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Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2010



MODELING SUSTAINABLE TRAFFIC ASSIGNMENT POLICIES WITH

EMISSION FUNCTIONS AND TRAVEL TIME RELIABILITY

APPROVED BY

Assist. Prof. Nilay Noyan ..............................................
(Thesis Supervisor)
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Abstract

Urban transport systems play a crucial role in maintaining sustainability. In this
study, we focus on two types of sustainability measures; the gas emission and travel time
reliability. We propose several bilevel optimization models that incorporate these sus-
tainability measures. The upper level of the problem represents the decisions of trans-
portation managers that aim at making the transport systems sustainable, whereas
the lower level problem represents the decisions of network users that are assumed to
choose their routes to minimize their total travel cost. We determine the emission func-
tions in terms of the traffic flow to estimate the accumulated emission amounts in case
of congestion. The proposed emission functions are incorporated into the bilevel pro-
gramming models that consider several policies, namely, the toll pricing and capacity
enhancement. In addition to the gas emission, the travel time reliability is considered
as the second sustainability criterion. In transportation networks, reliability reflects
the ability of the system to respond to the random variations in system variables. We
focus on the travel time reliability and quantify it using the conditional value at risk
(CVaR) as a risk measure on the alternate functions of the random travel times. Ba-
sically, CVaR is used to control the possible large realizations of random travel times.
We model the random network parameters by using a set of scenarios and we pro-
pose alternate risk-averse stochastic bilevel optimization models under the toll pricing
policy. We conduct an extensive computational study with the proposed models on
testing networks by using GAMS modeling language.



SÜRDÜRÜLEBİLİR TRAFİK ATAMA POLİTİKALARININ EMİSYON

FONKSİYONLARI VE YOLCULUK SÜRESİ GÜVENİLİRLİĞİ İLE

MODELLENMESİ
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Özet

Kentsel ulaşım sistemleri sürdürülebilirliğin devam ettirilmesinde önemli bir rol oy-
namaktadır. Bu çalışmada iki tür sürdürülebilirlik ölçütüne odaklanmaktayız; araç
salınımları ve yolculuk süresi güvenilirliği. Belirlenen bu sürdürülebilirlik ölçütlerini
içeren çeşitli iki seviyeli eniyileme modelleri önermekteyiz. Problemin üst seviyesi
ulaşım sistemlerini sürdürülebilir hale getirmeyi hedefleyen ulaşım ağı yöneticilerinin
kararlarını temsil ederken, problemin alt seviyesinde ise toplam yolculuk maliyetlerini
en aza indirmeyi hedeflediği varsayılan ağ kullanıcılarının kararları temsil edilmektedir.
Sıkışıklıkta biriken salınım miktarlarını tahmin etmek amacıyla salınım fonksiyonları
araç akışına bağlı olarak ifade edilmiştir. Bu salınım fonksiyonları geçiş ücretlendirmesi
ve kapasite arttırımı yönetim politikalarını içeren iki seviyeli eniyileme modellerine uy-
gun bir biçimde katılmıştır. Araç salınımlarına ek olarak, yolculuk süresi güvenilirliği
ikinci sürdürülebilirlik ölçütü olarak kullanılmaktadır. Ulaşım sistemlerinde güvenilirlik
sistemin ulaşım ağı değişkenlerinin değerlerindeki belirsiz sapmaları ne ölçüde kaldırabil-
diğini gösterir. Yolculuk süresi güvenilirliği üzerinde durulmakta ve sayısallaştırılması
için de koşullu riske maruz değer (conditional value-at-risk, CVaR) bir risk ölçütü olarak
rassal yolculuk sürelerinin alternatif fonksiyonları üzerinde kullanılmaktadır. Temel
olarak CVaR olası yüksek yolculuk sürelerini kontrol etmek için kullanılmaktadır. Belir-
siz ağ parametreleri bir senaryo kümesi kullanılarak modellenmekte ve geçiş ücretlendir-
mesi politikası çerçevesinde alternatif riskten kaçınan rassal iki seviyeli eniyileme mod-
elleri önerilmektedir. Önerilen modeller ile örnek test ulaşım ağları için GAMS mod-
elleme dili kullanılarak detaylı bir bilgisayısal çalışma gerçekleştirilmiştir.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

In the last few decades the sustainable development issues have raised a significant

interest with the adverse effects of the considerable increase in urban population. Sus-

tainable development can be defined as the concept of meeting the needs of the present

generations without compromising the ability of future generations to meet their own

needs [175].

Having many potential negative externalities like congestion, high energy consump-

tion and air pollution, urban transport systems play a very crucial role in maintaining

sustainability. In this context, a sustainable transportation system is the one that:

• Allows individuals and societies to meet their basic needs safely, healthfully, and

equitably.

• Is affordable, offer alternate choices of transportation modes, efficient and en-

courage a dynamic economy.

• Reduce noise production, air pollution, land use and non-renewable resource

consumption.

In other words, for a sustainable transportation system economic, social and envi-

ronmental issues should be taken into account and strategies that achieve all these

objectives should be used. Several strategies are proposed in the literature to make

transport systems more sustainable. These strategies involve vehicle and fuel technol-

ogy changes, road and vehicle operations improvements and demand management [56].

Since all these strategies have their advantages and drawbacks, in 1997 the Trans-

portation Research Board proposes that an effective sustainable urban transportation

system requires a mixed use of these strategies [161].

Sustainable urban transportation has become the subject of many recent studies.

Traffic congestion (economic impact), air pollution (environmental impact) and relia-

bility (social and environmental impacts) of transportation systems, are always in the
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center of attention in these studies. Therefore, the main objective of these studies

is to reduce congestion, transport emissions and maintain network reliability through

use of different methods and policies. Some of the studies involve simulation tools to

evaluate the sustainability of different transportation policies and some others utilize

the mathematical programming instruments. Although, there are recent studies in lit-

erature, there is still a need for optimization models capitalizing on sustainability for

transportation networks. The existing approaches mostly propose equilibrium models

that are commonly used to predict the traffic patterns on transportation networks.

Along this line, bilevel traffic equilibrium models are frequently used. In these mod-

els, an upper (system) level involves the decisions about a certain policy to achieve a

predetermined objective and the lower (user) level reflects the decisions of the rational

network users and their reactions to the upper level decisions [133,149].

One main indicator of sustainability in transportation networks is the emission

amount. Some recent studies use a general optimization model with emission factors

per vehicle kilometer. A collection of analytical tools, such as spatial statistics and

travel preference functions, which can be used in assessing or maintaining sustainabil-

ity, are proposed. Nagurney introduced the term of emission pricing, which is defined

as the toll price setting to satisfy predetermined emission levels [125]. Nagurney also

provides sustainable urban transportation models with basic emission factors and emis-

sion constraints [123, 124]. Following Nagurney’s influential work, subsequent studies

use average emission factors for the sake of computational simplicity. However, this

approach prevents models to include real emission amounts, and hence, the resulting

observations do not exactly reflect the actual effects of traffic flow on the emission

amounts. To this end, we present several bilevel programming models that investigate

toll pricing and capacity enhancement policies with emission functions. Presented mod-

els can be classified under two groups. First of these include models aim to minimize

total network emission. However, it may be equally important to consider high emis-

sion accumulations in wider area so we also discuss models with emission dispersion

objectives as the second group. As an emission dispersion objective, we first consider

pure dispersion case where the main idea is to distribute emission amounts as equitably

as possible. On the other hand, preventing high emission accumulations in some parts

of the network especially in residential and commercial areas is also important. Thus,

as an alternate dispersion objective, we consider to penalize the amount of emissions

that exceed the previously determined limits to sweep away the emission from pop-

2



ulated areas. In a similar work, Yin and Lawphongpanich [183] also propose model

with emission functions. They consider biobjective model, where the objectives are

the minimization of congestion as well as the minimization of total emission through

toll pricing. In this regard, their model has a similar structure as one of the models

that we propose in our study. Nonetheless, they have not considered various traffic

management policies through pricing like we extensively study here, neither they have

followed the capacity enhancement approach existing in this study.

As we mentioned before, considering reliability is also important in the sustainable

transportation framework. In transportation networks, reliability reflects the ability

of the system to respond to the variations (uncertainties) in system variables. Several

modeling techniques are proposed to quantify impacts on the variable network perfor-

mance. In this study, we focus on the travel time reliability models, which refers to

variability of travel times, in terms of traffic flow values. Several events such as minor

accidents, variations in weather conditions, and vehicle breakdowns may lead to the

travel time variations on the network. The travel time variations due to non-recurrent

events such as weather conditions can be considered by modeling the randomness in

the free-flow times whereas vehicle breakdowns and minor accidents can be considered

by modeling the randomness in the link capacities. In this study, we use stochastic

programming approach and we present the uncertain free-flow times and link capac-

ities by random variables. We characterize these random variables by using a finite

set of scenarios where a scenario represents a joint realization of the free-flow times

and capacities of all the links in the network. Then, we propose stochastic bilevel pro-

gramming models that involve the travel time reliability by using the scenario-based

approach. In all these proposed bilevel programming models, the upper level problem

involves the decisions of transportation managers aim to obtain a sustainable trans-

portation system in terms of the travel time reliability through the toll pricing policy.

On the other hand, given the upper level decision, the lower level problem reflects the

route choice decisions of the network users based on the expected travel costs. In order

to incorporate travel time reliability and find the best pricing policy, we specify some

network based performance measures such as the unit travel time summed over all

links, the total travel time summed over all links, the maximum unit travel time and

the maximum total travel time. In the traditional stochastic programming approach

expectation is commonly used as a optimally criterion. However, decisions obtained

just according to the expected values may perform poorly under certain realizations

3



of the random data. Thus, in order to model the effects of variability, we decide to

incorporate risk measure, conditional value-at-risk (CVaR), into the upper level prob-

lem. We develop two types bilevel programming models involving CVaR. The first

type include only the risk term, CVaR, whereas the second type of models consider

both the expectation and CVaR of the specified random network-based quantity. We

also present the risk-neutral versions of these models in order to analyze the effect

of incorporating risk measures. Boyles et al. [28] also develop a bilevel programming

model with the toll pricing policy under stochastic travel times. However, they use

the variance as a risk measure and they incorporate reliability in the lower level prob-

lem by assuming that all the links in the network are independent. In this study, we

relax the link dependency assumption by using the scenario-based approach and we

incorporate travel time reliability in the upper level rather than the lower level. In

addition, Chen and Zhou [44] model the travel time reliability by using CVaR but

they only consider the traffic assignment problem and their models include restrictive

distribution assumptions. In contrast to their study, we do not consider any restrictive

assumptions.

1.1 Contributions

The main purpose of this study is to develop bilevel programming models to maintain

sustainable transportation. The contributions of this study can be summarized as

follows:

• We propose several bilevel programming models by using emission functions.

These models include toll pricing and capacity enhancement decisions.

• We also develop risk-averse bilevel programming models with toll pricing deci-

sions, where the risk measure is involved in the upper level problem.

• We consider models under elastic demand.

• Using a scenario-based approach for the risk-averse models allows us to model

the link dependencies.

• The proposed models can be viewed as implementations of different policies that

can be used for sustainable traffic management.

• We provide an extensive numerical study on a well-known test networks to illus-

trate the effects of different policies and present comparative result with alternate

4



objectives.

1.2 Outline

This thesis is organized as follows: Chapter 2 includes the literature review. In Chapter

3, we present proposed mathematical programming models including emission func-

tions. We first introduce the traditional mathematical models for transportation and

then present derivation of the emission functions. Finally, we introduce the bilevel

programming models that involve the proposed emission functions. In Chapter 4, we

present stochastic bilevel programming models with the travel time reliability. We first

briefly discuss the network and the travel time reliability. Then, we describe how to

incorporate the travel time reliability into the toll pricing problem as a sustainability

measure in the stochastic bilevel framework. In particular, we consider the conditional

value-at-risk (CVaR) as a risk measure on the travel costs to model the travel time

reliability. We provide the computational results and analysis in Chapter 5. Finally, in

Chapter 6 we present some concluding remarks and possible ideas for future research.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the developing sustainable transportation research area

which has a important role for maintaining sustainable development. We also introduce

traffic assignment problem and how some performance indicators can be expressed in

functional form.

2.1 Sustainable Transportation

In 1987, the Brundtland Commission report [175] brought global attention to the sus-

tainability concept. Since then many scholars and policy makers have worked on the

sustainability issues raised in the urban and metropolitan context. Having many poten-

tial negative consequences like congestion, high energy consumption and air pollution,

urban transport systems play a very crucial role in maintaining sustainability. The

literature includes many definitions of sustainable transport [95]. In a very compact

way, a sustainable transportation system should respond to mobility needs, but at the

same time should attend to the habitat, the equity in the society and the economic

advancement in the present as well as in the future [56]. Moreover, according to the

definition of the World Bank, a sustainable transport policy reaches the balance not

by accident but by conscious choices and to this end, it determines points that can be

compromised and uses win-win policy tools [173].

There are numerous issues in sustainable transportation that should be taken into

account. These issues may be divided into three categories [108]: Economic issues

involve business activity, employment and productivity. Some of the social issues are

equity, human health, and public involvement. Environmental issues, on the other

hand, consist of pollution prevention, climate protection and habitat preservation. The

relationship between these categories is depicted in the Figure 2.1 [155].

Our interest is not in sustaining the transport system but in making sure the outputs

from the system contribute to the sustainable development of society in terms of its en-
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Figure 2.1: Components of sustainability

vironmental, economic, and social dimensions [171]. Moreover, sustainability planning

does not always require trade-offs between economical, social and environmental objec-

tives. Hence, policies that achieve all the objectives should be used. Several policies are

proposed in the literature to make transport systems sustainable [57, 63, 67, 127, 141].

These policies can be classified as:

• Pricing policies: transportation systems and services should be priced by re-

flecting social and environmental costs so that sources can be appointed in the

best way;

• Technology policies: technology contributes by making information accessible

to users and by reducing environmental destruction;

• Non-motor transportation policies: walking and bicycling are at the positive

side of sustainability while vehicles with single driver represent the negative side of

sustainability. Thus, policies that deter people from motor vehicles are required;

• Regulatory or prohibitive policies: some activities may need to be regulated

or completely prohibited;

• Traffic management policies: traffic flow conditions may be improved by some

of the traffic management methods and improved flow contributes to sustainable

transportation;

• Education policies: drivers should change their existing behavior patterns to

create a sustainable transportation system;
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• Land use and transportation policies: it is difficult to achieve the objec-

tive of sustainable transportation without considering integrated land use and

transportation.

All of these policies have their advantages and drawbacks. The question is how

effective would these policies be in reducing congestion, lowering pollution and cutting

fuel use. In 1997, the Transportation Research Board investigated this topic. Their

study proposes that an effective sustainable urban transportation system requires a

mixed use of these policies [161].

Another difficulty encountered in reality is that a quantitative analysis of trans-

portation sustainability content upon which all stakeholders agree has not been made

and even it is not qualitatively explicit [137]. Thus, performance indicators are needed

to determine which transportation policies will be more effective in reaching sustain-

ability objectives [74, 129]. Indicators that are traditionally calculated such as road

service quality, average speed and delay, convenience of parking, accident per kilome-

ter [92,93] focus rather on quality of travel with motor vehicle and rule out secondary

effects. In addition, most of the existing indicators are digitized based on collective

knowledge about vehicles at a certain number. However, many negative effects such

as vehicle emissions are not explicitly linear and in such cases, aggregate form of ap-

proximation causes serious errors. What’s more important is that considering only

averages or information may result in ignoring many concepts related to sustainability.

In addition to these points, it is recommended that the following principles are taken

into consideration during the selection of transportation performance indicators: preci-

sion, data quality, comparableness, easy comprehensibility, accessibility, transparency,

proper cost, net effect, suitability to determine objectives [88,117]. In the literature and

application, there are a considerable number of works that sometimes overlap about

which indicators should be included and that sometimes include conflicting proposi-

tions [64,95,109].

2.2 Optimization Models for Traffic Assignment

In this section we briefly discuss the definition of traffic assignment problem, then we

give details of transportation management policies and we provide details of the widely

applied bilevel programming approach for discrete and stochastic cases.
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2.2.1 Traffic Assignment Problem Definition

The traffic assignment problem (TAP) aims to determine the traffic flows in an urban

transportation network resulting from route choice decisions made by the travelers.

Each network user chooses a route to travel from an origin to a destination considering

the traveling conditions. In other words, a traffic assignment model utilizes origin-

destination (O-D) information and the current transportation system conditions as

inputs and provides the optimum flow on the transportation network with respect to

the demand between all O-D pairs and the associated travel costs.

There are two different formulations of the TAP [60]. First of those formulations

is the path formulation which incorporates predetermined routes having specific order

of links. The network users then choose which route to use. On the other hand, in

the multi-commodity formulation, the modeling structure is based on the numbers of

users that are headed to each destination on each link.

There are several ways to model TAP problem as an optimization problem and it

is usually modeled in two ways such as the Static Traffic Assignment Problem (STAP)

and the Dynamic Traffic Assignment Problem (DTAP).

• In the Static Traffic Assignment Problem (STAP), it is assumed that traffic flows

do not depend on time in other words average peak hour demand is considered.

[149].

• In the Dynamic Traffic Assignment Problem (DTAP), it is important to consider

the demand changes during the day and users’ path selection and/or departure

time decisions [138].

In this study, we basically focus on the STAP which aims to find a feasible assign-

ment pattern that certain route choice conditions are satisfied. There are two widely

applied conditions, namely the User-Equilibrium (UE) condition and System Optimal

(SO) condition. These two conditions are widely considered as Wardrop’s principles.

UE condition is based on the “Wardrop’s first principle” which states that the travel

times in all of the used routes are equal and less than those, which would be incurred

by a single vehicle on any unused route [172]. The important assumption behind this

principle is travelers of the network are expected to choose their routes according to

the case in which they minimize their individual traveling times. It is also assumed

that all of the travelers have equal traveling times if they have identical traffic condi-

tions. Moreover, all the travelers in the network have the perfect information about
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all possible used or unused routes. User equilibrium may be a good representation of

distribution of existing network traffic, but such distribution of traffic does not suppose

to be the best possible use of the network system. This is because user equilibrium

considers each traveler individually. As a result this observation, Wardrop states his

second principle which describes how to assign all the travelers centrally to minimize

the total cost of all users. Wardrop’s second principle or the System Optimal (SO)

principle is: ”the average journey time is a minimum.” This implies that each user

behaves cooperatively in choosing his own route to ensure the most efficient use for the

whole system.

In this study, we focus on the UE condition and as introduced below UE can be

handled by two ways under TAP such as the deterministic user equilibrium (DUE) and

the stochastic user equilibrium (SUE).

• If it is assumed that all travelers will have perfect information on all possible

routes through network, no matter whether the routes are used or not, DUE

will be enough to explain user behavior. Beckmann et.al. [17] were the first

to transform the user equilibrium principle into a mathematical programming

problem for the link flow and has been widely studied since then.

• In the SUE models, it is assumed that users may have different perceptions about

their travel times thus, travel selection is made according to the perceived time

rather than real time [20,54,148].

The number of travels between O-D in the scope of the TAP or in brief, user demand

can be handled in three ways:

• In the traditional TAP, it is assumed that the number of network users (drivers)

who want to travel from a specific origin to a specific destination do not change

under any condition. Then, fixed demand (FD) is in question in this case [17,52].

• However, in reality the demand between each O-D pair may depend on the conges-

tion level of the transportation network. Then, the type of demand between each

O-D pair, which may vary according to the network conditions,(i.e. the travel

time between those pairs) is known as the elastic demand (ED) [17,77,106,179].

• If the uncertainty of demand in a long or in a short period is taken into account

then stochastic demand (SD) is considered. There are many reasons of demand

uncertainty in transportation: a) unexpected developments, b) political and
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social-economic changes, c) uncertainties in demand model, d) difficulty of quan-

tifying the performance indicator, e) changes in choices of decision makers. Long-

term uncertainty is modeled by assuming that certain demand scenarios exist or

the demand complies with multivariate normal distribution [13,75,122,164] while

short-term or daily observed uncertainty is usually modeled by assuming that

the demand follows a certain continuous or discrete distribution [8, 18, 48, 165].

Naturally, when UE is modeled, expected travel time is considered rather than

perceived travel time.

Until now we have discussed details for basic TAP but there are also some widely

applied traffic management policies with TAP. In the next section, we provide details

for these policies.

2.2.2 Regulation Policies with Traffic Assignment Problem

There are different regulation policies such as the toll pricing policy, the network design

policy and the signal setting policy that have been commonly examined in TAP. In this

study we have mainly focused on two types of these policies; the toll pricing policy and

a special class of network design policies, namely, the capacity enhancement policy.

Although we focus on two of these policies, we also discuss the details for signal setting

problem in the following parts.

Toll Pricing

As a traffic regulation policy, toll pricing offers a solution for reduction of traffic while

it is not feasible to increase the capacity of the transportation network. By using tolls,

the network users can be encouraged to follow alternative decisions such as traveling on

less congested hours and choosing less directed routes. There are two ways to handle

the toll pricing problem namely the first-best and the second-best. In the first-best

toll pricing problem, every arc in the network can be tolled, on the other hand, in the

second-best toll pricing problem a subset of the roads are subjected to charges.

Marginal social cost pricing (MSCP) is the earliest first-best toll pricing in the

literature. This idea was introduced for the first time in the 1920s by Pigou [142].

