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ABSTRACT

In this thesis we study applications of stochastic calculus to models in financial
mathematics. In particular, we consider the famous Black-Scholes model for option
pricing, and also models for currency exchange and dividend payments.



ÖZET

Bu tezde stokastik kalkülüs uygulamalarını finansal matematik modellerine uygu-
layacağız. Özellikle, opsiyon fiyatlama için olan ünlü Black-Scholes modelini ve aynı
zamanda kambiyo kuru ve temettü ödemeleri modellerini gözden geçireceğiz.
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ÖZET v

1. INTRODUCION 1

2. PRELIMINARIES 2

3. THE BLACK SCHOLES MODEL 7

4. VARIATIONS ON BLACK SCHOLES MODEL 25

5. CONCLUSIONS AND FURTHER REMARK 31

REFERENCES 32

vi



1 Introduction

At the end of 19th century and the beginning of 20th century, the measure
theory and axiomatic probability theory has been established by the leading math-
ematicians of the time among which were Henri Lebesgue (1875-1941), Emile Borel
(1871-1956) and Andre Kolmogorov (1903-1987). Based on their axiomatic foun-
dations, the prominent Japanese mathematician Kiyoti Ito (1915- 2008) developed
what is today called Ito calculus. With these developments, the second half of 20th
century has witnessed an unpredictable boom in the applications of mathematical
theories in the financial settings.

In 1952, Harry Markovitz laid the groundwork for the theory of portfolio
selection in his Ph.D thesis based on mean return of the stocks. After him, in 1969,
Robert Merton introduced stochastic calculus into the study of stochastic calculus
into the study of finance. At the same time as Merton’s work and with Merton’s
assistance, Fischer Black and Myron Scholes has developed their celebrated option
pricing formulae [3]. Based on the significance of this work, in 1997, the importance
of their model was honoured world wide when Myron Scholes and Robert Merton
received the Nobel Prize for Economics. Unfortunately, Fisher Black died in 1995,
or he would have also received the award [4]. This model provided for the first
time a solid solution to an important practical problem of finding a fair price for a
European call option, i.e. the right to buy one share of a given stock at a specified
price and time.

In this thesis, we will derive the Black-Scholes model in two ways. First we
will derive the Black-Scholes formula first by so called martingale representation the-
orem. Then we will derive the formula by the assumption of self-financing portfolio
and during the way we get a deterministic parabolic partial differential equation
whose solution is the price of the option. Later, we will apply this framework to
interest rates and continuous and periodic dividend payments. The rest of the thesis
is as follows. In section 2 we will give the preliminary definitions. In section 3 we
will derive the Black-Scholes option pricing formula first by martingale approach
and then by PDE approach. In section 4 we will apply this framework to determine
fair interest rates and fair continuous and periodic dividend payments. Then we
conclude the thesis at section 5 by shortcomings of this model and new perspectives
on pricing instruments.
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2 Preliminaries

Definition 1. A σ-algebra Σ is a collection of subsets of S which has the following

properties:

• S ∈ Σ

• If A ∈ Σ thenAc ∈ Σ

• If (An, n ∈ N) n is a sequence of sets where each An ∈ Σ

then
⋃
n∈N An ∈ Σ

Definition 2. A measure on (S,Σ) is a mapping m from Σ to [0,∞] which satisfies

• m(∅) = 0

• (σ-additivity) If (An, n ∈ N) n is a sequence of sets where each An ∈ Σ

and if these sets are mutually disjoint, i.e. An
⋂
Am = ∅ if m 6= n, then

m(
⋃
n∈NAn) =

∑∞
n=1 m(An)

In general if m is a measure on (S,Σ), we call (S,Σ,m) a measure space.

Definition 3. A probability measure on (S,Σ) is a measure which has total mass 1.

In the case of probability measures we usually use a different notation and
write Ω instead of S, F instead of Σ and P instead of m. The triple (Ω,F , P ) is
called a probability space. Ω is called the sample space and elements of Ω are called
outcomes. Sets in the σ-algebra are called events. If A ∈ F , then P (A) is called the
probability of the event A. We always have 0 ≤ P (A) ≤ 1.

Definition 4. We define the expectation of X (when it exists) by

E(X) =

∫
Ω

X(w)P (dw)

This exists if and only if X is integrable, i.e.

E(|X|) <∞

Definition 5. Suppose that Σ1 and Σ2 are given σ-algebras of S1 and S2, respec-

tively. A function f from S1 to S2 is said to be (Σ1-Σ2) measurable if for all B ∈ Σ2

f−1(B) ∈ Σ1.

If we have a probability space (Ω,F , P ) a random variable is defined to be a
measurable function X from (Ω,F) to (R,B(R)).
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Definition 6. Let (Ω,F , P ) be a probability space. A stochastic process (Xt)t∈T is

a family of random variables defined on this space. T is called the index set. We

talk of discrete time stochastic processes when T is a discrete set. Similarly, we talk

of continuous time stochastic processes when I is an interval. Usually, T stands for

time.

We need to be able to model the flow of information in time. The standard
way doing this is to use a filtration of sub-σ-algebras.

Definition 7. A discrete filtration is a sequence of (Fn, n ∈ Z+) of sub-σ-algebras

of F such that each

Fn ⊆ Fn+1

Continuous filtration is defined analogously.

Definition 8. Let (Fn, n ∈ Z+) be a filtration. A stochastic process Y = (Yn, n ∈
Z+) is said to be adapted to its filtration if each Yn is Fn measurable. Continuous

case is defined analogously.

Theorem 9. (Radon-Nikodym) If P and Q are finite measures on the measurable

space (Ω,F) and Q(A) = 0 whenever A ∈ F and P (A) = 0, then there exists a

positive measurable function Y on Ω such that

Q(A) =

∫
A

Y dP, (2.1)

for each A ∈ Σ. Moreover, any Σ measurable function Z on Ω satisfying (2.1) for

all A ∈ F is equal to Y almost everywhere.

Here Y is called the density of Q relative to P and denoted by dQ
dP

, which is Radon-

Nikodym derivative of Q relative to P [7].

Definition 10. (Conditional Expectation) If X is an integrable random variable

on (Ω,F , P ) and G is a σ-algebra on Ω such that G ⊂ G, then there exists a G
measurable integrable random variable on (Ω,F , P ), E[X|G], such that∫

A

E[X|G]dP =

∫
A

XdP (2.2)

for all A ∈ G, then Y = E[X|G] almost surely in (Ω,F , P ). When Y is a random

variable, we let E[X|Y ] = E[X|FY ], where FY stands for the σ-algebra generated by

the random variable Y . We call E[X|G] and E[X|Y ] the conditional expectations of

X given G and Y respectively.
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Definition 11. (Cumulative Distribution Function) The cumulative distribution

function FX of X is a Borel function from R to [0, 1]. It is defined by

FX(x) = pX((−∞, x]) = P (X ≤ x)

Definition 12. (Convergence Modes) Let (Xn, n ∈ N) be a sequence of random

variables. There are four different ways in which it can converge to a random variable

X, i.e. four different ways of giving meaning to the idea of “limn→∞Xn = X”

• almost sure convergence: In this case the numbers Xn(w)→ X(w) as n→∞
for all w ∈ Ω except for a possible set of measure zero where convergence fails.

