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Abstract

In this thesis study, two nonlocal models governing nonlinear wave motions in a
continuous medium are proposed and the Cauchy problems corresponding to these
nonlocal nonlinear wave equations are considered. Both of the models involve convo-
lution integral operators with general kernel functions whose Fourier transforms are
nonnegative. One of the models is based on a single equation governing the longitu-
dinal wave propagation, whereas the other model is based on two coupled equations
governing the propagation of transverse waves. Some well-known examples of non-
linear wave equations, such as Boussinesqg-type equations, follow from the proposed
models for suitable choices of the kernel functions. The main aim of this thesis is to
discuss well-posedness of the Cauchy problems. For this purpose, global existence
of solutions of the models assuming enough smoothness on the initial data together
with some positivity conditions on the nonlinear term are established. Furthermore,

sufficient conditions for finite time blow-up are provided.



iki Yonlii Dalga Denklemlerinin Yerel ve Dogrusal Olmayan Bir Simfi igin Cauchy

Problemleri

Nilay Duruk Mutlubas
Matematik, Doktora Tezi, 2011
Tez Damsmani: Prof. Dr. Albert Erkip

Tez Damsmani: Prof. Dr. Hiisnii Ata Erbay

Anahtar Kelimeler: Global varhik. sonlu zamanda patlama, yerel olmayan

elastisite, Boussinesq tipi dalga denklemleri.

Ozet

Bu tez cahsmasinda elastik bir siirekli ortamdaki dogrusal olmayan dalga hareke-
tini yoneten iki yerel olmayan model o6nerilmis olup, bu yerel ve dogrusal olmayan
dalga denklemlerine kars1 gelen Cauchy problemleri ele almmigtir. Her iki model de
Fourier doniigiimleri negatif olmayan genel ¢ekirdek fonksiyonlar: ile tanimlh kon-
voliisyon integral operatorleri icermektedir. Modellerden bir tanesi boyuna dalga
vayilimm yoneten tek denklem iizerine insa edilirken, diger model enine dalgalarin
yayihmmini yoneten iki kuple denklem iizerine inga edilir. Boussinesq tipi denklem-
ler gibi dogrusal olmayan dalga yayihminin iyi bilinen denklemn 6rnekleri, cekirdek
fonksiyonlarinin uygun secimleri i¢in onerilen modellerden elde edilebilirler. Bu
tezin temel amacr Cauchy problemlerinin iyi tammhhgini tartismaktir. Bu amacgla.
baslangic kosullarinin yeterince dilzgiin oldugu ve dogrusal olmayan terimin baz
pozitiflik dzelliklerine sahip oldugu varsayimlarn altinda, modellerin ¢oziimlerinin
global varhklan ispatlanmistir. Buna ek olarak, ¢oziimlerin sonlu zamanda patla-

masi icin yeter kosullar elde edilmistir.
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Chapter 1

Introduction

Initial value problems for wave equations characterizing the wave propagation in
continuum mechanics have drawn attention of the mathematicians all the time.
Structural or geometrical properties of the continuous medium may cause the waves
to disperse during the propagation. In order to explain the concept of dispersion,
consider the one dimensional single linear partial differential equation with constant
coefficients: P(%j ?%)-u. = 0, where P is a polynomial. Substituting elementary plane
wave solutions of the form u(z,t) = Ae'**~*“Y where k is the wave number, w is
the frequency and A is the amplitude, into the partial differential equation, we get
an algebraic equation of the form P(ik, —iw) = 0. Assume that this equation has
solutions as w = W (k). Afterwards, phase velocity for a wave motion is defined

as ¢ = w/k. Here, if ¢ is dependent on k, then the wave is called dispersive. For

example, the linear wave equation
U — Ugy = 0 (c?=1) (1.1)
is nondispersive. On the other hand, the linear Boussinesq equations
Ut — Ugg T Uzgge = 0 (C2 =1% ke) (1.2)

are dispersive wave equations. That is, the wave propagates without changing its
shape for (1.1) contrary to (1.2). Another example for dispersive wave equations is
the linear improved Boussinesq equation:

B 1
]+ k2

)

" 2
U — Uge — Ugprt = 0 (C

It is a well-known fact that nondispersive nonlinear wave equations lead to singu-

larities in finite time. In Chapter 2, this result and the related concepts will be



discussed in detail. However, it has been observed that dispersive nonlinear wave
propagation either delays or totally prevents this kind of singularities. A typical
example is the Korteweg-de-Vries (KdV) equation which models shallow water wave
propagation:
U + Uy + Uz = 0.

Physically, the second term represents the nonlinear effects and the last term ex-
presses the dispersive effects. Steeping effect of the nonlinearity and smoothing
effect of dispersion reveals a balance with each other. There occurs a kind of waves
called soliton which propagates without changing its shape even after collisions and
there are numerous studies about this kind of solutions. Global well-posedness of
the solutions for initial value problems of the KdV equation has been extensively
studied since it describes physical events arising in different contexts. Kenig, Ponce
and Vega [24] derived a fundamental result on local well-posedness in the Sobolev
space I/ for s > 3/4. Later, Kappeler and Topalov [23| also showed that the
KdV equation is globally well-posed for ug € H~'. Another nonlinear dispersive
wave equation also characterizing shallow water wave propagation is the Boussinesq
equation. On the contrary to the KdV equation describing the unidirectional wave
propagation, it describes bi-directional wave propagation. Two basic forms of the

Boussinesq equation are
Ut — Uz — Uzgzr T (u2)$w =0 (1.3)

and

Ut — Uge + Ugaze + (U7)ae = 0 (1.4)
which are called "bad" and "good" Boussinesq equation, respectively. For the
"good" Boussinesq equation (1.4) and its various generalized forms, there have been
a lot of research results from the local and global well-posedness to the blow-up of
solutions of their initial value problems [18,20,22, 31, 38]. However, for the "bad"
Boussinesq equation (1.3), solutions for the initial value problem blow up [22].
In 1967, G. Whitham studied the mathematical aspects of nonlinear nonlocal equa-
tions in order to model water waves and hence proposed the following very general

nonlinear nonlocal equation later named as Whitham’s equation [32]:
oo
Uy + Uty + / Ble — yug(y, t)dy = 0. (1.5)
—0Q
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Here 3(z) is a kernel function and the integral term is in fact the convolution 3*u,.
Dispersive effect arises from the convolution term, unlike the KdV equation where
this effect was due to the term wug... This fact can be observed from the linear
dispersion relation ¢ = ﬁ(k) where E is the Fourier transform of 5. Whitham’s
motivation for introducing (1.5) was to have a simple equation suitable for describing
such typical water wave phenomena as sharp crests and breaking of waves, which
the KdV model fails to do. The point is that the convolution smooths out the
possible singularities which can occur for u,. In 1972, Benjamin, Bona and Mahony

[1] introduced a model equation for water waves
Uy + Uy — Ugyr = 0. (1.6)

Since the nonlocal character of (1.6) is not sufficiently clear, we now rewrite it in
order to make its nonlocality more apparent. Arranging (1.6) as

(1 —82)uy + 3 (3u?) =0, we get
> 1
wt [ 8= 0)(Gu)au iy = 0

where 3(z) = $e*! is the Green function of (1 — 92). Comparing with Whitham’s
equation, nonlocality in (1.6) appears on the nonlinear term. Camassa and Holm
[2,3] derived

Up — Ugge + SUUe = 2Uplspy + Ulpry (1.7)
which can also be rewritten as a nonlocal wave equation

s8]
. 1
Up + Uty + / Blx —y)(u® + 51&)1.(% dy =0

with G(z) = %e_m. Another model for shallow water wave dynamics was given by
Degasperis and Procesi [7]:

Up — Ugze + dUU, = SUgUpy + Ulgyy. (1.8)

As we did for the Camassa-Holm equation, (1.8) can be written in the following
form:
S < B 2
ug + Uy +/ Bz — y)(;sz)x(y.- t)dy = 0.
The Cauchy problems of (1.7) and (1.8) have been studied extensively (see, for

instance, [17] for (1.7) and [5,41] for (1.8) and references cited therein).

3



The nonlocal equations given above characterize the unidirectional wave propaga-
tion. Similarly, certain Boussinesq-type equations characterizing bi-directional wave
propagation have a nonlocal nature. Consider the so-called improved Boussinesy
(IMBq) equation

Ugt — Uz — Ugztr = (G(U))a- (1.9)

It can be converted into
=]
Uy = / Bz — y)(u + g(u))u(y, t)dy (1.10)

where J(x) = $¢7/*l as before. Nonlocality again becomes clearer with (1.10). Ex-
istence and uniqueness of solutions, locally and globally in time, and non-existence
of global solutions to the initial-boundary-value problem for the IMBq equation
(1.9) were discussed in [4,19,42|. Rosenau [36] derived the higher-order Boussinesq
equation

Uy — Uge — Ugzer + Vdazaztt = §(U)za (1.11)
using the quasi-continuum approximation for longitudinal vibrations of a dense lat-
tice. If the kernel function in (1.10) is taken as

B(z) = ﬁ(cle

Cl - (:2

—|z|/er

—|z|/e2
— € )}

with certain positive constants c; and cy, then it can be observed that (1.11) is
equivalent to (1.10). Global well-posedness of the Cauchy problem for (1.11) was
studied in [8].

