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ABSTRACT 

 

TRANSCRIPTIONAL REGULATION OF IL-7R ALPHA GENE IN T 

LYMPHOCYTES 

 

İzzet Mehmet Akçay 

Biological Sciences and Bioengineering, M.Sc. Thesis, 2010 

Thesis advisor: Assoc. Prof. Batu Erman 

 

Keywords: T lymphocyte, IL-7R alpha, Gfi1, regulation of transcription, real-

time RT-PCR 

 

Interleukin-7 signaling is vital for the proper functioning of the immune system. 

It is required for the development and homeostasis of lymphocytes. This signaling is 

greatly controlled by the regulation of IL-7 Receptor alpha expression, whereas IL-7 

production is thought to be constant. As the dramatic changes during the development 

of T lymphocytes illustrate, IL-7R alpha expression is strictly regulated. IL-7R alpha 

expression also varies with the activation stage of mature T cells. Therefore, the 

molecular events underlying the regulation of IL-7R alpha in T lymphocytes has been 

an intensive research area since its discovery. 

The glucocorticoid receptor has been known to induce transcription of IL-7R 

alpha, whereas Gfi1 transcription factor represses its expression. Here, we investigated 

if glucocorticoid stimulation induced IL-7R alpha in T cells due to the post-

transcriptional silencing of Gfi1. We performed real time reverse transcriptase 

polymerase chain reaction (RT-PCR) analyses of several miRNAs predicted to target 
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Gfi1 mRNA upon dexamethasone (a glucocorticoid) stimulation. Our data suggested 

that Gfi1 was not silenced by RNA interference.  

We also investigated the roles of different Gfi1 domains in the repression of IL-

7R alpha expression. By retroviral overexpression studies in T lymphocytes, we 

demonstrated that none of this transcription factor’s domains was capable of exerting 

the function of Gfi1 on the IL-7R alpha gene by itself. Moreover, the SNAG domain 

and the Zinc Fingers were specifically required for this function. Finally, we showed 

that overexpression of the transcription factors Gfi1b and Foxp3 also repressed 

dexamethasone-induced IL-7R alpha gene in T cells.  

 

 

 

 

 

 

 

 

 

 



vi 
 

 

 

ÖZET 

 

IL-7R ALFA GENİNİN T LENFOSİTLERDE TRANSKRİPSİYONEL 

DÜZENLENMESİ 

 

İzzet Mehmet Akçay 

Biyolojik Bilimler ve Biyomühendislik, Master Tezi, 2010 

Tez danışmanı: Doç. Dr. Batu Erman 

 

Anahter kelimeler: T lenfosit, IL-7R alfa, Gfi1, transkripsiyon düzenlenmesi, 

gerçek zamanlı RT-PCR 

 

İnterlökin-7 (IL-7) sinyal iletimi bağışıklık sisteminin çalışması için hayati önem 

taşımaktadır. Bu sitokin reseptöründen gelen sinyaller lenfositlerin gelişimi ve 

homeostazı için gereklidir. Bu sinyal iletimi büyük oranda İnterlökin-7 Reseptör 

alfa’nın (IL-7R alfa) ifadesinin düzenlenmesiyle kontrol edilir; IL-7’nin üretiminin ise 

sabit olduğu düşünülmektedir. T lenfosit gelişimi sırasında IL-7R alfa ifadesindeki 

dramatik değişiklikler bu proteini ifade eden IL-7R alfa geninin sıkıca kontrol edildiğini 

belirtmektedir. IL-7R alfa ifadesi aynı zamanda olgun T hücrelerinin aktivasyon 

durumlarına göre de değişiklik göstermektedir. Bu nedenle IL-7R alfa’nın 

düzenlenmesine neden olan moleküler olguların aydınlatılması reseptörün keşfinden 

beri yoğun araştırma konusu olmuştur.  

Transkripsiyon faktörlerinden glukokortikoid reseptörünün IL-7R alfa’yı 

indüklediği, Gfi1’in ise baskıladığı bilinmektedir. Bu çalışmada, T lenfositlerinin 

glukokortikoid ile uyarılması sonucunda, Gfi1’in transkripsiyon sonrası susturulmasına 
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bağlı olarak IL-7R alfa ifadesinin indüklenmesini araştırdık. Gerçek zamanlı ters-

transkriptaz polimeraz zincir tepkimesi (RT-PCR) metodu ile Gfi1 mRNA’sını 

hedeflediğini düşündüğümüz mikroRNA’ların (miRNA) deksametazon (bir 

glukokortikoid) uyarılmasına bağlı olarak ifadelerini analiz ettik. Sonuçlarımız T 

hücrelerinde deksametazon uyarılması sırasında Gfi1’in RNA interferans yoluyla 

susturulmadığını belirtmektedir.  

Ayrıca, bu tezde Gfi1 proteininin farklı bölgelerinin IL-7R alfa’nın 

baskılanmasındaki rolünü araştırdık. T lenfositlerinde retroviral gen ifadesi deneyleriyle 

bu transkripsiyon faktörünün hiçbir bölgesinin kendi başına Gfi1’in IL-7R alfa’yı 

baskılama fonksiyonunu yerine getiremediğini gözlemledik. Ayrıca, Gfi1’in SNAG ve 

çinko parmak bölgelerinin bu fonksiyonda gerekli olduğunu gösterdik. Son olarak Gfi1b 

ve Foxp3 proteinlerinin de T hücrelerinde deksametazon uyarılması sonucu indüklenen 

IL-7R alfa’yı baskılayabildiğini belirledik. Bu sonuçlar, IL-7R alfa geninin kontrol 

mekanizmalarının belirlenmesine katkı sağlamıştır. 
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1. INTRODUCTION 

 

 

1.1. IMPORTANCE OF IL-7R FOR THE IMMUNE SYSTEM 
 

 

The interleukin-7 receptor (IL-7R) consists of the IL-7Rα chain (CD127) and the 

common γ chain (CD132, γc). Although expression of IL-7Rα is restricted to the 

lymphoid lineage, the γc chain is shared by several cytokine receptors expressed in most 

hematopoietic lineage cells. IL-7Rα is not instructive for the differentiation of 

hematopoietic progenitors into cells of the lymphoid lineage, but it is indispensible for 

the development and maintenance of lymphocytes 1, 2, 3, 4.  

At early stages, IL-7R signaling is responsible for the survival and development 

of T cell precursors in mice and humans. IL-7R signaling also controls the accessibility 

of the T cell receptor (TCR) γ locus to the recombination machinery 5 and the 

commitment to the CD8 single positive thymocyte lineage 6. At later stages, IL-7R 

signaling supports the survival and homeostatic proliferation of naive and memory T 

cells 7. IL-7R is critical for the development of B lymphocytes in mice, but not in 

humans 8. In mice, IL-7R controls the rearrangement of the immunoglobulin heavy 

chain (IgH) gene locus and the proliferation of B cell precursors at early stages. In 

contrast to T cells, mature B cells are not dependent on the IL-7 cytokine 9. Similar to B 

lymphocytes, natural killer cells are not dependent on the IL-7 cytokine 10. 

Because IL-7R signaling is crucial for the lymphoid lineage, mice and humans 

deficient in the IL-7 pathway suffer from severe lymphopenia, whereas other 

hematopoietic cell lineages are mostly not affected. In particular, in IL-7, IL-7Rα and γc 

knockout mice, both T and B lymphopoiesis is inhibited 11, 12, 13. This phenotype is also 

observed in mice that are injected with monoclonal anti-IL-7 antibodies 14, 15. Naive T 
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cells are not able to survive or proliferate in host mice that are IL-7 null. Induction of 

memory T cells is also partly impaired in these mutant hosts 16, 17. Similarly, in human 

thymic organ cultures treated with anti-IL-7 antibody, T cell production is also inhibited 
18, 19, 20. Moreover, severe combined immunodeficiency disease (SCID) patients that 

have mutations in their IL-7Rα and γc genes profoundly lack T cells, but have normal 

numbers of B and NK cells 8, 18.  

 

 

1.2. IL-7R SIGNAL TRANDUCTION 
 

 

IL-7 signaling starts with binding of IL-7 to its receptor. As IL-7 crosslinks the α 

and γc chains of the IL-7 receptor, two tyrosine kinases JAK1 and JAK3, which are 

bound to the intracellular domains of the chains, are brought together and activate each 

other 7. This results in the phosphorylation of IL-7Rα, to which several signaling 

molecules, including STAT5, are recruited. After phosphorylation and dimerization, 

STAT5 translocates into the nucleus to initiate the transcription of many genes 

including Bcl-2 and Mcl-1 that are responsible for exerting the survival function of IL-

7. Increase in the expression of these anti-apoptotic proteins renders the cell resistant to 

apoptosis and maintains its survival 21. Moreover, upon signal initiation, PI3K is 

recruited to the phosphorylated IL-7Rα; this initiates the Akt survival pathway. 

Activation of the Akt pathway results in many anti-apoptotic activities, such as the 

inhibition of pro-apoptotic proteins Bad and FKHRL1 as a result of sequestration by 14-

3-3, inhibition of caspase-9 by phosphorylation, and upregulation of the glucose 

metabolism 7 (See Figure 1.1). The proliferation pathway initiated by IL-7 is different 

from those of conventional growth factors, and is mainly mediated by the post-

translational regulation of p27, a Cdk inhibitor, and Cdc25a, a Cdk-activating 

phosphatase 22, 23, 24. 

IL-7 is constitutively produced by stromal cells of the lymphoid organs and by 

epithelial cells 25. The amount of IL-7 supply is not influenced by external factors such 

as the fluctuations in the lymphocyte population or feedback from IL-7 itself 1. IL-7 

supply also appears to be limiting as it is produced to support the survival of only a 
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finite number of lymphocytes 26. In line with this finding, mice transgenic for the IL-7 

gene develop lymphomas due to increased survival and proliferation capacity of B and 

T lymphocytes 27, 28. This is interesting because even though mature B cells do not 

express the receptor for IL-7, aberrant signaling during B cell development may be the 

cause of these B lymphomas. 

 
Figure 1. 1. IL-7 signaling pathway in the context of cell survival. (Adapted from ref 7). 

 

 

1.3. REGULATION OF IL-7R SIGNALING 
 

 

Regulation of IL-7 signaling is governed by the control of consumption of IL-7 

by its receptor rather than its production. Because, unlike IL-7, IL-7Rα expression is 

strictly upregulated and downregulated in lymphocytes according to their 

developmental and activation stage. The developmental and activation status-dependent 

expression patterns of IL-7R will be detailed in the oncoming sections.  
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1.3.1. Altruistic Utilization of IL-7 

 

IL-7 should be consumed wisely and altruisticly because it is not present in 

abundance in vivo. T lymphocytes that encounter IL-7 or other prosurvival cytokines, 

such as IL-2, IL-4, IL-6 and IL-15, transiently downregulate IL-7Rα expression. 

Consequently, these signaled cells stop competing with unsignaled T cells for the 

remaining IL-7 29, 30. TCR triggering also results in IL-7Rα downregulation 31 (see 

Figure 1.2). Consistent with these observations, transgenic expression of IL-7Rα in 

mice, unlike that of IL-7, does not cause increased numbers of lymphomas. Instead, T 

cell numbers are reduced markedly in IL-7Rα transgenic mice due to over-consumption 

of the non-abundant IL-7 survival signal 1, 32. 

 

 

Figure 1. 2. Altruistic downregulation of IL-7R by signaled T cells. (Adapted from ref. 
33). This altruistic mechanism aims to preserve the survival of naive T cell pool. 
Activated T cells rely on other signals, such as IL-2 cytokines for survival. Therefore, 
they downregulate IL-7R in order to stop needlessly consuming IL-7, which is required 
by naive T cells. The consequence of this altruistic downregulation is the preservation 
of the naive T cell population. Thus IL-7 may be thought of as a naive T lymphocyte 
cytokine. 
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1.3.2. IL-7Rα Expression during T Cell Development 

 

The progenitors of the T lymphocyte lineage proceed through well-defined 

stages in the thymus to become mature T cells, showing dramatic changes in the 

expression of IL-7Rα. As depicted in Figure 1.3.A, CD4-CD8- double negative (DN) 

thymocytes, which express IL-7R, progress through the immature single positive (ISP) 

stage to become CD4+CD8+ double positive (DP) thymocytes, which lack IL-7R. Then 

as they mature into CD4+ or CD8+ single positive (SP) T cells, they restart IL-7R 

expression 1. 

 

 

 

Figure 1. 3. Regulation of IL-7R expression during T cell development. A) IL-7Rα 
expression pattern throughout T cell development. HSC: hematopoietic stem cell, CLP: 
common lymphoid progenitor, DN: double negative, ISP: immature single positive, DP: 
double positive, SP: single positive. B) Flow cytometric analysis of thymocyte 
populations depicting the expression of CD4 and CD8 co-receptors (Adapted from ref. 
34). 

A. 

B. 
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IL-7R signaling at the DN2 stage is essential and indispensible for T cell 

development. IL-7R knockout mice are lymphopenic and the few mature T cells that 

remain functionally impaired. Bcl-2 overexpression and Bax deficiency completely 

rescue αβ T cell development in these IL-7R-/- mice implying that IL-7R protects DN2 

cells from apoptosis and provides signals for their survival 35, 36, 37. IL-7R knockout 

mice completely lack the γ T cell lineage, as IL-7R is also essential for the 

rearrangement of the TCR γ gene locus. This effect of IL-7R deficiency cannot be 

rescued by protecting the cells from apoptosis 1, 38. IL-7Rα expression declines beyond 

the DN2 stage 2. As a result, proliferation of DN4 cells, which have completed the 

rearrangement of the TCR β gene locus and have started to express pre-T cell receptor 

(pre-TCR) on their surface, does not greatly rely on IL-7R signaling.  

Once DP thymocytes successfully complete the rearrangement of their TCR α 

chain locus, they start to express the full T cell receptor on their surface. Afterwards, 

they pass through positive and negative selection. Although the survival factor IL-7R is 

not expressed at the DP stage, this does not play a role in the apoptotic clearance of 

inappropriate clones during selection events at this stage. Recent experiments have 

shown that even if IL-7R were expressed in DP thymocytes, it would not be able to 

initiate signal transduction cascades because these cells highly express the signaling 

inhibitor SOCS1, which effectively blocks IL-7R signaling 39. This view is further 

supported by the observation that overexpression of IL-7Rα in DP cells fails to perturb 

the selection process and to protect them from cell death 2, 40.  

