. Then g(ζ) = ζrh(ζ)s = ζr+n permutes µd since gcd(r + n, d) = 1.

Now, we can prove Theorem 1.22.

Proof of Theorem 1.22. (⇐) Since q0 ≡ 1 (mod d), we have

qd0 − 1

q0 − 1
=

d−1∑
i=0

qi0 = qd−1
0 + qd−2

0 + ...+ 1︸ ︷︷ ︸
1+1+...+1=d.1

≡ 0 (mod d). (1.10)

Since d | m, we can write m = de, for e ∈ Z+. Then,

qm0 − 1 = qde0 − 1 = (qd0 − 1)(q
(e−1)d
0 + q

(e−2)d
0 + ...+ q0 + 1).

14



Hence, (qd0 − 1) | (qm0 − 1) = q− 1 and this implies (qd0 − 1)/d | (qm0 − 1)/d = (q− 1)/d.

We know (q0 − 1) | (qd0 − 1)/d follows from (1.10). Then the hypothesis d | (q0 − 1)

implies d | (q − 1/d). Since gcd(r, (q − 1)/d) = 1, this yields gcd(r, d) = 1.

Let ζ ∈ µd. Since d | q0 − 1, we have ζq0−1 = 1. So ζq0 = ζ and this means ζ ∈ Fq0 .
Therefore, we conclude that h(ζ) ∈ Fq0 . Now, suppose ζ is not a root of h(x). By

previous computations we know (q0 − 1)|(q − 1)/d, which yields h(ζ)(q−1)/d = 1. By

Corollary 1.24 with n = d, we have h(ζ)(q−1)/d = ζd = 1 for every ζ ∈ µd. Also, we

have gcd(r, d) = 1. Then gcd(r + d, d) = 1 and the result follows from Corollary 1.24.

(⇒) It follows from Lemma 1.23 that gcd(r, s) = 1. The same lemma also implies that

g(x) = xrh(x)s permutes µd. Suppose that h(γ) = 0 for some γ ∈ µd. Then,

g(γ) = γrh(γ)s = 0,

which contradicts the permutation property of g(x). So, h can not have a root in µd.

Example 1.25. Let q = 64 and ξ be a primitive element in F64 which is a root of

x6 + x4 + x3 + x+ 1 (minimal polynomial).

Consider q0 = 4 and m = 3 in Theorem 1.22. It is easy to see that d = 3 since d

should satisfy d|3 and also 4 ≡ 1 (mod d). Now we need to select h(x) ∈ F4[x] such

that h has no root in µ3 = {1, ξ21, ξ42}. The polynomial h(x) = x2 + x + ξ21 satisfies

this condition. If we pick r with gcd(r, 21) = 1, then by Theorem 1.22 we obtain the

following 36 permutation polynomials over F64 :

x43 + x22 + ξ21x x43 + ξ21x22 + x ξ21x43 + x22 + x

x44 + x23 + ξ21x2 x44 + ξ21x23 + x2 ξ21x44 + x23 + x2

x46 + x25 + ξ21x4 x46 + ξ21x25 + x4 ξ21x46 + x25 + x4

x47 + x26 + ξ21x5 x47 + ξ21x26 + x5 ξ21x47 + x26 + x5

x50 + x29 + ξ21x8 x50 + ξ21x29 + x8 ξ21x50 + x29 + x8

x52 + x31 + ξ21x10 x52 + ξ21x31 + x10 ξ21x52 + x31 + x10

x53 + x32 + ξ21x11 x53 + ξ21x32 + x11 ξ21x53 + x32 + x11

x55 + x34 + ξ21x13 x55 + ξ21x34 + x13 ξ21x55 + x34 + x13

x58 + x37 + ξ21x16 x58 + ξ21x37 + x16 ξ21x58 + x37 + x16

x59 + x38 + ξ21x17 x59 + ξ21x38 + x17 ξ21x59 + x38 + x17

x61 + x40 + ξ21x19 x61 + ξ21x40 + x19 ξ21x61 + x40 + x19

x62 + x41 + ξ21x20 x62 + ξ21x41 + x20 ξ21x62 + x41 + x20

15



2

Improvements on Wolfmann’s Bound

In this chapter we use permutation polynomials to modify Artin-Schreier curves related

to weights of codewords in cyclic codes. Our hope is to lower the genus of the related

curves, improve the Hasse-Weil bound and hence improve the Wolfmann’s minimum

distance estimate in some cases. We carry out some experiments using the computer

algebra software Magma [1]. Section 1 explains the method and presents an example

in which the related Magma code is provided Section 2 has some examples where the

performance of the method is given. We finish with concluding remarks in Section 3.