Consider a convolution type nonlinear wave equation
Uy = (F* (u+ g(u))ze (1.12)

with a general kernel function J(z) and a general nonlinear function g(u). Note
that both (1.10) and (1.11) are special cases of (1.12). This equation describes a
general class of nonlocal nonlinear wave equations characterizing bi-directional wave
propagation in a continuous medium. A generalization of (1.12) to a coupled systemn

of two nonlocal nonlinear wave equations is given by

uy = (B * (v + g1(w. V) )zes (1.13)

Uit = (ﬁz * ('U, + gg(u,v)})m (1.14)

4



which characterize nonlinear and nonlocal interaction of two coupled waves propa-
gating in a continuous medium.

The unusual interaction between the nonlinear nature and the nonlocal nature of
both (1.12) and (1.13)-(1.14) pose some interesting open problems regarding quali-
tative features of solutions of these equations. The main purpose of this thesis study
is to discuss well-posedness of the Cauchy problems defined for (1.12) and (1.13)-
(1.14). In particular, this thesis is concerned with global existence and blow-up of
solutions to the Cauchy problems associated with (1.12) and (1.13)-(1.14).

The rest of this thesis study is composed of the chapters given as follows. In Chapter
2, it is shown that the propagation of longitudinal (or two transverse) strain waves
through a nonlocal nonlinear elastic medium is governed by (1.12) (or (1.13)-(1.14)).
Before giving the derivation of (1.12) and (1.13)-(1.14) from the equations of motion
of the nonlocal nonlinear elastic medium, the propagation of longitudinal waves in
the classical (local) theory of nonlinear elasticity is briefly discussed. The chapter
ends with an introduction of a general class of kernel functions, which covers the
most common used kernels in the literature.

In Chapter 3, local existence results for the Cauchy problems associated with (1.12)
and (1.13)-(1.14) are given. Depending on the values of the parameter characterizing
the smoothness of the kernel function, two different forms of the local existence
theorem are presented.

Chapter 4 is devoted to global well-posedness results. Conservation of energy is
supplied for both nonlocal nonlinear single model and coupled model.

In Chapter 5 conditions for finite time blow-up of solutions to the two Cauchy
problems are provided.

Finally, conclusions and some related open problems that are planned to investigate
afterwards are presented.

Basic concepts, inequalities and theorems needed during this thesis study are given
in the appendix part.

In what follows H* = H*(R) will denote the Sobolev space on R. For the f{° norm we
use the Fourier transform representation ||ul® = Jo(1+E2)F[u(€)|*dE. We use [Jull,,,
lu| and (u,v) to denote the L*° and L? norms and the inner product in L?, respec-

tively, The symbol &, stands for the classical partial derivative with respect to .



Chapter 2

Two Models of Wave Propagation in Nonlocal Elasticity

In this chapter, the nonlocal nonlinear single wave equation (1.12) and the coupled
system (1.13)-(1.14) are derived from the equations of motion of one-dimensional
nonlocal elasticity. In that respect, we first look at the classical (local) model of
one-dimensional elasticity and the related nonlinear wave equation. We refer to the
literature to discuss how this case leads to singularities in finite time. Secondly, we
show that (1.12) and (1.13)-(1.14) model propagation of longitudinal and transverse
waves, respectively, propagating in a nonlocal elastic medium. Finally, introducing
a smoothness condition, we describe the general class of kernel functions that will be
used throughout this thesis and show that the most commonly used kernel functions

belong to this class.

2.1 Nonlinear Wave Propagation in
Classical Elasticity

Consider a one-dimensional, homogenous, nonlinearly elastic infinite medium. Let
a scalar-valued function U(X,¢) be the displacement of a reference point X at time

t. In the absence of body forces the equation of motion for the displacement is
pole = (J(UX)}X\ (2.1)

where pg is the mass density of the medium, ¢ = o(Ux) is the local stress and
subscripts denote partial derivatives. In classical theory of elasticity, stress at a

spatial point depends on the "strain" Ux at the same point. The relation between



stress and strain is given by the following equation:

aF(Ux)

2.2
aUx (2.2)

oc(Ux) =

Here, F is a scalar valued function, called strain energy density function, which
relates the stress and the strain at a given point by requiring that the stress can be
obtained by taking the derivative of F with respect to strain. Hence by using (2.2).

(2.1) becomes

ngu = (F!(L’rx)))(‘ (23)

For convenience, it is assumed that there is neither initial energy, F(0) = 0, nor
initial stress, F'(0) = 0. Now, if both sides of (2.3) is differentiated with respect to
X, then it becomes

poUxi = (F'(Ux))xx.

After some non-dimensionalization process equivalent to taking py = 1 and for
simplicity, replacing X with =z and Uy with u, the equation of motion for the strain
can be obtained as follows:

wget P s (2.4)

which is a second-order nonlinear partial differential equation. Thus, from partial
differential equation viewpoint, some questions arise such as the type of the equation,
local existence of a solution for a given initial data, possibility to extend the solution
to all times and dependence of the solution on the initial data.

A first order system of quasilinear partial differential equations in two independent

variables is of the form

W, + A(W)W, =0, (2.5)

where W is a vector function of z and ¢, A is a matrix function of W, hence of x and {.
The system (2.5) is called strictly hyperbolic if A(W) has real and distinct eigenvalues
Ae{W). Let r; be the right eigenvector corresponding to an eigenvalue A;. The
characteristic k-th field of the system is called genuinely nonlinear if ry-grad(A;) # 0
whereas it is called linearly degenerate if 7y - grad(A;) = 0. In other words, if the
directional derivative of Az never vanishes, then the characteristic field is genuinely
nonlinear. When the kth field is genuinely nonlinear, different waves propagalte

with different speeds. Waves of linearly degenerate fields behave almost linearly and



converge to traveling waves as time goes to infinity. In this case, smooth initial data
never brings out discontinuous solutions or vice versa.
Now, we define the velocity v(z,¢) = [ w(y.t)dy and convert (2.4) into a first-order

system:

Ug = Ve

v, = (F'(u)e = F"(u)u,.

This system known as p-system [28] is equivalent to the following vector-valued

equation:

0 1
- W, = 0, (2.6)
F'(w) 0

where W(z,t) = (u(z,t),v(z,t))?. Since (2.6) is of the form (2.5), we make some
observations depending on the definitions given above. Eigenvalues of the 2 x 2
matrix are Ay »(u) = £+/F”(«). In order to have real and distinct eigenvalues F”(u)
must be strictly positive. Hence, we say that the p-system is strictly hyperbolic if
F"(u) > 0. Moreover, each characteristic field is genuinely nonlinear if F"(u) # 0.
In this system, we have wavelike solutions propagating forward and backward with
wavespeeds Aj(u) and Az(u), respectively.

The Cauchy problem for hyperbolic wave equation (2.4) has some particular features
that makes it difficult to work. The most important property which was proved by
P. D. Lax in 1964 is the fact that the solution to the Cauchy problem will blow up
in finite tirme even for small initial data. There also occurs discontinuous solutions
no matter how smooth the initial data are. Unless some effects such as dissipation,
dispersion or nonlocal interactions, or extra dimension arise, there is no possibility
to get continuous solution for this Cauchy problem.

Without loss of generality, we decompose the strain-energy demnsity function into

harmonic and anharmonic parts such as:
1 i
Flu) = SH. + G(u) (2.7)

with

Glu) = /0“ g(s)ds . (2.8)



Observe that G'(u) = g(u). Thus, the local stress becomes o(u) = F'(u) = u+ g(u).

If we insert F'(wu) into (2.4), the nonlinear wave equation
i = (u+ 9())aa (2.9)

is obtained. We assumed at the beginning that there is no initial energy, F(0) = 0,
and no initial stress, F'(0) = 0. So, F'(0) = g(0) = 0. This equation will be
strictly hyperbolic if F"(u) = 1+ ¢'(u) > 0 which gives ¢'(u) > —1. Also if
F"(u) = ¢"(u) # 0, then it will be genuinely nonlinear. Therefore, singularities will
always occur.

We note that in the absence of nonlinear terms, the wave equation wuy — u,, = 01s
nondispersive. One of the main points of this thesis study will be to show how the

dispersive effect resulting from nonlocality regularizes (2.9).

