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Abstract 

Wireless sensor networks are composed of sensor nodes which are small, 

battery-powered devices having limited resources. Sensor nodes collect data from 

environment, and transmit them via their radio communication medium towards a base 

station. Although majority of wireless sensor applications use static sensor nodes, 

sensor node can be mobile either by itself, or due to environmental factors such as wind, 

water, or deployment of sensor nodes on moving objects. 

It is not easy to control sensor nodes once they are deployed in a hostile 

environment. Due to mostly being unattended, sensor nodes become open to physical 

attacks such as wormhole attack, which is our focus in this thesis. In wormhole attack, 

an attacker tunnels messages received in one part of the network over a low-latency 

wormhole link and replays them in a different part of the network. By doing so, the 

attacker makes two distant nodes believe that they are in the communication range of 

each other. The low-latency tunnel attracts network traffic on the wormhole link which 

can empower the attacker to perform traffic analysis, denial of service attacks; collect 

data to compromise cryptographic material; or just selectively drop data packets through 

controlling these routes using the wormhole link.  

In this thesis, we propose a distributed wormhole detection scheme for mobile 

wireless sensor networks in which mobility of sensor nodes is utilized to estimate two 

network features (i.e. network node density, standard deviation in network node 

density) through using neighboring information in a local manner. Wormhole attack is 

detected via observing anomalies in the neighbor nodes’ behaviors based on the 
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estimated network features and the neighboring information. We analyze the 

performance of proposed scheme via simulations using different system parameters. 

The results show that our scheme achieves a detection rate up to 100% with very small 

false positive rate (at most 1.5%) if the system parameters are chosen accordingly. 

Moreover, our solution requires neither additional hardware nor tight clock 

synchronization which are both costly for sensor networks. 
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MOBĠL KABLOSUZ DUYARGA AĞLARINDA SOLUCAN DELĠĞĠ 

SALDIRILARINI TESPĠT ETMEK ĠÇĠN DAĞITIK BĠR ġEMA 

Oya ġimĢek  

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2011 

Tez DanıĢmanı: Doç. Dr. Albert Levi 

Anahtar Kelimeler: Solucan Deliği Saldırısı, Güvenlik, Mobil Kablosuz Duyarga Ağları 

Özet 

Kablosuz duyarga ağları küçük, pille çalıĢan, sınırlı kaynaklara sahip aygıtlardan 

oluĢur. Duyarga düğümleri çevreden veri toplar ve bu verileri radyo iletiĢim ortamı 

üzerinden baz istasyonuna iletirler. Kablosuz duyarga ağı uygulamalarının çoğunluğu 

statik duyarga düğümlerini kullansa da duyarga düğümleri kendiliğinden, ya da rüzgar, 

hava gibi çevresel etkenlerden, ya da duyarga düğümlerinin hareketli nesneler üzerine 

konuĢlandırılmasından dolayı mobil olabilir. 

Duyarga düğümleri saldırılara açık bir ortamda konuĢlandırıldıklarında 

güvenliklerini sağlamak kolay değildir. Genelde gözetimsiz olduğundan dolayı, duyarga 

düğümleri bu tezin odağını oluĢturan solucan deliği saldırısı gibi fiziksel saldırılara açık 

hale gelirler. Solucan deliği saldırısında, saldırgan ağın bir bölgesinde alınan mesajları 

düĢük gecikmeli solucan deliği bağlantısı üzerinden gönderir ve bu mesajları ağın baĢka 

bir bölgesinden tekrar yayınlar. Böyle yaparak, saldırgan birbirine uzak iki düğümü 

birbirlerinin iletiĢim alanında olduklarına inandırır. DüĢük gecikmeli tünel, ağ trafiğini 

solucan deliği bağlantısı üzerine çeker. Saldırgan, solucan deliği bağlantısını kullanan 

bu rotaları kontrol ederek trafik analizi ve servis reddi saldırılarını gerçekleĢtirebilir; 

Ģifrelemeyle ilgili bilgileri çıkarmak için veri toplayabilir; ya da veri paketlerini seçerek 

düĢürebilir. 

Bu tezde, mobil duyarga ağlarında solucan deliği saldırısını tespit etmek için 

dağıtık bir Ģema önerdik. Bu Ģemada lokal komĢuluk bilgilerinini kullanarak iki farklı 

ağ özelliğinin (ağ düğüm yoğunluğu, ağ düğüm yoğunluğunun standart sapması) 

hesaplanmasında duyarga düğümlerinin mobilitesinden yararlanıldı. Solucan deliği 
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saldırısı, hesaplanan ağ özellikleri ve komĢuluk bilgileri baz alınarak, komĢu 

düğümlerin davranıĢlarındaki anormalliklerin gözlemlenmesi yoluyla tespit edilir. 

Önerilen Ģemanın performansını simülasyonlarla analiz ettik. Sonuçlar, sistem 

parametreleri uygun bir Ģekilde seçildiğinde Ģemamızın %100’e varan bir doğru tespit 

oranına eriĢtiğini gösterdi. Bununla birlikte, hatalı tespit oranı %1.5 gibi çok düĢük bir 

düzeyde kaldı. Üstelik, çözümümüz duyarga düğümleri için pahalı sayılabilecek bir ek 

donanıma ya da katı bir zaman senkronizasyonuna ihtiyaç duymaz. 
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1. INTRODUCTION 

As a result of significant advances in hardware manufacturing and wireless 

communication technology along with efficient software algorithms, wireless sensor 

networks [1] emerged as a promising network infrastructure for various applications such 

as environmental monitoring, medical care, industry and agriculture, military surveillance, 

target detection and tracking. Wireless sensor networks composed of many battery-

powered, small, and resource constraint devices called sensor nodes. Sensor nodes are 

capable of sensing environment, processing data, and communicating with other sensor 

nodes in the network using short-range radio. Wireless sensor networks can be deployed 

randomly which can be viewed as advantage if we consider the deployment in inaccessible 

terrains or disaster relief operations. However, in such random deployments, sensor 

network protocols and algorithms need to be self-organized. Although majority of wireless 

sensor applications use static sensor nodes, sensor nodes can be mobile either due to 

improvements in technology, or environmental causes such as wind, water, or deployment 

of sensor nodes on moving objects. ZebraNet [21] is an example of mobile wireless sensor 

network application which is a habitat monitoring system. In ZebraNet, sensors are 

attached to zebras and collect information about their migration and behavior pattern. 

Some other applications are detailed in [22]. 

Wireless sensor networks are vulnerable to various malicious attacks. Due to the 

open nature of wireless communication channels, an attacker can easily eavesdrop the 

communication between sensor nodes which can lead to message tampering, or identity 

spoofing. In order to prevent such attacks, strong security algorithms should be 

implemented. These strong security algorithms require more resources such as 

computational power, or tamper-proof hardware. However, sensor nodes have limited 

resources for the sake of being low-cost devices, and a wireless network is composed of 

hundreds maybe thousands of sensor nodes. Hence, implementing such strong security 
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algorithms seems infeasible without increasing the cost of sensor nodes, or without making 

a trade-off between security and performance. Another problem is that it is not easy to 

control sensor nodes once they are deployed in hostile environments such as military 

fields. Due to being mostly unattended, sensor nodes become open to physical attacks such 

as identity spoofing, node capture and compromise which may lead to various attacks 

including wormhole attack, Sybil attack, denial of service attacks. These malicious attacks, 

which are generally categorized as mote class / laptop class attacks, insider / outsider 

attacks, passive / active attacks, are well described in the literature [4].  