2.1 Substitution / Reduction Method

Let C be a q-ary cyclic code of length n = qm − 1. For a primitive element α of Fqm ,

let

BZ(C⊥) = {αi1 , ..., αis},

where 0 < i1 < ... < is. Then, an arbitrary codeword c ∈ C has the form

c =
(
Tr(λ1x

i1 + ...+ λsx
is)
)
x∈F∗qm

(2.1)

for some λ1, ..., λs ∈ Fqm . (cf. Theorem 1.16). Recall that the weight of c is related to

the Artin-Schreier curve defined by

yq − y = λ1x
i1 + ...+ λsx

is .
(
cf. (1.5) and (1.6)

)
Moreover, Wolfmann’s bound (Theorem 1.18) estimates the weight w(c) in terms of

the degree is of the polynomial

fc(x) = λ1x
i1 + ...+ λsx

is . (2.2)

If p(x) ∈ Fqm [x] is a permutation polynomial with p(0) = 0, then p(x) permutes the

elements of F∗qm . Hence, if we substitute p(x) in place of x in the trace representation

(2.1), the resulting vector of length n will be different than c but its weight will be the

16



same as w(c). What we do by this substitution is nothing but shuffling the coordinates

of c.

Let us denote the polynomial fc
(
p(x)

)
by fc(x). Clearly deg fc(x) > deg fc(x) if

deg p(x) > 1. Let f̃c(x) be the polynomial obtained from fc(x) by reduction modulo

xn− 1. Note that the value sets of f̃c(x) and fc(x) are identical on F∗qm . Therefore, the

vector

c̃ =
(
Tr(f̃c(x))

)
x∈F∗qm

also has the same weight as c. Hence one can estimate the weight of the codeword

c ∈ C by the degrees of fc(x), fc(x) and f̃c(x). Our hope is that after this reduction,

we get

deg f̃c(x) < deg fc(x),

hence Wolfmann’s estimate for w(c) gets better. If such a decrease in degree can

be achieved for the trace representation of each codeword c ∈ C, then the minimum

distance of the code d(C) can be estimated by a better lower bound than the original

bound. We call this method the substitution - reduction method.

Let us present this idea by using the following example.

Example 2.1. Let qm = 26 and n = 63. Let α be a primitive element of F64. Irre-

ducible factors and corresponding roots for x63 − 1 are as follows :

x+ 1 : 1

x2 + x+ 1 : α21, α42,

x3 + x+ 1 : α9, α18, α36,

x3 + x2 + 1 : α27, α45, α54,

x6 + x+ 1 : α5, α10, α17, α20, α34, α40,

x6 + x3 + 1 : α7, α14, α28, α35, α49, α56,

x6 + x4 + x2 + x+ 1 : α15, α30, α39, α51, α57, α60,

x6 + x4 + x3 + x+ 1 : α, α2, α4, α8, α16, α32,

x6 + x5 + 1 : α23, α29, α43, α46, α53, α58,

x6 + x5 + x2 + x+ 1 : α11, α22, α25, α37, α44, α50,

x6 + x5 + x3 + x2 + 1 : α31, α47, α55, α59, α61, α62,

x6 + x5 + x4 + x+ 1 : α13, α19, α26, α38, α41, α52,

x6 + x5 + x4 + x2 + 1 : α3, α6, α12, α24, α33, α48.

(2.3)

Let C be the binary cyclic code of length 63 whose dual’s generator polynomial is

h(x) = x6 + x4 + x2 + x+ 1.

17



This implies that for c ∈ C, we have

c =
(
Tr(λx15)

)
x∈F∗64

(2.4)

for some λ ∈ F64. With our notation before this example,

fc(x) = λx15.

In Example 1.25, we listed some nonmonomial permutation polynomials of F64 which

are obtained from Zieve’s result. We try each of these permutation polynomials p(x)

in our substitution and obtain

f̃c(x) = fc
(
p(x)

)
(mod x63 − 1).

For each fc(x) of deg(fc(x)) = 15 (i.e. λ 6= 0), the permutation polynomial

p(x) = x59 + x38 + α21x17 ∈ F64[x]

yields f̃c(x) with

deg(f̃c(x)) = 3 < 15 = deg(fc(x)).

Hence, for all nonzero codewords c ∈ C, Wolfmann’s estimate for the weight becomes

w(c) ≥ 64− 32− (3− 1)23−1

= 32− 8

= 24

With the original trace representation (2.4), we had

w(c) ≥ 64− 32− 14 · 4

= −24

for all nonzero codewords of C. Hence, substitution/reduction method enables us to

conclude

d(C) ≥ 24.

The Magma code that we use to obtain nonmonomial permutation polynomials of

F64 in Example 1.25 and to implement substitution/reduction in this example is given

below. Part I of the code determines the permutation polynomials and Part II applies

substitution / reduction.