2.2 Nonlinear Wave Propagation in
Nonlocal Elasticity

There are some disadvantages of classical theory of nonlinear elasticity mentioned
in the previous section. One of the major drawbacks is that it does not include any
intrinsic length scale and consequently does not take into account the long range
forces that become increasingly important at small scales. As a result, the local
theory of elasticity is incapable of predicting, for instance, (i) the dispersive nature
of harmonic waves in crystal lattices and (ii) the boundedness of the stress field near
the tip of a crack. In order to overcome such deficiencies various generalizations of
the local theory of elasticity have been proposed. One such generalization is the
theory of nonlocal elasticity which has been developed by Kroner [25], Eringen and
Edelen |13], Kunin [26], Rogula [35], Eringen [15, 16| over the last several decades.
The theory of nonlocal elasticity differs from the local theory of elasticity as the
stress at a point depends on the strain field at every point in the body. Although
there has been a considerable amount of research done on small scale effects within
the context of the theory of nonlocal elasticity, they are mostly restricted to linear
models. In this thesis study, we will study two Cauchy problems based on a one-

dimensional nonlinear model of nonlocal elasticity.



2.2.1 A Nonlocal Model for Longitudinal Waves:
Single Equation

Since in the nonlocal theory of elasticity the stress at a point depends on the strain
field at every point in the body, it is written as a functional of the strain field
(see [16] and the references cited therein). We now derive the dimensionless form of
the equation governing the resulting dynamics in one space dimension.

Consider a one-dimensional, homogeneous, non-linearly and non-locally elastic infi-
nite medium. This time, the local stress o(u) = F’(u) is replaced with the nonlocal

stress S(u) in the equation of motion (2.4):
g = (5(u))ze.

In contrast with classical elasticity, we employ a nonlocal model of constitutive
equation, which gives the stress S as a general nonlinear nonlocal function of the
strain u. The constitutive equation for nonlinear nonlocal elastic response considered

here has the following form
S=S5(x,t) = f B(z — y)o(u(y.t))dy, o(z,t) = F'(u(z,1)) (2.10)
R

where o is the classical (local) stress, F' is the local strain-energy density function,
(3 is the kernel function [8]. The kernel J serves as a weight on the relative contri-
bution of the local stress o(y, () at a point y in a neighborhood of x to the nonlocal
stress S(z,t). So, when the kernel becomes the Dirac delta measure, the classical
constitutive relation of elasticity is recovered and hence (2.4) are recovered.

If a stress-free undistorted state is considered as the reference configuration, the
strain energy function must satisfy F(0) = F'(0) = 0. Using (2.7) and (2.8), the

nonlocal stress becomes
S(u) = / Bz —y)(uy, ) + g(uly, 1)))dy (2.11)
R

which is in fact the convolution = (u+ g(u)). Thus, the equation of motion for the

strain in nonlocal elasticity is

ug = (8 * (v + g(u)))ze- (2.12)

It can be observed from (2.11) that our proposed constitutive relation differ from the

standard constitutive relations by its property that nonlocality both affects linear

10



and nonlinear parts of the model. We observe that the corresponding linear form of
(2.12) is a dispersive equation with ¢ = S(k),

We can also show that (2.12) models propagation of longitudinal waves. Let (XY, Z)
be the position of a reference point in three-dimensional space and (z,y,z) be its

position at time ¢ in the body. Consider a one-dimensional wave motion such as
r=X+U(X,t), y=Y, =z2=2

which reveals that the displacement field is (U(X.?),0,0) and the wave propagates
in the = direction. Since the displacement of particles is parallel to the direction of

wave propagation, this wave is called longitudinal wave and obeys (2.12).

2.2.2 A Nonlocal Model for Transverse Waves:

Coupled System
The motion corresponding to transverse waves is described by
r=X, y=Y+U(X, L), z=Z+V(X,I)

Hence, the displacement field is (0,U(X,t),V(X,t)). In other words, the displace-
ment of particles is perpendicular to the direction of propagation.
The stress components I” and () can be expressed in terms of the strains v = U,

and v = Vy. The equations of motion in this case are:

Uy = (P(Uav))m.-
v = (Q(1, V)2

The constitutive equations for the above transverse motion become:

Plu,v) = 6 * %
Qu,v) =+ L.
Ou

Here, F'(u,v) is the strain energy density function with the properties F(0,0) = 0
and VF(0,0) = 0. Thus, nonlocal nonlinear two coupled partial differential equa-
tions governing the propagation of transverse waves are

aF
Upp = (.131 * E)rx:

oF
Vg = (g * %):u

11



This system may be viewed as a natural generalization of the single equation (2.12)
to a coupled system of two nonlocal nonlinear equations.
As a special case, assume that F(u,v) = 3(u® 4+ v?) + G(u, v) with

oG G

- - ) = 2.13
N=5u BT 5 ( )
Then our coupled equations become,
g = (B1 * (u+ gl(“‘v)))xr: (2.14)
v = (B2 % (v + g2(w, v)))za- (2.15)

We note that the nonlinear functions g; (i=1,2) satisfy the exactness condition

o0 _ 00, (2.16)
Remark 2.2.1 As we mentioned above, (2.14)-(2.15) may be regarded as the sys-
tem governing the one-dimensional propagation of two "pure" transverse nonlinear
waves in a nonlocal elastic isotropic homogeneous medium [8]. From the modelling
point of view we want to remark that, in general, the system will also contain a third
equation characterizing the propagation of a longitudinal wave. Nevertheless, with
some further restrictions imposed on the form of F, one may get transverse waves
without a coupled longitudinal wave [21]. We also want to note that, in the general

case, the exactness condition (2.16) is necessary in order to obtain the conservation

law of energy.

2.3 Kernel Functions

An important open question in the nonlocal theory of elasticity is how to choose the
kernel functions appearing in (2.12) and (2.14)-(2.15) which represent the details
of the atomic scale effects. The triangular kernel, the exponential kernel, and the
Gaussian kernel (see, for instance, equations (3.3), (3.4) and (3.5) of [14], respec-
tively) are examples of only the most commonly used kernel functions. In general
it is assumed that the kernel function 7 is a nonnegative even function monoton-
ically decreasing for x > 0. We refer to [33] for an example of a non-monotone,
sign changing kernel function. In this study, we attempt to cover both types of the

kernels used in the literature by a general class of kernel functions.
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The kernels used in the literature all satisfy the positivity condition 5(5) > 0. Thisis
a natural consequence of the wave character of the equation of motion, which means
that the phase velocity ¢ is real. On the other hand, in the literature the following
two conditions are imposed on the kernel: 3(0) > g(z) and gG(—z) = B(z) .
In fact, these conditions are implied by the positivity of E({) through Bochner's
theorem [34]. In addition, we assume that the kernel 3 is an integrable function

whose Fourier transform satisfies
0<3(6) < C(1+€)72 forall € (2.17)

for a suitable constant > 0. This inequality corresponds to the decay rate of the
Fourier transform of the kernel function, which in turn is related to the smoothness
of 3. Here the exponent r can be any real number (not necessarily an integer) and
it determines the regularizing effect of the convolution in the model. In this study
we only consider kernels with r > 2. When r < 2, the model is linearly unstable
with unbounded growth rate at short wavelengths and thus this case seems to be of
a different nature.

In the next subsection we present several examples of kernel functions, showing how
the general class of kernels defined by (2.17) covers the most common used kernels

in the literature.

2.3.1 Examples for the Kernel
The following list of kernels contains the most commonly used kernels.

1. The Dirac measure: (3 = 0. In this case v = 0, and we recover the wave

equation (2.9) of one-dimensional elasticity.

2. The triangular kernel [14]:

Since

we have 1 = 2. Note that
(8% V)ge =v{r — 1) — 2v(z) + v(z + 1)

13



and (2.12) becomes a differential-difference equation.

3. The ezponential kernel [14]: 8(z) = te™1¥l. Since F(€) = (1 + €%)7*, we have

r = 2. Note that 3 is the Green’s function for the operator 1 — 92 so that
(B*0)ee=(1=-3) vy, =Bxv—v.
(2.12) becomes the IMBq equation

Utt — Uzr — Uzztt = (G(1))2e -

4. The double-exponential kernel [29):

Blz) = > 1* C%}(cle—lwllq _ Cze—ll‘lﬁcz)

(cf

where ¢; and ¢ are real and positive constants. Since 3(€) = (1+71£2+7264) !
where y1 = ¢? + ¢ and vy, = ?c2, we have r = 4. As above, 3 is the Green’s

function for the operator 1 — 1182 + D% and
( ﬁ * U)mm = (1 - 7162 = '}‘28;)_11%:: .
(2.12) becomes the higher-order Boussinesq equation

Ut — Uggy — V1Uzzer + VoUzgaztt = (Q(u))m .

5. The Gaussian kernel [14]:

Note that 3(£) = e=€/2,

6. A sign-changing kernel |33]:

1-— :c2)e_””2/2.

5(0) = o=

Note that (&) = £2e¢'/2,
In these last two examples the kernel function 3, hence its Fourier transform 3 is

rapidly decreasing, and we can take any r in (2.17). The equation of motion, (2.12),

is an integro-differential equation.



