
HIGH LEVEL RULE MODELLING LANGUAGE

FOR AIRLINE CREW PAIRING:

DESIGN AND IMPLEMENTATION

by Erdal Mutlu

Submitted to the Graduate School of Sabancı University

in partial fulfillment of the requirements for the degree of

Master of Science

Sabanci University

March, 2011



HIGH LEVEL RULE MODELLING LANGUAGE

FOR AIRLINE CREW PAIRING:

DESIGN AND IMPLEMENTATION

APPROVED BY:
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Abstract

The crew pairing problem is an airline optimization problem where a set

of least costly pairings (consecutive flights to be flown by a single crew) that

covers every flight in a given flight network is sought. A pairing is defined

by using a complex set of feasibility rules imposed by international and na-

tional regulatory agencies, and also by the airline itself. The cost of a pairing

is also defined using some complicated rules. When an optimization engine

generates a sequence of flights from a given flight network, it has to check

all these feasibility rules to understand if the sequence is a valid pairing, and

has to calculate the cost of the pairing by using the cost calculation rules.

However the feasibility and cost calculation rules are not usually stable. Air-

line companies try several scenarios in each planning period. In this work,

a high level language for describing the feasibility and cost calculation rules

is designed. Airline companies can use such a domain specific language to
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specify the rules for feasibility and cost calculation. A compiler for this lan-

guage is also implemented which generates a dynamic library implementing

the specified rules.
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HAVAYOLU EKİP EŞLEME PROBLEMİ İÇİN

ÜST SEVİYE KURAL MODELLEME DİLİ:

TASARIM VE UYGULAMA

Erdal Mutlu

CS, Yüksek Lisans Tezi, 2011

Tez Danışmanları: Hüsnü Yenigün, Kerem Bülbül

Anahtar Kelimeler: Programlama Dilleri,

Derleyici Tasarımı, Ekip Eşleme Problemi

Özet

Ekip eşleme problemi, uçuş ağındaki her bir uçuşu kapsayan en az maliyetli

eşleme (tek bir ekip tarafından uçurulan ardışık uçuşlar) kümesinin arandığı

bir havayolu optimizasyon problemidir. Bir eşleme, uluslararası ve ulusal

kural koyucular ve havayolu şirketinin kendisi tarafından düzenlenen bir çok

karmaşık geçerlilik kurallar kümesi kullanılarak tanımlanır. Bir eşlemenin

maliyeti de bazı yine karmaşık kurallar kullanılarak tanımlanır. Ne var

ki bu kurallar sabit değildir. Havayolu şirketleri her planlama döneminde

çeşitli senaryolar denerler. Bu çalışmada, geçerlilik ve maliyet hesaplama

kurallarının tanımlanmasında kullanılacak bir üst düzey dil tasarlanmıştır.

Böyle bir alana özgü dil kullanılarak, havayolu şirketleri geçerlilik ve maliyet

hesaplama kurallarını kolayca belirtebilir. Bu dil için, geçerlilik kontrolü ve

maliyet hesaplama fonksiyonları sağlayan bir dinamik kütüphane oluşturan

bir derleyici de gerçekleştirilmiştir.
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1 Introduction

Software applications are mostly used by end-users who have no or little

programming skills. As a result when there is a problem or a need for modi-

fications on the application, it is addressed to a specialized programmer who

tries to transform the requirements of the end-user to applications. This ap-

proach results in a waste of time and resources for even little changes. This

waste is even more drastic in cases that several different configurations has

to be tested with incremental modifications on the application. A good ex-

ample for this type of scenarios is in crew pairing domain where the solution

depends on feasibility constraints. These constraints can be determined by

government, employee union or company itself and can change frequently. In

this type of applications, it is crucial that these changes can be made by end-

users. This can be done by having a high level language that can be used by

the end-users without a requirement of having good programming skills. The

use of a high level rule modeling language can enable the end-user to express

and modify the rules that determines the feasibility and cost calculations in

the application easily.

In this work, we designed a high level language ARUS (Algopt RUle Spec-

ification language) used for modeling the feasibility/cost calculation rules for

airline crew pairing problem in the context of “Robust airline crew pairing;

models and solution algorithms” project which is supported by “Scientific

and Technological Research Institution of Turkey” (TÜBİTAK). ARUS is

a domain specific language specializing on the description of feasibility/cost

calculation rules for the airline crew pairing problem. We also implemented a

compiler for ARUS which generates a dynamically linked library of methods
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for feasibility checking and cost calculation rules given in an ARUS specifi-

cation.

1.1 Crew Pairing Problem

The crew pairing problem is the process of creating a set of pairings (also

called as trips) that cover every flight in a given flight network [1]. Figure 1

gives to a small flight network. The most typical feasibility rule for a pair-

ing is that it has to start from and end at the base (a home airport/city

for the airline). Assuming that SAW is the home airport in Figure 1, the

flight sequence p1 = 〈1, 3, 4, 6〉 is a such a sequence. If it also fulfills the

other requirements for being a pairing than this sequence is called a pairing.

Some of the other such sequences in Figure 1 are p2 = 〈2, 9〉, p3 = 〈2, 5, 7〉,

p4 = 〈1, 8, 6〉 and p5 = 〈1, 8, 9〉. The set of pairings {p1 = 〈1, 3, 4, 6〉, p3 =

〈2, 5, 7〉, p5 = 〈1, 8, 9〉} covers all the flights in the flight network and there-

fore it is called a (pairing) solution. In this solution, flight 1 appears in more

than one pairing. This means the crew of one of these pairings (say in p1)

will be operating the flight whereas the crew of the other pairings (p5 in this

example) will be deadheading on that flight. In other words, they will be

traveling as a passenger. A pairing is composed of sequence of duties, where

a duty is the sequence of flights flown in a working day. Between two duties

the crew members rests, which has to be in a city that is not the home base

by definition. For example, the pairing 〈1, 8, 6〉 might be consisting of two

duties where flights 1 and 8 are in the first duty, and the flight 6 is in the

second duty.

While the coverage requirement is the primary concern, legality con-
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Figure 1: Flight Network

straints also have an important impact on the solution. In most of the

crew pairing domains, such as rail or air travel, there are numerous rules or

regulations. While some of these rules are fixed internationally, most of them

tend to change from country to country or company to company according

to their policies. These rules are mostly defined over the activity types of

the domain. For example in airline crew pairing domain, the rules describe

a feasible duty, a feasible pairing, and a feasible solution.

The complexity and dynamic changing nature of the rules and the reg-

ulations create the need for an efficient and user-friendly way to express

and manage them. The main requirements for such a rule modeling system

are [2];

• Correctness: Each rule modeled with the system has to be correct

according to real life representation.

• Ease of modification: As the rules and regulations are frequently mod-

ified, it should be easy to change the rules which makes it possible to

try what-if scenarios for different cases.
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• Ease of development: The user should be able to use the system easily

without a need for prior high skills.

There are different approaches to the problem, the traditional approach

is based on “hard-coding” the rules into the crew pairing engine itself. Users,

in this case, have to be experienced programmers, to be able to implement

all the rules in a low level programming language. This approach makes it

very hard for a user who do not have prior knowledge of the pairing engine

or experience on a general purpose programming language to change or use

the crew pairing engine. Also because of the correctness of a modeled rule

is based on the skill of the implementor it is difficult to get it correctly

implemented.

Another approach is based on using a rule modeling language, for repre-

senting the rules and regulations into the crew pairing engine. This approach

makes it possible to change the rules frequently without doing changes on

the crew pairing engine. There are some commercial examples that use this

approach like Carmen from Jeppesen [2]. We will give details about these

languages in Section 1.3.

1.2 Domain Specific Languages

A domain specific language (DSL) , is a language designed specifically for a

domain that provides improvement in expressiveness and ease of use [3, 4].

Idea of designing new languages to be suited better in a domain is relatively

new as general purpose languages have been the primary focus of language

design [5]. Today, there are lots of examples for DSLs and Excel can be a

good example since it is widely known and used. As the main property of
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DSLs, Excel is particularly good for a specific number of problems, expressing

plenty number of calculation methods to spreadsheet applications. Examples

of DSLs, can be used in different domains, like AutoCAD for architectural

design, Verilog for hardware description etc.

The key characteristics of DSLs are defined to be [5];

• The domain is well-defined and central.

• The notation is clear.

• The informal meaning is clear.

• The formal meaning is clear and is implemented.

In our case, we designed a high-level language called ARUS, for airline

crew pairing problem to describe the rules for feasibility and cost calculation

of pairings. With ARUS, we aim to make it easier for end-users who do

not have any programming background, to interact with the system without

doing changes on the engine. As it is crucial for a domain-specific language to

be easy to understand by its users, in our design we preferred to use keywords

from the terminology of the airline crew pairing domain.

1.3 Related Works

There are different approaches for integrating the legality rules and regula-

tions into a tool generating these pairings. One way is to use “hard-coded”

rules in the source code of the pairing generators. This makes the modifi-

cation of the rules by the end-users (airline planning department) difficult.

Since these rules and regulations can vary from company to company, or more
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importantly, from time to time for the same airline company, it is important

for the end-users to be able to describe these rules without having to dive

into the source code of the pairing generators.

There are also systems like Jeppessen’s CARMEN Crew Pairing System

that uses a special purpose language, Carmen Rave Language [2, 6], for

expressing the rules and constraints. With the use of a specific language,

end-users can not only change the rule data but also modify the structure of

the rules without changing the pairing generator tool itself. Another system

that uses the help of a modeling language is DAYSY (Day-to-Day Resource

Management Systems) rule handling system [7, 8]. They define a high-level

Object-Oriented language called DRL (DAYSY Rule Language) [9, 10] that

can be used by different application domains as it is a generic language

designed for resource management systems.