18



Fq := GF (q,m);

R < x >:= PolynomialRing(Fq);

e := PrimitiveElement(Fq);

n := qm − 1;

i := 0;

S := [ ];

I := ideal < R | xn − 1 >;

Q < y >:= R/I;

F := map < R→ Q | x :→ x >;

I



h := func < x | x2 + x+ e21 >;

g := h(x21);

for r in [1..n] do;

if gcd(r, 21) eq 1 then;

i := i+ 1;

m := (xr) ∗ g;

si := F (m);

Append( S, si);

end if

end for;

l := |S|;

for a,b in Fq do;

f := func < x | a ∗ x23 + b ∗ x15 >;

d := deg(f(x));

u := [a, b];

P := 0;

for i in [1..l] do;

pi := S[i];

z := f(pi);

redz := F (z);

k := deg(redz);

if k lt d then;

d := k;

P := pi;

end if;

end for;



II

if d lt deg(f(x)) then;

Write(”outcome.txt”, f(x));

Write(”outcome.txt”,deg(f(x)));

Write(”outcome.txt”, P ));

Write(”outcome.txt”, d);

end if;

end for;

2.2 Examples

We use the substitution / reduction method on certain cyclic codes defined over F2, F3

and F5. The length of our codes are determined by the extensions of the fields in which

we can find permutation polynomials provided by Zieve’s result (Theorem 1.22). We

use both monomial and nonmonomial permutation polynomials in the examples. The

codes we present have duals with 1 or 2 elements in the basic zero set so that the trace

representations contain only 1 or 2 terms and, hence, the computations are feasible.

In the tables, we present the codes by the polynomial f(x) that appear in their

trace representations
(
cf. (2.2)

)
. Note that these polynomials also describe the basic

zero set of the dual codes. The polynomial obtained after substitution / reduction is

denoted by f̃(x) as in Section 2.1.

Cyclic Codes over F2 of Length 63:

Let α be a primitive element of F∗64. The irreducible factors of x63− 1 over F2 were

listed in Example 2.1. Monomial pemutations of F64 are obtained by Proposition 1.21

and Zieve type permutations of F64 were listed in Example 2.1.

19



Case 1 :One Basic Zero for the Dual Code

Zieve polynomial deg(f̃) monomial deg(f̃)

C1 : f(x) = λx27 x47 + x26 + α21x5 9 x5 9

C2 : f(x) = λx15 x59 + x38 + α21x17 3 x17 3

C3 : f(x) = λx23 - - x11 1

C4 : f(x) = λx31 - - x61 1

C5 : f(x) = λx13 - - x34 1

C6 : f(x) = λx5 - - x38 1

Table 1

For the code C1, whose dual’s basic zero set is BZ(C⊥1 ) = {α27} and the dual

generator polynomial is h(x) = x3 + x2 + 1, Wolfmann’s bound is

d(C1) ≥ 32− 26 · 4.

Since the right-hand side is negative, this estimate is useless. After substitution/reduction

by the polynomial x47 + x26 + α21x5 and by the polynomial x5, the degree of the re-

sulting polynomial f̃(x) in the trace representation decreases to 9. Hence, Wolfmann’s

bound becomes

d(C1) ≥ 32− 8 · 4 = 0.

Let us note that there are other monomial and Zieve permutation polynomials that

lower the degree to 9 but we do not write them in the table. Although we achieve the

aimed decrease in the degree, the new Wolfmann bound is not useful either.

Wolfmann’s bounds for the other five codes before and after substitution/reduction

are as follows :

before after

C2 d(C2) ≥ −24 d(C2) ≥ 24

C3 d(C3) ≥ −56 d(C3) ≥ 32

C4 d(C4) ≥ −88 d(C4) ≥ 32

C5 d(C5) ≥ −16 d(C5) ≥ 32

C6 d(C6) ≥ 16 d(C6) ≥ 32

Table 2

Observe that the Zieve permutation does not yield any decrease in deg(f) for C3,

C4, C5 and C6 whereas monomial permutations do.

Note that Table 1 also implies that codes C3, C4, C5 and C6 are all equivalent to

the binary cyclic code C of length 63 whose dual’s basic zero set is BZ(C⊥) = {α}.
Hence, these codes are also equivalent to each other.

20



Case 2 : Two Basic Zeros for the Dual Code

Zieve polynomial deg(f̃) monomial deg(f̃)

C1 : f(x) = λ1x27 + λ2x21 λ1 6= 0, λ2 6= 0 x52 + x31 + α21x10 21 x10 21

λ1 6= 0, λ2 = 0 x52 + x31 + α21x10 9 x5 9

λ1 = 0, λ2 6= 0 - - - -

C2 : f(x) = λ1x27 + λ2x15 λ1 6= 0, λ2 6= 0 x47 + x26 + α21x5 12 x5 12

λ1 6= 0, λ2 = 0 x47 + x26 + α21x5 9 x5 9

λ1 = 0, λ2 6= 0 x59 + x38 + α21x17 3 x17 3

C3 : f(x) = λ1x31 + λ2x9 λ1 6= 0, λ2 6= 0 - - x43 10

λ1 6= 0, λ2 = 0 - - x61 1

λ1 = 0, λ2 6= 0 - - - -

C4 : f(x) = λ1x27 + λ2x23 λ1 6= 0, λ2 6= 0 - - x47 10

λ1 6= 0, λ2 = 0 x47 + x26 + α21x5 9 x5 9

λ1 = 0, λ2 6= 0 - - x11 1

Table 3

For C2, the dual has BZ(C⊥2 ) = {α15, α27} and h(x) = (x6 + x4 + x2 + x+ 1)(x3 +

x2 + 1). The codewords with both λ1, λ2 nonzero in the trace representation have

corresponding polynomials with the degrees lowered to 12 after sunbstitution/reduction