For suitable choices of the kernel functions, the system (2.14)-(2.15) also reduces
to some well-known coupled systems of nonlinear wave equations. To illustrate this
we consider the exponential kernel 8;(z) = fo(z) = $e71*. (2.14)-(2.15) yields the

coupled improved Boussinesq equations

Utt — Ugz — Ugzit = (91(1%1’))”» (2-18)

Vet — Uge — Vgatt = (gz(u, 'U))m (2-19)

Similarly, if the kernels 3;(z) and 3,(z) are chosen as the double-exponential kernel,

then (2.14)-(2.15) reduces to the coupled higher-order Boussinesq system

Upt — Ugpe — AUgtt = bumxmxtt = (QI(H, U})xx’ (220)

Vgt — Upz — QUggit + bvxa‘xcctt = (QQ(.U‘}IU)).L‘I' (221)

These examples make it obvious that choosing the kernels 5;(z) in (2.14)-(2.15) as
the Green’s functions of constant coefficient linear differential operators in z will
yield similar coupled systems describing the bi-directional propagation of nonlinear

waves in dispersive medium.
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Chapter 3

Local Existence

In the previous chapter, two nonlocal nonlinear models governing longitudinal and
transverse wave motions in a nonlocal nonlinear continuous medium have been de-
rived, respectively. In this chapter, the Cauchy problems corresponding to these
nonlocal nonlinear wave equations are considered and the existence of solutions lo-
cally in time to the Cauchy problems are proved under some suitable assumptions on
the initial data, the nonlinear function ¢ and the regularity of the kernel functions.
Before that, as a preliminary for the rest of this chapter, we state a basic theorem
which is about the local existence and uniqueness of the solution of the initial-value
problem for an ordinary differential equation and a basic result on convolutions,

known as Young’s inequality.
Theorem 3.0.1 [27] Consider the initial-value problem

up = Fu),

u(0) = ug.

Let FF: B — B be a locally Lipschitz continuous function in u(t) from a Banach
space B into itself. Then for given initial data uy € B, there is some 7" > 0 such

that the initial-value problem above is well-posed with solution v € C*([0,T), B).

Lemma 3.0.2 Let 1 <p<ocand f € L'(R),g € L?(R). The convolution
(f *g)(z) =[5 fly — 2)g(y)dy is well-defined and [ g € LP(R) with

I1f*gll, < L1, Ngll-
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3.1 Local Existence for the Single Equation

Consider the Cauchy problem of the single nonlocal equation describing longitudinal

wave propagation in a nonlocal elastic medium

gy = (B * (0 + g(u) e, #€R, £>0 (3.1)

u(z,0) = p(x), u(z,0) = V(). (32)

Here, 3 is an integrable function whose Fourier transform satisfies (2.17). The
function space we choose the initial data from certainly affects the solution space.
To illustrate the approach, we start with an existence theorem where the initial data
are in .2 N L*°. Then, we study the problem in Sobolev space ¥ and obtain the
results about the local well-posedness depending on the smoothness properties of

the kernel function J.

3.1.1 Local Existence in LP N L™

First, we will obtain some estimates on the nonlinear term:

Lemma 3.1.1 Let g € C'(R) with g(0) = 0. Then for any v € L? 1 L>, we have
g(u) € LP N L*™. Moreover there is some constant a(M) depending on M such that

for all w € LP N L*>® with [jull,, < M

lg(Wllee < a(M)full, (3.3)
lg(ll, < a(M)ul, (3.4)

Proof: Using the mean value theorem,
lg(u) — ¢(0)] < a(M)|ul (3.5)
where a(M) = supy <, |g'(6)]- Since g(0) = 0, (3.3) and (3.4) holds. O

Lemma 3.1.2 Let g € C*(R). Then for any M > 0 there is some constant b(A/)
such that for all v,v € LP N L™ with |lul, < M, |v|, £ M and |jul|, < M.

lofl, < M, we have
g(w) = g(v)]loe < BM)]Ju— v, and |[g(u) — g(v)|l, < b(M)]u— v,

17



Proof: The proof follows from the mean value theorem estimate:

lg(u) — g(v)| < sup |g'(8)||u— v|.
|| <2M

O

Theorem 3.1.3 Let 1 < p < oo. Let 3y € L' and ¢, € LP N L>. Then there
is some T > 0 such that the Cauchy problem (3.1)-(3.2} is well-posed with solution
u € C%([0,T), LP N L™).

Proof: To use Theorem 3.0.1, we convert (3.1) into an LP M L> valued system of

ordinary differential equations given below:

U =V u(0) =y
v=(Bx f(u))ee v(0)=1,

where f(u) = u + g(u) for simplicity. We must show that the right-hand side of the
system is Lipschitz on L? N L*°. Since the first component is linear, it is enough to
prove the Lipschitz condition only for the map K(u) = (8 * (f(u)))ez = Bow * f(u).

To this end, we estimate:

B2z * f(u)ll, < [1Baell I (w)ll, < alM)||Bezlly[[ull,

B2z * f()ll oo < 1Bzl I1f (W)l < alM)] Bzl llull oo

Thus, we observe that 3, * f (u) maps LP N L™ into itself. A similar estimate using

Lemma 3.1.2 implies that 3., * f (u) is locally Lipschitz on L? N L. (]

Remark 3.1.4 The triangular kernel and the exponential kernel given in Section
2.3.1 do not satisfy the condition 3., € L'. However, since for each of them g, is
the sum of an L! function and some 4 functions, we can also obtain local existence

in LP N L the same way. The key step is:
(8 * f(w)eell, = [ * f(u) + some shifts of fu)ll, < [[h* f(u)], + CCS(w]l,)

where h € L'(R). From the proof of Theorem 3.1.3, solution exists locally in LPOL®.
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3.1.2 Local Existence in H*

Now, we take the initial data from the Sobolev space H°. In order to prove the
related theorems, we first need two lemmas referring to boundedness and Lipschitz

property of the nonlinear term [6,39].

Lemma 3.1.5 Let s > 0, g € CSHY(R) with g(0) = 0. Then for any u € 1/¥ N L,
we have g(u) € H* N L>. Moreover, there is some constant A(Af) depending on M

and s such that for all w € H* N L*> with |Ju||,, < M

llg(u)ll, < AM)|ull, .

Lemma 3.1.6 Let s > 0, ¢ € CE*(R). Then for any M > 0 there is some
constant B(M) such that for all w,v € H*N L™ with Ju| <M, |v|, <M
and |lull, < M, |lv||, <M we have

llg(u) = 9()ll; < BM)lju—v|l, and [lg(u) = g(v)llc < B(M)|lu— v -

For s > %, by the Sobolev embedding theorem, H® C L*. Then the bounds on

L* norms in Lemma 3.1.6 become redundant and we get:

Corollary 3.1.7 Let s > %, g € CEHY(R). Then for any M > 0 there is some
constant B(M) such that for all w,v € H® with |ju|, <M, |||, £ M we have

llg(u) =gl < BIM)|lu— v, -

From now on, we always assume that ¢ € CV(R) with g¢(0) = 0, where N >
max(1,s) is an integer. Theorems 3.1.8 and 3.1.9 given below show the local well-

posedness of the Cauchy problem (3.1)-(3.2) in H*:

Theorem 3.1.8 Let s > 1/2 and r > 2. Then there is some T > 0 such that
the Cauchy problem (3.1)-(3.2) is well posed with solution in C?([0,T], H®) for

initial data ¢ € H*.

Proof: We again use Theorem 3.0.1 and convert (3.1) into an H* valued system of

ordinary differential equations given below:

u =v u(0)=¢
ve = (8% f(¥))ex v(0) =1,
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where f(u) = u+ g(u) for simplicity. Fourier transform representation for H* norm
gives
108 % w)ell, = [[(1+€)72(~€2)B(O))| - (3.6)
Using decay condition on 3, we get
|- &8©) s ce+€)
Here £2(1 + £2)77/2 < 1 since r > 2. Inserting these into (3.6) gives

1B *w)eell, < Cl(1+&)"?m(E)
= Cllwl,. (3.7)

Recalling that (3 * w),, = 8wy, in the distribution sense, we observe that 3x( ),
is a bounded linear map on H*. Then since Corollary 3.1.7 applies, % (f(u)).q is
locally Lipschitz on H*. O
Removing the restriction s > 1/2, we observe that the L estimate will be needed
to control the nonlinear term. By the way, even if we start with the L* data, the
term g% ( ), may not stay in 1°°. The following theorem gives the necessary

assumptions dealing with such case:

Theorem 3.1.9 Let s >0 and r > 5/2. Then there is some T > 0 such that
the Cauchy problem (3.1)-(3.2) is well posed with solution in C? ([0, 7], H*® n L>)

for initial data ¢, € H® M L*.

Proof: Asin the proofof Theorem 3.1.8 we convert the problem into an ODE system
on H°N > where the space is endowed with the norm |[wl|, . = |[w]l, + ||| .