1.4 Contribution of the Thesis

In this work, we designed a domain specific language to be used for the

description of feasibility and cost calculation rules for airline crew pairing

problem. We used the general structure of a generic rule modeling language

introduced in [10] and added new expressions and modifications according to

the airline crew pairing domain. Using this language, planning departments

of airline companies can easily describe the feasibility and cost calculation

rules without having to deal with the modifications on the source code of the

pairing generators.

We also implemented a compiler for this language that can translate the

rules given in this language into an equivalent C++ library. This library
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is to be dynamically linked by the pairing generators. The library exports

methods for checking the feasibility and calculating the cost of pairings.

1.5 Organization of the Thesis

In Section 2, we introduce our language ARUS in detail with its syntactic

and semantic details. In Section 3, the implementation details of the ARUS

compiler is given. Finally in Section 4, we give a conclusion together with

some further improvements that can be made as future work. We also give

some real life examples of feasibility rules for airline crew pairing problem

with their corresponding representations in ARUS in Appendix A.
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2 Language Design

A common feature in scheduling problems is the hierarchical structure of the

activities. At the lowest level, there are basic activities. Activities at one

level are combined to form an activity of a higher level. Activities that are

formed by combining lower level activities are called derived activities. The

feasibility rules give the constraints that a set/sequence of activities at one

level has to satisfy to form an activity of a higher level. For the airline crew

pairing problem, basic activities are flights, which are also called legs. Several

flights are combined to form a duty, which is also called a shift. Similarly

a sequence of duties are combined to form a pairing, or as it is sometimes

called a trip. Finally a set of pairings form a solution.

A rule modeling language for a particular domain should support the

activity hierarchy of that domain. As ARUS is designed for airline crew

pairing domain, activities from this domain such as flights, duties, pairings,

and solutions are directly supported. The language inherently assumes that

flights combined to form a duty, duties are combined to form a pairing, and

pairings are combined to form a solution.

Although activities at one level I are combined to form an activity of

a higher level I ′, not every combination of activities of level I will be a

valid/feasible activity for level I ′. Certain constraints are enforced for a

combination. For example the total time of a duty (which is a sequence of

flights) cannot be longer than a certain limit. Therefore the rule language

should let the users to define such constraints easily. The feasibility rules

are based on some properties of the activities. Using the example above, the

total time of a duty is a property of duty. The feasibility rule simply states
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that it should be smaller than a given limit value. The “total time” of a duty

is a property of the duty that needs to be calculated. The language should

also make it easy for the user to state how such properties of activities are

calculated.

ARUS allows description of properties of activities of airline crew pairing

domain. Based on these properties, the constraints are stated easily. For

each derived activity (duty, pairing, solution) one has to give the properties

and the constraints of that activity. For the basic activity (flights), only

properties have to be given. The description of a property or constraint

of an activity is a function of the properties of the same and some other

activities.

We now explain the general structure of a rule specification file, which is

a program written in our rule language ARUS. In programming languages,

it is common to let the programmer declare all the entities (e.g. variables,

functions, etc.) used in a program. Some properties of the entity being

declared are given at the declaration. For example in a variable declaration

the type of a variable is provided. Such a declaration provides a simple

control mechanism for possible programming errors. For instance, a variable

declared to be of type integer can later be used in the program in the contexts

where an integer value is required. Otherwise it is an indication of a possible

programming error. A type checker aims to catch all such type mismatches

to identify errors in a program. Following this declaration/use approach

in general programming languages, ARUS also requires all entities to be

declared and later used in allowable contexts. We give the general structure

of specification file in Figure 2, which also shows the sections in this document
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explaining different parts in an ARUS file.

A specification is composed of two parts: declarations and definitions. In

the declarations part, a declaration of the entities are given. The definitions

part is where the descriptions of these entities are specified. We will now

give the details of ARUS. We start by introducing the data types supported

by ARUS in Section 2.1. Declarations and definitions of ARUS are explained

in Section 2.2 and Section 2.3, respectively. Finally in Section 2.4 ARUS

expressions are given in a detailed manner.

2.1 Data Types

The data types supported by ARUS can be classified as general data types

and domain specific data types. The general data types are typical data types

that are supported by general purpose programming languages. We have four

general data types: integer, real, string, boolean. The domain specific

data types on the other hand are types that are specific to the airline crew

pairing domain. There are four domain specific types which are duration,

time, datetime, and airport. We now explain these data types in detail.

integer: This type is used to represent integers and it is not different than

integer types available in general purpose programming languages. An

integer literal consists of a sequence of digits with an optional minus

sign for negative integers (e.g. 13, 111, -12, etc.). However leading

zeros are not allowed, i.e. 0013 and -023 are not valid ARUS inte-

gers. ARUS itself does not introduce any limit on the range of the

integer values. However, an ARUS specification is converted into a

C++ program. The limitations of the C++ compiler used to compile
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Figure 2: Specification File Structure
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the generated C++ code may bring a range limitation on the integer

values.

real: This type is used to represent real values. A real literal consists of a

sequence of digits, followed by a dot, followed by a sequence of digits

with an optional minus sign for negative numbers (e.g. 3.14, -123.2,

etc.). However integer part of a real number can not start with a zero

except when the integer part is zero, and the fractional part can not

end with a zero except when the fractional part is zero. For example,

0.12 and 12.0 are valid real numbers but 01.23 and 1.20 are not

valid real numbers. ARUS itself does not introduce any limit on the

range of the real values. However, an ARUS specification is converted

into a C++ program. The limitations of the C++ compiler used to

compile the generated C++ code may bring a range limitation on the

real values.

string: This type is used to represent strings. A string is a sequence of char-

acters (except the newline character) between quotation marks (e.g. "a

string", "another string", etc.). The quotation mark itself is rep-

resented inside a string by escaping it using a backslash character (e.g.

"string with a \"quoted string\" can be defined").

boolean: This data type is used to represent the truth values of boolean

logic. It only has two possible literal values: true and false.

duration: This data type is a domain-specific type. It is commonly used

in the rules and regulations. It represents a basic time duration. The

12



general format for a duration representation is H:M where H is a non-

negative integer representing the hour part and M is a two digit value

in the range 00-59 representing the minutes part. For example 3:45

represents a duration of 3 hours and 45 minutes. For a duration less

than hour, the hour part given as zero (e.g. 0:45) and for a duration

of an exact hour the minutes part has to be given as 00 (e.g. 13:00).

time: This is another domain specific data type of ARUS. It is used to repre-

sent a specific time during a day but not on a specific date. For exam-

ple, a feasibility rule may state that duties that start before 05:00AM

in the morning should have a certain property. Constraints based on

such time parameters are quite common in crew pairing problems. The

general format of a time literal is HH:MM followed by either AM or PM.

HH part is a two digit hour part in the range 00-12, MM part is a two

digit minutes part in the range 00-59. Some valid time literal ex-

amples are 01:45AM, 11:30PM, 00:00AM (midnight), 12:00PM (noon).

White space characters are allowed between MM part and AM/PM. There-

fore, 12:45 PM is also a valid time literal. Some invalid examples are

00:00PM and 12:00AM (must use 00:00AM and 12:00PM to denote mid-

night and noontime respectively), 11:75PM (minutes part cannot be

greater than 59), 14:00PM (hour part cannot be greater than 12 and

02:00PM must be used to denote two in the afternoon).

Note that, ARUS prefers to use 12-hour convention with AM and PM

designators, rather than using 24-hour convention. The design decision

behind this selection is to be able to uniquely and easily infer the type

of literals. For example if ARUS had used 24-hour convention, then
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16:30 could be interpreted both as a duration value (16 hours and 30

minutes long time duration), and as a time value (half past four in the

afternoon).

datetime: This type is used to represent a specific time on a specific date.

The general format of a datetime literal is dd.mm.yyyy followed by

HH:MM followed by either AM or by PM. Here dd is a two digit day spec-

ifier in the range 01-31, mm is a two digit month specifier in the range

01-12, and yyyy is a four digit year specifier. HH:MM is the same as ex-

plained in time type above. Some valid datetime literal examples are

03.02.2011 01:30 PM, 29.02.2012 12:50PM, 01.01.2011 00:00AM.

Some invalid examples are 32.12.2010 10:00AM (day part cannot be

greater than 31), 31.13.2010 10:00AM (month part cannot be greater

than 12). The same restrictions and conventions as in time type apply

for HH:MM AM/PM part.

airport: This is another domain-specific data type for ARUS. It is used

to represent airports. The literals of this data type are 3 character

codes of the airports as defined by “International Air Transport Asso-

ciation”(IATA), also known in general as IATA codes of the airports.

Example literals of this type are IST (Istanbul Atatürk International

Airport), SAW (Sabiha Gökçen International Airport), ATL (Hartsfield-

Jackson Atlanta International Airport), AJI (Ağrı Airport).

Besides the built-in data types introduced above, ARUS supports some

type constructors. These type constructors are also similar to their counter-

parts in general purpose programming languages. However, their use is very
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restricted in terms of the values that can be defined and also in terms of the

operations allowed on such derived types compared to the general purpose

programming languages.

Sets: This type constructor is similar to set type constructors available in

general purpose programming languages to define a set of some other

type. For example, one can define a set of integers, a set of strings, etc.

ARUS allows a very restricted form of set data type constructor. It

is only possible to define a set type with a single constant value. In

other words, only constant sets can be defined. The elements of a set

value must all be of the same type. A set literal is given as a comma

separated list of elements surrounded by { and }. For example, { IST,

SAW } represents the set of airports in Istanbul. The operations on a

set are also very restricted. Membership test operations (“belongs to”

and “does not belong to”) are allowed.