• convergence in mean square: In this case we require that

limn→∞E(|Xn −X|2) = 0

• convergence in probability: Here we require that for all c > 0

limn→∞P (|Xn −X| > c) = 0

• convergence in distribution: If Fn is the cdf of each Xn and F is the cdf of

X, we require in this case that Fn(x) → F (x) as limn→∞ for all x ∈ R where

F (x) is continuous.

Definition 13. (Brownian Motion) Let (Ω,F , P ) be a probability space. A real-

valued stochastic process B = (B(t), t ≥ 0) is called a Brownian motion if it satisfies

the following - for all 0 ≤ s < t <∞:

• B(0) = 0(a.s.),

• B(t)−B(s) ∼ N(0, t− s),

• B(t)−B(s) is independent of σ{B(u), 0 ≤ u ≤ s},

• For (almost all) w ∈ Ω, the mapping from R+ to R given by t → B(t)(w) is

continuous.

Definition 14. (Martingales) Let (Ω,F ,P) be a probability space and (Fn, n ∈ Z+)

be a filtration on this space. A stochastic process M = (Mn, n ∈ R+) is said to be a

(discrete time) martingale if

• it is adapted
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• it is integrable (i.e. each E(|Xn|) <∞ )

• E(Xn|Fn−1) = Xn−1 for all n ∈ N

Theorem 15. (Girsanov Theorem) Let (Ω,F ,P) be a probability space and let

(Bt)0≤t≤T be an F-Brownian motion.

Let F ∈ P2(T ) then its stochastic exponential is the process εF = (εF (t), 0 ≤ t ≤ T )

where

εF (t) = exp
{∫ t

0

F (s)dB(s)− 1

2

∫ t

0

F (s)2ds
}

(2.3)

and this process satisfies the SDE

dεF (t) = F (t)εF (t)dB(t)

Furthermore we may define a new probability measure Q on (Ω,F) which is equiv-

alent to P and which has Radon-Nikodym derivative:

dQ

dP
= εF (T )

Girsanov’s theorem then tells us that (W (t), 0 ≤ t ≤ T ) is a Brownian motion on

(Ω,F , Q) where for each 0 ≤ t ≤ T ,

W (t) = B(t)−
∫ t

0

F (s)ds (2.4)

[5].

Definition 16. We define H2(T ) to be the set of all processes F which satisfy the

following:

• (F (t), 0 ≤ t ≤ T ) is adapted, i.e. each F (t) is Ft-measurable.

• ||F ||2T = (||F ||T )2 =
∫ T

0
E(F (s)2)ds <∞

Definition 17. Similarly, we define P2(T ) to be the set of all processes F which

satisfy the following:

• (F (t), 0 ≤ t ≤ T ) is adapted, i.e. each F (t) is Ft-measurable.

•
∫ T

0
E(F (s)2)ds <∞ with probability 1.

Definition 18. We define the class of Ito processes (M(t), 0 ≤ t ≤ T ) where each

M(t) = M(0) +

∫ t

0

F (s)dB(s) +

∫ t

0

G(s)ds (2.5)
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Here M(0) is an F0-measurable random variable so (M(0) = M0), F ∈ P2(T ),

so the second term is a stochastic integral. The third term is a random Lebesgue

integral, so we assume that G = (G(t), 0 ≤ t ≤ T ) is an adapted process such that the

Lebesgue integral
∫ t

0
G(s)(w)ds exists for all t ∈ [0, T ] and for (almost all) w ∈ Ω,

then each
∫ t

0
G(s)ds is a Ft-measurable random variable defined by

( ∫ t

0

G(s)ds
)
(w) =

( ∫ t

0

G(s)ds(w)
)

Theorem 19. (Ito’s Formula) If f ∈ C1,2 and M = (M(t), t ≥ 0) is an Ito process

with stochastic differential (2.5) then (f(t,M(t)), 0 ≤ t ≤ T ) is an Ito process with

stochastic differential

df(t,M(t)) =
∂f

∂t
(t,M(t))dt+

∂f

∂x
(t,M(t))dM(t) +

1

2

∂2f

∂x2
(t,M(t))F (t)2dt

[5].

Theorem 20. (Martingale Representation Theorem) If (M(t), 0 ≤ t ≤ T ) is a

square-integrable martingale then there exists F ∈ H2(T ) such that for each

0 ≤ t ≤ T,

M(t) = E(M(0)) +

∫ t

0

F (s)dB(s) (2.6)

[5].
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3 The Black-Scholes Model

Our setting will assume that the interval [0, T ], where T is the terminal date for all
relevant academic activitiy. For simplicity we will work with a model which only
involves two financial assets. These will be

• A risk-free security (a bond or bank account) whose value at time t is A(t).
We assume that the principal A(0) is invested at a fixed interest rate r > 0
and so the formula for continuous compound interest yields

A(t) = A(0)ert.

Hence, dA(t)
dt

= rA(0)ert = rA(t) and we will often write this as
dA(t) = rA(t)dt. For simplicitiy, we will assume that A(0) = 1

• A stock whose value at time t is S(t).

We investigate the return of S(t) and over a small time period δ(t) this is δS(t)
S(t)

where

δS(t) = S(t + δt) − S(t). If S behaves like A, we would write δS(t)
S(t)

= µδt, where
µ ∈ R. Since we need to include a factor which describes the random behaviour of
stock prices and so we introduce an adapted process (Y (t), 0 ≤ t ≤ T ) and write

δS(t)

S(t)
= µδt+ δY (t),

so that
δS(t) = µS(t)δt+ S(t)δY (t). (3.1)

There is still debate as to which is the ”best choice” for the process Y . In
the Black-Scholes model we choose Y (t) = σB(t). Here σ > 0 and B = (B(t), 0 ≤
t ≤ T ) is a Brownian motion which is adapted to the filtration (Ft, 0 ≤ t ≤ T ). In
this model we take the formal limit of (3.1) as δt→ 0 and interpret the result as a
stochastic differential equation (SDE) in the Ito sense. We then obtain

dS(t) = µS(t)dt+ σS(t)dB(t) (3.2)

with initial condition S(0) = S0 which is the stock price when the investor enters
the market. S = (S(t), 0 ≤ t ≤ T ) is then an adapted process. Using Ito’s formula
we get that the unique solution to (3.2) is

S(t) = S0 exp{σB(t) + (µ− 1

2
σ2)t}, (3.3)

for all 0 ≤ t ≤ T .
The parameter µ is called the stock drift. It measures the logarithmic rate of

return of the stock in the absence of noise. The parameter σ is called the volatility.
It measures the strength of the random fluctuations in the stock price. For further
investigation, we need the following definitions:
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Definition 21. A contingent claim X is a FT -measurable random variable. If X =

f(S(T )) for some measurable function f then X is called a European contingent

claim or ECC e.g. a European call option X = (S(T )−E)+ where k is the exercise

price.

