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Abstract

Increasing (non)stationary Levy processes are widely used in Operations Research
and Engineering. The main areas of applications of these stochastic processes are
insurance mathematics, inventory control and maintenance. Special and well known
instances of these processes are (non) stationary Poisson and compound Poisson pro-
cesses. Since in textbooks (increasing) Levy processes are mostly regarded as special
instances of continuous time martingales the main properties of Levy processes are
derived by applying general results available for martingales. However, understanding
the theory of martingales requires a deep insight into the theory of stochastic processes
and so it might be difficult to understand the proofs of the main properties of increas-
ing Levy processes. Therefore the main purpose of this study is to relate increasing
Levy processes to simpler stochastic processes and give simpler proofs of the main
properties. Fortunately there is a natural way linking increasing Levy processes to
random processes occurring within renewal theory. Using this (sample path) approach
and applying properties of random processes occurring within renewal theory we are
able to analyze the undershoot and overshoot random process of an increasing Levy
process. By a similar approach the (asymptotic) properties of the hitting time at level
r can also be derived. Next to well known results we also derive new results in this
thesis. In particular we extend Lorden’s inequality for the renewal function and the
residual life process to both the expected hitting time and the expected overshoot of
an increasing Levy process at level r.



ARTAN VE DURAĞAN LEVY SÜREÇLERİ: YENİLEME TEORİSİ İLE

YAKLAŞIM

Selin Erçil

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2010

Tez Danışmanı: Doç. Dr. Hans Frenk

Anahtar Kelimeler: Artan Levy Süreçleri, Yenileme Süreçleri,

Özet

Artan durağan (olmayan) Levy süreçleri, Yöneylem Araştırması ve Mühendisliklerde
sıkça kullanılır. Bu stokastik süreçlerinin temel uygulama alanlarından bazıları sigorta
matematiği, envanter kontrolü ve bakımdır. Durağan (olmayan) Poisson ve bileşik Pois-
son süreçleri özel ve oldukça tanınan örnekleridir. Kitaplarda, (artan) Levy süreçleri,
sürekli zamanlı Martingale’lerin özel bir kolu olarak görüldüğü için Levy süreçlerinin
temel özellikleri, genel Martingale bulguları uygulanarak elde edilmiştir. Ancak Mar-
tingale teorisini anlamak için Stokastik süreçler teorisi üzerine derin bir bilgiye sahip ol-
mak gerekmektedir ve dolayısıyla artan Levy süreçlerinin temel özelliklerinin kanıtlarını
anlamak oldukça zor olabilir. Bu nedenle bu çalışmanın temel amacı artan Levy
süreçlerini daha basit Stokastik süreçlere benzetmek ve temel özellikleri için daha ba-
sit kanıtlar sağlamaktır. Neyseki Yenileme süreçleri sayesinde, Artan Levy süreçlerini
Stokastik süreçlere bağlayan doğal bir yol vardır. Bu yolu kullanarak ve Yenileme
süreçlerinin özelliklerini uygulayarak, artan Levy süreçlerinin eksik kalan (undershoot)
ve aşma (overshoot) rastgele sürecini analiz etmeyi başardık. Benzer bir yöntemle
vurma zamanının r seviyesindeki asimtotik özelliklerini de çıkarabildik. Bu tezde bili-
nen sonuçlara ek olarak yeni sonuçlar da bulduk. Yenileme süreçleri ve Artık Yaşam
süreçleri için olan Lorden eşitliğini hem artan Levy süreçlerinin r seviyesindeki vurma
zamanı hemde aşma süreci için genişlettik.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

The theory of stochastic processes with stationary and independent increments (nowa-

days called Levy processes) are a branch of modern probability theory and cover a

large class of well known stochastic processes such as Poisson processes, compound

Poisson processes and Brownian motion. Nowadays Levy processes serve as a mod-

eling tool in areas such as mathematical finance, risk estimations, optimal stopping

problems, inventory theory and maintenance. These processes are named after the

French mathematician Paul Lévy who played a crucial role in developing the theory

of these processes. In this master thesis we only derive by means of a new technique

the main properties of increasing Levy processes which are processes with stationary

and nonnegative stationary increments. Although a subclass of Levy processes these

processes are also important since they serve as building blocks in inventory control

and maintenance. Most of the contributions of the theory of Levy processes was made

between 1930 to 1940s by Paul Lévy (France), Alexander Khintchine (Russia), Kiyosi

Ito (Japan) and Bruno de Finett (Italy). Despite its importance nowadays there are

only a few recently published books on this topic. The main references are Bertoin

(cf. [1]), Kyprianou (cf. [11]) and Sato (cf. [18]). Since these books cover the general

theory of Levy processes with real increments and this theory is strongly related to

the theory of continuous time martingale understanding these books require a deep

knowledge of martingale theory and are therefore difficult to read.

1.1 Contribution of the thesis.

The primary purpose of this study is to derive the most important properties of in-

creasing Levy processes by an easier technique. Although most of the results presented

in this study are well known properties of increasing Levy processes, it is in general

difficult to understand these proofs. As already mentioned most of these properties

were proved by using martingale theory. In our study, we use a different approach to
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verify these properties by approximating a continuous time increasing Levy process

by a sequence of renewal processes and making use of well known results for renewal

processes. This approach is also mentioned in [19] and [2] trying to justify results

for increasing Levy processes by comparing them to the results for renewal processes

without using a firm mathematical foundation. Also by using this approach we derive

some new asymptotic results.

1.2 Outline of the thesis

The thesis is structured as follows. In Chapter 2 the relevant theory of increasing Levy

processes is discussed. We first start in Section 2.1 with some basic definitions and

results. Also in this section we introduce the non-stationary version of an increasing

Levy process. In Section 2.2 we discuss the overshoot and undershoot random process

and the hitting time of level r of a non-stationary and stationary increasing Levy

process. This section is divided into four parts: In Subsection 2.2.1 we show the

sample path relation of the above random variables for a non-stationary increasing

Levy process with the same random variables in its stationary version. In Subsection

2.2.2 the asymptotic behavior of the hitting time of level r is discussed relating it

to a renewal function and in Subsection 2.2.3 the cdf and asymptotic behavior of the

overshoot and undershoot random variables at level r are derived by means of the same

renewal approximation approach. Finally in Subsection 2.2.4 we consider the fractional

part of the hitting time at level r and derive some asymptotic results for this fractional

random variable by means of renewal theory. We end this thesis with a conclusion

listed in Chapter 3.
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CHAPTER 2

INCREASING (NON)STATIONARY LEVY PROCESSES

In this study we derive the most important properties of increasing Levy processes.

These properties are proved approximating an (increasing) Levy process by a sequence

of renewal processes and using well known results for renewal processes.

2.1 Basic definitions and results for increasing Levy processes.

In this section we first introduce some basic definitions.

Definition 1 A sequence of random variablesXn, n ∈ N, on a probability space (Ω,F ,P)

is converging almost surely to a random variable X on (Ω,F ,P) (notation Xn
a.s→ X )

if

P(ω ∈ Ω : limn↑∞Xn(ω) = X(ω)) = 1. (2.1)

If the sequence Xn is a decreasing sequence of random variables on (Ω,F ,P) (i.e Xn ≥

Xn+1), then we denote this by Xn ↓a.s X. A sequence of random variables Xn, n ∈ N,

on a probability space (Ω,F ,P) is converging in probability to a random variable X on

(Ω,F ,P) (notation Xn
P→ X) if

limn↑∞ P(ω ∈ Ω :| Xn(ω)−X(ω) |> ϵ) = 0 (2.2)

for every ϵ > 0. A stochastic process X = {X(t) : t ≥ 0} is called continuous in

probability if for every s ≥ 0 and every sequence tn, n ∈ N converging to s it follows

that

X(tn)
P→ X(s). (2.3)

We are now able to introduce the definition of an increasing Levy process.
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Definition 2 A stochastic process X = {X(t) : t ≥ 0} is called an increasing Levy

process if

1. The process X is continuous in probability.

2. X(0) = 0 and X(t) ≥ 0 for every t > 0.

3. The process X has independent and stationary increments.

It is shown in Theorem 14.20 of [4] (see also Theorem 30 of [13]) that there exists

a unique modification of the above process X having right continuous sample paths

with left-hand limits. A stochastic process with sample paths having these properties

is called a càdlàg process. In the remainder of this thesis we will use this modification

and additionally assume that

µ1 := E(X(1)) (2.4)

is finite and positive. To start with our analysis we first derive an elementary result

satisfied by an increasing Levy process. Observe σ2(Z) denotes the variance of a random

variable Z and

Z1
d
= Z2

means that the random variables Z1 and Z2 having the same cdf. Also R+ := [0,∞) and

a function is called continuous on R+ if it is continuous on (0,∞) and right continuous

in 0.

Lemma 1 If the stochastic process X is an increasing Levy process satisfying µ1 :=

E(X(1)) is finite and positive, then

E(X(t)) = µ1t (2.5)

for every t ≥ 0. If additionally the second moment µ2 := E(X(1)2) is finite, then

σ2(X(t)) = tσ2(X(1)). (2.6)

Proof. By the independent and stationary increments of an increasing Levy process it

follows that

X(t+ s)
d
= X(t) +X(s) (2.7)
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for every s, t > 0 and so

E(X(t+ s)) = E(X(s)) + E(X(t)). (2.8)

Since the sample paths of the process X are increasing and X(0) = 0 we obtain

0 ≤ X(t) ≤ X(t+ h) for every t, h ≥ 0. This implies using relation (2.4) and (2.8) and

µ1 finite that the function t 7→ E(X(t)) is finite for every t ≥ 0. We will now show that

this function is also continuous on R+. By the definition of an increasing Levy process

we know that

X(t)
P→ X(s)(t → s)

for s > 0 and

X(t)
P→ X(0)(t ↓ 0).

Since 0 ≤ X(t) ≤ X(t + h) for every t, h ≥ 0 and E(X(t) is finite for every t > 0

the conditions of the dominated convergence in probability theorem hold (see Theorem

1.3.6 of [15]) or the Appendix) and we may conclude

limt→s E(X(t)) = E(X(s))

for s > 0 and

limt↓0 E(X(t)) = E(X(0)) = 0.

