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Abstract

Nuclear Magnetic Resonance (NMR) Spectroscopy is an experimental technique which
exploits the magnetic properties of specific nuclei and enables the study of proteins in so-
lution. The key bottleneck of NMR studies is to map the NMR peaks to corresponding
nuclei, also known as the assignment problem. Structure Based Assignment (SBA) is an ap-
proach to solve this computationally challenging problem by using prior information about
the protein obtained from a homologous structure. [17] used the Nuclear Vector Replacement
(NVR) [29] framework to model SBA as a binary integer programming problem (NVR-BIP).
In this thesis, we prove that this problem is NP-hard and propose a tabu search algorithm
(NVR-TS) equipped with a guided perturbation mechanism to efficiently solve it. NVR-TS
uses a quadratic penalty relaxation of NVR-BIP where the violations in the Nuclear Over-
hauser Effect constraints are penalized in the objective function. Experimental results indi-
cate that our algorithm finds the optimal solution on NVR-BIP’s data set which consists of 7
proteins with 25 templates (31 to 126 residues). Furthermore, for two additional large pro-
teins, MBP and EIN (348 and 243 residues, respectively) which NVR-BIP failed to solve, it
achieves 91% and 41% assignment accuracies. The executable and the input files are avail-
able for download at http://people.sabanciuniv.edu/catay/NVR-TS/NVR-TS.html.

iv
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ATAMA PROBLEMİNE TABU ARAMA YAKLAŞIMI
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Özet

Nükleer Manyetik Rezonans (NMR) spektroskopi, belirli atomların manyetik özellik-
lerinden yararlanarak protein yapısının çözelti içinde çalışılmasını saǧlayan deneysel bir yön-
temdir. NMR çalışmalarında en büyük engel, NMR tepelerini karşılık gelen atomlara atama
problemidir. Yapı Tabanlı Atama (YTA), bu hesaplama açısından zorlu problemi, benzer
bir proteinden elde edilen bilgiyi kullanarak çözme yaklaşımıdır. [17]’de YTA problemi
Nükleer Vektör Deǧiştirme (NVD) [29] çerçevesinde ikili tam sayı programlama problemi
(NVD-ITP) olarak modellenmiştir. Bu çalışmada, verilen problemin NP-zor olduǧunu ispat-
layıp, bu problemi verimli çözmek için yönlendirilmiş bir karıştırma mekanizmalı tabu arama
sezgiseli (NVD-TA) öneriyoruz. NVD-TA’da, NVD-ITP modelindeki Nükleer Overhauser
Etkisi kısıtlarının amaç işlevinde cezalandırılmasıyla elde edilen, NVD-ITB modelinin ik-
inci dereceden ceza gevşetilmesi kullanılmaktadır. Deneysel sonuçlar, algoritmamızın NVD-
ITB’nin 25 kalıp 7 hedef proteinden oluşan (31 - 126 amino aside sahip) veri kümesi için
en iyi sonucu verdiǧini göstermektedir. Ayrıca, NVD-ITB’nin çözemediǧi iki büyük pro-
teinden biri olan MBP için 91%, diǧeri olan EIN icin 41% doǧrulukta (sırasıyla 348 ve 243
amino asitli) doǧrulukta sonuçlar vermektedir. Çalıştırılabilir yazılım dosyası ve giriş verileri
http://people.sabanciuniv.edu/catay/NVR-TS/NVR-TS.html adresinden elde edilebilir.
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Chapter 1

Introduction

Proteins are one of the major macromolecules that are present in all biological organisms.
They are composed of amino acids linked with each other by peptide bonds. When two amino
acids form a peptide bond, a water (H2O) molecule is released and the remainder of each
amino acid is called amino acid residue. The resulting chain of amino acids, furthermore, are
called polypeptide chains. Proteins are formed by one or more polypeptide chains.

Proteins are located within the cell, on the membrane of the cell, or outside of the cell,
performing numerous functions such as catalyzing the biochemical reactions, transporting
and storing chemical compounds, signaling and translating the information from other pro-
teins, maintaining the structures of biological components (e.g. cells, tissues), converting
chemical energy into mechanical energy causing muscular movement and generating im-
mune responses to the harmful foreign bodies within the organism. Which function a protein
assumes depends on its structure. Therefore, determining protein structure is of utmost im-
portance for protein design studies. In pharmaceutical and biotechnological industry, as well
as medicine, the ability to precisely engineer proteins to perform existing functions under a
wider range of conditions, or to perform entirely new functions, has tremendous potential.

In order to determine protein structure, several experimental methods have been devel-
oped. X-Ray Crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy are the
major experimental techniques for obtaining structural information.

X-Ray Crystallography is a method to determine the arrangement of atoms within a crys-
tal and therefore requires crystallizing the protein. NMR is a widely used technique to de-
termine the 3D structure of a protein in atomic detail as well as its dynamics. Unlike X-Ray
Crystallography, protein structure is studied under nearly physiological conditions. This fea-
ture of NMR provides structural information about proteins that cannot be crystallized.

During an NMR spectroscopy experiment, the protein is applied electromagnetic signals
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which cause the nuclei to absorb energy from the electromagnetic pulse and radiate this en-
ergy back. The resulting signals are recorded and converted into a spectrum. In the resulting
spectrum, each peak corresponds to a tuple of atomic nuclei. The NMR resonance assignment
problem consists of mapping the peaks to the corresponding atoms and is one of the major
bottlenecks in NMR protein structure determination. Although computational methods are
developed to overcome this bottleneck, NMR spectroscopists still rely on manual methods to
perform the assignments as these methods are unreliable especially with large proteins.

Structure Based Assignment (SBA) is an approach to solve this challenging problem by
using prior information about the protein obtained from a homologous (similar) structure. It
resembles the molecular replacement technique, which solves the phase problem in X-Ray
Crystallography by using a homologous structure and determines the structure rapidly and
accurately [19]. An automated SBA procedure will similarly be helpful since it not only
accelerates the structure determination but it is also able to reduce the amount of data needed
for reliable assignments. In addition, it may be more accurate and robust.

There exists several SBA algorithms in the literature. CAP [24], which is a Ribonucleic
Acid (RNA) assignment algorithm, performs an exhaustive search. Some algorithms use
Residual Dipolar Coupling (RDCs) and triple resonance experiments [26, 34]. Nuclear Vector
Replacement (NVR) [29, 12] is a molecular replacement-like approach for SBA. NVR does
not use triple resonance experiments, but instead utilizes experimental data which can be
obtained faster. In addition, its computation has a polynomial time complexity. [33] proposes
a Branch-Contract-and-Bound search algorithm whereas [30] proposes a Genetic Algorithm
to solve the SBA problem. NVR-BIP [17] is a tool which uses NVR’s scoring function and
data types to formulate a binary integer programming (BIP) model to the NMR-Resonance
Assignment (NMR-RA) problem. It also incorporates CH RDCs into NVR. However, it is
unable to solve the assignments for large proteins.

The primary purpose of the present study is to develop a tabu search (TS) approach to
solve the NVR-BIP problem introduced in [17]. Specifically, the contributions are as follows:

• We prove that finding the set of assignments with the minimum total assignment score
within the NVR framework is NP-hard.