One can use this type constructor to create groups of the literals of

the same type and use them in special expressions which will be ex-

plained in Section 2.4. There is no need for declaring the type of a set

value. The type of a set value is easily inferred from the types of the

elements which are all of the same type. Some valid set values are {

10:00 AM, 11:00PM, 02:35 AM } (a set of time values), { IST, SAW

} (a set of airports), { "320", "321", "32M", "32L"} (a set of strings

representing aircraft types belonging to A320 fleet). Some invalid ex-

amples are {00:40, 02:05AM } and { SAW, 14:45, IST } which are

both invalid due to mixed type of the elements.
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Sequences: A sequence is a set where the order of the elements is important.

Although ARUS has no concrete syntax for representing sequences, it

is possible to generate sequence values. In this text, a sequence value

is denoted by giving the arrow (->) separated elements of the sequence

surrounded by { and }. For example { SAW -> ADB -> AYT -> SAW

} is a sequence of airports.

Tables This data type constructor is similar to array type constructor in

general purpose programming languages. ARUS has again a very re-

stricted support due to the limited needs of the domain of airline crew

pairing. If we use general array terminology, ARUS allows only one or

two dimensional, constant arrays.

On the other hand, ARUS is more relaxed in terms of the conditions

for matching indices given in array reference to a row and a column.

In general purpose programming languages, an array reference of the

form A[x,y] refers to row i and column j of the array iff x==i and

y==j. Although implicit, each row/column has a predicate for be-

ing matched by an array reference but all these predicates are simple

equality checks of the form given above. In ARUS, the predicate of

a column/row is given explicitly as a boolean expression. For exam-

ple, a column/row may have the following predicate for being selected:

(06:00AM <= dutyStartTime), where dutyStartTime is a value to be

provided. A column/row is matched if its predicate evaluates to true

by using the variable values used in the table reference (just like in an

array reference a row/column i is matched when it’s predicate x==i

evaluates to true for x=i).
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There may be multiple rows (columns, respectively) whose predicates

evaluating to true for a table reference. In this case the first row (col-

umn, resp.) is considered to be the matching row (column, resp.). A

special predicate OTHERWISE can be used as the predicate of the last

row/column. Semantically this is equivalent to giving true as the pred-

icate. Therefore, such a row/column is matched by default only when

no other row/column has its predicate evaluating to true. If none of

the predicates of rows/columns evaluate to true, then it’s an invalid

table reference (corresponding to an index out of bound case of array

references in general purpose languages).

All the elements of a TABLE must be of the same type. The elements on

a row are separated by “|” and rows are separated by a newline. In the

first row and in the first column, the predicates of rows and columns

are given, except the cell at the first row and the first column. In the

cell at the first row and the first column, the list of variables used in

the predicates must be given, by using / as a separator. This syntax is

chosen due to established similar notations in the airline crew pairing

domain.

An example TABLE declaration is given in Example 1 :

Here maxDutyTime is the name of the table, numOfLegs and startTime

are the variables that will be used in the predicates of rows and columns.

It is a 2× 2 table. The first row has the predicate 1 <= numOfLegs <=

2 and the second row has the predicate 3 <= numOfLegs <= 5. Sim-

ilarly the predicate of the first column is 06:00AM <= startTime <

03:00PM. The predicate of the last column is OTHERWISE hence it will
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Example 1 Table Declaration example

TABLE maxDutyTime

numOfLegs/startTime| 06:00AM<startTime<03:00PM | OTHERWISE

1 <= numOfLegs <= 2| 14:00 | 12:00

3 <= numOfLegs <= 5| 13:00 | 10:00

only be matched if startTime is equal to or earlier than 05:59AM,

or later than 03:00PM during the day. The elements of the array

are of duration type. An example table reference can be given as

maxDutyTime[4,04:30PM]. With numOfLegs=4 and startTime=04:30

PM, we see that the last row and the last column are matched. There-

fore this table reference will have the value 10:00, i.e. a duration of 10

hours.

2.2 Declarations

As explained at the beginning of Section 2, an ARUS specification consists

of two main parts: declarations and definitions. In this section, we explain

declarations part in detail.

Constants and activities in an ARUS specification have to be declared

before they are used. In the remainder of this section, keywords of the dec-

laration part and the key features are detailed. We first introduce constant

declarations in Section 2.2.1. We give details of activity declarations in Sec-

tion 2.2.2.
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2.2.1 Constant Declarations

Each ARUS specification has one global constants declaration section where

(as the name implies) some global constants are declared. The section is

marked by the keywords CONSTANTS and ENDCONSTANTS. Within the section,

each constant is introduced by giving the name of the constant, followed by

an equality sign, followed by the value of the constant, and the declaration is

terminated by a semicolon. An example global constant declaration section

is given in Example 2.

Example 2 An example global constants section

CONSTANTS

briefingTime = 00:45;

IstanbulAirports = {IST, SAW};

ENDCONSTANTS

The only exception in the syntax of a global constant declaration is in

the declaration of a TABLE type constant. For these constants, the name is

given within the declaration. Example 3 includes a case where a TABLE type

constant is also declared.

As can be seen from this example, the name of the TABLE constant is

maxDutyTime and it is given inside the TABLE.

2.2.2 Activity Declarations

There is a certain activity hierarchy in crew pairing problems. At the bottom

of the hierarchy (as the basic activities) we have flights. Flight activities are
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Example 3 An example for TABLE constant declaration

CONSTANTS

briefingTime = 00:45;

TABLE maxDutyTime

numOfLegs/startTime |06:00AM<= startTime <03:00PM| OTHERWISE

1 <= numOfLegs <= 2 | 14:00 | 12:00

3 <= numOfLegs <= 5 | 13:00 | 10:00

;

IstanbulAirports = {IST, SAW};

ENDCONSTANTS

combined to form duty activities, duty activities are combined to form pairing

activities. Finally pairings are combined to form solutions. Activities other

than the basic activities (flights), are called derived activities.

Each activity has to be declared in an ARUS specification. An activity

declaration starts with the keyword ACTIVITY, followed by the name of the

activity (e.g. FLIGHT, DUTY, etc.). The declaration ends with the keyword

ENDACTIVITY. An example activity declaration is given in Example 4, without

providing any detail about the internals of an activity declaration.

Example 4 An Activity Declaration Example

ACTIVITY Flight

...

ENDACTIVITY
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Inside an activity declaration there are certain components that have to

be declared. These components are given below:

Property Declarations A property of an activity is a value to be computed

for that activity. For example, the number of flights in a duty activity

is a property of that duty activity. It is simply computed by counting

the number of flights in the duty. Another example can be the time

away from the base in a pairing, which can be computed as the arrival

datetime of the last flight minus the departure datetime of the first

flight in the pairing. Each property of an activity has to be declared

inside the activity declaration. A property is declared by giving the

name of the property followed by a colon, followed by the data type,

and finally followed by a semicolon. An activity may have multiple

properties.

Crew pairing problem is an optimization problem. The purpose is to

minimize the cost of the solution. The cost of a solution is defined as

the sum of the costs of the pairings in a solution. Therefore one has

to explain how the cost of a pairing is defined. In ARUS, the cost of a

pairing is defined by using a property named cost. Hence, the pairing

activity must declare a property with this name. Other activities may

or may not have such a property.

Attribute Declarations Some properties of basic activities are not com-

puted but simply given in the input. For example, departure time of

a flight is such a property. These properties are called attributes and

they have to be declared as well. A derived activity on the other hand
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cannot have an attribute, meaning all properties of derived activities

have to be computed. An attribute is declared exactly in the same way

as a property. A basic activity can have multiple activities.

Constraint Declarations As explained before, a derived activity I consists

of a sequence/set of other activities I ′. However, not every sequence of

activities of type I ′ forms a derived activity I. To be more concrete, we

say that a duty is a sequence of flights but not every sequence of flights

will be considered as a duty. There are certain constraints that the

sequence of flights has to satisfy to be a duty. An example constraint

could be “at most one flight departs from the base airport in a duty”.

Another example could be “there cannot be more than 5 flights in a

duty”. Each such constraint has to be declared. A derived activity

can have multiple constraints and all of those constraints have to be

satisfied (it is possible to deactivate some constraints but this will be

explained in Section 2.3.2). A constraint is in fact a boolean property

but semantically treated in a special way. A constraint declaration is

performed by giving the name of the constraint followed by a semicolon.

Note that basic activities cannot have constraints.

Inside an activity declaration, property/attribute/constraint declarations

for that activity must be given. They are separated from each other by using

the labels “PROPERTIES:”, “ATTRIBUTES:”, and “CONSTRAINTS:”. Two com-

plete activity declaration examples are given in Example 5 and Example 6.
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Example 5 A Basic Activity Declaration Example

ACTIVITY Flight

ATTRIBUTES:

departureTime: datetime;

arrivalTime: datetime;

departureAirport: airport;

arrivalAirport: airport;

flightNo: string;

PROPERTIES:

flightTime: duration;

isDomestic: boolean;

ENDACTIVITY

Example 6 A Derived Activity Declaration Example

ACTIVITY Duty

PROPERTIES:

totalDuration: duration;

totalRestTime: duration;

CONSTRAINTS:

maxTotalDuration;

maxTotalRestTime;

ENDACTIVITY
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2.3 Definitions

In the definitions part, the definitions of properties and activities given in

declarations part are provided. In other words, for a property/constraint of

an activity, it is explained how this property/constraint is to be computed.

Each property/constraint declared has to be defined.