Definition 22. A portfolio is a pair (φ, ψ) of real-valued adapted process φ =

(φ(t), 0 ≤ t ≤ T ) and ψ = (ψ(t), 0 ≤ t ≤ T ). We interpret φ(t) as the number

of stocks held at time t and ψ(t) as the number of bonds or bank accounts held at

time t where V = (V (t), 0 ≤ t ≤ T ) is the corresponding adapted wealth process

defined by

V (t) = ψ(t)A(t) + φ(t)S(t),

Definition 23. Given a contingent claim X, the portfolio (φ, ψ) is said to be repli-

cating if V (T ) = X.

Definition 24. A portfolio (φ, ψ) is said to be self-financing if

dV (T ) = ψ(t)dA(t) + φ(t)dS(t)

Definition 25. We define the discounted wealth process and discounted stock process

as Ṽ and S̃ respectively, where Ṽ (t) = A(t)−1V (t) = e−rtV (t) and S̃(t) = e−rtS(t)

Definition 26. An ECC is attainable if there exists a self-financing portfolio φ such

that

X = Vφ(T )

In this case φ is called a replicating strategy.

Definition 27. A market is said to be complete if every ECC is attainable.

Definition 28. A self-financing strategy φ is said to be an arbitrage opportunity if

Vφ(0) = 0, Vφ(T ) ≥ 0 and P (Vφ(T ) > 0) > 0.

A market is said to be arbitrage-free if there are no arbitrage opportunities. Namely,

if arbitrage opportunities exist, there is a non-zero probability that your portfolio can

create wealth with no investment.

Theorem 29. (First Fundamental Theorem of Asset Pricing) The market is arbitrage-

free if and only if there exists at least one martingale measure [6].

Theorem 30. (Second Fundamental Theorem of Asset Pricing) An arbitrage-free

market is complete if and only if there exists a unique martingale measure [6].
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3.1 Deriving the Black-Scholes Formula by Martingale Ap-

proach

In this section we will derive the equivalent probability measure Q and the corre-
sponding claim martingale to reach our ultimate goal of reaching the formula. First,
we need the corresponding measure.

Theorem 31. There exists an equivalent probability measure Q under which (S̃(t), 0 ≤
t ≤ T ) is a martingale. It is obtained by taking F (t) = r−µ

σ
in (2.6) for all

(0 ≤ t ≤ T ). We then have

dS̃(t) = σS̃(t)dW (t) (3.4)

Proof. We note that if F (t) = r−µ
σ

then dW (t) = dB(t)− ( r−µ
σ

)dt.

We are given that dS(t) = µS(t)dt + σS(t)dB(t) and S̃(t) = e−rtS(t). By Ito’s

formula

dS̃(t) = −re−rtS(t)dt+ e−rtdS(t)

= (µ− r)S̃(t)dt+ σS̃(t)dB(t)

= (µ− r)S̃(t)dt+ σS̃(t)dW (t) + (r − µ)S̃(t)dt

= σS̃(t)dW (t)

So we have derived (3.4). Since W is a Q-Brownian motion, it follows that S̃ is a

Q-martingale, indeed S̃ is a Q-geometric Brownian motion with

S̃(t) = S(0) exp{σW (t)− 1

2
σ2t}

The next step in the Black-Scholes theory by the martingale approach is, as the
name implies, to obtain a martingale from the contingent claim X. We assume
that X is square-integrable with respect to the measure Q, i.e. EQ(X2) ≤ ∞. We
will turn the random variable X into a Q-martingale in a two stage process. First
discount X so that X becomes e−rTX and then condition to define

X̃(t) = e−rTEQ(X|Ft)

Lemma 32. X̃ = (X̃(t), 0 ≤ t ≤ T ) is a square-integrable Q-martingale.

Proof. The process (X̃(t), 0 ≤ t ≤ T ) is clearly adapted. It satisfies the martingale

property as follows, if 0 ≤ s ≤ t ≤ T

X̃(s) = EQ(e−rTX|Fs) = EQ(EQ(e−rTX|Fs)|Ft) = EQ(X̃|Fs)
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Square-integrability follows from conditional Jensen inequality as follows:

EQ(X̃(t)2) = e−2rTEQ(EQ(X|Ft)2) ≤ e−2rTEQ(EQ(X2|F)) = e−2rTEQ(X2) <∞

As the process X̃ is square-integrable, it is automatically integrable.

We call the process X̃ the claim martingale. As it is square-integrable we can apply
the (2.3) in the probability space (Ω,F , Q) to deduce that there exists a process
δ = (δ(t), 0 ≤ t ≤ T ) in H2(T ) such that for each 0 ≤ t ≤ T ,

X̃(t) = X̃(0) +

∫ t

0

δ(u)dW (u) = X̃(0) +

∫ t

0

γ(u)dS̃(u), (3.5)

where γ(t) = δ(t)

σS̃(t)
and we have used (3.4). We can rewrite (3.5) in stochastic

differential form to obtain
dX̃(t) = γ(t)dS̃(t) (3.6)

3.1.1 The Black-Scholes Portfolio

In this section, we will derive the corresponding portfolio based on the ideas above
to show how to hedge and price an arbitrary contingent claim X. We define the
Black-Scholes portfolio by

φ(t) = γ(t); ψ(t) = X̃(t)− γ(t)S̃(t), (3.7)

for all 0 ≤ s ≤ t. Its value at time t is

V (t) = γ(t)S(t) + (X̃(t)− γ(t)S̃(t)A(t))

= γ(t)A(t)S̃(t) + (X̃(t)− γ(t)S̃(t)A(t)

= X̃(t)A(t) (3.8)

Theorem 33. The Black-Scholes portfolio is self-financing and replicating.

Proof. The portfolio is replicating since by (3.8)

V (T ) = A(T )X̃(T )

= erT e−rTEQ(X|FT )

= X, (3.9)

where we have used the fact that X is FT -measurable.

To see that the portfolio is self-financing, we find the stochastic differential of

(3.8) using Ito’s formula and apply (3.6) and (3.7) to obtain

dV (t) = X̃(t)dA(t) + A(t)dX̃(t)

= (ψ(t) + γ(t)S̃(t))dA(t) + γ(t)A(t)dS̃(t)

= ψ(t)dA(t) + γ(t)[S̃(t)dA(t) + A(t)dS̃(t)]

= ψ(t)dA(t) + γ(t)d[A(t)S̃(t)]

= ψ(t)dA(t) + φ(t)dS(t). (3.10)

10



Hence, the portfolio is self-financing, as well.

