
Semen Cirit

Submitted to the Graduate School of Sabancı University

in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

July, 2011

iii

c© Semen Cirit 2011

All Rights Reserved

Post-processing for Checking Sequences

Semen Cirit

EECS, Master’s Thesis, 2011

Thesis Supervisor: Hüsnü Yenigün

Keywords: FSM based testing, Checking Sequence, Random FSM

Generation, Boolean Formula

Abstract

There are several methods to generate a checking sequence (CS)

from a given Finite State Machine M . These methods generate a CS

in such a way that when the CS is traced on M , every node visited

during this trace is recognized as some state of M and every transition

of M is traversed. When the recognitions of the nodes in this trace are

analyzed, it is observed that some of the nodes are recognized multiple

times redundantly. This observation raises the following question: Is

it possible to reduce the length of a given CS by eliminating redundant

recognitions? In this thesis we focus on this question. We formalize the

recognitions, detect multiple redundant recognitions and suggest a way

to eliminate them to reduce the length of a given CS. An experimental

study of our approach is also presented.

i

Kontrol Dizilerinin Kısaltma Amaçlı Analizi

Semen Cirit

EECS, Yüksek Lisans Tezi, 2011

Tez Danışmanı: Hüsnü Yenigün

Anahtar Kelimeler: SDM Bazlı Sınama, Kontrol Dizileri, Rastlantısal SDM

Üretimi, İkili Formül

Özet

Verilen bir Sonlu Durumlu Makina (SDM) M için bir çok kon-

trol dizisi (KD) üretme metodu bulunmuştur. Bu metodlar KD

üretimini, KD M üzerinden gezilirken yapılmaktadır. Bu gezme

sırasında ziyaret edilen tüm düğümler, M ’de bulunan bazı du-

rumlar tarafından tanımlanır ve M ’de bulunan her bir bağlantı

üzerinden geçilmiş olur. Düğümlerin tanımlanması incelendiğinde,

bazı düğümlerin birden fazla kez gereksiz yere tanımlanmış olduk-

ları gözlemlenebilmektedir. Bu gözlem şu soruyu ortaya çıkarmaktadır:

KD’nin uzunluğununu gereksiz tanımlamaları ortadan kaldırarak

azaltmak mümkün müdür? Bu çalışmada bu soru üzerinde durul-

maktadır. Verilen bir KD uzunluğunu kısaltabilmek için, tanımlamalar

somutlaştırılmış, birden fazla kez tanımlanan gereksiz düğümler

bulunmuş ve bu düğümleri ortadan kaldırmak için bir çözüm

sunulmuştur. Ayrıca bu yaklaşımın deneysel bir çalışması da bu

tez içerisinde sunulmaktadır.

ii

Acknowledgments

I am especially thankful to my supervisor, Hüsnü Yenigün, whose encour-

agement, guidance and support from the initial to the final level.

I would like to thank my family for never leaving me alone and their

motivation.

Lastly, I offer my regards and blessings to all of those who supported me

in any respect during the completion of the thesis.