Suppression of IL-7Rα at the DP stage has at least two different functions. The 

first one is to govern the efficient utilization of the IL-7 cytokine, which is not 

abundantly expressed in the thymic niche. DP cells constitute the vast majority of the 

thymocyte population (see Figure 1.3.B), and consumption of IL-7 by DP cells would 

deprive the minor DN and SP thymocyte populations of IL-7 1, 41, 42. The second 

function of IL-7Rα suppression is to achieve the transition of immature single positive 

(ISP) cells into DP cells. IL-7R normally inhibits the expression of TCF-1, LEF-1, and 

RORγt, which are required by ISP cells to become DP cells. Hence, IL-7R signaling 

should be terminated at the ISP stage 2. IL-7 transgenic mice show a marked reduction 

in the number of DP thymocytes probably due to a perturbation of this transition step 27. 
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As DP cells mature into CD4+ SP or CD8+ SP cells, they reexpress IL-7Rα. At these 

later stages, IL-7R is required by SP thymocytes and naive T cells for survival and 

homeostatic proliferation 29. 

 

 

1.3.3. IL-7Rα Expression in Peripheral T Cells 

 

1.3.3.1. Homeostasis of naive T cells 

 

Most naive T cells have a long lifespan. They require exogeneous signals to 

maintain their long-term survival and homeostatic proliferation. Among many cytokines 

including IL-4 and IL-15, only IL-7 seems to be critical in this context 43. When 

signaling from IL-7R is abolished, naive T cells have a shortened lifespan of around 2-3 

weeks. In contrast, overexpression of IL-7 results in T cell expansion in the periphery. 

Therefore, the basal level of IL-7 appears to govern the overall size of the naive T cell 

pool 16, 44.  

 

1.3.3.2. Homeostasis of memory T cells 

 
When a naive T cell encounters its antigen, it initiates a new differentiation 

program and clonally expands. IL-7Rα is downregulated by the majority of these 

activated T cells, although the decrease in IL-7Rα is not as marked as it is in DP 

thymocytes 16, 45. These IL-7Rαlow T cells are the effector T cells and after antigen 

clearance they die by apoptosis. A small subset of these activated cells retains high 

levels of IL-7R expression. These IL-7Rαhigh cells are the precursors of memory T cells. 

They survive after antigen clearance and develop into long-lived memory T cells 46, 47, 

48. 

Because the survival and proliferation of short-lived effector T cells are already 

supported by other cytokines and TCR signaling, downregulation of IL-7Rα in these 

cells probably aims to prevent the unnecessary consumption of IL-7.  If this mechanism 

were absent, elevated numbers of effector T cells would compete with naive and 
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memory T cells for the limiting supply of IL-7 1 (see Figure 1.2). IL-7R is generally 

considered to be critical for the long-term survival and maintenance of CD4+ and CD8+ 

memory T cells 16, 17, 49, although some studies showed that IL-15 can substitute for 

some IL-7 functions 50, 51. 

That IL-7R signaling is instructive for memory precursors to become memory T 

cells is controversial and has been questioned in many studies. Some studies report that 

IL-7 is required for the generation of CD4+ and CD8+ memory T cells 45, 48, 49, 52, 53, 54 

while others reach the opposite conclusion 17, 55. Therefore studying the regulation of 

IL-7R gene control is critical for understanding T cell function in the peripheral immune 

system. 

 
 

1.3.4. IL-7Rα Expression during B Cell Development 

 

The requirement for IL-7R during B cell development is different in mice and 

humans. IL-7R plays an essential, non-redundant role in B cell development in adult 

mice. In IL-7 -/- or IL-7Rα -/- mice, B cell development is inhibited at the transition 

from CLP cells to pro-B cells in adulthood, but not in fetal and neonatal periods 11, 12, 56, 

57. In humans, on the other hand, IL-7R is not critical for B-cell development as IL-7R-

deficient SCID patients produce normal numbers of B cells 18, 58. 

 

 

Figure 1. 4. Regulation of IL-7R expression during B cell development. 
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As shown in Figure 1.4, IL-7R was also required during B cell development for 

proliferation of pro-B and large pre-B cells 60, 61. A successful VDJH rearrangement at 

the late pro-B cell stage leads to the expression of the complete Ig heavy chain as part of 

the pre-B cell receptor. Large pre-B cells that express pre-BCR on their surface start to 

proliferate and become small pre-B cells, at which point they start to undergo 

rearrangements in their Ig light chain genes. Proliferation at the large pre-B stage 

therefore aims to enhance the overall BCR diversity because a single heavy chain can 

match with many different light chains. The signal through IL-7R that induces 

proliferation is distinct from those that induce IgH gene rearrangements and includes 

association with PI-3 kinase via its SH2 domain 62. IL-7R expression is lost after the 

small pre-B cell stage. Unlike mature single positive T cells, immature and mature B 

cells do not need IL-7R for survival 63.  

 

To sum up, IL-7Rα is dynamically regulated throughout B and T cell 

development. Moreover, it is strictly regulated depending on the activation stage of 

mature T cells. This strict regulation of IL-7Rα is greatly dependent on the functions of 

the transcription factors that directly bind to the IL-7Rα promoter. 

 

 

1.4. TRANSCRIPTION FACTORS THAT ACT ON IL-7Rα GENE 
 

 

The transcription factors that are known to act on IL-7Rα promoter are shown in 

Figure 1.5. These include the Ets family proteins PU.1 and GABP, Runx1, 

glucocorticoid receptor (GR), Gfi1 and Gfi1b, interferon regulatory factors IRF-1 and 

IRF-2, Foxp3, and NF-κB. 
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Figure 1. 5. Transcription factors that act directly on IL-7Rα gene locus. (Adapted from 
ref 1). 

 

 

1.4.1. The Ets Family Transcription Factors 

 

The promoter region of the IL-7Rα gene is highly conserved among human, 

mouse and rat; the region spanning 197 base pairs from the translation initiation site is 

75 % homologous between mouse and human. This region has conserved consensus 

binding motifs for the transcription factors PU.1 and Runx1, which are indispensable 

for the development of hematopoietic stem cells and lymphocyte progenitors 64, 65.  

Mice mutant for functional PU.1 showed defects in the generation of B and T 

lymphocytes, monocytes and granulocytes 66, 67. It was demonstrated that PU.1-/- 

hematopoietic progenitors failed to express IL-7Rα. Retroviral transduction of IL-7Rα 

into these progenitors partly restored the generation of pro-B cells, which underwent 

normal development. This indicates that PU.1 induces early B cell development partly 

by inducing IL-7R expression. PU.1 acts in concert with FLT3 signaling to induce IL-

7R expression in CLP cells 68, 69.  

PU.1 is not expressed after the pro-T cell stage in the T-cell lineage. But another 

Ets family transcription factor, GABP, binds to the same PU.1 motif and drives the 

expression of IL-7Rα in thymocytes and peripheral T cell 70. 
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1.4.2. Runx1 

 

Runx1 also induces the expression from the IL-7Rα promoter. Runx1 is a critical 

transcription factor for the maintenance of CD4 single positive T cells as conditional 

knockout of Runx1 in the CD4+ lineage resulted in a reduction of CD4+ thymocytes and 

T cells. This effect is partly due to regulation of IL-7Rα expression by Runx1 because 

in the absence of Runx1, this lineage exhibited shorter survival rates and a profound 

reduction in IL-7R expression 71. 

 

 

1.4.3. The Glucocorticoid Receptor 

 

The IL-7Rα gene locus contains a highly conserved region 3 kilobases upstream 

of the transcription initiation site. The homology between mouse and human is 86 % for 

300 bp in this region. A glucocorticoid response element (GRE) is localized here and 

required for induction of IL-7Rα by glucocorticoids 72. Glucocorticoids have been 

shown to induce IL-7Rα expression in vitro. This induction is mediated through binding 

of the activated glucocorticoid receptor (GR) to the GRE 73, 74.  

Thymocytes express high levels of GR, and thymic epithelial cells produce high 

levels of glucocorticoids. These observations initially led to the assumption that 

glucocorticoids played some vital role in T cell development 75, 76. But it was later 

shown that GR signaling was not essential for T cell development and selection because 

T cell development was normal in GR-/- mice 77.  

 

 

1.4.4. Gfi1 

 

The transcription factor Gfi1 represses transcription of its target genes. As 

depicted in Figure 1.6, it acts by recruiting histone deacetylases (HDACs) to the target 

promoters in cooperation with the cofactor Eto 78. Deacetylated histones cause the 

chromatin to package more firmly ultimately silencing transcription. An alternative 
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function of Gfi1 is the upregulation of the STAT3 transcription factor by interacting 

with the STAT3 inhibitor PIAS3 79.  

 

 
Figure 1. 6. Functions of Gfi1 in T cells. A) Transcription repression. B) STAT3 
activation. (Adapted from ref 80). 

 

Gfi1 is a nuclear protein with an N-terminal SNAG domain of 20 amino acids 

and six C-terminal C2H2-type zinc fingers (see Figure 1.7). The SNAG domain has been 

shown to be indispensable for Gfi1’s function. Although 3 of the 6 zinc fingers are 

responsible for DNA binding, none of them is required for Gfi1 to bind and sequester 

PIAS3 79, 81. The intermediate region is less characterized with no function and structure 

assigned yet, and it is also the least conserved part of the protein. Yet, it harbors an 

alanine and glycine-rich region, which could also possibly contribute to Gfi1’s 

repression function 80.  

 

Figure 1. 7. Domains of Gfi1. The N-terminal SNAG domain is shown as a blue box, 
the Alanine/Glycine-rich region as a yellow box and the 6 zinc finger domains as green 
circles. 

A) B) 
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Gfi1 has functional conserved binding sites in introns 2 and 4 of IL-7Rα gene. It 

has been shown that repression of IL-7Rα gene upon stimulation by IL-7 involves the 

induction and function of Gfi1 in mature CD8+ T cells, but not in CD4+ T cells. In Gfi1 

knockout mice, this negative feedback is inhibited in CD8+ cells, but unaffected in 

CD4+ cells 29. Furthermore, Gfi1’s role of inhibiting the IL-7R gene has been shown to 

be effective only in the DN and CD8 SP stages of T cell development using BAC 

transgenic IL-7R reporter mice. In these mice, a GFP reporter was inserted into the IL-

7R gene locus. When these IL-7Rα:GFP transgenic (Tg) mice were crossed with Gfi1 

knockout mice, GFP levels were much higher in IL-7Rα:GFP Tg, Gfi1-/- knockout 

thymocytes, compared to their IL-7Rα:GFP Tg, Gfi1 +/+ littermates. On the other hand, 

GFP levels did not differ significantly in the DP and CD4+ SP stages (Park, H. & 

Erman, B., unpublished). Gfi1 has also been shown to suppress IL-7Rα expression in 

the B cell lineage 82.  

Expression of Gfi1 in the T cell lineage peaks at the DN2 and DP stages. It is 

found at low levels in resting mature T cells. Antigenic TCR stimulation, however, 

transiently induces Gfi1, which, in turn, represses IL-7R 83, 84.  

 

 

1.4.5. Gfi1b 

 

The 330 amino acids-long transcription factor Gfi1b is highly homologous to the 

423 amino acids-long Gfi1. They share 97 % sequence identity in their zinc fingers and 

90 % sequence identity in their SNAG domains. On the other hand, the intermediary 

region, which is much smaller in Gfi1b than in Gfi1, does not bear any homology 80, 85.  

Gfi1 and Gfi1b bind to the same DNA consensus sequence and repress the same 

target genes. However, their expression shows tissue-specific variety 86. Furthermore, as 

illustrated by the loss of and defects in different cell types in Gfi1 and Gfi1b knockout 

mice, these paralog proteins appear to function in different types of cells 87. Because of 

the high similarity between the N- and C-termini of these two proteins, it is likely that 

the intermediate domains of Gfi1 and Gfi1b are involved in different protein-protein 

interactions resulting in their different functions.  
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Transgenic overexpression of Gfi1b in mice demonstrated that it can repress IL-

7Rα, like its paralog Gfi1 86. It also appears that Gfi1 and Gfi1b function almost 

equivalently in T lymphocytes as Gfi1:Gfi1b (Gfi1Gfi1b/Gfi1b) mice show normal T cell 

development 87. 

 

 

1.4.6. Foxp3 

 

The Foxp3 transcription factor is known as a repressor of its targets. Its 

expression in T cells is generally inversely correlated with IL-7R expression. Foxp3high 

natural regulatory suppressor T cells have very low levels of IL-7Rα 88. Foxp3 

expression also increases at the ISP stage of the T cell development where IL-7Rα is 

suppressed 89. Finally, T cell activation results in IL-7R downregulation and transient 

Foxp3 induction 90. Although chromatin immunoprecipitation-microarray (ChIP-chip) 

data suggested that the IL-7Rα promoter is a target for Foxp3 binding, the exact 

location of Foxp3 binding in this promoter is not known 88. 

 

 

1.4.7. Other Transcription Factors 

 

The promoter of mouse IL-7Rα gene also contain a functional interferon-

stimulated response element (ISRE) 1,1 kilobases upstream of the transcription 

initiation site. It was shown that type I interferon induced expression of IL-7Rα in vitro 

by inducing interferon regulatory factors IRF-1 and IRF-2. This suggests that IL-7R 

signaling may have a role in responses to viral infection 91.  

It was also shown that TNF-α upregulates the expression of IL-7Rα in mouse T 

cells. This upregulation is mediated by the NF-κB transcription factor. Yet, NF-κB is 

not sufficient by itself for induction of IL-7Rα expression 29, 92. 
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2. AIM OF THE STUDY 

 

IL-7R is an important receptor for the survival and development of T and B 

lymphocytes. Characterizing the features of the transcription factors that act on IL-7Rα 

gene and understanding how these transcription factors are regulated in response to 

extracellular and intracellular stimuli are important for defining the roles of IL-7R in 

hematopoiesis, autoimmunity and leukemia development. In this project, we aimed to 

gain more insight about the functioning and regulation of transcription factors that 

repress IL-7Rα in T cells, particularly those of Gfi1.  

We first investigated if Gfi1 was silenced by RNA interference upon 

glucocorticoid stimulation in T cells. Glucocorticoids, such as dexamethasone (Dex), 

induce IL-7Rα expression in T cells. Downregulation of Gfi1 has also been observed 

upon Dex treatment by northern blotting method, suggesting that Gfi1 plays a role in the 

induction of IL-7Rα expression. In order to search if Gfi1 was suppressed by RNA 

interference upon glucocorticoid stimulation, we aimed to quantitate expression levels 

of Gfi1-targetting miRNAs with and without Dex treatment. To this end, we first 

determined the possible target miRNA species against Gfi1 by in silico target 

prediction. And then we performed real time RT-PCR assays for these miRNAs. 