This shows the continuity of the function t 7→ E(X(t)) on R+. The continuity of

this function in combination with a standard approximation argument applied to the

so-called Cauchy functional equation in relation (2.8) (see Theorem 1.4 of [6]) finally

yields

E(X(t)) = µ1t (2.9)

for every t ≥ 0 and so relation (2.5) is verified. To verify relation (2.6) we observe by

the stationary and independent increments of an increasing Levy process that

σ2(X(t+ s)) = σ2(X(t) +X(s)) = σ2(X(t)) + σ2(X(s)). (2.10)

Since X is continuous in probability it follows for every continuous function f on R+

(cf. [3]) that

f(X(t))
P→ f(X(s))(t → s)
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for s > 0 and

f(X(t))
P→ f(X(0))(t ↓ 0).

This shows for s > 0

X(t)2
P→ X(s)2(t → s) (2.11)

and

X(t)2
P→ X(0)2 = 0 (t ↓ 0).

By a similar argument as used before using µ1 and µ2 finite and hence σ2(X(1)) is

finite we know that the function t 7→ σ2(X(t)) is finite. Since

E(X(t)2) = σ2(X(t)) + µ2
1t

2 (2.12)

it also follows that the function t 7→ E(X(t)2) is finite. Now again by the monotonicity

of the sample paths t 7→ X(t)2 and relation (2.11) the conditions of the dominated

convergence in probability theorem hold. Hence we may conclude that the function

t 7→ E(X(t)2) is continuous on R+ and so by relation (2.12) the function t 7→ σ2(X(t))

is continuous on R+. Again applying Theorem 1.4 of [6] yields relation (2.6). 2

Since for any increasing Levy process X with µ1 positive and finite the process

Y = {Y(t) : t ≥ 0} given by

Y(t) = µ−11 X(t)

is again an increasing Levy process we may assume without loss of generality that

µ1 = 1. In this thesis we always assume that we are dealing with a (càdlàg) increasing

Levy process with µ1 = 1. To discuss some well known properties of the cdf Ft of

the random variable X(t) we first introduce for completeness the following definition.

(cf. [19])

Definition 3 A random variable Z is said to be infinitely divisible if for every n ∈ N

one can find some sequence of independent and identically distributed random variables

Zk, 1 ≤ k ≤ n such that

Z
d
=

∑n

k=1
Zk

6



Clearly the property of infinite divisibility is a property of the cdf of a random

variable and so it is also common to call the cdf infinitely divisible. By Definitions 2

and 3 and writing

X(t) =
∑n

k=1
X

(
kt

n

)
−X

(
(k − 1)t

n

)
it is clear that for every t > 0 the cdf Ft of the random variable X(t) is infinitely

divisible. Introducing the probability Laplace-Stieltjes transform (pLSt) πt : R+ → R+

of the nonnegative random variable X(t) given by

πt(α) := E(exp(−αX(t))) (2.13)

one can show the following well-known result (cf. [19]).

Lemma 2 lt follows for every α ≥ 0 and t > 0 that

πt(α) = π1(α)
t. (2.14)

Proof. We will first check that the function

t 7→ ln πt(α) = ln(E( exp(−αX(t)))

is finite and continuous on R+. Since the stochastic process X is continuous in proba-

bility and the function t 7→ exp(−αt) is continuous it follows that

exp(−αX(t))
P→ exp(−αX(s)) (t → s)

and

exp(−αX(t))
P→ exp(−αX(0)) = 1 (t ↓ 0)

Also for every α ≥ 0

0 ≤ exp(−αX(t)) ≤ 1

and so the function t 7→ E( exp(−αX(t)) is finite. By the monotonicity of the sample

paths of the stochastic process X we may conclude that

0 ≤ exp(−αX(t+ h)) ≤ exp(−αX(t))

7



for every t, h ≥ 0 and combining these observations the conditions of the dominated

convergence in probability theorem are satisfied. Hence the function t 7→ πt(α) is

continuous on R+ and using X(t) is finite with probability one implying πt(α) > 0 for

every α ≥ 0 and t > 0 also the function t 7→ ln(πt(α)) is continuous on R+. Using now

the independent and stationary increments of an increasing Levy process X we obtain

for t, s > 0 and α ≥ 0 that

ln(πt+s(α)) = ln(E( exp(−αX(t+ s))))

= ln(E( exp(−α(X(t) +X(s))))

= ln(E( exp(−αX(t)))E( exp(−αX(s))))

= ln(E( exp(−αX(t))))+ ln(E(exp(−αX(s))))

= ln(πt(α)) + ln(πs(α))

(2.15)

This shows that the function t 7→ ln πt(α) is a continuous solution of the Cauchy

functional equation in relation (2.15) and by Theorem 1.4 of [6] the desired result

follows. 2

By investigating in more detail the Laplace-Stieltjes transform α 7→ π1(α) one can

show the following informative representation of the pLST πt. To prove this result we

need the following definition (cf. [19], [5]).

Definition 4 A function f : (0,∞) → R is called completely monotone if for every

x > 0 the nth derivative f (n)(x), n ∈ Z+ of the function f exists and (−1)nf (n)(x) ≥ 0

for every x > 0 and n ∈ Z+.

In Definition 4 it is assumed that (−1)0f (0)(x) := f(x). In the next result we give a

complete characterization of all completely monotone functions. This characterization

is called Bernsteins theorem. A proof of this important result can be found in [5]

or [20].

8



Lemma 3 A real valued function f : (0,∞) → R is completely monotone if and only

if there exists some right continous function H on R satisfying H(x) = 0 for x < 0

satisfying

f(x) =

∫ ∞
0−

exp(−xy)dH(y)

for every x > 0.

It is now possible to prove the following detailed representation for the pLST πt.

Lemma 4 For every t > 0 and α ≥ 0

πt(α) = exp

(
−t

∫ ∞
0−

1− exp(−αx)

x
dK1(x)

)
(2.16)

with K1 : R 7→ R a right continuous cdf satisfying K1(x) = 0 for every x < 0.

Proof. By Lemma 2 we only need to verify for every α ≥ 0 that

π1(α) = exp

(
−
∫ ∞
0−

1− exp(−αx)

x
dK1(x)

)
.

Since πt is the pLST of the random variable X(t) it follows that the function α 7→ πt(α)

is completely monotone on R+. This shows for every t > 0 that the function

α 7→ −1

t
π′t(α)

is also completely monotone on R+ and by Lemma 2

limt↓0 −
1

t
π′t(α) = limt↓0−πt−1

1 (α)π′1(α) = −π′1(α)

π1(α)
. (2.17)

By the continuity theorem for pLST transforms and Lemma 3 it can be shown that the

limit of completely monotone functions is again completely monotone and this implies

by relation (2.17) and −1
t
π′t(α) is completely monotone that the function ρ : R+ 7→ R+

given by

ρ(α) = −π′1(α)

π1(α)
(2.18)

is completely monotone. To write π1 as a function of the completely monotone function

ρ we observe by relation (2.18) and π1(0) = 1 that by standard calculus

ln π1(α) = −
∫ α

0

ρ(s)ds.

9



Hence it follows for every α ≥ 0 and t > 0 that

π1(α) = exp

(
−
∫ α

0

ρ(s)ds

)
. (2.19)

Applying Lemma 3 to the completely monotone function ρ we may conclude that

there exists some right continuous increasing function K1 : R 7→ R with K1(x) = 0 for

every x < 0 satisfying

ρ(α) =

∫ ∞
0−

exp(−αx)dK1(x) < ∞

for every α > 0. Since µ1 = 1 and by relation (2.18)

ρ(0) = −π′1(0)

π1(0)
=

µ1

1
= 1

it follows that K1 is a cdf. Combining this with relation (2.19) yields

π1(α) = exp

(
−
∫ α

0

∫ ∞
0−

exp(−sx)dK1(x)ds

)
. (2.20)

To complete our proof observe by Fubini’s theorem that

∫ α

0

∫∞
0− exp(−sx)dK1(x)ds =

∫∞
0−

∫ α

0
exp(−sx)dsdK1(x)

=
∫∞
0−

1−exp(−αx)
x

dK1(x)

and substituting this in relation (2.20) we obtain relation (2.16). 2

The function K1 in the above representation is called the canonical function associ-

ated with the pLST π1. In the remainder it is always assumed without loss of generality

that the left extremity lX(1)of the random variable X(1) given by

lX(1) := inf{x ≥ 0 : x is a point of increase of the cdf F1} = 0.

It can be shown (cf. [19]) that

lx(1) = lims↑∞ ρ(s) = K1(0).

10



Hence for an increasing Levy process satisfying µ1 = 1 and lx(1) = 0 we obtain that

K1 is a right continuous cdf satisfying K1(0) = 0. The next result plays a crucial role

in showing the correctness of our approximation technique using renewal processes.

Lemma 5 If the stochastic process X is an increasing Levy process with µ1 = 1, then

for every x1, x2 > 0

limt↓0
Ft(x1 + x2)− Ft(x1)

t
=

∫ x1+x2

x1

u−1dK1(u) (2.21)

with K1 a cdf on R+. Moreover,

limt↓0
1− Ft(x1)

t
=

∫ ∞
x1

u−1dK1(u). (2.22)

Proof. By relation (2.19) and Lemma 2 we obtain

−
∫∞
0−

x exp(−αx)dFt(x) = π′t(α)

= −tρ(α) exp(−t
∫ α

0
ρ(s)ds)

= −tρ(α)πt(α)

= −t
∫∞
0−

exp(−αx)dK1(x)πt(α).

(2.23)

with K1 a cdf on R+. Introducing for every t > 0 the function Lt : [0,∞) → [0,∞)

given by

Lt(x) := t−1
∫ x

0

udFt(u) (2.24)

it follows by relation (2.23) and Laplace inversion that

Lt(x) =

∫ x

0

Ft(x− u)dK1(u). (2.25)

for every t > 0. By relation (2.25) the value Lt(x) can be seen as

Lt(x) = P(X(t) + Z ≤ x) (2.26)

with the random variable X(t) independent of the nonnegative random variable Z and

P(Z ≤ x) = K1(x).

11



This shows that the function x 7→ Lt(x) is a cdf on R+ for every t > 0. Since X has

increasing sample paths it also follows using relation (2.26) that the function t 7→ Lt(x)

is decreasing for every fixed x. Finally, by the continuity in probability and X(0) = 0

we obtain applying again relation (2.26) that

limt↓0 Lt(x) = P(Z ≤ x) = K1(x). (2.27)

Hence this shows (as we already know) that the function x 7→ K1(x) is a cdf and so

∫ ∞
x

u−1dK1(u) < ∞

for every x > 0. Since for every x1, x2 > 0 it follows by relation (2.24) that

Ft(x1 + x2)− Ft(x1)

t
=

∫ x1+x2

x1

u−1dLt(u) (2.28)

we obtain by relation (2.27) and the Helly-Bray lemma (cf. [12]) that

limt↓0
Ft(x1 + x2)− Ft(x1)

t
= limt↓0

∫ x1+x2

x1

u−1dLt(u) =

∫ x1+x2

x1

u−1dK1(u).