Wormhole attack is an example of passive, outsider, laptop class attacks, where 

there are two or more malicious colluding nodes. An attacker tunnels messages received in 

one part of the network over a wormhole link and replays them in a different part of the 

network. Due to the low-latency tunneling over wormhole link, the attacker makes two 

distant nodes believe they are in the communication range of each other, and the network 

topology can be distorted as a result of these fake neighboring connections. Also, sensor 

nodes which are close to transceivers of the wormhole deplete their battery earlier as a 

result of heavy packet forwarding. Such an attack is a serious threat especially on routing 

protocols. The low-latency tunnel attracts network traffic on the wormhole link which can 

empower the attacker to perform traffic analysis, denial of service attacks; collect data to 

compromise cryptographic material; or just selectively drop data packets through 

controlling these routes using the wormhole link.  

Several techniques have been proposed to detect wormhole attacks in wireless 

sensor networks which mostly focus on static networks. These solutions, some of which 

will be detailed later, are mainly based on detecting the maximum distance any message 

can travel, or the maximum time of travel of any message, discovering one-hop neighbors 

in a secure way, or monitoring the data traffic of neighbor nodes. Most of the proposed 

techniques require specialized hardware such as a GPS receiver or antennas, highly 

accurate time or location measurements, tight clock synchronization, or specialized trusted 

nodes, which seems infeasible for large scale wireless sensor networks because of its 

resource limitations and economic costs. Moreover, mobility of sensor nodes is not 

considered in these solutions. 
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1.1. Contribution of the Thesis 

In this thesis, we propose a distributed wormhole detection scheme for mobile 

wireless sensor networks which is composed of two phases: (i) stabilization phase, and (ii) 

detection phase. In stabilization phase, two network features (i.e. network node density, 

standard deviation in network node density) are estimated via using local neighbor 

information along with preset parameters which are detailed in Section 3. Detection phase 

starts once stabilization phase ends. In this phase, the wormhole attack is detected via 

observing anomalies based on the estimated network features along with the neighboring 

information. Our scheme utilizes the mobility of the sensor nodes to estimate two above-

mentioned network features in a local manner. Without a wormhole attack being 

performed, the difference between the number of neighbors of a node and its estimated 

network density does not exceed the standard deviation of its network density. However, 

under wormhole attack, this difference can be higher due to fake neighboring connections, 

especially when a node is close to the wormhole ends. 

Our scheme achieves a detection rate up to 100% and very small false positive rate 

(at most 1.5%) when the parameters are chosen accordingly. Moreover, our solution 

requires neither additional hardware nor tight clock synchronization both of which are 

costly for sensor networks in terms of power consumption and economic costs. 

1.2. Organization of the Thesis 

The rest of the thesis is as follows. Section 2 gives general background information 

on wormhole attacks in wireless sensor networks and presents previous solutions in the 

literature. In Section 3, details of the proposed scheme are explained. Section 4 presents 

performance details including system assumptions and threat model, performance metrics, 

and simulation results. Finally, Section 5 concludes the thesis. 
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2. BACKGROUND ON WORMHOLE DETECTION IN WIRELESS SENSOR 

NETWORKS 

In this section, background information about wormhole attacks and proposed 

solutions are presented. Section 2.1 explains the wormhole attacks as well as their effects 

on the network while Section 2.2 details the proposed solutions for wormhole attack 

detection. 

2.1. Wormhole Attacks 

Wormhole attack is an example of passive, outsider, laptop class attacks, where 

there are two or more malicious colluding nodes. An attacker tunnels messages received in 

one part of the network over a wormhole link (i.e. out-of band hidden channels such as a 

wired link, high power transmissions, packet encapsulation.) and replays them in a 

different part of the network. Figure 2.1 shows a typical wormhole attack scenario where 

node X and node Y are captured by an attacker and a wormhole is created via wired link. 

Each packet received at node X is sent to node Y over the wired link, and replayed in that 

part of the network. Due to the low-latency tunneling over wormhole link, nodes a, b, and 

c which are in the communication range of X believe that node e and d are their neighbors 

which is not the real case. Similarly, each packet received at node Y is sent to X over the 

wormhole link and replayed at that part of the network. By doing so, node d and e believe 

that they are neighbors with node a, b, and c which is not the real case. Network topology 

can be distorted as a result of fake neighboring connections introduced by the wormhole 

link. 
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Figure 2.1: Wormhole attack scenario 

Such an attack is a serious threat especially on routing protocols. The low-latency 

tunnel attracts network traffic on the wormhole link which can empower the attacker to 

perform traffic analysis, denial of service attacks; collect data to compromise 

cryptographic material; or just selectively drop data packets through controlling these 

routes using the wormhole link. In [3], simulations show that more than 50% of the data 

packets are attracted to fake neighboring connections and get discarded when there are 

more than two wormholes in the network. Moreover, an attacker can perform this attack 

without compromising any legitimate nodes, or knowing any cryptographic materials since 

the attacker neither creates new packets nor alters existing packets. Hence, wormhole 

attack cannot be prevented using only cryptographic measures. 

2.2. Literature on Wormhole Detection 

In [2], the concept of packet leashes are proposed to defend against wormhole 

attacks. The idea is to restrict the maximum transmission distance that a packet can travel 

through using either location information or tight time synchronization. Temporal leash 
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guarantees that each packet has an upper bound on its life time. Hence, maximum 

travelling distance of the packet is also restricted. Each node appends a timestamp to each 

sent packet, and the network is assumed to be tightly synchronized. Geographical leash 

guarantees that the recipient of each packet is within a certain distance from the sender. 

Each node is assumed to know its exact location, and it appends this information along 

with sending time to each sent packet. The recipient nodes use both location and time 

information to verify whether a packet is sent over a wormhole link. Geographical leash 

requires loosely synchronized clocks. Both approaches need either location information 

and loosely synchronized clocks, or only tightly synchronized clocks. However, neither 

sensor node localization, nor network synchronization is not easy to achieve in wireless 

sensor networks. 

In [3], a cooperative scheme is proposed to prevent wormhole attacks in wireless ad 

hoc networks where each node in the network is assumed to be equipped with directional 

antennas [12], [13]. A directional antenna can transmit/receive signals most effectively in a 

particular direction (or more directions as in Omnidirectional antennas). Therefore, each 

node can obtain the direction of incoming packets though using specific sectors of its 

directional antenna. Since a node knows from which direction it gets a packet, it can derive 

the relative orientation of the sender node with respect to its own location. In the scenario 

where there is no wormhole, when a node sends a packet in a given direction, its neighbors 

should get that packet from the opposite direction. If there is a wormhole in the network, 

the above rule may be broken by fake neighbors due to the location of the wormhole. 

Hence, the wormhole can be detected. However, wormhole may be located such that it 

does not break the above mentioned rule. To overcome this problem, two algorithms are 

presented [3] in which a node cooperates with its neighbors during detection period. 

Although the proposed approach is efficient in terms of energy consumption, the 

requirement of directional antennas is not practical in large scale wireless sensor networks.  