Then all we need is to show that 3 = (f(u))s. is Lipschitz on H* M L. Since

|-€%8(0)| < Ce+ )2 O+ )1+ €972 = C(1+ €7D,

we have
18 % waallyyro = |1+ €22 (—g)B()B(e)|
S C”(l +EQ)((s+1‘—2)—(r—‘2))/2ﬂ_}(6}||
= Ca+&yaE)| = Clel, -
Then 3% ( ), Isa bounded linear map from H* into H*™ 2. Since s > 0

and 7 > % we have s+r—2 > % —-2= % Again the Sobolev embedding theorem
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implies that 8= ( ), is a bounded linear map from H®N L> into H*NL>.

Lemma 3.1.6 implies the Lipschitz condition on H® N L™ .
O

Remark 3.1.10 Increasing the decay rate r results in the more regularization of the
Cauchy problem. Theorem 3.1.9 shows that the more regularization of the Cauchy

problem (3.1)-(3.2) allows less smooth initial data.

Remark 3.1.11 In Theorems 3.1.8 and 3.1.9 we have not used the assumption
5(5) > 0 given in (2.17); so in fact these results hold for more general kernel

functions.

Remark 3.1.12 Going back to the kernels given in Subsection 2.3.1, we see that
for the double-exponential kernel, the Gaussian kernel and the sign-changing kernel,
T > % so Theorem 3.1.9 applies. Although Theorem 3.1.9 does not apply for the
triangular kernel and the exponential kernel where r = 2, in Subsection 4.1.3 we

show that it is still possible to allow for less smooth data for such kernels.

3.2 Local Existence for the Coupled System

This time consider the Cauchy problem of the coupled nonlocal system governing

propagation of two transverse waves in a nonlocal elastic medium

ug = (G * (v + g1(4,0)))ez, z€R, >0 (3.8)
v = (B2 * (v + g2(,v)))aa, (3.9)
u(z,0) = pi(z), wlz,0) = ¥ (), (3.10)
v(z.0) = pa(z), wil(z,0) = a(2). (3.11)

We assume that nonlinear functions g;(u,v) satisfy the exactness condition (2.16)
or equivalently there exists a function G(u,v) satisfying (2.13).

Let U = (u,v) be a vector function. Vector-valued versions of Lemmas 3.1.5 and
3.1.6 (see also [6,37,40]) are required to evaluate the nonlinear terms in the coupled

system. We define the norms ||U|, = ||u||, + ||v]|, and ||U]|, = |lull, + vl -
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Lemma 3.2.1 Let s > 0, h € CE*(R?) with A(0) = 0. Then for any U = (u,v) €
(H*N L*)?, we have h(U) € H* N L*. Moreover there is some constant A(M)
depending on M such that for all U € (H* N L*)? with U] < M

12(W)Il, < AM)|UI, -

Lemma 3.2.2 Let s > 0, h € CE*(R?). Then for any M > 0 there is some
constant B(M) such that forall U,V € (H*NL®)? with ||U|| <M, |V| <M
and ||U|l, <M, ||[V|, £ M we have

IR(U) = h(V)Il, < BIM)IIU = V||, and [|R(U) = h(V)|l,, < BIM)IIU - V], .

For s > % H?® C L™ by the Sobolev embedding theorem. Then the bounds on L™

2
norms in Lemma 3.2.2 become unnecessary and we get:

Corollary 3.2.3 Let s > 1, h e CF*(R%). Then for any M > 0 there is some
constant $3(M) such that for all U,V € (F*)? with ||U], < M, ||[V|, < M we
have

[MU) = h(V)ll, < BM)|IU - V], .

Throughout this study we assume that ¢, g2 € CV(R?) with ¢;(0) = ¢2(0) = 0,
where N > max(1,s) is an integer. Local well-posedness of the Cauchy problem

(3.8)-(3.11), similar with the ones in Section 3.1, are proved below:

Theorem 3.2.4 Let s> 1/2 and r;,7 > 2. Then there is some T > 0 such that
the Cauchy problem (3.8)-(3.11) is well posed with solution u,v in C?([0,77], H*)
for initial data ;1 € H® (i = 1,2).
Proof: The coupled system can also be converted into an H*® valued system of
ordinary differential equations
ug = wy u (0) = p1,
Uy = Wo v(0)
wye = (81 * f1 (1, v))ee w1 (0) = 9.
wy = (B2 * fo (4, 0))za w2 (0) = ¥,

where f(u,v) = u+ gi(u,v) and fa(u,v) = v+ g2(u, v} to shorten the notation. As

we mentioned before, we must check whether the right-hand side of the system is
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Lipschitz on H®. We have
18 x wheell, = |1+ €2 (=EDBO)BE)|
(1 + €2)*2Cig2(1 + %) 2w (€)|

Ci |1 + &)**@(&)|| = C: |lwll,

1N

N

since r; > 2 for ¢ = 1,2. So, B *( ), is also a bounded linear map on H?®. By
Corollary 3.2.3, 3; * (fi(u,v))s. is locally Lipschitz on H*. )
As in Theorem 3.1.9, Theorem 3.2.4 can be extended to the case of H* M L* for

0<s<1/2.

Theorem 3.2.5 Let s >0 and r, > g Then there is some T > 0 such that the
Cauchy problem (3.8)-(3.11) is well posed with solution u.v in C? ([0, 7], H* N L)
for initial data ;v € H* N L™ (1 = 1,2).

Proof: Following the process in the proof of Theorem 3.1.9, it can be observed that

”ﬂt * wIT-”s+r,-—‘2 < C??- "st

for i = 1,2. This implies that 3; * ( is a bounded linear map from H* into

)I:I,‘

H#*tri=2 Since s > 0 and r; > % we have s+ 71, — 2 > g -2 = % Hence,
Bi=( ), isa bounded linear map from H*N L*™ into H®°N L* . Lemma 3.2.2

implies the Lipschitz condition on H* M L™ .
(]

Remark 3.2.6 Local existence results do not depend on the assumption B3; (&) =0
and the exactness condition (2.16). Thus, they hold for more general forms of both

the kernel functions and the nonlinear terms.
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Chapter 4

Global Existence

A typical local-in-time existence theorem asserts that either a solution exists for all
time or else there is a time T* < oo such that some norm of the solution u becomes
unbounded as ¢ ,” T*. Here, we give a basic condition closely related to this fact.
The solution in Theorems 3.1.8 and 3.1.9 can be extended to a maximal interval
[0, Thnax) where finite Thax is characterized by the blow up condition

timsup ([lu (6)llg00 + e (0 = 00 -

E_‘Tr;mc
Clearly Ty = 00, L.e. there is a global solution iff

for any T < oo, we have limsup (||u(t)||3100 + ||y (t)||3m) < 00 .
t—T-

If we replace u in this condition by a vector-valued function U/, the same condition
holds for the Cauchy problem (3.8)-(3.11) and the solution in Theorems 3.2.4 and
3.2.5 can also be extended to a maximal time interval of existence [0, Tax). The

lemma given below follows from this result:

Lemma 4.0.7 Suppose the conditions of Theorem 3.1.8 or 3.1.9 hold and u is the
solution of the Cauchy problem (3.1)-(3.2). Then there is a global solution if and
only if

for any T < oo, we have limsup |Ju (t)| < oo .
t—T-

Proof: Clearly if lim sup, ., (||"u.{:f,)||s?ﬂO + || (5)”3,00) < oo then
limsup,_p- |Ju(¢)],, < co. Conversely, assume the solution exists for ¢t € [0,7) and

lu ()l <M forall 0 <t <7T. Integrating the equation twice and calculating the



resulting double integral as an iterated integral, we have
wwd) = @@+ [ (-nE @@ (@)
wot) = ¢(2)+ [ (B J (@) (2,7 (42)
Hence for all t € [0,T)

[l (D)l

7AN

loll, + Tl + T f 18 f (W), (1], dr,

eI, < 19, / 18 % J (), ()], dr .

But [[(8 % / (1)), (DI, < CI(J @) ()], < CA(M)]|Ju(r)], where the first in-

equality follows from (3.7) and the second from Lemma 3.1.5. Then
llw ()l + Nl (Ol < llelly + (T + D Ill, + (T + 1) CA(M) fnt [ ()]l d,
and Gronwall’s Lemnma implies
lu @)l + llw 1, < (lelly + (T + 1) [9l,) AT < 0o

for all ¢ € [0, T) and consequently limsup,_,- (Hu (Ol oo + Nl (5)”5,00) <oo. D
As in Lemma 4.0.7, the following lemma says that it is enough to control ||U (t)|
to prove the global existence of a solution of the Cauchy problem (3.8)-(3.11). The

proof which is almost the same as that of the previous lemma is omitted.

Lemma 4.0.8 Suppose the conditions of Theorem 3.2.4 or 3.2.5 hold and U is the
solution of the Cauchy problem (3.8)-(3.11). Then there is a global solution if and

only if

for any T < oo, we have limsup ||U (t)] ., < oo .
=T~

The rest of this chapter consists of the results obtained under some suitable assump-
tions so that the solutions of both Cauchy problems (3.1)-(3.2) and (3.8)-(3.11) exist
globally in time. The proofs refer to the conservation of energy which will be given

for both problems.