2.3.1 Property Definition

In this section we will give details of a property definition. In ARUS a

property definition is given by using the keyword PROPERTY followed by the

name of the property, followed by the keyword OF, followed by the name of

the activity to which the property belongs. The definition is terminated by

the keyword ENDPROPERTY. In Example 7 a skeleton property definition is

given without any details about the internals.

Example 7 A Simple Property Definition Example

PROPERTY overhead OF Duty

...

ENDPROPERTY

Inside a property definition, the following sections exist.

Comment Section One can give a free text explanation for the property

inside the definition of the property. The keyword COMMENT: starts the

section, followed by the free text explanation. The section is terminated

by using a semicolon. This is an optional section.
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Constant Declarations Section It is possible to declare some local con-

stants to be used inside the property definition. The section starts

with the keyword CONSTANTS: and terminated by the start of another

section. Within this section any number of constant declarations can

be given. A constant is declared by giving the name of the constant,

an equality sign, an expression, and finally a semicolon. This is also an

optional section.

Rule Definition Section In this section the expression that represents the

calculation rule is given. The section starts with the keyword RULE: and

terminated by the termination of the property definition (i.e. by the

keyword ENDPROPERTY. Between the keyword RULE: and the keyword

ENDPROPERTY an expression is given that explains how the value of the

property is to be calculated. The type of the expression given in this

part must match the type of the property given in its declaration. We

will give detailed information about ARUS expressions in Section 2.4.

Every property definition must have a rule section.

A complete property definition is given in Example 8. In this example,

the expression “briefingTime + debriefingTime” gives how the value of

the property “overhead” of a “Duty” activity is to be computed. In this

example, the expression is simply based on constant values that are also

defined in the property definition. However, in general this expression can

be quite complex, referring to the other properties of the same duty and also

to the properties of the flights in the duty. More advanced examples will be

given later after introducing ARUS expressions.
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Example 8 A Complete Property Definition Example

PROPERTY overhead OF Duty

COMMENT: This is the overhead time that has

to be added to every duty;

CONSTANTS:

briefingTime = 00:45;

debriefingTime = 00:30;

RULE:

briefingTime + debriefingTime;

ENDPROPERTY

2.3.2 Constraint Definition

In this section we will give details of a constraint definition. In ARUS a

constraint definition is given by using the keyword CONSTRAINT followed by

the name of the constraint, followed by the keyword OF, followed by the name

of the activity to which the constraint belongs. The definition is terminated

by the keyword ENDCONSTRAINT. In Example 9 a skeleton constraint definition

is given without any details about the internals.

Example 9 A Simple Constraint Definition Example

CONSTRAINT noEarlyDuty OF Duty

...

ENDCONSTRAINT

Inside a property definition, the following sections exist.
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Comment Section One can give a free text explanation for the constraint

inside the definition of the constraint. The keyword COMMENT: starts the

section, followed by the free text explanation. The section is terminated

by using a semicolon. This is an optional section.

Status Section Previously it was stated that all the constraints of a de-

rived activity have to be satisfied. However, a constraint can be acti-

vated/deactivated easily by setting the status of the constraint to ON

or OFF. The status section in a constraint definition is used for this

purpose. The section starts with the keyword STATUS: followed by a

status indicator (either ON or OFF) and terminated by a semicolon. This

section is optional and when missing the constraint is assumed to be

active.

Constant Declarations Section It is possible to declare some local con-

stants to be used inside the constraint definition. The section starts

by the keyword CONSTANTS: and terminated by the start of another

section. Within this section any number of constant declarations can

be given. A constant is declared by giving the name of the constant,

an equality sign, an expression, and finally a semicolon. This section

is optional.

Rule Definition Section In this section the expression that represents the

calculation rule is given. The section starts with the keyword RULE:

and terminated by the termination of the constraint definition (i.e.

by the keyword ENDCONSTRAINT. Between the keyword RULE: and the

keyword ENDCONSTRAINT a boolean expression is given that explains
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how the value of the constraint is to be calculated. The constraint

is satisfied iff the boolean expression evaluates to true for that duty.

Every constraint definition must have a rule section.

A complete constraint definition is given in Example 10. In this example,

a constraint of a duty activity is given. The constraint is used to make sure

that no duty starts before 05:00AM in the morning. The example assumes

that the duty activity has a property named dutyStartTime.

Example 10 A Complete Constraint Definition Example

CONSTRAINT noEarlyDuty OF Duty

COMMENT: Duties must not start before 05:00AM;

STATUS: ON;

CONSTANTS:

earliestDutyStartTime = 05:00AM;

RULE:

dutyStartTime >= earliestDutyStartTime;

ENDCONSTRAINT

2.4 Expressions

Inside the RULE section of a property/constraint definition, one has to give

an expression that defines how the value of the property/constraint is com-

puted. In this section, we explain ARUS expressions that can be used within

property/constraint definitions.
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Atomic Expressions By atomic expressions we mean expressions consist-

ing of a single item, as opposed to complex expressions that are com-

posed of sub-expressions combined by using operators.

Each literal is an atomic expression. For example, integer literal 7,

string literal "LH", airport literal SAW, etc. are all atomic expressions.

A constant (global or local) is also an atomic expression. Finally, a

property or an attribute of an activity is an atomic expression. For

example, suppose that duty activity has a property named overhead.

The use of overhead itself is an atomic expression.

Atomic expressions are combined by using operators that will be de-

fined below to form complex expressions.

Arithmetic Expressions The four common arithmetic operators addition

(+), subtraction (-), multiplication (*) and division (/) are supported

in ARUS for certain data types. Table 1 gives the contexts in which

these operators are allowed and it also gives the type of the overall

expression.

For example, one may want to define a property named flight durati

on for a flight, which is simply the duration of the flight. Such a

property definition is given in Example 11.

In Example 11, arrival time and departure time are two attributes,

and the value of the flight duration property is defined to be sim-

ply arrival time - departure time which evaluates to a duration

value.

Boolean Expressions ARUS supports logical and (AND), logical or (OR)
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Type 1 Operator Type 2 Result Type

integer +,-,* integer integer

integer / integer real

integer +,-,*, / real real

real +,-,*, / integer real

real +,-,*, / real real

duration +,- duration duration

duration +,- time time

duration +,- datetime datetime

time +,- duration time

time - time duration

datetime +,- duration datetime

datetime - datetime duration

Table 1: Arithmetic operators, allowed contexts, resulting types

and logical negation (NOT) operators on boolean values.

Relational Expressions ARUS supports the following relational opera-

tors: smaller than (<), smaller than or equal to (<=), greater than

(>), greater than or equal to (>=), equal (==), and not equal (!=). Ta-

ble 2 gives the contexts in which these operators are allowed. The type

of the overall expression is boolean for all cases.

As a syntactic sugar, ARUS also supports chained relational expres-

sions of the form “v1 op1 v2 op2 v3 op3 v4 op4 ...” as a short-

hand notation for “(v1 op1 v2) AND (v2 op2 v3) AND (v3 op3 op4)

30



Example 11 Setting flight duration of a flight

PROPERTY flight_duration OF Flight

RULE:

arrival_time - departure_time;

ENDPROPERTY

AND ...”. Here opi’s are relational operators and vi’s are values to be

compared. As a more concrete example, 1 <= x < 5 is equivalent to

(1 <= x) AND (x < 5).

Set Membership The operators IN and NOT IN are used to test the mem-

bership of an element in a set. The syntax of expressions incorporating

these operators are either “e IN s” or “e NOT IN s”, where e is a

value of a type (let’s say T) and s is a set value defined over type T. A

set membership expression itself has boolean type. “e IN s” evaluates

to true only if the value e is one of the elements in the set s. “e NOT

IN s” is equivalent to “NOT (e IN s)”. A concrete example for a set

membership expression is “SAW IN { IST, SAW, AYT }”.

Conditional Expressions Conditional expressions in ARUS are given by

using if-else expressions that are used in general purpose programming

languages. The syntax of a conditional expression is

IF (cond) e1; ELSE e2;

Here cond is a boolean expression and e1 and e2 are two expressions

that must be of the same type T. The semantics is exactly is the same

31



Type 1 Operator Type 2

integer <,<=,>,>=,==,!= integer

integer <,<=,>,>=,==,!= real

real <,<=,>,>=,==,!= integer

real <,<=,>,>=,==,!= real

string ==,!= string

boolean ==,!= boolean

duration <,<=,>,>=,==,!= duration

time <,<=,>,>=,==,!= time

datetime <,<=,>,>=,==,!= datetime

airport ==,!= airport

Table 2: Relational operators and allowed contexts

as the semantics in the other languages. If the condition cond evaluates

to true, then the value of the conditional expression is the value of the

expression e1, otherwise it is the value of the expression e2. The type

of a conditional expression is the common type T of the expressions e1

and e2.

For example, suppose that a flight is to be classified as a domestic, a

European, or a US flight. In order to be able to do this, one needs to

check the flight’s arrival/departure airport. Either the arrival or the

departure airport is assumed to be domestic, which is correct for many

airline companies. Suppose that we define sets of domestic, European

and US airports as set constants with the names DOMESTIC AIRPORTS,
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EUROPEAN AIRPORTS and US AIPRORTS. Finally let arrival airport

and departure airport be two attributes of a flight activity, which

are read from the input flight data.

One can then define a property named flight status by using the

following expression:

Example 12 Setting flight status of a flight

PROPERTY flight_status OF Flight

RULE:

IF (departure_airport IN EUROPEAN_AIRPORTS) OR

(arrival_airport IN EUROPEAN_AIRPORTS)

"EUROPEAN FLIGHT";

ELSE IF (departure_airport IN US_AIRPORTS) OR

(arrival_airport IN US_AIRPORTS)

"US FLIGHT";

ELSE

"DOMESTIC FLIGHT";

ENDPROPERTY

Table References A table reference is given by the name of the table fol-

lowed by the comma separated index values, surrounded by square

brackets (e.g. maxDutyTime[4,04:30PM]). The semantics of table ref-

erences are explained at the end of Section 2.1. The type of a table

reference is the same as the common type of the elements of the table.