SECTOR [5] is another proposed scheme for detection of wormhole attacks in 

wireless networks via enabling each node to securely discover its one-hop neighbors. To 

do so, the real physical distance between two nodes is calculated using an authenticated 

distance bounding protocol. Each node first sends a one-bit challenge request to the other 

node which will respond with a one-bit response instantly. After receiving the one-bit 
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response, each node locally calculates the difference between sending the challenge and 

receiving the response, and estimates the distance to the other node. Hence, each node can 

determine whether the calculated distance is within the maximum possible communication 

range. Accurate measurement of local timing is an essential part of this method which is 

possible with current technology. However, special medium access control protocols are 

required as well as a specialized hardware for an instant challenge request-response 

mechanism. 

In [6], two mechanisms are proposed to detect wormholes in wireless sensor 

networks. Neighbor number test (NNT) and all distances test (ADT) are both based on 

hypothesis testing and the results are probabilistic. NNT which is based on the distribution 

of neighboring-node-number detects the increase in the number of neighbors of the sensor 

nodes in order to detect bogus neighbors introduced by the wormhole. ADT detects the 

decrease of the lengths of the shortest paths between all pair of sensor nodes in order to 

detect shortcut links introduced by the wormhole. In both approaches, the sensor nodes 

send their neighbor lists to the base station and the base station runs the algorithm on the 

network graph which is reconstructed from the received neighborhood information. In 

other words, this is a centralized solution where the base station is assumed to have no 

resource limitations such as memory or computational power. However, this is not 

applicable in some wireless sensor network applications where the base station has limited 

resources. 

In [7], a centralized solution, Multi Dimensional Scaling – Visualization of 

Wormhole (MDS-VOW), is presented in which wormhole is detected via visualizing the 

distortions due to the existence of wormhole link using computed maps. In this approach, 

each sensor node estimates the distance to its neighbors and sends this information to a 

central controller which reconstructs the layout of the sensors using a multi-dimensional 

scaling algorithm. When there is a wormhole in the network, it creates distortions in the 

layout which leads the way to detecting and locating the wormhole. However, a central 

controller without computation and memory limitations is required in this technique. Also, 

each sensor node needs to estimate the distance to its neighbors which implies the 

requirement for either a localization algorithm or a GPS receiver to get location estimate. 
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In [8] and [9], a wormhole detection mechanism is proposed for wireless sensor 

networks performing under multi-path routing which is based on statistical analysis of 

multi-path (SAM). In most of the multi-path routing protocols, the wormhole link attracts 

the network traffic due to its low latency transmission, and thus, certain routes are chosen 

more frequently than others. Therefore, it is possible to detect wormhole attack and 

identify the malicious nodes via analyzing the difference between two of most frequently 

used links among all obtained routes. However, the success of the method depends on the 

availability of enough routing information. Neither specialized hardware nor any changes 

to existing systems is required in this solution. Despite the fact that this is an efficient and 

accurate solution under multi-path routing protocols, it cannot perform well under uni-path 

routing protocols. 

SeRLoc [10] is proposed as a localization scheme which is robust under wormhole 

attack via using location information. However, unlike the geographical leash approach 

[2], this approach requires only a small number of the nodes to be equipped with GPS 

receivers which are called guards. The guards broadcast their locations in their first-hop 

neighbors in an authentic way as well as protected against replay. Guards are also assumed 

to have larger radio range than other nodes ( R ), and they are placed R2  far from each 

other. Therefore, each node can hear from only one guard, the distance to that guard cannot 

exceed R , and a node cannot receive same message twice from the same guard. 

Otherwise, it is probable that a wormhole attack is being performed in the network. 

LiteWorp [11] is proposed to detect wormhole attacks in static networks. Each node 

is required to know its one-hop and two-hop neighbors once the network is deployed. 

Some of the nodes are chosen as guards which monitor neighboring nodes’ data 

transmission. This approach does not require any additional hardware, and efficient in 

static wireless networks. However, it cannot perform well in mobile wireless sensor 

networks with this setup. In [14], MobiWorp is introduced for wormhole detection in 

mobile ad hoc networks. The basics of this protocol are similar to LiteWorp [11] with 

addition of a central certification authority (CA) for global tracking of node positions via 

verifying the truth of any location. In other words, MobiWorp enables nodes to securely 

discover their one-hop and two-hop neighbors. However, all nodes are assumed to be 

aware of their current and destination locations, and thus, either GPS or location discovery 
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algorithms based on beacon nodes [15], [16], [17], [18] are required. Moreover, the 

network is assumed to be loosely synchronized, and the CA is not limited in terms of 

memory and computational power.  

Most of these proposed solutions focus on static networks, and thus, mobility is not 

considered. Also, they either require additional hardware (e.g. directional antennas in [3], 

GPS in [2], [7], and [14], a specialized hardware for one-bit challenge request-response [5] 

protocol), or a central controller [6], and [7] which is assumed to have unlimited resources, 

or special nodes such as guards in [10], or tight network synchronization [3] which is hard 

to achieve in sensor networks due to resource limitations. We propose a distributed 

solution without requiring additional hardware or tight time synchronization or an 

unlimited central controller, or special nodes. Our solution is simply based on statistical 

metrics explaining network which are estimated via utilizing mobility of the sensor nodes. 
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3. THE PROPOSED DISTRIBUTED SCHEME FOR WORMHOLE ATTACK 

DETECTION IN MOBILE WIRELESS SENSOR NETWORKS 

In this section, we propose a distributed wormhole detection protocol for mobile 

wireless sensor networks which detects anomaly in the network via taking the advantage of 

mobility based on the neighboring information. Our scheme uses the statistical metrics 

which are calculated locally using the neighboring information. Depending on the choice 

or system parameters, our scheme achieves a detection rate up to 100% and a very small 

false positive rate (at most 1.5%). 

The rest of this section is as follows. The network assumptions and threat model is 

explained in Section 3.1. Our detection scheme is detailed in Section 3.2.  

The notations which are used in this section are specified in Table 3.1. 
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Table 3.1: List of notations used in Section 3 

A  Size of the network area ( 2m ) 

N  Number of nodes in the network 

R  Communication range ( m ) 

min  Minimum speed allowed ( sm / ) 

max  Maximum speed allowed ( sm / ) 

i  Identity of a node 

r

id  Local network density of node i  at round r  

r

i  Standard deviation  in r

id of node i  at round r  

i  The number of neighbors of node i  

iN  Set of neighbors of node i  

roundT  Round threshold 

alarmT  Alarm threshold 

revocT  The minimum number of nodes required to revoke a node 

  Weight for previous values of r

id and r

i  

)1(   Weight for new values of r

id and r

i  

S  Number of rounds in stabilization phase 

LocalSuspectsListi 
The list of locally suspected nodes that node i  witnessed but 

has not broadcasted to the network as globally suspected yet. 

GlobalSuspectsListi 
The list of globally suspected nodes that node i  has which is 

more or less same for all nodes. 
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3.1. Network Assumptions and Threat Model 

The network is assumed to be composed of mobile nodes which moves based on 

random way point model. In this mobility model, each node chooses a random destination 

and moves towards it with a speed uniformly distributed in [ min , max ]. Each node stops 

for a preset duration when it reaches the destination. Moreover, the network is 

homogeneous which implies that all sensor nodes in the network have same 

communication range as well as the same physical properties. The sensor nodes are 

deployed randomly using uniform distribution in the sensing area. None of the nodes know 

their location information, or have GPS. The deployment area is much larger than the 

communication range of the nodes. More importantly, a node can obtain the neighbor 

count information of its neighbors as well as its own neighboring information via a secure 

neighbor discovery protocol in terms of cryptographic measures such as authenticity, 

integrity, and confidentiality. Secure neighbor discovery is out of the scope of the thesis. 