Next, we investigated the importance of the different domains of Gfi1 protein in 

the repression of IL-7Rα. Gfi1 harbors a SNAG domain at the N-terminus, six zinc 

fingers at the C-terminus, and a less-characterized intermediate domain. We aimed to 

test which of these domains are essential and which are redundant in Gfi1’s IL-7Rα 

repression function. We generated 5 different truncations of Gfi1; these are the SNAG 

domain, the SNAG-deleted Gfi1, the zinc fingers, the zinc fingers-deleted Gfi1 and the 

intermediate domain. We retrovirally overexpressed these truncations in the 3B4.15 T 

hybridoma cell line and examined their capability of repressing IL-7Rα. We also 

searched if the transcription factors Gfi1b and Foxp3 also inhibited induction of IL-7Rα 

in 3B4.15 cells upon Dex stimulation. 
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3. MATERIALS & METHODS 

 

 

3.1. MATERIALS 
 

 

3.1.1. Chemicals 

 

The chemicals used in this project are given in Table 3.1. 

 

CHEMICALS & MEDIA COMPONENTS  SUPPLIER COMPANY 

7-AAD                Calbiochem, 129935 

Acetic acid (glacial)           Merck, 1000562500 

Acrylamide/bis-acrylamide 30% solution    Sigma Aldrich, A3699 

Ampicilline sodium salt          Cellgro, 61-238-RM 

Ammonium persulfate        Sigma, A3678 

Anti-mouse CD127 antibody, PE-conjugated     eBioscience, 12-1271-83 

Anti-mouse IgG-peroxidase antibody     Sigma, A9044 

Anti-Flag mouse monoclonal antibody  Sigma, F3165 

Hydrochloric acid 37%              Merck, 100317.2500 

Agarose      PEQLAB, 35-1010 

Bacto Agar               BD Company, 214050 

Bovine Albumin Fraction V          ImmunO, 810034 

Bradford reagent            Sigma, B6916 
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Bromophenol blue          Sigma, B5525 

Calcium chloride           Sigma, C2661 

Chloroform          Amresco, 0757 

Chloroquine diphosphate         AppliChem, A2143,0100 

DEPC       Aldrich, 40718 

Dexamethasone           Sigma, D4902 

Dextrose monohydrate    Sigma-Aldrich, 9559 

DMEM          PAN, P04-3590 

DMSO          PAN Biotech, P60-36720100 

EDTA           BioChemica, A1103,1000 

Ethanol                      Sigma Aldrich, 32221 

Ethidium bromide      Sigma, E1510 

Fetal Bovine Serum                     Thermo Sci. HyClone, SV30160.03 

Fluorescein calibration dye          BIO-RAD, 170-8780 

GeneRuler DNA Ladder Mix        Fermentas, SM0331 

Glycine                          AppliChem, A3707,9010 

Glycerol               Molekula, M63186664 

L-glutamine solution, 200mM   Sigma, G7513 

HEPES           AppliChem, A3724,0100 

Kanamycin sulfate          GIBCO, 11815-032 

LB Broth               Difco Lennox, 240210 

MEM NEAA solution, 100X    Sigma, M7145 

MEM vitamin solution, 100X   Sigma, M6895 

β-Mercaptoethanol           Sigma, M7522 

Methanol             Riedel-de Haen, 24229 

Nonidet P40 Substitute          Sigma BioChemika, 74385 
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PageRuler Prestained Protein Ladder      Fermentas, SM0671 

Penicillin-streptomycin         GIBCO, 15140 

pH:4.00 buffer solution           Merck, 1.09435.1000 

pH:7.00 buffer solution            Merck, 1.09439.1000 

Phenol red      Sigma-Aldrich, P4633 

PIPES           Sigma, P6757 

PMSF          Sigma, P7626 

Polybrene (hexadimethrine bromide)  Sigma, H9268 

Potassium chloride     Sigma-Aldrich, P9333 

Potassium dihydrogen phosphate   Sigma, 9791 

2-Propanol           Merck, 100995.2500 

Protease Inhibitor cocktail tablets         Roche Diagnostics, 13191000 

5X Protein loading dye & 20X Reducing agent Fermentas, R0891 

RPMI           PAN, P04-17500 

Skim milk powder           Fluka, 70166 

Sodium dodecyl sulfate             AppliChem, A1502,0500 

Sodium Azide             Amresco, 0639-2506 

Sodium chloride                AppliChem, A2942,1000 

di-Sodium hydrogen phosphate dihydrate        AppiChem, A3905,1000 

Sucrose      Sigma, 84097 

TEMED             AppliChem, A1148,0250 

TRI Reagent           Sigma, T3934 

Tris           Amresco, 0826 

Tris hydrochloride          Amresco, 0234 

Triton X-100            Promega, H5142 

Trypan Blue Solution         Fluka, 95395 

Trypsin-EDTA, 0,05%       GIBCO, 25300 
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Tween 20             Sigma, P9416 

Xylene Cyanol FF          Sigma, X-0377 

Table 3. 1. List of chemicals. 

All restriction enzymes, DNA polymerases and T4 DNA ligase used throughout 

the project were purchased from Fermentas. 

 

 

3.1.2. Equipments 

 

The equipments used in this project are given in Table 3.2. 

 

EQUIPMENT COMPANY 

Autoclave Hirayama, Hiclave HV-110 

Balance Sartorius, BP610 

Schimadzu, Libror EB-3200 HU 

Centrifuge Eppendorf, 5415D and 5415R 

Hitachi, Sorvall RC5C Plus 

Heraeus Multifuge 3 S-R 

CO2 incubator Binder 

Deepfreeze -80 C, Forma, Thermo Electron Corp. 

-20 C, Bosch 

Distilled water Millipore MilliQ Academic 

Electrophoresis apparatus Biorad Inc. Mini-Protean Tetra-Cell 

Labnet International Inc. 

ELIZA Reader Biorad Model 680 Microplate Reader 

Flow cytometer BD FACSCanto 
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Heating Magnetic stirrer VELP Scientifica, ARE 

Hematocytometer Hausser Scientific, Blue Bell Pa. 

Ice machine Scotsman Inc. AF20 R134a 

Incubators Memmert, Modell 300 (bacterial incubator) 

Memmert, Modell 600 (oven) 

Laminar Flow Kendro Lab. Prod., Heraeus, Herasafe HS12 

Liquid Nitrogen Tank International Cryogenics, Inc. DIRECTOR D-
4000 

Microscopes Olympus CK40 light microscope 

Olympus IX70 Inverted fluorescent microscope 

Microwave oven Bosch 

pH meter WTW, pH540 GLP MultiCal 

Pipettes & Dispensers Finnpipette, Thermo Scientific 

BD Falcon Express Pipetman 

Power supply Biorad, PowerPac 300 

Real-time PCR machine Biorad, iCycleriQ multicolor real time PCR 
detection system 

Refrigerator Bosch 

Shaker Incubator New Brunswick Sci. , Innova 4330 

Spectrophotometer Nanodrop Spectrophotometer ND-1000 

Thermal cycler Biorad, DNA Engine Gradient Cycler 

UV Illuminator BioRad, UV-Transilluminator 2000 

Vacuum Pump Integra VacuSafe 

Vortex Velp Scientifica 

Waterbath Huber, Polystat cc1 

Table 3. 2. List of equipments. 
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3.1.3. Solutions and Buffers 

 

CaCl2 solution for competent cells: 60 mM CaCl2, 10 mM PIPES pH:7,0, 15% glycerol 

Lower gel buffer for SDS-PAGE:  1,5 M Tris, 0,4% SDS, pH: 8,8 

Upper gel buffer for SDS-PAGE: 0,5 M Tris, 0,4% SDS, pH: 6,8 

Red Solution for Primary Antibodies: 5% BSA, 0,02% Sodium azide, 0,05% Tween in 

PBS, pH:7,5, including phenol red 

RIPA buffer: 50 mM Tris pH:7,6; 150 mM NaCl; 0,1% SDS; 1% NP40; 0,5% 

deoxycholic acid 

2X HBS buffer: 280 mM NaCl, 10 mM KCl, 1,5 mM Na2HPO4, 12mM dextrose, 50 

mM HEPES, pH:7,10 

Running buffer: 0,1% SDS in 1X Tris-glycine 

Transfer buffer: 20% methanol, 0,0375% SDS in 1X Tris-glycine 

PBS: 137 mM NaCl, 2,7 mM KCl, 10 mM Na2HPO4, 2 mM K2HPO4 

PBT: 0,05% Tween20 in PBS 

50X TAE buffer: 2 M Tris-acetate, 50 mM EDTA 

10X Tris-glycine electrophoresis buffer: 330 mM Tris base, 1,92 M Glycine, pH:8,3 

FACS buffer: 1% BSA, 0,1% Sodium azide in PBS 

7-AAD working solution: 50 ng/ml 7-AAD in PBS 

6X DNA loading dye: 0,25% bromophenol blue, 0,25% xylene cyanol FF, 40% sucrose 
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3.1.4. Growth Media 

 

Bacterial Growth Media: 

Luria Broth (LB) medium was used to grow bacteria. Selective media were 

prepared by adding ampicilline to a final concentration of 100 μg/ml or kanamycin to a 

final concentration of 50 μg/ml. Selective LB agar plates were prepared by first 

autoclaving LB agar solution, then adding ampicilline/kanamycin after cooling it down 

to 50 0C. After mixing thoroughly, LB agar was poured on Petri plates to solidify. The 

final antibiotic concentration in LB agar was the same as that in LB liquid medium.  

Mammalian Cell Culture Growth Media: 

DMEM was prepared by adding fetal bovine serum (FBS), 

penicilline/streptomycin and L-glutamine to final concentrations of 10% (v/v), 100 

unit/ml and 2mM, respectively. Aside from the same concentrations of FBS, pen/strep 

and L-glutamine, RPMI medium was also supplemented with 1X MEM vitamins, 1X 

MEM nonessential amino acids (NEAA) and 55 μM β-mercaptoethanol. 

 

 

3.1.5. Molecular Biology Kits 

 

QIAGEN QIAquick Gel Extraction Kit, cat no: 28706 

QIAGEN Plasmid Midi Kit, cat no: 12145 

Roche Genopure Plasmid Midi Kit, cat no: 03143414001 

Finnzymes DyNAmo cDNA Synthesis Kit, cat no: F-470L 

Finnzymes DyNAmo HS SYBR Green qPCR Kit, cat no:  F-410L 
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3.1.6. Cell Types 

 

Escherichia coli DH5α cells (F-, ɸ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, 

recA1, endA1, hsdR17(rk-,mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1)  were used in 

all of the molecular cloning experiments. 

The Phoenix and NIH3T3 adherent cells and 3B4.15 suspension cells were used 

in tissue culture experiments. The Phoenix cell line was derived from HEK293T cells, 

and is capable of producing pol-gag and envelope proteins. These cells are specialized 

in virus production at high titers. NIH3T3 cells are known to be easily infected by 

retroviruses; hence they were used as positive controls in infection experiments. The 

3B4.15 cell line is a CD4 single positive T cell hybridoma. Effects of the Gfi1 

truncations on IL-7Rα expression in infection experiments and alterations in miRNA 

levels upon dexamethasone treatment were investigated in these cells. 

 

 

3.1.7. Vectors and Primers 

 

pBluescript II KS (+) and LZRSpBMN-link-ires-eGFP vectors containing the 

mouse Gfi1 cDNA were previously constructed by Dr. Ceren Tuncer. In this study, 

truncations of Gfi1 were amplified by PCR from pBluescript-mGfi1 and cloned into 

empty LZRS vectors. The retroviral LZRS vector is based upon Mo-MLV and the 

region that is flanked by two LTRs is integrated into the genome of transduced cells 

(see Figure 3.1). It produces a bicistronic mRNA, so that both eGFP and the protein of 

interest are expressed in the host cell. Expression of this mRNA is driven by the 

promoter/enhancer in the 5’LTR, and the IRES sequence in the mRNA governs the 

translation of eGFP 93.  

pCL-ECO packaging vector was also used along with LZRS vectors in infection 

experiments at the transfection step of Phoenix cells. Phoenix cells co-transfected with 

pCL-ECO produce more of the retroviral proteins, Pol, Gag and Env. Therefore virus 

titers are maximized 94. The map of pCL-ECO is shown in Appendix A. 
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Figure 3. 1. Map of the LZRS vector. (Adapted from Nolan, G.). Cells infected with the 
recombinant LZRS vector-driven viruses produce both the Gfi1 truncation proteins and 
eGFP. 
 

The primers used in cloning of Gfi1 truncations and in real-time RT-PCR 

experiments were given in Tables 3.3 and 3.4, respectively. All the primers were 

purchased from MCLAB, USA. 