Operations on Sequences and Sets Since a derived activity is a sequen-
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ce/set of other activities, the operations on sequences/sets of values are

quite common in crew pairing domain. For example, the total flying

time in a duty is calculated as the sum of the duration of the sequence

of flights in that duty. To express such calculations, ARUS allows the

following operators in sequences and sets. All the operators are unary

and prefix operators.

COUNT OF: The COUNT OF operator takes a sequence/set as a parameter and

returns the number of elements in that sequence/set. The value

of a COUNT OF expression is integer. An example expression is

given below where the result is integer value 3.

COUNT OF { 1:30, 2:20, 0:50 }

SUM OF: The SUM OF operator takes a sequence/set as a parameter and

returns the sum of all the elements in that sequence/set. The

elements of the sequence/set must all be of the same type T. It

is also required that addition is defined between two elements of

type T. The value of a SUM OF expression is also of type T. An

example expression is given below where the result is a duration

value 4:40.

SUM OF { 1:30, 2:20, 0:50 }

AVG OF: The AVG OF operator takes a sequence/set S as a parameter and

evaluates to the value (SUM OF S)/(COUNT OF S), i.e. it eval-

uates to the average of the elements in S. The elements of the

sequence/set must all be of the same type T. It is also required
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that addition is defined between two elements of type T, and divi-

sion of T over integer must be defined. The value of an AVG OF

expression is of type real. An example expression is given below

where the result is a real value 3.0.

AVG OF { 1, 3, 5 }

MAX OF: The MAX OF operator takes a sequence/set S as a parameter and

evaluates to the maximum value in S. The elements of the se-

quence/set must all be of the same type T, and they must be

pairwise comparable. In other words, the operator <= must be

defined between two values of T. The type of a MAX OF expression

is T. An example MAX OF expression is given below. The value of

the expression is the duration value 2:20.

MAX OF { 1:30, 2:20, 0:50 }

MIN OF: The MIN OF operator takes a sequence/set S as a parameter and

evaluates to the minimum value in S. The elements of the se-

quence/set must all be of the same type T, and they must be

pairwise comparable. In other words, the operator <= must be

defined between two values of T. The type of a MIN OF expression

is T. An example MIN OF expression is given below. The value of

the expression is the duration value 0:50.

MIN OF { 1:30, 2:20, 0:50 }

FIRST OF: The FIRST OF operator takes a sequence (not a set) S as a pa-

rameter and evaluates to the first element in S. The elements of
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the sequence must all be of the same type T. The type of a FIRST

OF expression is also T. An example FIRST OF expression is given

below. The value of the expression is the duration value 1:30.

FIRST OF { 1:30 -> 2:20 -> 0:50 }

LAST OF: The LAST OF operator takes a sequence (not a set) S as a pa-

rameter and evaluates to the first element in S. The elements of

the sequence must all be of the same type T. The type of a LAST

OF expression is also T. An example LAST OF expression is given

below. The value of the expression is the duration value 0:50.

LAST OF { 1:30 -> 2:20 -> 0:50 }

Elements inside derived activities ARUS has a special keyword to refer

to the set or the sequence of elements inside an activity. Please recall

that a derived activity is a sequence or a set of other activities. A

solution is defined as a set of pairings. A pairing is a sequence of

duties, and a duty is a sequence of flights. The keyword ELEMENTS

(depending on the context in which it is used) refers to the set or the

sequence of elements inside in activity. If ELEMENTS is used inside a

solution, it refers to the set of pairings in that solution. If ELEMENTS is

used inside a pairing, it refers to the sequence of duties of that pairing.

Finally if ELEMENTS is used inside a duty, it refers to the sequence of

flights of that duty. ELEMENTS cannot be used inside flight activity.

For example, suppose that a duty cannot have more than 6 flights.

This constraint can be stated as given in Example 13.
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Example 13 A duty cannot have more than 6 flights

CONSTRAINT noLongDuties OF Duty

RULE:

COUNT OF ELEMENTS <= 6

ENDCONSTRAINT

Applying Properties to Activities For an instance of activity a and a

property p of that activity type, “p OF a” gives the value of the prop-

erty p of the instance a. For example, suppose that we want to calculate

the total time of a duty. This can simply be computed the departure

time of the first flight in the duty and the arrival time of the last flight

in the duty. Assume that departure time and arrival time are prop-

erties (attributes in fact) of flights. We can then define the required

property for a duty as shown in Example 14.

Example 14 Calculating total duty time

PROPERTY totalTime OF Duty

RULE:

(arrival_time OF LAST OF ELEMENTS) -

(departure_time OF FIRST OF ELEMENTS)

ENDPROPERTY

In Example 14, LAST OF ELEMENTS evaluates to a flight. arrival time

property is applied on this flight, and this application evaluates to the

value of the arrival time property of that flight.
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Applying Properties to Sequences/Sets of Activities For a sequence

/set of activities, one can apply a property of that activity to generate

a sequence/set of the values of that property of the elements of the

sequence/set of activities. More formally, if s is a sequence/set of the

form { o1 ->, o2 ->, · · · ->, ok } of activities of type I (where I is

pairing, duty, or flight), and p is a property of I, then “p OF s” is a

sequence s′ of the form { o′1
->, o′2

->, · · · ->, o′k } where o′i is equal

to the value of p OF oi. If the type of the property p is T, then s′ is a

sequence/set of values of type T.

For example, suppose that ELEMENTS is used inside a duty, hence it

refers to the sequence of flights of that duty. Suppose that we want to

calculate total flytime of that duty which is simply the sum of dura-

tions of the flights in this sequence. Assuming that flight duration

property of a flight is defined as given in Example 11, one can define

the total flytime of a duty as shown in Example 15.

Example 15 Total flytime of a duty

PROPERTY totalFlytime OF Duty

RULE:

SUM OF flight_duration OF ELEMENTS

ENDPROPERTY

In Example 15, ELEMENTS generates a flight sequence s. flight du-

ration OF ELEMENTS generates a sequence s′ of duration values where

the ith element in s′ is the duration of the ith flight in s. Finally, SUM

OF operator adds up the elements in s′.
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WHERE expressions A subsequence/subset of elements of a sequence/set can

be selected by using WHERE expressions. The syntax of a WHERE expres-

sion is

s WHERE exp;

where s is a sequence/set of objects (i.e. a sequence of flights or duties,

or a set of pairings) and exp is a boolean expression. The boolean ex-

pression may refer to the properties of the objects in s. The semantics of

a WHERE expression is as follows. Suppose s is a sequence/set of objects

{o1 ->, o2 ->, . . . ->, ok}. Then s WHERE exp is a subsequence/subset s′

of s, where only those elements in s for which the boolean expression

exp hold survive in s′. If s is a sequence, then the relative order of the

elements are preserved in s′. While checking if exp evaluates to true for

an object oi, if exp refers to a property p, then p OF oi is understood.

For example, ELEMENTS used in a duty refers to the entire flight sequence

of the duty. Using ELEMENTS together with WHERE, one can generate

a sequence of flights of the duty where only international flights are

considered. In order to illustrate a use of this construct, suppose we

want to state a constraint which says ”there cannot be more than one

international flight” in a duty. This constraint can be given as shown

in Example 16 by assuming the existence of flight status property

of flights as given in Example 12.

Here, ELEMENTS generates the flight sequence in a duty. This sequence is

operated on by WHERE whose boolean expression is (flight status !=

"DOMESTIC FLIGHT"). Therefore, each flight in the sequence ELEMENTS
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Example 16 A duty cannot have multiple international flights

CONSTRAINT noMultipleInternationalFlights OF Duty

RULE:

COUNT OF ELEMENTS

WHERE (flight_status != "DOMESTIC_FLIGHT") <= 1

ENDCONSTRAINT

will be considered one by one to see if it satisfies this boolean condi-

tion. While checking the boolean condition for a flight f , the property

flight status will be understood as the value of flight status OF

f .

FOR EACH operator Another common type of constraints/properties in air-

line crew pairing domain concerns the relation between some consec-

utive activities inside a derived activity. For example, between two

consecutive flights in a duty, there has to be a sufficient time lag called

minimum sit time. In order to be able to state such constraints, ARUS

provides FOR EACH iterator over a sequence of items. The syntax of

this operator is

FOR EACH sequence identifiers IN s exp

where exp is a boolean expression and s is a sequence. sequence identi

fiers part denotes the number of consecutive elements to be considered

in s and also give names to these elements that will be used to refer to

them in exp. The syntax of sequence identifiers is
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e1 -> e2 -> ... -> ek

where ei is an identifier that will be used to refer to an element in

exp. k is the number of the consecutive elements to be considered. For

example, “f1 -> f2 -> f3” means that all three consecutive elements

will be considered, and f1, f2, and f3 will be used as names while

referring to the three consecutive elements.

The boolean expression exp incorporates ei’s as free variables. For each

consecutive list of k elements, exp is evaluated separately. The value

of the overall FOR EACH expression is the conjunction of the values of

each of these boolean expressions.

As an example, suppose that between two consecutive flights in a duty

there has to be a minimum of 60 minutes. This constraint can be stated

as shown in Example 17.