There are proposed solutions for neighbor discovery, [23], [24], [25], [26], addressing node 

mobility as well as energy efficiency in the literature. We assume that appropriate 

cryptographic algorithms and key infrastructures considering resource limitations in sensor 

network are used. Necessary link level security requirements (i.e. confidentiality, 

authentication, and integrity) are assumed to be fulfilled by the lower layers. Hence, the 

attacker cannot alter existing data packets and messages or fabricate new ones. 

Due to its nature and being an outsider attack, a wormhole attack can be performed 

without compromising cryptographic materials such as encryption key. It is sufficient for 

an attacker to capture two legitimate nodes and create a low-latency tunnel between them. 

In our proposal, we assume that the wormhole link is bidirectional. In other word, both 

ends of wormhole link overhear the packets; tunnel these packets to other node via this 

low-latency tunnel so that the receiving node can replay these packets at that end of the 

wormhole. The attacker may drop the packets selectively in a random way. However, by 

doing so, the wormhole link becomes less attractive and this is not a desired situation for 

the attacker. Thus, we assume that the attacker does not drop any packets. 
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3.2. The Proposed Approach 

In this section, the details of the proposed scheme are explained along with the 

motivation behind the approach. Section 3.2.1 gives the motivation behind this approach. 

The general overview of the proposed scheme is explained in Section 3.2.2. In Section 

3.2.3 the steps and details of the stabilization phase are explained. Finally, in Section 3.2.4, 

detection phase is detailed. 

3.2.1. Motivation 

There are several approaches for wormhole detection in wireless sensor networks 

some of which are detailed in Section 2. However, majority of these proposals focus on 

static networks, and thus, mobility is not considered. Also, most of these approaches 

require additional hardware (e.g. directional antennas in [3], GPS in [2], [7], and [14], a 

specialized hardware for one-bit challenge request-response [5] protocol), or a central 

controller [6], and [7] which is unlimited in resources, or special nodes such as guards in 

[10], or tight network synchronization [3]. Moreover, the limitations of sensor nodes and 

base stations are not considered in all solutions. Our aim in this study is to develop a 

distributed wormhole detection protocol for mobile sensor networks without requiring any 

additional hardware via utilizing mobility of the sensor nodes in the network.  
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3.2.2. Overview of the Protocol 

We propose a distributed wormhole detection scheme based on the statistical 

information derived from neighboring information. Our scheme aims to utilize the mobility 

feature of the sensor nodes to examine the environment and network properties, and derive 

new features which help understanding the network better. It includes two main phases: (i) 

stabilization, and (ii) detection phases.  

Stabilization phase is for sensor nodes to collect information from the network 

using neighboring information to estimate the node density of the network locally, r

id  for 

node i  at thr  round, and to compute the standard deviation of the change in the estimated 

node density, r

i . This phase runs once right after the uniform random deployment of the 

sensor nodes. We assume that there is no wormhole attack being performed during the 

stabilization phase. 

In detection phase, based on the pre-computed statistical values, the detection 

mechanism is activated to check for anomalies in the network, and detected nodes are 

revoked from the network. 

Workflow of these phases is shown in Figure 3.2.2.1. 
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Figure  3.1: Workflow of the proposed scheme 

3.2.3. STABILIZATION PHASE 

Stabilization phase starts right after the uniform random deployment of N  sensor 

nodes, and runs S rounds. In a round, each node discovers their neighbors securely, 

broadcasts its neighbor count, and locally computes statistical features of the network (i.e. 

r

id  and r

i ) after receiving all neighbor counts of its neighbors. 
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3.2.3.1. Discover Neighbors 

As mentioned in Section 3.1, neighbor discovery is not in the scope of the thesis. 

We assume that a secure neighbor discovery algorithm is used. There are proposed 

solutions, [23], [24], [25], [26], to discover one-hop neighbors in a secure way considering 

mobility of the nodes besides energy efficiency.  

3.2.3.2. Share Neighboring Information 

When a node learns its neighbors, it broadcasts an information packet including its 

own identity, i , and the number of its neighbors, i . This information is critical in the 

estimation of the network features ( r

id  and r

i ). 

3.2.3.3. Calculate & Update Statistical Metrics 

After all nodes share the number of their neighbors, each node i  has the following 

information: its own neighbors, iN , the number of its own neighbor number, i , and 

neighbor count information of its neighbors, ij Nj . Then, node i  computes the 

network density, r

id , and standard deviation in r

id , r

i , in a local way using equations: 

00 id           (1) 
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We use exponential averaging, which we are inspired by its usage in TCP round 

trip time estimation, to give more importance to the latest data retrieved from neighbors 

without losing the previous calculated values.   and )1(   are the weights which are 

used to estimate standard deviation and local network density of a node. As shown in Eq.1 

and Eq.3, initial values for both node density and standard deviation are set to 0. At each 

round, each node estimates a candidate density value which is calculated by averaging the 

neighbor counts received from neighbors along with its own neighbor count. After that, the 

node updates its density via using the exponential average of the previous value and the 

new estimated value. The procedure is same for the calculation of standard deviation in the 

node density. The only difference here is that it uses basic standard deviation calculation 

via utilizing the neighbor count information received from neighbors. 

In the stabilization phase, apart from neighbor discovery messages, the only 

message overhead in the network is caused due to sharing neighboring information 

explained in Section 3.2.3.2. 
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3.2.4. DETECTION PHASE 

In detection phase, pre-computed network features (i.e. r

id  and r

i ) along with 

round threshold, roundT , alarm threshold, alarmT , and the number of nodes to revoke a node, 

revocT , are used to detect the anomaly created by the wormhole link. Detection phase runs 

as long as the lifetime of the sensor node. A round in detection phase is composed of 

neighbor discovery, sharing the number of neighbors, testing detection criteria along with 

broadcasting specific messages when necessary, and finally revocation of detected nodes. 

3.2.4.1. Discover Neighbors 

Discovering neighbors is challenging in mobile wireless sensor networks. There are 

proposed solutions in [23], [24], [25], and [26] some of which focus on energy-efficiency, 

or neighbor list management, or mobility. As mentioned in Section 3.1 while explaining 

our assumptions, we assume that nodes are capable of defining their neighbors. 

3.2.4.2. Share Neighboring Information 

Sharing the neighborhood information is a crucial part of detection phase. Each 

node requires its neighbors sending their neighbor counts to detect a suspicious behavior. 