with Zieve and monomial permutation polynomials. Polynomials corresponding to

(λ1 6= 0, λ2 = 0) and (λ1 = 0, λ2 6= 0) reduce to degrees 9 and 3, respectively, with

both types of permutation polynomials. Since we should take the maximum degree

into account in Wolfmann’s bound (cf. Theorem 1.18), we conclude

d(C2) ≥ 32− 26 · 4 = −48.

before substitution/reduction and

d(C2) ≥ 32− 11 · 4 = −12.

after substitution/reduction. So, our improvement in degrees do not yield anything

useful for the minimum distance estimate.

The same is the case for the remaining 3 codes, i.e. we are able to lower the

polynomials degrees but the improvement is not good enough to say anything useful

about the minimum distances. Therefore, we do not write a table for Wolfmann’s

bound in these examples.

Cyclic codes over F3 of length 80:

Let β be a primitive element of F∗81. Irreducible factors of x80 − 1 and the corre-

sponding roots over F3 are listed below.

21



x+ 1 : 2 x4 + x3 + x2 + x+ 1 : β16, β32, β48, β64

x+ 2 : 1 x4 + x3 + x2 + 2x+ 2 : β7, β21, β29, β63

x2 + 1 : β20, β60 x4 + x3 + 2x2 + 2x+ 2 : β17, β51, β59, β73

x2 + x+ 2 : β50, β70 x4 + 2x3 + 2 : β, β3, β9, β27

x2 + 2x+ 2 : β10, β30 x4 + 2x3 + 2 : β, β3, β9, β27

x4 + x+ 2 : β53, β71, β77, β79 x4 + 2x3 + 2 : β, β3, β9, β27

x4 + 2x+ 2 : β13, β31, β37, β39 x4 + 2x3 + 2 : β, β3, β9, β27

x4 + x2 + 2 : β25, β35, β65, β75 x4 + 2x3 + 2 : β, β3, β9, β27

x4 + x2 + x+ 1 : β22, β34, β38, β66 x4 + 2x3 + x+ 1 : β44, β52, β68, β76

x4 + x2 + 2x+ 1 : β26, β62, β74, β78 x4 + 2x3 + x2 + 1 : β2, β6, β18, β54

x4 + 2x2 + 2 : β5, β15, β45, β55 x4 + 2x3 + x2 + x+ 2 : β23, β47, β61, β69

x4 + x3 + 2 : β41, β43, β49, β67 x4 + 2x3 + x2 + 2x+ 1 : β8, β24, β56, β72

x4 + x3 + 2x+ 1 : β4, β12, β28, β36 x4 + 2x3 + 2x2 + x+ 2 : β11, β19, β33, β57

x4 + x3 + x2 + 1 : β14, β42, β46, β58

Zieve type permutations of F81 are as follows :

x41 + β10x x61 + β10x21 β10x41 + x β10x61 + x21

x43 + β10x3 x63 + β10x23 β10x43 + x3 β10x63 + x23

x47 + β10x7 x67 + β10x27 β10x47 + x7 β10x67 + x27

x49 + β10x9 x69 + β10x29 β10x49 + x9 β10x69 + x29

x51 + β10x11 x71 + β10x31 β10x51 + x11 β10x71 + x31

x53 + β10x13 x73 + β10x33 β10x53 + x13 β10x73 + x33

x57 + β10x17 x77 + β10x37 β10x57 + x17 β10x77 + x37

x59 + β10x19 x79 + β10x39 β10x59 + x19 β10x79 + x39

Case 1 : One Basic Zero for the Dual Code

Zieve polynomial deg(f̃) monomial deg(f̃)

C1 : f(x) = λx44 x41 + β10x 4 x11 4

C2 : f(x) = λx41 - - x41 1

C3 : f(x) = λx26 - - x37 2

C4 : f(x) = λx23 - - x7 1

Table 4

22



We list the performance of Wolfmann’s bound before and after substitution / re-

duction below.

before after

C1 d(C1) ≥ −204 d(C1) ≥ 36

C2 d(C2) ≥ −186 d(C2) ≥ 54

C3 d(C3) ≥ −96 d(C3) ≥ 48

C4 d(C4) ≥ −78 d(C4) ≥ 54

Table 5

Case 2: Two Basic Zeros for the Dual Code

Zieve polynomial deg(f̃) monomial polynomial deg(f̃)