iii

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Finite State Machines . 4

2.1.1 FSM elements . 4

2.1.2 FSM as a Directed Graph 5

2.2 Transfer Sequence . 7

2.3 Distinguishing Sequence . 7

2.3.1 Preset Distinguishing Sequence 7

2.3.2 Adaptive Distinguishing Sequence 7

2.4 Checking Sequence . 8

2.5 Random FSM Generation . 11

3 Our Method 13

3.1 Elimination Recognition Method 13

3.2 Checking Sequence as Boolean Formula 15

3.2.1 Boolean Formula of d-recognition 16

3.2.2 Boolean Formula of t-recognition 16

3.2.3 Boolean Formula of e-recognition 19

3.2.4 Boolean Formula of a Checking Sequence Node 24

3.2.5 Boolean Formula of Checking Sequence 25

3.3 AND OR Graph Construction 25

3.3.1 Possible Input Function ρ Graph Construction 26

3.3.2 Possible State Function σ Graph Construction 26

3.3.3 Boolean Equation c Graph Construction 26

3.4 Checking Sequence Transition Optimization 27

3.4.1 Finding a Possible Removable Input Function ρ 28

iv

3.4.2 Find Descending Consecutive List Set 31

3.4.3 Find All Removed Nodes 32

3.4.4 Adding Binding Nodes 34

4 Analysis 36

4.1 Comparisons with Other Methods 36

4.2 Execution Time Analysis . 38

4.3 Analysis of the Example . 39

5 Conclusion 41

A Boolean Equation of the Example 43

A.1 Proposition of node n1 as state s1 44

A.1.1 d-recognition . 44

A.1.2 e-recognition . 44

A.2 Proposition of node n2 as state s3 44

A.2.1 d-recognition . 44

A.2.2 t-recognition . 44

A.2.3 e-recognition . 45

A.3 Proposition of node n3 as state s2 45

A.3.1 d-recognition . 45

A.3.2 t-recognition . 45

A.3.3 e-recognition . 45

A.4 Proposition of node n4 as state s1 46

A.4.1 d-recognition . 46

A.4.2 t-recognition . 46

A.4.3 e-recognition . 46

A.5 Proposition of node n5 as state s3 46

A.5.1 t-recognition . 46

v

A.5.2 e-recognition . 47

A.6 Proposition of node n6 as state s3 47

A.6.1 d-recognition . 47

A.6.2 e-recognition . 47

A.7 Proposition of node n7 as state s2 47

A.7.1 t-recognition . 47

A.7.2 e-recognition . 48

A.8 Proposition of node n8 as state s1 48

A.8.1 t-recognition . 48

A.8.2 e-recognition . 48

A.9 Proposition of node n9 as state s1 48

A.9.1 d-recognition . 48

A.9.2 e-recognition . 49

A.10 Proposition of node n10 as state s1 49

A.10.1 d-recognition . 49

A.10.2 t-recognition . 49

A.10.3 e-recognition . 50

A.11 Proposition of node n11 as state s3 50

A.11.1 t-recognition . 50

A.11.2 e-recognition . 50

A.12 Proposition of node n12 as state s2 51

A.12.1 t-recognition . 51

A.12.2 e-recognition . 51

A.13 Proposition of node n13 as state s2 51

A.13.1 d-recognition . 51

A.13.2 t-recognition . 51

A.13.3 e-recognition . 51

vi

A.14 Proposition of node n14 as state s1 52

A.14.1 d-recognition . 52

A.14.2 t-recognition . 52

A.14.3 e-recognition . 52

A.15 Proposition of node n15 as state s3 52

A.15.1 t-recognition . 52

vii

List of Figures

1 FSM M1 . 6

2 d-recognition . 10

3 t-recognition . 10

4 Checking Sequence of FSM M1 11

5 Reduced Checking Sequence of FSM M1 35

6 Method execution times by checking sequence length 39

7 Checking Sequence of FSM M1 43

viii

List of Tables

1 Number of Reduced Checking Sequences 37

2 Ratio of Reduced Lengths over the Original Checking Sequence

Lengths . 37

3 Gain Percentage for Different Invented Methods 38

ix

1 Introduction

Behaviour of communication protocols, control circuits, machine learning

systems can be modeled as finite state machines (FSMs) [2, 4, 21, 24, 25, 26].

Unified Modeling Language (UML), Specification and Description Language

(SDL), and state charts also incorporate stated based representation for be-

havioural specifications [8, 18].

Given an FSM M representing the behavioural specification of a system,

and an implementation I claimed to implement M , I is needed to be tested

to check if it correctly implements M or not. The correctness of I with

respect to M can be proved by applying an input sequence to I, observing

the actual output sequence produced by I in response to the application of

the input sequence, and comparing the actual output sequence of I with the

expected output sequence from M . The input sequence and the expected

output sequence compose a test sequence. Not every test sequence would

prove I to be correct. In fact, it is not possible to design a test sequence that

will prove I to be correct, in general. However under certain assumptions on

M and I, this is possible and a test sequence accomplishing such a proof is

called a checking sequence [10, 9, 16, 17].

The line of work for constructing such test sequences starts in 60s [10].

There were some studies in 70’s and 80’s [9, 4, 7, 23, 22], but area was more

active in 90’s [2, 21, 20, 19, 13, 14, 16]. The area has been still active within

the last decade [17, 1, 11, 15, 6, 3, 28, 12, 27, 5]. Each new method tries

to improve on the previous methods by constructing shorter test sequences

with the help of a better analysis or by applying a new approach.