Each node broadcasts its identity along with the number of its neighbors as explained 

above, in Section 3.2.3.2.  
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3.2.4.3. Check for Suspicious Nodes based on Statistical Metrics 

After obtaining the neighborhood information, each node i  has the network 

density, S

id , and standard deviation in S

id , S

i , and the neighboring information 

ij Nj .  Node i detects possible anomaly using the check in Figure 3.2 which is the 

pseudo-code for local detection. It first checks whether the number of its own neighbors 

exceeds its locally-estimated density more than its locally-estimated standard deviation. If 

the difference exceeds the locally-estimated standard deviation, i  accuses its neighbors 

and adds them in its list for tracking suspicious nodes. Otherwise, node i  checks its 

neighbors one by one with the same method to detect a suspicious behavior and updates its 

list accordingly. If the alarm counter for a locally suspected node j exceeds the alarm 

threshold, then node i broadcasts a message deeming j is a globally suspected node. If any 

node in the list of locally suspected nodes does not show an anomaly during the round 

threshold, then node i deletes that node from its list. 
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Figure  3.2: Pseudo-code of local detection 

When a node i  receives a Global Suspect Message saying node j  is a potential 

malicious node, it runs the following check in Figure 3.3 which is the pseudo-code for 

global detection. To revoke node j, the number of nodes deeming node j as suspected must 

exceed the revocation threshold which is basically a preset percentage of the total number 

of nodes. 
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Figure  3.3: Pseudo-code of global detection 

3.2.4.4. Revoke Detected Node 

A globally suspected node can be revoked from network through node self-

destruction mechanisms proposed in [27] and [28]. When a node i  receives a Revoke 

Message saying node j  is a malicious node, it sends a message to the base station for 

revocation of j and updates its RevokedList accordingly.  
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4. PERFORMANCE EVALUATIONS 

We analyzed the performance of our scheme via simulations. Section 4.1 contains 

detailed explanation of system parameters. Simulation setup is given in Section 4.2. 

Section 4.3 shows the simulation results including performance metrics. 

4.1. System Parameters & Performance Metrics 

System Parameters: 

 Round threshold, roundT , is the maximum number of rounds in which a node a needs 

to witness an anomaly about a node b to keep node b in its local suspected nodes 

list.  

 Alarm threshold, alarmT , is the minimum number of alarm to broadcast a node as 

globally suspected. 

 Revocation threshold, revocT , is the number of nodes required to revoke a node. 

   and )1(   are the weights used for estimating the network features defined in 

the proposed scheme. We simulated different values of   varying between  1..0  

interval. The results show that the more optimal and stable value for   is 0.5. 

Therefore, we choose   as 0.5 in our simulations. 
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Performance Metrics: 

Detection rate and false positive rate are our main metrics while evaluating the 

success of the simulations. Detection rate is the ratio of the number of simulation runs 

where the wormhole is detected successfully, call D#, over total number of simulation 

runs, call S#. It is computed as follows: 

S#

D#
 rateDetection           (5) 

False positive rate per simulation run is computed as the ratio of falsely detected 

nodes, call F#, over total node number, N. False positive rate is the average of this ratio of 

all simulation runs.  It is computed as follows: 

S#

)
N

F#
(

 rate positive False

S#

1


         (6) 

4.2. Simulation Setup 

Simulation code is written using C# language in Windows 32-bit operating system. 

We perform 20 simulations for each parameter value; the results presented in the graphs 

are average of 20 simulations. In our simulations, 200N  nodes are distributed over a 

field of mmA 100100  . We use random way point mobility model in which each node 

chooses a random destination; moves towards it with a uniformly distributed random speed 

in the range of  m/sm/s, 155 ; and stops for a preset duration when it reaches the 

destination. Nodes have a communication range of m15 . Alarm threshold, alarmT , varies 

between  90...10  with 5 units increments. We simulated three values ( NTrevoc  05.0 , 

NTrevoc  10.0 , and NTrevoc  15.0 ) for the percentage of nodes that are required to 

revoke a node.  We assume that some of the nodes in the network, which is selected as %5  
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of all nodes, are static all the time.  Also, we assume that the wormhole attack is not 

performed right after the deployment of the sensor nodes during stabilization phase. The 

proposed scheme is composed of two phases: (i) stabilization, (ii) detection. Stabilization 

phase runs once and lasts 1000S  rounds. Detection phase runs during the lifetime of a 

sensor node due to the possibility of wormhole attack being performed at any time. 

However, we limit this value to 2000 rounds in our simulations. In each round, a node 

discovers its neighbors, shares its own neighbor count with its neighboring nodes, and runs 

the wormhole detection algorithm locally. Secure neighbor discovery is a challenging issue 

in mobile wireless networks. There are proposed solutions, some of which are [23], [24], 

[25], and [26], in the literature to overcome this difficulty considering the mobility of 

nodes as well as energy-efficiency. We assume that each node can discover its neighbors 

securely. 

4.3. Simulation Results 

The organization of this section is as follows: Section 4.3.1 explains the details of 

the performance metrics which are: (i) detection rate, (ii) false positive rate, (iii) detection 

round, and (iv) memory requirements. Section 4.3.1 analyzes the detection rates; Section 

4.3.2 analyzes the false positive rates; Section 4.3.3 discusses the average detection 

duration in terms of round; Section 4.3.4 shows the average memory requirement in the 

simulations in a comparative way; and finally, Section 4.3.5 analyzes the effect of node 

density and size of deployment area on detection and false positive rates. 
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4.3.1. Detection Rates 

Figure 4.1 shows the detection rate with varying node threshold ( revocT ) and alarm 

threshold ( alarmT ) values. Details of these values are given in Section 4.2 which explains 

the simulation setup. Round threshold ( roundT ) is set to 10. When a node, a, witnesses a 

suspicious behavior of another node, b, a adds b in its list for locally suspicious nodes. If a 

does not detect any anomaly about b for 10 rounds, then a deletes b from its list. Increasing 

revocT  means that more nodes are needed to claim a node as malicious and revoke that node. 

Hence, detection rate increases when revocT  decreases as expected. If alarmT  is increased, a 

node needs to witness more suspicious behaviors of a node to broadcast it as globally 

suspected.  As a result, detection rate decreases with the increase in alarmT . 
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Figure  4.1: Detection rate vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 10roundT . Wormhole ends are chosen randomly.  

Figure 4.2 shows the impact of round threshold ( roundT ) on the detection rate under 

varying node threshold ( revocT ) and alarm threshold ( alarmT ) values. Round threshold 

( roundT ) is set to 20 which is the only difference from the results shown in Figure 4.1. When 

a node, a, witnesses a suspicious behavior of another node, b, a adds b in its list for locally 

suspicious nodes. If a does not detect any anomaly about b for roundT  rounds, then a deletes 

b from its list. Exceeding alarmT  becomes more difficult as roundT  increases unless a node 

continuously shows suspicious behaviors which imply it is a potential malicious node. 

Comparing to the results presented in Figure 4.1, the detection rate is more or less higher in 
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Figure 4.2. Also, detection rate decreases more gradually when revocT  is set 20 as compared 

to Figure 4.1. 
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Figure  4.2: Detection rate vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 20roundT . Wormhole ends are chosen randomly. 

In Figure 4.3, the effects of wormhole location on detection rate are presented 

under varying node threshold ( revocT ) and alarm threshold ( alarmT ) values. Round threshold 

( roundT ) is set to 10. Location of the wormhole is the only difference from the results 

presented in Figure 4.1. Locating wormhole at )25,25(  and )75,75( , we make sure that the 

wormhole is not on the borders of the deployment area, and thus, it affects more nodes in 

the network. The probability to detect wormhole increases due to the fake neighboring 

connections which are introduced by the wormhole link. This increase in fake neighbors 
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creates more anomalies in terms of the deviation from the pre-computed network density. 