By the above observations and applying the extended Helly-Bray Lemma (cf. [12]) we

also obtain that

limt↓0
1− Ft(x1)

t
=

∫ ∞
x1

u−1dK1(u)

and this shows the result. 2

To describe non-stationary behavior of an increasing Levy process we introduce a

so-called time transformation function.

Definition 5 A function ν : [0,∞) 7→ R+ is called a time transformation function if

ν is strictly increasing and continuous on R+ and it satisfies ν(0) = 0 and ν(∞) = ∞.

For any time transformation function ν the increasing inverse function ν← : [0,∞) 7→

R is given by (cf. [14])

ν←(s) := inf{t ≥ 0 : ν(t) ≥ s}. (2.29)
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Since ν is strictly increasing and continous it follows that ν← is also strictly increas-

ing and continous and it satisfies

ν(ν←(s)) = s (2.30)

for every s ≥ 0. To capture non-stationarity in increasing Levy processes we introduce

the next definition.

Definition 6 A stochastic process Xν = {Xν(t) : t ≥ 0} is an increasing Levy process

with time transformation ν if there exists some increasing Levy process X with µ1 = 1

satisfying

Xν(t) = X(ν(t))

for every t ≥ 0.

By the definition of an increasing Levy process Xν with continuous time trans-

formation function ν it is easy to see that the stochastic process Xν is càdlàg, has

independent, non-stationary and nonnegative increments and is continuous in proba-

bility. Also it satisfies Xν(0) = 0 and by Lemma 1 we obtain

E(Xν(t)) = ν(t). (2.31)

and

σ2(Xν(t)) = ν(t)σ2(X(1)) = ν(t)(µ2 − 1). (2.32)

In a lot of applications like maintenance and inventory control one is interested in

the so-called hitting time Tν(r) at level r of an increasing Levy process with time

transformation function ν given by

Tν(r) := inf{t ≥ 0 : Xν(t) > r}. (2.33)

In case we consider the special case of an increasing Levy process this hitting time is

denoted by T(r). Since the sample paths of the (càdlàg) Levy process are increasing

and hence the event {Tν(r) > t} is the same as {Xν(t) ≤ r} we immediately obtain

that the cdf of Tν(r) is given by

P(Tν(r) > t) = P(X(ν(t)) ≤ r). (2.34)

13



Since the process X is continuous in probability and ν is a continuous function this

implies by relation (2.34) that the function

t 7→ P(Tν(r) > t)

is also continuous on R+ for every r > 0. For any increasing Levy process it is also

known that it is a jump process (cf. [13]) and so the same holds for an increasing

Levy process with time transformation function ν. Hence for a Levy process one can

also introduce the so-called overshoot random variable Wν(r) and undershoot random

variable Vν(r) at level r. The overshoot stochastic process Wν = {Wν(r) : r ≥ 0} is

given by

Wν(r) := Xν(Tν(r))− r, (2.35)

while the undershoot stochastic process Vν = {Vν(r) : r ≥ 0} is given by

Vν(r) := r −Xν(Tν(r)
−). (2.36)

The notation Xν(Tν(r)
−) means by definition

Xν(Tν(r)
−) := limh↓0Xν(Tν(r)− h). (2.37)

For an increasing Levy process we denote the overshoot at level r by W(r) and the un-

dershoot by V(r). In the next section we will study in detail the undershoot, overshoot

and hitting time variables in an increasing Levy process.

2.2 On properties of the overshoot, undershoot and hitting time

To start this section we first relate in the next subsection by means of an elementary

sample path analysis the overshoot, undershoot and hitting time of an increasing Levy

process with time transformation function ν to the corresponding random variables

describing these processes in an increasing Levy process. At the same time we identify

an embedded partial sum process within an increasing Levy process which enables us to

use well-known properties of renewal processes in analyzing the overshoot, undershoot

and hitting time of an increasing Levy process.

14



2.2.1 Sample path properties of the overshoot, undershoot and hitting

time

To start our discussion of the properties of the undershoot, overshoot and hitting time

random variable at level r of an increasing Levy process with time transformation

function ν we show in the next lemma that without loss of generality we may restrict

ourselves in our analysis to the same random variables in an increasing Levy process.

Lemma 6 For any Levy process Xν with time transformation function ν and r > 0

we have

Tν(r) = ν←(T(r)) (2.38)

and

Wν(r) = W(r),Vν(r) = V(r). (2.39)

Proof. To verify relation (2.38) it follows applying relation (2.30) and ν← is strictly

increasing that

Tν(r) = inf{t ≥ 0 : X(ν(t)) > r}

= ν←(inf{ν(t) ≥ 0 : X(ν(t)) > r})

= ν←(inf{t ≥ 0 : X(t) > r}).

To show the second equality we observe by the definition of Wν(r) in relation (2.35)

and applying relations (2.30) and (2.38) that

Wν(r) = Xν(ν
←(T(r)))− r

= X(ν(ν←(T(r))))− r

= X(T(r))− r.

This shows the first part of relation (2.39). To prove the result for the undershoot we

observe by the definition of Vν(r) in relation (2.36), again relation (2.30) and (2.38)
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the strict monotonicity and continuity of ν that

Vν(r) = r − limh↓0Xν(Tν(r)− h)

= r − limh↓0Xν(ν
←(T(r))− h)

= r − limh↓0X(ν(ν←(T(r))− h))

= r −X(T(r)−)

and this shows the second part of relation (2.39). 2

To analyze the behavior of the random variables T(r) belonging to an increasing

Levy process X we consider for any h > 0 the Levy process X sampled at the times

nh, n ∈ Z+. Introduce for this sampled version the hitting time of level r > 0 given by

Th(r) := inf{nh : X(nh) > r} = h inf{n ∈ Z+ : X(nh) > r}. (2.40)

To relate Th(r) to T(r) it is easy to see using the monotonicity of the sample path of

the process X that

Th(r) = h⌊T(r)h−1⌋+ h (2.41)

with ⌊.⌋ denoting the lower entier function. This shows

Th(r)− h ≤ T(r) ≤ Th(r) (2.42)

for every h ≥ 0.

r

h 2h 3h

T(r) Th(r)Th(r)− h

Figure 2.1: Hitting time at level r of an increasing Levy process
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Also for ν a time transformation function and hence ν← is increasing it follows by

relations (2.38) and (2.42) that

ν←(Th(r)− h) ≤ Tν(r) ≤ ν←(Th(r)). (2.43)

To relate the random variable Th(r) to a renewal process we observe the following.

Clearly it follows for every n ∈ Z+ that

X(nh) =
∑n

k=0
Yk(h) (2.44)

with

Yk(h) := X(kh)−X((k − 1)h) (2.45)

for every k ∈ N and Y0(h) = 0. Introducing

Ft(x) := P(X(t) ≤ x) (2.46)

and using the definition of an increasing Levy process it follows that the random

variables Yk(h), k ∈ N are independent and identically distributed with cdf Fh. Con-

sidering now the renewal process Nh := {Nh(t) : t ≥ 0} generated by the independent

and identically distributed random variables Yk(h) given by

Nh(t) := sup{n ∈ Z+ : X(nh) ≤ t}

= sup{n ∈ Z+ :
∑n

k=0 Yk(h) ≤ t}
(2.47)

we obtain by relation (2.40) that

Th(r) = h(Nh(r) + 1). (2.48)

In the next subsection we will derive some properties of the hitting time Tν(r).

2.2.2 On the behavior of the hitting time Tν(r) as r ↑ ∞.

In this subsection we will derive asymptotic results for the hitting time T(r) by relating

these random variables to the random variables Th(r), h > 0. By relation (2.40) it

follows for every r > 0 that the random variables T2−m(r),m ∈ N are decreasing in m
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and this implies for every m ∈ Z+ that

0 ≤ T2−m(r) ≤ T1(r).

Also by relation (2.42) it is clear that

T2−m(r)
a.s

↓ T(r)(m ↑ ∞) (2.49)

and hence by Theorem 25.2 of [3]

T2−m(r)
P→ T(r)(m ↑ ∞) (2.50)

Finally by relation (2.48) and using E(N1(r)) is finite for every r we know that E(T1(r))

is finite for every r. Hence the conditions of the dominated convergence in probability

theorem hold and we may conclude that

limm↑∞ E(T2−m(r)) ↓ E(T(r)). (2.51)

Using the monotonicity of the random variables T2−m(r),m ∈ N we could have also

applied directly the dominated convergence theorem of Lebesgue to justify relation

(2.51). By a similar argument using ν is strictly increasing and continuous, relation

(2.43) and Lemma 6 we obtain that

limm↑∞ E(ν←(T2−m(r)) ↓ E(Tν(r)). (2.52)

In the next result we first analyze the first order asymptotic behavior of the hitting

time T(r) of an increasing Levy process.

Lemma 7 For any increasing Levy process X satisfying µ1 = 1 it follows

limr↑∞
T(r)

r
a.s
= 1 (2.53)

and

limr↑∞
E(T(r))

r
= 1. (2.54)
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Proof. By relation (2.48) and inequality (2.42) applied to h = 1 we obtain

N1(r) ≤ T(r) ≤ N1(r) + 1. (2.55)

Using Kolmogorovs strong law of large numbers it can be easily shown that

limr↑∞
N1(r)

r
a.s
= E(X(1))−1 = 1. (2.56)

and this applied to relation (2.55) yields relation (2.53). To prove the second asymptotic

expectation result we observe by relation (2.55) that

E(N1(r)) ≤ E(T(r)) ≤ E(N1(r) + 1) (2.57)

Applying in relation (2.57) the weak renewal theorem (cf. [9]) to the renewal process

N1 and using E(X(1)) = µ1 = 1 the result in relation (2.54) follows. 2

The above first order asymptotic results can be easily extended to E(T(r)p) for any

p ∈ N. Observe we need to use this extension to prove first order asymptotic results

for increasing Levy processes with a so-called regularly varying time transformation

function ν. It can be shown by standard techniques from renewal theory that E(N1(r)
p)

is finite for every r > 0 and

limr↑∞
E(N1(r)

p)

rp
= 1. (2.58)

(see Exercise 16 and 17 of Chapter 5 of [9]). Since by relation (2.42) we know

(T1(r)− 1)p ≤ T(r)p ≤ T1(r)
p

this shows

E((T1(r)− 1)p) ≤ E(T(r)p) ≤ E(T1(r)
p).