From this we get that the arbitrage price of the option at time t is

V (t) = A(t)X̃(t)

= ertEQ(e−rTX|Ft)
= e−r(T−t)EQ(X|Ft) (3.11)

i.e. to attempt to sell the option at this time at a greater or lower price creates
arbitrage opportunities. This can be understood from the following scenarios as
follows: Suppose the price of an ECC X is π′. If π′ > πX(0), the owner should sell
the option and invest πX(0) into a replicating portfolio φ. Then at time T , the value
of the portfolio is Vφ(T ) = X which is what we’d have if he’d kept the option. So
he’s made π′ − πX(0) risk-free profit. If π′ < πX(0), the option should be bought
and kept until time T when it matures. Its value is now X which is what the buyer
would have if the buyer had invested πX(0) into a replicating portfolio at time zero.
So again a risk-free profit has been made.
In particular, the price of the option at time zero is

V (0) = e−rTEQ(X) (3.12)

3.1.2 Pricing a European Call Option via Martingale Approach

In this section we will price the European call option via the tools that we have
developed above. We begin by considering the case of a general ECC, so X =
f(S(T )) where f is a Borel measurable function from[0,∞) to R. Then (3.12)
becomes

V (0) = e−rTEQ(f(S(T )))

Then by using (3.4) we have

S(T ) = A(T )S̃(T )

= erTS(0) exp{σW (T )− 1

2
σ2T}

= S(0)eU+rT ,

where U = σW (T )− 1
2
σ2T . Since under the measure Q, W (T ) ∼ N(0, T ), it follows

that U ∼ N(−1
2
σ2T, σ2T ). By letting S(0) = S, we thus obtain

V (0) =
e−rT

σ
√

2πT

∫ ∞
−∞

f(Sex+rT ) exp{−
(x+ 1

2
σ2T )2

2σ2T
} dx (3.13)

This is the Black-Scholes pricing formula for a general European contingent claim.

Now we will apply this to a European call option. In this case f(x) = (x−E)+,
where E is the exercise price. In particular, f(Sex+rT ) = max{Eex+rT −E, 0} 6= 0 if
and only if x > log E

S
− rT . Pulling the factor of e−rT through the integral in (3.13),

we then obtain

11



V (0) =
1

σ
√

2πT

∫ ∞
log(E

S
)−rT

(Sex − Ee−rT ) exp{−
(x+ 1

2
σ2T )2

2σ2T
} dx (3.14)

Let Φ be the cdf of a standard normal, i.e. Φ(z) = 1√
2π

∫ z
−∞ e

− 1
2
u2 du, then we

proceed as follows:
First split (3.14) into two integrals. In the first integral we have

ex exp{− (x+ 1
2
σ2T )2

2σ2T
} = exp{− (x− 1

2
σ2T )2

2σ2T
} Now substitute y1 =

x−σ
2T
2

σ
√
T

into the first

integral and y2 =
x+σ2T

2

σ
√
T

into the second one. After making these substitutions we
have

V (0) = S
1√
2π

∫ ∞
−d1

e−
y21
2 dy1 − Ee−rT

1√
2π

∫ ∞
−d2

e−
y22
2 dy2

= E
1√
2π

∫ d1

−∞
e−

u21
2 du1 − Ee−rT

1√
2π

∫ d2

−∞
e−

u22
2 du2

Hence we get the following:

V (0) = SΦ

(
log ( S

E
) + (r + σ2

2
)T

σ
√
T

)
− Ee−rTΦ

(
log ( S

E
) + (r − σ2

2
)T

σ
√
T

)
(3.15)

Equation (3.15) is the celebrated Black-Scholes pricing formulae for a European call
option. It is often written as

V (0) = SΦ(d1)− Ee−rTΦ(d2), (3.16)

where d1 =
log ( S

E
)+(r+σ2

2
)T

σ
√
T

and d2 = d1 − σ
√
T .

12



3.2 Deriving the Black-Scholes Formula by PDE Approach

This section is mostly based on the derivation described in [2]. The model we have in
(3.2) is an Ito process. Therefore, we let the function F (S, t) be twice differentiable
in S and in t. Applying the Ito lemma we obtain:

dF (S, t) =
∂F

∂S
dS +

∂F

∂t
dt+

1

2
σ2S2∂

2F

∂S2
dt (3.17)

Plugging into equation (3.17) for dS we have

dF (S, t) = σSdB
∂F

∂S
+ (µS

∂F

∂S
+
∂F

∂t
+

1

2
σ2S2∂

2F

∂S2
)dt (3.18)

Now set up a portfolio long one option , F , and short an amount ∂F
∂S

stock. The
value of the portfolio, π, is

π = F − ∂F

∂S
S (3.19)

The change, dπ in the value of this portfolio over a small time interval dt is given
by

dπ = dF − ∂F

∂S
dS (3.20)

Hence we get

dπ = σSdB
∂F

∂S
dB + (µS

∂F

∂S
+
∂F

∂t
+

1

2
σ2S2∂

2F

∂S2
)dt− ∂F

∂S
(µSdt+ σSdB) (3.21)

This simplifies to

dπ = (
∂F

∂t
+

1

2
σ2S2∂

2F

∂S2
)dt (3.22)

At this point we note that this portfolio is completely riskless because it does not
contain the random Brownian motion term. Since this portfolio contains no risk it
must earn the same as other short-term risk-free securities. If it earned more than
this, arbitrageurs could make a profit by selling the risk-free securities and using the
proceeds to buy this portfolio. If the portfolio earned less arbitrageurs could make
a riskless profit by selling the portfolio and buying the risk-free securities. It follows
for a riskless portfolio that

dπ = rπdt (3.23)

where r is the risk free interest rate. Substituting for dπ and π we get

(
∂F

∂t
+

1

2
σ2S2∂

2F

∂S2
)dt = r(F − S∂F

∂S
)dt (3.24)

Further simplification yields the Black-Scholes differential equation

∂F

∂t
+

1

2
σ2S2∂

2F

∂S2
+ rS

∂F

∂S
− rF = 0 (3.25)

In order to solve the Black-Scholes equation we will change the equation into an
equation that we can work with. For this we change the variables as follows:

13



S = Eex, where E stands for exercise price (3.26)

t = T − τ
1
2
σ2

(3.27)

F = Ef(x, τ) (3.28)

Using the chain rule from Calculus for transforming parital derivatives for functions
of two variables we have

∂F

∂S
=

∂F

∂x

∂x

∂S
+
∂F

∂τ

∂τ

∂S
(3.29)

∂F

∂t
=

∂F

∂x

∂x

∂τ
+
∂F

∂τ

∂τ

∂t
(3.30)

By the corresponding transformations we have the following

∂τ

∂t
= −1

2
σ2 ∂x

∂t
= 0

∂x

∂S
=

1

S

∂τ

∂S
= 0 (3.31)

Plugging these into the partial derivative terms we get

∂F

∂S
=

1

S

∂F

∂x
(3.32)

∂F

∂t
= −1

2
σ2∂F

∂τ
(3.33)

∂2F

∂S2
=

1

S2

1

S2

∂2F

∂x2
− 1

S2

∂F

∂x
(3.34)

Substituting these into the Black-Scholes partial differential equation gives the dif-
ferential equation

∂F

∂τ
=
∂2F

∂x2
+ (k − 1)

∂F

∂x
− kF (3.35)

where
k =

r
1
2
σ2

The initial condition C(S, T ) = max(S − E, 0) is transformed into

v(x, 0) = max(ex − 1, 0)

Now we apply another change of variable and let

v(x, τ) = eαx+βτu(x, τ)