Detection rate is higher as compared to the results presented in Figure 4.1. A detection rate 

of 100% is achieved up to 40alarmT  when revocT  is 10 which is 5% of the nodes in the 

network. However, the decrease in detection rate after 40alarmT  sharper compared to 

Figure 4.1. 
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Figure  4.3: Detection rate vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 10roundT . Wormhole ends are at )25,25(  and )75,75( . 

The impact of round threshold ( roundT ) is presented in Figure 4.4 under varying 

node threshold ( revocT ) and alarm threshold ( alarmT ) values. roundT  is set to 20 which is the 

only difference from the results shown in Figure 4.3. Increase in roundT   smoothes the sharp 
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decrease shown in Figure 4.3. In other words, detection rates decrease more gradually 

alarmT  increases. Moreover, the detection rates at high alarmT  increases as roundT  increases 

from 10 to 20. Its impact is more obvious when revocT  is 10. Also, the detection rate is over 

50% up to 70alarmT . 
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Figure  4.4: Detection rate vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 20roundT . Wormhole ends are at )25,25(  and )75,75( . 
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4.3.2. False Positive Rates 

Figure 4.5 shows the false positive rate with different node threshold ( revocT ) and 

alarm threshold ( alarmT ) values which are explained in detail in Section 4.2. Round 

threshold ( roundT ) is set to 10. False positive rate varies between 0.004 and 0.014 with the 

given values. Increasing alarmT  implies that a node needs to witness more anomalies of a 

node to broadcast it as globally suspected. Hence, we can say that the number of falsely 

detected nodes decreases as alarmT  increases. The simulation results verify that observation. 

Increasing alarmT  decreases the false positive rate up to a point; and false positive rate does 

not change much after a high enough alarmT  value. revocT  is also inversely proportional to 

the false positive rate since high revocT  means more nodes are required to agree on revoking 

a node. Hence, if we increase revocT , the false positive rate decreases. 
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Figure  4.5: False positive rate vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 10roundT . Wormhole ends are chosen randomly. 

The impact of round threshold ( roundT ) on the false positive rate under different 

node threshold ( revocT ) and alarm threshold ( alarmT ) values is presented in Figure 4.6. The 

only difference from simulations shown in Figure 4.5 is the choice of round threshold 

( roundT ) which is 20 in this case. Increasing roundT  makes it more difficult to exceed alarmT  

unless a node continuously shows suspicious behaviors. Depending on this observation, 

one can say that increase in roundT  decreases the false positive rates. However, the 

simulation results do not verify this implication. This may be because of the low increase 

in roundT , or the effect of detecting wormhole. In order to verify it for sure, higher values for 

roundT  should be analyzed.  
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Figure  4.6: False positive rate vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 20roundT . Wormhole ends are chosen randomly. 

In Figure 4.7, the impact of location of wormhole on the false positive rates under 

various node threshold ( revocT ) and alarm threshold ( alarmT ) values. The value for round 

threshold ( roundT ) is 10. Only difference from the simulations presented in Figure 4.5 is the 

location of wormhole. We locate the wormhole ends at )25,25(  and )75,75(  which means 

that the wormhole ends are not on the borders of the deployment area. This implies that 

more nodes are affected by the wormhole link. Due to the fake neighboring connections 

introduced by the wormhole link, the probability of detecting wormhole becomes higher. 

In other words, when a node is under the effect of wormhole, it witnesses more suspicious 

behaviors which lead to detection of wormhole sooner. By intuition, one can say that 
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affecting more nodes may result in the increase of the false positive rate. However, the 

impact of detecting wormhole earlier decreases the false positive rate which can be seen 

more obviously when revocT  is lower. The results shown in Figure 4.5, at 35alarmT  and 

when revocT  is 10 and 35alarmT , the value of false positive rate is 0.08% in Figure 4.5 

while it is 0.05% Figure 4.7.  
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Figure  4.7: False positive rate vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 10roundT . Wormhole ends are at )25,25(  and  )75,75( . 

Figure 4.8 shows the effects of round threshold ( roundT ) with different node 

threshold ( revocT ) and alarm threshold ( alarmT ) values. roundT  is chosen as 20 which is 

different from the results shown in Figure 4.7. There is a slight increase in false positive 

rates depending on the change in roundT . However, as alarmT  increases, especially after 50, 
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false positive rate becomes lower as compared to the simulation results shown in Figure 

4.7 which may be a result of the increase in detection rates (over 50% up to 70alarmT ) 

presented in Figure 4.4. 
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Figure  4.8: False positive rate vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 20roundT . Wormhole ends are at )25,25(  and  )75,75( . 
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4.3.3. Detection Round 

Figure 4.9 presents the average detection rounds with varying node threshold 

( revocT ) and alarm threshold ( alarmT ). Details about these values are explained in detail in 

Section 4.2 which gives simulation setup. Round threshold ( roundT ) is chosen as 10. As 

mentioned in Section 4.2, stabilization phase runs 1000 rounds and detection phase starts 

right after stabilization phase ends. Hence, if detection round is shown as 1200, it means 

that the wormhole is detected at 200
th

 round. High alarmT  values indicate that to broadcast a 

node n as globally suspected, node m needs to witness more suspicious behaviors of node 

n. Hence, if we increase alarmT , detection round also increases which is an expected result. 

Increase in revocT  results in increase in detection round due to the requirement of more 

nodes to agree on revoking a node. 



36 

 

Detection round vs. Alarm threshold (Talarm)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Alarm threshold (Talarm)

D
et

ec
ti

o
n

 r
o

u
n

d

Revocation threshold - 5% of nodes

Revocation threshold - 10% of nodes

Revocation threshold - 15% of nodes

 

Figure  4.9: Detection round vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 10roundT . Wormhole ends are chosen randomly. 

In Figure 4.10, the effect of round threshold ( roundT ) on detection round is presented 

under different node threshold ( revocT ) and alarm threshold ( alarmT ) values. roundT  is set to 20 

which differs from the case shown in Figure 4.9. Exceeding alarmT  becomes more difficult 

when roundT  increases unless a node continuously shows anomalies. By intuition, one can 

say that this decreases the number of false positives. Hence, the network does not loose 

nodes which can be helpful in detection of wormhole. This may affect the detection round. 

However, depending on the simulation results, we cannot say detection round changes 

much. The results are more or less same as compared to the case presented in Figure 4.9. 
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Figure  4.10: Detection round vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 20roundT . Wormhole ends are chosen randomly. 

The impact of location of wormhole on the detection round is analyzed in the 

simulation presented in Figure 4.11. Location of the wormhole is the only difference from 

the case shown in Figure 4.9. By locating wormhole ends at )25,25(  and )75,75( , we 

guarantee that wormhole ends are not on the borders of the deployment area, and thus, 

wormhole affects more nodes in the network. Wormhole becomes more detectable due to 

the increase in neighbors caused by the wormhole link. Simulation results show that 

detection rounds are lower in the results shown in Figure 4.11 as compared to the case 

presented in Figure 4.9.  
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Figure  4.11: Detection round vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 10roundT . Wormhole ends are at )25,25(  and  )75,75( . 

In Figure 4.12, the results of increasing round threshold ( roundT ) are analyzed under 

different node threshold ( revocT ) and alarm threshold ( alarmT ) values. roundT  is set to 20 

which is the only difference from the case presented in 4.11. There is a slight decrease in 

detection rounds due to the increase in roundT . The effect of this change can be seen for the 

case where revocT  is 10. The sharp increase in detection round in Figure 4.11 is smoothed in 

Figure 4.12. One can observe that increasing roundT  when revocT  is low enables detection of 

wormhole sooner even at high alarmT  values. For instance, when alarmT  is 50 and revocT  is 10, 

wormhole is detected at 2200
th

 round in Figure 4.11 while it is detected less than 1800
th

 

round in Figure 4.12. 