4.1 Global Existence for the Single Equation
We will assume that 3{5) has only isolated zeros which gives
0< B <cu+ey.
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We will use an unbounded operator P as Py = F~! (|§|_l (B(&))y" %% (f)) with the
inverse Fourier transform F~!. Although P may fail to be a bounded operator, for

s > 0 its inverse P~ : H5t1=3 — H* is bounded:

[ P~1of], = H 1+ €721 (5 H
< [l + &) el( 1+£J g
< [0+ +e)2 0+ )75 Q)|

(1 + e)31=D5()|| = ol 1as -
Moreover it is one-to-one:

ker(P~!) = {v € H**'"3 : P71y = 0}
and, since 5(5) has isolated zeros and [£] # 0,

P =77 (1 (9) “0@) =0 & v=o

Then P is well defined with domain(P) = range(P~'). Observe that

P x e =77 (167 (B0) " (- 16P) (BO) 9©) = o (09

4.1.1 Conservation of Energy

Lemma 4.1.1 Suppose the conditions of Theorem 3.1.8 or 3.1.9 hold and the so-
lution of the Cauchy problem (3.1)-(3.2) exists in C2([0,T), H* N L*°) for some
s > 0. If Pyp € L? then Pu, € C([0,7),L?). If moreover Pp € L2, then
Pu e C%([0,T), L?).

Proof: From (4.2) we get

Puy (x,t) = Py (x) — ‘/0\. (P'lf (u)] (z,7)dT

PR
But for fixed t. we have f(u) € H®. Also P~'v = F~! (|£| (,8(5)) 6(5)) thus
P1(f(u)) € H°T371 C L = H since s+ § — 1 > 0. The second statement follows

similarly from (4.1). O

Lemma 4.1.2 Suppose the conditions of Theorem 3.1.8 or 3.1.9 hold and u satisfies

(3.1)-(3.2) on some interval [0.7). If Py € L? and the function G(p) defined by
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(2.8) belongs to L', then for any ¢ € [0,T) the energy
B = I1Pu @I +lu @I +2 [ 6 ()
R
is constant in [0, 7).

Proof: By Lemma 4.1.1 Pu,(t) € L% The equation of motion, (3.1), can be
rewritten as P2%uy + w4 g (u) = 0 using (4.3). Multiplying by 2u; and integrating

over R with respect to =, we get
2/((P21‘£E)'ﬂ'5 + uuy + g(u)ut)dm =0,
R

or

2/(Puf¢Pu5 + uwy + g(w)uy ddz = 0,

=

or, using Parseval’s identity,
d 2 2 oy
= U1Pue O + llw (O + 2 RG(U-) dr) = 0.

Hence, we get that % =0. 0
The following two subsections are devoted to global existence results for two different

classes of kernel functions.

4.1.2 Sufficiently Smooth Kernels: r > 3

Theorem 4.1.3 Let s > 0 and r > 3. Let ¢, € H*N L>®, Py € L? and
G(yp) € L. If there is some k > 0 so that G(u) > —ku? for all u € R, then the
Cauchy problem (3.1)-(3.2) has a global solution in C*([0,00) . [T* N L*).

Proof: Since r > 3, by Theorem 3.1.9 we have local existence (in C?([0,T), L*NL>)
for some T > 0). The hypothesis implies that F (0) < oc. Assume that u exists on

[0,T). Since G (u) > —ku?, we get for all ¢ € [0,7)
| Pue ()11 + flu ()]* < EQO) + 2k [lu ()] . (4.4)

Since 3(¢) < C(1+ £2)7"/2; we have

1Puiol’ = |Pao]” = [ &2 (3©) @602
c [ €20+ @7 @6 ) de

¢ f (1+E)212 (T, (€, 1)) de
R’
C™H eI -, - (4.5)

v

v

IV
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By the triangle inequality, for any Banach space valued differentiable function v we
have

d d

— vt < ||—v .

Zhon<| o0
Then putting together (4.8)-(4.5)

d

= Ju(®

2

d
iy = 2@l @l

< 2 Ol O,

< O + @I,

< ClPu (0P + ||u(3)[|%-1

< C(R(0) + 2k [u(B)]%) + llu (DI _,
< CE(0)+QCk+ 1) u}, -

Gronwall’s lemma implies that ||« (i’.-)”g__] stays bounded in [0, 7).
But since § — 1 > 3, we conclude that |lu(t})]|,, also stays bounded in [0,T). By

Lemma 4.0.7 this implies a global solution. 0

4.1.3 Kernels with Singularity

In the next theorem we will consider kernels of the form F(x) = p(|z|) where p is a
sufficiently smooth and rapidly decreasing function with p € C?([0,00)), (0) > 0,
1'(0) < 0and p" € L'NL>®. Then the 3 will have a jump in the first derivative. The
typical example we have in mind is the Green's function %e"”". For such a kernel
we have

Be<c@+e)”

so r = 2. Due to the jump in 3’ at x = 0, the distributional derivative will satisfy
8" = u" +24'(0)g,

where ¢ is the Dirac measure and we use the notation p”(x) = p”(|z|). Then we
have

(8% whee = " x w —
where A = —2u'(0) > 0. We will call this type of kernels mildly singular. To be
more precise, we say that & is mildly singular if 3., #+w = h*w — Aw for some A > 0

and for some h € L' n L%,
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Theorem 4.1.4 Let s > 0 and let the kernel 3 be mildly singular. Let ¢, ¢ €
H*NL>®, Py e L? and G(p) € L'. If there is some C' > 0 and ¢ > 1 so that
lg (u)]? < CG (u) for all u € R; then the Cauchy problem (3.1)-(3.2) has a global

solution in C?([0,00), H® M L™).

Proof: By Theorem 3.1.8, we already have local existence for s > 1/2. Nevertheless,
similar to Remark 3.1.4, we can improve the local existence result for s > 0 as follows:
Since B, *w = h*w — Aw and h € L, it follows from Lemma 3.0.2, for w € L™,
Bez * w € L™ . Moreover, ||hxw||, < [|k];)|w]l,- As a conclusion, Gz * ( ) isa
bounded linear map from H®*N L* into H*MN L* . Thus, by Theorem 3.1.8 we
have the local existence of the solution. Now, we follow the idea in [6]. Suppose the

solution u exists for ¢ € [0, 7). For fixed 2 € R let

e(t) = =(ulz, )2+ A (%(u(:}:,i))2 + G (u{r, r‘))) ;

BI| =

Then

(ue + A(u+g(w)) w
(B (ut g (W), +A(u+g(u))w
(hxu)ue+ (h* g (1))

7,
-
—
o
et

I

1
uf + 5 (1 ullz + 1A * g (W)I5) -
Since h € L' N L*, we have h € LF for all p > 1. By Young’s inequality

%)

9 (u)

2
Ly

1 2
¢'(t) < uf + 5 (IRN* flull® + 12|

where % + % = 1. Now the last two terms may be estimated as ||ul|* < F(0) and

) 2/q 2/q
llg (w)]l3e = (/ﬂ% lg ('u.}|qd;r:) <« ((')'/RG(U) d.;f:) < (CE(0))**

so that
e’(t) < D+ 2e(t)

for some constant D depending on ||k| ,,, [|k| and £ (0). This inequality holds for
allz € R, { € [0,T). Gronwall’s lemma then implies that ¢ (1) and thus u (x, 1) stays

bounded. t
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Remark 4.1.5 When g(u) = cu®™*! with ¢ > 0 and positive integer n, both the
condition G(u) > —ku? in Theorem 4.1.3 and the condition |g (u)|? < CG (u) in

Theorem 4.1.4 are satisfied.

Remark 4.1.6 The estimate (4.5) shows that when Py € L? we will have

Y € Hz ', The converse is not necessarily true since, without any further assump-
tions on the kernel, the factor (5(5}) e may be quite large. For the Gaussian
kernel and the sign-changing kernel given in Subsection 2.3.1, Py € L? implies a

very strong smoothness condition on .

4.2 Global Existence for the Coupled System
As in the previous section, we assume that
0<3(6)<C;A+€H™2  i=12
Also, we define the operators P, as Paw = F~'(|€| " (5;(€))~/>@(€)) with the inverse

Fourier transform F~!. Besides, P2({3; * w)yy = —w.

4.2.1 Conservation of Energy

Lemma 4.2.1 Suppose the conditions of Theorem 3.2.4 or 3.2.5 hold and the solu-
tion of the Cauchy problem (3.8)-(3.11) exists with « and v in C?([0,T), H* N L)
for some s > 0. If Pyr, Poypo € L2, then Pyug, Pyv; € CY([0,T), L?). If moreover
Pig1, Papz € L2, then Piu, Pov € C*([0,T), L?).