• We propose an efficient TS (NVR-TS) algorithm equipped with a guided perturbation
mechanism. To the best of our knowledge, this is the first application of TS to the
NMR-RA problem.

• We add quadratic terms to the objective function to relax the Nuclear Overhauser Effect
(NOE) constraints and penalize the NOE violations. By this way, we allow NVR-TS to
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search through infeasible neighborhoods violating the NOE constraints in an attempt
to reach improved feasible solutions.

• Finally, we test our algorithm on NVR-BIP’s data set. Our results show that NVR-TS
algorithm can efficiently find NVR-BIP’s optimal solutions. In addition, we solve the
assignments for two large proteins which cannot be solved with NVR-BIP.

The remainder of the thesis is is organized as follows: In Chapter 2, we define the NMR-
RA problem, and explain the NVR-BIP model proposed by [17]. Then, we prove that the
problem is NP-hard and it cannot be solved by the exact solution methods for the larger
proteins. Thus, a heuristic approach is indeed necessary. We present some background for
TS metaheuristic. We then propose a Quadratic Penalty Relaxation of the NVR-BIP model
that will enable us to design a TS heuristic for the NMR-RA problem and explain our TS
algorithm in Chapter 3. Chapter 4 includes the experimental studies of our algorithm. Finally,
we present our concluding remarks in Chapter 5.
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Chapter 2

Nuclear Vector Replacement Framework

NMR-RA problem, which is the problem of correctly assigning the experimentally deter-
mined NMR resonances (peaks) to the correct amino acids, can be solved by exploiting the
information from a homologous structure with NVR. In this chapter, we define the NMR-RA
problem and present related work in the NVR framework. Then, we provide the complexity
proof of the NMR-RA problem.

2.1 Problem Definition

NVR is an SBA framework in which the goal is to find a mapping between the set of peaks
and the set of amino acids which minimizes the total mapping cost subject to the NOE con-
straints. NVR associates an assignment probability to each peak-amino acid matching which
is converted into assignment cost. The interested reader is referred to [17] for detailed infor-
mation.

The NOE constraints differentiate the NMR-RA problem from the General Assignment
Problem which requires a set of entities to be mapped to another set of entities while min-
imizing the total mapping cost. In NMR-RA problem, each peak pair has a binary relation
called NOE relation, i.e. for any given two peaks they either have an NOE relation or not.
The amino acids also have a similar binary relation, i.e. for any given two amino acids, the
distance between the (amide) protons of the amino acids is either less than a threshold value
(NTH) or not. The NOE constraints imply that for any given a pair of peak - amino acid
assignments (e.g. pi→ ai and p j→ a j), if pi and p j have an NOE relation, then the distance
of the protons of the amino acids that are assigned to those peaks, ai and a j, must be less than
the threshold value.

Figure 2.1 is an illustration of NOE constraints. The arcs between the peak nodes repre-

4



Peaks Amino Acids
1 2

3

4 5

8

7

9 10

12

11

6

6

5
32

4

1

5

7 8 9

1

10 11

(Infeasible)

(Feasible)

Figure 2.1: Illustrated example of NOE constraints. See the text for the explanation.

sent the NOE relation between the corresponding a pair of peaks. Similarly, two amino acid
nodes have an arc in between if the distance of their amide protons is less than the threshold
value. For example, peaks 2 and 5 have an arc in between implying they have an NOE re-
lation, and they are mapped to amino acids 2 and 1, respectively. Amino acids 2 and 1 also
have an arc in between implying their distance from each other is under the threshold value.
Hence, assigning peaks 2 and 5 to amino acids 2 and 1, respectively, is feasible. On the other
hand, peaks 5 and 6 also have an NOE relation. However, the amino acids that are assigned
to them, amino acids 1 an 4 do not have an arc in between which means the distance between
their amide protons is more than the threshold value. Thus, the assignments of peak 5 to
amino acid 1 and peak 6 to amino acid 4 cause infeasibility.

2.2 NVR-EM

The NVR-Expectation Maximization (NVR-EM, [12] is an approach to solve the NMR-RA
problem under the NVR framework. In [12], the authors represent the problem as a maximum
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bipartite matching problem with one set of nodes in the bipartite graph corresponding to
the peaks and the other set of nodes corresponding to the amino acids. The probability of
assigning a peak to an amino acid is represented as the weight of the edges in the bipartite
graph. Based on these assignment probabilities, they generate the NVR scoring function,
which they use in their expectation maximization algorithm.

2.3 NVR-BIP Formulation

Linear Programming (LP) is an optimization technique which optimizes a linear objective
function subject to linear equality or inequality constraints. The objective function and the
constraints are constructed by the decision variables and the parameters. Although both the
decision variables and the parameters are numbers, parameters are known to the decision
maker and must be taken as constant points (i.e. they do not change), whereas the value of
the decision variables are determined throughout the optimization process ([4], [1]).

Integer Programming (IP) or Integer Linear Programming (ILP) is a special case of LP
where all decision variables are required to have integer values. If the decision variables are
allowed to be only 0 and 1, it is called Binary Integer Programming (BIP).

In [17], the NMR-RA problem is formulated as BIP. The formulation introduced is as
follows:

Parameters

P: Set of peaks
A: Set of amino acids
si j: Score associated with assigning peak i to amino acid j

N: Number of peaks to be assigned (N ≤ |P|)
d jl: Distance between amide protons of amino acids j and l

NOE(i): Set of peaks that have an NOE with peak i

NT H: Distance threshold for an NOE interaction

b jl =

1 if d jl ≥ NT H

2 otherwise

Decision Variables:

xi j =

1 if peak i is assigned to amino acid j

0 otherwise
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Mathematical Model:

Min ∑
i∈P

∑
j∈A

si jxi j (2.1)

s.t. ∑
i∈P

xi j ≤ 1 ∀ j ∈ A (2.2)

∑
j∈A

xi j ≤ 1 ∀i ∈ P (2.3)

∑
i∈P

∑
j∈A

xi j = N (2.4)

xi j + xkl ≤ b jl ∀ j, l ∈ A,∀i ∈ P,∀k ∈ NOE(i) (2.5)

xi j ∈ (0,1) ∀i ∈ P,∀ j ∈ A (2.6)

In the NVR-BIP model, the objective is to minimize the total score associated with map-
ping NMR peaks to amino acids. Constraints (2.2) make sure that each amino acid is assigned
to at most one NMR peak while constraints (2.3) ensure that each NMR peak is mapped to
at most one amino acid. Constraint (2.4) determines the number of NMR peak-amino acid
assignments. Although N is usually equal to the number of peaks, in rare cases, mapping all
of the peaks could be infeasible. In such cases, partial solutions can be obtained by using N

as a control parameter. Constraints (2.5) are the NOE constraints. Finally, constraints (2.6)
ensure that the decision variables take only binary values.