A checking sequence basically tests if every state in the specification ma-

chine M also exists in the implementation I. Furthermore, it also considers

every transition in M and makes sure that the starting and ending states of

1

each transition, and the output produced by the transition can be the same

as in the specification M . Existence of a state of M in I is performed by

using a special test sequence called a state identification sequence. There

are several flavors of state identification sequences such as preset distinguish-

ing sequence, adaptive distinguishing sequence, or unique input/out sequence,

etc [19]. Among these state identification sequences, distinguishing sequences

allows one to construct a polynomial length checking sequence.

A (preset or adaptive) distinguishing sequence D has a unique response

from each state of M . Therefore when a distinguishing sequence is applied

to I, the state of I before the application of D can be correlated to the

corresponding state of M based on the output produced by I to D. In this

case we say, the state of I is d-recognized as the corresponding state of M .

It is also possible to t-recognize a state of I as a state of M by using the

following observation: If there are two states of I recognized as the same

state of M and if the test sequence applies the same test sequence at both

of these states, then the final state reached after this test sequence must

also be recognized as the same state of M . In this thesis we also make

use of another recognition technique which we call e-recognition (stands for

elimination recognition). Intuitively a state n of I is recognized as a state

s of M when there are evidences that for each state s′ of M where s′ 6= s,

n cannot be s′. All of these recognition methods will be explained more

formally in Section 2 and in Section 3.

When a checking sequence generated by some method is analyzed, it is

observed that some of the states in I are recognized multiple times (of course

all of these recognitions will be for the same state of M), whereas only one

recognition is sufficient for the purpose.

After this observation, it is natural to think that it might be possible to

2

reduce the length of a given checking sequence by removing the parts of a

checking sequence causing multiple recognitions.

The rest of the thesis is structured as follows. Section 2 provides an

overview of related material. Section 3 then describes an approach to detect

multiple recognitions in a checking sequence and how to eliminate them.

In Section 4, we report an experimental study of the proposed approach

by trying to reduce checking sequence generated by several methods from

randomly generated FSMs. Finally, some concluding remarks are given in

Section 5.

3

2 Preliminaries

2.1 Finite State Machines

2.1.1 FSM elements

An FSM (finite state machine)M is defined as a tupleM = (S,X, Y, δM , λM , DM , s0)

in which S is a finite set of states, s0 is the initial state, X is a finite

input alphabet, Y is a finite output alphabet, δM is a next state function:

δM : DM → S, λM is an output function: λM : DM → Y and DM is the

specification domain of these functions: DM ⊆ S ×X [1].

An FSM M is deterministic if for each state s ∈ S and for each input

i ∈ X , there is at most one transition defined in M .

An FSM is completely specified if the functions δM and λM are total. In

other words if DM is equal to S × X , M is completely specified, this means

for each state s ∈ S and for each input i ∈ X there is a transition defined in

M .

A transition is defined by a tuple (si−x/y → sj) in which si is the starting

state, x is the input, sj = δM(si, x) is the ending state, and y = λM(si, x) is

the output. The transiton is si − x → sj when the output is not used.

Supposed that;

M = (S,X, Y, δM , λM , DM , s1) and

I = (T,X, Y,∆I ,ΛI , DI , t1) are two FSMs.

Further, we suppose that specifications will be represented with M and

implementations will be represented with notation I which are complete.

Two states, sj of M and ti of I, said to be compatible if and only if

for every input sequence α = x1x2...xk ∈ X∗ the machines produce the

same output sequence, i.e. δM(sj , α) = ΛI(ti, α). Otherwise the states are

distinguishable.

4

If I and M are complete, the compatible states have been equivalent

states. A machine M is minimal (reduced) if and only if no FSM with fewer

states thanM is equivalent toM or if every pair of its states is distinguishable.

For an input sequence α.x:

δM(si, α.x) = δM(δM(si, α), x) while

λM(si, α.x) = λM(si, α).λM(δM(si, α), x).

An FSM is also initially reachable if for each si ∈ S there exists some

input sequence α ∈ X∗ such that δM(s0, α) = si (i.e. each state si ∈ S is

reachable from the initial state s0)

2.1.2 FSM as a Directed Graph

An FSM M can be represented by a digraph (directed graph) G = (V,E),

with a vertex set V = {v1, v2, . . . , vn} which represents the set S of states of

M where n = |S| number of elements, and with the edges e = (vj , vk; x/y) ∈

E that represents a transition from state sj to state sk with input x ∈ X

and output y ∈ Y [16].

vj and vk are the start and end of e and input/output (I/O pair) x/y is

the label of e, denoted label(e). Two edges ej and ek are called adjacent if

end of ej and start of ek are same.