Name of the 
Primer 

Sequence Features in the 
Primer 

mGfi1-dSNAG 
forward 

AT CTCGAG GCC ACC ATG CCA GGG CCG GAC 
TAC TCC     

XhoI site, Kozak 

mGfi-ZFs 
forward 

AT CTCGAG GCC ACC ATG TCC TAC AAA TGC 
ATC AAA TG 

XhoI site, Kozak 

mGfi1-dZFs 
reverse 

AT GCGGCCGCTA ttt atc gtc atc gtc ttt gta gtc cat gga 
tcc TTT GTA GGA GCC GCC G 

Flag tag, stop 
codon, NotI site 

mGfi1-SNAG 
reverse 

AT GCGGCCGCTA ttt atc gtc atc gtc ttt gta gtc cat gga 
tcc AGA ACG CGG CTG GTG ATA G    

Flag tag, stop 
codon, NotI site 

M13 primer GTAAAACGACGGCCAGT  

T7 primer TAATACGACTCACTATAGGG  

LZRS 
Sequencing 
Forward   

GCATCGCAGCTTGGATACAC for sequencing 

Table 3. 3. List of primers used in cloning of Gfi1 truncations. 
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Name of the Primer Sequence 

mir142-3p stem loop RT gtcgtatccagtgcagggtccgaggtattcgcactggatacgacTCCATA 

mir142-3p forward primer cggcggcTGTAGTGTTTCCTACTT 

mir378 stem loop RT gtcgtatccagtgcagggtccgaggtattcgcactggatacgacCCTTCT 

mir378 forward primer gccggtgACTGGACTTGGAGTC 

mir155 stem loop RT gtcgtatccagtgcagggtccgaggtattcgcactggatacgacACCCCT 

mir155 forward primer cggcggcTTAATGCTAATTGTGAT 

mir10a stem loop RT gtcgtatccagtgcagggtccgaggtattcgcactggatacgacCACAAA 

mir10a forward primer gcccgcTACCCTGTAGATCCGAA 

mir133a stem loop RT gtcgtatccagtgcagggtccgaggtattcgcactggatacgacCAGCTG 

mir133a forward primer tggtcgTTTGGTCCCCTTCAAC 

mir466b-3-3p stem loop RT gtcgtatccagtgcagggtccgaggtattcgcactggatacgacTCTTAT 

mir466b-3-3p forward 
primer 

gcctccgAATACATACACGCACAC 

sno420 stem loop RT gtcgtatccagtgcagggtccgaggtattcgcactggatacgacTCTCAG 

sno420 forward primer gcgggcTGAAACCCATTATCAGT 

mir universal reverse primer GTGCAGGGTCCGAGGT 

mGfi1 quantitative forward GCTCCGAGTTCGAGGAC                 

mGfi1 quantitative reverse CATAGGGCTTGAAAGGCAG                 

mGAPDH RT-PCR forward TCCTGCACCACCAACTG                                 

mGAPDH RT-PCR reverse TCTGGGTGGCAGTGATG                         

 

Table 3. 4. List of primers used in cDNA synthesis and real-time PCR. Specific 
sequences were shown in capitals. The complementary sequences were typed in bold in 
one of the stem-loop RT primers. And the complementary of the underlined sequence 
pair with the mir universal reverse primer during real-time PCR (see also Figure 4.3). 
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3.1.8. Software and Computer-based Programs 

 

BD FACSDiva (default program used in collecting flow cytometry data) 

FlowJo7 (software for analyzing flow cytometry data) 

FinchTV (DNA sequencing chromatogram viewer) 

BIORAD iCycler (default program used in collecting and analyzing real time PCR data) 

MicroCosm Targets, miRGen Targets, TargetScanMouse and PicTar were the internet-

available services used to predict the target miRNAs against mouse Gfi1. 

 

 

 

3.2. METHODS 
 

 

3.2.1. Vector Construction 

 

Polymerase Chain Reaction (PCR): 

Optimized PCR reaction conditions using Taq and Pfu polymerases are given 

together in Table 3.5. Thermal cycling starts with initial denaturation at 95 0C for 3 

minutes followed by 30 cycles of subsequent denaturation (95 0C for 30 seconds), 

annealing (56 0C for 60 seconds) and extension (72 0C for 1-2 min) steps. These cycles 

were then followed by a final extension step at 72 0C for 10 minutes. 
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PCR Ingredient Volume Used 
for Taq PCR 

Volume Used 
for Pfu PCR 

Final 
Concentration 

10X Taq buffer with KCl 2,5 μl - 1X 

MgCl2 (25 mM) 2 μl - 2 mM 

10X Pfu buffer with MgSO4 - 2,5 μl 1X 

dNTPs (10mM each) 1 μl 1 μl 0,4 mM 

Forward primer (10 μM) 0,5 μl 0,5 μl 0,2 μM 

Reverse primer (10 μM) 0,5 μl 0,5 μl 0,2 μM 

Template DNA (10 ng/μl) 0,5 μl 0,5 μl 0,2 ng/μl 

PCR grade water 17,75 μl * 19,5 μl - 

Taq polymerase (5u/μl) 0,25 μl - 1,25 u 

Pfu polymerase (2,5u/μl) - 0,5 μl 1,25 u 

total 25 μl 25 μl  

Table 3. 5. Optimized PCR conditions. (*): For some Taq PCRs, 1,25 μl DMSO was 
added (5% final) in the reaction mixture. 

 

Restriction Enzyme Digestions: 

The recommended protocols of the enzymes’ manufacturer were followed. All 

digestions were incubated at 25 0C for 1 hour (if there is a risk of star activity) or 2 

hours. 100-1000 ng vector DNA was digested for diagnostic and control purposes. 0,5-

10 μg DNA were digested before gel extraction for cloning purposes.  

Agarose Gel Electrophoresis and Gel Extraction: 

1 % agarose gels were prepared by dissolving 1 g agarose in 100 ml 0,5X TAE 

buffer by heating in microwave for 3-4 min. 2 μl of 10 mg/ml stock EtBr solution was 

added after cooling down so that the gel contained 0,2 μg/ml EtBr. 0,7% gels were used 

for large vectors (>10 kb) and 2-2,5% gels were used for short PCR or digestion 

products. Samples were run for 30-75 min at 100 or 135 Volt before observation under 

UV. Gel extraction was performed according to the manufacturer’s protocol.  
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Ligation: 

Ligations were performed by using 1,25 u T4 DNA ligase and 50-100 ng vector 

in 20-25 μl total volume with insert-to-vector ratios of 0:1 (control), 3:1 and/or 6:1. 

Reaction mixtures were incubated either at 16 0C for 16 hours or at 25 0C for 3 hours. 

1/4 of the mix was used in transformation. 

Sequencing: 

For confirmation of the constructed vectors, sequencing was provided by 

MCLAB, USA. 

 

 

3.2.2. Bacterial Cell Culture 

 

Bacterial Cultures: 

Mini cultures (5 ml) of E.coli DH5α cells were grown in LB medium for 7-10 

hours at 37 0C constantly shaking at 270 rpm. Midi cultures (100 ml) were grown for 

overnight (16 hours) starting from 1 ml of mini culture. For preparation of glycerol 

stocks, sterilized glycerol was added to grown cultures to a final concentration of 20 % 

and mixed by vortexing. Mixtures were immediately taken to -80 0C for storage. 

Bacterial cells were also grown on LB agar plates by incubating at 37 0C for 14-16 

hours. 

Preparation of Competent Cells: 

Cells from frozen E.coli DH5α stocks were inoculated into 50 ml antibiotic-free 

cultures and grown for overnight. Next day 4ml of the culture was diluted into 400 ml 

and OD590 measurements were taken. When OD590 reaches to 0,375, cells were pelleted 

and resuspended in CaCl2 solution on ice and pelleted again. This was repeated 3 times 

and finally the resuspended cells were aliquoted in 200 μl and immediately frozen in 

liquid nitrogen. The frozen competent cells were kept at -80 0C for several months. The 

competency of the cells was tested by transforming with pUC19 plasmid and 

determined to be above 107 cfu/μg DNA. 
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Transformation: 

200 μl competent cells were taken out of -80 0C and thawed on ice for 5 min. 

Then 1 ng plasmid vector or 5-7,5 μl ligation reaction mixture was added and mixed by 

tipping. After incubation on ice for 20 min, heat shock was applied at 42 0C for 90 

seconds, which was followed by 5 min incubation on ice. LB was added up to 1 ml and 

cells were incubated shaking at 37 0C for 45 min to recover. Then 100 and/or 900 μl of 

them were spread on agar plates and grown for overnight. 

Vector DNA Isolations from Bacterial Cells: 

Vector isolations from mini cultures to be sent for sequencing and from midi 

cultures to be used in cell culture experiments were performed by using Roche mini-

prep and Qiagen midi-prep kits, respectively. For other cloning purposes, alkaline lysis 

protocol with ethanol precipitation was performed using home-made P1 buffer and 

excess P2 and P3 buffers of the kits. Concentrations of the final DNA solutions were 

measured by nano-drop spectrophotometer. 

 

 

3.2.3. Mammalian Cell Culture 

 

Maintenance of Mammalian Cell Culture: 

Adherent cell lines (NIH3T3 and Phoenix) were grown in DMEM and in a 

humidified atmosphere of 5% CO2 at 37 0C. These cells were passaged every 2-3 days 

at 1:10 dilution. They were detached from the plate by tyrpsinization. On the other 

hand, 3B4.15 suspension cells were grown in RPMI and split for every 2-3 days with 

1:6 - 1:8 dilutions. For preparation of frozen stocks of cell lines, cells were first pelleted 

by centrifugation at 200 g, and then resuspended in freezing medium (FBS with 10 % 

DMSO). After mixing by pipetting, the cells were loaded into cryo-vials and 

immediately taken to -80 0C in Mr. Frosty. Then within 3 days they were transferred 

into liquid nitrogen tank for further storage. Preferably, 3.106 cells were frozen each 

time. Lastly, previously frozen cells were used after thawing them in hand and 
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immediately replacing the freezing medium with the growth medium (DMEM or 

RPMI).  

Transfection of Phoenix Cells: 

Calcium phosphate precipitation method was used for transfection of Phoenix 

cells. 1x106 cells were split 16 hours before transfection into the wells of a 6-well plate. 

DNA solution was prepared by first adding 10 μg LZRS vector DNA and 2,5 μg pCL-

ECO vector into water to a final volume of 380 μl. Then 120 μl of 1M CaCl2 solution 

was added dropwise and mixed by pipetting. 500 μl of 2X HBS solution was added into 

this DNA solution fast and dropwise while being vortexed. After vortexing at high 

speed, the mixture was incubated for 13 min at room temperature. At the 8th minute, 

chloroquine was added into the media to a final concentration of 25 μM. At the 13th 

minute the DNA-HBS mixture was added dropwise to the media and the plate was 

shaken gently to ensure even distribution. 24 hours after transfection, cells were 

observed under fluorescent microscope to check for GFP fluorescence, and hence 

efficiency of transfection. 

Infection: 

Phoenix cells were transfected with the constructed LZRS and pCL-ECO vectors 

on day #1, and NIH3T3 and 3B4.15 cells were split (1.106 cells) on day #2. On day #3, 

media of Phoenix cells (4 ml), which contained viruses, were collected and new media 

were added to cells. The collections were passed through 45 μm filters, and polybrene 

was added to a final concentration of 6 μg/ml and vortexed. Media of NIH3T3 and 

3B4.15 cells were then discarded and replaced by these filtrates. After centrifugation at 

600 g for 1 hour at 32 0C, the cells were incubated at 37 0C for 2 hours and their media 

were replaced by new RPMI media. This virus treatment protocol was repeated on day 

#4. On day #5, NIH3T3 cells were detached from the plate by trypsinization and 1/5 of 

them were taken for FACS analysis. Likewise, 100 μl of 3B4.15 cells were taken. Their 

GFP expression profiles were analyzed. After a high infection efficiency was noticed 

for both cell line, the rest 900 μl of 3B4.15 cells were divided into two and their media 

were replaced by 1 ml 1 nM dexamethasone-containing RPMI and ethanol-containing 

RPMI. After 16 hours of incubation, on day #6, cells were analyzed on flow cytometry. 

 



31 
 

 

 

3.2.4. Flow Cytometry 

 

Flow cytometry was performed for two purposes. First, in order to understand 

whether infection worked, GFP fluorescence of NIH3T3 and 3B4.15 cells were 

observed (LZRS vectors enforce GFP expression in their host cells). Second, IL-7Rα 

expression profiles were analyzed in 3B4.15 cells upon Dexamethasone (Dex) 

stimulation. 

Preparation of Cells for FACS: 

In order to observe IL-7Rα levels after 16 hours of Dex treatment, 200 μl out of 

1 ml 3B4.15 suspension cultures were taken for analysis. First, the cells were pelleted 

by centrifugation at 200 g for 5 min and washed with FACS buffer. After washing one 

more time, the pellets were resuspended in 100 μl FACS buffer, 10 μl of 10 μg/ml anti-

CD127 PE antibody was added and vortexed briefly and gently. Following 20 min 

incubation in dark in cold room, they were washed twice as before. After resuspending 

in 500 μl FACS buffer, 1 μl of 50 μg/ml 7-AAD was added and vortexed briefly and 

gently. Incubation in dark for 10 min in the cold room was followed by FACS analysis.  

On the other hand, in order to check for the infection efficiency, cells were only 

washed twice and then resuspended in 500 μl FACS buffer. 7-AAD was generally not 

used. 

Data Acquiring and Data Analysis: 

Flow cytometry data were acquired and recorded using BD FACSCanto machine 

and FACSDiva software. GFP fluorescence was measured in the FITC channel and IL-

7Rα was measured in the PE-Area channel (anti-IL-7Rα antibody was conjugated to 

PE). During acquisition of data, compensation for both signals was ensured.  

We made the data analysis using FlowJo software. First we gated on the live cell 

population which was defined first by the cells’ size and granularity data, then by 7-

AAD exclusion data. On the 7-ADD-free cell population we analyzed GFP profile. 

After subgrouping the cells based on their GFP expression levels, i.e. GFP-negative, 
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GFP, positive, etc., we analyzed IL-7Rα expression levels (Figure 3.2). We recorded the 

mean fluorescence intensity (MFI) and median channel fluorescence (MCF) in the PE-

Area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2. Schematic representation of flow cytometry data analysis. Alive cells were 
selected first based on their granularity and size, then based on 7-AAD exclusion data 
(7-AAD-negative cells were taken). These live cells were analyzed for their GFP 
expression. Cells were grouped according to their GFP expression status and IL-7Rα 
expression was analyzed for each group.  

 

 

3.2.5. Immunoblotting 

 

Protein Extraction: 

Cells were first washed with PBS buffer twice, then pelleted again at 13000 g 

and resuspended in 50 μl RIPA buffer containing 1mM PMSF and 1X Protease 

Inhibitor Cocktail by pipetting on ice. After centrifugation at 13000 g, the suspension 

was taken into a new eppendorf tube, and this was repeated twice. Protein concentration 

in the final cell lysate was assessed by Bradford assay. 

GFP and IL7R 
analysis 

(for each GFP 
sub-group) 

gr
an

ul
ar

ity
 

7-
A

A
D

 

size size 

ce
ll 

nu
m

be
r 

IL-7Rα 



33 
 

 

Polyacrylamide Gel Electrophoresis (PAGE): 

In order to run protein samples, 15% and 20% polyacrylamide gels were 

prepared according to the formulation shown in Table 3.6. Protein extracts which 

contain equal amounts of protein were mixed with 5X commercial protein loading 

solution and 20X reducing agent and then boiled at 100 0C for 5-10 min. After spin 

down, these protein samples were loaded on the gel and run along with Pre-stained 

Protein Marker for 1-1,5 hours at 200 Volts. 

Western blotting and detection: 

As soon as the run was completed, proteins were transferred onto nitrocellulose 

membranes at 250 milli Amper for 1 hour at room temperature (RT). Subsequently, the 

membrane was treated with the blocking solution (5% milk in PBT) for 1 hour at RT. 