C1 : f(x) = λ1x53 + λ2x25 λ1 6= 0, λ2 6= 0 x77 + β10x37 45 x77 5

λ1 6= 0, λ2 = 0 x77 + β10x37 41 x77 1

λ1 = 0, λ2 6= 0 − - x13 5

C2 : f(x) = λ1x53 + λ2x26 λ1 6= 0, λ2 6= 0 x77 + β10x37 42 x77 2

λ1 6= 0, λ2 = 0 x77 + β10x37 41 x77 1

λ1 = 0, λ2 6= 0 - - x37 2

C3 : f(x) = λ1x50 + λ2x10 λ1 6= 0, λ2 6= 0 x53 + β10x13 − x41 + β10x 10 − −

λ1 6= 0, λ2 = 0 - - x13 10

λ1 = 0, λ2 6= 0 - - - -

Table 6

Here is the table showing Wolfmann’s bounds for these codes.

before after

C1 d(C1) ≥ −258 d(C1) ≥ 30

C2 d(C2) ≥ −258 d(C2) ≥ 48

C3 d(C3) ≥ −240 d(C3) ≥ 0

Table 7

Cyclic Codes over F5 of Length 624:

The irreducible factors of x624 − 1 over F5 are listed below.

23



x+ 1 x+ 2 x+ 3 x+ 4

x2 + 2 x2 + 3 x2 + x+ 1 x2 + x+ 2

x2 + 2x+ 3 x2 + 2x+ 4 x2 + 3x+ 3 x2 + 3x+ 4

x2 + 4x+ 1 x2 + 4x+ 2 x4 + 2 x4 + 3

x4 + x+ 4 x4 + 2x+ 4 x4 + 3x+ 4 x4 + 4x+ 4

x4 + x2 + 2 x4 + x2 + x+ 1 x4 + x2 + 2x+ 2 x4 + x2 + 2x+ 3

x4 + x2 + 3x+ 2 x4 + x2 + 3x+ 3 x4 + x2 + 4x+ 1 x4 + 2x2 + 3

x4 + 2x2 + 2x+ 1 x4 + 2x2 + 2x+ 3 x4 + 2x2 + 3x+ 1 x4 + 2x2 + 3x+ 3

x4 + 3x2 + 3 x4 + 3x2 + x+ 1 x4 + 3x2 + x+ 3 x4 + 3x2 + 4x+ 1

x4 + 3x2 + 4x+ 3 x4 + 4x2 + 2 x4 + 4x2 + x+ 2 x4 + 4x2 + x+ 3

x4 + 4x2 + 2x+ 1 x4 + 4x2 + 3x+ 1 x4 + 4x2 + 4x+ 2 x4 + 4x2 + 4x+ 3

x4 + x3 + 4 x4 + x3 + x+ 3 x4 + x3 + 2x+ 3 x4 + x3 + 2x+ 4

x4 + x3 + 3x+ 2 x4 + x3 + 4x+ 1 x4 + x3 + 4x+ 2 x4 + x3 + x2 + 1

x4 + x3 + x2 + x+ 3 x4 + x3 + x2 + x+ 4 x4 + x3 + x2 + 2x+ 4 x4 + x3 + x2 + 3x+ 3

x4 + x3 + x2 + 4x+ 2 x4 + x3 + 2x2 + 2 x4 + x3 + 2x2 + x+ 2 x4 + x3 + 2x2 + x+ 3

x4 + x3 + 2x2 + 2x+ 1 x4 + x3 + 2x2 + 2x+ 2 x4 + x3 + 2x2 + 3x+ 4 x4 + x3 + 2x2 + 4x+ 4

x4 + x3 + 3x2 + 1 x4 + x3 + 3x2 + 3 x4 + x3 + 3x2 + 2x+ 1 x4 + x3 + 3x2 + 4x+ 2

x4 + x3 + 3x2 + 4x+ 4 x4 + x3 + 4x2 + 2 x4 + x3 + 4x2 + x+ 1 x4 + x3 + 4x2 + x+ 4

x4 + x3 + 4x2 + 4x+ 1 x4 + x3 + 4x2 + 4x+ 3 x4 + 2x3 + 4 x4 + 2x3 + x+ 3

x4 + x3 + x+ 4 x4 + 2x3 + 2x+ 1 x4 + 2x3 + 2x+ 2 x4 + 2x3 + 3x+ 3

x4 + 2x3 + 4x+ 2 x4 + 2x3 + x2 + 2 x4 + 2x3 + x2 + 2x+ 1 x4 + 2x3 + x2 + 2x+ 3

x4 + 2x3 + x2 + 3x+ 1 x4 + 2x3 + x2 + 3x+ 4 x4 + 2x3 + 2x2 + 1 x4 + 2x3 + 2x2 + 3