Marginal social cost pricing (MSCP) offers tolls which are same as the negative exter-

nalities enforced on other users (such as congestion, travel delays, air pollution, and

accidents) to sustain an efficient utilization of the transportation system [17, 52, 142].
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There are also other first-best tolls exist [23,24,89] in the literature. In particular, mod-

els and methodologies are offered to gain the first best tolls with different (secondary)

objectives [58, 59, 89, 90, 102]. Concept of toll set was first introduced by Bergendorff

et al. [24] and is motivated from the alternate first-best tolls. They determine and

mathematically show how the toll set will encourage drivers to use the traffic network

optimally. By a consequence of the notations and the models of user and system opti-

mal traffic assignment, they provide detailed information about congestion toll pricing

and general results about toll sets. An algebraic characterization of the toll set and a

procedure known as a toll pricing framework are proposed by Hearn and Ramana [89]

for the traffic assignment problems with fixed demand. In this work, toll sets are deter-

mined more generally with respect to previous study [24]. Hearn and Ramana [89] also

offer many different objectives. Firstly, they propose the model with minimization of

the total tolls collected with positive toll values (MINSYS). Then, they minimize the

largest nonnegative toll to be collected (MINMAX). Thirdly, targeted revenues (TR)

are considered as an alternate objective. In this case, they allow negative toll values

and as a result network users gather a credit on some of the links and pay for some

others. Then, they consider minimization of the number of the toll booths (MINTB).

Lastly, combination of last two models (MINTB/TB) are introduced. In the most of

the related studies in the literature all of these objectives are used. As an extension on

the these studies Hearn and Yildirim [90] are interested in traffic assignment problems

with the elastic demand. They aim to maximize the net benefit of the network users.

The set of all tolls are determined and characterized to gain the system optimal solu-

tion. Traffic assignment problem with the elastic demand is also studied by Larsson

and Patriksson [102]. They present a toll pricing model based on Lagrange multipliers

and show that the constant toll revenue property holds for elastic demand problems

with side constraints. In their study, systematic solutions are utilized to satisfy the

overall traffic management.

There are also several studies based on the second-best toll pricing. Second-best toll

pricing problem has tolls with restrictions that do not generally achieve the maximum

possible benefit [97]. For strategic traffic management, Patriksson and Rockafellar

[134] use traffic management actions the second-best toll pricing problem as congestion

pricing. They conceive a (small) number of different model settings and their models

include fixed and elastic demands. Brotocorneet al. [31] conceive solution for the set

of optimal tolls selection problem on a multicommodity transportation network that
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collects revenues from toll set of arcs of the network. These set of arcs are determined

by the shortest path of users traveling on the network and cost of paths are calculated

according to the generalized travel costs. In a fixed demand transportation network,

while the commuters are assigned to the shortest paths with respect to a generalized

cost, private toll highway try to maximize their revenues collected from tolls on a set

of multicommodity network arcs. In this model, the rerouting that could be emerged

by the introduction of tolls does not effect the congestion. Moreover, two different

second-best toll pricing problems are presented by Lawphongpanich and Hearn [103],

the first one is proposed with the fixed travel demand and the other with the elastic

demand. In this study, the presence situations for optimal toll vectors are determined,

and the relation with marginal social cost pricing tolls are given.

Network Design

The Network Design Problem (NDP) involves the optimal decision on the expansion

of a street and highway system in response to a growing demand for travel. This prob-

lem has been studied with three different versions. These are discrete, continuous and

mixed versions. Firstly, the discrete version of the problem which is called as Discrete

NDP (DNDP), finds optimal (new) highways added to an existing road network among

a set of predefined possible new highways (expressed by 0-1 integer decision variables).

On the other hand, continuous NDP (CNDP) tries to find the optimal capacity devel-

opment of existing highways in the network (expressed as continuous variables). The

mixed one (MNDP) unites both CNDP and DNDP in the network. The decisions

made by road planers influence the route choice behavior of the network users, which

is normally described by the network user equilibrium model.

The DNDP is firstly introduced by Boyce and Janson [27], and by Chen and

Alfa [38]. They both take into consideration the minimization of the travel cost but

their methodologies are different such as former uses a combined trip assignment and

distribution, while the later uses a stochastic incremental traffic assignment approach.

Steenbrink [157] also discuss the DNDP. He makes an introduction to modeling the ur-

ban road DNDP. He develop a new approach to the network design problem in which

user optimal flows are approximated by system optimal flows. One of the other studies

is developed by Wu et al. [178]. They study a new version of transportation network

design problem by performing the strategy of reversible lanes. They focus on the

stochastic user equilibrium assignment with an advanced traveler information system.
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Yang and Yagar [181] suggest the problem of the traffic assignment and traffic control

in general freeway-arterial corridor systems having flow capacity constraints.

There are also several studies about CNDP. This problem includes the term con-

tinuous in its name because the decision variables are continuous. This problem was

first introduced by Morlak [120]. Abdulaal and LeBlanc [2] formulate the network de-

sign problem with continuous investment variables subject to equilibrium assignment

as a nonlinear optimization problem. Another study about CNDP is considered by

Friesz [71]. He presents a model for continuous multiobjective optimal design of a

transportation network. The model incorporates the user equilibrium constraints and

takes the form of a difficult nonlinear, nonconvex mathematical program.

There are also studies about the mixed NDP (MNDP). Bell and Yang [180] propose

models with MNDP. They present a general survey of existing literature in this area,

and present some new developments in the model formulations. They propose the

adaptability of travel demand into NDP and seek economy related objective function

for optimization.

Variety of objectives are used in different studies in Network Design Problem. The

most commonly used ones are the efficiency objectives. Minimizing the travel time, user

cost for a specified budget, investment cost for a given travel demand, and maximization

of the user benefit (can be measured according to the consumer surplus) [100,174,180]

are the examples of these objectives. Among these objectives, only the last one is

consistent with elastic traffic demand since travel time and user cost objectives can

be decreased by the decline of the traffic amount. Multiobjective road network design

models are also incorporated in some of the studies. As widely applied objectives,

user costs and construction costs are tried to be minimized simultaneously [71,72,163].

In addition to an efficiency objective, robustness objectives [50, 164], horizontal and

vertical equity objectives [46, 69, 119], environmental objectives (minimization of CO

emissions) [36] are also studied in the literature.

Signal Setting

On urban networks; intersections (delays) are the most time consuming points thus

effective optimization of signalization of the intersections can clearly improve the per-

formance of the transportation network. In the problem of optimization of signal set-

tings, Signal Setting Design Problem (SSDP), the signal settings (number of phases,

cycle length, effective green times, etc.) assume the role of decisional variables. On
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the other hand, the network topological characteristics (widths, lane number, open or

closed link, etc.) are fixed and invariable ones.

Pavese [136] emphasizes the circular interaction between traffic assignment and sig-

nal settings for the first time. Then he formulated the node functions related to the

performances of the connections to traffic flows of every approach at the downstream

intersection. In addition to Pavese [136], this issue is also considered by Cascetta et

al. [37]. In this study, the SSDP is analyzed according to two approaches: the local

and the global [34]. The first idea comes up with the definition of the Local Opti-

mization of Signal Settings (LOSS). In this approach, flow-responsive signals, which

are set independently each other either to minimize a local objective function [76] or

following a given criterion, like equisaturation [151]. Global Optimization of Signal

Settings (GOSS) which tries to minimize the objective function of the global network

performances is the formulation of the problem that is used in the global approach [114].

SSD problem is highly interdependent with continuous network design (CND) and

traffic assignment problems [76]. Thus, integrated (or combined) model is preferable

that provides such mutually consistent solutions. Some of the studies that incorporate

combined signal optimization and static user equilibrium problems are as follows. The

necessity of combining signal calculation and assignment is emphasized in Allsop [11]

and Gartner [79]. According to Wardrop’s first principle, the rotation of traffic in a

network should depend on signal timings and it should be conceived simultaneously

with timing calculations. The general traffic equilibrium network model is considered

by Dafermos [53]. In his study the travel cost on each connection of the transportation

network may depend on the flow and other connections of the network as well. A

detailed study about global signal settings problem, under the constraints of the user

equilibrium for traffic flows is provided by Cipriani and Fusco [47].

There are also several studies about the combined signal optimization, continuous

network design and static user equilibrium. In the study of Wong and Yang [176],

they focus on the optimization of signal timings. They are optimized according to the

group-based technique in which the common cycle time, the start time and duration

of the time period for each signal group in the network determines the signal timings.

Allsop [12] represents a new approach to analyze the traffic capacity of a signalized

road junction. By using his new methodology, the capacity is calculated and its results

are used for signal settings to maximize capacity. Also, extra capacity amount that is

obtained by changing the maximum cycle time, reducing the times which take minimum
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values, increasing the saturation flows, can be estimated by the engineer according to

their methodology.

In terms signal optimization model, five different variables are commonly underlined

in most of the studies in literature. This variables are cycle lengths, green splits, time

offset, phase sequencing and signal phasing. Sometimes, green splits are the only ones

that are optimized and other variables are determined as fixed values [47,107,150,159].

Some of them consider only common cycle length and green splits [1] and another one

conceive common cycle length, green splits and time offset simultaneously [78,154,160,

177].

2.2.3 Bilevel Programming

The recent studies in the literature [98,119,156,183] show that there is still a require-

ment for optimization models obtaining results on sustainability for transportation

networks. In these existing studies, proposed equilibrium models generally aim to esti-

mate the traffic patterns on transportation networks. Thus, bilevel traffic equilibrium

models are frequently used.

Bilevel programming is a branch of hierarchical mathematical optimization. The re-

lationship between two autonomous and possibly conflicting decision makers is named

as hierarchical relationship which is widely related with economic Stackelberg prob-

lem [152]. The objective of a bilevel model is to optimize the upper level problem

while simultaneously optimizing the lower level problem. To achieve a determined goal

(such as reducing the congestion or the investment cost) a typical bilevel traffic equi-

librium problem, the upper level involves the decisions about a certain policy (such

as toll pricing or network design) whereas the lower level problem models the traffic

equilibrium reflecting the decisions of the rational network users and their reactions to

the upper level decisions. It is obvious that lower level problem yields a well-known

TAP under a given upper level decision.

The general formulation of a bilevel programming problem is

min
x,y

F (x, y) (2.1)

s.t. G(x, y) ≤ 0 (2.2)

min
y

f(x, y) (2.3)

s.t. g(x, y) ≤ 0 (2.4)
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where x ∈ Rn is the upper level variable and y ∈ Rn is the lower level variable. The

functions F and f are the upper-level and lower-level objective functions respectively.

Similarly, the functions G and g are the upper-level and lower-level constraints respec-

tively. Upper-level constraints may involve variables from both levels.

In many applications the lower-level problem can not be expressed as an opti-

mization problem, but can be described by an equilibrium process, which is given

mathematically by a variational inequality problem. These reformulated bilevel pro-

grams are often referred as mathematical programming with equilibrium constrains

(MPEC) [97,103].

It is often possible that some of the problem inputs may subject to uncertainties.

These uncertainties usually occur in the costs and/or demands, which are usually

results of variable external conditions. In such cases, stochastic programming is one of

the important approaches to model decision making under uncertainty. This approach

develop models to formulate optimization problem in which uncertain quantities are

represented by random variables. To consider explicitly the variability of the random

inputs a stochastic programming extension of bilevel programming model can be used

in such cases [16, 147]. In this case, it is not possible to calculate exactly the vectors

x and y, since their values are depend on random parameters. Instead, the values of

these vectors can be calculated such that F is optimized on average. Thus, the upper

level objective function of deterministic bilevel program (2.1) is replaced with

Eω[F (x, y, ω)], (2.5)

and similarly the lower level objective (2.3) function is replaced with

f(x, y, ω). (2.6)

Here ω represents the realization of a random variable.

In the following part, we provide the application areas and some solution method-

ologies for bilevel programming approach. Although, we give some information about

solutions and solution methodologies for the bilevel programs, here we also give some

important details for the solutions of the stochastic bilevel programming approach. In

this case, if the equilibrium solution is not unique then the upper level objective F

is not well-defined and as a result the best possible solution can only be obtained by

the most favorable equilibrium solution. However, if the lower level decision makers do
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not necessarily optimize equilibrium exactly, then the upper level decision makers are

likely to make a mistake while making their decision.

Here we provide some related studies from literate. Brotcorne et al. [32] and Lars-

son and Patriksson [102] use bilevel programming models for toll optimization. Ben

et al. [16] also focus on toll pricing policy, but they use stochastic bilevel program-

ming approach. LeBlanc [104] and Marcotte [115] and Chen and Chou [42] use bilevel

programming approach in a network design problem. In addition, bilevel program-

ming models can be also used for other real-world problems involving a hierarchical

relationship between two decision levels such as management [51, 89, 102], economic

planning [15,167], engineering [131,132], etc.

Despite the fact that a wide range of applications fit the bilevel programming

framework, real-life implementations of the concepts are limited. The main reason

is the lack of efficient algorithms for dealing with large-scale problems. For example,

the bilevel transportation problems related to the equilibrium problem create a spe-

cial class and most of the methods developed for the solution of bilevel optimization

problems cannot be directly applied [45,170]. Furthermore, although the problem dis-

cussed at the lower level is a convex optimization problem, the network structure to

be handled in real problems has a large scale and requires an infrequent data struc-

ture causes an extra difficulty. Thus, bilevel programs are intrinsically hard. Even

for a “simple” instance, the linear bilevel programming problem can be shown to be

NP-hard [87, 96, 169]. Therefore, global optimization techniques such as exact meth-

ods [114], heuristics [35, 38, 105, 114, 150] or meta-heuristics [45, 55, 179] have been

proposed for its solution in the literature. Although the problem is shown to be NP-

Hard, some special cases enable us to solve the problem in polynomial time such as

sensitivity based analysis, Karush-Kuhn-Tucker (KKT) based method [115, 168], etc.

Some of these conditions are used in various solution methods and algorithms. Descent

methods [169], penalty function methods [3,4] and trust region methods [49] are some

examples of these methods.

2.3 Sustainability in Urban Traffic Assignment

There are several issues that decision makers shall take into account to develop and

maintain sustainable transportation systems. These issues may be divided into three

main categories; environmental, economical and social issues. In this section, we

present some of the selected studies incorporating at least one sustainability measure
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related to one these issues.

2.3.1 Environmental and Economic Issues

Environmental issues consist of pollution prevention, climate protection and habitat

preservation and economic issues involve business activity, employment and productiv-

ity. There has been a significant interest in considering environmental issues to develop

sustainable transportation systems and these environmental issues have also common

goals with economic issues. Thus, we focus on both issues in this section. Environmen-

tal measures are widely-applied sustainability measures and the studies incorporating

the environmental concepts to maintain sustainable transportation usually focus on

air pollution, noise pollution, fuel consumption (energy) and car ownership. It is also

obvious that in some of these concepts, economic objectives are also considered while

focusing on the environmental ones. Note that car ownership may also be considered

as an economic and/or a social issue.

Most of the studies that aims to decrease congestion and related emission in-

volve simulation tools to evaluate the sustainability of different transportation policies.

TREMOVE is an evaluation tool that is developed to support the European policy

making process concerning emission standards for vehicles and fuel specifications [81].

It is an integrated simulation model to study the effects of different transport and

environment policies on the emissions of the transport sector.

There are also several studies that exploit mathematical programming instruments.

A multi-objective traffic assignment method is introduced by Tzeng and Chen [162].

They use nonlinear programming techniques to solve the introduced models and provide

different ways to emit low CO emissions. They incorporate the eigenvector weighting

method with pair-wise comparison to estimate the compromised solutions for the flow

patterns. The study utilizes a fixed amount of CO emission per link and the emissions

are summed up across all vehicles on a link. Rilett and Benedek [22,143] investigate an

equitable traffic assignment model with environmental cost functions. They emphasize

the impacts of CO emissions when user and system optimum traffic assignments are

applied to various networks. These studies utilize a simple macroscopic CO emission

model used in the TRANSYT 7F software. Yin and Lawphongpanich [183] also pro-

pose a flow versus emission function, where the coefficients are equivalent to those in

TRANSYT 7F (see also Rilett and Benedek [143]). In their pioneering work, Yin and

Lawphongpanich consider a biobjective model, where the objectives are the minimiza-
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tion of the congestion as well as the minimization of the total emission through toll

pricing. Sugawara and Niemeier [153] discuss an emission-optimized traffic assignment

model that uses average speed CO emission factors developed by the California Air

Resources Board. They report that the emission-optimized assignment is the most ef-

fective assignment when the network is under low to moderately congested conditions.

Guldmann and Kim [85] concern transportation network design, traffic assignment and

pollution emissions, diffusion and concentrations on transportation networks. They of-

fer a nonlinear model which minimizes the sum of costs such as travel time, capacity

investment and fuel consumption while considering origin-destination traffic flows, ca-

pacity of links, travel speeds and pollution emissions. Jaber and O’Mahony [94] work on

travelers’ mixed stochastic user equilibrium (SUE) behavior. They consider this behav-

ior under the condition that traveler information provision services with heterogeneous

multi-class multi-criteria decision making. Traveler information provision services are

formulated as an optimization problem with the route option behavior of equipped

and unequipped travelers. In this optimization program, net economic benefit is maxi-

mized and the total generated emissions are constrained. Furthermore, environmental

impact assessment indices are suggested by Nagurney et al. [126] which interprets the

environmental effects of link capacity degradation in transportation network. Environ-

mental link importance indicators are suggested by them. These indicators enable the

ranking of links in transportation networks in terms of their environmental importance

and suggest if they can be removed or destroyed. Moure et al. [121] suggest a total

cost minimization model in which system costs are depend on high congestion that is

produced by truck operators, barge operators and drivers. The model is presented as

a bi-level optimization problem which tries to minimize total cost of the system via

pollution emissions and noise pollution constraints in the upper level and user equi-

librium model in the lower level. Yang et al. [182] try to predict the maximum car

ownership that can be carried in a city under environmental conditions. A bilevel

programming model is presented where the upper level problem is a maximum car

ownership model which aims to maximize zonal car ownership levels subject to envi-

ronmental load constraint on a link and the lower level problem is the fixed demand

user equilibrium assignment model which optimizes travelers’ path choice behavior.

Tam and Lam [158] also consider car ownership concept. Their aim is to figure out the

maximum number of cars in each zone due to parking space and capacity restrictions.

They use a bilevel programming approach where the upper level problem is maximizing
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the sum of zonal car ownership via capacity and parking space constraints whereas the

lower level problem is the trip assignment problem.

In the upcoming chapters of this study, we mainly focus on emission minimization

objectives by using bilevel programming approach.

2.3.2 Social Issues

There are also various studies in the literature that incorporate social issues to maintain

sustainable transportation. These studies mainly focus on accessibility, equity and

social welfare. Note that social issues are also directly related with economic issues.

Although we do not explicitly consider economic cases in this section, some of the

presented concepts in the following part can also be considered with an economical

point of view.

In transportation networks, reliability is the ability of system to perform and main-

tain its functions in routine circumstances, as well as unexpected (variable) circum-

stances. Several modeling techniques are proposed to quantify impacts on variable

network performance and these techniques can be discussed under five main classes [48]:

• Connectivity reliability models

Connectivity reliability focus on the probability that network nodes are remain

connected [19].

• Travel time reliability models

Travel time reliability considers the probability of completing a trip within a

specified travel time threshold [8, 18,62].

• Capacity reliability models

Capacity reliability is the probability that the network can handle a certain traffic

demand at a required service level while accounting for drivers’ route choice

behaviors. [43].

• Behaviorial reliability models

Behaviorial reliability focus on how to represent the effect of route choice patterns

[110] and other responses such as departure time choice [128].

• Potential reliability models

They are referred as pessimistic models that aim to identify weak points of the

transportation network and corresponding effects on the performance.
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There is a rich literature on these presented classes of the network reliability. Since

we focus on only the travel time reliability in this study, we only provide selected works

on this issue in the following part.

Asakura and Kashiwadani [8] introduce measures of travel time reliability and to

analyze the changes of road network flow, they modify the traffic assignment prob-

lem. Asakura [9] extended the travel time reliability concept to investigate capacity

degradation due which are possibly damaged by natural disasters. Another travel time

reliability model is suggested by Clark and Watling [48] which shows the effects of

stochastic O-D demands on variable network performance. In their model the total

time is evaluated as performance measure and it is actually described at the network

level. Lo et al. [112] present a travel time reliability model as a result of link capacity

degradations. To account for the impacts of travel time reliability, they propose proba-

bilistic model in the travel time budget form.In contrast to the TTB models [112] which

evaluates only the reliability point of view described by TTB, a new model is suggested

by is suggested by Chen and Zhou [44] in which the travelers are willing to minimize

their mean-excess travel time (METT), which is defined as the conditional expecta-

tion of travel times beyond the TTB. A new α-reliable mean-excess traffic equilibrium

model is defined, which assumes both reliability and unreliability point of views of the

travel time variability in the route decision process. A bi-level programming model is

generated by Boyles et al. [28]. They focus on travel time reliability concept via toll

optimization policy in a static transportation networks under stochastic supply condi-

tions. On the other hand , Boyles et al. [29] focus on the same issue with deterministic

demand assumption. Another study based on pricing on the transport network reli-

ability is conducted by Chan and Lam [40] to offer a reliability-based UE model. As

a congestion performance measure, they incorporate the ratio of the random travel

time and free-flow travel time in their work. In addition to network reliability, there

are also studies that focus on social issues by incorporating accessibility, equity and

welfare concepts. Accessibility measures for the transportation network are provided

by Chen et al. [39] to evaluate the vulnerability of degradable transportation network.

The network-based accessibility measures consider the consequence of one or more link

failures in terms of network travel time or generalized travel cost increase as well as

the behavioral responses of users due to the failure in the network. A Simultaneous

Transportation Equilibrium Model (STEM) has been presented by Safwat and Mag-

nanti [146] which enable trip generation and distribution, traffic assignment and model
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split. In the STEM, trip generation depend upon the systems performance by using an

accessibility measure based on the random utility theory of users behavior and a logit

model is used for trip distribution. Purvis [139] introduce variables related to land use

and accessibility to display the improvement of a trip-based travel demand modeling.

Models with travel demand are considered with and without accessibility variables and

land use density. In addition to studies with accessibility, there are also equity and

social welfare based studies in the literature. Meng and Yang [119] consider the equity

issue on road network design. They used a critical O-D travel cost ratio to quantify eq-

uity issue. They propose a bilevel programming model in which equity constraints are

included for network design problem with a bicriterion objective aiming to minimize

total system cost. Lo and Szeto [156] focus on social and user equity concepts by using

user equilibrium continuous network design problem with elastic demand. Gupta et

al. [84] work on the effect of road pricing on traffic, land use and social welfare in the

Austin region. They discuss different toll pricing scenarios such as fixed versus variable

tolls, time, traffic and distance dependent tolls.
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CHAPTER 3

USING EMISSION FUNCTIONS IN MODELING SUSTAINABLE

TRAFFIC ASSIGNMENT POLICIES

In this chapter we first present traditional mathematical models for the traffic as-

signment problem. Then, we focus on gas emission as a environmental sustainability

measure. To incorporate emission effects of the congestion into the models properly, we

derive the emission functions in terms of traffic flows. We plug these emission functions

into the bilevel mathematical programming models that incorporate several policies,

namely, toll pricing and network design to assess sustainability in transportation.