After washing shortly with PBT buffer, the membrane was soaked in primary antibody 

solution (1:1000 anti-Flag antibody in red solution) and incubated for 1 hour with 

shaking. Then the membrane was washed with PBT for 5 min for three times, and 

treated with the secondary antibody (1:10000 anti-mouse IgG-peroxidase in 5 % milk 

PBT). Finally, it was treated with chemiluminescent substrate following three times 

wash in PBT for 5 min. After 2-4 min incubation in dark, films were placed on the 

membranes and developed in the dark room to detect the proteins of our interest, which 

had carboxy terminal Flag epitopes. 

 

Ingredients 
LOWER GELS – 5ml 

(Separating) 
UPPER GEL – 2,5 ml 

(Stacking) 
15 % 20 % 3 % 

ddH2O 0,8 ml - 1,62 ml 
50 % glycerol 0,4 ml 0,4 ml - 

Lower/Upper gel buffer 1,25 ml 1,25 ml 625 μl 
30 % Acry/Bis 2,5 ml 3,3 ml 250 μl 

10 % APS 50 μl 50 μl 20 μl 
TEMED 5 μl 5 μl 5 μl 

Table 3. 6. Ingredients of polyacrylamide gels. 
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3.2.6. Quantitative miRNA Analysis 

 

Total RNA Isolation: 

RNA isolation was applied to 107 ethanol-treated (control) and dexamethasone-

treated 3B4.15 cells. Pelleted cells were resuspended in 1 ml TRI and incubated for 5 

min. After adding 200 μl chloroform and vortexing, the mixture was incubated for 3 

min and then centrifuged at 12.000 g for 15 min at 4 0C. The aqueous phase was 

transferred into a new tube and isopropanol and ethanol precipitation was applied. The 

final RNA pellet was dissolved in 50 μl DEPC-treated water. RNA concentration in the 

sample was measured in nano-drop spectrophotometer. 

 

Real time PCR: 

Real-time PCR was also conducted using kit reagents; cDNA samples were 

simply mixed with primers to a final concentration of 0,5 μM and with ready-to-use 

master mixes which contain hot start Tbr DNA Polymerase, SYBR Green, optimized 

PCR buffer, MgCl2 and dNTPs. The cycling program, which is shown in Table 3.7, was 

started after well-factor plate reading. Well-factor plates contained 20 μl 10 nM 

fluorescein dye. SYBR Green fluorescence was measured at the extension step of each 

amplification cycle. The program was ended with melting curve analysis to infer the 

nature of the amplification.  
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Cycle no Repeat Time Temperature (0C) 

1 1 2 min 50 

2 1 10 min 95 

3 40 

10 sec 94 

30 sec 60 

30 sec 72 

4 1 2 min 72 

5 1 1 min 95 

6 80 10 sec 55; +0,5 at each repeat 

7 1 ∞ 4 

Table 3. 7. The thermal cycling program for real time PCR. Melting curve analysis was 
carried out by measuring SYBR Green fluorescence at every 0,5 0C interval while 
heating the sample from 55 0C to 95 0C. 
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4. RESULTS 

 

 

4.1. INVESTIGATING THE ROLE OF RNA INTERFERENCE IN THE 

REGULATION OF GFI1 UPON DEXAMETHASONE STIMULATION 

IN T CELLS 

 

 

4.1.1. Target miRNA Prediction against Mouse Gfi1 

 

MicroCosm Targets, miRGen Targets, TargetScanMouse and PicTar predicted 

overlapping sets of miRNA targets against mouse Gfi1, among which miR-142-3p, 

miR-133a, miR-466b-3-3p and miR-378 scored the highest. miR-155 and miR-10a were 

added to this list based on a study that reported these two miRNAs, along with miR-

142-3p and miR-133a, were involved in regulation of Gfi1’s expression 95.  

We studied the expression of these miRNAs in a tissue culture system where 

Gfi1 expression is dynamically regulated. 3B4.15 T lymphocyte cell lines express high 

levels of Gfi1, which silences the expression of the IL-7Rα gene. When 3B4.15 cell 

lines are treated with the glucocorticoid dexamethasone (Dex), Gfi1 levels decrease and 

IL-7Rα gene transcription is increased (Park, H. & Erman, B., unpublished 

observations). The downregulation of Gfi1 expression may be mediated by the activity 

of various miRNAs; thus we hypothesized that Dex treatment would alter the 

expression levels of one or more miRNAs that target the 3’UTR of Gfi1 gene.  
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4.1.2. Flow Cytometric Analysis of IL-7Rα Induction upon Dexamethasone 

Treatment 

 

To identify miRNAs that are upregulated upon Dex treatment, we first assessed 

Dex responsiveness of 3B4.15 cells by measuring their surface levels of IL-7Rα. As 

expected, control 3B4.15 cells were IL-7Rα negative as they express high levels of 

Gfi1, and Dex treated 3B4.15 cells were IL-7Rα positive as they downregulate Gfi1 

expression.  

Here, we treated 10.106 3B4.15 cells with 1 nM dexamethasone. For the control 

group, we added the same volume (10 μl) of ethanol to the culture medium (10 ml 

total), because Dex was dissolved in ethanol in the stock solution. After 16 hours of 

incubation, we took 200 μl of the culture for FACS analysis and pelleted the rest for 

RNA isolation. In order to observe IL-7Rα expression levels on cell surface, we stained 

the cells with PE-conjugated anti-CD127 antibody. As shown in Figure 4.1, IL-7Rα 

expression was induced upon Dex treatment. 

 

       

Figure 4. 1. Induction of IL-7Rα upon Dex treatment. After 16 hours, PE-A (IL-7Rα) 
mean fluorescent intensity was 9,26 for the control group and 38,25 for the treatment 
group. 75 % of the cells become IL-7Rα positive after Dex treatment (only 1% is IL-
7Rα positive in the control group).  

 

EtOH   16 hours    DEX    16 hours 

MFI: 9,26 MFI: 38,25 

MCF:9,14 MCF:28,55 
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4.1.3. Quantitation of miRNA Levels Using Real Time RT-PCR 

 

After RNA isolation, we ran total RNA samples on an agarose gel to determine 

RNA quality and lack of DNA contamination. We observed that final RNA product was 

intact and free of DNA contamination (see Figure 4.2). 

 

 

 

 

 

 

Figure 4. 2. RNA quality after isolation. RNA was intact as the bands corresponding to 
28S and 18S rRNAs were sharp; absence of smear in the upper part of the gel suggested 
that there was no DNA contamination. 

 

Next, we performed cDNA synthesis and real time PCR in order to quantitate 

miRNA expression levels in control and Dex-treated samples. In cDNA synthesis 

reaction, specific stem-loop RT primers were used for miRNA and snoRNA species. As 

shown in Table 3.4 and Figure 4.3, these stem-loop RT primers have only 6 

complementary bases at their 3’ ends. Besides they all contain the same backbone 

sequence which form a stem loop structure at the temperature of cDNA synthesis. Stem-

loop structure of these primers provides efficient and specific conversion of miRNAs to 

cDNAs 96, 97. 

The stem loop structure unfolds at the temperatures of PCR cycles. Therefore the 

(universal) reverse primer is allowed anneal to its complementary site in the loop 

region. The forward primer is specific for each miRNA as it should anneal to the 5’ 

miRNA part of the cDNA template to initiate specific amplification (see Figure 4.3). 

1. Control (EtOH) RNA 

2. GeneRuler marker (DNA) 

3. DEX treated RNA 

28 S 
18 S 

      1     2     3 
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Amplifications are detected by the enhanced fluorescence of SYBR Green fluorophore 

as it incorporates into double stranded DNA. 

 

Figure 4. 3. Schematic representation of stem-loop RT-PCR for quantification of 
miRNAs. (Adapted from ref 96). 

 

In order to determine the efficiency of amplification using the corresponding 

forward and reverse primer pair, we made standard curve analysis. To this end, we 

made 10 fold dilutions of the cDNA template and tracked their amplification curves 

(Figure 4.4) and threshold cycles (CT) (Table 4.1) in real time PCR. The software drew 

the standard curve and calculated the PCR efficiency (Figure 4.5). We also analyzed 

their melting curves (Figure 4.6) in order to ensure the amplifications were specific. 

Then we analyzed the amplification curves and the CT values for the experimental 

samples (Figures 4.7 and Table 4.1). Using the PCR efficiency and the average of the 

CT for the triplicate samples of control and Dex treatment, we calculated the fold change 

in each miRNA species level due to Dex treatment. We used the below formula 98. 

 

Here, efficiency is defined in the Pfaffl definition (100% PCR efficiency means that 

DNA amount doubles at each cycle; therefore efficiency equals 2 in the Pfaffl 

definition). We used small nucleolar RNA 420 (snoRNA-420) as our reference gene 
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because its expression has been reported to be invariable among many tissues and 

between treatments 95. In order to find the actual change in a miRNA species between 

control and treatment, we divided the fold change in that miRNA species by the fold 

change in snoRNA-420. The calculation is shown in the below formula 98. 

 

 

Fold change in the reference gene snoRNA-420: 

The PCR amplification vs. cycle graph for the standard dilutions and the 

resulting standard curve for snoRNA-420 are shown in Figure 4.4.A and Figure 4.5.A. 

PCR efficiency was calculated to be 108,7 %, which cannot be theoretically true, but is 

considered practically good (correlation coefficient was 0,996). In the Pfaffl definition, 

PCR efficiency was 2,087. Amplification products of the standard dilution samples gave 

the same pattern in the melting curve graph. It was obvious that there was only 

amplification of the desired product as there was only one large peak (Figure 4.6.A). 

The average threshold cycles (CT) of the triplicate control and treatment samples 

were 27,43 and 26,87, respectively (Figure 4.7 and Table 4.1). Using the fold change 

formula, we found out that the fold change in snoRNA-420 expression was 1,44 

(treatment/control).  

fold change in snoRNA-420 (Dex/control) = (2,087)27,43 – 26,87 = 1,44 

This relatively small difference in snoRNA-420 levels between control and Dex treated 

samples indicated that it was a proper reference gene to use in miRNA quantitation 

between treatments.  
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Fold change in miR-142-3p: 

The PCR amplification graph and the standard curve for miR-142-3p are shown 

in Figure 4.4.B and Figure 4.5.B. PCR efficiency was 82,8 % (1,828 in the Pfaffl 

definition) and the correlation coefficient was 0,993. Melting curve analysis showed 

that only the desired product was amplified in the PCR (Figure 4.6.B). 

The amplification curves of the experimental samples were shown in Figure 

4.7.B. The average CT for control and Dex treatment samples were 23,63 and 23,2, 

respectively (Table 4.1). Consequently, calculation of the Dex treatment vs. control fold 

change for  miR-142-3p gave 1,30 fold increase.  

fold change in miR-142-3p (Dex/control) = (1,828)23,63 – 23,2 = 1,30 

This result was solely based on miR142-3p real time PCR data. However, we had to 

consider the fold change in the reference gene, snoRNA-420, as well. After taking the 

fold change in reference gene into account, we found out that the actual ratio of miR-

142-3p level for treatment vs. control was 0,90. Therefore, we concluded that miR-142-

3p level did not change upon Dex treatment. 

actual miR-142-3p ratio (Dex/control) = 1,30/1,44 = 0,90 

 

 

 

    

Figure 4. 4. continued. 
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Figure 4. 4. PCR amplification vs. cycle graphs for the standard samples. Amplification 
scale is in arbitrary units. A) snoRNA-420, B) miR-142-3p, C) miR-378, D) miR-466b-
3-3p, E) miR-133a, F) miR-155, G) miR-10a. 
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A) snoRNA-420 
 

                        

 

 

                         

 

 

                         

 

 

                        

Figure 4. 5. Standard curve analyses. A) snoRNA-420, B) miR-142-3p, C) miR-378, D) 
miR-466b-3-3p. 
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B) miR-142-3p 

Fold change in miR-378: 

As shown in Figure 4.4.C, PCR of the standard samples for miR-378 achieved to 

give amplifications in good correlation with their dilutions. Therefore we had a PCR 

efficiency of 2,043 (or 104,3 %) and obtained the standard curve shown in Figure 4.5.C. 

We confirmed that amplification was specific in the PCR by studying the melting curve 

of the standard samples (Figure 4.6.C). The amplification curves and the CT values for 

experimental samples were shown in Figures 4.7.C and Table 4.1, respectively. The CT 

values for control and Dex treatment averaged 25,45 and 25,9, respectively. Using 

these, we calculated the fold change in miR-378 level between treatment and control. 

The fold change was 0,73. After correction based on snoRNA-420 fold change, we 

found that the actual fold change was 0,51. Hence we found out that miR-378 level in 

Dex treated samples was half of that in the control samples. Yet, this was not a 

significant decrease for a miRNA species. 

fold change in miR-378 (Dex/control) = (2,043)25,45-25,9 = 0,73 

actual ratio of miR-378 (Dex/control) = 0,73/1,44 = 0,51 

 

 

       

 

 

 

 

 

Figure 4.6. continued. 

A) snoRNA-420 

C) miR-378 D) miR-466b-3-3p 
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Figure 4. 6. Melting curve analyses. The graphs show the rate of change of the relative 
fluorescence units (RFU) with time (T) vs. temperature. The curves belong to the 
standard samples; experimental samples were not included. 

 

Fold change in miR-466b-3-3p: 

As shown in Figure 4.4.D, miR-466b-3-3p dilution standards gave amplification 

curves a bit closer to each other in the PCR amplification vs. cycle graph. This resulted 

in a PCR efficiency of 123,4 %, higher than 100 % (Figure 4.5.D). The correlation 

coefficient for the standard curve was 0,995. The melting curve analysis of the dilution 

standards also showed that only the desired product was amplified (Figure 4.6.D).  

The threshold cycle values for the control and Dex treatment samples averaged 

27,7 and 27,2, respectively (Figure 4.7.D). The calculation of the actual fold change in 

miR-466b-3-3p upon Dex treatment is shown below. Because the actual ratio is found 

to be 1,03, miR-466b-3-3p level did not change at all upon Dex treatment. 

fold change in miR-466b-3-3p (Dex/control) = (2,234)27,7-27,2 = 1,49 

actual ratio of miR-466b-3-3p (Dex/control) = 1,49/1,44 = 1,03 

 

G) miR-10a 

E) miR-133a F) miR-155 
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Real time PCR Data of miR-133a, miR-155 and miR-10a: 

Analysis of miR-133a real time PCR data is given in Figure 4.4.E, Figure 4.6.E 

and Table 4.1. Figure 4.4.E shows the amplification vs. cycle graph of the standard 

dilutions. Here we noted that the order of the amplification curves was not related to the 

initial amount of the cDNA template. This was reflected in the CT values, as seen in 

Table 4.1. When we analyzed the melting curves of the standard samples, we realized 

that amplifications were not specific. Because, all the curves peaked at different 

temperatures, and the peaks were small in height, with one exception (Figure 4.6.E). 