2.4 Complexity of NMR Resonance Assignment Problem

To prove that NMR-RA problem is NP-hard, we first define the feasibility problem as finding
a feasible solution, i.e. a list of assignments that satisfy the NOE constraints. We prove that
the feasibility problem is NP-complete by a reduction from the 3−Coloring problem which
is known to be NP-complete ([10]). Then, we will illustrate that feasibility problem can be
easily reduced to the NMR-RA problem. Therefore, finding an optimal solution to the NMR-
RA problem is NP-hard.
The NMR-RA Feasibility Problem: Given two undirected graphs G1 = (V1,E1) and G2 =

(V2,E2) with |V1|= |V2|, find a bijective function f : V1→V2 s.t. for any v,u ∈V1; if (v,u) ∈
E1, then ( f (v), f (u)) ∈ E2.

The NMR-RA Problem: Given two undirected graphs G′1 = (V ′1,E
′
1) and G′2 = (V ′2,E

′
2)

with |V ′1|= |V ′2|, the weight function w : V ′1×V ′2→ R+, and the bijective function f ′ : V ′1→V ′2
s.t. for any v,u ∈V ′1; if (v,u) ∈ E ′1, then ( f ′(v), f ′(u)) ∈ E ′2. Find a bijective function f’ such
that κ = ∑v∈V ′1

w(v, f ′(v)) is minimized.
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3-Coloring Problem: Given an undirected graph G = (V,E), find a function c : V →
{Red,Green,Blue} s.t. for any v,u ∈V , if (v,u) ∈ E, then c(v) 6= c(u).

Proposition 1. The NMR-RA problem under the NVR framework is NP-hard.

Proof. The NMR-RA feasibility problem is in NP (membership). It is in NP since we can
guess a candidate function g and verify in polynomial time that g is a solution.

Reduction (hardness) We will reduce the 3-Coloring problem to our problem. Given a
coloring problem with an undirected graph G = (V,E), the NMR-RA feasibility problem
with the graphs G1 and G2 is constructed as follows:

V1 =V ∪VD where VD is a set of (dummy) vertices such that |VD|= 2|V |,

E1 = E,

V2 =VR∪VG∪VB where VR = {red1,red2, ...,red|V |},VG = {green1,green2, ...,green|V |},
VB = {blue1,blue2, ...,blue|V |}.

E2 = {(v,u) : v ∈VR,u ∈VG}∪{(v,u) : v ∈VR,u ∈VB}∪{(v,u) : v ∈VB,u ∈VG}

The reduction is polynomial since we use 6|V | vertices and 3|V |2 + |E| edges.

We need to show that 3-Coloring problem has a solution if and only if the NMR-RA
feasibility problem has a solution.

• The NMR-RA feasibility problem has a solution→ 3-Coloring problem has a solution

Given a solution to the NMR-RA feasibility problem, we can extract the solution to the
respective 3-Coloring problem as follows:

c(v) =


red if f (v) ∈VR

green if f (v) ∈VG

blue otherwise

where v ∈V1\VD

We know that all vertices are labeled and no adjacent vertices are assigned to the same
color.
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• 3-Coloring problem has a solution→ the NMR-RA feasibility problem has a solution

Given a solution to 3-Coloring problem, we can extract the solution to the respective
NMR-RA feasibility problem as follows. For each v1 ∈ V1\VD where c(v1) = red,
select a vertex from VR to assign v1; for each v2 ∈ V1\VD where c(v2) = green, select
a vertex from VG to assign v2; for each v3 ∈V1\VD where c(v3) = blue, select a vertex
in VB to assign v3. Since |VR| = |VG| = |VB| = |V | it is possible to have a one-to-one
assignment. For each vertex vd ∈Vd , assign random vertices from VR∪VG∪VB which
are not assigned to the vertices in V1\VD. Then, given any two vertices u,v ∈ V1, if
(u,v) ∈ E1, obviously ( f (u), f (v)) ∈ E2 since c(u) 6= c(v).

For an instance of the NMR-RA feasibility problem, new graphs G′1 = (V ′1,E
′
1) and G′2 =

(V ′2,E
′
2) where G′1 = G1 and G′2 = G2 with the functions f ′ = f and w : V ′1×V ′2 → 1 are

constructed. The NMR-RA feasibility problem has a solution if and only if the NMR-RA
problem has a solution. If the NMR-RA feasibility problem has a solution, then there exists a
solution for NMR-RA problem where the minimum κ= |V ′1|. Similarly, if NMR-RA problem
has a solution, then there exists a solution for NMR-RA feasibility problem. Hence, finding
a solution for the NMR-RA problem where κ < k and k ∈ R+ is NP-complete and finding a
solution with the minimum κ is NP-hard.
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Chapter 3

Proposed Tabu Search Solution Approach

Large NP-hard optimization problems cannot be solved by exact solution algorithms which
spend excessive amount of time and memory to establish the optimal solution. Hence, for an
NP-hard optimization problem such as NMR-RA, the NVR-BIP approach [17] which uses
an exact solution algorithm to solve the proposed BIP model will fail to solve larger proteins.
Therefore, an efficient heuristic/metaheuristic solution approach is necessary to establish the
assignments for larger instances.

In the following sections, first we will present preliminaries for TS metaheuristic. Then
we propose a quadratic penalty relaxation of NVR-BIP model which allows us to design
a more effective TS algorithm. Finally, we describe the mechanisms of the developed TS
algorithm.

3.1 Tabu Search

3.1.1 Heuristic Approaches

Over the past decades, heuristic methods have been developed to solve computationally chal-
lenging combinatorial optimization problems. Regardless of the method employed, the basic
concepts are common to every heuristic technique. Representation of a potential solution
has a great impact on the search space (the set of all possible solutions) and its size. A
poorly defined search space may have several infeasible or duplicate solutions which leads to
low quality search results. Another common concept is the evaluation function. It measures
the fitness of a particular solution to the objective of the search. By allowing to compare
one solution to another, it enables the algorithm to differentiate the good solutions from the
bad ones. Finally, the concept of neighborhood remains the same in almost every heuristic
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method even though its definition may vary. The neighborhood of a given solution is the set
of solutions which are generated by a partial change of the given solution. The solutions in
the neighborhood set of the given solution are the neighbors of the given solution. Most of
the heuristic methods work by moving from one solution to its neighbor while searching for
the solution which fits the evaluation function the highest. The interested reader may refer
to [13] for more information.

Local Search (LS) is an heuristic method which starts with an initial solution and moves
to neighbor solution if the neighbor solution’s score (computed by the evaluation function)
is better than the incumbent solution’s score. If the incumbent solution has a better solution
than the neighbor solution, then the search terminates with the incumbent solution as the local
optimum solution. Algorithm 1 is the pseudocode of the generic LS.

Algorithm 1 Generic Local Search Algorithm
Obtain an initial solution x
while Local optimum has not been reached do

Generate set of neighbors N(x)
x′ ∈ N(x)
if f (x′)< f (x) then

x← x′

else
Local optimum has been reached

end if
end while
Return x

LS algorithms terminate with the first solution that has a better score than all of its neigh-
bors. This local best solution, however, may not be better than another local best solution
which the search would return if the initial solution changed. In other words, the search gets
stuck on a local optimum point in a search space which may not be a satisfactory enhance-
ment over the initial solution.