39 

 

Detection round vs. Alarm threshold (Talarm)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Alarm threshold (Talarm)

D
et

ec
ti

o
n

 r
o

u
n

d

Revocation threshold - 5% of nodes

Revocation threshold - 10% of nodes

Revocation threshold - 15% of nodes

 

Figure  4.12: Detection round vs. Alarm threshold ( alarmT ) for 10revocT , 20revocT , and 

30revocT . 20roundT . Wormhole ends are at )25,25(  and  )75,75( . 

4.3.4. Memory Requirements 

LocalSuspectsList is the list which keeps locally suspected nodes before 

broadcasting them to the network as globally suspected. Each entry in LocalSuspectsList 

contains the identity of the suspected node (2 bytes), an alarm counter (1 byte) for it, and 

last round (2 bytes) in which an anomaly detected about it. So, 5 bytes are required for 
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each entry in the LocalSuspectsList. Hence, the memory requirement for LocalSuspectsList 

is calculated via multiplication of list size by 5 bytes. 

GlobalSuspectsList is for keeping globally suspected nodes, and it is more or less 

same at all nodes. Each entry in GlobalSuspectsList contains the identity of the global 

suspect (2 bytes), and the identities of nodes that broadcasted it as globally suspected. In 

order to cover the worst case, we assume that all suspected nodes in the GlobalSuspectsList 

are broadcasted by revocT  many nodes. Hence, the memory required for each entry in the 

GlobalSuspectsList is calculated via the following formula: 

2)2( revocT           (7) 

Hence, the required memory for GlobalSuspectsList is obtained via multiplication of list 

size by (7). 

Figure 4.13 presents the average size of the list kept for locally suspected nodes 

with different node threshold ( revocT ) and alarm threshold ( alarmT ) which are detailed in 

Section 4.2. Round threshold ( roundT ) is chosen as 10. Increasing revocT  increases the 

average size of lists kept for locally suspected nodes. The average list size linearly 

increases with the increase in alarmT  which is an expected result. When alarmT  is high, a 

node needs to detect more anomalies to deem a node as globally suspected, and thus, delete 

it from its locally suspected node list as explained in Figure 4.1. 
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Figure  4.13: Average LocalSuspectsList size vs. Alarm threshold ( alarmT ) for 10revocT , 

20revocT , and 30revocT . 10roundT . Wormhole ends are chosen randomly. 

In Figure 4.14, the impact of round threshold ( roundT ) on detection round is analyzed 

with varying node threshold ( revocT ) and alarm threshold ( alarmT ) values. roundT  is set to 20 

unlike the case in Figure 4.13. Simulation results do not show a major difference except a 

slight increase in when alarmT  is low in Figure 4.14 as compared to the results presented in 

Figure 4.13. The results are more or less same as compared to the case presented in Figure 

4.13. 
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Figure  4.14: Average LocalSuspectsList size vs. Alarm threshold ( alarmT ) for 10revocT , 

20revocT , and 30revocT . 20roundT . Wormhole ends are chosen randomly. 

Figure 4.15 analyzes the effect of wormhole location on the list size which is for 

locally suspected nodes. Only location of the wormhole is different from the case shown in 

Figure 4.13. Using the same reasoning, when we locate the wormhole ends at )25,25(  

and )75,75( , we make sure that the wormhole ends are not on the borders of the 

deployment area, and as a result, more nodes are affected by the wormhole. Due to the 

increase in neighboring connections which creates more anomalies in the network, 

wormhole becomes more detectable. This case is mentioned in Section 4.3.2 while 

discussing the impact of wormhole location on detection round. Wormhole is detected 

sooner if wormhole is located in such a way. Hence, the list size for keeping locally 

suspected nodes decreases as compared to the results presented in Figure 4.13. 
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Figure  4.15: Average LocalSuspectsList size vs. Alarm threshold ( alarmT ) for 10revocT , 

20revocT , and 30revocT . 10roundT . Wormhole ends are at )25,25(  and  )75,75( . 

The impact of increasing round threshold ( roundT ) is shown in Figure 4.16 under 

different node threshold ( revocT ) and alarm threshold ( alarmT ) values. roundT  is set to 20. The 

list size increases with the increase of roundT  as compared to the results presented in Figure 

4.15. 
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Figure  4.16: Average LocalSuspectsList size vs. Alarm threshold ( alarmT ) for 10revocT , 

20revocT , and 30revocT . 20roundT . Wormhole ends are at )25,25(  and  )75,75( . 

Figure 4.17 shows the average size of the list kept for globally suspected nodes 

with varying node threshold ( revocT ) and alarm threshold ( alarmT ) which are detailed in 

Section 4.2. Round threshold ( roundT ) is set to 10. Increase in revocT  means that more nodes 

are required to agree on revoking a node, and thus, delete it from its globally suspected 

node list as explained in Figure 4.3. If alarmT  increases, the frequency of broadcasting 

globally suspected nodes decreases since more anomalies need to be detected to deem a 

node as globally suspected. Hence, the list size decreases as expected. 
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Figure  4.17: Average GlobalSuspectsList size vs. Alarm threshold ( alarmT ) for 10revocT , 

20revocT , and 30revocT . 10roundT . Wormhole ends are chosen randomly. 

Figure 4.18 analyzes the effects of round threshold ( roundT ) on the average list size 

which is kept for globally suspected nodes. roundT  is set to 20 unlike the case in Figure 

4.17. Although, there are not major differences from the results shown in Figure 4.17, the 

list size slightly decreases.  Also, the decrease in the list size with the increase in alarmT  is 

sharper and more observable when revocT  is 10. 
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Figure  4.18: Average GlobalSuspectsList size vs. Alarm threshold ( alarmT ) for 10revocT , 

20revocT , and 30revocT . 20roundT . Wormhole ends are chosen randomly. 

Figure 4.19 shows the effect of wormhole location on the list size which is for 

keeping globally suspected nodes. Due to locating wormhole ends at )25,25(  and )75,75( , 

wormhole affects more nodes in the network.  However, by doing so, it increases the fake 

neighboring connections and creates more anomalies which lead to broadcasting more 

globally suspected nodes to the network. The list size increases as compared to the results 

presented in 4.17. 
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Figure  4.19: Average GlobalSuspectsList size vs. Alarm threshold ( alarmT ) for 10revocT , 

20revocT , and 30revocT . 10roundT . Wormhole ends are at )25,25(  and  )75,75( . 

The effect of increasing round threshold ( roundT ) on the average list size is analyzed 

in Figure 4.20. roundT  is chosen as 20. As roundT  increases, the average list size decreases 

slightly compared to the results in Figure 4.19. 
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Figure  4.20: Average GlobalSuspectsList size vs. Alarm threshold ( alarmT ) for 10revocT , 

20revocT , and 30revocT . 20roundT . Wormhole ends are at )25,25(  and  )75,75( . 