x4 + 2x3 + 2x2 + x+ 1 x4 + 2x3 + 2x2 + 2x+ 2 x4 + 2x3 + 2x2 + 2x+ 4 x4 + 2x3 + 3x2 + 2

x4 + 2x3 + 3x2 + x+ 1 x4 + 2x3 + 3x2 + x+ 2 x4 + 2x3 + 3x2 + 2x+ 4 x4 + 2x3 + 3x2 + 3x+ 2

x4 + 2x3 + 3x2 + 3x+ 3 x4 + 2x3 + 3x2 + 4x+ 4 x4 + 2x3 + 4x2 + 1 x4 + 2x3 + 4x2 + x+ 4

x4 + 2x3 + 4x2 + 2x+ 2 x4 + 2x3 + 4x2 + 3x+ 3 x4 + 2x3 + 4x2 + 3x+ 4 x4 + 2x3 + 4x2 + 4x+ 3

x4 + 3x3 + 4 x4 + 3x3 + x+ 2 x4 + 3x3 + 2x+ 3 x4 + 3x3 + 3x+ 1

x4 + 3x3 + 3x+ 2 x4 + 3x3 + 4x+ 3 x4 + 3x3 + 4x+ 4 x4 + 3x3 + x2 + 2

x4 + 3x3 + x2 + 2x+ 1 x4 + 3x3 + x2 + 2x+ 4 x4 + 3x3 + x2 + 3x+ 1 x4 + 3x3 + x2 + 3x+ 3

x4 + 3x3 + 2x2 + 1 x4 + 3x3 + 2x2 + 3 x4 + 3x3 + 2x2 + 3x+ 2 x4 + 3x3 + 2x2 + 3x+ 4

x4 + 3x3 + 2x2 + 4x+ 1 x4 + 3x3 + 3x2 + 2 x4 + 3x3 + 3x2 + x+ 4 x4 + 3x3 + 3x2 + 2x+ 2

x4 + 3x3 + 3x2 + 2x+ 3 x4 + 3x3 + 3x2 + 3x+ 4 x4 + 3x3 + 3x2 + 4x+ 1 x4 + 3x3 + 3x2 + 4x+ 2

x4 + 3x3 + 4x2 + 1 x4 + 3x3 + 4x2 + x+ 3 x4 + 3x3 + 4x2 + 2x+ 3 x4 + 3x3 + 4x2 + 2x+ 4

x4 + 3x3 + 4x2 + 3x+ 2 x4 + 3x3 + 4x2 + 4x+ 4 x4 + 4x3 + 4 x4 + 4x3 + x+ 1

x4 + 4x3 + x+ 2 x4 + 4x3 + 2x+ 2 x4 + 4x3 + 3x+ 3 x4 + 4x3 + 3x+ 4

x4 + 4x3 + 4x+ 3 x4 + 4x3 + x2 + 1 x4 + 4x3 + x2 + x+ 2 x4 + 4x3 + x2 + 2x+ 3

x4 + 4x3 + x2 + 3x+ 4 x4 + 4x3 + x2 + 4x+ 3 x4 + 4x3 + x2 + 4x+ 4 x4 + 4x3 + 2x2 + 2

x4 + 4x3 + 2x2 + x+ 4 x4 + 4x3 + 2x2 + 2x+ 4 x4 + 4x3 + 2x2 + 3x+ 1 x4 + 4x3 + 2x2 + 3x+ 2

x4 + 4x3 + 2x2 + 4x+ 2 x4 + 4x3 + 2x2 + 4x+ 3 x4 + 4x3 + 3x2 + 1 x4 + 4x3 + 3x2 + 3

x4 + 4x3 + 3x2 + x+ 2 x4 + 4x3 + 3x2 + x+ 4 x4 + 4x3 + 3x2 + 3x+ 1 x4 + 4x3 + 4x2 + 2

x4 + 4x3 + 4x2 + x+ 1 x4 + 4x3 + 4x2 + x+ 3 x4 + 4x3 + 4x2 + 4x+ 1 x4 + 4x3 + 4x2 + 4x+ 4

Monomial permutations of F625 are obvious and Zieve type permutations of F625

are listed below:

24



2x
313

+ x 2x
469

+ x
157

x
313

+ 2x x
469

+ 2x
157

2x
317

+ x
5

2x
473

+ x
161

x
317

+ 2x
5

x
473

+ 2x
161

2x
319

+ x
7

2x
475

+ x
163

x
319

+ 2x
7

x
475

+ 2x
163

2x
323

+ x
11

2x
479

+ x
167

x
323

+ 2x
11

x
479

+ 2x
167

2x
329

+ x
17

2x
485

+ x
173

x
329

+ 2x
17

x
485

+ 2x
173

2x
331

+ x
19

2x
487

+ x
175

x
331

+ 2x
19

x
487

+ 2x
175

2x
335

+ x
23

2x
491

+ x
179

x
335

+ 2x
23

x
491

+ 2x
179

2x
337

+ x
25

2x
493

+ x
181

x
337

+ 2x
25

x
493

+ 2x
181

2x
341

+ x
29

2x
497

+ x
185

x
341

+ 2x
29

x
497

+ 2x
185

2x
343

+ x
31

2x
499

+ x
187

x
343

+ 2x
31

x
499

+ 2x
187

2x
347

+ x
35

2x
503

+ x
191

x
347

+ 2x
35

x
503

+ 2x
191

2x
349

+ x
37

2x
505

+ x
193

x
349

+ 2x
37

x
505

+ 2x
193

2x
353

+ x
41

2x
509

+ x
197

x
353

+ 2x
41

x
509

+ 2x
197

2x
355

+ x
43

2x
511

+ x
199

x
355

+ 2x
43

x
511

+ 2x
199

2x
359

+ x
47

2x
515

+ x
203

x
359

+ 2x
47

x
515

+ 2x
203

2x
361

+ x
49

2x
517

+ x
205

x
361

+ 2x
49

x
517

+ 2x
205

2x
365

+ x
53

2x
521

+ x
209

x
365

+ 2x
53

x
521

+ 2x
209

2x
367

+ x
55

2x
523

+ x
211

x
367

+ 2x
55

x
523

+ 2x
211

2x
371

+ x
59

2x
527

+ x
215

x
371

+ 2x
59

x
527

+ 2x
215

2x
373

+ x
61

2x
529

+ x
217

x
373

+ 2x
61

x
529

+ 2x
217

2x
379

+ x
67

2x
535

+ x
223

x
379

+ 2x
67

x
535

+ 2x
223

2x
383

+ x
71

2x
539

+ x
227

x
383

+ 2x
71

x
539

+ 2x
227

2x
385

+ x
73

2x
541

+ x
229

x
385

+ 2x
73

x
541

+ 2x
229

2x
389

+ x
77

2x
545

+ x
233

x
389

+ 2x
77

x
545

+ 2x
233

2x
391

+ x
79

2x
547

+ x
235

x
391

+ 2x
79

x
547

+ 2x
235

2x
395

+ x
83

2x
551

+ x
239

x
395

+ 2x
83

x
551

+ 2x
239

2x
397

+ x
85

2x
553

+ x
241

x
397

+ 2x
85

x
553

+ 2x
241

2x
401

+ x
89

2x
557

+ x
245

x
401

+ 2x
89

x
557

+ 2x
245

2x
407

+ x
95

2x
563

+ x
251

x
407

+ 2x
95

x
563

+ 2x
251

2x
409

+ x
97

2x
565

+ x
253

x
409

+ 2x
97

x
565

+ 2x
253

2x
413

+ x
101

2x
569

+ x
257

x
413

+ 2x
101

x
569

+ 2x
257

2x
415

+ x
103

2x
571

+ x
259

x
415

+ 2x
103

x
571

+ 2x
259

2x
419

+ x
107

2x
575

+ x
263

x
419

+ 2x
107

x
575

+ 2x
263

2x
421

+ x
109

2x
577

+ x
265

x
421

+ 2x
109

x
577

+ 2x
265

2x
425

+ x
113

2x
581

+ x
26

x
425

+ 2x
113

x
581

+ 2x
269

2x
427

+ x
115

2x
583

+ x
271

x
427

+ 2x
115

x
583

+ 2x
271

2x
431

+ x
119

2x
587

+ x
275

x
431

+ 2x
119

x
587

+ 2x
275

2x
433

+ x
121

2x
589

+ x
277

x
433

+ 2x
121

x
589

+ 2x
277

2x
437

+ x
125

2x
593

+ x
281

x
437

+ 2x
125

x
593

+ 2x
281

2x
439

+ x
127

2x
595

+ x
283

x
439

+ 2x
127

x
595

+ 2x
283

2x
443

+ x
131

2x
599

+ x
287

x
443

+ 2x
131

x
599

+ 2x
287

2x
445

+ x
133

2x
601

+ x
289

x
445

+ 2x
133

x
601

+ 2x
289

2x
449

+ x
137

2x
605

+ x
293

x
449

+ 2x
137

x
605

+ 2x
293

2x
451

+ x
139

2x
607

+ x
295

x
451

+ 2x
139

x
607

+ 2x
295

2x
457

+ x
145

2x
613

+ x
301

x
457

+ 2x
145

x
613

+ 2x
301

2x
461

+ x
149

2x
617

+ x
305

x
461

+ 2x
149

x
617

+ 2x
305

2x
463

+ x
151

2x
619

+ x
307

x
463

+ 2x
151

x
619

+ 2x
307

2x
467

+ x
155

2x
623

+ x
311

x
467

+ 2x
155

x
623

+ 2x
311

25



Case 1 : One Basic Zero for the Dual Code

Zieve polynomial deg(f̃) monomial poynomial deg(f̃)