This means that contaminating DNA or RNA material or primer dimers were amplified 

nonspecifically during the reaction. Therefore, we were not able to determine the 

change in miR-133a levels upon Dex treatment. 

 

Samples 
(dilution) Threshold cycle (CT) 

Standard 
Samples 

sno420 miR142-
3p 

miR378 miR466b-3-
3p 

miR133a mir155 miR10a 

100  17.9 20.2  38.4 31.0 37.8 
10-1 24.7 19.9 22.2 24.3 29.4 29.8 33.1 
10-2 27.3 23.2 25.4 27.0 31.8 34.7 35.7 
10-3 30.7 29.0 28.9 30.7 34.2 37.9 N/A 
10-4 34.6 32.0 32.6 32.7 37.7 N/A N/A 
10-5 36.7 36.2 35.8  34.5 N/A N/A 

Experimental 
samples 

       

Control (10-2) 
27.3 
27.6 
27.4 

23.2 
23.4 
24.3 

25.4 
25.5 

27.8 
28.3 
27.0 

33.0 
32.3 
31.8 

35.6 
35.2 
34.7 

35.7 
38.5 
36.8 

DEX (10-2) 
27.0 
27.0 
26.6 

22.7 
23.7 
23.2 

26.1 
25.4 
26.2 

26.8 
26.9 
27.7 

33.6 
32.5 
32.9 

35.1 
34.8 
32.9 

34.9 
36.4 
35.5 

Table 4. 1. The threshold cycle values for the standard and experimental samples.  

 

As seen in the amplification vs. cycle graph in Figure 4.4.F and in the threshold 

cycles given in Table 4.1, amplification of the standard dilutions for miR-155 did not 

have a correlation. Therefore, we could not obtain a standard curve for miR-155. 

Melting curve analysis, shown in Figure 4.6.F, clarified the reason for lack of 
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correlation. Non-specific products were amplified in the PCR, as the melting curves of 

the standards did not show a similar pattern and did not plot a single large peak. Hence 

we could not obtain information about the change in miR-155 levels resulting from Dex 

treatment. 

 

    

 

    

Figure 4. 7. PCR amplification vs. cycle graphs for the experimental samples (control 
and Dex treatment). A) snoRNA-420, B) miR-142-3p, C) miR-378, D) miR-466b-3-3p. 

 

Lastly, real time PCR of miR-10a also did not work. Amplification curve of the 

standard samples in Figure 4.4.G did not show a correlation with the dilutions of the 

standards, and half of the samples were even not assigned with a CT value because that 

amplification was very weak (Table 4.1). For each of the standard samples, PCR 

amplification was nonspecific as illustrated by the melting curve graph in Figure 4.6.G. 

Here, the melting curves did not make a large peak at a particular temperature; they 

rather slightly peaked at several points.  

B) miR-142-3p 

D) miR-466b-3-3p 

A) snoRNA-420 

C) miR-378 
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Thus, even though all cells upregulate IL-7R upon Dex treatment in this tissue 

culture system, presumably partly because they lose Gfi1 expression, the expression 

levels of the 3 miRNAs that were hypothesized to control Gfi1 expression do not 

change. We still do not know how expression levels of the other 3 miRNAs, for which 

real time RT-PCR did not work, change under this condition. In addition, miRNAs that 

were not predicted by the bioinformatics software may be playing a role in controlling 

Gfi-1 and therefore IL-7R expression. 

 

 

4.2. UNDERSTANDING THE ROLES OF GFI1 DOMAINS IN REPRESSION 

OF IL-7Rα EXPRESSION 

 

 

4.2.1. Cloning of Gfi1 Truncations 

 

We generated five different truncations of mouse Gfi1 to examine their effects in 

IL-7Rα repression (Figure 4.8). mGfi1-SNAG was solely composed of the SNAG 

domain; and mGfi1-ΔSNAG (or dSNAG) contained the whole protein except the 

SNAG domain. mGfi1-ZFs truncation contained only the zinc fingers of the protein 

while mGfi1-ΔZFs (or dZFs) excluded the zinc fingers at all. Finally, mGfi1-

ΔSNAG,ΔZFs (dSNAG,dZFs) lacked both the SNAG domain and the zinc fingers, and 

was comprised of the middle domain which had the Ala/Gly-rich region. 

 

 

 

 

 

Figure 4. 8. Gfi1 truncations used in the project. Blue box: SNAG domain, yellow box: 
Ala/Gly-rich region, green circles: zinc finger motifs, orange circle: Flag tag. 

Full length mGfi1-FLAG: 

mGfi1-SNAG-FLAG: 

mGfi1-ΔSNAG-FLAG: 

mGfi1-ZFs-FLAG: 

mGfi1-ΔZFs-FLAG: 

mGfi1-ΔSNAG,ΔZFs-FLAG: 
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The strategy for generating the desired Gfi1 truncations is depicted in Figure 4.9. 

Truncations were generated by PCR amplification from a pBluescript-mGfi1 template. 

For the amplification of SNAG and ΔZFs, M13 forward primer and specific reverse 

primers which beared flag tag sequence, stop codon and NotI cut site were used. For the 

amplification of ΔSNAG and ZFs, specific forward primers which beared XhoI cut site 

followed by Kozak sequence and T7 reverse primers were used. Amplification of 

ΔSNAG,ΔZFs required only the specific forward and reverse primers. Consequently, all 

of the PCR products carried the cut sites for XhoI and NotI at both ends. These PCR 

products were first digested with XhoI and NotI, and then ligated into the double 

digested LZRS vector. The resulting recombinant vectors that contain the 5 different Gfi 

truncations depicted in Figure 4.9 were confirmed by restriction enzyme digestion 

(Figure 4.10) and by sequencing (Appendix B). Diagnostic XhoI-Not digestion of 

truncated cDNA-containing vectors pops out an expected size band from the LZRS 

plasmid backbone (Figure 3.1 and Figure 4.10). 

 

 

Figure 4. 9. Strategy for cloning of Gfi1 truncations into LZRS vector. Note: 
Amplification of mGfi1-ΔSNAG, mGfi1-ΔZFs and mGfi1-ΔSNAG,ΔZFs was achieved 
by using 5 % DMSO in the PCR reaction. Blue: XhoI cut site, green: Kozak sequence, 
orange: NotI cut site, red: Stop codon, gray: Flag epitope sequence, thick black bars: 
amplicons. 
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Figure 4. 10. Confirmation of the recombinant LZRS vectors by restriction enzyme 
digestion. Lane 1: uncut lzrs, lane 2: GeneRuler DNA Master Mix, xhoI-notI double 
digestions: lane 3: lzrs, lane 4: SNAG-lzrs, lane 5: ΔSNAG-lzrs, lane 6: ZFs-lzrs, lane 
7: ΔZFs-lzrs, lane 8: ΔSNAG,ΔZFs-lzrs. 

 

 

4.2.2. Infection Experiments 

 

In order to ectopically express the full length Gfi1 and its truncations in the 

3B4.15 T cell line, we generated retroviruses encoding the relevant cDNA and infected 

3B4.15 T cells. To generate retroviruses, we transfected Phoenix packaging cells with 

the corresponding LRZS vectors. We applied supernatants of transfected Phoenix cells 

containing viral particles to 3B4.15 cells in culture and assessed the infection efficiency 

by GFP positivity (encoded by the LZRS virus backbone). As seen in Figure 3.1, the 

LZRS retroviral vector uses the 5’LTR to transcribe the inserted cDNA fused to and 

IRES element and an eGFP gene in a bicistronic mRNA. Thus, GFP can be used as a 

marker for cDNA expression because infected cells expressing GFP also express the 

cDNA. 
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EtOH Dex 

- GFP - GFP + GFP + GFP 

low GFP+ interm. GFP+ high GFP+ low GFP+ interm. GFP+ high GFP+ 

 

4.2.2.1. IL-7Rα expression on cells infected with control retroviruses 

In these experiments, we used empty LZRS vector as a control. Phoenix cells 

transfected with empty vector produced viruses that transferred the coding sequence of 

only enhanced Green Fluorescent Protein (eGFP) into the host’s genome. As GFP 

overexpression does not to interfere with IL-7Rα expression, we did not observe any 

difference in the IL-7Rα level between GFP-negative (uninfected) and GFP-positive 

(infected) 3B4.15 cells. As shown in Figure 4.11, PE-A mean fluorescence intensity 

(MFI) and PE-A median channel fluorescence (MCF) values were approximately the 

same between uninfected and infected population under both control and Dex treatment 

conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 11. Retroviral insertion of LZRS alone did not alter IL-7R expression levels 
in 3B4.15 cells. GFP fluorescence was detected in the FITC channel, and IL-7Rα was 
detected in the PE-A channel. 
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low GFP+ interm. GFP+ high GFP+ low GFP+ interm. GFP+ high GFP+ 

EtOH Dex 

- GFP - GFP + GFP + GFP 

 

4.2.2.2. IL-7Rα expression on cells infected with full length mouse Gfi1 

expressing retroviruses 

As shown in Figure 4.12, retroviral overexpression of full length Gfi1 in 3B4.15 

cells showed that Gfi1 did not suppress IL-7Rα further under control conditions. This 

implied that 3B4.15 cells normally did not have any IL-7R on their surface. Dex 

treatment led to increase in IL-7R levels in uninfected cells as PE-A MFI increased 

from 11,63 to 71,08. Ectopic expression of Gfi1 partially suppressed this induction. PE-

A MFI of GFP-positive cells only scored 50,67 for Dex treatment while it was 12,03 for 

control. Moreover, as the level of GFP expression increased, the decrease in PE-A MFI, 

and therefore repression of IL-7Rα, became more marked. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 12. Full length Gfi1 repressed IL-7Rα induction upon Dex treatment. 
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low GFP+ interm. GFP+ high GFP+ low GFP+ interm. GFP+ high GFP+ 

- GFP - GFP + GFP + GFP 

EtOH Dex 

 

4.2.2.3. IL-7Rα expression on cells infected with mGfi1-SNAG expressing 

retroviruses 

The IL-7Rα expression profiles of cells after retroviral overexpression of mGfi1-

SNAG and upon Dex stimulation are shown in Figure 4.13. Dex stimulation increased 

IL-7Rα expression in infected and uninfected 3B4.15 cells to the same extent; PE-A 

MFI peaked to 72,57 and 73,26, respectively, from 12,07 and 11,13. Therefore, 

overexpression of Gfi1 SNAG domain did not suppress IL-7Rα induction by itself. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 13. Gfi1-SNAG domain did not suppress IL-7Rα induction upon Dex 
stimulation. 
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low GFP+ interm. GFP+ high GFP+ low GFP+ interm. GFP+ high GFP+ 

- GFP - GFP + GFP + GFP 

EtOH Dex 

 

4.2.2.4. IL-7Rα expression on cells infected with mGfi1-ΔSNAG expressing 

retroviruses 

The effect of Gfi1-ΔSNAG truncation on IL-7Rα expression was also analyzed 

upon Dex stimulation (Figure 4.14). PE-A MFI exhibited an increase from 12,56 to 

77,57 in GFP-negative cells upon Dex treatment. The increase in PE-A MFI for GFP-

positive cells was also similar; from 10,96 to 79,65. Therefore, ΔSNAG truncation was 

not able to suppress IL-7Rα expression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 14. Overexpression of Gfi1-ΔSNAG did not repress IL-7Rα induction upon 
Dex stimulation. 
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- GFP - GFP + GFP + GFP 

low GFP+ interm. GFP+ high GFP+ low GFP+ interm. GFP+ high GFP+ 

EtOH Dex 

 

4.2.2.5. IL-7Rα expression on cells infected with mGfi1-ZFs expressing 

retroviruses 

As seen in Figure 4.15, overexpression of Gfi1’s zinc fingers domain in 3B4.15 

cells did not alter IL-7Rα levels in control and Dex treatment conditions. PE-A MFI 

values for infected and uninfected cells were 13,34 and 11,06, respectively, when there 

was no treatment. PE-A MFI values were still very close (73,21 and 78,92) for infected 

and uninfected cells after Dex stimulation, demonstrating that the zinc fingers of Gfi1 

alone did not have an effect on the IL-7Rα promoter in 3B4.15 cells upon Dex 

stimulation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 15. Gfi1-ZFs domain was not sufficient by itself to repress IL-7Rα 
expression. 
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- GFP - GFP + GFP + GFP 

low GFP+ interm. GFP+ high GFP+ low GFP+ interm. GFP+ high GFP+ 

EtOH Dex 

4.2.2.6. IL-7Rα expression on cells infected with mGfi1-ΔZFs expressing 

retroviruses 

Another Gfi1 truncation to be tested for its capability of repressing IL-7Rα was 

mGfi1-ΔZFs. Figure 4.16 shows that Dex treatment resulted in similar increases in PE-

A MFI for uninfected cells (from 9,55 to 67,54) and for infected cells (from 12,54 to 

72,25) . This indicated that overexpression of mGfi1-ΔZFs did not downregulate IL-

7Rα expression induction in 3B4.15 cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 16. Overexpression of Gfi1-ΔZFs did not result in repression of IL-7Rα 
induction. 

 

 

4.2.2.7. IL-7Rα expression on cells infected with mGfi1-ΔSNAG,ΔZFs 

expressing retroviruses 

Retroviral overexpression of mGfi1-ΔSNAG,ΔZFs also gave results similar to 

other truncations (Figure 4.17). GFP-positive cells induced IL-7Rα as much as GFP-

negative cells upon Dex stimulation; PE-A increased from 12,06 to 71,29 for GFP-
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- GFP - GFP + GFP + GFP 

low GFP+ interm. GFP+ high GFP+ low GFP+ interm. GFP+ high GFP+ 

EtOH Dex 

positive cells, and from 11,97 to 66,23 for GFP-negative cells. Therefore, mGfi1-

ΔSNAG,ΔZFs did not alter IL-7Rα levels. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 17. Gfi1-ΔSNAG,ΔZFs had no effect in IL-7Rα repression by itself. 

 

We performed the retroviral overexpression of Gfi1 truncations in 3B4.15 cells 

at least 2 times. The overall conclusion of these experiments is that full length Gfi1 

repressed Dex-induced IL-7Rα, while the truncations and individual domains of Gfi1 

did not display this function.  