3.1.2 Basic Concepts in Tabu Search

Glover proposed TS ([6] and [7]) to allow LS methods to avoid getting stuck on local optima.
TS uses an LS procedure to iteratively move from one solution to its neighbor until a stopping
criterion has been reached. One of the major differences between generic LS and TS is that
the TS moves from the incumbent solution to its best neighbor even though its best neighbor
is worse than the incumbent solution. Then, the move becomes tabu for a limited number of
iterations. The tabu moves, as the name suggests, are forbidden to prevent the search from
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Figure 3.1: Illustration of standard tabu list

cycling to the previously visited solution and enables the search to move away from the local
optimal solution ([5]).

Tabu moves are recorded in a short term memory or tabu list of the search for the limited
number of iterations. The information stored on the tabu list should be sufficient to differ-
entiate the previously visited solution from the solutions that have not been explored. The
standard tabu lists are usually implemented as a circular list with a fixed length.

In Figure 3.1, a standard tabu list implementation is presented. The length of the tabu
list (tabu tenure) represents the amount of memory allocated for the tabu list. The list in
the figure is capable of carrying 5 moves which means a move stays tabu for 5 consecutive
iterations when it becomes tabu. Every time the algorithm proceeds to the best neighbor, the
information related to the move is kept in the tabu list. In the figure, the initial tabu list is a
tabu list from a random iteration during the search. At the end of each iteration, a new move
becomes tabu and enters the list while shifting all existing items on the list. The size of the
tabu list is kept constant by removing the last item during the shifting process.

Keeping moves tabu may sometimes be disadvantageous since they may prohibit attrac-
tive moves while there is no risk of cycling and may cause the termination of the search with
a poor quality solution. To subdue the negative effect of the tabu list, Aspiration Criteria,
which provide the conditions to allow a move when it is still tabu, are implemented to TS.
One of the most frequently encountered aspiration criteria is to allow a move if it provides
a better solution than the best solution obtained so far. More complicated aspiration criteria
implementations have been proposed by [2] and [9].
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Algorithm 2 Generic Tabu Search Algorithm
Obtain an initial solution x
while Stopping criterion has not been reached do

Generate set of neighbors N(x)
x′ ∈ N(x)
if x′ = min{xi : xi ∈ N(x) ∀ i ∈ |N(x)|} and x′ is not tabu then

x← x′

Update the tabu list
end if

end while

3.1.3 Advanced Concepts in Tabu Search

The generic TS may perform adequately for difficult problems. However, in general, addi-
tional strategies are implemented to boost the performance of the TS algorithm. Some of
these strategies are as follows:

Intensification is a procedure of focusing on the more promising areas of the search space
in order not to skip high quality solutions that lay on those areas. Intensification procedure is
usually based on some long term memory such as recency memory which keeps the number of
consecutive iterations that the particular solution components are observed in the current so-
lution. The higher the ranking of a particular component in the memory, the more promising
the component becomes to the search. A characteristic approach for intensification is to fix
the high ranking components in the best solution found so far and restart to search with that
solution. Although it is commonly employed in the literature, intensification is not always
mandatory since the search may explore the attractive areas thoroughly enough to obtain the
local best solution of the specific area.

As most of the local search based heuristics, TS is only able to search a very limited
portion of the search space, missing more interesting parts with more promising solutions.
Thus, although the search results in a considerably good solution, the solution may likely be
still far away from the optimal solution. To remedy this drawback, implementation of the
appropriate diversification (also referred as perturbation) strategies is of paramount impor-
tance. The diversification procedure enables the search to jump into the unexplored areas of
the search space by making a partial change in a specific solution and start the search from
that solution. It is usually based on a long term memory called frequency memory which
records the number of times a particular component changes. A high rank of the component
in the memory indicates that component is a “crack filler”, which sways back and forth into
the solution during the search. Other types of long term memories can also be implemented
to extract information. The interested reader may refer to [8] and [5] for further information.
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Diversification can also be fulfilled continuously during the search. In the continuous
diversification procedure, diversification is integrated in the regular search process by adding
a memory based term into the evaluation function.

A third way of accomplishing diversification is the dynamic oscillation which enables
exploration of the new portions of the search space by constraint relaxation. Thus, a larger
search space that can be explored by simpler neighborhood structures is achieved. The con-
straint relaxation is performed by removing the chosen constraints from the search space and
adding them into the evaluation function with a weighted penalty. The penalty term can be
determined at the beginning or can be implemented as a self adjusting mechanism during the
search.

3.2 Our Tabu Search Approach

3.2.1 Quadratic Penalty Relaxation of NVR-BIP

In this study, we develop a TS algorithm for solving the NMR-RA problem. The implemen-
tation of the algorithm is based on the relaxation of the NOE constraints in the NVR-BIP
model, which we refer to as quadratic penalty relaxation formulation. In NVR-BIP, the NOE
relations are considered as hard constraints which prohibit any solution with NOE violations.
In contrast, in the relaxed formulation, NOE violations are allowed by adding terms to the
objective function that penalize the NOE violations. NOE constraints (2.5) are removed and
a penalty term associated with the violation of the NOE constraints is inserted into the objec-
tive function. Since we have a minimization objective, any solution with an NOE violation is
discouraged by the positive penalty term. The relaxed formulation is as follows:

NVR-Quadratic Penalty Formulation:

Min ∑
i∈P

∑
j∈A

si jxi j+ ∑
i∈P

∑
k∈NOE(i)

∑
j∈A

∑
l∈A

p jlxi jxkl (3.1)

s.t. ∑
i∈P

xi j = 1 ∀ j ∈ A (3.2)

∑
j∈A

xi j = 1 ∀i ∈ P (3.3)

xi j ∈ (0,1) ∀i ∈ P,∀ j ∈ A (3.4)

In the model above, the objective function (3.1) minimizes the total score associated with
the assignment of NMR peaks to amino acids and the additional score (penalty) resulting
from NOE relation violations. Constraints (3.2) guarantee that each amino acid is assigned
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to one NMR peak and constraints (3.3) ensure that each peak is assigned to one amino acid.
If the number of peaks and the number of amino acids are not equal we introduce dummy
peaks or amino acids. An assignment containing a dummy peak (or amino acid) does not
have a corresponding assignment score, and it does not violate any NOE constraints. Since
infeasibility due to NOE constraints is no longer possible, constraint (2.5) in NVR-BIP is not
needed. Finally, constraints (3.4) define the decision variables as binary.