Applying now relations (2.58) and (2.48) yields

limr↑∞
E(T(r)p)

rp
= 1 (2.59)
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Up to now we did not give an explicit integral representation for the expectation

E(Tν(r)). Using

E(X) =

∫ ∞
0

P(X > t)dt

for any nonnegative random variable X and relation (2.34) we obtain

E(Tν(r)) =

∫ ∞
0

P(Tν(r) > t)dt =

∫ ∞
0

P(X(ν(t)) ≤ r)dt. (2.60)

Using this representation and t 7→ P(X(ν(t)) ≤ r) is a decreasing function one can also

give an alternative calculus derivation of relations (2.51), (2.52) and (2.54). Observe

the function

r 7→
∫ ∞
0

exp(−qt)P(X(t) ≤ r)dt

is called within the theory of Levy processes the q-potential measure (cf. [11]) and so

for q = 0 using relation (2.60) we obtain E(T(r)).

In the above lemma we gave a first order asymptotic result for the hitting time

T(r) of an increasing Levy process. To extend this result to the hitting time Tν(r) of

a increasing Levy process with time transformation function ν, it follows by relation

(2.38) that we need to analyze the behavior of the random variable ν←(T(r)). To

analyze in the next result the expected asymptotic behavior of the hitting time Tν(r)

for a subclass of the increasing Levy processes with time transformation function ν,

we introduce the following class of functions well known within extreme value theory.

(cf. [6], [8])

Definition 7 A function f : R+ → R is called regularly varying at infinity if for every

x > 0

limt↑∞
f(tx)

f(t)
= xα (2.61)

for some α ∈ R. The number α is called the index of regular variation and the class of

regularly varying functions with index α is denoted by RV ∞α .

For regularly varying functions the following two fundamental results exists. The

first result is called the uniform convergence theorem for regularly varying functions,

while the second is called the representation theorem for regularly varying functions.

For its proof we refer to [6] or [8].
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Lemma 8 If the function f : R+ → R is a regularly varying function with index α ∈ R,

then the convergence in relation (2.61) to its limit holds uniformly for any x ∈ [a, b]

satisfying 0 < a < b < ∞.

The representation theorem is given by the following result.

Lemma 9 If the function f : R+ → R is a regularly varying function at infinity with

index α ∈ R, then there exist measurable functions a : R+ → R and c : R+ → R with

limt↑∞ c(t) = c0, 0 < c0 < ∞ and limt↑∞ a(t) = α (2.62)

and t0 > 0 such that for every t > t0

f(t) = c(t) exp

(∫ t

t0

a(s)

s
ds

)
. (2.63)

Conversely, if relation (2.63) holds with a and c satisfying (2.62), then the function

f : R+ → R is a regularly varying function at infinity with index α.

It is now possible to show the following first order asymptotic results for the hitting

time Tν(r) of an increasing Levy process with a regularly varying time transformation

function ν.

Lemma 10 If the stochastic process Xν is an increasing Levy process Xν with time

transformation function ν regularly varying at infinity with index 0 < α < ∞ then

limr↑∞
Tν(r)

ν←(r)
a.s
= 1 (2.64)

and

lim
r↑∞

E(Tν(r))

ν←(r)
= 1. (2.65)

Proof. It can be shown (cf. [8]) for any strictly increasing and continuous function ν

regularly varying at infinity with index 0 < α < ∞ that ν← is a regularly varying

function at infinity with index α−1. By relations (2.38) and (2.53) and the uniform

convergence theorem for regularly varying functions we therefore obtain

limr↑∞
Tν(r)

ν←(r)
= limr↑∞

ν←(T(r))

ν←(r)
= lim

r↑∞

ν←
(

T(r)
r
r
)

ν←(r)
a.s
= 1.
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This proves relation (2.64). To verify relation (2.65) it follows by relation (2.64) and

lemma of Fatou (cf. [21]) that

lim infr↑∞
E(Tν(r))

ν←(r)
≥ 1. (2.66)

To show the desired result it is now sufficient to prove that

lim supr↑∞
E(Tν(r))

ν←(r)
≤ 1. (2.67)

To verify this we observe the following . Since ν← is regularly varying with index

0 < α−1 < ∞ it follows by relation (2.62) and (2.63) that for any x > 1 and k > α−1

with k ∈ N there exists some r0 satisfying

ν←(xr)

ν←(r)
≤ 2xk

for every r ≥ r0. This implies using ν← is increasing that

ν←(T(r))

ν←(r)
≤ ν←(r +T(r))

ν←(r)
≤ 2

(
1 +T(r)r−1

)k
Considering now for r ≥ r0 the nonnegative random variables

2
(
1 +T(r)r−1

)k − ν←(T(r))ν←(r)−1

we obtain by Fatou’s lemma and relation (2.53)

2k+1 − 1 ≤ lim infr↑∞(2E((1 +T(r)r−1)k)− E(ν←(T(r)))

ν←(r)
(2.68)

By relation (2.59) it follows that

limr↑∞ E((1 +T(r)r−1)k) = 2k

and so

lim infr↑∞(2E((1 +T(r)r−1)k)− E (ν←(T(r))ν←(r)−1)

= 2k+1 − lim supr↑∞ E (ν←(T(r))ν←(r)−1) .
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This implies using relation (2.68) that

lim supr↑∞ E
(
ν←(T(r))ν←(r)−1

)
≤ 1

and by relation (2.38) we obtain

lim supr↑∞
E(Tν(r))

ν←(r)
= lim supr↑∞

E(ν←(T(r))

ν←(r)
≤ 1.

This verifies relation (2.67) and we have shown the result. 2

To prove stronger asymptotic results we first need the following definition (cf. [4]).

Definition 8 The nonnegative random variable X is said to be distributed on some

lattice Ld = {nd : n ∈ Z+} with d > 0 if
∑∞

n=0 P{ X = nd} = 1 and there is no

smaller lattice having this property. The corresponding cdf F of X is then called a

lattice distribution. If the nonnegative random variable X is not distributed on a lattice

Ld for any d > 0 its associated cdf is called non-lattice.

Without proof we now mention the following characterization result for a lattice

distribution in terms of its characteristic function. A proof of this result can be found

in Lemma 3. Chapter 15.1 of [20] or in Corollary 3.6.3 of [10]).

Lemma 11 If X is a nonnegative random variable and φ : R → C its characteristic

function given by

φ(u) = E(exp(iuX))

then the cdf of a nonnegative random variable X is a lattice distribution if and only if

there exists some u0 > 0 satisfying φ(u0) = 1.

Using Lemma 11 it is now easy to derive the following result.

Lemma 12 If X is an increasing Levy process then the cdf F1 of the random variable

X(1) is non-lattice if and only if the cdf Ft of the random variable X(t) is non-lattice

for every t > 0.

Proof. By a similar proof as for the probability Laplace-Stieltjes transform (see

Lemma 2) it can be shown (cf. [19]) for an increasing Levy process X with φt(u) :=

E( exp(iuX(t)) that

φt(u) = φ1(u)
t (2.69)

23



Using relation (2.69) and Lemma 11 the desired result follows. 2

Using Lemma 12 together with relation (2.42) one can now show the following

refinement of Lemma 7.

Lemma 13 If X is an increasing Levy process with non-lattice cdf F1 then for every

s > 0

limr↑∞ E(T(r + s)−T(r)) = s

and for µ2 finite

limr↑∞ ET(r)− r =
σ2(X(1))

2
.

Proof. Since F1 is non-lattice it follows by Lemma 12 that Fh is non-lattice for every

h > 0. This shows by the strong renewal theorem for non-lattice distributions (cf. [4],

[20]) that

limr↑∞ E(Nh(r + s))− E(Nh(r)) =
s

h
.

Applying relation (2.48) we obtain for every h > 0 that

limr↑∞ dh(r, s) = s (2.70)

with dh(r, s) := E(Th(r + s)) − E(Th(r)). Since by relation (2.42) it follows for every

h > 0 that

dh(r, s)− h ≤ E(T(r + s))− E(T(r)) ≤ dh(r, s) + h

we obtain by relation (2.70) that the function r → E(T(r + s))− E(T(r)) has a limit

κ and this limit satisfies s−h ≤ κ ≤ s+h for every h > 0. Hence κ = s and the result

is proved. To show the other result we observe by relation (2.42) and (2.48) that for

every h > 0

h(E(Nh(r))− rh−1) ≤ E(T(r))− r ≤ h(E(Nh(r))− rh−1) + h. (2.71)

Since it is well known (cf. [17], [20]) for Fh non-lattice and having a finite second

moment that for every h > 0

limr↑∞ E(Nh(r))− rh−1 =
E(X(h)2)

2E(X(h))2
=

σ2(X(h))

2h2
+

1

2
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we obtain by Lemma 1 that

limr↑∞ E(Nh(r))− rh−1) =
σ2(X(1))

2h
+

1

2

This implies by relation (2.71) that the function r 7→ E(T(r)) − r has a limit ϑ and

this limit satisfies
σ2(X(1))

2
+

1

2
h ≤ ϑ ≤ σ2(X(1))

2
+ 1

1

2
h

Hence by letting h ↓ 0 we obtain the desired result. 2

Looking at the above result one might also be interested in the strong asymptotic

behavior of the hitting time of an increasing Levy process with time transformation

function ν and so we need to analyze under which conditions one can analyze the

asymptotic behavior of the difference

E(Tν(r + s))− E(Tν(r))

for r ↑ ∞. By relation (2.38) this boils down to analyzing the asymptotic behavior of

the difference

E(ν←(T(r + s))− E(ν←(T(r))

This behavior is not investigated in this thesis and will be a topic for future research.

It is conjectured for a(t) = ν←
′
(t) the derivative of a regularly varying function ν with

index 0 < α < 1 and F1 non-lattice that the following result holds.

limt↑∞
E(Tν(r + s))− E(Tν(r))

a(r)
= h.