Example 17 Minimum sit time between the flights in a duty

CONSTRAINT minimumSitTime OF Duty

STATUS: ON;

CONSTANTS:

minSitTime = 1:00;

RULE:

FOR EACH f1 -> f2 IN ELEMENTS

departure_time OF f2 - arrival_time of f1 >= minSitTime

ENDCONSTRAINT

As another example, suppose that for every consecutive three duties in
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a pairing, there has to be at least one short duty, where a short duty

is defined as a duty with a total flying time of less than 4 hours. This

can be stated as shown in Example 18 by assuming the existence of

TotalFlytime property of a duty as defined in Example 15.

Example 18 One easy duty in three consecutive duties

PROPERTY easyDuty OF Duty

CONSTANTS:

maxFlytimeInEasyDuty = 4:00;

RULE:

TotalFlyTime <= maxFlytimeInEasyDuty

ENDPROPERTY

CONSTRAINT oneEasyDutyInThreeDuties OF Duty

STATUS: ON;

RULE:

FOR EACH d1 -> d2 -> d3 IN ELEMENTS

(easyDuty OF d1) OR (easyDuty OF d2) OR (easyDuty OF d3)

ENDCONSTRAINT

time operator ARUS can convert from a datetime value to a time value

using the operator time. It simply drops the date part in the given

datetime value. For example time(03.02.2011 01:30 PM) is 01:30

PM. A possible use of this operator is explained in Example 19. Suppose

that a flight is called a red-eye flight if it departs between 11:00PM and

05:00AM.
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Example 19 Definition of a red-eye flight

PROPERTY redeyeFlight OF Flight

RULE:

(time(departure_time) <= 05:00AM)

AND (time(departure_time) >= 11:00PM)

ENDPROPERTY

Timewindow Expressions Airline crew pairing problems sometimes re-

quire to state a constraint that needs to be checked over a timewindow.

For example, “total fly time in a pairing must not be greater than 8

hours in any 24 hour window” is such a constraint. ARUS provides

timewindow expressions to enable the description of such constraints.

The time window can be stated on three different time units: hour,

day, week. General format for this expression starts with keyword FOR

TIMEWINDOW OF followed by an integer for specifying the width of the

time window and then the time unit that is to be used when shifting

the window. This is followed by a boolean expression which is the value

to be checked. An example is given in Example 20.

As for the priority and the associativity of these operators, we follow the

convention of general purpose programming languages. All binary opera-

tors are left associative and Table 3 gives the priority of the operators in

decreasing order.
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Example 20 Time Window Expressions

CONSTRAINT the_8_in_24_Rule OF Duty

STATUS: ON;

RULE:

FOR TIMEWINDOW OF 24 hour

SUM OF flightTime OF ELEMENTS <= 8:00;

ENDDONSTRAINT

Priority Operators

1 unary operators

2 *, /

3 +, -

4 <, <=, >= , >=

5 ==, !=

6 AND, OR

Table 3: Priorities of the operators in decreasing order
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3 Compiler Design and Implementation

To show and test the effectiveness of our rule modeling language, we designed

and implemented a compiler for ARUS. A compiler is a program that reads

the source code of a program written in one programming language (called

the source language) and translates this to an equivalent program in another

language (called the target language). The source language in our case is

ARUS and the target language is C++. The C++ code generated by ARUS

compiler is then compiled into a DLL (dynamic link library). This DLL

exports methods to check the feasibility and to compute the cost of activities.

We will now give details of ARUS compiler. We start by giving details

about the overall system and how ARUS compiler integrated with it in Sec-

tion 3.1. After that the structure of ARUS compiler is detailed in Section 3.2

and continue with phases of ARUS compiler. We give general information

about lexical and syntax analyzer with details of our implementation

in Section 3.3. After that in Section 3.4 we give details about semantic

analyzer and finally we give the detailed structure of our code generator

in Section 3.5.

3.1 Airline Crew Pairing Engine and ARUS Compiler

Integration

In this section, we will give some details about how ARUS compiler and

airline crew pairing engine are integrated to work together.

Our main goal is to separate airline crew pairing engine and feasibil-

ity/cost calculations so that users can change the rules and regulations with-
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out having to modify the airline crew pairing engine. To ensure this goal,

we generate a DLL file from the generated C++ program, to be used as a

feasibility checker and cost calculator by airline crew pairing engine. The

methods exported by this DLL library and they are used at run time by the

airline crew pairing engine as needed.

Since the airline crew pairing system uses the generated DLL file at run

time, the data structures used by the engine and DLL library must be the

same. In other words, both the DLL file and the airline crew pairing engine

use the same activity hierarchy (i.e. flights are the basic activities, duties are

formed from flights, pairings are formed from duties, and finally solutions

are formed from pairings). The basic activities are given to the engine as

an input. However the derived activities are built by the engine. To build a

duty for example, the engine starts with a single flight. A single flight forms

what we call a partial duty. The engine then attempts to extend partial duty

by appending another flight. Each time such an extension is attempted, the

engine checks the feasibility of the extension. In other words, the engine

finds out if this extended form is still a duty or not by using the methods

exported by the DLL. This scheme is the same for generating pairings as

well. A single duty forms a partial pairing. Partial pairings are extended by

appending duties, and every extension attempt is checked for feasibility by

using the exported DLL methods.

The overall structure of airline crew pairing engine and ARUS compiler

is given in Figure 3.
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Figure 3: Overall System
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3.2 Compiler Structure

In this section we will give the general structure of ARUS compiler. Like

general compiler implementations, the implementation of ARUS compiler is

composed of two parts: analysis and synthesis [11].

In the analysis part, the source code is processed according to the gram-

matical structure of ARUS to generate the intermediate representation of the

program with necessary information produced from the source code. This

part is generally composed of several phases: lexical analyzer, syntax analyzer

and semantic analyzer.

In the synthesis part, the generated representation and gathered infor-

mation is used to generate corresponding translation of the source language

to the destination language. There are intermediate phases where the gen-

erated representation is processed further before generating the destination

language. In ARUS compiler, these processes are done in code generation

phase.

We give a detailed structure of ARUS compiler in Figure 4. The phases

given in this figure will be explained in the following sections.

3.3 Lexical and Syntax Analyzer

The lexical analyzer, also called scanner, is the first phase of the analysis part

of a compiler. It takes characters of the source program code as input and

generates a sequence of tokens (sequence of characters that have a collective

meaning) which is used by the syntax analyzer [12].

The syntax analyzer, also called parser, is the second phase where the
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Figure 4: ARUS Compiler Structure
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tokens from the lexical analyzer are verified according to the grammar of the

source language [12]. It takes the sequence of tokens generated by the lexical

analyzer and converts it into a data structure that will be used in further

processing.

For generating these analyzers, we used flex (Fast Lexical Analyzer) and

bison (GNU parser generator) [13]. We now give a brief information about

these tools.

flex is a scanner generator designed for lexical processing of the character

streams. Basically, flex takes a set of regular expressions specifying

the tokens of the source language. It generates a program for recog-

nizing these regular expressions from an input stream. The actions

associated with the regular expression are used to generate the tokens

corresponding to these regular expressions.

bison is a general purpose parser generator that takes an annotated context

free grammar description of the source language. It generates a “Look

Ahead Left-to-Right Rightmost” C or C++ parser which can parse a

sequence of tokens that conforms the grammar. It is mostly used with

Flex which generates corresponding tokens from input streams.

With the help of generated lexical and syntax analyzers, we process the

source code and generate intermediate data representations to be used in

latter phases. These representations are general data structures that is used

in compiler implementations:

Parse Tree A parse tree, or a concrete syntax tree, is a rooted tree represen-

tation of the syntactic structure of the input according to the grammar.
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Non–leaf nodes are labeled by non–terminals and the root is labeled by

the start symbol. The leaves are labeled by terminals.

Abstract Syntax Tree An abstract syntax tree (AST) is a representation

of the input as a tree. It is different than a parse tree in that a parse tree

give the concrete syntax structure of the input, whereas in an abstract

syntax tree, the concrete syntactic details do not exist. The interior

nodes represents the programming constructs rather than nonterminals.

Symbol Table A symbol table serves as a database for compilation pro-

cess [12]. They are designed as data structures to hold information

about the source program constructs. The main contents of the symbol

table are the type and attribute information of each user–defined iden-

tifier in the program. The information is collected incrementally by

the lexical and syntax analysis phases and used in latter phases like se-

mantic analysis and code generation phases to get needed information

about the identifiers in the source program.

3.4 Semantic Analyzer

In this phase, the source program is checked for semantic consistency by

using the abstract syntax tree and the symbol table. We have to ensure that

the input program is semantically correct to continue for code generation.

Semantic analyzer of ARUS compiler uses multi-pass approach where the

abstract syntax tree is processed more than once. It gets the abstract syntax

tree and symbol table generated by the previous phases and traverse them

to check for the semantic validation rules.
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Semantic validation rules are mostly based on tracking declaration/ defi-

nition consistency. As each of these rules are checked separately, the abstract

syntax tree and the symbol table is traversed more than once to generate

corresponding error and warning messages. We now give further explanation

about the semantic validation rules.

Undeclared definitions This validation rule checks if all the definitions

(property or constraint) given in definition part are declared within an

activity declaration in the declaration part. This check is performed by

using the symbol table. Each identifier used in the source program has

a record in the symbol table. For this check, we traverse thw symbol

table for any unmatched definitions and give corresponding errors with

line numbers.

Undefined declarations Like the previous validation rule, this rule checks

if all declarations (property, constraint) given within an activity decla-

ration in the declaration part have a definition in the definition part.

Again the symbol table is used to perform this check. Corresponding

error messages are produced if an undefined declaration is seen.