3.1 Traditional Mathematical Models for Transportation

Using mathematical programming techniques in sustainable urban transportation is

crucial. To model a transportation problem consistent with the real nature of trans-

portation networks, traffic flows should be considered properly. Therefore, traffic as-

signment problem (TAP) is a important application of mathematical programming in

transportation.

In the following sections we first present the basic traffic assignment problem and

then we discuss toll optimization and network design problems in the bilevel pro-

gramming framework where lower level problem corresponds to the traffic assignment

problem.

3.1.1 Traffic Assignment Problem

Recall that traffic assignment aims to find a feasible assignment pattern such that

certain route choice conditions are satisfied. In this approach, user-equilibrium (UE)

and system optimal (SO) conditions are widely employed. Here we focus on the user-

equilibrium assignment problem.

As we discussed before, the TAP has two different formulations [60], the path and

the multi-commodity. In particular, there are three different types of multi-commodity
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formulations; the destination based, origin based and the origin-destination based.

In the destination based formulation, the flow on each link is determined associated

with each destination. Similarly in the origin based one, flow amount on each link

is determined according to the emitted origin. On the other hand, in the origin-

destination based formulation link flows are disaggregated with respect to both origins

and destinations. In our study, we consider only the destination based multi-commodity

formulation because of its computational efficiency.

In the traditional TAP, the number of network users (drivers) who want to travel

from a specific origin to a specific destination is assumed to be fixed. However, as

we discussed before to develop more realistic traffic assignment models, it is crucial

to incorporate the elastic demand into the models instead of the fixed demand. In

transportation context, the elasticity of a demand between each O-D pair in general

is represented by a function of the travel time. In this chapter, we mainly focus on

the models with the elastic demand, but in the following chapters we also discuss and

present models involving fixed demand.

In the fixed demand case the network will be managed based on the peak-hour

demand and it does not change. However, in the elastic case the peak-hour demand is

assumed to be variable. For this type of demand, the number of trips from an origin

to a destination depends on the minimum travel time between them. Traditionally, it

is assumed that the travel demand decreases as the travel time increases. There are

many different types of demand functions [14]. In this study we use the linear demand

function.

Consider a transportation network defined by a set of nodes N , a set of arcs A and

set of destinations D. A link of the network is designated by (i, j) ∈ A, i, j ∈ N . If

we also denote the flow on link (i, j) in vehicles per hour by fij, then the travel time

or cost in hours is denoted by cij(fij). Here we use widely applied standard travel cost

function introduced by Bureau of Public Roads (BPR) [30],

cij(fij) = αij

(
1 + 0.15

(
fij/βij

)4
)

, (3.1)

where αij is the free flow travel time of link (i, j) in hours and βij is the capacity of

link (i, j) in vehicles per hour. Note that there are two widely used highway capacity

estimation methods. One of them is the Highway Capacity Manual (HCM) method in

which speed volume density relationship is used [91] and the other one is the statistical

method which uses observed traffic volume distribution [41]. In the HCM method
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first 15 min-base traffic data (speed, volume, density) is detected, then by using the

data relationship between speed and volume-density relationship is searched and lastly

highway capacity is determined. On the other hand, in the statistical method, peak

hour 1 minute base volume and average speed is detected, then 1 minute base data is

transferred to the 15 minute base one and by using the average volume, time headway

distribution using is found. As the last step, highway capacity is determined when

confidence intervals are 99%, 95% and 90%. The variance in the confidence interval

obtained from this method greatly affects the result of highway capacity estimation.

We present the destination based multi-commodity formulation that we incorporate

in this study as follows:

TAP : min
x

∑

(i,j)∈A

∫ fij

0

cij(y)dy (3.2)

s.t.
∑

j:(i,j)∈A
xq

ij −
∑

j:(j,i)∈A
xq

ji = dq
i i ∈ N , q ∈ D (3.3)

∑
q∈D

xq
ij = fij (i, j) ∈ A (3.4)

xq
ij ≥ 0 (i, j) ∈ A, q ∈ D, (3.5)

where xq
ij denotes the amount of flow with destination q on link (i, j) and and dq

i

denotes the demand value between origin i destination q. The objective (3.2) reflects

the decisions of the network users based on minimizing the total travel cost. The set

of constraints (3.3) is the conservation of flow constraints, the set of constraints (3.4)

links the total flow on an arc to the flows resulting from individual destination points

and the set of constraints (3.5) ensures that the traffic flows are nonnegative.

To develop this model with elastic demand, we denote travel demand dq
i as a decision

variable and then we propose the demand function as follows:

giq(wiq) = µiqwiq + νiq, (3.6)

where µiq and νiq are network specific parameters, giq(wiq) is the demand function and

wiq is the minimum travel time between O–D pair (i, q). Furthermore, we obtain TAP
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with elastic demand by replacing the objective function (3.2) with

min
x

∑

(i,j)∈A

∫ fij

0

cij(y)dy −
∑
i∈N

∑
q∈D

∫ dq
i

0

g−1
iq (v)dv (3.7)

and adding the following set of constraints

dq
i ≥ 0, i ∈ N , q ∈ D (3.8)

which ensures that demands are nonnegative.

3.1.2 Toll Optimization Problem

Traffic congestion has become part of everyday life especially in metropolitan areas. If

there is not a way to prevent it, imposing appropriate tolls on roads can reduce traffic

congestion because tolls can discourage network users using more congested links. It

has recently become more practical due to the advent of electronic tolling, and hence,

received significant attention from transportation planners and academics.

In toll optimization problem, the main idea is to set the toll prices on a set of links

such that the congestion on these links are reduced. Since, it is a bilevel programming

approach, the upper level problem usually has the objective of maximizing revenue

earned from introduced tolls and the lower level problem corresponds to the traffic

assignment problem with the additional travel costs in the objective for tolled links.

Marcotte and Savard [116] provides an extensive literature survey on the use of bilevel

programming approach to toll optimization problems.

Remember that, there are two classes of toll pricing problems, first-best and second-

best. Here, we focus on this later problem.

Let Ā be the set of tollable links. We assume that the toll price tij on link (i, j)

cannot exceed a prescribed upper bound tmax
ij where

tmax
ij





> 0, (i, j) ∈ Ā,

= 0, (i, j) ∈ A/Ā.

(3.9)
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Based on the definitions above the mathematical model of toll optimization problem

with elastic demand can be formulated as

TOLL : max
t,x

∑

(i,j)∈Ā
tijfij (3.10)

s.t. 0 ≤ tij ≤ tmax
ij (i, j) ∈ Ā (3.11)

min
x

∑

(i,j)∈A

∫ fij

0

cij(y)dy +
∑

(i,j)∈Ā
tijfij −

∑
i∈N

∑

d∈D

∫ dq
i

0

g−1
iq (v)dv (3.12)

s.t. (3.3)− (3.5) (3.13)

dq
i ≥ 0 i ∈ N , q ∈ D. (3.14)

where Ā ⊆ A denotes the links that are subject to tolling. In the case Ā 6= A the

problem is refereed as second-best toll pricing. The upper level objective function

(3.10) is revenue maximization and constraints (3.11) ensure that any toll price tij can

not exceed the maximum allowed value tmax
ij . Constraints (3.12-3.14) denotes the lower

level elastic traffic assignment problem.

In the optimization context, the second-best toll problem is categorized as a math-

ematical programming problem with equilibrium constraints (MPEC). There are dif-

ferent techniques used to transform the bilevel optimization programming problem to

a single level optimization program. These include sensitivity based analysis, Karush-

Kuhn-Tucker (KKT) based method and using the system optimal solution to formulate

the set of tolls for the second-best case under user equilibrium [89, 90]. In this study

we use KKT based method and here we proposed corresponding first order optimality

conditions of TAP problem with elastic demand and with toll pricing:

xq
ij

[
cij(fij) + tij − λq

i + λq
j

]
= 0 (i, j) ∈ A, q ∈ D (3.15)

cij(fij) + tij − λq
i + λq

j ≥ 0 (i, j) ∈ A, q ∈ D (3.16)
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dq
i

[
λq

i − g−1
id (dq

i )
]

= 0 i ∈ N , q ∈ D (3.17)

λq
i − g−1

iq (dq
i ) ≥ 0 i ∈ N , q ∈ D (3.18)

∑

j:(i,j)∈A
xq

ij −
∑

j:(j,i)∈A
xq

j,i = dq
i i ∈ N , q ∈ D (3.19)

∑
q∈D

xq
ij = fij (i, j) ∈ A (3.20)

xq
ij ≥ 0 (i, j) ∈ A, q ∈ D (3.21)

dq
i ≥ 0 i ∈ N , q ∈ D (3.22)

here λq
i , i ∈ N , q ∈ D, are the dual variables associated with constraint (3.3). At

optimality, λq
i gives the duration of the shortest path time between i and q. In the

rest of this chapter we use these optimality conditions of the TAP to denote the lower

level problem and we will present all the bilevel programming models as single level

programs.

3.1.3 Network Design Problem

When a transportation network is enhanced in response to some changing conditions,

the corresponding bilevel optimization problem is called the network design problem

(NDP). Under budgetary constraints, discrete NDPs usually consider link or lane ad-

ditions, whereas continuous NDPs are limited to network improvements that can be

modeled as continuous variables-such as lane and lateral clearance changes and also,

other enhancements that produce incremental changes in capacity. We consider the

continuous case in this study.

We assume that there are some costs associated with the enhancement of link

capacities. The total investment and operating cost function is selected as

∑

(i,j)∈A
kijz

2
ij , (3.23)

where zij represents the capacity enhancement on link (i, j) and kij is the unit cost for

link (i, j) [2]. Capacity enhancement naturally affects the travel time on link (i, j) as

follows:

cij(fij, zij) = αij

(
1 + 0.15

(
fij/(βij + zij)

)4
)

. (3.24)

We now let Ā2 denote the set of links capacities of which can be enhanced, and set

29



the maximum capacity enhancement on link (i, j), denoted by zmax
ij , as

zmax
ij





> 0, (i, j) ∈ Ā2

= 0, (i, j) ∈ A/Ā2.

(3.25)

Then, the widely used continuous capacity enhancement model aiming at minimiz-

ing the total network travel cost [180] with elastic demand is formulated as

CDND : min
z,x

∑

(i,j)∈A
(cij(fij, zij)fij) (3.26)

s.t.
∑

(i,j)∈A
kijz

2
ij ≤ Bmax (3.27)

0 ≤ zij ≤ zmax
ij (i, j) ∈ A (3.28)

xd
ij

[
cij(fij, zij)− λd

i + λd
j

]
= 0 (i, j) ∈ A, d ∈ D (3.29)

cij(fij, zij)− λd
i + λd

j ≥ 0 (i, j) ∈ A, d ∈ D (3.30)

(3.17)− (3.22). (3.31)

Here Bmax is the maximum budget that can be allocated for capacity enhancement.

Constraints (3.27) ensures that the required expenses can not exceed the maximum

budget amount. Constraints (3.29)-(3.31) are optimality conditions for lower level

problem as presented in (3.15)-(3.22), where (3.29) and (3.30) are obtained by replacing

the travel cost cij(fij) by cij(fij, zij) and by dropping tij.

In the rest of this chapter we use the toll pricing and network design problems and

propose various bilevel programming models aiming to obtain sustainable transport.

3.2 Proposed Emission Functions and Bilevel Programming Models

The two main indicators of sustainability in transportation networks are the level

of congestion and amount of emission. The congestion levels can easily be derived

from traffic flows and designed capacities of the links. However, emission cannot be

measured easily. To analyze the effect of emission and incorporate them into the models

properly, the real relationship between traffic flow and total emission must be specified

analytically.

Emission modeling is a wide research area. In one of the early studies, [83] show that

vehicle emissions are highly dependent on the vehicle speed. Many researchers have
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studied the relation between transport emissions and vehicle types, speeds, driving

styles, weather or several other factors [66, 80, 82, 99]. Meanwhile, emission factors

are usually determined as the average values per vehicle kilometer for each vehicle

category. In the literature, several mathematical models and simulation tools using

emission factors are proposed to minimize emission [81, 140]. The emission factors

that are determined by several institutions give reasonable approximations of the real

emission amounts in relatively less congested networks. In case of high congestion,

however, the amount of emission committed by the vehicles fluctuate considerably in

time, mainly due to the emission during engine start and stop. Therefore, especially

in highly congested networks, using emission factors may not fully reflect the real

situation. To this end, emission functions with respect to the traffic flow may provide

a different angle to evaluate different policies.

In this study, we consider emission functions instead of emission factors. We perform

a two-step approach to express the total emission function in terms of the traffic flow.

In the first step, we express the emission in terms of the speed. Then, we determine the

mathematical relationship between the traffic flow and the average vehicle speed. Using

these relationships, a single composite function is created based on the emission-speed

and the speed-flow functions. Consequently, we obtain a general function of pollutant

emissions with respect to the traffic flow.

In the following sections, we first give the details of the conducted study for emission

function, and then we insert these functions in toll optimization models as an extension.

We describe the modifications on the model in details.

3.2.1 Multi-Step Process for Emission Function Determination

With the contribution of 32 member countries, the European Environment Agency

(EEA) is a major information source for those involved in developing, adopting, imple-

menting and evaluating environmental policies. Meanwhile, COPERT 4 is a software

program which calculates the air pollutant emissions from the road transport and it is

financed by the EEA, in the framework of the activities of the European Topic Center

for Air and Climate Change. European Commission also defines the acceptable limits

for exhaust emissions of new vehicles sold in EU member states as European emission

standards (EURO). Currently, for most types of vehicles such as cars, lorries, trains,

tractors and similar machinery, barges emissions of nitrogen oxides (NOx), total hy-

drocarbon (THC), non-methane hydrocarbons (NMHC), carbon monoxide (CO) and
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particulate matter (PM) are regulated, but they can not be regulated for seagoing ships

and aeroplanes. For each vehicle different standards are applicable and non-compliant

vehicles cannot be sold within the European Union. However, new standards do not

apply to vehicles already on the roads. EURO standards are progressively updated and

are refereed as EURO1, EURO2, etc.. As of 2010 EURO5 has been the latest standard

and EURO6 standard is planned to be applied starting 2014. COPERT 4 defines the

vehicle emission as a function of speed for pre-EURO and EURO class vehicles. The

emission in grams per kilometer of an EURO class vehicle is expressed as,

a + cv + ev2

1 + bv + dv2
, (3.32)

where a, b, c, d and e are parameters specific to a vehicle and pollutant type, and v

corresponds to the vehicle speed (kilometers per hour). Figure 3.1 shows the relation

between the vehicle speed and the emission of CO and NOx pollutants for a EURO3

gasoline vehicle.
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Figure 3.1: Vehicle emission per kilometer depending on average speed

NOx is known to be one of the major pollutants emitted during the traffic con-

gestion. In fact, the transportation sources are reported to be responsible for a con-

siderable part of all NOx emissions in the US, and moreover, NOx emissions show an

increasing trend in the recent years [86, 135]. Similarly, in the UK almost half of all

NOx emissions result from the road traffic [65]. Using this information, we focus only

on NOx emission in the subsequent part of this section. However, we note that it

is possible to follow the same steps here to analyze other major pollutants; such as,

carbon monoxide, sulfur dioxide, and so on.

Akçelik [5, 6] has performed extensive studies to show that there is a direct rela-
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tionship between the vehicle speed and the traffic flow on the link. Using these studies,

the general vehicle speed - traffic flow relationship can be demonstrated as in Figure

3.2. The average vehicle speed retains almost constant until capacity is near %70.

Afterwards, the average vehicle speed decreases substantially until the link capacity

reaches to the designed level. Then the average vehicle speed continues to decrease

slowly. We can next obtain the average speed vij in kilometers per hour on link (i, j)

depending on the actual flow such as

vij(fij) = lij/cij(fij), (3.33)

where lij is the link length in kilometers.
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Figure 3.2: Average vehicle speed depending on link flow/capacity ratio

By constructing a composite function with the determined vehicle speed–traffic flow

and emission–vehicle speed functions, we are able to express the total emission in terms

of the traffic flow.

The total NOx emission function given in Figure 3.3 shows an exponential behavior.

In fact, it is not difficult to assess that when the road capacity is reached and congestion

occurs, vehicles start to follow stop/go pattern which decreases average vehicle speed

and increases the total emission significantly. In sum, we can estimate the total emission

of pollutant p in grams per hour on a particular link (i, j) with the following emission

function:

e p
ij(fij) = fij × lij ×

ap + cpvij(fij) + epv2
ij(fij)

1 + bpvij(fij) + dpv2
ij(fij)

. (3.34)

As shown in Figure 3.1, the emission amounts from different pollutants usually have

large differences in magnitude. In that case, the emission amount from a particular
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Figure 3.3: Per vehicle and kilometer NOx emission depending on link flow/capacity
ratio

pollutant may be scaled by introducing proper coefficients to equation (3.34). To

simplify the exposition, we shall simply take the summation over all pollutants using

relation (3.34) without introducing such coefficients.

In the subsequent part of this study, we consider emission for a single pollu-

tant,namely NOx and thus drop subscript p for simplicity.

3.2.2 Bilevel Programming Models with Emission Functions

In the following subsections, we discuss several bilevel problems where “upper level

objectives involve alternate sustainability measures based on the proposed emission

functions (3.34) and (3.50) and the bilevel problem is reformulated using lower level

conditions in (3.15)-(3.22).

3.2.2.1 Total Network Emission

In this section, all our models aim to minimize the total network emission. The reduc-

tion in the total network emission is accomplished via two policies: (i) toll pricing, and

(ii) capacity enhancement.

Toll Pricing

Road pricing is a demand management instrument, which is suitable to use for sustain-

ability purposes. We shall use toll prices as disincentives to discourage network users

using more congested links, and consequently, increasing the emissions.
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In general, a governmental institution or transportation authority determines the

set of tolled links to reduce the emission. Within the general bilevel toll pricing mod-

eling framework, our mathematical model aiming at minimizing the total emission is

formulated as

TTE : min
t,x

∑

(i,j)∈A
eij(fij) (3.35)

s.t.
∑

(i,j)∈A
tijfij ≥ γ1R

max (3.36)

0 ≤ tij ≤ tmax
ij (i, j) ∈ A (3.37)

(3.15)− (3.22), (3.38)

where Rmax denotes the maximum revenue that can be received from tolls and γ1 ∈
[0, 1]. The parameter Rmax can be obtained by solving the model (TOLL). Constraint

(3.36) ensures that the collected revenue is above a fraction of the maximum possible

revenue. Constraint (3.38) is optimality conditions for lower level problem.

Capacity Enhancement

In addition to the road pricing strategy, capacity enhancement policy may also be a

important instrument to decrease the network emission.

Then, our capacity enhancement model aiming at minimizing the total emission is

formulated as

CTE : min
t,x

∑

(i,j)∈A
eij(fij, zij) (3.39)

s.t.
∑

(i,j)∈A
kijz

2
ij ≤ γ2B

max (3.40)

0 ≤ zij ≤ zmax
ij (i, j) ∈ A (3.41)

xd
ij

[
cij(fij, zij)− λd

i + λd
j

]
= 0 (i, j) ∈ A, d ∈ D (3.42)

cij(fij, zij)− λd
i + λd

j ≥ 0 (i, j) ∈ A, d ∈ D (3.43)

(3.17)− (3.22). (3.44)

Here Bmax is the maximum budget that can be allocated for capacity enhancement and

γ2 ∈ [0, 1]. Bmax can be calculated by solving model (CTE) with constraints (3.40)
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relaxed. Constraint (3.40) ensures that the required expenses is below a fraction of the

budget. Constraints (3.42)-(3.44) are optimality conditions for lower level problem as

presented in (3.15)-(3.22).

Simultaneous Toll Pricing and Capacity Enhancement

To observe the combined effect of two traffic management strategies discussed pre-

viously, the simultaneous toll pricing and capacity enhancement model (TCTE) is

constructed. Only links with variable capacity are allowed to be toll priced in this

model. Parameters Rmax and Bmax are set to the same values selected for (TTE) and

(CTE) models, respectively.

TCTE : min
t,x

∑

(i,j)∈A
eij(fij, zij) (3.45)

s.t. (3.36), (3.37), (3.40), (3.41), (3.46)

xs
ij

[
cij(fij, zij) + tij − λs

i + λs
j

]
= 0 (i, j) ∈ A, s ∈ D (3.47)

cij(fij, zij) + tij − λs
i + λs

j ≥ 0 (i, j) ∈ A, s ∈ D (3.48)

(3.17)− (3.22), (3.49)

where (3.47) and (3.48) are obtained by only replacing the travel cost cij(fij) by

cij(fij, zij).

3.2.2.2 Emission Dispersion

Directing the vehicle flow to other parts of the transportation network through road

pricing may lead to high emission accumulations in wider area. Therefore, it may be

preferable to disperse the emission rather than minimizing the total emission on the

network. We next discuss the formulation of toll pricing and capacity enhancement

policies with the objective of emission dispersion.

As an alternative to the total emission minimization models where link lengths are

important, we deal with pollutant concentration in emission dispersion models. By

using the analysis in the derivation of equation (3.34), emission concentration on link

(i, j) is calculated as

ēij(fij) = fij ×
a + cvij(fij) + ev2

ij(fij)

1 + bvij(fij) + dv2
ij(fij)

, (3.50)

where ē p
ij is measured in grams per kilometer and hour.
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Toll Pricing

The toll pricing model in the context of emission dispersion involves the same con-

straints (3.36)-(3.38) of model (TTE). The only difference is in the objective function

of the upper level problem. We propose two alternate objective functions.