Proof: Since
¢
w@) = w@+ [ G hlw )l i
0
Hldil) = 1;’)2(:5)+/(;32*fg(u,'u))m.(x,?')dT,
0
we get
t
Piu (z,t) = Py (z) —/ (Pl—lfl (u,v)) (&, 7) dr,
0

t
P (z,t) = Poypnl(x) — / (5 (u.v}) (z,7)dT .
0
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It is clear from Lemma 3.2.1 that f;(u, v) € H*. Also P, 'w = F1(|¢] (5:(€))/2W(8))
thus P7(fi(u,v)) € Hs+7-! ¢ I[? and hence Pius, Povy € L2 The continuity
and differentiability of Pyu, Pyv in t follows from the integral representation above.
The second statement can be proved with a similar approach using the following

equations:

u(z,t) = pi(z)+ ti(x) +/0 (t = 7)(B1 * fi(y,v))eelz, 7)dT,

v(z,t) = ¢a(x) + tpa(x) + / (t — 7)(B2 * folu,v))ee(x, T)T.
0

O

Lemma 4.2.2 Suppose the conditions of Theorem 3.2.4 or 3.2.5 hold and u, v sat-
isfies (3.8)-(3.11) on some interval [0,7"). If Py, P, € L2 and the function
G(p1, p2) defined by (2.13) belongs to L', then for any ¢ € [0,T) the energy

E(t) = [Pu®| + [P + lu@ + o)) + 2 fR G(u, v)dz
~ 1RO + 1P +2 [ Fluv)ds
is constant in [0,T).
Proof: By Lemma 4.2.1, Piu, (t), Pv; (t) € L2, Equations (3.8)-(3.9) can be rewrit-
ten as
P?uy +u+ ¢ (u,v) =0, (4.6)
Plvy + v+ go(u,v) = 0. (4.7)
Multiplying (4.6) by 2u, and (4.7) by 2v,, integrating both equations over R with
respect to x, adding the two equalities and using Parseval’s identity we obtain

dE __
dE _ ), O

We analyzed two different classes of kernel functions for the global existence of
solutions of (3.1)-(3.2) in the previous section. Now, we again categorize our kernel
functions as sufficiently smooth kernels and kernels with singularity and prove global

well-posedness of the Cauchy problem (3.8)-(3.11) for each case.

4.2.2 Sufficiently Smooth Kernels: 71,7 > 3

Theorem 4.2.3 Let s > 0, ri,r2 > 3. Let ¢;,9; € H®, By € L? (i = 1,2)
and G(p1,2) € L'. If there is some k > 0 so that G(a,b) > —k(a® + ¥?) for all
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a,b € R, then the Cauchy problem (3.8)-(3.11) has a global solution with u and v
in C%(]0,00), H®).

Proof: Since ry,ry > 3, by Theorem 3.2.5 we have local existence. The hypothesis
implies that E(0) < oo. Assume that u, v exist on [0,7) for some T > 0. Since

Glu,v) > —k(u? + v?), we get for all t € [0,T)
1P + 1P < E©) + 2k = D(u@I® + @), (48)
Noting that 3,(€) < Ci(1 + £2)~"/2 for i = 1,2; we have
1wl = [P = [ e Gien @ ora
> oft /a— (1+ €72 (@ (€, 1) de

> o [+ @)nDr e 0
= 7 (O, (4.9)
and similarly,
I P ())? > C3 ()12, (4.10)

where p; = 3 — 1, i =1,2. By the triangle inequality, for any Banach space valued

differentiable function w we have
2 eyl < H—w o
Combining (4.8), (4.9) and (4.10),

@2, + lo@IZ,)

= 2([lu@)

<4
@1, + 1O, < @l,,)

~1 dt FL] di 22

2O, I, + O, o (®)l,,)

a2, + )], + @12, + ()3,

CUIPa (@) + 1 Pae(®)]?) + Nu(®)I2, + oI,

CIE0) + 2k — V(@I + [o@IP)] + @2, + o]

CE) + (C2k — 1) + V(@ + w(®)]2)

AN VAN AN VAN

IN

where C' = max (', Cy). Gronwall’s lemma implies that [Ju(t)]|, + |[v(t)],, stays
bounded in [0,7). Since p; = % — 1> 3, |lu(t)ll + lv(t)|l,, also stays bounded in

[0,7). By Lemma 4.0.8, a global solution exists. O
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4.2.3 Kernels with Singularity

We extend the global existence result for mildly singular kernels in [6] to the coupled

system.

Theorem 4.2.4 Let s > 0 and let the kernels 3, = 3, be mildly singular. Suppose
that @1, pa, ¥y, € H®, Pupy. Paps € L? and G(g),p2) € LY. If there are some
C>0,k>0and g >1 so that

|9i(a, b)|" < C[G(a,b) + k(a® + )]

for all a,b € R and i = 1,2; then the Cauchy problem (3.8)-(3.11) has a global

solution with u and v in C?(]0, 00), IT*).

Proof: By Theorem 3.2.4 we have a local solution for s > 1/2. Nevertheless, as was
done in the proof of Theorem 4.1.4 local existence can be shown for s > (. Suppose

the solution (u,v) exists for t € [0,T). For fixed z € R we define

e(t) = 5{(un(z, O + (uelz, 0] + 1l ) + (o(z, ) +26(u(z, 1), v(z, )]

Then

€(t) = [ue+ Mu+t gi(u,v)]ue+ [vn + A(v + ga(u, v))]v,
= [(B1* (u+ g1(u,v)))zz + Mu + g1 (w, v))]u
+ [(B2 % (v + g2(4, v)))ax + AV + g2(u, v))]ue
= (h*u)u+ (h* gl u, v))ug + (h*v)v + (b * gofu, v))yy

(4)? + (u)? + (ol + 1A% v]1%)

IA

)+
-;—(nh*gl(u DI + 1+ g2, )

Since h € L' N L™ we have h € L? for all p > 1. By Young’s inequality

.
“it) < (w)+ W) +3 1RI* (llel® + ol)
1 . 1
+ §th|im g1 (, V)10 + 3 18] Z0s ll g2, 01 Z0n
where 1/p; +1/g; =1 (i = 1,2). Now the terms may be estimated as
lull* + |l < E(0)
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and for1=1,2

2/q
lgi(u, V)||7e = (/lgi(u;v)lq"d:c)

2/q:
(C /[G(u, v) + k(u? + 1,'2)]([1:) < [cQ + k)E(0))%

IA

so that
(L) < D+ 2e(l)

for some constant 1D depending on ||&||,,,, ||k| and F(0) (< = 1,2). This inequality
holds for all z € R, ¢ € [0,T). Gronwall’s lemma then implies that e(t) and thus

u(x,t) and v(z,t) stay bounded. Thus by Lemma 4.0.8 we have global solution. O
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Chapter 5

Finite Time Blow-up

In this chapter, we will prove blow-up of solutions in finite time for the Cauchy
problems (3.1)-(3.2) and ({3.8)-(3.11). For this purpose, we will use the following

well-known lemima.

Lemma 5.0.5 [22,30] Suppose ® (1), t > 0, is a positive, twice differentiable func-
tion satisfying ®”® — (1 + v) (®')* > 0 where v > 0. If ® (0) > 0 and @ (0) > 0,
then @ () — oo as t — ¢; for some {; < & (0) /vd’ (0).

5.1 Blow-up for the Single Equation
We first rewrite the energy identity as
E(t) = || Pu, (0)|* + 2f F (u)dz = E (0)
R
where F(u) = [’ f(p)dp with f(u)=u+ g(u) as before.

Theorem 5.1.1 Suppose that the conditions of Theorem 3.1.8 or 3.1.9 hold,
Py, Py € L? and G(p) € L*. If there is some v > 0 such that

wf(u) <2(142v) F (u), (5.1)
and
E(0) = ||P¢||2+2/ F(p)dz <0,
R
then the solution u of the Cauchy problem (3.1)-(3.2) blows up in finite time.