The penalty parameter p jl determines the weight of the NOE violation penalty in the ob-
jective function value. If it is too large the search will focus on satisfying the NOE constraints
which may lead to less accurate solutions. On the other hand, if it is too low the search may
favor solutions with NOE violations which lead to infeasible assignments. Therefore, estab-
lishing the value of the parameter p jl is important. After a series of preliminary tests, we
determined the p jl value as follows 2:

p jl =

s if d jl > NT H

0 otherwise

where s = max{si j : i ∈ P, j ∈ A}.
The advantage of using the relaxed formulation approach in the TS implementation is

twofold. First, the absence of the NOE constraints makes it easy to find an initial solution
to start the TS algorithm since any one-to-one assignment of peaks to residues is a feasible
solution. Second, it allows TS to explore NOE relation violating solutions in an attempt to
find better solutions obeying the NOE constraints at the end. The relaxed problem resembles
the quadratic assignment problem (QAP) as they both have the same feasible region. TS
has been extensively investigated in the operations research literature for solving the QAP.
Skorin-Kapov [20], [25], [21], Taillard [22], Battiti and Tecchiolli [18] are the pioneers of
tabu search implementation for QAP. Their studies are followed by Misevicius [14]. Hybrid
methods which combine TS with genetic algorithms are applied to QAP in [15], [3]. Recently,
Tabitha et. al. presented a multi start TS and diversification strategies for QAP in [32].
[23] proposes a neighborhood generation structure for very large scale QAP which can be
implemented as a part of TS algorithm. Also, [27] defines diversification strategies for the
QAP for general metaheuristic strategies including TS.

2Note that the penalty term may also be formulated as follows: ∑i∈P ∑k∈NOE(i) ∑ j∈A ∑l∈A p ∗max{(xi j +
xkl)−b jl ,0}, where p is the penalty associated with violating constraints (5) and may be determined as p = s.
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3.2.2 NVR-TS Algorithm

In NVR-TS algorithm, we implement a dynamic tabu list structure. The tabu tenure is ran-
domly determined between the interval of [tmin, tmax] where tmin and tmax correspond to the
minimum and maximum tabu tenures, respectively. Since the number of iterations that a
particular move stays tabu is changing for each move, the tabu list is called a dynamic tabu
structure. A similar dynamic tabu list approach was also used by [22].

We developed a novel perturbation mechanism which enables the algorithm to reach
larger portions of the search space and enhances its performance considerably. The search
procedure and the perturbation mechanism are illustrated in Figure 3.2. The nodes represent
the set of assignments (solutions) and the plane that the nodes are located in represents the
search space. The nodes are placed according to their distance (in terms of the number of
moves), not according to their scores. The search begins with randomly generated solution
in neighborhood 1 and moves from one solution to another by only making one move at each
iteration (as shown with short arrows). During this walk, the local best score is updated when-
ever the search visits a solution that has a lower score than the incumbent local best score.
After several non-improvements on the local best score, the local best solution is perturbed
which causes a jump in the search space (as shown with the long arrows). The local search
is repeated in the new region and the local best solutions of the two regions are compared
to determine the global best solution. In Figure 3.2, the global best solution lies in neigh-
borhood 3. After the perturbation of the local best (also the global best in this illustration)
solution in this neighborhood, the search jumps to several regions. If the global best solution
has not improved after a pre-determined number of jumps, the search returns to the global
best solution (as shown with the red arrows) and makes another jump by perturbing the global
best solution. Since the perturbation is stochastic, the probability of tracking the same path is
very low. Returning to the global best solution after a given number of non-improving jumps
prevents the algorithm from spending too much time in non-promising neighborhoods. As a
result, NVR-TS is able to find high quality solutions in reasonable computational times.

We represent a feasible solution as an array s of size n which is equal to the maximum
of |P| and |A| and s[i] = j refers to peak i being assigned to amino acid j. We use a swap
(pairwise) neighborhood search operator to generate the neighbor solutions. Our tabu list
includes peaks in pairs. Swapping peak i with peak k (where the solution consists of s[i] = j

and s[k] = l) is tabu if the pair i− k is in the tabu list. The number of iterations that a swap
move stays in the tabu list is randomly determined between the interval of [tmin, tmax] for each
move.

Our algorithm has nested structures to implement the proposed perturbation mechanism.
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Figure 3.2: Illustration of NVR-TS algorithm.
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Each nested structure has its own best-so-far solution. The innermost structure is the basic
TS structure which starts with an initial solution and moves from one solution to another un-
til its local optimum solution has not improved for a given number of consecutive iterations
(Iter1). The procedure is as follows: Let s be the incumbent solution and s′ be the current
best solution. All neighbors of s are generated by considering all possible combinations of
pairwise exchanges of peaks in solution s. Let sl be the neighboring solution with the lowest
score. s is updated with sl if the move is not tabu or it meets the aspiration criterion, i.e.
score(sl) < score(s′). Otherwise, the algorithm determines the non-tabu next lowest scor-
ing solution and updates s with that solution. s′ is updated whenever score(sl) < score(s′).
This basic search and the following perturbation can be considered as a compact mechanism
which is repeated until the mechanism cannot improve the local optimum solution, s′′, for
a specified number of consecutive iterations (Iter2). When the mechanism fails to improve
s′′, it applies a perturbation procedure to s′′ and restarts the search-perturbation procedures
with the perturbed s′′ as the initial solution. This returning policy is also repeated until the
global best solution, s∗, has not improved for Iter3 consecutive iterations. The simplified
pseudocode of the algorithm is presented in the Appendix A.1.

The perturbation is performed by reassigning a pre-determined ratio (r) of the current
solution without violating constraints (3.2-3.4) in the quadratic penalty formulation. Which
peaks will be changed is determined based on a long term memory called transition mem-

ory ([8]). The selected peaks are reassigned from a set of amino acids that have been assigned
to these peaks. If the number of amino acids is larger than the number of peaks (i.e. there ex-
ists unassigned amino acids), those amino acids are also added to the set. The reassignments
are made in a similar way to the roulette wheel method. Each assignment has a probabil-
ity determined based on its score. The assignment probability and its score are inversely
proportional.
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Chapter 4

Experimental Study

In this chapter, we present the data preparation, parameter tuning and the computational
performance of our NVR-TS implementation.

4.1 Data Preparation

We tested the performance of NVR-TS on the data set used in NVR-BIP since the scores that
NVR-BIP reports are optimal. Furthermore, we tested our algorithm on two novel proteins
which were not included in NVR-BIP’s data set: Maltose Binding Protein (MBP) and Amino
Terminal Domain of Enzyme I from Escherichia Coli (EIN).

The NOE data for MBP is simulated by selecting all pairs of amide hydrogens that are
closer than 5Ao from the pdb structure (1DMB, an X-ray structure) and generating an NOE
for this pair of protons. This generated a total of 574 NOE constraints for MBP. The chemical
shifts and RDCs were acquired from MARS distribution [34] and NVR was extended to ac-
cept N-C and C-Cα RDCs. The HD-exchange data was simulated analogously to the proteins
in NVR-BIP’s data set as described in [17] for EIN. For EIN, we extracted the unambiguous
NOEs from the NOE data as described in [31]. We obtained the chemical shifts from the
BMRB and simulated the RDCs using the pdb structure (1ZYM, an X-ray structure). For
EIN and MBP we did not simulate TOCSY data as this experiment is not plausible for large
proteins. We added the protons using MOLMOL [28] for both 1DMB and 1ZYM.