Use of undeclared identifiers This validation rule checks if there are any

identifier that are used without a record in symbol table. Each identifier

used in a rule expression has to be declared beforehand. The identifiers

in an expression can be a constant, a variable, or an entity (property

or constraint) identifier declared within an activity declaration. Each

identifier in an expression are checked for a declaration from the symbol

table and error messages are given if there is an undeclared identifier
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used.

Supported operations This validation rule checks if all the operators in

expressions are valid operators. The supported operators and their

resulting types are given in Table 1 and Table 2. Each operator is

checked from these tables and corresponding error messages are pro-

duced if necessary.

Table expression check This validation rule checks if the table declara-

tions are semantically correct. The table declarations are given with

declared variable names for the predicates of rows and columns. In

Example 21, the variable names for the predicates are declared to be

numOfLegs and startTime whereas the variables used in the predicates

are otherStr and anotherStr. So given example will fail this valida-

tion and will generate an informative error message for variable name

mismatch.

Example 21 Table Variable Mismatch

TABLE maxDutyTime

numOfLegs/startTime | 06:00AM<= otherStr <03:00PM | OTHERWISE

1 <= anotherStr <= 2 | 14:00 | 12:00

3 <= anotherStr <= 5 | 13:00 | 10:00

Type checking This validation rule is one of the most common checks per-

formed by compilers. It ensures that each operation performed in the

program respects to the type system of the language. In ARUS, types
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of each property is given in the declaration part. To ensure the cor-

rectness of type assignments, we look if all properties and constraints,

declared in the declarations part, have an expression of the same type.

Example 22 is a basic example of type mismatch. The property maxDu-

ration of Duty is declared as a duration type, but the rule that is defined

for maxDuration computes an integer value. We check such cases by

finding the type of each expression with respect to Table 1 and ensure

that the computed types are the same as the declared types.

Example 22 Type Mismatch

ACTIVITY Duty

...

PROPERTIES:

...

maxDuration : duration;

...

ENDACTIVITY

PROPERTY maxDuration OF Duty

...

RULE:

10 * 2;

....

ENDPROPERTY
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3.5 Code Generation

In this section, we go into details of the final phase of ARUS compiler, code

generation. This phase takes the abstract syntax tree and the symbol table

from the previous phases, and produces a C++ program implementing the

feasibility and cost calculation rules given in the input. The generated C++

code is then used to generate a DLL (dynamic link library) for performing

feasibility/cost calculations. Finally generated DLL file is used by the airline

crew pairing system at run time.

The source program in ARUS, is a specification of activity based rules

and regulations which are used in feasibility/cost calculations of airline crew

pairing engine. To generate equivalent methods in C++, we represent each

defined activity type (e.g. flight, duty etc.) as a class and their corresponding

property and constraint definitions as methods of this class.

We will explain the code generation phase of ARUS compiler. We start

with code generation of constant declarations in Section 3.5.1. After that we

detail the code generation of activity declarations in Section 3.5.2. Finally,

the code generation for property and constraint definitions are described in

Section 3.5.3 and feasibility checking methods in Section 3.5.4.

3.5.1 Code Generation for Constants

Constant declarations can be made either in global constants declaration sec-

tion of the specification or within entity (property or constraint) definition

section. The constant declaration semantics of ARUS is very similar to the

constant declaration in C++. So the code generation for constant declara-

tions is very simple. We just add the data type for the constant declaration
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of build–in data types. On the other hand, constructors like set or table has

more complex code generation methods. We use array structure of C++ to

represent these constructors. Sets and sequences are represented as one di-

mensional arrays whereas tables are represented by two dimensional arrays

in generated C++ code.

The constants given in global constants declaration section, are used to

generate a header file which will be included by all the generated activity

classes. Below are the examples of a global constant declaration section and

its corresponding generated C++ header file.

CONSTANTS:

IstanbulAirports = {SAW, IST};

briefingTime = 00:30;

debriefingTime = 00:45;

ENDCONSTANTS

//Declerations.h

//Global Constants

airport IstanbulAirports[] = {SAW, IST};

duration briefingTime(00:30);

duration debriefingTime(00:45);

Other than the global constant declaration section, constants can be de-

fined in the entity (property or constraint) definitions. These constants sim-

ply generated as C++ local constants specific to the generated method for

the defined entity.
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Figure 5: Base Activity Code Generation

3.5.2 Code Generation for Activities

As mentioned in earlier sections, an activity is represented by a class in C++.

Activities are composed of attributes, properties or constraints. Likewise

C++ classes are composed of attributes and methods. Each entity (attribute,

property or constraint) declared in an activity corresponds to an attribute in

the generated C++ class. We give examples of generated class declarations

for basic and derived activity declarations in ARUS in Figure 5 and Figure 6.

As seen in Figure 5, the Flight activity declaration consists of attribute

and property sections. These declared attributes and properties are directly
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Figure 6: Derived Activity Code Generation
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used as attribute declarations in the generated class with their setter and

getter methods. Along with the getter-setter methods, a boolean flag IsSet

is declared. This flag holds the information if the attribute is set or not.

Derived activities are composed of a sequence of other activities. They

also have properties and constraints. Different than basic activities, we

generate two overloaded setter functions for each entity (property or con-

straint). Another difference of the generated class declaration of derived ac-

tivity given in Figure 6, is that it contains an additional attribute of vector

type, elements, which holds the sequence of composing activities.

3.5.3 Code Generation for Entity Definitions

In this section, we give some details about the entity (property, constraint)

definitions and their representation in the generated C++ code. We said that

an activity declaration with its properties and constraints, is represented as a

class. A property or a constraint of an entity is implemented by an attribute

of this class together with getter and setter methods for this attribute.

The generated getter methods have a common easy implementation for

each property and constraint definition. It first checks if the attribute is set

before. If not it calls the setter method, and then returns the value of the

attribute. We give an example of getter functions in Method 1.

The setter methods have a more complex structure as they are used for

calculating the property and constraints. The calculation methods are based

on expressions given in the definition of the entities. Each expression corre-

sponds to a different method generation. We now give details about gener-

ated methods for each expression type:
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Method 1 Getter Methods

duration Duty::gettotalTime()

{

if(!totalTimeIsSet)

settotalTime();

return totalTime;

}

duration Duty::gettotalTime(Duty* inAct, Flight* inComp)

{

if(!totalTimeIsSet)

settotalTime(inAct, inComp);

return totalTime;

}
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Atomic Expressions As atomic expressions correspond to simple expres-

sions, the code generation method for them is very simple. Each atomic

expression corresponds to a constant value (e.g. 7, SAW etc.) or an

identifier of a constant or an entity (attribute, property or constraint).

The generated code for these expressions is based on the type of the

expression. If expression is a constant value or a constant identifier,

their representation is same with ARUS representation. On the other

hand, if expression is an identifier of an entity than it is represented

as the value of the corresponding entity by using the generated getter

method.

Arithmetic Expressions As ARUS supports only the basic arithmetic op-

erators that all general purpose programming languages support, we

do not have to generate an explicit code generation procedure for it.

In Method 2, we give the code generated for the property definition

given in Example 11. Duration of a flight is calculated by simply sub-

tracting the departure time of the flight from the arrival time. As

the identifiers used within the arithmetic operation, corresponds to an

attribute of flight activity, they are represented as constant variables

that are set using by the getter methods of those attributes.

Boolean Expressions ARUS supports common boolean expressions (NOT,

AND, OR) that are also supported in C++ but with different repre-

sentations. The code generation procedure for a boolean expression is

simply to replace supported operators with C++ equivalent. In Ta-

ble 4, we gave each boolean expression with its C++ equivalent.
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Method 2 Calculation Method for Arithmetic Expressions

void Flight::setflight_duration()

{

duration result(00:00);

time tempVar1 = getarrival_time();

time tempVar2 = getdeparture_time();

result = tempVar1-tempVar2;

flight_duration = result;

flight_durationIsSet = true;

}

Boolean Expression C++ Equivalent

NOT !

AND &&

OR ||

Table 4: ARUS Boolean Operators, C++ equivalents

Relational Expressions Relational operators in ARUS is the same as the

relational operators in C++. Therefore the generated code for these

expression are the same as the input expression. One particular case

where ARUS relational expressions differ from C++ is the chained re-

lational expression. The chained relational expressions are represented

as a sequence of simple relational expressions which are connected to

each other by an AND operator. For example, 1 <= x <= 5 is translated

as (1 <= x) AND (x <= 5)
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Set Membership Each IN or NOT IN operator, performs a membership

test. The sets in ARUS are implemented by one dimensional arrays

in C++. Set membership checks are simply implemented by a code

that goes through all the elements in the array sequentially.

IstanbulAirports = {IST, SAW};

arrivalAirport IN IstanbulAirports;

bool isInIstanbulAirportsSet(airport inAirport)

{

for(int i = 0; i<IstanbulAirports.size(); i++)

{

if(IstanbulAirports[i]==inAirport)

return true;

}

return false;

}

Conditional Expressions ARUS uses the same syntactic representation of

conditional expressions as C++. Given an expression like;

IF (cond) e1; ELSE e2;

The generated code will be the same except, the use of C++ syntax

with generated expressions.
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Table Reference A table is represented as a matrix of constant values.

For referencing a table, we generate a function to calculate the row

and the column for the reference. After the row and the column for

the reference are calculated, then we simply refer to the corresponding

value in the matrix for this row and column. The function calculating

the row and the column indices checks the table predicates. The in-

put and output types of the generated method is determined by types

used in the predicates and types of the cell values. In Method 3, we

give an example of generated method for referencing the table given in

Example 1.

Time Window Expressions Time spanning rules are common in airline

domain. This expression type performs calculations over a time win-

dow. These expressions require additional functions to be generated

by the compiler as the whole activity will be traversed and the expres-

sion is calculated for each time window. Below we give an example of

generated function for time window expressions.