The first objective that we consider is the pure dispersion case. The main idea is

to minimize the maximum link emission concentration on the network. Formally, the

objective function (3.35) of model (TTE) is replaced with

TED1 : min
t,x

max { ēij(fij)|(i, j) ∈ A} . (3.51)

Traffic flows with reasonable emission levels in highly dense parts of a network may sum

up to excessive amounts. Due to land use characteristics (i.e. residential, commercial,

etc.), the network management authorities may determine emission limits for certain

parts of the network. Let ζij denote the desired emission concentration level on link

(i, j). The product of this amount with the link length gives the desired emission level

for that link.Along these lines, the second objective that we propose is formulated as

TED2 : min
t,x

∑

(i,j)∈A
max { eij(fij)− ζijlij, 0 } . (3.52)

With this objective, we penalize the amount of emission that exceed the desired level.

Introducing (3.52) as the objective function is another way to disperse the total network

emission through toll pricing.

Capacity Enhancement

The dispersion of the emission throughout the network may also be attained by capacity

enhancement. We keep the set of constraints (3.40)-(3.44) of model (CTE) and consider

two alternate upper level objective functions as in the models based on the toll pricing

policy. The first one corresponds to the pure dispersion objective in (3.51). The only

difference is the inclusion of the capacity enhancements in evaluating the emission

amounts

CED1 : min
z,x

max { ēij(fij, zij)|(i, j) ∈ A} . (3.53)
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Similarly, the second upper level objective function is the same as (3.52) with the only

difference of the involved capacity enhancements

CED1 : min
z,x

∑

(i,j)∈A
max { eij(fij, zij)− ζijlij, 0 } . (3.54)

Simultaneous Toll Pricing and Capacity Enhancement

With the same line of reasoning that was used in the previous two cases, the constraints

(3.46)-(3.49) of model (TCTE) are kept, and the objective function (3.45) is replaced

with

TCED1 : min
t,z,x

max { ēij(fij, zij)|(i, j) ∈ A} (3.55)

or

TCED1 : min
t,z,x

∑

(i,j)∈A
max { eij(fij, zij)− ζijlij, 0 } (3.56)

to produce new emission dispersion models.

All the proposed models in this chapter, are applied to the testing network in the

computation study and analysis chapter.
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CHAPTER 4

STOCHASTIC BILEVEL PROGRAMMING WITH TRAVEL TIME

RELIABILITY

In this chapter we first briefly discuss the network and the travel time reliability. Then,

we describe how to incorporate the travel time reliability into the toll pricing problem as

a sustainability measure in the stochastic bilevel framework. In particular, we consider

the conditional value-at-risk (CVaR) as a risk measure on the travel time costs to

model the travel time reliability. Using such a risk measure allows us to take the

effect of the stochastic nature of the system into consideration. We develop alternate

risk-averse bilevel programming models involving the CVaR risk measure. We also

present the risk-neutral versions of the proposed models in order to analyze the effect

of incorporating risk measures.

4.1 Network Reliability

In transportation networks, reliability reflects the ability of the system to respond to the

variations in system variables. Several events such as minor accidents, on-street parking

violations, variations in weather conditions, road maintenance and traffic signal failures

may effect the operation of a network and it is important to quantify the impact of

these events to deal with the uncertainty inherent in the transportation systems. There

are various approaches to model the network reliability. Here we focus on the travel

time reliability, which refers to variability of travel times because of unpredictable

underlying conditions over the time, in terms of traffic flow values. When we consider

such a stochastic (unreliable) transportation network the travel times are stochastic,

and therefore, the travelers do not certainly know whether they will arrive at the

destination points on time when they are planning their trips. Thus, the decision

makers should take the travel time variations into account while determining their

policies. Despite all these disturbances, a network should maintain an acceptable level

of service so improving travel time reliability is our main objective in this study. A
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significant improvement can be achieved by obtaining relatively small travel times

under variable conditions.

We can consider the travel time variations due to the non-recurrent events such

as weather conditions by modeling the randomness in the free-flow times. Moreover,

the travel time variations due to the non-recurrent events such as vehicle breakdowns

and minor accidents can be taken into consideration by modeling the randomness in

the link capacities. Stochastic programming is one of the important approaches to

model decision making under uncertainty. It develops models to formulate optimiza-

tion problems in which uncertain quantities are represented by random variables. We

represent the uncertain free-flow times and link capacities by random variables and we

characterize these random variables by using a finite set of scenarios, denoted by S.

We assume that the set of scenarios and the associated probabilities, which we denote

by ps, s ∈ S, are given. A scenario represents a joint realization of the free-flow times

and capacities of all the links in the network. Since the travel time is a function of

the random link capacities and free-flow times, the travel time is also random. Let us

denote the random travel time (cost) when the total flow on link (i, j) equals to fij by

cij(fij, ω). Then the general travel time function for link (i, j) under scenario s ∈ S,

which is basically the realization of cij(fij, ω) under scenario s, is given by:

cs
ij(fij) = αs

ij

(
1 + 0.15

(
fij/β

s
ij

)4
)

. (4.1)

Here αs
ij and βs

ij denote the realized free flow time and the realized capacity value

of link (i, j) under scenario s, respectively. Thus, scenario s is represented by the

deterministic vector (αs, βs) ∈ R2∗|A|, with components αs
ij and βs

ij, s ∈ S, (i, j) ∈ A.

Note that one can focus on only the randomness in the link capacities and consider

the free-flow times as deterministic parameters. In such cases, we can simply replace αs
ij

by the deterministic parameter αij and a scenario would represent the joint realizations

of only the link capacities. Similarly, if one focus on only the randomness in the free-

flow times, βs
ij is replaced by the deterministic parameters by βij in equation (4.1).

In the rest of this chapter using the scenario-based approach we propose stochastic

bilevel programming models that involve the travel time reliability.
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4.2 Stochastic Bilevel Programming Models

As discussed in Chapter 2, in the transportation framework the bilevel programming

problem involves the decisions of the transportation managers in the upper level and,

given these decisions, the route choice decisions of network users in the lower level. In

all of our proposed models, in the upper level transportation managers aim to obtain

a sustainable transportation system in terms of the travel time reliability by using the

toll pricing policy. On the other hand, the network users make their traveling decisions

based on the expected travel costs. Note that we assume toll pricing decisions do not

vary according to the stochastic nature of the network.

In the following sections we first introduce the lower level traffic assignment problem

with stochastic travel times under the toll pricing policy. Then we propose upper level

models with alternate objectives based on the CVaR risk measure.

4.2.1 Risk-Neutral Traffic Assignment Problem

We assume that network users are unaware of the network conditions when they are

making their route choices. Thus, they are not certain about which scenario represent-

ing the network conditions will occur. We incorporate the random network conditions

by the scenario-based approach and the network users make their traveling decisions

based on the expected travel costs. Thus, we use the user equilibrium formulation

based on the expected travel times and formulate the risk-neutral user equilibrium

formulation with the toll pricing policy as follows:

RNTAP : min
x

∑

(i,j)∈A

∫ fij

0

∑
s

psc
s
ij(y)dy +

∑

(i,j)∈Ā

tijfij (4.2)

s.t.
∑

j:(i,j)∈A
xq

ij −
∑

j:(j,i)∈A
xq

ji = dq
i i ∈ N , q ∈ D (4.3)

∑
q∈D

xq
ij = fij (i, j) ∈ A (4.4)

xq
ij ≥ 0 (i, j) ∈ A, q ∈ D. (4.5)

The objective (4.2) minimizes the expected total cost. The set of constraints (4.3)

represents the flow conservation constraints. Constraints (4.4) link the total flow on an

arc to the flows resulting from individual destination points. The rest of the constraints

are for the nonnegativity restrictions.

Let λq
i , i ∈ N , q ∈ D, denote the dual variables associated with constraint (4.3).
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Then the first order optimality conditions for the problem RNTAP are

xq
ij

[∑
s

psc
s
ij(fij) + tij − λq

i + λq
j

]
= 0 (i, j) ∈ A, q ∈ D (4.6)

∑
s

psc
s
ij(fij) + tij − λq

i + λq
j ≥ 0 (i, j) ∈ A, q ∈ D (4.7)

∑

j:(i,j)∈A
xq

ij −
∑

j:(j,i)∈A
xq

ji = dq
i i ∈ N , q ∈ D (4.8)

∑
q∈D

xq
ij = fij (i, j) ∈ A (4.9)

xq
ij ≥ 0 (i, j) ∈ A, q ∈ D. (4.10)

In the elastic demand case, dq
i , i ∈ N , q ∈ D, are not given and these demand values

are considered as decision variables. We formulate the RNTAP with elastic demand

by adding the nonnegativity restrictions on the demand variables and modifying the

objective function (4.2) as follows:

min
x

∑

(i,j)∈A

∫ fij

0

∑
s

psc
s
ij(y)dy +

∑

(i,j)∈Ā

tijfij −
∑
i∈N

∑
q∈D

∫ dq
i

0

g−1
iq (v)dv. (4.11)

Here g−1
iq (·) denotes the inverse of the demand function on link (i, q) in terms of the

travel time. In our study, we assume that the demand value depends on the travel

time linearly. However, this assumption is not restrictive and any other type of non-

increasing function can be considered in our setup. We refer to the user equilibrium

problem with expected total cost and the elastic demand as (ELPNRAP). The first

order optimality conditions of the problem (ELPNRAP) consist of the conditions given

in (4.6)-(4.10) and the following additional ones involving demand decision variables:

dq
i

[
λq

i − g−1
iq (dq

i )
]

= 0 i ∈ N , q ∈ D (4.12)

λq
i − g−1

iq (dq
i ) ≥ 0 i ∈ N , q ∈ D (4.13)

dq
i ≥ 0 i ∈ N , q ∈ D. (4.14)

4.2.2 Risk-Neutral Bilevel Programming Models

As discussed at the beginning of this chapter, the random free-flow times and link

capacities lead to random travel times. Finding the best toll pricing policy requires

approaches to compare the associated random travel times. In traditional stochastic

programming approach random variables are compared based on the expected values.
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In our setup we have multiple random variables to take into consideration; a random

travel time on each link of the network. We define alternate ways of obtaining a single

random outcome out of the individual random travel times, which is basically a measure

for the whole network and focus on that network-based random outcome while finding

the best toll pricing policy. In particular, we use the unit travel time summed over all

links (AUTT), the total travel time summed over all links (ATTT), the maximum unit

travel time (MUTT) and the maximum total travel time (MTTT) to define the network-

based measure. Here, the total travel time is obtained by multiplying the unit travel

time of a link with the corresponding link flow amount. Note that we also introduce

similar network-based measures like the maximum unit emission concentration and the

total emission summed over all links in the previous chapter (see Chapter 3). First, to

minimize the total network emission in the network, we consider total emission amount

in a link by multiplying the emission amount per kilometer with the length of that link.

Moreover, to minimize the maximum emission concentration in the network, we use

emission amount per kilometer to consider all long and short links equally. Thus, in

Chapter 3 link length values enable us to obtain total emission amount in a link rather

than the emission amount per kilometer and similarly in this chapter link flow amounts

help us to consider the case with all users in a link rather than a single user. In the

rest of this section, we first present the risk-neutral bilevel programming models and

then their risk-averse versions involving the CVaR as risk measures.

Minimizing Expected Aggregated Unit Travel Time

We refer to the unit travel time per vehicle summed over all the “the aggregated unit

travel time” and calculate the point estimator of the expected value of the aggregated

unit travel time when the total flow on link (i, j) is equal to fij as:

E


 ∑

(i,j)∈A
cij(fij, ω)


 =

∑

(i,j)∈A

∑
s

psc
s
ij(fij). (4.15)
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Then, the corresponding bilevel programming model reads:

EAUTT : min
t,x

∑

(i,j)∈A

∑
s

psc
s
ij(fij) (4.16)

s.t. 0 ≤ tij ≤ tmax
ij (i, j) ∈ A (4.17)

(4.6)− (4.10) (fixed demand case) (4.18)

(4.6)− (4.10) and (4.12)− (4.14) (elastic demand case), (4.19)

where the upper level objective (4.16) minimizes the expected aggregated unit travel

time per vehicle. Constraints (4.17) ensure that the toll rice on link (i, j) cannot exceed

the maximum allowed value tmax
ij . According to the demand structure either constraints

(4.18) or (4.19) are used and these constraints represent the optimality conditions for

the lower level problem with the fixed demand and the elastic demand, respectively.

Minimizing Expected Aggregated Total Travel Time

Here we focus on the total travel time on each link and define the network-based

measure as the summation of all the total travel time values. Then we can estimate

the expectation of the aggregated total travel time as:

E


 ∑

(i,j)∈A
fijcij(fij, ω)


 =

∑

(i,j)∈A
fij

∑
s

psc
s
ij(fij). (4.20)

Then we replace the objective function of the problem (EAUTT) by

min
t,x

∑

(i,j)∈A
fij

∑
s

psc
s
ij(fij), (4.21)

and obtain the risk-neutral model with the aggregated total travel time, which is ref-

ereed to as “EATTT”.

Minimizing Expected Maximum Unit Travel Time

Here we incorporate the maximum unit travel time as a network-based measure. We

deal with the worst possible case for the network by concentrating on the largest travel

time of all links. Thus, minimizing the maximum amount help us to minimize all the

remaining travel times at the same time. We introduce variables denoted by es, s ∈ S
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to represent the maximum unit travel time under each scenario and so that we have

E
[

max
(i,j)∈A

cij(fij, ω)

]
=

∑
s

pse
s, (4.22)

Then the related formulation of this problem is in the following form

EMUTT : min
t,x

∑
s

pse
s (4.23)

s.t. (4.17) (4.24)

es ≥ cs
ij(fij) (i, j) ∈ A, s ∈ S (4.25)

(4.6)− (4.10) (fixed demand case) (4.26)

(4.6)− (4.10) and (4.12)− (4.14) (elastic demand case), (4.27)

where the upper level objective function (4.23) is used to minimize expected maximum

unit travel time and constraints (4.25) is used to obtain the maximum unit travel cost

under each scenario. Note that due to the nature of the objective function es is exactly

equal to the maximum unit travel time value.

Minimizing Expected Maximum Total Travel Time

By replacing the constraints (4.25) in the formulation of (EMUTT) problem with

es ≥ fijc
s
ij(fij) (i, j) ∈ A, s ∈ S, (4.28)

we obtain the risk-neutral model with the maximum total travel time which is ref-

ereed to as “EMTTT”. In this formulation es,∈ S variables are used to calculate

the maximum total travel time instead of the maximum unit travel time under each

scenario.

4.2.3 Risk-Averse Bilevel Programming Models

The traditional stochastic programming approaches are based on the expected values.

However, decisions obtained just according to the expected values may perform poorly

under certain realizations of the random data. Therefore, it is significant to consider

also the effect of the inherent variability, which leads to the risk concept. Risk measures

can be incorporated into decision making problems in order to model the effects of the

variability. Using such a risk-averse approach, we can provide solutions which may
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perform better under random disruptions than the ones obtained by the risk-neutral

approach.

In this study, we propose two types of models which incorporate risk measures. The

first type of models consider only the risk terms, whereas the second type of models con-

sider both the expectation and the risk measure of the specified random network-based

quantity. While considering both the expectation and the risk measure, we utilize the

mean-risk approach, which has been first proposed by Markowitz [118] for a portfolio

optimization problem. In the mean-risk approach, the mean represents the expected

outcome of interest and some dispersion statistic is used as a measure of risk, and the

trade-off between the mean and the risk is considered. Moreover, when the variance

is used as a measure of risk, we obtain the classical mean-variance (Markowitz [118])

model. Boyleset al. [28] consider the toll pricing model under stochastic travel times.

They use the variance as a risk measure in their related study in which they incorporate

the reliability into the lower level traffic assignment problem using a scenario-based ap-

proach. However, using a symmetric measure such as variance has some drawbacks.

One of the drawbacks associated with this measure is that it treats over-performance

equally as under-performance which may lead to inferior results. In order to remedy

this drawback, models with alternative asymmetric risk measures such as downside risk

measures have been proposed (see e.g., Ogryczak and Ruszczyński [130] ).

In this thesis, we prefer to incorporate one of the popular downside risk measures,

conditional value-at-risk (CVaR) into the proposed risk-averse stochastic programming

models. In particular, since we prefer smaller values of travel times in order to improve

travel time reliability, we specify CVaR as a risk measure on the specified network-

based quantity, which is basically a function of the travel times. Chen and Zhou [44]

also model the travel time reliability by using CVaR. Different than our approach,

they only consider the traffic assignment problem and they use restrictive distribution

assumptions to calculate the CVaR quantities. Our approach does not depend on such

restrictive assumptions.

Here we present the definitions of VaR and CVaR and provide some interpretations.

Definition 1 Let FZ(·) represent the cumulative distribution function of a random

variable Z. In the financial literature, the α-quantile

inf{η : FZ(η) ≥ α}
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is called the Value at Risk (VaR) at the confidence level α and denoted by VaRα(Z),

α ∈ (0, 1].

Definition 2 The Conditional-Value-at-Risk of a random variable Z at the confidence

level α is given by

CVaRα(Z) = inf
η∈R
{η +

1

1− α
E(max{Z − η, 0})}. (4.29)

CVaRα(Z) is the expectation of travel cost value exceeding the VaR value at the

confidence level α. In the travel cost minimization context, VaRα is the α-quantile (a

high quantile) of the distribution of the travel cost, which provides an upper bound for

a cost value that is exceeded only with a small probability of 1−α. On the other hand,

CVaRα(Z) is a measure of severity of cost if it is more than VaRα(Z) (see [144, 145]).

The illustration of CVaR measure and relation with VaR can be seen from the Figure

4.1 explicitly [166].

Figure 4.1: Illustration of CVaR measure

In the following parts, as a measure of variability of travel time CVaR is added to

the upper level of the bilevel programming models to influence the toll pricing decisions.
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4.2.3.1 Proposed Risk-Averse Models with Only Risk Terms

Here, we present risk-averse models with alternate objectives based on the CVaR risk

measure. Presented models consider CVaR on the previously stated network-based

quantities such as the aggregated unit travel time, the aggregated total travel time,

the maximum unit travel time and the maximum total travel time.

Minimizing Aggregated Unit Travel Time (Cost) by Using “CVaR”

In this model, we focus on the random variable, aggregated unit travel time and we

denote it as Z =
∑

(i,j)∈A
cij(fij, ω).

Then the related model which is minimizing CVaRα[
∑

(i,j)∈A
cij(fij, ω)] is proposed

as:

AUTT CVaR : min
t,x

(η +
1

1− α

∑
s

psv
s) (4.30)

s.t. (4.17) (4.31)

vs ≥
∑

(i,j)∈A
cs
ij(fij)− η s ∈ S (4.32)

vs ≥ 0 s ∈ S (4.33)

(4.6)− (4.10) (fixed demand case) (4.34)

(4.6)− (4.10) and (4.12)− (4.14) (elastic demand case),

(4.35)

where vs, s ∈ S variables are introduced to specify CVaR on the unit travel time

under each scenario. Constraints (4.32) and (4.33) are introduced to linearize the max

operator used in the equation (4.29) under each scenario. Note that if the difference in

constraint (4.32) is positive then due to the nature of the minimization objective this

constraint satisfied as a equality otherwise vs gets value 0.

Minimizing Aggregated Total Travel Time (Cost) by Using “CVaR”

In this case, the random variable Z is equal to
∑

(i,j)∈A
fijcij(fij, ω) and we propose the

corresponding model by just replacing the constraints (4.32) of the problem (AUTT CVaR)

with

vs ≥
∑

(i,j)∈A
fijc

s
ij(fij)− η s ∈ S. (4.36)
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Here, vss ∈ S variables are introduced on the aggregated total travel time instead of

the aggregated unit travel time. We refer to this model as “ATTT CVaR”

Minimizing Maximum Unit Travel Time (Cost) by Using “CVaR”

We incorporate max
(i,j)∈A

cij(fij, ω) as the random variable in this model. Here we present

the related bilevel programming model as follows:

MUTT CVaR : min
t,x

(η +
1

1− α

∑
s

psy
s) (4.37)

s.t. (4.17) (4.38)

es ≥ cs
ij(fij) (i, j) ∈ A, s ∈ S (4.39)

ys ≥ es − η s ∈ S (4.40)

ys ≥ 0 s ∈ S (4.41)

(4.6)− (4.10) (fixed demand case) (4.42)

(4.6)− (4.10) and (4.12)− (4.14) (elastic demand case),

(4.43)

where es, s ∈ S variables are introduced to represent the maximum unit travel time

under each scenario and ys, s ∈ S variables are defined to incorporate CVaR into the

model on the maximum unit travel time under each scenario. The objective function

(4.37) is minimizing the maximum unit travel time (cost) by using CVaR. Constraints

(4.39) are used to determine the maximum unit travel time under each scenario. Con-

straints (4.40) and (4.41) are used for linearization operation under each scenario.

Minimizing Maximum Total Travel Time (Cost) by Using Using “CVaR”

Here we incorporate the maximum total travel time as a network-based measure by

only replacing the constraints (4.39) of the problem (MUTT CVaR) with

es ≥ fijc
s
ij(fij) (i, j) ∈ A, s ∈ S. (4.44)

In this formulation es, s ∈ S and ys, s ∈ S variables are defined on the maximum total

travel time and we refer to this model as “MTTT CVaR”
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4.2.3.2 Proposed Risk-Averse Models with Mean-Risk Terms

As we mentioned in the previous parts, the mean-risk approach considers the trade-off

between the mean and the risk. Here we show the general formulation of the mean-risk

function with CVaR as follows:

E[Z] + θCVaRα[Z], (4.45)

where θ is the trade-off coefficient. We also refer to it as a risk coefficient, which is

specified by decision makers according to their risk preferences.

By using the previously stated network-based measures AUTT, ATTT, MUTT,

MTTT, four alternate objective functions are developed as follows:

• Mean risk function on aggregated unit travel time (cost) (MRAUTT)

E


 ∑

(i,j)∈A
cij(fij , ω)


+θCVaRα


 ∑

(i,j)∈A
cij(fij , ω)


 =

∑

(i,j)∈A

∑
s

psc
s
ij(fij)+θ(η+

1
1− α

∑
s

psv
s),

(4.46)

where vs, s ∈ S, variables satisfy the constraints (4.32) and (4.33).