The preparation of the data files for the remaining proteins is described in [12] and [17].
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Parameter Value Experimental Design
tmax αn2 α = 0.04, 0.06. 0.08
tmin βtmax β = 0.5, 0.7, 0.9
Iter1 γtmax γ = 1.2, 1.5, 2

r δm δ = 5%, 10%, 20%, 50%

Table 4.1: Parameter settings

4.2 Experimental Design and Parameter Setting

Similar to most TS algorithms, NVR-TS also has several parameters such as tmax, tmin, Iter1

and r where tmax is the maximum tabu tenure, tmin is the minimum tabu tenure, Iter1 is the
number of consecutive non-improving iterations in the innermost loop and r is the percent-
age of the actual assignments to be perturbed. Each of those parameters has a considerable
effect on the performance of the algorithm. Therefore, after a series of preliminary tests, we
designed an experimental framework to determine the best performing parameters. We call
the combination of those four parameters (tmax, tmin, Iter1, r) a parameter set. In Table 4.1,
we present the parameter values investigated in the preliminary analysis. Iter2 and Iter3 are
determined as 3 and 5, respectively.

In our problem, the solution size n is equal to the maximum of |P| and |A|. Excluding r,
we set the values of the parameters as a function of n2 since the search space grows with the
square of the solution size. The perturbation ratio r is determined as a function of m, where
m is the minimum of |P| and |A|. By doing so, we ensure that the actual assignments that do
not contain any dummy peaks or dummy amino acids will be reassigned. To determine the
best parameter values for NVR-TS we performed an initial experimental study on a subset of
proteins (namely GB1, 1GB1, 2GB1, 1PGB, hSRI, pol η, ff2, 1AAR, 1G6J, 1AKI, 2LYZ)
using all combinations of (α,β,γ,δ). We performed 10 runs for each parameter set (i.e. 1080
runs for each protein) due to the stochastic nature of the algorithm and considered the average
of the total scores to evaluate the performances. All computational tests were performed on an
2x Quad Core Xeon E7430 2.33 GHz processor with 128 GB of RAM. Based on these initial
experiments, we established a parameter set tmax, tmin, Iter1 and r as a function of α=4%,
β=0.7, γ=1.2 and δ=10%, respectively, as illustrated in Table 4.1, and applied NVR-TS for
all the proteins included in the NVR-BIP’s data set.
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NVR-BIP NVR-TS
Accuracy of Best Solution Average Accuracy

No of without with without with without with
Protein Family Residues PDB ID RDC (%) RDC (%) RDC (%) RDC (%) RDC (%) RDC (%)

Ubiquitin 72

1UBI 87 97 87 97 90 97
1UBQ 87 97 87 97 91 97
1G6J 87 97 87 97 80 81
1UD7 81 97 81 97 83 97
1AAR 79 97 79 97 55 86

SPG 55
1GB1 100 100 100 100 100 100
2GB1 100 100 100 100 100 100
1PGB 96 100 96 100 96 100

Lysozyme 126

193L 78 100 78 100 74 98
1AKI 78 98 78 98 76 96
1AZF 74 94 74 94 72 90
1BGI 75 97 75 97 69 93
1H87 77 100 77 100 72 96
1LSC 74 100 74 100 73 98
1LSE 75 98 75 98 73 94
1LYZ 79 82a 79 68a, 82b 76 65a,81b

2LYZ 75 91 75 91 75 89
3LYZ 79 90 79 90 77 87
4LYZ 75 91 75 91 70 87
5LYZ 75 91 75 91 72 87
6LYZ 75 96 75 96 73 95

The rest

80 ff2 85 93 85 93 57 93
96 hSRI 73 89 73 89 33 62
31 pol η 100 100 100 100 100 100
55 GB1 96 100 96 100 96 100

a: With one set of RDCs,b: With two set of RDCs.

Table 4.2: Percent accuracy results on NVR-BIP’s data set

Protein Name No of
Accuracy of Best Solution Average Accuracy
without with without with

Residues RDC (%) RDC (%) RDC (%) RDC (%)
MBP 348 69 79 40 62
EIN 243 5 28 2 8

Table 4.3: Percent accuracy results on MBP and EIN.

4.3 Computational Results

We report our results in terms of the accuracies of the high quality solutions. We define
accuracy as the ratio of the number of correctly assigned peaks to the total number of assigned
peaks.

The results for NVR-BIP’s data set are presented in Table 4.2. The column “NVR-BIP”
shows the accuracies obtained in [17]. “NVR-TS (Accuracy of Best Solution)” column re-
ports the accuracy of the best solution (the solution with the lowest score) among the 10 runs.
As in [17], we report the accuracies both without and with RDC’s. Note that the results re-
ported by NVR-BIP are optimal with respect to the assignment score and benchmarking the
performance of a metaheuristic against the optimal solutions is of paramount importance. We
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Parameter Set Accuracy of Best Solution Average Accuracy

α β γ δ
without with without with

RDC (%) RDC (%) RDC (%) RDC (%)

MBP
6% 0.5 1.5 20% 72 87 60 71
8% 0.9 2 5% 80 90 54 66
6% 0.7 1.2 20% 76 91 60 75

EIN
6% 0.5 1.5 20% 25 9 7 7
8% 0.9 2 5% 16 41 3 18
6% 0.7 1.2 20% 0 24 2 15

Table 4.4: Percent accuracy results of additional tests on MBP and EIN using different pa-
rameter values.

also report the average of the accuracies corresponding to the best solutions of 10 runs in the
last two columns of Tables 4.2 and 4.3. The accuracy results of the 10 runs for every protein
can be found in the Appendix.

For all of the proteins in NVR-BIP’s data set, NVR-TS finds the same assignment accu-
racies as NVR-BIP. In that sense, NVR-TS shows a remarkable performance as it is able to
reach optimal solutions in every instance. The average computational times for Lysozyme
(126 residues) and Ubiquitin (72 residues) families are 106 seconds and 17 seconds, respec-
tively. The running time of NVR-TS is shorter or comparable to the running time of NVR-
BIP for these proteins. For some proteins, the average accuracies associated with the best
solutions in 10 runs is considerably high, sometimes even higher than the optimal solution’s
accuracy. This indicates that close-to-best (near optimal) solutions yield higher accuracies
than that of the best (optimal) solution for those proteins.

In Table 4.3, we also present the results for MBP and EIN which have 348 and 243
residues, respectively. NVR-BIP is not capable of solving the assignments for those proteins
due to their sizes and NVR-EM finds a solution with 0% accuracy both for MBP and EIN. On
the other hand, NVR-TS solves MBP with 79% accuracy. The average computational time is
3.8 hours. For EIN, 28% accuracy is achieved within 1 hour.

These results show the superior performance of NVR-TS on these novel proteins. How-
ever, since the accuracies were lower for EIN and MBP compared to the other proteins in
our data set and NVR-TS terminated with solutions allowing NOE violations, we decided
to perform additional tests for these two proteins using three other parameter sets that we
observed to perform well in our preliminary parameter analysis. The results for these tests
are presented in Table 4.4 and detailed results are provided in Appendix B. For MBP, an
NOE feasible solution is obtained with an accuracy 91%. EIN’s accuracy remains lower even
though it increases to 41% and the solution is still NOE infeasible. Although NVR-TS is able
to obtain solutions with high accuracies, it may be unable to provide NOE feasible solutions
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for the given Iter2 and Iter3 parameter values.