 

 

4.2.3. Immunodetection of Gfi1 Truncations in 3B4.15 Cells 

 

In order to ensure that the infected cells really expressed the exogeneous Gfi1 

truncations, we prepared protein lysates and immunoblotted these lysates against anti-

Flag antibodies. Figure 4.8 shows that the full length Gfi1 and its truncations were all 
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1:1000 α-Flag 

1:10000 α-mouse 

 

 

 

 

 

15 % SDS-PAGE 

epitope tagged with a Flag epitope. As seen in Figure 4.18, anti-Flag western blotting 

demonstrated that except for the Gfi1-SNAG truncation, all of the Gfi1 truncations were 

expressed in 3B4.15 cells. The calculated molecular weights of the Gfi1 truncations are 

given in Appendix C. 

 

 

 

 

     

 

 

 

        

Figure 4. 18. Immunoblotting of infected cell lysates against α-Flag antibody.  All of 
the Gfi1 truncations were detected in 3B4.15 lysates (A), with the exception of Gfi1-
SNAG, which could not be detected despite increased gel concentration and overnight 
film exposure (B).  

 

 

 

4.3. REPRESSION OF IL-7Rα EXPRESSION BY FOXP3 AND GFI1B IN 
3B4.15 CELLS 

 

 

We also overexpressed Foxp3 in 3B4.15 cells by retroviral transduction. Figure 

4.19 shows that Foxp3 significantly repressed IL-7Rα induction upon Dex treatment. 

The MFI for PE-A channel increased from 6,04 to 35,38 and from 6,53 to 39,80 after 

Dex stimulation in uninfected cells. This increase was also observed in cells infected 

A. B. 

20 % SDS-PAGE 
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low GFP+ interm. GFP+ high GFP+ low GFP+ interm. GFP+ high GFP+ 

EtOH Dex 

with empty LZRS retroviruses (from 5,70 to 34,54), implying that LZRS had no effect 

on IL-7Rα expression by itself. In contrast, cells infected with Foxp3-LZRS did not 

exert the same increase as PE-A MFI increased from 7,91 to 15,54. The repression of 

IL-7Rα induction by Foxp3 becomes more marked in cells that express highest levels of 

GFP. These cells express more Foxp3, and consequently the PE-A MFI value is only 

12,14 for them after Dex treatment. Therefore, overexpression of Foxp3 in 3B4.15 cells 

greatly, but not completely, blocked the expression of IL-7Rα. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. continued. 

 

 

 

 

 

 

A. empty LZRS 

IL
-7

R
 

IL
-7

R
 

G
FP

 p
ro

fil
e 

MFI:35.38 
MCF:29.68 

MFI:34.54 
MCF:30.55 

MFI:5.70 
MCF:4.97 

MFI:6.04 
MCF:5.56 

MFI:5.94 
MCF:4.86 

MFI:33.17 
MCF:29.02 

MFI:34.94 
MCF:30.67 

MFI:35.53 
MCF:32.03 

MFI:5.47 
MCF:4.85 

MFI:5.69 
MCF:5.11 



60 
 

- GFP - GFP + GFP + GFP 

low GFP+ interm. GFP+ high GFP+ low GFP+ interm. GFP+ high GFP+ 
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Figure 4. 19. Repression of IL-7Rα expression by Foxp3 in 3B4.15 cells. A) 
Overexpression of empty LZRS vector had no affect on IL-7Rα expression. B) 
Overexpression of Foxp3 in 3B4.15 greatly reduced IL-7Rα induction upon Dex 
treatment, as PE-A MFI was 15,54 for GFP-positive population whereas it was 39,80 
for GFP-negative population in the same sample.   

 

Finally, we retrovirally overexpressed Gfi1b in 3B4.15 cells. The flow 

cytometry results after Dex treatment are shown in Figure 4.20. Dex treatment resulted 

in increase in IL-7Rα levels as PE-A MFI elevated from 20,05 to 115,25 in the GFP-

negative cell population of Gfi1b overexpression sample. On the other hand, the GFP-

positive cells in the same sample display a much smaller increase of IL7R expression 

(from 16,38 to 62,10). Furthermore, PE-A MFI for cells that express the highest GFP, 

and therefore the highest Gfi1b, was only 32,67. This result demonstrated that the 

repression of IL-7Rα was clearly modulated by Gfi1b in a dose dependent manner, like 

it was modulated by full length Gfi1 and Foxp3. On the contrary, cells infected with 

empty LZRS retroviruses did not differ in IL-7Rα expression, when compared to 

uninfected cells. These results clearly demonstrated that Gfi1b greatly repressed IL-7Rα 

expression that was induced in 3B4.15 cells upon Dex stimulation.  
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Figure 4. 20. Repression of IL-7Rα expression by Gfi1b in 3B4.15 cells. 
Overexpression of Gfi1b in 3B4.15 greatly reduced IL-7Rα levels. 
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MCF:103.20 

MFI:115.55 
MCF:104.84 

MFI:113.60 
MCF:99.55 

MFI:115.25 
MCF:91.60 

MFI:16.38 
MCF:12.95 

MFI:20.05 
MCF:15.71 

MFI:62.10 
MCF:39.53 

MFI:16.10 
MCF:12.32 

MFI:88.58 
MCF:65.38 

MFI:64.69 
MCF:43.65 

MFI:32.67 
MCF:19.99 

MFI:15.72 
MCF:12.32 

MFI:17.83 
MCF:13.73 
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5. DISCUSSION 

 

 

Interleukin-7 (IL-7) signaling is vital for the development and homeostasis of 

lymphocytes. The IL-7 ligand is produced at a constant rate by the stromal cells of 

lymphoid organs and by epithelial cells. On the other hand, IL-7 Receptor (IL-7R) 

expression is upregulated or downregulated according to the cell’s need. Therefore, IL-7 

signaling is regulated at the level of IL-7R expression. This regulation of IL-7R 

expression should be very strict, because IL-7 is produced at a limiting amount that is 

just sufficient for a finite number of lymphocytes 1. It is also important as many 

important cellular processes highly depend on the expression status of IL-7R, such as 

the determination of T versus B cell fate at the CLP stage 99.  

 

IL-7R is composed of the common γ chain and the IL-7Rα chain. Because the 

common γ chain is shared by many other cytokine receptors, IL-7 signaling capacity of 

a cell is determined by its IL-7Rα expression level 7. Many transcription factors have 

been shown to directly act on the promoter of the IL-7Rα gene to control its expression. 

Growth factor independent 1 (Gfi1) is one of these important transcription factors which 

has a repressive role on IL-7Rα 29. Glucocorticoids, such as dexamethasone (Dex), on 

the other hand, induce its expression. This induction is dependent on the action of 

glucocorticoid receptor (GR) which glucocorticoids bind and activate 72, 73. It has been 

shown that Dex treatment induces IL-7Rα in the 3B4.15 T cell line. 3B4.15 cells have 

been derived from mature CD4+ T cells, but they have somehow lost their IL-7Rα 

expression. After Dex stimulation it was also shown by northern blotting that Gfi1 

mRNA level significantly decreased (Park, H. & Erman, B., unpublished). This 

observation implied a role for Gfi1 downregulation in IL-7Rα induction apart from GR 
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activation. Downregulation of Gfi1 mRNA might be controlled either at the 

transcription level or at the post-transcriptional level. Figure 5.1 shows the possible 

means of this downregulation. One alternative is that Dex treatment activates GR which 

may, in turn, directly or indirectly repress transcription of the Gfi1 gene. In the indirect 

repression scenario, GR activates an inhibitory Factor X, which acts on the Gfi1 

promoter to repress its expression. Alternatively, activated GR may directly upregulate 

expression of miRNAs against Gfi1 to silence its expression. Finally, it is also possible 

that GR may be indirectly inducing the expression of miRNAs by activating a Factor Y, 

which in turn induces the expression of these target miRNAs.  

 

 

 

 

 

 

 

 

 

Figure 5. 1. Alternative means of Gfi1 downregulation upon Dex stimulation in 3B4.15 
cells. Activated GR may directly (1) or indirectly (2), through activating another 
transcription factor, Factor X, induce the transcription of Gfi1 gene. Activated GR may 
alternatively upregulate expression of miRNA(s) which in turn silences Gfi1. This 
upregulation might be direct (3) or indirect via activation of a transcription factor Y (4). 

 

Having determined the possible scenarios for Gfi1 downregulation upon Dex 

treatment, we decided to search whether Gfi1 is downregulated by RNA interference. It 

was previously shown by several studies that Gfi1 expression was frequently controlled 

at the level of mRNA. Some studies reported that the SL3-3 murine leukemia virus 

induced T-cell lymphoma by overexpression of oncogenic Gfi1 due to the loss of its 

miRNA binding sites by retroviral insertion 95. To this end, we aimed to use a real time 

Dex 

X Y 

GR 

miRNA(s) Gfi1 

IL-7Rα 1 
2 3 4 
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RT-PCR approach in order to observe potential increases in expression levels of Gfi1-

targetting miRNAs. Therefore, we first decided on the set of miRNAs to study by 

searching several mouse miRNA target prediction databases. We found out that miR-

142-3p, miR-133a, miR-466b-3-3p and miR-378 were the most promising Gfi1-

targetting miRNAs as they scored highly in the target prediction databases. We also 

decided to study the expression levels of miR-155 and miR-10a since these miRNAs 

were also found to regulate Gfi1 levels 95. miR-378 and miR-466b-3-3p satisfied the 8nt 

seed match requirement, whereas miR-142-3p, miR-10a and miR-155 satisfied the 7nt 

seed match requirement. 

 

Combination of stem-loop reverse transcription with real time PCR is a powerful 

method to relatively quantitate the expression levels of miRNAs. miRNAs are small, 

~22 nucleotides long, RNA molecules, therefore it is impossible to selectively convert 

them to cDNAs and to amplify them in PCR using linear primers. Stem-loop primers, 

on the other hand, provide specificity and sensitivity of the RT reaction due to base 

stacking and spatial constraints of the stem loop structure 96, 97. The cDNA products of 

stem-loop reverse transcription is longer due to incorporation of the primers and can 

form a proper template to be amplified by linear primers in real time PCR.  

 

The real time RT-PCR results showed that snoRNA-420 was a proper reference 

gene to be used in quantitative analysis of miRNAs in mouse, as its level did not change 

between control and Dex treatment. We found out that miR-142-3p, miR-378 and miR-

466b-3-3p levels were also unaltered upon Dex treatment. The melting curve analyses 

of all miRNA species, as well as snoRNA-420, proved that the amplifications in real 

time PCR were specific. This was further confirmed by running the PCR products on 

agarose gels (data not shown). Therefore, we concluded that these miRNA species 

remained almost at the same level between control and Dex treatment in contrast to our 

initial hypothesis.  

 

PCR for miR-133a, miR-155 and miR-10a, on the other hand, did not work, so 

that we were not able to quantitate their expression levels in control and Dex treatment 
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conditions. Melting curve analyses, retarded CT values and lack of correlation between 

the CT values and the dilutions implied that amplifications were not specific. The lack of 

specific binding might have resulted from either a lack of these miRNA species in the 

samples or an inability of the primers to bind to the complementary sites on their 

template. Consequently, amplification products observed in these PCRs originated from 

non-specific amplification of other contaminating DNA or RNA species, or of primer 

dimers.  

 

We initially hypothesized that Gfi1 might be silenced by RNA interference upon 

Dex stimulation in 3B4.15 T cell line. But real time RT-PCR data eliminated the 

possibility that the most promising miRNA species, which scored highly in target 

prediction software, were upregulated upon Dex stimulation. This indicates that these 3 

miRNAs do not play a role in the downregulation of Gfi1 by RNA interference. Yet, 

there is still a possibility that the remaining 3 miRNA species, whose PCR did not work, 

play a role in Gfi1 downregulation. In this context, we also cloned the 3’UTR of the 

mouse Gfi1 gene in order to generate a reporter vector that can be used to test the 

transcription regulation function of the Gfi1 3’UTR. Studies with this reporter may in 

the future yield important clues about the significance of miRNAs in Gfi1 transcription. 

 

In order to characterize the nature of the repression of IL-7Rα by the Gfi1 

transcription factor, we aimed to determine which domains of Gfi1 were important in 

this function. We generated 5 different truncations of the mouse Gfi1 protein. 3 of these 

truncations were solely composed of one of the three domains of the Gfi1 protein, 

namely, Gfi1-SNAG, Gfi1-ZFs, which was formed by six zinc fingers, and Gfi1-

ΔSNAG,ΔZFs, which was the intermediate domain. The other two truncations were 

Gfi1-ΔSNAG and Gfi1-ΔZFs, which lacked the SNAG and the zinc fingers domains, 

respectively. Gfi1 has two nuclear localization signals that direct the protein to the 

nucleus. One them is in the N-terminal SNAG domain, the other is localized in the zinc 

fingers domain 100. Therefore, all the truncations that we generated except Gfi1-

ΔSNAG,ΔZFs were supposed to be transported into the nucleus. The exact subcellular 

locations of these truncated proteins can be identified by confocal microscopy. 
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We used the 3B4.15 cell line in order to test the capability of Gfi1 truncations to 

repress IL-7Rα. After infecting the cells with LZRS vectors that bear the Gfi1 

truncations, we treated the cells with and without Dex. As noted before, these cells 

normally induced IL-7Rα expression after Dex stimulation. We observed that the full 

length Gfi1 was able to partially repress IL-7Rα induction. On the other hand, we did 

not notice any decrease in IL-7Rα when the truncations were overexpressed. Therefore, 

neither of them was able to repress IL-7Rα. We confirmed expression of these 

truncations except Gfi1-SNAG in 3B4.15 cells by immunoblotting against the Flag 

epitope tag which all of these truncations contained in their C-terminus. Although we 

loaded 100 μg of protein extract, used 20% polyacrylamide gel and stopped running at 

an early time point, we were not able to detect the expression of the smallest truncation, 

Gfi1-SNAG. The difficulty in detecting this protein may arise from the fact that it was 

only 31 amino acids long including the Flag tag. Another reason that we could not 

detect Gfi1-SNAG might be that it was not stable in the cell because it was a very small 

protein and it was rapidly degraded.  

 

The SNAG domain was also found to be crucial for Gfi1’s function in previous 

studies 80, 81. Our data that Gfi1-ΔSNAG or Gfi1-ZFs overexpression did not repress IL-

7Rα also confirmed this observation. The zinc fingers domain was also found to be 

essential for Gfi1’s repression function in this retroviral overexpression study, as Gfi1-

ΔZFs was not able to repress IL-7Rα. It was shown that the zinc fingers are not required 

for Gfi1’s STAT3 activation function; because zinc fingers-deleted Gfi1 was also able 

to bind and sequester PIAS3 101. Therefore, we demonstrated that repression of IL-7Rα 

by Gfi1 was dependent on its DNA binding and transcriptional repression abilities. 