C1 : f(x) = λx64 2x361 + x49 16 x49 16

C2 : f(x) = λx474 2x443 + x131 6 x79 6

C3 : f(x) = λx242 2x517 + x205 2 x49 2

C4 : f(x) = λx212 2x365 + x53 4 x53 4

C5 : f(x) = λx374 2x463 + x151 2 x307 2

C6 : f(x) = λx108 2x341 + x29 12 x29 12

C7 : f(x) = λx222 2x409 + x97 6 x149 6

C8 : f(x) = λx164 2x449 + x137 4 x137 4

C9 : f(x) = λx56 2x379 + x67 8 x67 8

C10 : f(x) = λx36 2x347 + x35 12 x35 12

C11 : f(x) = λx368 2x329 + x17 16 x17 16

C12 : f(x) = λx158 2x547 + x235 2 x79 2

Table 8

Wolfmann’s bound for these codes are as follows:

before after

C1 d(C1) ≥ −760 d(C1) ≥ 200

C2 d(C2) ≥ −8960 d(C2) ≥ 400

C3 d(C3) ≥ −4320 d(C3) ≥ 480

C4 d(C4) ≥ −3720 d(C4) ≥ 440

C5 d(C5) ≥ −6960 d(C5) ≥ 480

C6 d(C6) ≥ −1640 d(C6) ≥ 280

C7 d(C7) ≥ −3920 d(C7) ≥ 400

C8 d(C8) ≥ −2760 d(C8) ≥ 440

C9 d(C9) ≥ −600 d(C9) ≥ 360

C10 d(C10) ≥ −200 d(C10) ≥ 280

C11 d(C11) ≥ −5840 d(C11) ≥ 200

C12 d(C12) ≥ −2640 d(C12) ≥ 480

Table 9

Case 2 : Two Basic Zeros for the Dual Code

Zieve polynomial deg(f̃) monomial deg(f̃)

C1 : f(x) = λ1x242 + λ2x64 λ1 6= 0, λ2 6= 0 2x517 + x205 16 x49 16

λ1 6= 0, λ2 = 0 2x517 + x205 2 x49 2

λ1 = 0, λ2 6= 0 2x361 + x49 16 x49 16

C2 : f(x) = λ1x218 + λ2x82 λ1 6= 0, λ2 6= 0 2x491 + x179 22 x23 22

λ1 6= 0, λ2 = 0 2x385 + x73 2 x229 2

λ1 = 0, λ2 6= 0 2x605 + x293 2 x137 2

C3 : f(x) = λ1x374 + λ2x124 λ1 6= 0, λ2 6= 0 2x463 + x151 4 x307 4

λ1 6= 0, λ2 = 0 2x463 + x151 2 x307 2

λ1 = 0, λ2 6= 0 2x463 + x151 4 x151 4

Table 10

26



Here are the Wolfmann’s bound for these codes.

before after

C1 d(C1) ≥ −4320 d(C1) ≥ 200

C2 d(C2) ≥ −3840 d(C2) ≥ 80

C3 d(C3) ≥ −6960 d(C3) ≥ 440

Table 11

2.3 Conclusions

The examples in Section 2.2 indicate that by the substitution / reduction method, one

can improve Wolfmann’s bound in some cases. Note that if the length of the cyclic

code (equivalently, the extension of the base field) is small, then it is sometimes difficult

to obtain improvements or useful estimates. This was witnessed for the binary cyclic

codes of length 63 whose duals have two basic nonzeros.

There are two constraints that limit the experiments. Firstly, it is not possible to

obtain Zieve type permutation on any finite field. Therefore we restricted our attention

to the cases investigated in Section 2.2. Secondly, if the field size (code length) is too

big then Magma code slows down and we do not get results.

27



Bibliography

[1] W. Bosma, J. Cannon, C. Playoust, The Magma Algebra System I. the user

language, J. Symbolic Comput., vol. 24, 235-265, 1997.

[2] C. Güneri, F. Özbudak, Artin-Schreier extensions and their applications, Topics

in Geometry, Coding Theory and Cryptography (A. Garcia, H. Stichtenoth eds),

Springer Algebr. Appl., vol. 6, 105-133, 2007.

[3] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its

Applications, vol. 20, Cambridge, 1997.

[4] J. van Lint, Introduction to Coding Theory, Springer-Verlag GTM, vol. 86, 1999.

[5] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag GTM, vol.

254, 2009.

[6] J. Wolfmann, New bounds on cyclic codes from algebraic curves, in: Lecture

Notes in Computer Science, vol. 388, 47-62, 1989.

[7] M. Zieve, On some permutation polynomials over Fq of the form xrh(x(q−1)/d),

Proc. Amer. Math. Soc., vol. 137, 2209-2216, 2009.

28