 

 

4.3.5. Sensitivity against Node Density and Size of Deployment Area 

In this section, detection rate and false positive rate are analyzed based on the 

changes in node density and size of the deployment area. In Figure 4.21, Figure 4.22, 

Figure 4.23 and Figure 4.24, the deployment area is increased to 2m 200200 without 
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changing the node density in the area. To do so, the number of nodes is set to 800. In 

Figure 4.25, Figure 4.26, Figure 4.27 and Figure 4.28, the node density is increased by 

increasing the number of nodes to 400 while the deployment area is the same, 

2m 100100 . Two values of round threshold, 10roundT  and 20roundT , are simulated 

where the locations of the wormhole ends are set to )25,25(  and )75,75( . 

Figure 4.21 shows the detection rate when 10roundT . Since the number of nodes is 

increased, the required number of nodes to agree on revocation of a suspected node ( revocT ) 

also increases. Although the node density is the same, increase in deployment area and 

revocT causes a sharp decrease in the detection rate. This decrease can be observed in a 

clearer way when the results are compared with the case presented in Figure 4.3, where 

deployment area is 2m 100100  and the number of nodes is 200. Detection rate is close to 

100% until 40alarmT  in the results shown in Figure 4.3, while it decreases below 50% in 

Figure 4.21.  
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Figure  4.21: Detection rate vs. Alarm threshold ( alarmT ) for 40revocT , 80revocT , and 

120revocT . 10roundT . Wormhole ends are at )25,25(  and )75,75( . 

In Figure 4.22, the only difference is the value of roundT . roundT  is set to 20 in this 

case. Detection rate is not high as compared to Figure 4.21 when alarmT  is low. However, 

the decrease in detection rate presented in Figure 4.21 is sharper as compared to the results 

shown in Figure 4.22 when alarmT  does not exceed 50. 
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Figure  4.22: Detection rate vs. Alarm threshold ( alarmT ) for 40revocT , 80revocT , and 

120revocT . 20roundT . Wormhole ends are at )25,25(  and )75,75( . 

Figure 4.23 presents the effect of increase in deployment area and revocT  on false 

positive rate. roundT  is set to 10. Due to increase in revocT , more nodes need to agree on 

revoking a suspected node; thus, the number of falsely revoked nodes decreases as 

compared to the results presented in Figure 4.7 where deployment area is 2m 100100  and 

the number of nodes is 200. Also, since the deployment area is much larger, the probability 

of a node witnessing an anomaly also decreases which can be seen as a reason of the 

decrease in the false positive rate.  
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Figure  4.23: False positive rate vs. Alarm threshold ( alarmT ) for 40revocT , 80revocT , 

and 120revocT . 10roundT . Wormhole ends are at )25,25(  and  )75,75( . 

In Figure 4.24, the impact of the increase in roundT  is shown under the new 

simulation setup. roundT  is set to 20, which is the only difference from the case presented in 

Figure 4.23. False positive rate increases with the increase of roundT . This is an expected 

result since increasing roundT  means that a node has more time, compared to the case where 

roundT  is 10, in order to witness a repetitive anomaly. In Figure 4.24, false positive rate 

stabilizes at 0.5%, while it stabilizes at 0.4% in the results presented in Figure 4.23. 



53 

 

False positive rate vs. Alarm threshold (Talarm)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Alarm threshold (Talarm)

Fa
ls

e 
p

o
si

ti
ve

 r
at

e 
(%

)

Revocation threshold - 5% of nodes

Revocation threshold - 10% of nodes

Revocation threshold - 15% of nodes

 

Figure  4.24: False positive rate vs. Alarm threshold ( alarmT ) for 40revocT , 80revocT , 

and 120revocT . 20roundT . Wormhole ends are at )25,25(  and  )75,75( . 

In Figure 4.25, Figure 4.26, Figure 4.27 and Figure 4.28, the deployment area is the 

same, 2m 100100 , but the number of nodes is increased to 400. The goal of these 

simulations is to analyze the effect of node density to our detection scheme.  

Figure 4.25 presents the detection rate under the new case with increased density. 

The number of nodes to revoke a suspected node, which is revocation threshold, increases 

with the increase in the number of nodes. In overall, the detection rate is not high for low 

alarmT  values as compared to the results shown in Figure 4.3. However, for alarmT  values 

above 55, the detection rate does not decrease as much as of the case in Figure 4.3. The 
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results presented in Figure 4.3, detection rate is 15% while in this case it is 20% for high 

alarmT  values. 
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Figure  4.25: Detection rate vs. Alarm threshold ( alarmT ) for 20revocT , 40revocT , and 

60revocT . 10roundT . Wormhole ends are at )25,25(  and )75,75( . 

Figure 4.26 shows the impact of the change in roundT  on detection rate. The results 

get better when roundT  is set to 20. Especially for 20revocT , it gets close to the results 

presented in Figure 4.4. Moreover, a detection rate of 20% is achieved for alarmT  values 

above 65, which is decreasing to 10% in the Figure 4.4. 
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Figure  4.26: Detection rate vs. Alarm threshold ( alarmT ) for 20revocT , 40revocT , and 

60revocT . 20roundT . Wormhole ends are at )25,25(  and )75,75( . 

In Figure 4.27, the effect of the increase in node density on false positive rate is 

presented. roundT  is set to 20. The number of falsely revoked nodes decreases with the 

increase of node density as compared to the results shown in Figure 4.3.  Increasing the 

number of nodes also means increasing the revocation threshold, revocT . When revocT  

increases, it becomes hard to revoke a suspected node since more nodes are required to 

broadcast alarm for that suspected node. 
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Figure  4.27: False positive rate vs. Alarm threshold ( alarmT ) for 20revocT , 40revocT , and 

60revocT . 10roundT . Wormhole ends are at )25,25(  and  )75,75( . 

Figure 4.28 presents the impact of the change in revocT on false positive rate. revocT  is 

set to 20. For alarmT  values below 50, there is a slight increase in false positive rate as 

compared to the results shown in Figure 4.27. On the other hand, when alarmT  exceeds 55, 

false positive rate decreases to 0.4% while this value is 0.5% for the case 10revocT . 
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Figure  4.28: False positive rate vs. Alarm threshold ( alarmT ) for 20revocT , 40revocT , 

and 60revocT . 20roundT . Wormhole ends are at )25,25(  and  )75,75( . 
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5. CONCLUSION 

Wormhole attack is a physical attack which is a serious threat especially on routing 

protocols. Attracting the network traffic on a low-latency wormhole link empowers an 

attacker to perform various malicious activities such as traffic analysis, denial of service 

attacks, or just selectively drop data packets via controlling this wormhole link. 

In this thesis, we propose a distributed wormhole detection scheme for mobile 

wireless sensor networks which utilizes mobility of sensor nodes to detect wormhole 

attack. Our detection scheme is composed of two phases which are: (i) stabilization phase, 

and (ii) detection phase. In stabilization phase, two network features (i.e. network node 

density, standard deviation in network node density) are estimated through using 

neighboring information in a local manner. In detection phase, wormhole attack is detected 

via observing anomalies in the neighbor nodes’ behaviors based on these estimated 

network features and the neighboring information. We analyzed the performance of 

proposed scheme via simulations using different system parameters. The results show that 

our scheme achieves a detection rate up to 100% with very small false positive rate (at 

most 1.5%) if the system parameters are chosen accordingly. Moreover, our solution 

requires neither additional hardware nor tight clock synchronization which are both costly 

for sensor networks. 
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