Next to the above asymptotic results one can also prove an extension of Lorden’s

inequality for renewal functions to increasing Levy processes with time transformation

function ν. These inequalities give an upperbound and lower bound on the expectation

of the hitting times for all values of r and are useful in applications.
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Lemma 14 If the stochastic process X is an increasing Levy process and the second

moment µ2 of the random variable X(1) is finite, then for every r ≥ 0

r ≤ E(T(r)) ≤ r + σ2(X(1)).

Moreover, if Xν is an increasing Levy process with a convex time transformation func-

tion ν and the second moment of the random variable Xν(1) is finite, then

E(Tν(r)) ≤ ν←(r + σ2(X(1)))

while for ν concave

E(Tν(r)) ≥ ν←(r).

Proof. By Lorden’s inequality for the renewal function (for different easy proofs see [7]

or [17]) we know that

r

h
≤ E(Nh(r)) + 1 ≤ r

h
+

E(X(h)2)

h2
=

r

h
+

σ2(X(h))

h2
+ 1.

Hence by relation (2.48) and Lemma 1 we obtain for every h > 0

r ≤ E(Th(r)) ≤ r + σ2(X(1)) + h.

Applying now relation (2.42) yields for every h > 0 that

r − h ≤ E(Th(r))− h ≤ E(T(r)) ≤ E(Th(r)) ≤ r + σ2(X(1)) + h

Letting h ↓ 0 shows the desired result. To show the second result we first observe that

ν convex implies ν← is concave. Applying now Jensen’s inequality and relation (2.38)

E(Tν(r)) = E(ν←(T(r)) ≤ ν←(E(T(r)))

Applying now the first part yields the desired result. A similar proof using Jensen’s

inequality and the first part applies to the last formula. 2
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Finally we list in this section a so-called central limit theorem for the hitting time

T(r) of an increasing Levy process. To do so we need the following definition (cf. [4]).

Definition 9 The sequence of random variables Zn, n ∈ N with cdf Fn converges in

distribution to the random variable Z (notation Zn
d→ Z) if

limn↑∞ Fn(x) = F (x)

at all continuity points x ∈ R of the cdf F of the random variable Z.

Since any distribution function F on R is nonnegative and bounded above by 1 and

increasing it can be shown that the set of discontinuity points of the cdf F is at most

countable (cf. [20], [4])

Lemma 15 For any increasing Levy process X satisfying µ1 = 1 and µ2 = E(X(1)2)

is finite it follows that
T(r)− r√
r (µ2 − 1)

d→ Z (2.72)

with Z a random variable having a standard normal distribution.

Proof. Since µ1 = 1 it follows by Lemma 1 that

σ2(X(h)) = h(µ2 − 1) > 0

Substituting this in Theorem 7.1 of [9]) we obtain

hNh(r)− r√
r (µ2 − 1)

d→ Z (2.73)

By relation (2.42) we also know that

hNh (r)− r√
r (µ2 − 1)

≤ T(r)− r√
r (µ2 − 1)

≤ hNh(r) + h− r√
r (µ2 − 1)

(2.74)

and since from relation (2.73) it is also easy to show that (a special case of Slutsky

theorem (cf. [15])) that
hNh(r) + h− r√

r (µ2 − 1)

d→ Z
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the desired result follows from combining the previous inequalities. 2

Looking at the above result one might also be interested in the distributional con-

vergence of the normalized random variable

Tν(r)− E(Tν(r))

σ(Tν(r))

To show a result for this random variable we probably need to apply a Lindeberg-Feller

type central limit theorem (cf. [20]), [4]). One might also use a central limit theorem

for martingales. This question will be a topic of future research. In the next subsection

we will investigate the properties of the overshoot and undershoot of any Levy process

with or without time transformation function ν.

2.2.3 On the overshoot and undershoot stochastic process in an increasing

Levy process

In this subsection we will first prove an important sample path result for the overshoot

at level r of an increasing Levy process (with µ1 = 1) relating it to the overshoot

generated by a renewal process. This result turns out to be crucial in justifying our

approximation technique. Remember in relation (2.35) the overshoot of an increasing

Levy process Xν with time transformation function ν is given by

Wν(r) = Xν(Tν(r))− r (2.75)

and since by lemma 6 we know that

Wν(r) = W(r) (2.76)

we know that we can restrict ourselves to the overshoot at level r in an increasing

Levy process. To approximate the overshoot random variables introduce for any r the

overshoot Wh(r) at level r of an increasing Levy process sampled at the time points

nh, n ∈ Z+ given by

Wh(r) := X(Th(r))− r (2.77)

It is now easy to show the following result.
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Figure 2.2: Overshoot at level r of an increasing Levy process

Lemma 16 For every increasing Levy process X and r, h > 0 it follows that

W(r) ≤ Wh(r) ≤ W(r) +X(T(r) + h)−X(T(r)) (2.78)

with the random variable X(T(r) + h)−X(T(r)) independent of W(r) and

X(T(r) + h)−X(T(r))
d
= X(h). (2.79)

Proof. Since the process X has increasing sample paths and by relation (2.42) we know

that

Th(r)− h ≤ T(r) ≤ Th(r)

for every h > 0 it follows that

W(r) ≤ X(Th(r))− r = Wh(r). (2.80)

To show the other inequality we observe using again the monotonicity of the sample

paths and the above inequality for the hitting times that

Wh(r) = X(Th(r))− r ≤ X(T(r) + h)− r. (2.81)

Since T(r) is a Ft-stopping time of the Levy process X and each Levy process renews

itself at a finite stopping time (see theorem 32 of [13]) it follows that

X(T(r) + h)− r = W(r) +X(T(r) + h)−X(T(r))

d
= W(r) +Y(h)

(2.82)
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with Y(h)
d
= X(h) independent of W(r). Applying relations (2.81) and (2.82) yields

the result. 2

In the next result we prove a weaker sample path result for the undershoot at level r.

Also this result is crucial in justifying the correctness of our approximation technique.

Remember in relation (2.35) the undershoot of an increasing Levy process with time

transformation function ν, Xν is given by

Vν(r) = r −Xν(Tν(r)
−) (2.83)

and since by lemma 6

Vν(r) = V(r) (2.84)

we know that we can restrict ourselves to the undershoot at level r in an increasing Levy

process. To approximate these random variables introduce for every r the undershoot

Vh(r) at level r of an increasing Levy process sampled at the time points nh, n ∈ Z+

given by

Vh(r) := r −X(hNh(r)) (2.85)

with Nh the renewal process associated with the arrival times X(nh), n ∈ Z+. By

relation (2.48) we know that

Th(r)− h = hNh(r)

and so it follows that

Vh(r) = r −X(Th(r)− h). (2.86)

One can now show the following sample path result.

Lemma 17 For every increasing Levy process X and r, h > 0 it follows that

V(r) ≤ Vh(r) ≤ r −X(T(r)− h). (2.87)

Proof. Since by relation (2.40) it is obvious for every h > 0 that

X(Th(r)− h) < r
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Figure 2.3: Undershoot at level r of an increasing Levy process

we obtain by the monotonicity of the sample paths of an increasing Levy process X,

the definition of T(r)− and relation (2.42) that

T(r)− > Th(r)− h ≥ T(r)− h. (2.88)

Applying again the monotonicity of the sample paths of the stochastic process X and

the definition of the undershoot it follows using relation (2.88) that

V(r) = r −X(T(r)−) ≤ r −X(Th(r)− h) ≤ r −X(T(r)− h).

This shows the result. 2

Since for fixed r > 0 the random variables T2−m(r), m ∈ N are decreasing in m

it follows by the increasing sample paths of the increasing Levy process X that the

overshoot random variables

W2−m(r) = X(T2−m(r))− r

are decreasing in m and so

0 ≤ W2−m(r) ≤ W1(r)

for every m ∈ Z+. Moreover, by relation (2.78) and X(T(r) + h) − X(T(r)
a.s→ 0

(h ↓ 0) we obtain that the sequence W2−m(r) converges a.s to W(r) and hence we

have verified that

W2−m(r)
a.s

↓ W(r)(m ↑ ∞) (2.89)

31



This shows by Theorem 25.2 of [3] that

W2−m(r)
P→ W(r) (m ↑ ∞) and W2−m(r)

d→ W(r) (m ↑ ∞).

Since W2−m(r), m ∈ N is a sequence of decreasing random variables we know addi-

tionally

P(W2−m(r) ≤ x) ↑ P(W(r) ≤ x) (m ↑ ∞) (2.90)

for any continuity point x of the cdf of the random variable W(r). This monotonicity

property might be interesting from a computational point of view. Moreover, by a

standard application of Walds identity within renewal theory or by the unicity of the

solution of a renewal type equation (cf. [9]) it follows that E(W1(r)) is finite and so

the conditions of the dominated convergence in probability theorem hold. This shows

limm↑∞ E(W2−m(r)) ↓ E(W(r)) (2.91)

Again we could have applied directly the dominated convergence result of Lebesgue to

justify relation (2.91). To show a similar result for the undershoot process we observe

for every m ∈ N that by relation (2.47)

2−mN2−m(r) = 2−m sup{n ∈ Z+ : X(2−mn) ≤ r}

and this shows by the increasing sample paths of the Levy process X that the random

variables 2−mN2−m(r) are increasing inm. Hence it follows that the undershoot random

variables

V2−m(r) = r −X(2−mN2−m(r))

are decreasing in m and by Lemma 17 we obtain

V2−m(r)
a.s

↓ V(r) (m ↑ ∞) (2.92)

Hence by Theorem 25.2 of [3] it follows

V2−m(r)
P→ V(r) (m ↑ ∞) and V2−m(r)

d→ V(r) (m ↑ ∞)
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and by the monotonicity property of the random variables V2−m(r), m ∈ N we addi-

tionally obtain

P(V2−m(r) ≤ x) ↑ P(V(r) ≤ x) (2.93)

for every continuity point x of the cdf of the random variable V(r). The conditions of

the dominated convergence in probability theorem again hold and so for the undershoot

random variable we may also conclude that

limm↑∞ E(V2−m(r)) ↓ E(V(r)). (2.94)

To determine the joint cdf of the random vector (V(r),W(r)) for r fixed we observe

using V2−m(r) ↓a.s V(r) and W2−m(r) ↓a.s W(r) that

{V(r) ≥ z,W(r) ≥ x} = ∩m∈N{V2−m(r) ≥ z,W2−m(r) ≥ x} (2.95)

for every r > z and x ≥ 0. It can now be easily shown by means of a sample path

approach (cf. [9] or Figure 2.4) that

{V2−m(r) ≥ z,W2−m(r) ≥ x} = {W2−m(r − z) ≥ x+ z}.