• Mean risk function on aggregated total travel time (cost) (MRATTT)

E


 ∑

(i,j)∈A
fijcij(fij , ω)


+θCVaRα


 ∑

(i,j)∈A
fijcij(fij , ω)


 =

∑

(i,j)∈A
fij

∑
s

psc
s
ij(fij)+θ(η+

1
1− α

∑
s

psv
s).

(4.47)

In this case vs, s ∈ S, variables satisfy the constraints (4.36) and the nonnegativity constraints.

• Mean risk function on maximum unit travel time (cost) (MRMUTT)

E
[

max
(i,j)∈A

cij(fij , ω)
]

+ θCVaRα

[
max

(i,j)∈A
cij(fij , ω)

]
=

∑
s

pse
s + θ(η +

1
1− α

∑
s

psy
s), (4.48)

where es, s ∈ S, variables satisfy the constraints (4.39) and ys, s ∈ S variables satisfy the

constraints (4.40) and (4.41).

• Mean risk function on maximum total travel time (cost) (MRMTTT)

E
[

max
(i,j)∈A

fijcij(fij , ω)
]

+ θCVaRα

[
max

(i,j)∈A
fijcij(fij , ω)

]
=

∑
s

pse
s + θ(η +

1
1− α

∑
s

psy
s),

(4.49)

where es, s ∈ S, variables satisfy the constraints (4.44) and ys, s ∈ S variables satisfy the

constraints (4.44) and the nonnegativity constraints.
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Then, the corresponding models can be obtained by changing the objective func-

tions of the problems (AUTT CVaR) with (4.46), (ATTT CVaR) with (4.47), (MUTT CVaR)

with (4.48) and (MTTT CVaR) with (4.49).

The effects of risk parameters and comparative results of the proposed models will

be analyzed in the computation study and analysis chapter.
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CHAPTER 5

COMPUTATIONAL RESULTS AND ANALYSIS

In this chapter we present numerical results for the proposed optimization problems

involving sustainability measures. Section 5.1 presents the first main part of the compu-

tational study, which is performed for the optimization models with the measurement

of gas emissions. The main objective of this section is to analyze the effects of the

proposed alternate models on the emission amounts and evaluate the toll pricing and

capacity enhancement policies in terms of the specified sustainability measures. Section

5.2 provides the numerical results for the risk-averse models with the travel-time reli-

ability. The associated numerical study focuses on analyzing how the decisions change

by incorporating the risk terms, the effects of the risk parameters and comparative

results obtained by the alternate objectives.

Although bilevel programs are difficult nonlinear optimization problems, there are

very effective methods that reduce the problem to a single level by some reformula-

tions. A particularly powerful implementation exists within GAMS modeling language

through the NLPEC package [73]. This package exploits several methodologies for

reformulating the mathematical programs with equilibrium constraints as nonlinear

programs and calls subsequently several powerful off-the-shelf nonlinear programming

solvers for their solution; see [68] for details. We use CONOPT solver [61] in our exper-

iments. All the results are obtained using the following options of the current NLPEC

manual: reftype mult, initmu 1, numsolves 5, finalmu 0.

Note that all the numerical experiments were performed on a HP Z800 workstation

running on Linux with 2 quad-core 3.2GHz CPU, and 32 GB of RAM. All reported

CPU times are in seconds.

5.1 Models with Emission Functions

In this part of our computational study, we use the well-known medium-size Sioux Falls

network (see Figure 5.2) which consists of 24 nodes and 76 links. Its trip table is nearly
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symmetric and all the links come in bi-directional pairs with identical characteristics.

It is important to note that this map is not to scale, so the length of links is not related

to the free flow times between pairs of nodes.

The original Sioux Falls network data includes the fixed peak hour demand for O–D

pairs. Modeling the elastic demand requires us to specify the values of the parameters

of the linear demand functions given in (3.6). To do this, we first solve TAP formulated

in (3.2)-(3.5) for the original fixed demand data. Then based on the optimal link flow

values, we calculate the travel time for each link and the shortest path times for each

O–D pair. Denoting the duration of the shortest path time and the original fixed

demand for O–D pair (i, d) by t̄id and d̄id, respectively, the parameters of the elastic

demand function in (3.6) are calculated from the linear interpolation of points (t̄id, d̄id)

and (δt̄id, d̄id/δ), where δ is a random number generated from the uniform distribution

on the interval (2, 3) [103].

There are also other parameters specific to the proposed models to be set. We choose

the following arcs to charge and/or to enhance: (6,8), (8,6), (10,15), (11,14), (14,11),

(15,10), (15,22) (22,15). To solve model (TTE), the maximum revenue parameter

Rmax should be identified. We solve the model (TOLL) and use its optimum objective

function value as the value of the parameter Rmax. A similar step is taken to find

the maximum budget parameter Bmax for model (CTE). In fact, the value of this

parameter is set to be the total investment and operating cost (3.23) associated with

the optimal solution of model (CTE) with the inequality (3.40) being relaxed.

In all our experiments, we consider the accumulated emission only from a single

pollutant, namely NOx. The variation of the total NOx emission with respect to γ1

and γ2 values are plotted in Figures 5.1(a) and 5.1(b), respectively. Based on these

figures, we arbitrarily set γ1 to 0.70 and γ2 to 0.80.

The results of our study are presented in Figures 5.2-5.5 and Tables 5.1-5.3. In all

of the figures, the network is colored such that least emission values are observed on

green links whereas very high emission values are observed on red links. All other colors

match intermediate values. On the other hand, the meaning of acronyms used in tables

are as follows: value (Val.), difference (Diff.), total network emission (Tot.EM.), av-

erage emission concentration (Ave.EC.), minimum emission concentration (Min.EC.),

maximum emission concentration (Max.EC.), total network demand (Tot.DM.), single

vehicle emission (Veh.EM.), total residential zone emission (Res.EM.), total commercial

zone emission (Com.EM.), total industrial zone emission (Ind.EM.), total non-urban

53



(a) Emission versus maximum revenue. (b) Emission versus allocated budget.

Figure 5.1: The experiments conducted to determine parameters γ1 and γ2.

zone emission (NUr.EM.), total network excess emission (Tot.EE.), total residential

zone excess emission (Res.EE.), total commercial zone excess emission (Com.EE.), to-

tal industrial zone excess emission (Ind.EE.), total non-urban zone excess emission

(NUr.EE.). Ave.EC. is calculated by dividing the total network emission to total net-

work links lengths, while Veh.EM. is found by dividing the total network emission to

the total demand.

Here we refer (TAP) with elastic demand as (REG). As model (REG) corresponds

to the case where there is no intervention from an upper level authority, its optimal

solution is used as a benchmark. Figure 5.2 depicts the emission amounts associated

with this optimal solution. As it is common for the city centers, we observe that most of

the NOx emission is concentrated at the center. We shall use this result for comparing

the outcomes obtained with different policies.

(REG) (TTE) (CTE) (TCTE)
Val. Diff. Val. Diff. Val. Diff.

Tot.EM. 378.556 347.668 -8.2% 374.488 -1.1% 344.529 -9.0%
Ave.EC. 1.206 1.107 -8.2% 1.193 -1.1% 1.097 -9.0%
Min.EC. 0.368 0.233 -36.7% 0.382 -3.9% 0.225 -38.7%
Max.EC. 2.802 2.172 -22.5% 2.663 -5.0% 2.244 -19.9%
Tot.DM. 360,608 329,949 -8.5% 369,891 +2.6% 336,552 -6.7%
Veh.EM. 1.050 1.054 +0.4% 1.012 -3.6% 1.024 -2.5%

Table 5.1: Statistics for models with the objective of minimizing the total emission

We start by investigating the results obtained with three models minimizing the

total network emission: (TTE), (CTE) and (TCTE). Emission amounts corresponding

to the optimum solutions of these models are illustrated in Figure 5.3 and statistics

about link emissions are provided in Table 5.1. The main conclusion is that the toll
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Figure 5.2: Relative emission amounts associated with the solution of the user equilib-
rium problem (REG).

pricing based policies are more effective in reducing the total emission. Compared to

(REG), models (TTE) and (TCTE) achieve an emission decrease about 8.2% and 9.0%,

respectively. Meanwhile, only 1.1% decrease was possible with the capacity enhance-

ment model (CTE). A close examination shows that the success of the toll pricing

policies can be attributed to their demand reducing potentials. As the demand is as-

sumed to be variable and depending on the travel time, the pricing policies shift some

of the demand to the alternative transportation means, which in turn inherently leads

to a reduction in the emission level. The reverse is true for the capacity enhancement

policies, where the additional capacity clearly reduces the traffic congestion, but also

generates additional demand on its own. For example, the travel demand in the optimal

solution of (CTE) model is 2.6% higher than the one obtained by the (REG) model.

This behavior limits their effectiveness in decreasing the total emission. Meanwhile,

(CTE) model is only superior in per vehicle emission statistic as the total network

emission slightly decreases and the total travel demand increases compared to (REG).

As the demand decrease is restricted while the emission decrease is substantial, the so-

lution associated with the mix strategy implemented in (TCTE) model can be assumed

to be the most efficient.
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(b) Capacity enhancement (CTE).
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(c) Toll pricing and capacity enhance-
ment (TCTE).

Figure 5.3: Minimizing the total emission.
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(REG) (TED1) (CED1) (TCED1)
Val. Diff. Val. Diff. Val. Diff.

Tot.EM. 378.556 349.941 -7.6% 381.123 +0.7% 357.545 -5.6%
Ave.EC. 1.206 1.114 -7.6% 1.214 +0.7% 1.139 -5.6%
Min.EC. 0.368 0.122 -66.8% 0.412 +12.0% 0.228 -37.9%
Max.EC. 2.802 2.138 -23.7% 2.472 -11.8% 2.059 -26.5%
Tot.DM. 360,608 325,325 -9.8% 365,614 +1.4% 340,235 -5.6%
Veh.EM. 1.050 1.076 +2.5% 1.042 -0.7% 1.051 +0.1%

Table 5.2: Statistics for models with the objective of minimizing the maximum emission
concentration

In the next step, we contrast (TED1), (CED1) and (TCED1) models having a

common objective to minimize the maximum emission concentration. The optimum

solutions are illustrated in Figure 5.4 and the derived outcomes are summarized in Table

5.2. Inferences similar to those made for the total emission minimization models are

also valid here. First of all, the maximum link emission concentrations are significantly

lowered for all three models thanks to the change in the objective. (TED1) model

provides a solution with the least total emission, and also the least travel demand and

the highest per vehicle emission concentration. (CED1) model solution results in a

total emission and demand almost equal to that of (REG). Moreover, it can be noticed

from the numbers that (CED1) requires concentration increase on some links to reduce

the concentration of others, which is not really a desirable effect. Finally, the mix

strategy model (TCED1) solution is moderate in terms of the total emission and the

demand decrease, and also leads to a higher decrease in the maximum emission.

As a final step, we compare the remaining models (TED2), (CED2) and (TCED2)

with each other based on the results given in Figure 5.5 and Table 5.3. In terms of

both total emission and total excess emission, strategy imposed on model (TCED2)

is the most efficient. It seems that by successfully diverting the actual traffic, the

undesirable excess emission in a relatively populated commercial zone is significantly

reduced and shifted to non-urban areas. Excess emission is also reduced in residential

and industrial zones but not as high as observed in the commercial zone. (TED2)

model solution produces quite similar outcomes as (TCED2) model solution but is less

efficient. Last model (CED2) solution has an almost equal total emission with (REG).

Both total and excess emissions are highly increased for the non-urban areas, and the

excess emission is importantly reduced in the commercial area. In sum, the capacity

enhancement is not efficient as the two former pricing strategies but accomplishes its

emission dispersion mission when compared to do nothing strategy (REG).
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(a) Toll pricing (TED1).
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(b) Capacity enhancement (CED1).
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(c) Toll pricing and capacity enhance-
ment (TCED1).

Figure 5.4: Minimizing the maximum emission concentration
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(a) Toll pricing (TED2).
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(b) Capacity enhancement (CED2).
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(c) Toll pricing and capacity enhance-
ment (TCED2).

Figure 5.5: Minimizing the excess emission
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(REG) (TED2) (CED2) (TCED2)
Val. Diff. Val. Diff. Val. Diff.

Tot.EM. 378.556 356.686 -5.8% 378.659 +0.0% 352.712 -6.8%
Res.EM. 73.907 73.951 +0.1% 74.452 +0.7% 72.921 -1.3%
Com.EM. 124.636 102.332 -17.9% 119.131 -4.4% 99.803 -19.9%
Ind.EM. 140.079 142.239 +1.5% 136.837 -2.3% 141.591 1.1%
NUr.EM. 39.934 38.164 -4.4% 48.239 +20.8% 38.397 -3.8%
Tot.EE. 75.080 49.765 -33.7% 71.272 -5.1% 48.640 -35.2%
Res.EE. 24.402 22.593 -7.4% 25.015 +2.5% 22.211 -9.0%
Com.EE. 25.389 2.428 -90.4% 20.108 -20.8% 2.382 -90.6%
Ind.EE. 21.631 20.146 -6.9% 19.931 -7.9% 19.808 -8.4%
NUr.EE. 3.659 4.599 +25.7% 6.218 +69.9% 4.239 +15.9%
Tot.DM. 360,608 346,826 -3.8% 369,634 +2.5% 349,377 -3.1%
Veh.EM. 1.050 1.028 -2.0% 1.024 -2.4% 1.010 -3.8%

Table 5.3: Statistics for models with maximum emission concentration minimization
objective

5.2 Models with Travel Time Reliability

In this section, we present the numerical results for the risk-averse models with the

travel-time reliability. As discussed in Chapter 4, these models are formulated based

on a set of scenarios representing the conditions of the stochastic network. First we

discuss the details of generating the set of scenarios for a given transportation network.

In order to provide illustrative results we consider the well-known small-size Nine Node

network, which consists of 9 nodes and 18 arcs. We also consider the larger Sioux Falls

network to obtain more elaborative results. Using the generated problem instances,

we analyze the effects of incorporating the risk terms on the toll pricing decisions, the

effects of the risk parameters and the alternate objectives.

5.2.1 Generating Problem Instances

In order to test our models, we consider several problem instances of different sizes.

In this computational study, we focus three cases. In the first case we focus only

on the randomness in the link capacities and the free flow times are assumed to be

deterministic. In the second one, the free-flow times are assumed to be random and

the link capacities are assumed to be deterministic. In the last case, we focus on

randomness in both of these system variables. Thus, a scenario represents a joint

realization of the link capacities in the first case, joint realization of the link free-flow

times in the second case and combination of these two cases in the last one. We

generate two groups of data sets to show the effectiveness of the proposed models.
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Group I

The data sets with random link capacities are generated according to the following

ordered steps:

• We obtain the UE solution of the deterministic TAP for the specified network.

• We calculate the unit travel time for each link according to the flow values under

the UE.

• We find the shortest paths for each O-D pair according to the calculated unit

travel time values.

• We determine the critical link set Â based on the shortest paths. We say that

a link is “critical” if it appears on the shortest paths of several (more than one)

different origin-destination pairs.

• The realizations of the capacities of the critical links, βs
ij, s ∈ S, (i, j) ∈ Â, are

generated from the original capacity values by multiplying each of them with a

random coefficient. This random coefficient is sampled from a uniform distribu-

tion on the interval [0.3,0.7]. The realized capacity values for the noncritical links

(links belonging to the set A/Â) are set as their original values. Thus, there is

no disruption associated with the noncritical links under the generated scenarios.

• Scenario probabilities ps, s ∈ S, are set to be equal or sampled from the uniform

distribution on the interval [0.2,0.6] and then normalized.

Data sets with random link free-flow times are generated according to the following

ordered steps:

• We follow the same first four steps listed above.

• We examine the critical link set and we select nodes that are the intersection of

two or more critical links. We also name these nodes as “critical”.

• We assume that the set of incoming and outgoing links, (i, j) ∈ Ă, of the critical

nodes are subject to degradation so there is a increases in the free-flow times of

these link.

• The realizations of the free-flow times of these links, αs
ij, s ∈ S, (i, j) ∈ Ă, are

generated from the original free-flow time values by multiplying each of them
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with a random coefficient. This random coefficient is sampled from a uniform

distribution on the interval [2,4]. Since a link connect two different nodes and so

it is incoming link for one of those and outgoing link for the other, it is subjected

to degradation two times. Thus, we select the maximum one as the realization

for these kind of links. The realized free-flow time values for the remaining links

(links belonging to the set A/Ă) are set as their original values.

• Scenario probabilities ps, s ∈ S, are set to be equal or sampled from the uniform

distribution on the interval [0.2,0.6] and then normalized.

Data sets with random link capacities and free-flow times are generated as follows:

In the first data set we focus on only the capacity degradations and the free flow

times are assumed to be deterministic. On the other hand, in the second data set we

focus on only the free-flow time degradations and the link capacities are assumed to be

deterministic. Here we combined the random link capacities of the first data set with

the random free-flow times of the second data set and obtained the mixed case.

Group II

To generate this family of data sets with random link capacities, we follow the

same steps listed above for the random link capacities, but different that the previous

one, the realized capacities of the critical links are generated using random multipliers

sampled from the uniform distribution on the interval [0.2,0.6]. Thus, the capacity

degradation is more likely to be worse under this type of scenarios.

Similarly, to generate this kind of data set with random free-flow times, we again

follow the same steps listed for the random free-flow times, but this time the realized

free-flow times are generated using random multipliers sampled from the uniform dis-

tribution on the interval [2.5,5]. Thus, the free-flow time degradation is also more likely

to be worse under this type of scenarios.

For the case with random link capacities and free-flow times, we again combine the

previous two cases.

Here we elaborate on why we utilize the critical links while constructing the sce-

narios. In real-life applications the travelers generally take the potential capacity and

free-flow time degradations and the associated variability of the travel times into con-

sideration. Therefore, the travelers may make different route choices compared to the

setup with the deterministic travel times. In order to illustrate such different travel-

ing behaviors under the stochastic setup, it is crucial to generate scenarios where the
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capacities and free-flow times of some of the crucial links are degraded. In a trans-

portation network it is common that some of links are widely used, since they are on

several reasonably short paths between some O–D pairs. It is clear that any capacity

or free-flow time degradation on such a widely-used link is more likely to result in

different traveling behaviors. Therefore, we select the links that appear more than one

shortest path and we refer them as “critical” links.

In the subsequent part, we number the data set using the notation “xW y”, where

“x” denotes the group number, “y” denotes the data set number within the group and

“W” denotes the randomness type (link capacity, free-flow time or both link capacity

and free-flow time). For example, “1A 2” indicates the second data set of Group I with

random link capacities. Similarly, if the instance is generated according to the random

free-flow time values, we denote it by “B” instead of “A” and if the randomness is due

to both the link capacities and the free-flow times then it is denoted by “C”.

5.2.2 Risk-Averse Models with Only Risk Terms

In this section, we present the expectation and CVaR values of the random outcomes

of interest associated with the risk-neutral models and the models with only risk terms.

We first present results on the random aggregated unit travel times (MUTT) and the

random maximum unit travel times (MTTT) for the Nine Node (NN) and the Sioux

Falls (SF) networks. Then we extend our study for the Sioux Falls network by present-

ing results on two additional random outcomes of interest; the random maximum unit

travel time (AUTT) the random maximum total travel time (ATTT). In other words,

we present results on

• the random aggregated unit travel times (MUTT) associated with the solutions

obtained by solving the risk-neutral model (EMUTT) and the risk-averse model

(MUTT CVaR) (for the NN and SF networks)

• the random maximum unit travel times (MTTT) associated with the solutions

obtained by solving the risk-neutral model (EMTTT) and the risk-averse model

(MTTT CVaR) (for the NN and SF networks).

• the random aggregated total travel times (AUTT) associated with the solutions

obtained by solving the risk-neutral model (EAUTT) and the risk-averse model

(AUTT CVaR) (for the SF network).
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• the random maximum total travel times (ATTT) associated with the solutions

obtained by solving the risk-neutral model (EATTT) and the risk-averse model

(ATTT CVaR) (for the SF network).

Please see Appendix A for the dimension of these problems.

Note that we also provide the relative differences of the expectation and CVaR

values of the random outcomes associated with the risk-averse models with respect

to the outcomes obtained by the risk-neutral models. Thus, for the CVaR values we

define the relative difference (RD) as follows:

RD =
(CVaR1

α − CVaR2
α)

CVaR2
α

, (5.1)

where CVaR1
α and CVaR2

α correspond to the risk-averse and the risk-neutral models,

respectively. The relative differences of the expectation values are also found similarly.

Results for the Nine Node Network

Here, we present results for one data set from Group 1 with random link capacities.

The results presented in this part are obtained with equal and different scenario prob-

abilities.

1. Comparative results with MUTT

α = 0.8
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=10 42.78 42.40 55.52 29.99 -22.9522% 41.3738%

N=100 42.87 37.51 52.44 30.29 -18.2445% 23.8536%
Different N=10 40.28 40.22 57.57 28.21 -30.0306% 42.5460%

N=100 44.40 37.48 52.97 30.39 -16.1809% 23.3441%
α = 0.9

Type of Number of Risk-averse Model Risk-neutral Model Relative Difference
Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

Equal N=10 42.96 42.87 87.43 29.99 -50.8579% 42.9543%
N=100 47.92 40.17 80.14 30.29 -40.2008% 32.6493%

Different N=10 40.28 40.28 92.31 28.21 -56.3609% 42.7795%
N=100 48.64 43.30 81.19 30.39 -40.0932% 42.4786%

Table 5.4: Comparative results with MUTT with fixed demand for the NN network
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α = 0.8
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=10 40.15 27.61 46.10 21.74 -12.9085% 26.9988%

N=100 36.34 26.43 71.06 20.93 -48.8612% 26.2803%
Different N=10 41.81 27.22 52.27 22.14 -20.0159% 22.9380%

N=100 37.01 26.64 72.39 21.82 -48.8701% 22.0711%
α = 0.9

Type of Number of Risk-averse Model Risk-neutral Model Relative Difference
Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

Equal N=10 65.66 27.83 88.12 21.74 -25.4900% 28.0490%
N=100 49.15 26.40 126.96 20.93 -61.2848% 26.1440%

Different N=10 60.93 27.34 89.93 22.14 -32.2507% 23.4526%
N=100 51.48 26.80 129.69 21.82 -60.3027% 22.8064%

Table 5.5: Comparative results with MUTT with elastic demand for the NN network

As seen from Tables 5.4 and 5.5, incorporating the risk measure, CVaR, help

us to obtain more travel time reliable policies with respect to the risk-neutral

case. It is also seen that, increasing the α parameter result in increases in the

corresponding CVaRα values. As a result CVaRα accounts for risk for larger

realizations. Here, we are able to achieve up to 56% reduction amounts in the

fixed demand case and 61% reduction amounts in the elastic demand case in the

CVaR values with respect to risk-neutral case.