Then by simple differentiation we have

∂v

∂τ
= βeαx+βτu+ eαx+βτ ∂u

∂τ
∂v

∂x
= αeαx+βτu+ eαx+βτ ∂u

∂x
∂2v

∂x2
= α(αeαx+βτu+ eαx+βτ ∂u

∂x
) + αeαx+βτ ∂u

∂x
+ eαx+βτ ∂

2u

∂x2

14



Substituting these partials into equation (3.35) yields

βu+
∂u

∂τ
= α2u+ 2α

∂u

∂x
+
∂2u

∂x2
+ (k − 1)(αu+

∂u

∂x
)− ku

We can get rid of the u terms and the ∂u
∂x

terms by carefully choosing values of α
and β such that

β = α2 + (k − 1)α− k

and
2α + k − 1 = 0

We can rearrange these equations so they can be written

α = −1

2
(k − 1)

β = −1

4
(k + 1)2

We now have the transformation from v to u as

v = e−
1
2

(k−1)x− 1
4

(k+1)2τu(x, τ)

resulting in the diffusion equation

du

dτ
=
d2u

dx2
for −∞ < x <∞, τ > 0 (3.36)

Our initial condition has now been changed as well to

u0 = u(x, 0) = max(e
1
2

(k+1)x − e
1
2

(k−1)x, 0) (3.37)
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We let u(x, τ) = w( x√
τ
) i.e. we find a solution of the heat equation of the form

u(x, τ) = w(
x√
τ

) = w(p)

ut = w′(
x√
τ

)

ux =
1√
τ
w′(

x√
τ

)

uxx =
1√
τ

1√
τ
· w′′( x√

τ
)

− x

2τ
3
2

w′(
x√
τ

)− 1

t
w′′(

x√
τ

) = 0

x

2
√
τ
w′(

x√
τ

) + w′′(
x√
τ

) = 0

p =
x√
τ

1

2
· p · w′(p) + w′′(p) = 0

w′′(p)

w′(p)
= −1

2
p

lnw′(p) = −1

4
p2 + C

w′(p) = exp−p
2

4
· C

w(s) = c1

∫ s

−∞
exp−p

2

4
dp+ C2

Hence we get the equation

Q(x, τ) =

∫ x√
τ

−∞
exp−

p2

4 dp

By linearity/superposition we get that

u(x, τ) =

∫ ∞
−∞

Q(x− s, τ)C(s)ds

We also want that the initial condition is satisfied. Namely, we want

u(x, 0) =

∫ ∞
−∞

C(s)Q(x− s, 0)ds = f(x)

Since

limt→0+Q(x− s, τ) =

{
0 if x < s√

4π ifx > s

We get that

u(x, t) =
1√
4π

∫ ∞
−∞

f ′(s)Q(x− s, τ)ds
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Using integration by parts and noting the asymptotic behaviour of these functions
we get that

u(x, τ) =
1√
4πt

∫ ∞
−∞

f(s)e
(x−s)2

4τ ds, where t > 0

Hence we get the well-known solution to the (3.36) as

u(x, τ) =
1√
4πτ

∫ ∞
−∞

u0(s)e−
(x−s)2

4τ ds (3.38)

where u0(x, 0) is given by equation (3.37). In order to solve this integral it is very
convenient to make a change of variable

y =
s− x√

2τ

so that

u(x, τ) =
1√
2π

∫ ∞
−∞

u0(y
√

2τ + x)e−
y2

2 dy

Substituting our initial condition into this equation results in

u(x, τ) =
1√
2π

∫ ∞
− x√

2τ

e
1
2

(k+1)(y
√

2τ+x)e−
y2

2 dy − 1√
2π

∫ ∞
− x√

2τ

e
1
2

(k−1)(y
√

2τ+x)e−
y2

2 dy

In order to solve this we will solve each integral separately. The first integral can be
solved by completing the square in the exponent. The exponent of the first integral
is

−1

2
y2 +

1

2
(k + 1)(x+ y

√
2π)

Factoring out the −1
2

gives us

−1

2
(y2 − [k + 1]y

√
2τ − [k + 1]x)

Separating out the term that is not a function of y, and adding and subtracting
terms to set up a perfect square yields

1

2
(k + 1)x− 1

2

[
y2 − [k + 1]y

√
2τ +

(
[k + 1]

√
2τ

2

)2

−
(

[k + 1]
√

2τ

2

)2]
which can be written

1

2
(k + 1)x− 1

2

(
y − [k + 1]

√
2τ

2

)2
+

1

2

( [k + 1]
√

2τ

2

)2

and simplified to

1

2
(k + 1)x− 1

2

(
y − [k − 1]

√
2τ

2

)2
+

(k + 1)2τ

4

17



Thus the first integral reduces to

I1 =
e

1
2

(k+1)x

√
2π

∫ ∞
− x√

2τ

e
1
4

(k+1)2τe−
1
2

(y− 1
2

[k+1]
√

2τ)2dy

Now substituting

z = y − 1

2
[k + 1]

√
2τ

results in

I1 =
e

1
2

(k+1)x + 1
4
(k + 1)2τ

√
2π

∫ ∞
− x√

2τ
− 1

2
(k+1)

√
2τ

e−
1
2
z2dz

=
e

1
2

(k+1)x + 1
4
(k + 1)2τ

√
2π

Φ(d1)

where

d1 = − x√
2τ
− 1

2
(k + 1)

√
2τ

and

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
y2

is the cumulative distribution function for the normal distribution.
The calculation of the second integral I2 is identical to that of I1 except that (k−1)
replaces (k + 1) throughout. Finally, we work our way backwards with

v(x, τ) = e−
1
2

(k−1)x− 1
4

(k+1)2τu(x, τ)

and then substituting the inverse transformations

x = log
(S
E

)
τ =

1

2
σ2(T − t)

C = Ev(x, τ)

we finally obtain the desired result

C(S, t) = S · Φ(d1)− Ee−r(T−t) · Φ(d2)

where

d1 =
log( S

E
) + (r + 1

2
σ2)(T − t)

σ
√
T − t

and

d2 =
log( S

E
) + (r − 1

2
σ2)(T − t)

σ
√
T − t

Hence the martingale approach and the PDE approach coincide as to be expected
if you take t = 0 as your initial time.
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3.2.1 Application of the Black-Scholes PDE to the Hedging Process

Our first application of the pde (3.25) is to hedging. Recall that we have constructed
a portfolio V (t) = ψ(t)A(t) + φ(t)S(t) where the process φ(t) has been the hedging
process. It turns out that if we differentiate the retrieved function F (t, x) with
respect to x we get the hedging process φ(t) itself. We will state this as our next
theorem. For that we will need the following lemmas.

Lemma 34. A necessary and sufficient condition for the discounted stock process

(S̃(t), 0 ≤ t ≤ T ) to be a martingale is that µ = r where µ and r are stock drift and

the interest rate as above.

Proof. We are given that dS(t) = µS(t)dt + σS(t)dB(t) and S̃(t) = e−rtS(t). By

Ito’s formula we have

dS̃(t) = −re−rtS(t)dt+ e−rtdS(t)

= (µ− r)S̃(t)dt+ σS̃(t)dB(t)

Hence S̃ will be a martingale if and only if r = µ. This completes the proof.