Also by a similar argument as used in relation (2.95) we know that

∩m∈N{W2−m(r − z) ≥ x+ z} = {W(r − z) ≥ x+ z}. (2.96)

Hence by relations (2.95) and (2.96) we obtain the important set relation

{V(r) ≥ z,W(r) ≥ x} = {W(r − z) ≥ x+ z}. (2.97)

To determine the cdf of the overshoot W(r) and undershoot V(r) of an increasing

Levy process at a given level r it is by relations (2.90) and (2.93) natural to determine

first the easier cdf of the overshoot W2−m(r) and undershoot V2−m(r) of the embedded

renewal process at the time points n2−m and then compute its limit for m ↑ ∞. This

approach is mathematically more simpler than applying the compensation formula for

predictable processes applied to the predictable Levy jump process ∆X as done in [1].

Also the results mentioned in Lemma 16 and 17 are sufficient to determine that the

stochastic under and overshoot process are converging in distribution to a limiting ran-
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Figure 2.4: The relation between the overshoot and the joint distribution of overshoot
and undershoot

dom variable and at the same time determine the form of these limiting distributions.

The way to do this is to use asymptotic results for renewal processes, the extended

continuity theorem for Laplace-Stieltjes transforms and Lemmas 16 and 17. Observe

such a approximation procedure is also mentioned in [2] to justify the form of the limit

distributions (reversing limit operations r ↑ ∞ and h ↓ 0) without giving a correctness

proof of the proposed procedure. Actually the authors suggest in [2] that justifying this

reversal is not straight forward. In [2] it is then later proved that the suggested forms

are correct by using the mathematical much more difficult compensation formulas for

predictable processes and asymptotic expansions. This observation was one of the in-

centives to start the present study on increasing Levy processes. A similar approach

is also followed in Section 5 of Chapter 7 of [19] without a proper mathematical proof.

Observe also that understanding increasing Levy processes is important due to the

range of applications of these processes to applied oriented Operations research and

Engineering applications like maintenance (see for example [16], insurance mathemat-

ics and inventory control [17]. In the next result we will first identify the cdf of the

undershoot Vh(r) and overshoot Wh(r) at level r.
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Lemma 18 Let X be an increasing Levy process and introduce for h > 0 the renewal

function U∞,h : R+ → R given by

U∞,h(y) = E(Nh(y)) =
∑∞

n=0
P(X(nh) ≤ x)

1. If for a given x > 0 the function g0 : R+ 7→ R+ is defined by

g0(z) = 1− Fh(z + x),

then it follows that

P (Wh (r) > x) =

∫ r

0−
g0(r − y)dU∞,h(y). (2.98)

2. If for a given x > 0 the function g1 : R+ 7→ R+ is defined by

g1(z) =


0 if z ≤ x

1− Fh(z) if z > x

then it follows for r > x that

P (Vh (r) > x) =

∫ r

0

g1(r − y)dU∞,h(y)

while P (Vh (r) > x) = 0 for r < x.

Proof. To derive the first equation we first observe by the total law of probability and

the renewal argument applied to the regenerative overshoot process Wh = {Wh(r) :

r ≥ 0} with regeneration points X(nh), n ∈ N that

P (Wh (r) > x) = P (Wh (r) > x,X(h) ≤ r) + P (Wh (r) > x,X(h) > r)

=
∫ r

0
P (Wh (r) > x|X(h) = y) dFh (y) + P (Wh (r) > x,X(h) > r)

=
∫ r

0
P(Wh (r − y) > x)dFh (y) + P (Wh (r) > x,X(h) > r)

(2.99)

Observe if the event X(h) > r happens then clearly Th(r) = h and this shows

Wh(r) = X(Th(r))− r = X(h)− r
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Hence it follows that

{Wh (r) > x,X(h) > r} = {X(h)− r > x,X(h) > r} = {X(h) > r + x}

and so

g0(r) := P(Wh (r) > x,X(h) > r) = 1− Fh(r + x)

Hence by relation (2.99) the function ν(r) = P (Wh (r) > x) satisfies the renewal type

equation

ν(r) =

∫ r

0

ν(r − y)dFh(y) + g0(r)

By Theorem 4.1 of [9] this renewal type equation has a unique solution and it given by

ν(r) =

∫ r

0−
g0(r − y)dU∞,h(y) =

∫ r

0−
(1− Fh(r + x− y))dU∞,h(y)

To determine the undershoot we observe again by the renewal argument that

P(Vh(r) > x) = P(Vh(r) > x,X(h) ≤ r) + P(Vh(r) > x,X(h) > r)

=
∫ r

0
P(Vh (r − y) > x)dFh (y) + P (Vh (r) > x,X(h) > r)

It follows in case X(h) > r that Vh (r) = r and this shows that

g1(r) := P (Vh (r) > x,X(h) > r) =


0 if r ≤ x

1− Fh(r) if r > x

Hence the function σ(r) = P(Vh(r) ≤ x) satisfies the renewal type equation

σ(r) =

∫ r

0

σ(r − y)dFh (y) + g1(r)

Again we obtain by the unicity of solution of the renewal-type equation that

σ(r) =

∫ r

0−
g1(r − y)dU∞,h(y)

and this proves the result. 2

From Lemma 18 and applying the strong renewal theorem for non-lattice distribu-

tions the following well known result for the over and undershoot stochastic process in
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renewal theory is easy to derive.

Lemma 19 If X is an increasing Levy process with non-lattice cdf F1 and µ1 = 1,

then for every h > 0 there exists some random variables Wh(∞) and Vh(∞) satisfying

Wh(r)
d→ Wh(∞)(r → ∞),Vh(r)

d→ Vh(∞)(r → ∞)

and

P(Vh(∞) > x) = P(Wh(∞) > x) =
1

h

∫ ∞
x

1− Fh(y)dy. (2.100)

Proof. By Lemma 12 the cdf Fh associated with the renewal function x 7→ U∞,h(x) is

non-lattice for every h > 0. Since it is easy to see that the function g0 in Lemma 18 is

directly Riemann integrable (cf. [9]) we obtain by the strong renewal theorem (cf. [9])

using E(X(h)) = h that

limr↑∞
∫ r

0− g0(r − y)dU∞,h(y) = 1
E(X(h))

∫∞
0

g0(z)dz

= 1
h

∫∞
x

1− Fh(z)dz.

By a similar argument it follows that

limr↑∞
∫ r

0
g1(r − y)dU∞,h(y) = 1

E(X(h))

∫∞
0

g1(z)dz

= 1
h

∫∞
x

1− Fh(z)dz

Applying now Lemma 18 yields the desired result. 2

We will now use Lemma 16 and the previous lemma in combination with the con-

tinuity theorem for Laplace-Stieltjes transforms (see Appendix) to show that under

certain conditions the limit distribution of the overshoot process W of an increasing

Levy process exists and at the same time identify its form.

Lemma 20 If X is an increasing Levy process with non-lattice cdf F1 and E(X(1)) = 1,

then there exits some random variable W(∞) satisfying

W(r)
d→ W(∞)

and

P(W(∞) ≤ x) =

∫ x

0

∫ ∞
z

u−1dK1(u)dz.
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Proof. By Lemma 16 it follows for every α ≥ 0, h > 0 and r > 0 that

E( exp(−αW(r))E( exp(−αX(h))) ≤ E( exp(−αWh(r)) ≤ E( exp(−αW(r)).

and so

E( exp(−αWh(r)) ≤ E( exp(−αW(r)) ≤ E( exp(−αWh(r))E( exp(−αX(h)))−1

(2.101)

Since by relation (2.19)

E( exp(−αX(h)) = exp(−h

∫ α

0

ρ(s)ds) (2.102)

it follows using relation (2.101) that

E( exp(−αWh(r)) ≤ E( exp(−αW(r)) ≤ E( exp(−αWh(r)) exp

(
h

∫ α

0

ρ(s)ds

)
.

(2.103)

In the remainder of the proof we will show that limr↑∞ E( exp(−αW(r) exists and

identify its limit. Applying Lemma 19 and the continuity theorem for pLST (cf. [19]

or Appendix) we obtain

limr↑∞ E( exp(−αWh(r))) = E( exp(−αWh(∞))) =
1− E( exp(−αX(h))

αh
. (2.104)

Introduce now for every α ≥ 0 the functions

L(α) := lim supr↑∞ E( exp(−αW(r))

and

L(α) := lim infr↑∞ E( exp(−αW(r))

By relations (2.103) and (2.104) we obtain for every h > 0 that

E( exp(−αWh(∞))) ≤ L(α) ≤ L(α) ≤ E( exp(−αWh(∞))) exp(h

∫ α

0

ρ(s)ds).

This shows taking h ↓ 0 in relation (2.104) that

α−1
∫ α

0

ρ(s)ds ≤ L(α) ≤ L(α) ≤ α−1
∫ α

0

ρ(s)ds.
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Hence limr↑∞ E( exp(−αWh(r)) exists for every α ≥ 0 and

limr↑∞ E( exp(−αWh(r)) = α−1
∫ α

0

ρ(s)ds. (2.105)

Since by relation (2.19)

ρ(s) =

∫ ∞
0−

exp(−sx)dK1(x) (2.106)

and K1 is a cdf on R+ (see lemma 5) we obtain that the function ρ is right continuous

in 0 satisfying ρ(0) = 1 and continuous on (0,∞). This implies

limα↓0 α
−1

∫ α

0

ρ(s)ds = ρ(0) = 1

and we have verified that

α 7→ α−1
∫ α

0

ρ(s)ds

is right continuous in 0. To identify the cdf with pLST α 7→ α−1
∫ α

0
ρ(s)ds we observe

by Fubinis theorem that

α−1
∫ α

0
ρ(s)ds = α−1

∫ α

0

∫∞
0

exp(−sx)dK1(x)ds

= α−1
∫∞
0

1−exp(−αx)
x

dK1(x)

=
∫∞
0

∫ x

0
exp(−αv)dvx−1dK1(x)

=
∫∞
0

exp(−αv)
∫∞
v

x−1dK1(x)dv

Hence the cdf F with density f(ν) =
∫∞
ν

x−1dK1(x) has pLST

α 7→ α−1
∫ α

0

ρ(s)ds

and the conditions of the continuity theorem are satisfied. Using now relation (2.105)

the desired result follows. 2
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We now show a similar result for the undershoot process.