A path P = (n1, n2; x1/y1)(n2, n3; x2/y2) . . . (nr−1, nr; xr−1/yr−1), r > 1, of

G is a finite sequence of (not necessarily distinct) adjacent edges in E, where

each node ni represents a vertex from V ;n1 and nr are the start and end of

P and (x1/y1)(x2/y2) . . . (xr−1/yr−1) is the label of P , denoted label(P).

P can also represented by (n1, nr; I/O), where label(P) = I/O is the IO-

sequence (x1/y1) (x2/y2) . . . (xr−1/yr−1), input sequence I = (x1x2 . . . xr1) is

the input portion of I/O, and output sequence O = (y1y2 . . . yr1) is the output

portion of I/O.

5

s1 s2

s3

b/1

a/0

a/0

b/0

a/1

b/1

Figure 1: FSM M1

G is strongly connected, if for all vi; vj ∈ V , there is a path from vi to vj .

The cost (or length) of an edge is the number of I/O pairs in the label of

the edge.

The cost (or length) of path P is the sum of the costs of edges in P . The

concatenation of two sequences (or paths) P and Q is denoted by PQ.

Consider the FSM M1 given in Figure 1, according to definitions:

• For each state, there is at most one transition defined in FSM M1,

therefore FSM M1 is deterministic.

• For each state, there is a transition defined in FSM M1, therefore FSM

M1 is completely specified.

• Every pair of states in FSM M1 are distinguishable so FSM M1 is

minimal.

• For every vertex in FSM M1 there is a path between them, so FSM M1

is strongly connected.

6

2.2 Transfer Sequence

The label of a path from si to sj is the transfer sequence T of FSM M [11]. In

other words, for each of two states si, sj ∈ S, there exists an input sequence

α, called a transfer sequence from state si to state sj, such that sj = δ(si, α).

For example, there is a transfer sequence from state s3 to s1 with path

aa/00 on FSM M1 given in Figure 1.

If there exist a transfer sequence from all state si to state sj, FSM M is

said to be strongly connected. The FSM M is initially connected if there is a

transfer sequence from the initial state s0 to each state.

2.3 Distinguishing Sequence

There are two types distinguishing sequences; preset distinguishing sequence

and adaptive distinguishing sequence. We actually use the adaptive distin-

guishing sequence but in order to give the concept and differencies between

them. We need to metion about two of them.

2.3.1 Preset Distinguishing Sequence

An input sequence x ∈ X is a preset distinguishing sequence (PDS) for an

FSM M if the output sequence produced by M in response to x is different

for each state[15].

For instance, for an input sequence D and for every pair of si, sj ∈ S,

i 6= j, λM(si, D) 6= λM(sj, D).

2.3.2 Adaptive Distinguishing Sequence

A PDS can be used as an input sequence and distinguish each state of the

FSM. As for adaptive distinguishing sequence (ADS) is not really a sequence

7

but a decision tree which exactly n leaves. The internal nodes of the tree are

labeled with input symbols, its edges are labeled with output symbols, and

its leaves are uniquely labeled with states [15]. That means while the tree is

walked from the root through a leaf, we can find one of the state unique input

and output sequences which is distinguished from the other leaves (states),

such that for a common prefix α, λM(si, α) 6= λM(sj, α).

For every leaf of the tree, if Di and yi are the input and output strings

respectively formed by the node and edge labels on the path from the root

to the leaf labeled by state si of the FSM then yi = λM(si, Di).

We call Di as the ADS of state si.

For example, D1 = a/1, D2 = aa/01, D3 = aa/00 are the distinguishing

sequence of each state of M1 on Figure 1.

ADS has more advantages than PDS on state identification. At first PDS

is a kind of ADS, but the reverse is not true. Therefore, there can be FSMs

with ADS but not PDS. If we can use adaptive distinguishing sequences

instead of preset ones in a checking sequence generation method, then the

method can be applied on a strictly larger set of FSMs. Because for a given

FSM it is known that the shortest ADS is no longer than the shortest PDS

[19].