2. Comparative results with MTTT

α = 0.8
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=10 1207.78 1199.78 1450.58 825.26 -16.7379% 45.3827%

N=100 1210.70 975.85 1380.86 807.47 -12.3226% 20.8523%
Different N=10 1253.73 1207.78 1436.17 818.54 -12.7030% 47.5534%

N=100 1211.97 925.34 1370.23 805.55 -11.5501% 14.8710%
α = 0.9

Type of Number of Risk-averse Model Risk-neutral Model Relative Difference
Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

Equal N=10 1226.83 1201.11 2232.23 825.26 -45.0403% 45.5444%
N=100 1405.61 985.94 2097.60 807.47 -32.9895% 22.1026%

Different N=10 1272.95 1233.97 2030.58 818.54 -37.3109% 50.7529%
N=100 1445.05 1173.07 2076.08 805.55 -30.3952% 45.6237%

Table 5.6: Comparative results with MTTT with fixed demand for the NN network
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α = 0.8
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=10 838.94 688.03 867.34 663.01 -3.2739% 3.7742%

N=100 830.76 693.22 846.66 651.36 -1.8778% 6.4274%
Different N=10 815.34 707.65 867.34 661.32 -5.9954% 7.0055%

N=100 834.26 744.76 844.75 651.29 -1.2409% 14.3521%
α = 0.9

Type of Number of Risk-averse Model Risk-neutral Model Relative Difference
Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

Equal N=10 1064.25 731.81 1122.74 663.01 -5.2097% 10.3774%
N=100 1005.08 693.82 1090.78 651.36 -7.8570% 6.5195%

Different N=10 935.66 686.98 1096.62 661.32 -14.6781% 3.8794%
N=100 1007.40 694.17 1086.56 651.29 -7.2855% 6.5841 %

Table 5.7: Comparative results with MTTT with elastic demand for the NN network

Tables 5.6 and 5.7 present the results for the maximum total travel time, MTTT.

As presented in these tables, we observe higher CVaRα and Expectation values. Since

we concentrate on the total number of travelers in a link rather than a single one,

observing high values is not surprising. Similar to the previous results obtained for the

MUTT case, here we also obtain significant reductions amounts up to 45%.

If we assume the demand in the transportation network is elastic then depending

on the travel time and pricing policy, some of the network users may shift to alternate

transportation means (see Appendix E for the percentage of shifted total demand). As

a consequence of this behavior, most of the time depending on the amount of shifted

demand, it is reasonable to observe decreases in the performance measures, CVaRα and

Expectation (see Table 5.7). However, it is not possible to say that using the elastic

demand instead of the fixed one lead greater or smaller RD amounts. In the rest of

this study we will present results with only fixed demand, for more results with elastic

demand see Appendix C.

In all of the tables above, we present results for different number of scenarios and

using different sizes of problem instances leads different outcomes. Note that, increasing

the number of scenarios does not have to result in better reduction amounts. The only

claim that we can make is, larger sizes of scenarios helps us to observe more realistic

cases.

In order to analyze the effect of different network type, instance type and instance

size, we present results with Sioux Falls network for different instances with different

scenario sizes.
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Results for the Sioux Falls Network

In this section we comparatively analyze the risk-averse versus risk-neutral models by

using the Sioux Falls network. We present some selected result sets for three different

sizes of scenarios of two different data sets and we only consider equal scenario proba-

bilities. For more results with fixed and elastic demand, see Appendix B and Appendix

C respectively. In some of the tables below, we also provide CPU times for illustrative

purposes.

1. Comparative results with MUTT

α = 0.8
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 1 N=50 436.56 209.60 494.50 200.88 -11.7165 % 4.3443 %
1A 2 426.10 207.04 484.58 195.65 -12.0671% 5.8220 %
1A 1 N=100 436.55 208.18 488.21 198.35 -10.5820 % 4.9558%
1A 2 414.89 196.20 461.63 189.31 -10.1245% 3.6421 %
1A 1 N=200 449.36 211.48 503.9735 200.32 -10.8364% 5.5727%
1A 2 419.46 205.33 474.68 192.85 -11.6341 % 6.4713 %

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 1 N=50 720.26 210.20 861.53 200.88 -16.3975% 4.6430%
1A 2 703.97 206.89 845.74 195.65 -16.7628 % 5.7440%
1A 1 N=100 818.81 198.92 850.54 198.35 -3.7305% 0.2897%
1A 2 702.12 195.15 802.03 189.31 -12.4574% 3.0853%
1A 1 N=200 790.43 206.12 883.54 200.32 -10.5383% 2.8963%
1A 2 681.38 206.18 826.97 192.85 -17.6047% 6.9133%

Table 5.8: Comparative results with MUTT with fixed demand for the SF network

It can be seen from Table 5.8 that there is a great increase in the values of CVaR

and expectation. Since the SF network utilize more demand than NN network,

observing higher values of these performance measures are expected. Moreover,

RD amounts that we illustrate in this table is smaller than the one presented for

the NN network (see Table 5.4). This is a consequence of using relatively bigger

network which contains more alternative paths. Even though we have smaller

RD amounts with respect to NN network, we again attain our main objective

and obtain 17% relative difference amount by the risk-averse model with respect

to the risk-neutral case.
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α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1B 2 N=100 72.04 70.16 129.48 65.11 -44.3569% 7.7539% 330 323
2B 1 95.44 76.26 135.67 74.34 -29.6518% 2.5857% 343 325
1B 2 N=200 86.52 70.56 126.77 65.66 -31.7523% 7.4635% 611 692
2B 1 81.13 79.70 131.93 74.72 -38.5059% 6.6599% 760 651

Table 5.9: Comparative results with MUTT with fixed demand for the SF network

In the Table 5.8, we display results for the random link capacities. On the other

hand, Table 5.9 provides results for the random free-flow times. As seen from

this table, we are again successful to obtain significant amount of decreases in

the CVaR values. It is also seen that we obtain better reduction amounts with

respect to the case that utilize the random link capacities, but note that all these

results are network and data dependent thus, in a different network structure or

with a different problem instance it is also possible to observe the reverse case.

2. Comparative results with MTTT

α = 0.8
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 2 N=50 5272.01 2300.71 6218.13 2208.95 -15.2154% 4.1541%
2A 1 12901.43 5588.30 15093.65 5332.40 -14.5241% 4.7989%
1A 2 N=100 4907.46 2225.28 6004.63 2149.38 -18.2721% 3.5314%
2A 1 11842.98 5302.15 14095.10 5068.80 -15.9780% 4.6035%
1A 2 N=200 4964.55 2302.68 6346.38 2182.43 -21.7736% 5.5099%
2A 1 12291.73 5471.76 14734.07 5233.06 -16.5761% 4.5614%

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 2 N=50 9226.08 2292.46 11229.59 2208.95 -17.8413% 3.7806%
2A 1 22167.85 5588.32 27295.20 5332.40 -18.7848% 4.7993%
1A 2 N=100 8649.16 2212.97 10823.70 2149.38 -20.0905% 2.9585%
2A 1 20027.20 5301.76 25377.96 5068.80 -21.0843% 4.5959%
1A 2 N=200 8751.57 2275.62 11551.31 2182.43 -24.2374% 4.2697%
2A 1 20832.67 5471.05 26610.33 5233.06 -21.7121% 4.5477%

Table 5.10: Comparative results with MTTT with fixed demand for the SF network

Here we display results for the case that we focus on the total number of users

in a link. As presented in Table 5.10, using the risk-averse model with MTTT

enables us to obtain up to 24% more reliable policies than the risk-neutral case.

We also observe from this table that when we increase the number of scenarios,

we obtain better RD amounts. This means that for the more realistic cases, the

risk-averse model which incorporate MTTT yields better results. Note that, it

does not always have to be the case, we may not always obtain better results

with large number of scenarios.
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Here we present the following table (Table 5.11) to show the effect of a different

instance type. The results are obtained according to random link capacities

and free-flow times and it is seen that we again achieve significant amount of

improvements.

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1C 2 N=100 23757.61 5469.00 26448.58 5454.39 -10.1743% 0.2679% 364 353
2C 1 62408.67 14664.52 69805.71 14566.64 -10.5966% 0.6719% 395 347
1C 2 N=200 22717.94 5690.36 26134.65 5557.35 -13.0735% 2.3935% 771 715
2C 1 65245.98 15156.48 71929.47 15084.90 -9.2917% 0.4746% 745 736

Table 5.11: Comparative results with MTTT with fixed demand for the SF network

3. Comparative results with AUTT

α = 0.8
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 1 N=50 1805.80 1122.52 1816.17 1122.21 -0.5712% 0.0278%
1A 2 1637.38 1065.20 1637.48 1064.91 -0.0059% 0.0269%
1A 1 N=100 1875.68 1102.29 1878.90 1101.44 -0.1713 % 0.0773%
1A 2 1659.70 1065.28 1660.34 1065.23 -0.0386% 0.0046%
1A 1 N=200 1822.53 1089.41 1831.14 1089.00 -0.4701 % 0.0378%
1A 2 1735.88 1075.38 1741.49 1072.79 -0.3224 % 0.2414%

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 1 N=50 3340.10 1123.21 3363.74 1122.21 -0.7030 % 0.0890%
1A 2 2630.65 1069.19 2634.69 1064.91 -0.1536 % 0.4019%
1A 1 N=100 3158.34 1102.19 3161.28 1101.44 -0.0930 % 0.0683%
1A 2 2644.89 1066.31 2646.11 1065.23 -0.0458 % 0.1014%
1A 1 N=200 3097.83 1089.50 3106.21 1089.00 -0.2698 % 0.0460%
1A 2 2915.21 1071.48 2922.70 1071.06 -0.2561 % 0.0399 %

Table 5.12: Comparative results with AUTT with fixed demand for the SF network

Table 5.12 shows that, although there is some improvement with respect to the

risk-neutral case, here we do not achieve such good improvement amounts that

we obtain for the previous models. Since we are dealing with link degradations,

we may observe relatively large travel times on some of the effected links. In

the previously described models, we concentrate on the maximum of those travel

times and by minimizing this value we are able to minimize all the remaining

ones automatically. On the other hand, here we consider all unit travel times one

by one and we aggregate them and so larger travel time values are balanced by

the smaller ones. As a consequence, we obtain smaller RD amounts with respect

to the previous models incorporating MUTT and MTTT. This result holds for
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most of the time but sometimes it is also possible to observe the reverse case

depending on the network type, instance type or scenario size.

4. Comparative results with ATTT

α = 0.8
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1A 2 N=50 13939.70 7594.75 14287.99 7542.43 -2.4377% 0.6938% 150 116
2A 1 32055.50 15448.59 33379.61 15238.10 -3.9668% 1.3813% 137 117
1A 2 N=100 14452.57 7539.14 14550.91 7489.31 -0.6758% 0.6653% 326 216
2A 1 32759.06 15153.72 33130.28 14952.57 -1.1205% 1.3452% 322 249
1A 2 N=200 15016.96 7678.26 15230.92 7590.83 -1.4048% 1.1519% 788 466
2A 1 34377.91 15660.63 36018.16 15387.74 -4.5540% 1.7734% 813 499

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1A 2 N=50 26816.70 7615.76 27205.62 7542.43 -1.4296% 0.9722% 130 116
2A 1 58565.02 15540.90 63527.50 15238.10 -7.8115% 1.9871% 120 117
1A 2 N=100 26400.56 7563.09 27343.55 7489.31 -3.4487% 0.9851% 292 216
2A 1 58676.74 15246.06 62740.14 14952.57 -6.4766% 1.9628% 298 249
1A 2 N=200 27265.51 7677.69 28150.04 7590.83 -3.1422% 1.1443% 658 466
2A 1 62930.72 15660.15 66667.89 15387.74 -5.6057% 1.7703% 751 499

Table 5.13: Comparative results with ATTT with fixed demand for the SF network

Table 5.13 display results for the models minimizing the aggregated total travel

times on each link instead of aggregated unit travel times. As seen from table, we

obtain better reduction amounts than the previous model employing AUTT. We are

able to obtain improvements up to 6% in the CVaR values with respect to the risk-

neutral problem.

Up to now we present results with tables to show the relative differences of risk-

averse models with respect to risk-neutral models, here we also provide figures for

some of the selected models with different problem instances, to shows the cumulative

distributions of the random travel times associated with the risk-neutral problems (the

“Base problems”) and the risk-averse problems for α = 0.8 and α = 0.9. As seen from

Figure 5.6, the α parameter helps us to shape the cumulative distribution according to

the preferences of the decision maker. Larger α helps us to shift the right tail of the

cumulative distribution function to the left.

As a result of the conducted computational study we observe that the proposed

risk-averse models are successful to achieve network reliability. We observe that models

employing a function of maximum travel time yields better results. We also observe

that using different problem instances is crucial to see the performance of the proposed

models. For more results with different problem instances see the Appendix B and

Appendix C.
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Figure 5.6: Cumulative distribution functions
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5.2.3 Risk-Averse Models with Mean-Risk Terms

In this section, we present results for the models with mean-risk terms. We present

results on the aggregated unit travel (AUTT) and maximum unit travel time (MUTT)

for the Nine Node (NN) and Sioux Falls (SF) networks.

The mean-risk approach quantifies the problem for two criteria: the mean and

CVaR. In addition to the α parameter that we discussed in the risk-averse models with

only risk terms, mean-risk functions utilize another risk parameter, θ. It is refereed as a

risk coefficient, which is specified by decision makers according to their risk preferences.

Here we discuss how these risk parameters effect the optimal solutions and we report

the expected travel times versus CVaRα for different values of risk parameters α and

θ.

Results for the Nine Node Network

Here, we provide results for the NN network. We use one data set (belongs to Group

1 with random link capacities) and we obtain results with equal and different scenario

probabilities.

1. Comparative Results with AUTT

α = 0.8 and Number of Scenarios=100
Type of Trade-off Par. Fixed Elastic

Probability θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference
Equal 0 261.06 186.13 CVaRα Exp. 230.32 154.95 CVaRα Exp.

0.1 259.74 186.14 -0.5076% 0.0070% 229.59 154.99 -0.3169% 0.0275%
1 256.34 186.38 -1.8087% 0.1365% 224.55 155.00 -2.5073% 0.0320%
10 256.03 186.87 -1.9268% 0.3990% 219.92 155.00 -4.5156% 0.0324%

Different 0 271.28 186.56 CVaRα Exp. 231.69 155.12 CVaRα Exp.
0.1 270.35 186.94 -0.3433% 0.2031% 231.57 155.91 -0.0492% 0.5090%
1 268.59 187.31 -0.9944% 0.3994% 227.29 156.26 -1.8966% 0.7334%
10 265.53 187.63 -2.1197% 0.5719% 223.70 159.56 -3.4487% 2.8610%

α = 0.9 and Number of Scenarios=100
Type of Trade-off Par. Fixed Elastic

Probability θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference
Equal 0 395.24 186.13 CVaRα Exp. 345.51 154.95 CVaRα Exp.

0.1 390.61 186.17 -1.1719% 0.0251% 344.08 155.02 -0.4147% 0.0476%
1 377.58 187.03 -4.4695% 0.4863% 334.33 155.10 -3.2370% 0.0932%
10 373.44 187.67 -5.5155% 0.8303% 299.10 155.13 -13.4322% 0.1180%

Different 0 414.34 186.56 CVaRα Exp. 349.65 155.120 CVaRα Exp.
0.1 410.12 186.97 -1.0189% 0.2211% 339.30 155.124 -2.9615% 0.0026%
1 402.58 187.32 -2.8400% 0.4076% 330.53 155.125 -5.4687% 0.0028%
10 383.44 187.97 -7.4575% 0.7567% 305.12 155.13 -12.7351% 0.0088%

Table 5.14: Results for the mean-risk models with AUTT for the NN network and
N = 100
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2. Comparative Results with MUTT

α = 0.8 and Number of Scenarios=100
Type of Trade-off Par. Fixed Elastic

Probability θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference
Equal 0 52.44 30.29 CVaRα Exp. 71.06 20.93 CVaRα Exp.

0.1 52.44 30.29 0.0000% 0.0000% 48.04 21.19 -32.3965% 1.2647%
1 48.06 31.11 -8.3552% 2.7352% 47.83 21.21 -32.6874% 1.3670%
10 44.60 37.38 -14.9542% 23.4280% 36.34 26.43 -48.8612% 26.2803%

Different 0 52.97 30.39 CVaRα Exp. 72.39 21.82 CVaRα Exp.
0.1 52.90 30.42 -0.1326% 0.0805% 47.33 22.19 -34.6109% 1.7075%
1 49.16 32.22 -7.1940% 6.0311% 46.89 22.46 -35.2160% 2.9148%
10 45.62 36.48 -13.8781% 20.0414% 37.01 26.64 -48.8701% 22.0711%

α = 0.9 and Number of Scenarios=100
Type of Trade-off Par. Fixed Elastic

Probability θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference
Equal 0 80.14 30.29 CVaRα Exp. 126.96 20.93 CVaRα Exp.

0.1 80.14 30.29 0.0000% 0.0000% 81.49 21.19 -35.8157% 1.2663%
1 71.92 30.88 -10.2541% 1.9674% 76.62 21.299 -39.6503% 1.7722%
10 64.22 33.71 -19.8628% 11.3120% 60.30 23.42 -52.5009% 11.8860%

Different 0 81.19 30.39 CVaRα Exp. 129.69 21.82 CVaRα Exp.
0.1 80.91 30.41 -0.3453% 0.0655% 87.52 22.99 -32.5142% 5.3721%
1 75.46 31.89 -7.0646% 4.9209% 85.75 23.232 -33.8850% 6.4711%
10 63.25 34.99 -22.1023% 15.1214% 58.43 24.79 -54.9472% 13.6063%

Table 5.15: Results for the mean-risk models with MUTT for the NN network and
N = 100

Tables 5.14 and 5.15 provide results to show how risk parameter effect the solutions

of the mean-risk models employing AUTT and MUTT. As presented in these tables,

increasing θ increases the the relative importance of the risk term. In other words,

increasing θ result in smaller CVaR values and larger expected values. Thus, larger θ

values lead more risk averse policies. On the other hand, larger α values leads to higher

CVaR and mean-risk function values, but do not always result in higher expected cost.

Note that when θ=0 we obtain the risk-neutral model with expected travel time

functions. All of the relative difference amounts presented in these tables are obtained

according to the risk-neutral case (θ=0) by using the equation 5.1. For a given θ, CVaR

value of the mean-risk function is denoted by CVaR1
α, whereas CVaR2

α is used to denote

the CVaR value of the risk-neutral case. The relative differences for the expectation

values are also found in a similar manner.
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Results for the Sioux Falls Network

In the following parts, we display results for Sioux Falls network. We use different

data sets with equal scenario probabilities to generate the following results. Tables

presented in this section include instances with only 200 scenarios. For more results

with different number of scenarios and with different models please see Appendix D.

1. Comparative Results with AUTT

α = 0.8 and Number of Scenarios=200
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 1831.14 1089.00 CVaRα Exp. 517.07 422.75 CVaRα Exp.
0.1 1826.67 1089.02 -0.2444 % 0.0020 % 516.78 422.76 -0.0561 % 0.0022 %
1 1826.67 1089.02 -0.2444% 0.0020 % 515.31 422.80 -0.3406 % 0.0119 %
10 1822.63 1089.34 -0.4646 % 0.0316 % 514.39 422.88 -0.5189 % 0.0315 %

1A 2 0 1741.49 1072.79 CVaRα Exp. 509.70 423.21 CVaRα Exp.
0.1 1736.19 1075.36 -0.3042 % 0.2398 % 509.55 423.21 -0.0294 % 0.0001 %
1 1736.06 1075.36 -0.3118 % 0.2402 % 509.31 423.26 -0.0777 % 0.0121 %
10 1735.91 1075.37 -0.3204 % 0.2411 % 509.21 423.32 -0.0976 % 0.0255 %

α = 0.9 and Number of Scenarios=200
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 3106.21 1089.00 CVaRα Exp. 679.85 422.75 CVaRα Exp.
0.1 3099.19 1089.06 -0.2258% 0.0057% 679.68 422.99 -0.0250% 0.0567%
1 3097.84 1089.09 -0.2695% 0.0082 % 679.00 423.01 -0.1242% 0.0616%
10 3097.83 1089.10 -0.2697 % 0.0089% 678.60 423.04 -0.1827% 0.0685%

1A 2 0 2922.70 1071.06 CVaRα Exp. 647.85 423.21 CVaRα Exp.
0.1 2922.54 1071.06 -0.0053 % 0.0001 % 647.85 423.21 0.0000% 0.0000%
1 2918.85 1071.22 -0.1317 % 0.0151 % 647.25 423.30 -0.0929% 0.0214%
10 2915.23 1071.48 -0.2556% 0.0394 % 647.25 423.30 -0.0929% 0.0214 %

Table 5.16: Results for the mean-risk models with AUTT for the SF network and
N = 200
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2. Comparative Results with MUTT

α = 0.8 and Number of Scenarios=200
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 503.97 200.32 CVaRα Exp. 56.51 25.95 CVaRα Exp.
0.1 500.84 200.36 -0.6208% 0.0187 % 54.66 25.95 -3.2674% 0.0136 %
1 486.08 201.73 -3.5514 % 0.7066 % 54.58 25.97 -3.4223% 0.0956 %
10 449.36 211.48 -10.8364 % 5.5727 % 54.55 25.98 -3.4666% 0.1149 %

1A 2 0 474.68 192.85 CVaRα Exp. 49.71 23.94 CVaRα Exp.
0.1 473.29 192.90 -0.2932% 0.0225 % 49.71 23.94 0.0000 % 0.0000 %
1 458.86 195.36 -3.3328 % 1.2995 % 49.66 23.98 -0.1006 % 0.1671 %
10 419.46 205.33 -11.6341 % 6.4713 % 49.61 24.00 -0.2000 % 0.2596 %

α = 0.9 and Number of Scenarios=200
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 883.54 200.32 CVaRα Exp. 84.79 25.95 CVaRα Exp.
0.1 876.46 200.36 -0.8020% 0.0187% 84.79 25.95 0.0000% 0.0000%
1 852.70 201.25 -3.4905% 0.4630% 81.74 26.20 -3.5964% 0.9634%
10 811.56 204.18 -8.1464% 1.9269% 79.43 26.92 -6.3231% 3.7380%

1A 2 0 826.97 192.85 CVaRα Exp. 81.92 23.94 CVaRα Exp.
0.1 767.91 196.97 -7.1421% 2.1330% 81.92 23.94 0.0000% 0.0000%
1 767.91 196.97 -7.1421% 2.1330% 81.92 23.94 0.0000% 0.0000%
10 683.72 205.83 -17.3222% 6.7295% 76.85 24.25 -6.1950% 1.3048 %

Table 5.17: Results for the mean-risk models with MUTT for the SF network and
N = 200

The interpretation of Tables 5.16 and 5.17 are similar with the previous discussion.