Lemma 35. A portfolio with associated wealth process V = (V (t), 0 ≤ t ≤ T ) is

self-financing if and only if the discounted wealth process satisfies

dṼ (t) = φ(t)dS̃(t) (3.39)

Proof. First we note that for any portfolio (ψ, φ) the wealth at time t is V (t) =

ψ(t)ert + φ(t)S(t) and so

Ṽ (t) = e−rtV (t) = ψ(t) + φ(t)S̃(t)

Now assume that the portfolio is self-financing so that dV (t) = rψ(t)ertdt+φ(t)dS(t).

Then by Ito’s product formula

dṼ (t) = −re−rtV (t)dt+ e−rtdV (t)

= −rṼ (t)dt+ rψ(t)dt+ φ(t)[µS̃(t)dt+ σS̃(t)dB(t)]

= φ(t)(µ− r)S̃(t)dt+ φ(t)σS̃(t)dB(t)

= φ(t)dS̃(t)

Conversely suppose that dṼ (t) = φ(t)dS̃(t) Hence by Ito’s product formula we have

dṼ (t) = φ(t)(µ− r)S̃(t)dt+ φ(t)σS̃(t)dB(t)
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Since V (t) = ertṼ (t), Ito’s product formula yields

dV (t) = ertdṼ (t) + rertṼ (t)dt

= φ(t)(µ− r)S(t)dt+ φ(t)σS(t)dB(t) + rV (t)dt

= φ(t)(µ− r)S(t)dt+ φ(t)σS(t)dB(t) + rψ(t)ertdt+ rφ(t)S(t)dt

= rψ(t)ertdt+ φ(t)[µS(t)dt+ σS(t)dB(t)]

= ψ(t)dA(t) + φ(t)dS(t)

and so the portfolio is self-financing as was required.

Theorem 36. For each 0 ≤ t ≤ T ,

φ(t) =
∂F

∂x
(t, S(t))

Proof. Define F̃ (t, x) = e−rtF (t, xert) Using the (3.25) we differentiate the function

F̃ (t, x) as follows:

∂F̃

∂t
= −re−rtF (t, xert) + e−rt

∂F

∂t
(t, xert) + rx

∂F

∂x
(t, xert)

= e−rt
[∂F
∂t

(t, xert)− rF (t, xert) + rxert
∂F

∂x
(t, xert)

]
= −1

2
e−rtσ2x2e2rt∂

2F

∂x2
(t, xert) by (3.25)

= −1

2
σ2x2∂

2F̃

∂x2
(t, x)

Applying Ito’s formula and using (3.4) we obtain

F̃ (T, S̃(T ))− F̃ (0, S̃(0)) =

∫ T

0

∂F̃

∂u
(u, S̃(u))du

+

∫ T

0

σS̃(u)
∂F

∂x
(u, S̃(u))dW (u) +

∫ T

0

1

2
σ2S̃(u)2∂

2F̃

∂x2
(u, S(u))du

=

∫ T

0

∂F̃

∂x
(u, S̃(u))σS̃(u)dW (u)

=

∫ T

0

∂F̃

∂x
(u, S̃(u))dS̃(u)

Since Ṽ (t) = F̃ (t, S(t)), we have shown that

Ṽ (T ) = V (0) +

∫ T

0

∂F̃

∂x
(u, S̃(u))dS̃(u)
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Now since Black-Scholes portfolio is self-financing we have also by (3.39) Ṽ (T ) =

V (0) +
∫ T

0
φ(u)dS̃(u) and so we deduce that

φ(t) =
∂F

∂x
(t, S̃(t)) =

∂F

∂x
(t, S(t))

3.2.2 Hedging of the Black-Scholes Portfolio in a European Call Option

Scenario

The exact mathematical details in a European call option scenario of the hedging
concept appears below, but the basic idea is that we can in effect duplicate our
option by a portfolio consisting of continually changing holdings of a risk-free bond
and of the stock on which the call is written.
To be more specific the derivatives of the function F (t, x) of (3.25) with respect to
various variables are called the Greeks. By direct differentiation we get the following
two of them namely delta and theta, which are defined respectively as follows:

Fx(x, t) = Φ(d1(T − t, x))

Ft(x, t) = −rEe−r(T−t)Φ(d2(T − t, x))− σx

2
√
T − t

Φ′(d1(T − t, x))

Because both Φ and Φ′ are always positive, delta is always positive and theta is
always negative. Another of the Greeks is gamma, which is

Fxx(x, t) = Φ′(d1(T − t, x))
∂

∂x
d1(T − t, x) =

1

σx
√
T − t

Φ′(d1(T − t, x))

If at time t the stock price is x, then the hedging process for the European call option
calls for holding Fx(x, t) shares of stock, a position whose value is x ·Fx = x ·Φ(d1).
The hedging portfolio value is F (x, t) = x·(d1)−Ee−r(T−t)Φ(d2), and since x·Fx(x, t)
of this value is invested in stock, the amount invested in the money market must be

F (x, t)− x · Fx(x, t) = −Ee−r(T−t)Φ(d−),

a negative number. To hedge a short position in a call option, one must borrow
money. To hedge a long position in a call option, one does the opposite. Namely, to
hedge a long position one should hold −Fx shares of stock (i.e., have a short position
in stock) and invest Ke−r(T−t)Φ(d2) in the money market account.
Because delta and gamma are positive, for fixed t, the function F (x, t) is increasing
and convex in the variable x. Suppose at time t the stock price is x1 and we wish
to take a long position in the position and hedge it. We do this by purchasing
the option for F (x1, t), shorting Fx(x1, t) shares of stock, which generates income
x1 · Fx(x1, t) and investing the difference,

M = x1 · Fx(x1, t)− F (x1, t)
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in the money market account. We wish to consider the sensitivity to stock price
changes of portfolio that has these three components: long option, short stock, and
long money market account. The initial portfolio value

F (x1, t)− x1 · Fx(x1, t) +M

is zero at the moment t when we set up these positions. If the stock price were to
instantaneously fall to x0 and we do not change our positions in the stock or money
market account, then the value of the option we hold would fall to F (x0, t) and the
liablity due to our short position in stock would decrease to x0 ·Fx(x1, t). Our total
portfolio value, including M in the money market account, would be

F (x0, t)− x0 · Fx(x1, x) +M = F (x0, t)− Fx(x1, t) · (x0 − x1)− F (x1, t)

This is the difference at x0 between the curve y = F (x, t) and the straight line
y = Fx(x1, t)(x − x1) + F (x1, t). Because this difference is positive, our portfolio
benefits from an instantaneous drop in the stock price. On the other hand, if the
stock price were to instantaneously rise to x2 and we do not change our positions
in the stock or money market account, then the value of the option would rise
to F (x2, t) and the liability due to our short position in stock would increase to
x2 · Fx(x1, t). Our total portfolio value, including M in the money market account,
would be

F (x2, t)− x2 · Fx(t, x1) +M = F (x2, t)− Fx(x1, t) · (x2 − x1)− F (x1, t)

This is the difference at x2 between the curve y = F (t, x) and the straight line
y = Fx(x1, t)(x− x1) + F (x1, t). This difference is positive so our portfolio benefits
from an instantaneous rise in the stock price.