4.4 Extension to k−best Solutions

In NVR-SBA problem, an ideal scoring function has to have a perfect correlation with the
assignment accuracies, in other words, the lowest scored solution should have the highest ac-
curacy. However, in practice, the optimal solution does not always have the highest accuracy
due to the imperfection of the score functions. To remedy this, we design our algorithm to
return an elite group of solutions, the k−best solutions that the search has visited, instead of
just one global best solution. The accuracies of those elite solutions may be higher than the
accuracy of the global best or even the optimal solution. The parameter k is the number of
elite solutions to be returned by NVR-TS and it is determined by the user.

During our tests on NVR-TS, we kept k− best solutions where k is 30. We investigate
whether any of these 30 elite solutions is more accurate than the global optimal solution that
the algorithm returns. The results are reported in Table 4.5 and Table 4.6. The accuracy
values shown in bold indicate that the accuracy of a solution in the k− best list surpasses
the accuracy of the global best solution. Note that in Table 4.6, the two results with 92%
accuracy for MBP correspond to feasible assignments. The remaining results for both MBP
and EIN in this table involve NOE infeasibilities.

We plan to use the k− best solutions to analyze the frequency of individual peak-amino
acid assignments to observe the common assignments in those solutions. This can potentially
provide us with a confidence score for each assignment. In addition, this information can
further be used for intensification purposes, i.e. fixing the common assignments in the k−best

solutions and restarting the search from that point.
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Accuracy of Best Solution Best Accuracy in k−best
No of without with without with

Protein Family Residues PDB ID RDC (%) RDC (%) RDC (%) RDC (%)

Ubiquitin 72

1UBI 87 97 98 100
1UBQ 87 97 100 100
1G6J 87 97 100 100
1UD7 81 97 97 100
1AAR 79 97 96 100

SPG 55
1GB1 100 100 100 100
2GB1 100 100 100 100
1PGB 96 100 100 100

Lysozyme 126

193L 78 100 83 100
1AKI 78 98 83 100
1AZF 74 94 87 95
1BGI 75 97 87 98
1H87 77 100 87 100
1LSC 74 100 84 100
1LSE 75 98 85 100
1LYZ 79 68a,82b 84 81a,89b

2LYZ 75 91 85 95
3LYZ 79 90 85 94
4LYZ 75 91 86 93
5LYZ 75 91 86 93
6LYZ 75 96 93 97

The rest

80 ff2 85 93 93 96
96 hSRI 73 89 80 96
31 polη 100 100 100 100
55 GB1 96 100 100 100

348 MBP 69 79 69 79
243 EIN 5 28 7 28

a: With one set of RDCs,b: With two set of RDCs.

Table 4.5: Percent accuracy comparison between the best solution and the most accurate
solution in k−best solutions. See the text for the explanation.
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Parameter Set Accuracy of Best Solution Best Accuracy in k−best

α β γ δ
without with without with

RDC (%) RDC (%) RDC (%) RDC (%)

MBP
6% 0.5 1.5 20% 72 87 75 87
8% 0.9 2 5% 80 90 83 92
6% 0.7 1.2 20% 76 91 76 92

EIN
6% 0.5 1.5 20% 25 9 28 18
8% 0.9 2 5% 16 41 16 46
6% 0.7 1.2 20% 0 24 23 27

Table 4.6: Percent accuracy comparison between the best solution and the most accurate
solution in k−best solutions for MBP and EIN using different parameter values.
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Chapter 5

Conclusion and Future Work

In this study, we implemented a TS algorithm, NVR-TS, to find the assignments for a given
protein. The algorithm is based on the relaxed formulation of the model introduced in [17]
where the NOE constraints are removed and their violations are penalized in the objective
function. By relaxing the NOE constraints, we allow TS to explore NOE violating neighbor-
hoods in the search space in order to reach the global best solution.

We used NVR-BIP’s scoring function and tested our algorithm on NVR-BIP’s data set.
Our assignment accuracies were the same as or better than those of NVR-BIP’s. Additionally,
we used MBP and EIN to test the performance of our algorithm on large proteins and obtained
an assignment accuracy of 79% and 28% for MBP and EIN, respectively. Their accuracies
increase to 91% and 41%, respectively when we use different parameter sets. Although
feasible assignments could be obtained for MBP, NVR-TS was unable to reach a feasible
solution for EIN. It is noteworthy that NVR-BIP cannot even find a feasible solution for these
proteins due to the memory problems. Also, note that the results for 1LYZ were reported
with one set of RDCs as in [17]. With both set of RDCs, the problem was infeasible in [17]
due to a noisy experimental RDC value, whereas we were able to compute a solution with
NVR-TS. As future work, we plan to increase the robustness of NVR-TS with respect to the
noise in the data. We also plan to continue our tests on large proteins to further investigate
the performance of the algorithm.

Note that the assignment accuracies presented in this thesis are computed using an ideal
alignment tensor which is computed using Singular Value Decomposition (SVD) based on
the knowledge of the correct assignments. As such, this work provides a proof of principle.
In practice, one can compute the alignment tensor using grid search as [11] and then iterate
the computation of the assignments using the alignment tensor computed using SVD and the
previous assignments. Our future work includes integrating this grid search with the score
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matrix computation.
Another area of future research is to analyze the occurrence frequency of individual peak-

residue assignments among the k-best solutions. This analysis may be used as a reliability
measure similar to the confidence value in [16]. Another possible use of the frequency anal-
ysis is that it allows us to fix the most frequent assignments and to solve the remaining subset
of peaks and amino acids with NVR-TS or NVR-BIP. The frequency analysis may be es-
pecially useful for large proteins. Our current research efforts also focus on improving the
quality of the scoring function so as to better represent the relationship between the score
value and the assignment accuracy. Hence, the best accuracy solution may rank higher in our
set of extracted solutions.

Further research on the heuristic approach may focus on the variable neighborhood search
method within the TS framework, which allows the use of multiple neighborhood search
structures, or other efficient LS approaches. Those approaches can be combined into a hybrid
method that may provide more accurate solutions faster, especially for large problems.
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Appendix A

Pseudocode of NVR-TS Algorithm

Notation

s: initial solution
sl: non-tabu neighbor solution with the lowest score
s′: the best solution that the innermost loop can achieve
s′′: the best solution that the middle loop can achieve
s∗: the best solution that the outermost loop can achieve (global best solution)
ctr′: the consecutive non-improving iteration counter of the innermost loop
ctr′′: the consecutive non-improving iteration counter of the middle loop
ctr∗: the consecutive non-improving iteration counter of the outermost loop
Iter1: The parameter that determines the number of consecutive non-improving iterations
that the innermost loop will terminate after
Iter2: The parameter that determines the number of non improving consecutive perturbations
that will be performed until the middle loop terminates
Iter3: The parameter that determines how many times that the search will return and perturb
s′′