In comparison to the tables presented for the NN network, here we observe lower RD

amounts. Although we have smaller RD amounts, we can still observe the effect of the

risk parameter explicitly.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this study, we have developed several new optimization models to support the man-

agement of sustainable urban transportation systems. First, we focus on the mea-

surement of the gas emissions as an environmental sustainability criterion. To better

reflect the emission in the congested networks, we have derived emission functions with

respect to the traffic flow and used these functions in the proposed bilevel program-

ming models with fixed or elastic demand. In the models with the emission functions,

we have considered two main policies: the toll pricing and the capacity enhancement.

We have both focused on the total network emission and the emission dispersion with

alternate objectives. In this study, we have also considered the network reliability as a

sustainability measure. Several events have impact on network parameters such as the

link capacities and the free-flow times and so lead travel times to be random outcomes.

However, despite of all random disturbances a transportation system should maintain

an acceptable level of service. In particular, we consider the travel time reliability in

terms of traffic flow values to quantify the network reliability. We represent the un-

certain parameters of the network by random variables and characterize the associated

randomness by using a set of scenarios. A scenario represents the joint realization of

link capacities and free-flow times of all links in the network. Then using the scenario-

based approach we develop several stochastic bilevel programming formulations where

the travel time reliability is incorporated into the toll pricing problem. Moreover, we

quantify the travel time reliability by employing the risk measure CVaR on the alter-

nate network-based quantities, which are basically functions of the individual random

travel times. We introduce models with only risk terms and mean-risk terms on the

network-based quantities. We also present the risk-neutral models in order to analyze

the effect of incorporating the risk measures. Finally, we conduct a comprehensive

computational study to analyze the effects of different policies and present compar-

ative results for the proposed alternate models. As a consequence, for the models
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incorporating the emission functions we observe that the toll pricing strategies lead to

a significant decrease in the emission amounts but they also significantly decrease the

total travel demand. On the other hand, the capacity enhancement strategies lead to

an increase in the travel demand so they are not very efficient in terms of the emission

reduction. When two strategies are applied simultaneously, we observe compromised

results, in other words both the emission and total demand decrease. For the models

incorporating the travel time reliability, we succeed to obtain significant amount of

improvements in terms of the travel time reliability with respect to the risk-neutral

models. We also observe that models with the maximum unit and total travel times

yield better solutions than the models with aggregated unit and total travel times.

For the future research, we determine numerous research paths to follow. Since

the emission functions include the link capacity and free-flow time terms, variations

on these system variables lead emission amounts to be random outcomes. Therefore,

CVaR can also be introduced on the random emission values to obtain risk-averse

policies. Incorporating a risk measure into the lower level traffic assignment problem is

also an another important research problem. Such a model would be more realistic in

representing the travelers’ route choice behaviors, since the travelers make their route

choice decisions not only based on the expected travel time values but also based on the

travel time variations. Furthermore, we may also develop different scenario generation

techniques to analyze the performance of the proposed models. Another important

thing is how to identify the links to be tolled or enhanced. In this case, the resulting

models should involve integer decision variables. Thus, the problems become highly

difficult to solve. Since the users of a transportation network drive different types of

vehicles or commute by means of public transport, it would be significant to extend the

proposed models by considering the multi-modality of the flows. This will also increase

the accuracy of the models with the emission functions, since the different vehicles have

different emission profiles. Moreover, the road types (belt lines, highways, etc.) could

also have an impact on these emission profiles. Introducing multiple, mostly conflicting,

objectives within the proposed models leads to multi-objective optimization models.

This is also another possible research path. Since a typical real-life problem has a very

large scale, we intend to investigate fast solution methods that make use of the special

structure of the involved models unlike the of-the-shelf solvers.
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Appendix A

Dimensions of the Problems
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Appendix B

Additional Comparative Results for the Models with Only Risk Terms

with Fixed Demand

Results for the Nine Node (NN) Network

The results presented in this part are obtained according to the problem instance

belongs to the Group 1 with the random link capacities.

α = 0.8
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=10 263.87 186.25 270.77 185.68 -2.5507% 0.3077%

N=100 265.53 187.63 271.28 186.56 -2.1197% 0.5719%
Different N=10 244.44 187.78 248.90 187.37 -1.7955% 0.2166%

N=100 256.03 186.87 261.06 186.13 -1.9268% 0.3990%
α = 0.9

Type of Number of Risk-averse Model Risk-neutral Model Relative Difference
Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

Equal N=10 411.74 186.64 426.13 185.68 -3.3783% 0.5169%
N=100 379.99 188.31 414.34 186.56 -8.2922% 0.9374%

Different N=10 363.44 188.03 380.90 187.37 -4.5831% 0.3522%
N=100 373.41 187.67 395.24 186.13 -5.5242% 0.8315%

Table B.1: Comparative results with AUTT with fixed demand for the NN network

The following results are obtained according to the problem instance belongs to the

Group 1 with the random free-flow times.

α = 0.9
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=50 35.29 34.98 68.27 31.37 -48.3103% 11.5211%

N=100 35.54 35.17 76.06 31.44 -53.2709% 11.8681%
Different N=50 34.64 33.20 71.30 31.57 -51.4151% 5.1655%

N=100 35.67 34.62 76.52 31.37 -53.3836% 10.3708%

Table B.2: Comparative results with MUTT with fixed demand for the NN network
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α = 0.9
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=50 798.83 798.72 851.92 794.42 -6.2310% 0.5410%

N=100 802.91 801.46 862.39 797.13 -6.8978% 0.5426%
Different N=50 799.37 799.22 847.52 795.60 -5.6814% 0.4561%

N=100 801.18 800.86 866.89 795.38 -7.5800% 0.6893%

Table B.3: Comparative results with MTTT with fixed demand for the NN network

The results presented in this part are obtained according to the problem instance

belongs to the Group 1 with the random free-flow times and link capacities.

α = 0.9
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=50 193.45 107.18 413.79 75.65 -53.2491% 41.6824%

N=100 174.95 105.33 375.72 70.78 -53.4360% 48.8188%
Different N=50 190.55 106.89 375.58 71.31 -49.2652% 49.8938%

N=100 182.49 106.08 356.12 71.14 -48.7564% 49.1119%

Table B.4: Comparative results with MUTT with fixed demand for the NN network

α = 0.9
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=50 8115.79 4324.91 14779.17 2641.42 -45.0863% 63.7342%

N=100 6944.81 4207.81 13657.69 2559.34 -49.1509% 64.4100%
Different N=50 7781.43 4291.47 14779.17 2627.64 -47.3487% 63.3206%

N=100 7059.65 4219.29 13892.22 2575.37 -49.1827% 63.8328%

Table B.5: Comparative results with MTTT with fixed demand for the NN network
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Results for the Sioux Falls (SF) Network

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1B 2 N=100 2027.22 655.50 2037.54 643.96 -0.5067% 1.7925% 329 349
2B 1 2211.62 725.11 2238.06 715.20 -1.1811% 1.3852% 346 337
1B 2 N=200 2146.37 645.36 2146.57 645.33 -0.0089% 0.0037% 683 642
2B 1 2278.82 728.51 2395.45 727.22 -4.8690% 0.1773% 650 653

Table B.6: Comparative results with MTTT with fixed demand for the SF network

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1C 2 N=100 2334.25 486.55 2347.90 486.05 -0.5815% 0.1030% 349 337
2C 1 6422.52 1159.48 6456.75 1158.78 -0.5302% 0.0602% 346 335
1C 2 N=200 2350.20 489.12 2358.06 489.10 -0.3333% 0.003% 712 632
2C 1 6491.29 1188.06 6546.86 1186.69 -0.8488% 0.1158% 763 690

Table B.7: Comparative results with MUTT with fixed demand for the SF network
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Appendix C

Additional Comparative Results for the Models with Only Risk Terms

with Elastic Demand

Results for the Nine Node (NN) Network

The results presented in this part are obtained according to the problem instance

belongs to the Group 1 with the random link capacities.

α = 0.8
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=10 221.07 159.10 224.63 155.76 -1.5861% 2.1463%

N=100 206.37 155.07 230.32 154.95 -10.4021% 0.0743%
Different N=10 219.30 158.79 223.74 155.62 -1.9820% 2.0395%

N=100 223.70 159.56 231.69 155.12 -3.4487% 2.8610%
α = 0.9

Type of Number of Risk-averse Model Risk-neutral Model Relative Difference
Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

Equal N=10 325.11 158.72 336.49 155.76 -3.3837% 1.9044%
N=100 299.10 155.15 345.51 154.95 -13.4322% 0.1283%

Different N=10 335.04 158.68 362.26 155.62 -7.5117% 1.9684%
N=100 302.01 155.14 349.65 155.12 -13.6250% 0.0152%

Table C.1: Comparative results with AUTT with elastic demand for the NN network

The following results are obtained according to the problem instance belongs to the

Group 1 with the random free-flow times.

α = 0.9
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=50 34.89 32.42 75.27 31.17 -53.6486% 4.0208%

N=100 33.97 31.20 74.48 30.78 -54.3876% 1.3690%
Different N=50 35.30 34.98 68.49 31.26 -48.4525% 11.9201%

N=100 35.54 35.16 75.47 31.13 -52.9151% 12.9313%

Table C.2: Comparative results with MUTT with elastic demand for the NN network

86



α = 0.9
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=50 213.97 213.89 243.66 211.18 -12.1857% 1.2807%

N=100 228.00 227.92 268.94 224.36 -15.2208% 1.5877%
Different N=50 215.63 215.53 247.54 213.10 -12.8902% 1.1430%

N=100 227.92 227.58 268.85 224.00 -15.2247% 1.6003%

Table C.3: Comparative results with MTTT with elastic demand for the NN network

The results presented in this part are obtained according to the problem instance

belongs to the Group 1 with random free-flow times and link capacities.

α = 0.9
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=50 151.54 41.39 154.66 41.35 -2.0173% 0.1043%

N=100 149.42 41.26 154.13 41.24 -3.0503% 0.0719%
Different N=50 154.37 41.61 157.63 41.59 -2.0719% 0.0533%

N=100 152.69 41.37 155.17 41.34 -1.5989% 0.0696%

Table C.4: Comparative results with MUTT with elastic demand for the NN network

α = 0.9
Type of Number of Risk-averse Model Risk-neutral Model Relative Difference

Probability Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.
Equal N=50 3124.58 1499.62 6961.64 1298.53 -55.1172% 15.4860%

N=100 3039.95 1434.31 6189.76 1276.48 -50.8874% 12.3643%
Different N=50 3190.81 1488.39 7145.68 1298.57 -55.3463% 14.6176%

N=100 3105.13 1439.46 6361.76 1290.91 -51.1908% 11.5073%

Table C.5: Comparative results with MTTT with elastic demand for the NN network

87



Results for the Sioux Falls (SF) Network

α = 0.8
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 1 N=50 519.88 427.90 538.59 427.65 -3.4739% 0.0573%
1A 2 498.61 423.72 500.42 422.26 -0.3615% 0.3456%
1A 1 N=100 518.50 427.60 533.26 427.39 -2.7669% 0.0505 %
1A 2 502.39 423.60 510.11 422.82 -1.5119 % 0.1827 %
1A 1 N=200 514.35 422.91 517.07 422.75 -0.5271% 0.0360%
1A 2 509.21 423.32 509.70 423.21 -0.0976 % 0.0255%

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 1 N=50 698.70 427.97 702.68 427.65 -0.5663 % 0.0742%
1A 2 626.34 423.61 631.35 422.26 -0.7941 % 0.3202 %
1A 1 N=100 674.78 427.77 694.33 427.39 -2.8164% 0.0889%
1A 2 647.38 424.36 654.28 422.82 -1.0545% 0.3632%
1A 1 N=200 678.61 423.04 679.85 422.75 -0.1824% 0.0684%
1A 2 647.25 423.30 647.85 423.21 -0.0929% 0.0214%

Table C.6: Comparative results with AUTT with elastic demand for the SF network

α = 0.8
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 2 N=50 1480.71 1080.76 1516.75 1080.50 -2.3760% 0.0243%
2A 1 1489.17 1042.89 1498.81 1040.04 -0.6434% 0.2737%
1A 2 N=100 1499.66 1078.53 1540.13 1078.48 -2.6280% 0.0051%
2A 1 1517.96 1039.12 1527.46 1036.65 -0.6223% 0.2386%
1A 2 N=200 1491.47 1078.50 1533.52 1078.21 -2.7421 % 0.0266%
2A 1 1520.41 1037.76 1529.30 1036.56 -0.5813% 0.1155%

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 2 N=50 2045.60 1096.67 2195.56 1080.50 -6.8300% 1.4972 %
2A 1 2224.22 1044.01 2268.64 1040.04 -1.9581% 0.3814%
1A 2 N=100 2212.61 1079.99 2288.47 1078.48 -3.3151% 0.1399%
2A 1 2338.18 1039.79 2383.10 1036.65 -1.8849% 0.3028%
1A 2 N=200 2192.23 1078.78 2280.34 1078.21 -3.8641% 0.0528%
2A 1 2342.42 1038.78 2376.35 1036.56 -1.4277% 0.2143%

Table C.7: Comparative results with ATTT with elastic demand for the SF network
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α = 0.8
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 1 N=50 45.26 26.31 50.65 25.25 -10.6417% 4.1980%
1A 2 52.14 26.08 52.66 25.60 -0.9854% 1.8383%
1A 1 N=100 52.71 25.96 54.13 25.62 -2.6233 % 1.3271%
1A 2 45.80 23.99 46.25 23.89 -0.9691 % 0.4302%
1A 1 N=200 54.55 26.62 56.51 25.95 -3.4684 % 2.5819%
1 2 49.61 24.00 49.71 23.94 -0.2000 % 0.2596%

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 1 N=50 75.2708 26.28 82.3194 25.25 -8.5625% 4.0629%
1A 2 76.73 25.63 82.60 25.60 -7.1049% 0.0806%
1A 1 N=100 77.29972 26.61 82.5283 25.62 -6.3355 % 3.8570%
1A 2 73.96 23.96 74.21 23.89 -0.3362% 0.3030%
1A 1 N=200 79.4281 26.92 84.7894 25.95 -6.3231 % 3.7380%
1A 2 76.85 24.25 81.92 23.94 -6.1950 % 1.3048%

Table C.8: Comparative results with MUTT with elastic demand for the SF network

α = 0.8
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 2 N=50 305.72 141.30 313.85 140.07 -2.5918% 0.8822%
2A 1 350.70 173.96 396.37 166.95 -11.5214% 4.1984%
1A 2 N=100 288.22 137.89 289.98 136.66 -0.6073% 0.9041%
2A 1 344.65 161.75 349.51 156.46 -1.3904% 3.3822%
1A 2 N=200 260.04 133.64 272.82 128.72 -4.6867% 3.8276%
2A 1 335.26 165.80 354.78 157.04 -5.5002% 5.5784%

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp.

1A 2 N=50 515.02 140.79 531.08 140.07 -3.0256% 0.5183%
2A 1 636.62 176.38 683.14 166.95 -6.8097% 5.6460 %
1A 2 N=100 479.63 138.88 480.39 136.66 -0.1571% 1.6218%
2A 1 572.72 163.53 590.83 156.46 -3.0656% 4.5196%
1A 2 N=200 425.14 133.10 452.95 128.72 -6.1403% 3.4057%
2A 1 597.19 165.17 601.95 157.04 -0.7915% 5.1807%

Table C.9: Comparative results with MTTT with elastic demand for the SF network

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1B 2 N=100 85.13 33.39 88.80 33.37 -4.1380% 0.0547% 67 83
2B 1 103.26 38.84 103.53 38.81 -0.2612% 0.0684% 77 64
1B 2 N=200 84.92 33.28 84.93 33.28 -0.0103% -0.0050% 144 127
2B 1 104.19 38.73 104.354 38.71 -0.1544% 0.0416% 115 120

Table C.10: Comparative results with MUTT with elastic demand for the SF network

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1B 2 N=100 131.57 89.78 136.00 89.76 -3.2567% 0.0143% 78 113
2B 1 100.84 94.95 101.28 94.33 -0.4313% 0.6597% 61 73
1B 2 N=200 114.08 92.33 119.75 90.74 -4.7416% 1.7580% 147 147
2B 1 96.39 95.30 96.41 93.95 -0.0247% 1.4381% 146 162

Table C.11: Comparative results with MTTT with elastic demand for the SF network
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α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1C 2 N=100 114.04 91.87 118.41 89.60 -3.6856% 2.5373% 103 101
2C 1 108.81 105.71 109.55 103.04 -0.6771% 2.5924% 96 101
1C 2 N=200 109.31 91.60 113.67 90.36 -3.8334% 1.3710% 210 227
2C 1 100.94 98.65 101.41 98.64 -0.4638% 0.0088% 256 228

Table C.12: Comparative results with MTTT with elastic demand for the SF network

α = 0.9
Instance Number of Risk-averse Model Risk-neutral Model Relative Difference CPU Times
Number Scenarios CVaRα Exp. CVaRα Exp. CVaRα Exp. R-averse R-neutral

1C 2 N=100 85.58 33.57 86.15 33.40 -0.6603% 0.5274% 82 77
2C 1 89.12 34.22 89.49 34.17 -0.4124% 0.1541% 83 88
1C 2 N=200 85.32 33.32 85.64 33.29 -0.3740% 0.0785% 173 172
2C 1 88.04 34.19 88.16 34.16 -0.1321% 0.0981% 226 145

Table C.13: Comparative results with MUTT with elastic demand for the SF network
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Appendix D

Additional Comparative Results for the Mean-Risk Models

Results for the Nine Node (NN) Network

The results presented in this part are obtained according to the problem instance

belongs to the Group 1 with random link capacities.

α = 0.8 and Number of Scenarios=10
Type of Trade-off Par. Fixed Elastic

Probability θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference
Equal 0 248.90 187.37 CVaRα Exp. 224.63 155.76 CVaRα Exp.

0.1 248.38 187.378 -0.2110 0.0021 224.02 155.78 -0.2742 0.0158
1 246.33 187.48 -1.0329 0.0584 221.65 157.118 -1.3301 0.8733
10 244.74 187.71 -1.6743 0.1813 221.07 159.10 -1.5861 2.1463

Different 0 270.77 185.68 CVaRα Exp. 223.74 155.62 CVaRα Exp.
0.1 268.19 185.991 -0.9521 0.1665 223.16 155.85 -0.2599 0.1509
1 267.43 185.03 -1.2346 -0.3496 222.21 156.176 -0.6803 0.3601
10 265.42 185.13 -1.9766 -0.2971 220.73 157.35 -1.3461 1.1139

α = 0.9 and Number of Scenarios=10
Type of Trade-off Par. Fixed Elastic

Probability θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference
Equal 0 380.90 187.37 CVaRα Exp. 336.49 155.76 CVaRα Exp.

0.1 378.90 187.381 -0.5253% 0.0038% 336.49 155.76 0.0000% 0.0000%
1 371.01 187.56 -2.5963% 0.0996% 332.15 157.056 -1.2918% 0.8331%
10 364.67 187.93 -4.2599% 0.2973% 325.11 158.72 -3.3837% 1.9044%

Different 0 426.13 185.68 CVaRα Exp. 362.26 155.62 CVaRα Exp.
0.1 421.06 185.848 -1.1906% 0.0896% 361.94 155.78 -0.0865% 0.1030%
1 417.13 186.28 -2.1126% 0.3227% 356.70 157.557 -1.5348% 1.2475%
10 412.33 186.47 -3.2393% 0.4246% 345.18 157.63 -4.7125% 1.2957%

Table D.1: Results for the mean-risk models with AUTT for the NN network for N=10
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α = 0.8 and Number of Scenarios=10
Type of Trade-off Par. Fixed Elastic

Probability θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference
Equal 0 55.52 29.99 CVaRα Exp. 46.10 21.74 CVaRα Exp.