The portfolio we have set up is said to be delta-neutral and long gamma. The
portfolio is long gamma because it benefits from the convexity of F (t, x) as described
above. If there is an instantaneous rise or fall in the stock price, the value of the
portfolio increases. A long gamma portfolio is profitable in high stock volatility.

Delta-neutral refers to the fact that the line y = Fx(x1, t)(x−x1) +F (x1, t) is
tangent to the curve y = F (t, x). Therefore, the straight line is a good approximation
to the option price for small stock price moves. If the straight line were steeper
than the option price curve at the starting point x1, then we would be shortdelta;
an upward move in the stock price would hurt the portfolio because the liability
from the short position in stock would rise faster than the value of the option. On
the other hand, a downward move would increase the portfolio value because the
option price would fall more slowly than the rate of decrease in the liability from the
short stock position. Unless, a trader has a view on the market, he tries to set up
portfolios that are delta-neutral. If he expects high-volatiliy, he would at the same
time try to choose the portfolio to be long gamma.

The essence of the hedging argument is that if the stock price is a really a
geometric Brownian motion and we have determined the right value of the volatility
σ, then so long as we continuously rebalance our portfolio, all these effects exactly
cancel! Furthermore, based on the model, the more volatile stocks offer more op-
portunity for profit from the portfolio that hedges a long call position with a short
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stock position, and hence the call is more expensive. The derivative of the option
price with respect to the volatility σ is called vega, and it is positive. As volatility
increases, so do option prices in the Black-Scholes model [8].
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4 Variations on Black-Scholes Model

4.1 Foreign Exchange

We would like to be able to price and hedge claims in different currencies. This
introduces a new complication - the exchange rate between currencies. We will
consider US and UK investors seeking to hold assets in either currency. For simplicity
we will just deal with risk-free assets in either currency. So
(A(t), 0 ≤ t ≤ T) is a dollar cash bond.
(D(t), 0 ≤ t ≤ T) is a Sterling cash bond.
(E(t), 0 ≤ t ≤ T) is the exchange rate,
i.e. E(t) is the value of one pound in dollars at time t.

We assume the following dynamical behaviour of these quantities

A(t) = ert

D(t) = eut

E(t) = E0 exp{µt+ σB(t)},

so the risk-free assets A and D are continuously compounded at rates r and u (re-
spectively), while E evolves as a geometric Brownian motion where E0 is a constant.
We take the point of view of a dollar investor who wants to hold dollar-valued op-
tions that speculate on the future value of Sterling. Frim his point of view neither
the exchange rate E nor the the Sterling bond D are tradeable assets, but their
product is so we define S(t) = E(t)D(t)
We can now apply the Black-Scholes methodology within the dollar market to the
two assets A and S. The first step is to find a measure Qd under which the discounted
product S̃(t) = A(t)−1S(t) becomes a martingale. We have by Ito’s formula

dS̃(t) = σS̃(t)(dB(t)− θdt),

where θ =
r−µ−u− 1

2
σ2

σ
. We apply Girsanov’s theorem and find that dQd

dP
= exp{θB(T )−

1
2
θ2T} and (W (t), 0 ≤ t ≤ T ) is a Qd-Brownian motion where W (t) = B(t) − θ · t

so that dS̃(t) = S̃(t)σdW (t).
It then follows that the arbitrage price at time t of a contingent claim X (priced in
dollars) is

V (t) = e−r(T−t)EQ(X|Ft)

We will study this further in the case where X is a forward contract to buy one unit
of Sterling at time T for the price k. So the value of the claim at the terminal date
is X = E(T )− k and so

V (t) = e−r(T−t)EQ(E(T )− k|Ft)

A forward contract costs nothing at time zero and so we must have

0 = V (0) = e−rTEQ(E(T )− k) = e−rTEQ(E(T ))− e−rTk

24



and hence the (arbitrage-free) strike price must be k = EQ(E(T )). We can simplify
this even further. Writing E(T ) in terms of the Qd-Brownian motion W we find
that

E(T ) = E0 exp{σW (T ) + (r − u− 1

2
σ2)T},

so the calculation of EQ(E(T )) boils down to that of the moment generating function
for a normal distribution. Hence we get that

E = e(r−u)TE0

and so
V (t) = e−r(T−t)EQ(E(T )− e(r−u)TE0|Ft) (4.1)

Our next step in the dollar market is to find the precise hedging portfolio
(φ, ψ) whose value at time t is V (t) = φ(t)S(t) + ψ(t)A(t). To do this we use
the fact that for each 0 ≤ t ≤ T , E(t) = D(t)−1S(t) = D(t)−1A(t)S̃(t). Now
D(T )−1 = e−u(T−t)D(t)−1 and A(T ) = er(T−t)A(t). Since S̃ is a Qd-martingale we
have

EQ(E(T )|Ft) = e(r−u)(T−t)D(t)−1A(t)EQ(S̃(T )|Ft)
= e(r−u)(T−t)D(t)−1A(t)S̃(t)

= e(r−u)(T−t)E(t)

Substituting into (4.1) we obtain

V (t) = e−u(T−t)E(t)− ert−uTE0

= e−uT (eutE(t)− ertE0)

If we discount in dollars we have Ṽ (t) = e−rtV (t) and so

Ṽ (t) = e−uT (e−(r−u)tE(t)− E0)

= e−uT S̃(t)− e−uTE0

From this we see that the portfolio is constant, i.e. for all 0 ≤ t ≤ T , φ(t) = e−uT

and ψ(t) = −e−uTE0.
So far we have investigated this transaction from the point of view of the

dollar investigator. We now take the perspective of the Sterling investor. From
this point of view, there are two tradeable assets, these being the Sterling bond
D = (D(t), 0 ≤ t ≤ T ) and the Sterling value of the dollar bond which is Z =
(Z(t), 0 ≤ t ≤ T ) where each Z(t) = E(t)−1A(t). The discounted Sterling value at
time t is Z̃(t) = D(t)−1Z(t). Now we get the corresponding equivalent measure as
follows

Z̃(t) = D(t)−1E(t)−1A(t)

= E−1
0 exp{−σB(t)− (µ+ u− r)t}

Hence

dZ̃(t) = Z̃(t)
(
− σdB(t)−

(
µ+ u− r − 1

2
σ2
)
dt
)
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and by Girsanov’s theorem the measure Qp under which Z̃ is a Qp-martingale which
is given by

dQp

dP
= exp

{
λB(t)− 1

2
λ2T

}
where λ =

r+ 1
2
σ2−µ−u
σ

and so W ′ is a Qp-Brownian motion where for each 0 ≤ t ≤ T ,

W ′(t) = B(t)− λt

So the arbitrage-price at time t in Stirling of the claim X (which we recall is
priced in dollars) is

U(t) = D(t)EQ(D(T )−1E(T )−1X|Ft) (4.2)