Lemma 21 If X is an increasing Levy process with non-lattice cdf F1 and E(X(1)) = 1,

then there exits some random variable V(∞) satisfying

V(r)
d→ V(∞)

and

P(V(∞) ≤ x) =

∫ x

0

∫ ∞
z

u−1dK1(u)dz.

Proof. It follows by Lemma 17 that

P(V(r) > x) ≤ P(Vh(r) > x)

for every h > 0. This shows by Lemma 19 that

lim supr↑∞ P(V(r) > x) ≤ 1

h

∫ ∞
x

1− Fh(y)dy

for every h > 0. Taking h ↓ 0 and using Lemma 5 we obtain

lim supr↑∞ P(V(r) > x) ≤
∫ ∞
x

∫ ∞
y

u−1dK1(u)dy = P(W(∞) > x)

To show that

lim infr↑∞ P(V(r) > x) ≥ P(W(∞) > x)

and hence prove the result we observe using relation (2.97) that for every z, h > 0 and

r > x+ h

P(V(r) > x) ≥ P(V(r) ≥ x+ h)

≥ P(V(r) ≥ x+ h,W(r) ≥ z)

= P(W(r − x− h) ≥ x+ h+ z)

(2.107)

Since by Lemma 20 the cdf of the random variable W(∞) is continuous and W(r)
d→

W(∞) it follows by relation (2.107) for every z, h > 0 that

lim infr↑∞ P(V(r) > x) ≥ lim infr↑∞ P(W(r − x− h) ≥ x+ h+ z)

= P(W(∞) ≥ x+ h+ z).

(2.108)
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Again by the continuity of the cdf of W(∞) we obtain

limz+h↓0 P(W(∞) ≥ x+ h+ z) = P(W(∞) > x)

and this shows by relation (2.108) that

lim infr↑∞ P(V(r) > x) ≥ P(W(∞) > x),

thus showing the desired result. 2

Applying Lemma 5 and 18 one can show the following formula for the overshoot

and undershoot of an increasing Levy process with time transformation ν. In this

approach we avoid the more common and mathematically more difficult approach using

the complicated compensation formula for predictable processes applied to the jump

process ∆X of the Levy process X as discussed without proof in Section O5 of [1] (see

also Section 5.2 of [11])

Lemma 22 If Xν is an increasing Levy process with time transformation ν, then

P(Wν(r) > x) =

∫ r

0−

∫ ∞
r+x−y

u−1dK1(u)dU∞(y)

and

P(Vν(r) > x) =


0 if r ≤ x

∫ r−x
0−

∫∞
r−y u

−1dK1(u)dU∞(y) if r > x

with

U∞(y) :=

∫ ∞
0

P(X(t) ≤ y)dy = E(T(y))

Proof. By Lemma 6 we only need to show the result for an increasing Levy process X.

It follows from relations (2.42) and (2.48) and the random variables 2−mN2−m(y) are

increasing in m that for every y > 0

limm↑∞ 2−mU∞,2−m(y) = limm↑∞ 2−mE(N2−m(y)) ↑ E(T(y)) = U∞(y)

Also by Lemma 5 we obtain for every x > 0 that

limm↑∞ 2m(1− F2−m(x)) =

∫ ∞
x

u−1dK1(u).
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This implies by relation (2.90) and Lemma 18 that for every x > 0

P(W(r) > x) =↓ limm↑∞ P(W2−m(r) > x)

= limm↑∞
∫ r

0− 2
m(1− F2−m (r + x− y))2−mdU∞,2−m(y)

=
∫ r

0−

∫∞
r+x−y u

−1dK1(u)dU∞(y)

To prove the result for the undershoot we observe for r > x using relation (2.93) and

again Lemma 18 that

P(V(r) > x) =↓ limm↑∞ P(V2−m(r) > x)

= limm↑∞
∫ r−x
0−

2m(1− F2−m(r − y))2−mdU∞,2−m(y)

=
∫ r−x
0−

∫∞
r−y u

−1dK1(u)dU∞(y)

and this shows the result. 2

Using relation (2.97) and by Lemma 22 the cfd of the random variable W(r) is

continuous on (0,∞) we obtain immediately from Lemma 22 the joint distribution of

the overshoot and undershoot at level r.

Lemma 23 It follows for any Levy process Xν with time transformation function ν

that for r > z

P(Vν(r) > z,Wν(r) > x) =

∫ r−z

0−

∫ ∞
r+x−y

u−1dK1(u)dU∞(y).

We next continue with expectation results. An alternative way to verify the first

result is by observing that T(r) is a stopping time of an increasing Levy process X and

the process M = {Mt : t ≥ 0} given by

Mt = X(ν(t))− ν(t)

is a martingale. Apply now to this martingale Doob’s optional sampling theorem for

continous time martingales (see Theorem 14.12 of [4].)
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Lemma 24 It follows for the overshoot process Wν = {Wν(r) : r ≥ 0} that for any

r > 0

E(Wν(r)) = E(T(r))− r

Proof. By Lemma 6 we may restrict ourselves to the overshoot of an increasing Levy

process. Applying lemma 16 we obtain

E(W(r)) ≤ E(Wh(r)) ≤ E(W(r)) + h

and so

E(Wh(r))− h ≤ E(W(r)) ≤ E(Wh(r)) (2.109)

for every h > 0. By relations (2.45) and (2.48) it follows

E(Wh(r)) = E(X(h(Nh(r) + 1))− r = E
(∑Nh(r)+1

k=1
Yk(h)

)
− r

Since Nh(r) + 1 is a stopping time with respect to the sequence Yk(h), k ∈ N we may

use Wald’s identity (for an alternative proof using the renewal argument see page 167

of [9]) and so

E(Wh(r)) = hE(Nh(r) + 1)− r

Finally

E(Nh(r) + 1) = E
(∑∞

k=0
1{X(kh)≤r}

)
=

∑∞

k=0
P(X(kh) ≤ r)

and so we obtain by relation (2.109)

h
∑∞

k=1
P(X(kh) ≤ r)− r ≤ E(W(r)) ≤ h

∑∞

k=0
P(X(kh) ≤ r)− r (2.110)

for every h > 0. Since the process X is continuous in probability this yields taking

h ↓ 0 in relation (2.110) and using relation (2.60) that

E(W(r)) = E(T(r))− r.

This shows the desired result. 2

By Lemmas 24 and 13 it follows immediately for F1 non-lattice and µ2 finite that

lim
r↑∞

E(Wν(r)) =
µ2 − 1

2
(2.111)
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Also by Lemmas 24 and 14 we obtain for every r > 0 that

0 ≤ E(Wν(r)) ≤ µ2 − 1 (2.112)

Finally we like to determine the joint distribution of the overshoot and the hitting

time. To compute this we first need the following result.

Lemma 25 If X is an increasing Levy process with E(X(1)) = 1, then

P(T(r) ≤ t,W(r) ≤ y) =
∫ r

0

∫ r+y−x
r−x u−1dK1(u)dUt(x)

with Ut(x) =
∫ t

0
Fν(x)dv.

Proof. By relations (2.41) and (2.78) we obtain for every t > 0, y > 0

limh↓0 P(Th(r) ≤ h(⌊th−1⌋+ 1),Wh(r) ≤ y) = P(T(r) ≤ t,W(r) ≤ y)

To analyze the probability P(Th(r) ≤ h(⌊th−1⌋+1),Wh(r) ≤ y) we observe by relation

(2.40) that

P(Th(r) ≤ h(⌊th−1⌋+ 1),Wh(r) ≤ y) = P(Nh(r) ≤ ⌊th−1⌋,Wh(r) ≤ y)

=
∑⌊th−1⌋

k=0 P(Nh(r) = k,Wh(r) ≤ y)

To analyze the above sum we observe for k = 0 that

P(Nh(r) = 0,Wh(r) ≤ y} = P(r < X(h) ≤ r + y)

Moreover, for k ≥ 1 we obtain

P(Nh(r) = k,Wh(r) ≤ y) = P(X(kh) ≤ r, r < X((k + 1)h) ≤ r + y)

=
∫ r

0
P(r < x+X((k + 1)h)−X(kh) ≤ r + y)dFkh(x)

=
∫ r

0
P(r − x < X(h) ≤ r + y − x)dFkh(x)

Introducing now for every h > 0 the set of measures Ut,h given by

Ut,h(x) = h
∑⌊th−1⌋

k=0 Fkh(x)
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we obtain that

P(Th(r) ≤ h(⌊th−1⌋+ 1),Wh(r) ≤ y) =
∫ r

0
P(r−x<X(h)≤r+y−x)

h
dUt,h(x)

By a simple monotonicity argument using the increasing sample paths of the standard

Levy process it follows

limh↓0 Ut,h(x) =
∫ t

0
Fν(x)dv := Ut(x)

Applying now Lemma 5 yields

limh↓0 P(Th(r) ≤ h(⌊th−1⌋+ 1),Wh(r) ≤ y) = limh↓0
∫ r

0
P(r−x<X(h)≤r+y−x)

h
dUt,h(x)

=
∫ r

0

∫ r+y−x
r−x u−1dK1(u)dUt(x)

and hence we have shown the following result. 2

For any Levy process Xν with time transformation ν we obtain by relations (2.38)

and (2.39) that

P(Tν(r) ≤ t,Wν,(r) ≤ y) = P(T(r) ≤ ν(t),W(r) ≤ y) (2.113)

and applying Lemma 25 yields

P(Tν(r) ≤ t,Wν(r) ≤ y) =
∫ r

0

∫ λr+y−x
λr−x u−1dK1(u)dUν(t)(x) (2.114)

By using the cumulative distribution function of the overshoot it is easy to deter-

mine the joint distribution of the overshoot and the undershoot. Finally we determine

the joint distribution of the overshoot, undershoot and the hitting time

Lemma 26 If X is an increasing Levy process with E(X(1)) = 1, then it follows that

P((V (r) > x, (W (r) > y, (T (r) ≤ t) =
∫ r

0

∫∞
r+y−a u

−1dK1(u)dUt(x)

with Ut(x) =
∫ t

0
Fν(x)dν.
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Proof. By relation (2.97) it is easy to see that

{V(r) > x,W(r) > y,T(r) ≤ t} = {W(r − x) > x+ y,T(r) ≤ t}.