NVR-TS algorithm consists of 3 nested loops. The innermost loop is a basic tabu search
implementation which moves from one solution to its lowest scoring non-tabu neighbor while
updating the tabu list in every iteration. This structure alone fails to provide highly accurate
solutions. Therefore, we implemented the outer loop which includes both the basic tabu
search and perturbation mechanism. With this implementation, the search jumps to another
part of the search space when it can not improve s′ any longer. After the implementation of
this loop, the accuracy of the resulting solution has increased dramatically. However, jumping
through the search space may cause forgetting the lower scoring parts of the search space.
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Algorithm A.1 Tabu Search Algorithm (NVR-TS)
Initialization: Obtain an initial solution s, s′ ← s, s′′ ← s, s∗ ← s, ctr′ ← 0, ctr′′ ← 0,
ctr∗← 0
while ctr∗ < Iter3 do

while ctr′′ < Iter2 do
while ctr′ < Iter1 do

Move from s to sl
if score(sl)<score(s′) then

Update tabu list; s′← sl
ctr′← 0

else
ctr′← ctr′+1

end if
end while
Perturb(s′)
if score(s′)<score(s′′) then

s′′← s′

ctr′′← 0
else

ctr′′← ctr′′+1
end if

end while
if score(s′′)<score(s∗) then

s∗← s′′

ctr∗← 0
else

ctr∗← ctr∗+1
end if
s← Perturb(s′′)

end while
Return s∗

Therefore, we implemented the outermost loop, or the third loop, which enables the search
to continue from a high quality solution when it can no longer enhance s′′. Thus, the search
is able to explore diverse parts of the search space while remembering the lower scoring
regions. The outermost loop repeats until s∗ (the global best solution) cannot be improved for
Iter3 times. NVR-TS algorithm is presented in Algorithm A.1 in simplified form.
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Appendix B

Additional Accuracy Results

Protein 1 2 3 4 5 6 7 8 9 10

With RDC

1UBI 97 97 97 97 97 97 97 97 97 97
1UBQ 97 97 97 97 97 97 97 97 97 97
1G6J 6 97 27 97 97 97 97 97 97 97
1UD7 97 97 97 97 97 97 97 97 97 97
1AAR 97 97 56 97 97 97 31 97 97 97

Without RDC

1UBI 87 87 87 87 96 96 96 87 87 87
1UBQ 87 87 87 87 96 96 96 87 87 96
1G6J 87 6 87 87 87 87 87 87 94 87
1UD7 81 81 79 79 81 90 90 81 81 90
1AAR 89 89 4 79 43 79 79 63 23 7

Table B.1: Percent accuracy results of 10 runs on Ubiquitin proteins

Protein 1 2 3 4 5 6 7 8 9 10

With RDC
1GB1 100 100 100 100 100 100 100 100 100 100
2GB1 100 100 100 100 100 100 100 100 100 100
1PG1 100 100 100 100 100 100 100 100 100 100

Without RDC
1GB1 100 100 100 100 100 100 100 100 100 100
2GB1 100 100 100 100 100 100 100 100 100 100
1PG1 96 96 96 96 96 96 96 96 96 96

Table B.2: Percent accuracy results of 10 runs on SPG proteins
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Protein 1 2 3 4 5 6 7 8 9 10

With RDC

193L 100 100 100 98 98 93 98 100 98 100
1AKI 95 98 98 96 98 83 98 98 98 92
1AZF 88 88 94 88 88 82 94 91 94 94
1BGI 88 90 97 97 90 97 97 97 90 88
1H87 100 100 90 91 98 98 100 87 98 100
1LSC 100 100 100 100 93 100 100 100 90 93
1LSE 98 98 90 96 96 98 98 65 98 98
1LYZ 67a,81b 68a,82b 56a,75b 57a,82b 60a,79b 67a,83b 67a,83b 71a,79b 64a,78b 75a,83b

2LYZ 89 86 87 89 87 90 87 92 90 92
3LYZ 89 89 85 85 87 89 91 87 85 84
4LYZ 89 86 91 92 83 84 85 88 83 89
5LYZ 85 89 83 85 90 87 87 91 88 87
6LYZ 96 96 96 96 96 94 97 87 94 94

Without RDC

193L 65 77 73 78 71 77 78 62 78 78
1AKI 77 77 75 77 77 78 73 78 73 77
1AZF 63 68 74 75 75 75 74 75 75 69
1BGI 59 71 71 63 75 69 74 67 76 61
1H87 77 77 68 64 66 77 67 65 77 77
1LSC 76 75 76 71 66 74 75 72 71 74
1LSE 77 75 79 71 77 63 69 79 78 56
1LYZ 77 69 71 79 79 75 77 70 78 83
2LYZ 76 67 75 75 70 79 75 81 75 79
3LYZ 76 81 76 75 80 79 70 78 79 79
4LYZ 65 67 73 71 77 67 78 56 72 75
5LYZ 72 72 64 75 69 75 67 75 75 75
6LYZ 74 75 71 67 78 72 60 75 75 78

a: With one set of RDCs,b: With two set of RDCs.

Table B.3: Percent accuracy results of 10 runs on Lysozyme Proteins

Protein 1 2 3 4 5 6 7 8 9 10

With RDC

ff2 93 93 93 93 93 93 93 93 93 93
hSRI 65 33 89 89 23 40 89 86 42 66
polη 100 100 100 100 100 100 100 100 100 100
GB1 100 100 100 100 100 100 100 100 100 100

Without RDC

ff2 76 76 25 85 22 71 24 25 76 85
hSRI 31 40 15 37 24 25 73 16 51 15
polη 100 100 100 100 100 100 100 100 100 100
GB1 96 96 91 96 96 96 96 96 96 96

Table B.4: Percent accuracy results of 10 runs on the rest of the proteins
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Parameter Set Runs
α β γ δ 1 2 3 4 5 6 7 8 9 10

With RDC

4% 0.7 1.2 0.2 59 48 57 67 55 79 71 60 67 53
6% 0.5 1.5 0.2 61 71 87 63 75 79 81 58 65 73
6% 0.7 1.2 0.2 71 57 89 90 87 62 61 79 63 67
8% 0.9 2 0.05 79 84 84 90 91 84 72 75 86 87

Without RDC

4% 0.7 1.2 0.2 54 52 69 38 34 30 1 57 8 54
6% 0.5 1.5 0.2 64 57 52 51 61 72 59 65 66 57
6% 0.7 1.2 0.2 56 72 53 76 53 58 53 51 71 53
8% 0.9 2 0.05 70 72 66 66 57 64 80 67 82 53

Table B.5: Percent accuracy results of 10 runs on MBP with several parameter sets

Parameter Set Runs
α β γ δ 1 2 3 4 5 6 7 8 9 10

With RDC

4% 0.7 1.2 0.2 4 7 1 11 15 9 2 28 7 0
6% 0.5 1.5 0.2 9 9 9 8 1 15 13 15 8 4
6% 0.7 1.2 0.2 22 6 24 24 9 20 17 23 21 13
8% 0.9 2 0.05 4 41 16 5 1 21 43 20 45 33

Without RDC

4% 0.7 1.2 0.2 2 0 0 1 0 2 6 5 0 0
6% 0.5 1.5 0.2 1 6 2 4 25 4 5 2 1 4
6% 0.7 1.2 0.2 0 0 3 18 2 8 1 2 3 1
8% 0.9 2 0.05 1 3 3 1 5 2 0 0 16 10

Table B.6: Percent accuracy results of 10 runs on EIN with several parameter sets
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