= e−u(T−t)EQ(E(T )−1X|Ft) (4.3)
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4.2 Dividends

4.2.1 Continuous Dividend Payments

Our final variation on the standard Black-Scholes theory will deal with dividends.
We will work with continuous time and real-valued asset prices. We will begin by
making the assumption that a dividend is paid continuously at a fixed rate c where
0 ≤ c ≤ 1. So in the time period [t, t+δt], the owner of the stock receives a dividend
payment of cS(t)δ(t).
The difficulty now is that S(t) no longer represents the true worth of the asset at
time t as it does not take into account of the accumulated dividends up to that
time. In other words S is not a tradeable asset. The solution to this difficulty is to
translate the problem into one which involves tradeable assets. We make the further
assumption that whenever a dividend is paid then it is immediately reinvested in
the stock. So the dividend cS(t)δ(t) is used to buy cδ(t) units of stock. We thus
construct a new tradeable asset Z = (Z(t), 0 ≤ t ≤ T ) whose return at time t is

δZ(t)

Z(t)
= cδt+

δS(t)

S(t)

= cδt+ µδt+ σδB(t),

so that
δZ(t) = (µ+ c)Z(t)δt+ σZ(t)δB(t)

hence by letting δt→ 0 we get the following SDE in the Ito sense

dZ(t) = (µ+ c)Z(t)dt+ σZ(t)dB(t)

We thus see that at time t rather than holding one unit of stock we have ect units
with total value

Z(t) = ectSt

= ectS0 exp

{
σB(t) +

(
µ− 1

2
σ2

)
t

}

Hence by Ito’s formula we get that

dZ(t) = ectdS(t) + cZ(t)dt (4.4)

Our strategy will be to regard Z as a single asset which pays no dividends. We
now apply Black-Scholes theory but with the asset Z taking the place of S. Any
portfolio which (at time t) contains φ(t)ect units of original stock S(t) and ψ(t) units
of risk-free asset A(t) can be thought of as a portfolio which contains φ(t) units of
the new asset Z(t) and ψ(t) units of A(t). Note that in this context, for (φ, ψ) to
be self-financing, we require

dV (t) = φ(t)dZ(t) + ψ(t)dA(t)

= φ(t)ectdS(t) + cφ(t)Z(t)dt+ ψ(t)dA(t)
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by (4.4). We will now price a European call option with strike price k and ma-
turity date T which is written on the dividend paying stock. First define Z̃(t) =
A(t)−1Z(t) = e−rtZ(t). We then have by Ito’s formula

dZ̃(t) = σZ̃(t)dB(t) + (µ+ c− r)Z̃(t)dt

We now apply Girsanov’s theorem and take F (t) = r−µ−c
σ

in (2.3) to obtain the
equivalent probability measure Q then W = (W (t), 0 ≤ t ≤ T ) is a Q-Brownian
motion where W (t) = B(t) + µ+c−r

σ
t and

dZ̃(t) = σZ̃(t)dW (t)

The value of the replicating portfolio at time t (and hence the arbitrage price of the
option) is

V (t) = e−r(T−t)EQ((S(T )− k)+|Ft)
Taking into consideration that Z̃ (and not S̃) which is a martingale under the
probability measure Q and so we can write

V (t) = e−r(T−t)EQ((e−cTZ(T )− k)+|Ft)
V (t) = e−r(T−t)e−cTEQ((Z(T )− kecT )+|Ft)

Hence by denoting G(t) = e(r−c)(T−t)S(t) and θ = T − t we get that

V (t) = e−rθ

{
G(t)Φ

(
log
(G(t)

k

)
+ σ2θ

2

σ
√
θ

)
− kΦ

(
log
(G(t)

k

)
− σ2θ

2

σ
√
θ

)}
where Φ denotes the standard normal distribution as usual.

4.2.2 Periodic Dividend Payments

In the real world, dividend payments are paid at regular intervals, say at times
T1, T2, .... At each time Ti the holder of the stock receives a payout of cS(Ti) where
0 < c < 1. Between payouts, the stock price will evolve according to the usual
geometric Brownian motion model. We model the arbitrage-free model of the stock
price in this context as

S(t) = S0(1− c)N(t) exp
{
σB(t) +

(
µ− 1

2
σ2
)
t
}
,

where N(t) = max i, Ti ≤ t. Again we have the problem that S is not a tradeable
asset and this can again be remedied by reinvesting the dividend payment into stock.
So at each time Ti our total holding of stock will increase by a factor of (1 − c)−1

and we work with the process Z = (Z(t), 0 ≤ t ≤ T ) where

Z(t) = (1− c)−N(t)S(t) = S0 exp
{
σB(t) +

(
µ− 1

2
σ2
)
t
}

We will thus apply the Black-Scholes model wih the assets Z and A instead of S and
A. The analysis is fairly similar to that in the standard Black-Scholes case. So the
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equivalent martingale measure Q is again obtained by taking F (t) = r−µ
σ

in (2.3).
To illustrate the use of the theory in this case, we will apply it to find the fair price
K of a forward contract to buy one unit of periodic dividend paying stock at time
T . So the claim is X = S(T )−K and as usual the arbitrage price at time t is

V (t) = e−r(T−t)EQ((S(T )−K)|Ft)
= e−r(T−t)EQ(((1− c)N(T )Z(T )−K)|Ft)
= (1− c)N(T )Z(t)−Ke−r(T−t),

where we have used the fact that Z̃ is a Q-martingale where each Z̃(t) = e−rtZ(t).
Now since V (0) = 0, we immediately deduce that

K = erT (1− c)N(T )Z(0) = erT (1− c)N(T )S0

and get the arbitrage free fair price K of a forward contract.
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5 Conclusion and Further Remarks

This thesis has dealt with developing the Black-Scholes approach to pricing
and hedging of contingent claims and we have seen how to extend this to take
account of both exchange rate complications and dividend payments. There are
more extensions in this framework like exotic options such as digital and multistage
options. These are still of basic ECC type. There are also important examples of
options where the pay-offs are not ECC claims but which may depend on the whole
history of the stock price (S(t), 0 ≤ t ≤ T ). These include American options and

Asian options where X =
(

1
T

∫ T
0
S(t)dt−K

)+
.

The Black-Scholes paradigm is extremely powerful and has launched a rev-
olution in option pricing. However there are some problems with it. One of these
is the main assumption - that the stock price is a geometric Brownian motion - is
a very crude assumption. In recent years there has been a lot of work on replac-
ing Brownian motion with more general stochastic processes which more accurately
model the behaviour of the market. One particular direction that has been inves-
tigated by a number of workers is to use a general Levy process - i.e. a process
that has independent and stationary increments - instead of Brownian motion. The
paths of such a process are no longer continuous and ”the discontinuous jumps in
the corresponding stock price are a reflection of supply and demand shocks to the
economy” [1] A major difficulty with moving away from Brownian motion is that
the market is is incomplete, i.e. martingale measures are no longer unique and so
the second fundamental theorem of asset pricing is no longer valid. Further studies
on this research is to be found in [1].
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