which implies,

P((V (r) > x,W (r) > y,T (r) ≤ t) = P(W(r − x) > x+ y,T(r) ≤ t)

Now by relations (2.41), (2.78) and (2.87) we obtain for every t > 0, y > 0

limh↓0 P(Th(r) ≤ h(⌊th−1⌋+ 1),Wh(r − x) > x+ y) = P(T(r) ≤ t,W(r − x) > x+ y)

To analyse the probability P(Th(r) ≤ h(⌊th−1⌋+1),Wh(r) > y) we observe by relation

(2.40) that

P(Th(r) ≤ h(⌊th−1⌋+ 1),Wh(r − x) > x+ y) = P(Nh(r) ≤ ⌊th−1⌋,Wh(r − x) > x+ y)

=
∑⌊th−1⌋,

k=0 P(Nh(r) = k,Wh(r − x) > x+ y)

To analyse the above sum we observe for k = 0 that

P(Nh(r) = 0,Wh(r − x) > x+ y) = P(Nh(r) = 0,Wh(r) > y)

= P(X1(h) > r + y)

Moreover, for k ≥ 1 we obtain, if r − x > Sk

P(Nh(r) = k,Wh(r − x) > x+ y) = P(X(kh) ≤ r − x,X((k + 1)h) > r + y)

=
∫ r−x
0

P(a+X((k + 1)h)−X(kh) > r + y)dFkh(a)

=
∫ r−x
0

P(X(h) > r + y − a)dFkh(a)

Introducing now for every h > 0 the set of measures Ut,h given by

Ut,h(a) = h
∑⌊th−1⌋

k=0 Fkh(a)

we obtain that

P(Th(r) ≤ h(⌊th−1⌋+ 1),Wh(r − x) > x+ y) =
∫ r−x
0

P(X(h)>r+y−a)
h

dUt,h(a)
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By a simple monotonicity argument using the increasing sample paths of the standard

Levy process it follows

limh↓0 Ut,h(x) =
∫ t

0
Fν(x)dv := Ut(x)

Applying now Lemma 5 yields

limh↓0 P(Th(r) ≤ h(⌊th−1⌋+ 1),Wh(r − x) > y + x) = limh↓0
∫ r

0
P(X(h)>r+y−a)

h
dUt,h(a)

=
∫ r

0

∫∞
r+y−a u

−1dK1(u)dUt(x)

and hence we have shown the following result. 2

For any increasing Levy process Xν with time transformation ν we obtain by rela-

tions (2.38) and (2.39) that

P(Tν(r) ≤ t,Wν(r) > y,Vν (r) > x) = P(T(r) ≤ ν(t),W(r) > y,V (r) > x)

(2.115)

and applying Lemma 26 yields

P(Tν(r) ≤ t,Wν(r) > yVν (r) > x) =
∫ r

0

∫∞
λr+y−a u

−1dK1(u)dUν(t)(x) (2.116)

In the next subsection we are considering the cdf of the fractional h-part of the

hitting time T(r).

2.2.4 On properties of the Fractional Part

Introduce now for every x ≥ 0 and h > 0 the fractional h-part

Fh(x) := x− h⌊xh−1⌋

Clearly 0 ≤ Fh(x) ≤ h and by its definition

T(r) = Fh(T(r)) + h⌊T(r)h−1⌋ (2.117)
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Figure 2.5: Fractional h-part of the hitting time

Also by relations (2.41) and (2.48) it follows that

h⌊T(r)h−1⌋ = Th(r)− h = hNh(r)

For the h-fractional part one can now show the following result.

Lemma 27 If Nh = {Nh(t) : t ≥ 0}, h > 0 is the renewal process generated by the

partial sum process Sn = X(nh), n ∈ N ∪ {0} then for r > 0

P(Fh(T(r)) ≤ t) =
∫ r

0−(1− Ft(r − x))dUh(x)

for every 0 < t < h with U(x) = E(Nh(x)) =
∑∞

k=0 F
k∗
h (x) the well-known renewal

function.

Proof. By the definition of Fh(T(r)) we obtain for every 0 < t < h that

P(Fh(T(r)) ≤ t) = P(∪∞k=0{kh ≤ T(r) ≤ kh+ t}) =
∑∞

k=0 P(kh ≤ T(r) ≤ kh+ t)

Since the cdf of T(r) is continuous it follows

{kh ≤ T(r) ≤ kh+ t} a.s
= {kh < T(r) ≤ kh+ t} = {X(kh) ≤ r < X(kh+ t}

and so

P(∪∞k=0{kh ≤ T(r) ≤ kh+ t) =
∑∞

k=0 P(X(kh) ≤ r < X(kh+ t). (2.118)
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Using now X(kh+ t)
d
= X(kh) +Z(t) with Z(t)

d
= X(t) and Z(t) independent of X

yields

P(X(kh) ≤ r < X(kh+ t) = P(X(kh) ≤ r < X(kh) + Z(t))

=
∫ r

0
P(X(kh ≤ r < X(kh) + Z(t)|X(kh) = x)dF k∗

h (x)

=
∫ r

0
P(r < x+ Z(t))dF k∗

h (x)

=
∫ r

0
P(Z(t) > r − x)dF k∗

h (x)

=
∫ r

0
1− Ft(r − x)dF k∗

h (x).

Finally applying relation (2.118) it follows that

P(Fh(T(r)) ≤ t) =
∑∞

k=0

∫ r

0
1− Ft(r − x)dF k∗

h (x)

=
∫ r

0
1− Ft(r − x)d

∑∞
k=0 F

k∗
h (x)

=
∫ r

0
1− Ft(r − x)dUh(x).

and this shows the desired result. 2

Using the strong renewal theorem and E(X(h)) = h it follows for Fh non-lattice

that by Lemma 27

limr↑∞ P(Fh(T(r)) ≤ t) = limr↑∞
∫ r

0−(1− Ft(r − x))dUh(x)

= 1
h

∫∞
0
(1− Ft(x))dx

= E[X(t)]
h

= t
h

Hence this shows for r ↑ ∞ that the random variable Fh(T(r)) converges in distribution

to a random variable uniformly distributed on (0, h).
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CHAPTER 3

CONCLUSION

In this thesis we derived some important properties of increasing Levy processes useful

in applications and proved these properties by making use of well known results for

renewal processes. For some of these properties these proofs are easier than the already

known proofs using martingale theory, while other results appear to be new.
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APPENDIX

In this appendix we collect some important definitions and results used in this

thesis. In the next definition we use the convention that the infimum of an empty set

is +∞.

Definition 10 If f : R+ → R is a nondecreasing function on R+ the inverse function

of f is given by

f← (y) = inf {s ≥ 0 : f (s) ≥ y} . (1)

Lemma 28 If ν is a time transformation function then the function ν is convex if and

only if the function ν← is concave.

Proof. If ν is convex, then clearly for every t1, t2 and 0 < α < 1 we obtain using

ν(ν←(s)) = s for every s > 0 that

ν(αν←(t1) + (1− α)ν←(t2)) ≤ αν(ν←(t1)) + (1− α)ν(ν←(t2))

= αt1 + (1− α)t2

This implies using ν← is increasing for any increasing function ν and ν←(ν(s)) = s for

every s > 0 that

αν←(t1) + (1− α)ν←(t2) = ν←(ν(αν←(t1) + (1− α)ν←(t2)))

≤ ν←(αt1 + (1− α)t2)

and we have verified that ν← is concave. A similar type of proof can be given to the

reverse implication. 2

A very important convergence result called the dominated convergence in probabil-

ity theorem is listed in the next result.

Lemma 29 If |Xn| ≤ |Y| for every n ∈ N, E (|Y|) < ∞ and Xn
P→ X, then

limn↑∞ E(| Xn −X |) = 0 (2)
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Proof. We first show that |X| ≤ |Y| a.s. Since |Y| ≥ |Xn| for every n ∈ N it follows

for every δ > 0 that

{| X |>| Y | +δ} ⊆ {| X |>| Xn | +δ} ⊆ {| X−Xn | +δ}.

By the above inclusions we obtain

P (|X| > |Y|+ δ) ≤ P (|X| > |Xn|+ δ) ≤ P (|X−Xn| > δ)

and using Xn
P→ X and δ > 0 is arbitrary, this shows P (|X| > |Y|) = 0. Hence we

have shown that

|X| ≤ |Y| a.s. (3)

To show relation (2) we introduce for notational convenience the random variables

Yn := Xn −X. Now it follows for any given ϵ > 0 that

E(| Yn|) = E(| Yn| 1{|Yn|>2m}) + E(| Yn| 1{ϵ<|Yn|≤2m}) + E(| Yn| 1{|Yn|≤ϵ})

≤ E(| Yn| 1{|Yn|>2m}) + 2mP( | Yn |> ϵ) + ϵ.

(4)

for any and m ∈ N. Looking at the first term in relation (4) we observe by relation (3)

and our assumption that

| Yn |≤| X | + | Xn |≤ 2 | Y | a.s.

Hence it follows that | Yn | 1{|Yn|≥2m} ≤ 2 | Y | 1{|Y|>m} and this shows

E(| Yn | 1{|Yn|≥2m}) ≤ 2E(| Y | 1{|Y|≥m}) (5)

for every n ∈ N. Since E(| Y |) is finite one can now find some m0 ∈ N satisfying

E(|Y | 1{|Y|≥m0} ≤ ϵ
2
and this shows by relation (5) that

E(| Yn | 1{|Yn|≥2m0}) ≤ ϵ (6)

for every n ∈ N. Looking finally at the second term in relation (4) and using Yn
P→ 0

one can find some n0 ∈ N such that for every n ≥ n0 if holds that

2m0P( | Yn |> ϵ) ≤ ϵ (7)
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for every n ≥ n0. Combing the above two terms in relations (6) and (7) and substituting

this in relation (4) we have shown for every ϵ > 0 that there exists some n0 such that

that for every n ≥ n0 it follows that E(|Yn |) ≤ 3ϵ. This shows the desired result. 2

We finally mention the continuity theorem without proof. For a proof the reader is

referred to [20])

Lemma 30 Continuity Theorem For n ∈ N let Xn be a random variable with pLSt

πn.

(i) If Xn
d→ X as n → ∞ then limn→∞ πn (s) = πX (s) for s ≥ 0

(ii) If limn→∞ πn (s) = π (s) for s ≥ 0 with π a function that is (right-) continuous

at zero, then π is the pLSt of a random variable X and Xn
d→ X as n → ∞
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