In the generated function, the elements are traversed in by sliding win-

dows according to the declared window size and step. A partial Duty

is generated by the function getWindowOf which takes a sequence of

composing activities, Flight, with the time span coefficient. The cor-

responding expression is checked and the elements trimmed from the

beginning to shift the window one unit. This unit can be hour, day, or

week. This process is repeated until the end of the elements is reached.

If expression fails in one of the iterations, the loop is broken and the

result is set to be false.

64



Method 3 Calculation Method for Table Reference

duration getMaxDutyTime(int numOfLegs, Duration startTime)

{

int row, column;

if( 1<=numOfLegs && numOfLegs<=2)

row = 0;

else if( 3<=numOfLegs && numOfLegs<=5)

row = 1;

if( 06:00AM<=startTime && startTime<03:00PM)

column = 0;

else

column = 1;

return maxDutyTime[row, column];

}
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Method 4 Generated time window calculation function

void Duty::setmaxFlightTimeTW()

{

bool result = true;

vector<Flights*> tempList = elements;

int timeSpan = 5;

Duty* tempAct = getWindowOf(tempList, timeSpan);

while(tempAct != NULL)

{

result = tempAct->getmaxFlightTime();

if(!result)

break;

trimElements(tempList);

tempAct = getWindowOf(tempList, timeSpan);

}

maxFlightTimeTW = result;

maxFlightTimeTWIsSet = true;

}
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Special Operations ARUS supports some special operations (e.g. SUM

OF, AVG OF, FIRST OF etc.) which can be applied on different type

of sets or sequences of activities. Each operator has its own C++

representation. In Method 5, we give an example of generated setter

method for the property defined in Example 15.

Method 5 Generated setter method for totalFlyTime

void Duty::settotalFlyTime()

{

duration result(00:00);

duration tempVar;

for(int i = 0; i<elements.size() ; i++)

{

tempVar = elements[i]->getflight_duration();

result += tempVar;

}

totalFlyTime = result;

totalFlyTimeIsSet = true;

}

In the example, totalFlyTime is calculated by summing up the flight

duration of each of the ELEMENTS. The generated method simply has a

loop for adding the values of getflight duration() for each element.

ELEMENTS keyword corresponds to the elements of the activity, and it

is represented as a vector of composing activities.
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For the expressions that uses these operators over ELEMENTS of a de-

rived activity, we generate an overloaded setter method. This method

calculates properties by using the calculations that is done on previous

partial activities. In Method 6, we give the generated overloaded setter

method for the same property definition of Method 5. Please recall that

pairing generator works in an incremental way. A partial derived activ-

ity is attempted to be extended by adding a composing activity. The

overloaded method avoids performing the same computation over and

over, by simply reading the previously computed value of the partial

derived activity.

Method 6 Generated overloaded setter method for totalFlyTime

void Duty::settotalFlyTime(Duty* inAct, Flight* inComp)

{

duration result(00:00);

duration tempActVal = inAct->gettotalFlyTime();

duration compVal = inComp->getflight_duration();

result = actVal + compVal;

totalFlyTime = result;

totalFlyTimeIsSet = true;

}

For SUM OF operator, the generated overloaded setter method sim-

ply gets totalFlyTime of the partial activity (Duty) and and adds

flight duration of the composing activity.
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Other operators (e.g. AVG OF, COUNT OF etc.) has a similar repre-

sentation in C++. For example, MIN OF operator finds the minimum

of a value over a set or sequence by simply comparing value of each

element. Again if this operator is used over a property of ELEMENTS of

a derived activity, overloaded setter method will simply compare the

calculated minimum value of partial activity with the property value

of composing activity used in the expression.

3.5.4 Feasibility Checker

The feasibility of an activity is determined by checking all the constraints that

are defined for that activity declaration. If all the constraints are checked to

be true than the generated activity is feasible.

For each activity defined in the specification program, we generate a fea-

sibility checking method that is used by the engine. The engine considers

partial derived activity and a composing activity and asks if this partial de-

rived activity can be extended by this composing activity. Our feasibility

checking method therefore takes partial derived activity and a composing

activity as input parameters and checks if the given composing activity can

be added to the given partial derived activity without violating a feasibility

rule.
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4 Conclusions and Future Work

In this thesis, we designed a high level language, ARUS, to be used for

specifying the feasibility and cost calculations in airline crew pairing. The

language has its syntactic features inherited from DRL [10]. ARUS specializes

DRL in a domain specific manner. Using such a high level language for the

specification of feasibility and cost calculation simplifies the description of

these rules.

We also implemented a compiler for ARUS to translate ARUS specifica-

tions to C++. The C++ code generated has methods to check the feasi-

bility of derived activities and it also has methods to calculate the costs of

the activities. A pairing generator can import these methods and use them

for checking feasibility and calculating cost. By separating the feasibility

and cost calculation from the pairing generator, it is no longer necessary to

change code of a pairing generator to modify the feasibility check and cost

calculation.

One other important advantage of ARUS is that users do not have to

have a programming experience. We also believe that the syntax of ARUS

is simple enough, a little training will be sufficient for novice users. For

comparison with the other languages used for the same purpose, we haven’t

carried out a usability study, but below we give one example rule represented

both in Carmen Rave language in Rule 1 and in ARUS in Rule 2. As Rave

uses a general purpose programming language like representation, it is more

difficult to understand for the end-users who do not have any programming

experience in general purpose languages.

As a future work, we plan continue adding new functionality to the lan-
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Rule 1 Rave representation for maximum number of international flights in

a duty

/*

** Rule

** Max number of domestic to international flights per duty

*/

rule (on) max_num_leg_dom_to_int_check =

valid trip.%check_rules%;

%num_dom_to_int% <= %max_num_legs_dom_to_int%;

remark "Max number of legs, in a duty, from domestic

to international check";

end

%max_num_legs_dom_to_int% =

parameter 1 minvalue 1

remark "Max number of legs, in a duty, from domestic

to international";

%num_dom_to_int% = count(leg(duty))

where (%leg_is_dom_to_int%);

%leg_is_dom_to_int% = leg.%departure_is_domestic%

and leg.%arrival_is_international%;
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Rule 2 ARUS representation for maximum number of international flights

in a duty)

PROPERTY flight_status OF Flight

RULE:

IF (departure_airport IN DOMESTIC_AIRPORTS) AND

(arrival_airport NOT IN DOMESTIC_AIRPORTS)

"INTERNATIONAL_FLIGHT"

ELSE

"DOMESTIC_FLIGHT"

ENDPROPERTY

CONSTRAINT maxNumOfIntFlights OF Duty

COMMENT: Maximum number of flights from domestic

to international cannot be more than 1;

CONSTANTS:

maxFlights = 1;

RULE:

COUNT OF ELEMENTS WHERE

(flight_status != "DOMESTIC_FLIGHT") <= maxFlights;

ENDCONSTRAINT
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guage and compiler implementation. We plan to add code generation for

newly added expressions (FOR EACH and time). Also the tables can be ex-

tended to have more than two variables. Users can give any number of

predicate to be checked for a table. Another future work can be the imple-

mentation of a user interface where users can modify constant values that

is used in property or constraint calculation methods. With user interface,

users can directly change values without having to change the ARUS source.

Also further improvements on the run time of feasibility checking procedures

can be made.
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A Some Real Life Examples

In this section, we give some real life rules and their representation in ARUS.

Rule 3 Maximum flight time of a duty is 5 hours if it starts from a base

airport, else it is 4 hours.

Rule 3 puts a limit on total flight time of a duty, depending on the starting

airport of the duty. To check this feasibility rule, we have to calculate the

total flight time in a duty. The first step is to calculate the flight time of a

single flight. Since a duty is a sequence of flights, we can then simply sum

the flight time of all the flights in the duty to find the total flight time in a

duty. The first two properties in Rule 3 perform these calculations. Since we

are also interested in the starting airport of a duty, we also write a property

to get the departure airport of the first flight in the duty.

Finally the constraint in Rule 3 compares the total flight time computed

by the property to the required limit, where the limit changes according to

the starting airport of the duty.

Rule 4 Minimum sit time between two consecutive flights in a duty can not

be less than 30 minutes.

In Rule 4, sit time between two consecutive flights is required to be more

than allowed minimum sit time. This rule can be given as a single constraint

in ARUS. The constraint considers each consecutive flight pair f1 and f2 in

the elements of Duty. It subtracts the arrival time of the first flight from

the departure time of the second flight (which gives the sit time between

these flights) and checks if the result is more than minSitTime which is set

to be 30 minutes.
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Rule 3 Maximum Flight Time in a duty

PROPERTY flightTime OF Flight

RULE:

arrivalTime - departureTime;

ENDPROPERTY

PROPERTY totalFlightTime OF Duty

RULE:

SUM OF flightTime OF ELEMENTS;

ENDPROPERTY

PROPERTY startingAirport OF Duty

RULE:

departureAirport OF FIRST OF ELEMENTS;

ENDPROPERTY

CONSTRAINT maxFlightTime OF Duty

STATUS: ON;

CONSTANTS:

BasePorts = {SAW, IST, ADA};

RULE:

IF startingAirport IN BasePorts

totalFlightTime < 05:00;

ELSE

totalFlightTime < 04:00;

ENDCONSTRAINT
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Rule 4 Minimum sit time between two consecutive flights of a duty

CONSTRAINT minimumSitTime OF Duty

STATUS: ON;

CONSTANTS:

minSitTime = 00:30;

RULE:

FOR EACH f1 -> f2 IN ELEMENTS

departure_time OF f2 - arrival_time of f1 >= minSitTime

ENDCONSTRAINT
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