Proof: Assume that there is a global solution. Then Pu(t), Pu,(t) € L? for all
t > 0. Let ®(t) = ||Pu(t)]]* + b(t+ to)® for some positive b and #, that will be
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determined later. We have

() = 2(Pu,Pu)+2b(t+to),

il

" (t) 2 || Pug|® + 2 (Pu, Puy) +2b .
Note that
2(Pu, Puy) = 2{u, PPuy)=-2(u, f(uv))= —Q/Ruf (u) dz
> —4(1+ QV)AF(ta)dx
= 2(1+2v) (| Pw|® - E(0)),

so that
" () > 4(1+ v) ||Pu)® — 2(1 + 2v) E (0) + 2.
On the other hand, we have
(@' (1)) = 4[(Pu, Pug) + b (L + 1))
4[[IPull |Pucl| + b (t + to)]”
4[| Pull® | Pucll® + 2 || Pull [|Pucl b (t + to) + &% (¢ + to)°]

A

< A1 Pull* | Pucl® + b | Pull® + b || Pu]|® (¢ + to)? + B2 (t + to)*] .
Thus
(1)@ (1) — (L+v) (@ (1))
> [4(14v) [|Pu)? = 2(1 + 2v) B(0) + 2b] [||Pull® + b (¢ + to)?]
~4(1 4 v) [[|Pul® | Puc|)® + b || Pull® + b || Pus|® (t + to)® + b (t + to)?]
= [~2(1+2v) E(0) +2b—4b(1 + v)] [|| Pul® + b(t + to)?]
= —2(1+2)(b+ E(0) ®(t) .
Now if we choose b < —E(0), this gives
" (1)@ (t) - (L+v) (@' (1) 20.
Moreover
d' (0) = 2 (Py, PY) + 2btg > 0

for sufficiently large {5. According to Lemma 5.0.5, this implies that & (1), and
thus ||J|':’1:L(J.’.)||2 blows up in finite tune contradicting the assumption that the global

solution exists. a
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5.2 Blow-up for the Coupled System

Theorem 5.2.1 Suppose that the conditions of Theorem 3.2.4 or 3.2.5 hold,
Pip1, Pape, Py, Potyy € L% and G(y1, ) € LY. If there is some v > 0 such that

wfi(t, ) + vfa(u,v) < 201+ 20)F(u, v),

and

E(O) = IPenl + |1 Paval + 2 | Fler ia)ie <0,
R
then the solution (u,v) of the Cauchy problem (3.8)-(3.11) blows up in finite time.

Proof: This time take
®(t) = [|Pu(®)])? + | Pow()|1* + b(t + to)?

for some positive b and fy that will be specified later and again assume that the
maximal time of existence of the solution of the Cauchy problem (3.8)-(3.11) is
infinite. Then Pju(t), Pyu(t), Pov(t), Py, (t) € L? for all ¢ > 0; thus ®(¢) must be
finite for all {. However, we will show below that ®(/) blows up in finite time.

We have

q)f(t) =2 (Plu‘ P]Ug) + 2 (PQ'U. P-Z’L-'g) + Qb(f, + f,g)_,
7(t) =2 ||Plutf|2 +2 ||P2UE”2 + 2(Piu, Pluyy + 2 (P, Pouy) + 20 .

Since

(Piu, Prug) = {u, Pluy) = — (u, fi(u,v)),

(Pov, Pyvy) = <"U: P221’£t> = — (v, fa(u,v))
and

—f[ufl(u,-v) +vfolu,v)lde > —2(1 +‘2u)fF(u,v)dI
= (1+20)(|Pw@)]® + | P ()]? = E(0)),
we get
(t) > 2[|Prwl®+ 2Pl + 26 — 2(1 + 2v)(E(0) — || Powe]|* = || Pow1?)
= —2(1 + 22)E(0) + 2b+ 4(1 + v) (|| Pow||* + || Pove ).
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By the Canchy-Schwarz inequality we have

(‘I’f(t))z = 4[(P11L, Pl’ltt> + (PQ'U‘ PgUg) + b(t + to)]g

IN

Al Prull || Praell + | Povll | Povell + b(E + to))* .
For the mixed terms we use the inequalities

2| Pl [| Prwalt | Pooll | Povell < Nl Prwll® (| Pewell® + 1| Pevll® | Proell?

and
2| Pyull || Pruell (£ + to) < ||Prull® + || Poel)® (t + to)?,
20| Pov|| | Pave]l (t +t0) < ||Pov)|? + || Powe]® (2 + to)?
to obtain
(@'(1))? < 40(t) (|| Prwel)® + || Povel® +0)
Therefore,

B(1)D"(£) — (1 + v)(D'(1))?
()[-2(1 + 2v) E(0) + 2b + 4(1 + v)(|| Prug|)® + || Poee||®)]

IV

— 41+ v)®() (| Pruel* + || Pove]l* + b)
= —=2(1+ 2v)(E(0) + b)®(¢t) .

If we choose b < —E(0), then ®(t)®"(t) — (1 + v)(P'(¢))? > 0. Moreover
®'(0) = 2(Prp1, Prbr) + 2 (Papa. Patba) + 2btg > 0

for sufficiently large {y. According to Lemma 5.0.5, we observe that ®(¢) blows up
in finite time. This contradicts with the assumption of the existence of a global

solution. -

5.3 Remarks

From the above proofs of Theorems 5.1.1 and 5.2.1, we observe that we may prove
blow-up even if FE(0) > 0. In this case, all we need is to choose b and {y so that
® (0) > 0 and @' (0) > 0. Note that such b and ty may fail to be positive. The first

two remarks are about such extensions of Theorems 5.1.1 and 5.2.1.
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Remark 5.3.1 In Theorem 5.1.1, let E£(0) > 0. By choosing b = —E (0) we still

get blow up if there is some {; so that the initial data satisfies
®(0) = ||P¢|® = E(0)2 >0, & (0) = 2(Pyp, Py) — 2E(0)tp > 0.

When (Pyg, Py) > 0, taking ¢y = 0 works. When (P, Py) < 0, then ty must be

chosen negative. The two inequalities can be rewritten as
E(Q)*((Pp, PY))?* < 5, 5 < E(0)'|Pel”.

Putting these two inequalities together, we say that such a £y exists and hence there

is a blow-up if the initial data satisfies
(Pp, P)* < E(0) || Pel®.
Remark 5.3.2 In Theorem 5.2.1, let E(0) > 0. To shorten the notation let
A= (Pipr, Pn) + (Paga, Prn), B =Pl + | Paeell®.

Again letting b = —E(0), we will get blow up if there is some ¢, so that the initial
data satisfies

A—E(@)y>0, B- E0)>0.
When A < 0, then tg must be chosen negative. As a conclusion, such a fy exists if

and only if A2 < E(0)B. Hence there is blow-up if the initial data satisfies
((Pro1, Pin) + (Paa, Poipa))® < E(0) (|1 P ] + | o)) -

The final remark is about the relation between the type of the nonlinearity and the

blow-up condition.

Remark 5.3.3 For the nonlocal single equation, consider a typical nonlinearity of
the form G(u) = c|ul for some ¢ > 2. From (2.8), g(u) = cqlu|?%u. We proved
global existence of the solution of the Cauchy problem via Section 4.1 when ¢ > 0.
On the other hand, when ¢ < 0, the blow-up condition (5.1) holds. Moreover, since
E(0) = || Py|*+ ||ip|f2+2c Jz l¢l9dz holds, I2(0) can be made negative by choosing ¢
sufficiently large and v sufficiently small. The above results about global existence

and blow-up are sharp in this sense.
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Chapter 6

Conclusions

In this thesis study, we have proposed two general classes of nonlocal nonlinear wave
equations arising in longitudinal and transverse wave propagation in a nonlocal elas-
tic medium. Pointing out the singularities arising in the classical theory of nonlinear
elasticity regarding nondispersive wave propagation, we have discussed the regular-
ization property of dispersion brought with nonlocality. We have showed how the
dispersive effects provide global well-posedness in the nonlocal theory of nonlinear
elasticity. A general form of the kernel functions appear in (2.12) and (2.14)-(2.15)
governing longitudinal and transverse wave motion, respectively. We point out that
this form of the kernel functions covers the most commonly used kernels appearing in
the literature. We have discussed the relation between the regularizing effect of the
kernels and smoothness of the initial data. We have naturally analyzed the global
well-posedness and finite time blow-up of the solutions of the two Cauchy problems.
The nonlocal nonlinear wave equations we have proposed and the relevant contents
appear in the recent papers [9,10] as well.

Although there has been a considerable amount of research done on bi-directional
wave propagation within the context of the theory of nonlinear partial differential
equations, they are mostly restricted to local models. There is growing interest
in using nonlocal models of various physical phenomena arising in different areas.
This thesis takes a step in this direction by studying qualitative properties of two
nonlocal models proposed for bi-directional nonlinear wave propagation in a contin-
uous medium. A further step in this direction has been given in a recent study [11]
where the analysis given here for the nonlocal single equation is extended to the

two-dimensional case. We also refer to [12] for a similar analysis of a nonlocal single
Yy g
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equation derived in the context of the peridynamic formulation of elasticity.

Nonlocality poses new interesting research problems to study in the future. We can
shortly mention some of these problems as follows. An obvious question is what
happens when the decay rate r of the Fourier transform of 3 is less than 2. Global
existence of small amplitude solutions and derivation of non-linear scattering results
for the Cauchy problems (3.1)-(3.2) and (3.8)-(3.11) with small initial data are also
open questions. Recalling that nonlocality affects both linear and nonlinear parts
of the two models considered in this thesis, it is also interesting to investigate the
case where nonlocality affects linear part only. Moreover, initial-boundary value
problems corresponding to (3.1) and (3.8)-(3.9) can be considered. This requires a
correct interpretation of boundary conditions. Such an investigation will lead to a

wide area of research.
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