0.1 55.07 30.81 -0.8006% 2.7355% 46.10 21.74 0.0000% 0.0000%
1 54.39 30.98 -2.0310% 3.2821% 42.12 27.606 -8.6407% 26.9988%
10 49.58 34.63 -10.6989% 15.4810% 40.15 28.00 -12.9085% 28.8090%

Different 0 53.56 28.21 CVaRα Exp. 46.77 22.14 CVaRα Exp.
0.1 53.07 28.46 -0.9085% 0.8716% 46.57 22.54 -0.4328% 1.7862%
1 51.39 29.58 -4.0510% 4.8236% 44.22 24.560 -5.4548% 10.9086%
10 47.58 31.63 -11.1687% 12.1197% 42.52 26.81 -9.0946% 21.0778%

α = 0.9 and Number of Scenarios=10
Type of Trade-off Par. Fixed Elastic

Probability θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference
Equal 0 87.43 29.99 CVaRα Exp. 88.12 21.74 CVaRα Exp.

0.1 84.73 30.01 -3.0889% 0.0692% 86.56 21.81 -1.7687% 0.3468%
1 81.98 30.47 -6.2262% 1.5959% 84.54 22.106 -4.0635% 1.6968%
10 68.26 34.63 -21.9248% 15.4810% 74.62 25.42 -15.3187% 16.9423%

Different 0 84.29 28.21 CVaRα Exp. 78.94 22.14 CVaRα Exp.
0.1 82.33 28.32 -2.3275% 0.3860% 76.55 22.57 -3.0211% 1.9308%
1 79.98 29.17 -5.1071% 3.3927% 74.52 23.630 -5.5990% 6.7085%
10 65.26 32.41 -22.5767% 14.8808% 67.82 25.56 -14.0873% 15.4375%

Table D.2: Results for the mean-risk models with MUTT for the NN network for N=10

Results for the Sioux Falls (SF) Network

α = 0.8 and Number of Scenarios=50
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 1816.17 1122.21 CVaRα Exp. 538.59 427.65 CVaRα Exp.
0.1 1805.80 1122.52 -0.5712% 0.0280% 538.59 427.65 0.0000% 0.0000%
1 1805.80 1122.52 -0.5712% 0.0280% 537.12 427.729 -0.2734% 0.0179%
10 1805.80 1122.52 -0.5712% 0.0280% 520.10 427.87 -3.4321% 0.0506%

1A 2 0 1637.48 1064.91 CVaRα Exp. 500.42 422.26 CVaRα Exp.
0.1 1637.46 1064.91 -0.0011% 0.0001 % 500.42 422.26 0.0000 % 0.0000%
1 1637.39 1064.95 -0.0053% 0.0042% 500.42 422.26 0.0000% 0.0000%
10 1637.38 1065.20 -0.0059% 0.0269 % 498.61 423.72 -0.3615 % 0.3456%

α = 0.9 and Number of Scenarios=50
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 3363.74 1122.21 CVaRα Exp. 702.68 427.65 CVaRα Exp.
0.1 3357.89 1122.24 -0.1739% 0.0021 702.67 427.85 -0.0002% 0.0468%
1 3340.10 1122.52 -0.7030% 0.0278 699.22 427.89 -0.4917% 0.0550%
10 3340.10 1122.52 -0.7030% 0.0278 698.70 427.97 -0.5663% 0.0743%

1A 2 0 2634.69 1064.91 CVaRα Exp. 631.35 422.26 CVaRα Exp.
0.1 2634.40 1065.42 -0.0112% 0.0482 630.51 422.37 -0.1333% 0.0262%
1 2630.65 1069.19 -0.1536% 0.4019 629.94 422.84 -0.2235% 0.1361%
10 2630.65 1069.19 -0.1536% 0.4019 626.34 423.61 -0.7941% 0.3202%

Table D.3: Results for the mean-risk models with AUTT for the SF network for N=50
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α = 0.8 and Number of Scenarios=100
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 1878.90 1101.44 CVaRα Exp. 533.25 427.39 CVaRα Exp.
0.1 1878.90 1101.44 0.0000% 0.0000% 519.73 427.42 -2.5353% 0.0059%
1 1875.68 1102.29 -0.1713% 0.0770% 518.57 427.47 -2.7530% 0.0176 %
10 1875.68 1102.29 -0.1713% 0.0770 % 518.52 427.51 -2.7622% 0.0270%

1A 2 0 1660.34 1065.23 CVaRα Exp. 510.11 422.82 CVaRα Exp.
0.1 1660.30 1065.23 -0.0028% 0.0000% 508.02 422.86 -0.4082% 0.0089%
1 1660.06 1065.24 -0.0171 % 0.0009% 505.51 423.13 -0.9009% 0.0719%
10 1659.77 1065.27 -0.0343% 0.0037 % 502.55 423.55 -1.4820% 0.1706%

α = 0.9 and Number of Scenarios=100
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 3161.28 1101.44 CVaRα Exp. 694.33 427.39 CVaRα Exp.
0.1 3159.73 1101.46 -0.0489% 0.0020% 684.78 427.57 -1.3761% 0.0421%
1 3158.34 1102.19 -0.0930% 0.0683% 679.03 427.67 -2.2046% 0.0655 %
10 3158.34 1102.19 -0.0930% 0.0683% 674.78 427.77 -2.8164% 0.0889%

1A 2 0 2646.11 1065.23 CVaRα Exp. 654.28 422.82 CVaRα Exp.
0.1 2646.11 1065.23 0.0000% 0.0000 % 654.28 422.82 0.0000% 0.0000%
1 2644.89 1066.31 -0.0458 % 0.1014% 650.57 423.51 -0.5665% 0.1630%
10 2644.89 1066.31 -0.0458% 0.1014 % 648.00 423.60 -0.9596% 0.1834%

Table D.4: Results for the mean-risk models with AUTT for the SF network for N=100

α = 0.8 and Number of Scenarios=50
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 2 0 14287.99 7542.43 CVaRα Exp. 1516.75 1080.50 CVaRα Exp.
0.1 14210.74 7543.90 -0.5407 % 0.0195% 1481.75 1080.61 -2.3077% 0.0102%
1 14072.12 7561.85 -1.5109% 0.2575% 1480.95 1080.753 -2.3606% 0.0238%
10 13957.76 7588.87 -2.3112% 0.6157% 1480.71 1080.76 -2.3760% 0.0243%

α = 0.9 and Number of Scenarios=50
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 2 0 27205.62 7542.43 CVaRα Exp. 2195.56 1080.50 CVaRα Exp.
0.1 27205.62 7542.43 0.0000 % 0.0000% 2152.02 1080.51 -1.9829% 0.0009%
1 26939.65 7557.91 -0.9776% 0.2053% 2152.02 1080.91 -1.9829% 0.0378%
10 26896.70 7623.76 -1.1355% 1.0783 % 2130.25 1081.20 -2.9745% 0.0649%

Table D.5: Results for the mean-risk models with ATTT for the SF network for N=50

α = 0.8 and Number of Scenarios=100
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 2 0 14550.91 7489.31 CVaRα Exp. 1540.13 1078.48 CVaRα Exp.
0.1 14550.91 7489.31 0.0000% 0.0000 % 1505.13 1078.51 -2.2723% 0.0025%
1 14548.05 7489.43 -0.0197% 0.0016 % 1501.61 1078.51 -2.5013% 0.0032%
10 14491.36 7533.08 -0.4093% 0.5844 % 1499.92 1078.52 -2.6108% 0.0040%

α = 0.9 and Number of Scenarios=100
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 2 0 27343.55 7489.31 CVaRα Exp. 2288.47 1078.48 CVaRα Exp.
0.1 27329.84 7489.52 -0.0502% 0.0028% 2243.49 1078.49 -1.9656% 0.0006%
1 26591.53 7536.54 -2.7503% 0.6305% 2225.45 1078.50 -2.7540% 0.0019%
10 26450.08 7554.39 -3.2676% 0.8689% 2214.62 1079.51 -3.2272% 0.0958%

Table D.6: Results for the mean-risk models with ATTT for the SF network for N=100
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α = 0.8 and Number of Scenarios=200
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 2 0 15230.92 7489.31 CVaRα Exp. 1533.52 1078.21 CVaRα Exp.
0.1 15214.17 7591.54 -0.1100% 1.3650 % 1495.39 1078.26 -2.4864% 0.0042%
1 15049.55 7639.04 -1.1908 % 1.9992 % 1495.00 1078.34 -2.5121% 0.0121 %
10 15016.96 7678.26 -1.4048% 2.5229 % 1494.95 1078.50 -2.5153 % 0.0266 %

α = 0.9 and Number of Scenarios=200
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 2 0 28150.04 7590.83 CVaRα Exp. 2280.34 1078.21 CVaRα Exp.
0.1 28098.88 7591.85 -0.1817% 0.0135% 2198.03 1078.69 -3.6099 % 0.0446%
1 27520.44 7638.20 -2.2366 % 0.6241 % 2193.15 1078.70 -3.8238 % 0.0457%
10 27394.58 7668.95 -2.6837% 1.0292 % 2192.23 1078.78 -3.8641 % 0.0525%

Table D.7: Results for the mean-risk models with ATTT for the SF network and
N = 200

α = 0.8 and Number of Scenarios=50
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 494.50 200.88 CVaRα Exp. 50.65 25.25 CVaRα Exp.
0.1 491.06 201.01 -0.69504% 0.0648% 50.64 25.254 -0.0148% 0.0162%
1 475.86 201.91 -3.77006% 0.5166% 50.64 25.254 -0.0148% 0.0162%
10 436.56 209.60 -11.7165% 4.3443% 48.18 26.03 -4.8813% 3.0825%

1A 2 0 484.58 195.65 CVaRα Exp. 52.66 25.60 CVaRα Exp.
0.1 484.57 195.65 -0.0016% 0.0001% 52.66 25.60 0.0000% 0.0000%
1 474.29 196.32 -2.1232% 0.3458% 52.22 25.75 -0.8341% 0.5541%
10 426.10 207.04 -12.0671% 5.8220% 52.14 26.08 -0.9854% 1.8383%

α = 0.9 and Number of Scenarios=50
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 861.53 200.88 CVaRα Exp. 82.32 25.25 CVaRα Exp.
0.1 845.13 201.19 -1.90355% 0.15388% 81.37 25.40 -1.15382 % 0.58467%
1 819.46 201.85 -4.88295% 0.48455% 81.37 25.40 -1.1541% 0.58503%
10 783.79 204.29 -9.02323% 1.70136% 76.85 26.42 -6.64405 % 4.61446%

1A 2 0 845.74 195.65 CVaRα Exp. 82.60 25.60 CVaRα Exp.
0.1 845.74 195.65 0.0000% 0.0000% 82.60 25.60 0.0000 % 0.0000%
1 785.55 195.91 -7.1170% 0.1356% 82.60 25.60 0.0000 % 0.0000%
10 703.97 206.89 -16.7628% 5.7440% 76.73 25.63 -7.1049 % 0.0806%

Table D.8: Results for the mean-risk models with MUTT for the SF network for N=50
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α = 0.8 and Number of Scenarios=100
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 488.21 198.35 CVaRα Exp. 54.13 25.62 CVaRα Exp.
0.1 471.86 199.03 -3.34962% 0.34513% 54.06 25.62 -0.12359% 0.00062%
1 471.86 199.03 -3.34962% 0.34513% 52.72 25.62 -2.61051% 0.00361%
10 436.55 208.18 -10.582% 4.95585% 52.72 25.62 -2.61051% 0.00361%

1A 2 0 461.63 189.31 CVaRα Exp. 46.25 23.89 CVaRα Exp.
0.1 454.51 189.45 -1.5423% 0.0748% 46.19 23.95 -0.1251% 0.2882%
1 441.20 190.89 -4.4246% 0.8330% 46.18 23.96 -0.1528% 0.3030%
10 416.56 195.78 -9.7636% 3.4199% 45.80 23.99 -0.9691% 0.4302%

α = 0.9 and Number of Scenarios=100
Instance Trade-off Par. Fixed Elastic
Number θ CVaRα Exp. Relative Difference CVaRα Exp. Relative Difference

1A 1 0 850.54 198.35 CVaRα Exp. 82.53 25.62 CVaRα Exp.
0.1 822.43 198.71 -3.30529% 0.1814% 77.73 25.83 -5.81237% 0.81509%
1 821.14 198.75 -3.45636% 0.20083% 77.30 26.62 -6.33549% 3.91789%
10 818.81 198.92 -3.73032% 0.28966% 77.30 26.62 -6.33549% 3.91789%

1A 2 0 802.03 189.31 CVaRα Exp. 74.21 23.89 CVaRα Exp.
0.1 783.30 189.50 -2.3351% 0.1014% 73.96 23.96 -0.3362% 0.3030%
1 764.19 190.14 -4.7176% 0.4386% 73.96 23.96 -0.3362% 0.3030%
10 702.12 195.15 -12.4574% 3.0853% 73.96 23.96 -0.3362% 0.3030%

Table D.9: Results for the mean-risk models with MUTT for the SF network for N=100
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Appendix E

Percentages of the Total Shifted Demand to the Other Transportation

Means

Results for the models with only the risk terms for the Nine Node (NN)

Network

The results presented in this part are obtained according to the problem instance

belongs to the Group 1 with random link capacities.

Probability Number of α = 0.8 α = 0.9
Type Scenarios Risk-averse Model Risk-neutral Model Risk-averse Model Risk-neutral Model
Equal N=10 34% 33% 35% 33%

N=100 20% 32% 20% 32%
Different N=10 34% 33% 35% 33%

N=100 32% 32% 21% 32%

Table E.1: Average percentages of the total shifted demand to the other transportation
means for the model with AUTT for the NN network

Probability Number of α = 0.8 α = 0.9
Type Scenarios Risk-averse Model Risk-neutral Model Risk-averse Model Risk-neutral Model
Equal N=10 26% 18% 29% 18%

N=100 25% 29% 25% 29%
Different N=10 27% 19% 28% 19%

N=100 25% 29% 25% 29%

Table E.2: Average percentages of the total shifted demand to the other transportation
means for the model with MUTT for the NN network

Probability Number of α = 0.8 α = 0.9
Type Scenarios Risk-averse Model Risk-neutral Model Risk-averse Model Risk-neutral Model
Equal N=10 24% 23% 26% 23%

N=100 24% 22% 24% 22%
Different N=10 28% 23% 24% 23%

N=100 25% 23% 24% 23%

Table E.3: Average percentages of the total shifted demand to the other transportation
means for the model with MTTT for the NN network
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The following results are obtained according to the problem instance belongs to the

Group 1 with random free-flow times.

Probability Number of α = 0.9
Type Scenarios Risk-averse Model Risk-neutral Model
Equal N=50 36% 36%

N=100 36% 33%
Different N=50 44% 44%

N=100 44% 44%

Table E.4: Average percentages of the total shifted demand to the other transportation
means for the model with MUTT for the NN network

Probability Number of α = 0.9
Type Scenarios Risk-averse Model Risk-neutral Model
Equal N=50 58% 58%

N=100 57% 57%
Different N=50 58% 58%

N=100 57% 57%

Table E.5: Average percentages of the total shifted demand to the other transportation
means for the model with MTTT for the NN network

The results presented in this part are obtained according to the problem instance

belongs to the Group 1 with random free-flow times and link capacities.

Probability Number of α = 0.9
Type Scenarios Risk-averse Model Risk-neutral Model
Equal N=50 50% 48%

N=100 50% 50%
Different N=50 50% 50%

N=100 49% 49%

Table E.6: Average percentages of the total shifted demand to the other transportation
means for the model with MUTT for the NN network
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Probability Number of α = 0.9
Type Scenarios Risk-averse Model Risk-neutral Model
Equal N=50 50% 45%

N=100 50% 47%
Different N=50 50% 45%

N=100 50% 46%

Table E.7: Average percentages of the total shifted demand to the other transportation
means for the model with MTTT for the NN network

Results for the mean-risk models for the Nine Node (NN) Network

The following results are obtained according to the problem instance belongs to the

Group 1 with only random link capacities.

Probability Trade-off Par. α = 0.8 α = 0.9
Type θ N=10 N=100 N=10 N=100
Equal 0 33% 32% 33% 32%

0.1 33% 32% 33% 32%
1 33% 32% 34% 31%
10 34% 32% 35% 20%

Different 0 33% 32% 33% 32%
0.1 33% 32% 33% 32%
1 34% 32% 33% 28%
10 34% 32% 35% 23%

Table E.8: Average percentages of the total shifted demand to the other transportation
means for the mean-risk model with AUTT for the NN network

Probability Trade-off Par. α = 0.8 α = 0.9
Type θ N=10 N=100 N=10 N=100
Equal 0 18% 29% 18% 29%

0.1 18% 28% 19% 28%
1 25% 28% 20% 28%
10 26% 25% 26% 27%

Different 0 19% 29% 19% 29%
0.1 19% 28% 20% 27%
1 22% 28% 22% 27%
10 26% 25% 26% 26%

Table E.9: Average percentages of total shifted demand to other transportation means
for the mean-risk model with MUTT for the NN network
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Results for the models with only the risk terms for the Sioux Falls (SF)

Network

Instance Number of α = 0.8 α = 0.9
Number Scenarios Risk-averse Model Risk-neutral Model Risk-averse Model Risk-neutral Model

1A 1 N=50 34% 38% 34% 38%
N=100 33% 38% 33% 38%
N=200 34% 34% 33% 34%

1A 2 N=50 32 % 33% 34% 33%
N=100 32% 33% 32% 33%
N=200 33% 33% 33% 33%

Table E.10: Average percentages of the total shifted demand to the other transporta-
tion means for the model with AUTT for the SF network

Instance Number of α = 0.8 α = 0.9
Number Scenarios Risk-averse Model Risk-neutral Model Risk-averse Model Risk-neutral Model

1A 2 N=50 36% 38% 34% 38%
N=100 37% 38% 36% 38%
N=200 37% 38% 37% 38%

2A 1 N=50 42% 43% 42% 43%
N=100 43% 44% 43% 44%
N=200 43% 44% 43% 44%

Table E.11: Average percentages of the total shifted demand to the other transporta-
tion means for the model with ATTT for the SF network

Instance Number of α = 0.8 α = 0.9
Number Scenarios Risk-averse Model Risk-neutral Model Risk-averse Model Risk-neutral Model

1A 1 N=50 32% 32% 32% 32%
N=100 33% 32% 34% 32%
N=200 33% 32% 34% 32%

1A 2 N=50 36% 36% 37% 36%
N=100 34% 34% 34% 34%
N=200 35% 34% 34% 34%

Table E.12: Average percentages of the total shifted demand to the other transporta-
tion means for the model with MUTT for the SF network
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Instance Number of α = 0.8 α = 0.9
Number Scenarios Risk-averse Model Risk-neutral Model Risk-averse Model Risk-neutral Model

1A 2 N=50 31% 33% 31% 33%
N=100 34% 35% 33% 35%
N=200 36% 36% 35% 36%

2A 1 N=50 37% 37% 37% 37%
N=100 38% 35% 38% 35%
N=200 38% 39% 38% 39%

Table E.13: Average percentages of the total shifted demand to the other transporta-
tion means for the model with MTTT for the SF network

Instance Number of α = 0.9
Number Scenarios Risk-averse Model Risk-neutral Model

1B 2 N=100 65% 65%
N=200 62% 62%

2B 1 N=100 68% 68%
N=200 68% 68%

Table E.14: Average percentages of the total shifted demand to the other transporta-
tion means for the model with MUTT for the SF network

Instance Number of α = 0.9
Number Scenarios Risk-averse Model Risk-neutral Model

1B 2 N=100 64% 64%
N=200 65% 65%

2B 1 N=100 65% 65%
N=200 66% 66%

Table E.15: Average percentages of the total shifted demand to the other transporta-
tion means for the model with the MTTT for the SF network
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Instance Number of α = 0.9
Number Scenarios Risk-averse Model Risk-neutral Model

1C 2 N=100 65% 67%
N=200 68% 68%

2C 1 N=100 67% 68%
N=200 68% 68%

Table E.16: Average percentages of the total shifted demand to the other transporta-
tion means for the model with MUTT for the SF network

Instance Number of α = 0.9
Number Scenarios Risk-averse Model Risk-neutral Model

1C 2 N=100 68% 67%
N=200 68% 67%

2C 1 N=100 68% 68%
N=200 66% 66%

Table E.17: Average percentages of the total shifted demand to the other transporta-
tion means for the model with the MTTT for the SF network

Results for the mean-risk models for the Sioux Falls (SF) Network

Instance Trade-off Par. α = 0.8 α = 0.9
Number θ N=50 N=100 N=200 N=50 N=100 N=200

1A 1 0 38% 38% 34% 38% 38% 34%
0.1 38% 33% 34% 38% 33% 34%
1 38% 33% 34% 38% 33% 33%
10 34% 33% 34% 34% 33% 33%

1A 2 0 33% 33% 33% 33% 33% 33%
0.1 33% 33% 33% 34% 33% 33%
1 33% 32% 33% 34% 33% 33%
10 32% 32% 33% 34% 32% 33%

Table E.18: Average percentages of the total shifted demand to the other transporta-
tion means for the mean-risk with AUTT for the SF network
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Instance Trade-off Par. α = 0.8 α = 0.9
Number θ N=50 N=100 N=200 N=50 N=100 N=200

1A 2 0 38% 38% 38% 38% 38% 38%
0.1 36% 38% 37% 38% 37% 37%
1 36% 37% 37% 38% 37% 37%
10 36% 37% 37% 36% 36% 37%

Table E.19: Average percentages of the total shifted demand to the other transporta-
tion means for the mean-risk model with ATTT for the SF network

Instance Trade-off Par. α = 0.8 α = 0.9
Number θ N=50 N=100 N=200 N=50 N=100 N=200

1A 1 0 32% 32% 32% 32% 34% 32%
0.1 32% 32% 32% 33% 34% 32%
1 32% 32% 32% 33% 34% 34%
10 33% 32% 32% 33% 34% 34%

1A 2 0 36% 34% 34% 36% 34% 34%
0.1 36% 34% 34% 36% 34% 34%
1 36% 34% 35% 36% 34% 34%
10 36% 34% 35% 37% 34% 34%

Table E.20: Average percentages of the total shifted demand to the other transporta-
tion means for the mean-risk model with MUTT for the SF network
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[5] Akçelik, R., Speed-flow and bunching relationships for uninterrupted flows, In

25th Conference of Australian Institutes of Transport Research, 2003.
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