Lastly, zinc fingers are generally considered suitable motifs against which small 

molecule drugs could be designed. In case that Gfi1-ZFs repressed IL-7Rα by itself, this 

finding might have been exploited for therapeutic purposes. In such a case it would have 

been possible to screen for small molecules that could specifically alter the zinc fingers 

domain’s affinity for DNA binding 102. 
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To sum up, we showed that the SNAG domain, the zinc fingers domain and the 

intermediate domain were not sufficient to repress IL-7Rα by themselves. However, we 

also showed that both the SNAG domain and the zinc fingers domain were required by 

the protein, that is, they were not redundant in Gfi1’s repression activity. In other 

words, Gfi1 protein should be intact to repress IL-7Rα. 

 

We also ectopically expressed Gfi1b and Foxp3 in 3B4.15 cells and examined 

their effect on IL-7Rα levels after Dex stimulation. We observed that Gfi1b 

overexpression significantly repressed IL-7Rα. The zinc fingers were highly conserved 

among Gfi1 and Gfi1b. Consequently they have the same consensus DNA binding 

sequence. It was shown that Gfi1b could also repress IL-7Rα in T and B cells 86, 87. 

Thus, our result was consistent with this observation. Foxp3 overexpression also 

resulted in IL-7Rα repression in our system. Foxp3 transcription factor is considered as 

the master regulator of regulatory T (Treg) cells. Loss-of-function mutations in Foxp3 

result in IPEX disease which is characterized by the lack of Treg cells 103. Foxp3 

expression was shown to be inversely correlated with IL-7Rα. Besides, Treg cells are 

characterized by their lack of IL-7Rα 88. Consequently, it is possible that inappropriate 

expression of IL-7Rα might be one of the reasons for the development of IPEX.  

 

Because of its significance in the immune system, the regulation of IL-7R has 

been an important subject. This study has revealed the regulatory functions of several 

transcription factors on the promoter of the IL-7Rα gene.  
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APPENDICES 

 

 

APPENDIX A – pCL-ECO MAP 
 

 

 

Cotransfection of Phoenix cells with pCL-ECO provides high level expression 

of gag, pol and env proteins in a balanced stochiometry. Pol is the reverse transcriptase 

and the integrase. Gag (group antigens) is a polyprotein that form the viral core, and 

Env is the envelope protein. 
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APPENDIX B – CONFIRMATION OF THE CLONING OF GFI1 
TRUNCATIONS BY SEQUENCING 

 

 

The LZRS vectors bearing the Gfi1 truncations were sent to sequencing. The 

results of the sequencing reactions, which were performed by using LZRS sequencing 

forward primer that binds to the 5’ of the xhoI cut site, are analyzed below (Only the 

regions between the XhoI and NotI sites are shown). XhoI cut site is highlighted in 

gray, whereas NotI cut site is highlighted in gray and also italicized. The start and stop 

codons are both bold typed, and highlighted in green and red, respectively. The 

sequences which are identical to the Gfi1 coding sequence are typed in purple font 

color, whereas the sequences that encode for the Flag epitope are typed in blue color.  

 

mGfi1-SNAG 

CTCGAGCTCAAGCTTACCACCATGCCGCGCTCATTCCTGGTCAAGAGCAAG
AAGGCGCACAGCTATCACCAGCCGCGTTCTGGATCCATGGACTACAAAGAC
GATGACGATAAATAGCGGCCGC 
 

mGfi1-ZFs 

CTCGAGGCCACCATGTCCTACAAATGCATCAAATGCAGCAAGGTGTTCTCC
ACACCGCACGGGCTGGAGGTGCACGTGCGCCGGTCCCACAGCGGCACAAGA
CCCTTTGCGTGCGAGATGTGCGGCAAGACCTTCGGGCACGCGGTGAGCCTG
GAGCAACACAAGGCAGTGCACTCCCAGGAACGCAGCTTTGACTGTAAGATC
TGTGGCAAGAGCTTCAAGAGGTCATCCACGCTGTCCACACATCTGCTCATTC
ACTCGGACACCCGGCCCTATCCCTGTCAGTACTGTGGCAAAAGATTCCACCA
GAAGTCAGATATGAAGAAACACACCTTCATCCACACAGGTGAGAAGCCCCA
CAAATGCCAGGTGTGCGGCAAAGCCTTCAGTCAGAGCTCCAACCTCATCAC
TCATAGCAGAAAGCACACAGGCTTCAAGCCCTTTGGCTGTGACCTGTGTGG
GAAGGGCTTCCAGAGGAAGGTGGATCTCAGGAGGCACCGAGAGACTCAGC
ATGGACTCAAACTCGACGGTACCGCGGGCCCGGGATCCATGGACTACAAAG
ACGATGACGATAAATAGTCTAGATCATAATCAGCCATACCACATTTGTAGA
GGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACAT
AAAATGAATGCAATTCCTGCAGCCCGGGGGATCCACTAGTTCTAGAGCGGC
CGC 
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mGfi1-ΔSNAG,ΔZFs 

CTCGAGGCCACCATGCCAGGGCCGGACTACTCCCTGCGCCTGGAGACCGTG
CCTGCGCCGGGCAGAGCAGAGGGCGGCGCTGTGAGTGCAGGCGAGTCGAA
AATGGAGCCCCGAGAGCGTTTGTCCCCCGACTCTCAGCTTACCGAGGCTCCC
GACAGGGCCTCCGCGTCCCCCAACAGCTGCGAAGGCAGCGTTTGTGACCCC
TGCTCCGAGTTCGAGGACTTTTGGAGGCCCCCTTCTCCCTCCGTGTCTCCAG
CGTCGGAGAAGTCACTGTGCCGCTCTCTGGACGAAGCCCAGCCCTACACGC
TGCCTTTCAAGCCCTATGCATGGAGCGGTCTTGCCGGGTCTGACCTGCGGCA
CCTGGTGCAGAGCTATCGGCAGTGCAGCGCGCTGGAGCGCAGCGCGGGCCT
GAGCCTCTTCTGCGAGCGCGGCTCGGAGCCGGGCCGCCCGGCAGCGCGCTA
CGGCCCCGAGCAGGCTGCGGGCGGAGCCGGTGCGGGACAGCCAGGGAGCT
GCGGGGTCGCCGGGGGCGCCACCAGCGCTGCGGGCCTGGGGCTCTACGGCG
ACTTCGCGCCTGCGGCGGCCGGGCTGTACGAGCGGCCGAGCACAGCAGCAG
GCCGGCTGTACCAAGATCATGGCCACGAGCTGCACGCGGACAAGAGCGTAG
GCGTCAAGGTGGAGTCGGAGCTGCTTTGCACCCGTCTGCTGCTGGGCGGCG
GCTCCTACAAAGGATCCATGGACTACAAAGACGATGACGATAAATAGCGG
NCGC 
 

 

mGfi1-ΔSNAG 

CTCGAGGCCACCATGCCAGGGCCGGACTACTCCCTGCGCCTGGAGACCGTG
CCTGCGCCGGGCAGAGCAGAGGGCGGCGCTGTGAGTGCAGGCGAGTCGAA
AATGGAGCCCCGAGAGCGTTTGTCCCCCGACTCTCAGCTTACCGAGGCTCCC
GACAGGGCCTCCGCGTCCCCCAACAGCTGCGAAGGCAGCGTTTGTGACCCC
TGCTCCGAGTTCGAGGACTTTTGGAGGCCCCCTTCTCCCTCCGTGTCTCCAG
CGTCGGAGAAGTCACTGTGCCGCTCTCTGGACGAAGCCCAGCCCTACACGC
TGCCTTTCAAGCCCTATGCATGGAGCGGTCTTGCCGGGTCTGACCTGCGGCA
CCTGGTGCAGAGCTATCGGCAGTGCAGCGCGCTGGAGCGCAGCGCGGGCCT
GAGCCTCTTCTGCGAGCGCGGCTCGGAGCCGGGCCGCCCGGCAGCGCGCTA
CGGCCCCGAGCAGGCTGCGGGCGGAGCCGGTGCGGGACAGCCAGGGAGCT
GCGGGGTCGCCGGGGGCGCCACCAGCGCTGCGGGCCTAGGGCTCTACGGCG
ACTTCGCGCCTGCGGCGGCCGGGCTGTACGAGCGGCCGAGCACAGCAGCAG
GCCGGCTGTACCAAGATCATGGCCACGAGCTGCACGCGGACAAGAGCGTAG
GCGTCAAGGTGGAGTCGGAGCTGCTTTGCACCCGTCTGCTGCTGGGCGGCG
GCTCCTACAAATGCATCAAATGCAGCAAGGTGTTCTCCACACCGCACGGGC
TGGAGGTGCACGTGCGCCGGTCCCACAGCGGCACAAGACACTTTGCGTGCG
AGATGTGCGGCAAGACCTTCGGGCACGCGGTGAGCCTGGAGCAACACAAG
GCAGTGCACTCCCAGGAACGCAGCTTTGACTGTAAGATCTGTGGCAAGAGC
TTCAAGAGGTCATCCACGCTGTCCACACATCTGCTCATTCACTCGGACACCC
GGCCCTATCCCTGTCAGTACT…… 
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mGfi1-ΔZFs 

CTCGAGCTCAAGCTTACCACCATGCCGCGCTCATTCCTGGTCAAGAGCAAG
AAGGCGCACAGCTATCACCAGCCGCGTTCTCCGGGGCCGGACTACTCCCTG
CGCCTGGAGACCGTGCCTGCGCCGGGCAGAGCAGAGGGCGGCGCTGTGAGT
GCAGGCGAGTCGAAAATGGAGCCCCGAGAGCGTTTGTCCCCCGACTCTCAG
CTTACCGAGGCTCCCGACAGGGCCTCCGCGTCCCCCAACAGCTGCGAAGGC
AGCGTTTGTGACCCCTGCTCCGAGTTCGAGGACTTTTGGAGGCCCCCTTCTC
CCTCCGTGTCTCCAGCGTCGGAGAAGTCACTGTGCTGCTCTCTGGACGAAGC
CCAGCCCTACACGCTGCCTTTCAAGCCCTATGCATGGAGCGGTCTTGCCGGG
TCTGACCTGCGGCACCTGGTGCAGAGCTATCGGCAGTGCAGCGCGCTGGAG
CGCAGCGCGGGCCTGAGCCTCTTCTGCGAGCGCGGCTCGGAGCCGGGCCGC
CCGGCAGCGCGCTACGGCCCCGAGCAGGCTGCGGGCGGAGCCGGTGCGGG
ACAGCCAGGGAGCTGCGGGGTCGCCGGGGGCGCCACCAGCGCTGCGGGCCT
GGGGCTCTACGGCGACTTCGCGCCTGCGGCGGCCGGGCTGTACGAGCGGCC
GAGCACAGCAGCAGGCCGGCTGTACCAAGATCATGGCCACGAGCTGCACGC
GGACAAGAGCGTAGGCGTCAAGGTGGAGTCGGAGCTGCTTTGCACCCGTCT
GCTGCTGGGCGGCGGCTCCTACAAAGGATCCATGGACTACAAAGACGATGA
CGATAAATAGCGGCCGC 
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APPENDIX C – AMINO ACID SEQUENCE OF THE GFI1 TRUNCATIONS 
 

 

The nucleotide sequences given in Appendix B encode the following peptides. 

The molecular weights of these peptides are also given below. The Flag epitope tags are 

typed in bold. 

 

 

Full length mGfi1 (with Flag tag): 441 a.a. – 47,71 kilodaltons 

 

mGfi1-SNAG (31 a.a. – 3,66 kilodaltons) 

MPRSFLVKSKKAHSYHQPRSGSMDYKDDDDK 

 

mGfi1-ZFs (188 a.a. – 21,33 kilodaltons) 

MSYKCIKCSKVFSTPHGLEVHVRRSHSGTRPFACEMCGKTFGHAVSLEQHKAV
HSQERSFDCKICGKSFKRSSTLSTHLLIHSDTRPYPCQYCGKRFHQKSDMKKHT
FIHTGEKPHKCQVCGKAFSQSSNLITHSRKHTGFKPFGCDLCGKGFQRKVDLRR
HRETQHGLKLDGTAGPGSMDYKDDDDK 

 

mGfi1-ΔSNAG,ΔZFs (249 a.a. – 25,99 kilodaltons) 

MPGPDYSLRLETVPAPGRAEGGAVSAGESKMEPRERLSPDSQLTEAPDRASASP
NSCEGSVCDPCSEFEDFWRPPSPSVSPASEKSLCRSLDEAQPYTLPFKPYAWSGL
AGSDLRHLVQSYRQCSALERSAGLSLFCERGSEPGRPAARYGPEQAAGGAGAG
QPGSCGVAGGATSAAGLGLYGDFAPAAAGLYERPSTAAGRLYQDHGHELHAD
KSVGVKVESELLCTRLLLGGGSYKGSMDYKDDDDK 
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mGfi1-ΔSNAG (422 a.a. – 45,53 kilodaltons) 

MPGPDYSLRLETVPAPGRAEGGAVSAGESKMEPRERLSPDSQLTEAPDRASASP
NSCEGSVCDPCSEFEDFWRPPSPSVSPASEKSLCRSLDEAQPYTLPFKPYAWSGL
AGSDLRHLVQSYRQCSALERSAGLSLFCERGSEPGRPAARYGPEQAAGGAGAG
QPGSCGVAGGATSAAGLGLYGDFAPAAAGLYERPSTAAGRLYQDHGHELHAD
KSVGVKVESELLCTRLLLGGGSYKCIKCSKVFSTPHGLEVHVRRSHSGTRHFAC
EMCGKTFGHAVSLEQHKAVHSQERSFDCKICGKSFKRSSTLSTHLLIHSDTRPYP
CQY... 

 

mGfi1-ΔZFs (268 a.a. – 28,18 kilodaltons) 

MPRSFLVKSKKAHSYHQPRSPGPDYSLRLETVPAPGRAEGGAVSAGESKMEPR
ERLSPDSQLTEAPDRASASPNSCEGSVCDPCSEFEDFWRPPSPSVSPASEKSLCCS
LDEAQPYTLPFKPYAWSGLAGSDLRHLVQSYRQCSALERSAGLSLFCERGSEPG
RPAARYGPEQAAGGAGAGQPGSCGVAGGATSAAGLGLYGDFAPAAAGLYERP
STAAGRLYQDHGHELHADKSVGVKVESELLCTRLLLGGGSYKGSMDYKDDD
DK 

 

 