2.4 Checking Sequence

The checking sequence concept is born in order to determine fault detec-

tion of an FSM. Assume that an FSMi ∈ Φ(FSMs) which is deterministic,

strongly connected, completely specified and minimal and also assume that

an FSMi ∈ Φ(FSMs) claimed to be an implementation of the FSMs which

is not change during execution and sets of inputs and outputs are identical

to those FSMs and also it has n distinct states.

8

The input sequence of FSMs is called a checking sequence, when output

sequence from FSMi in response to the checking sequence is used to verify

whether FSMi is a correct implementation of FSMs.

A checking sequence of FSMs is an input sequence such that it distin-

guishes FSMs from every FSM FSMi ∈ Φ(FSMs) that is not equal to

FSMs.

Checking sequence correctness is obtained by three steps:

1. FSMi should be initialized.

2. FSMi is checked whether it has at least n distinct states.

3. FSMi is checked whether it implements all transitions of FSMs.

For the first step of checking sequence correctness, there should be shown

that if FSMs has a (sj , sk; x/y) transition, then FSMi should have a corre-

sponding transition (f(sj), f(sk); x/y).

The state correctness are formally proved by the concepts d-recognition

and t-recognition.

Consider a path P of G representing FSMs and the nodes within it:

d-recognition:

A node ni of P is d-recognized as state s of FSMs if ni is the start of a

subpath of P with label D/λ(s,D).

In Figure 2, a distinguishing sequence on a subpath with label D/λ(a,D)

is recognized for node ni so node ni is d-recognized.

9

Figure 2: d-recognition

t-recognition:

A node ni of P is t-recognized as state s′ of FSMs if there are two subpaths

(nq, ni;X
′/Y ′) and (nj , nk;X

′/Y ′) of P such that nq and nj are recognized

as s of FSMs , nk is recognized as state s′ of FSMs. The similar transfer

sequences and recognitions are shown in Figure 3.

Figure 3: t-recognition

The last step of the checking sequence correctness is defined as follows.

A transition t = (s, s′; x/y) of FSMs is verified (in P) if there is an edge

(ni, ni+1; x
′/y′) of P such that nodes ni and ni+1 are recognized as states s

and s′ of FSMs respectively and x′/y′ = x/y.

The theorem below from [16] explains effectively checking sequence.

Theorem 1. Let X/Y be the label of a path P of directed graph G (for FSM

FSMs) such that every transition is verified in P . Then X (i.e. the input

portion of label of P) forms a checking sequence of FSMs .

For the checking sequence in Figure 4, consider I/O sequence with a path

X/Y = aaaabaabaaabaa/10011001010001 and FSM M1 in Figure 1. In the

10

n1 is s1 n2 is s3 n3 is s2 n4 is s1 n5 is s3

n10 is s1 n9 is s2 n8 is s1 n7 is s2 n6 is s3

n11 is s3 n12 is s2 n13 is s2 n14 is s1 n15 is s3

a/1 a/0 a/0 a/1

b/1

a/0a/0b/1a/0

a/1

a/0 b/0 a/0 a/1

Figure 4: Checking Sequence of FSM M1

given path, every transition is verified with d-recognition and t-recognition.

Then, we can say that X = aaaabaabaaabaa forms a checking sequence of

FSM M1 in Figure 1.

2.5 Random FSM Generation

In order to make checking sequence analysis and comparisons, a group of

FSMs that have different number of states is needed. All checking sequence

generation and optimization methods need special FSMs. Thanks to random

FSM generation tool, the random FSM can be generated with special prop-

erties. This tool generate FSMs with any of the following properties listed

below:

• Being strongly connected (or not)

• Being initially reachable (or not)

11

• Being minimal (or not)

• Having a preset distinguishing sequence (or not)

• Having an adaptive distinguishing sequence (or not)

In our thesis, the properties strongly connected, minimal and having

adaptive distinguishing sequence are used.

12

3 Our Method

In this section a new checking sequence optimization method will be pre-

sented. In order to reduce the length of the checking sequence, we generate

a new state recognition method is called elimination recognition method. We

then describe the checking sequence as a boolean formula in order to enable

the elimination and other state recognition methods to work on it and let

them to find unnecessary transitions. We use an AND-OR graph in order to

implement this checking sequence and we do an exhaustive search in order

to find transitions that can be removed.

3.1 Elimination Recognition Method

A node ni of P is recognized with this method as state s of FSMs if there

exists different nodes for each different state then s (s′ 6= s) and these nodes

have also the same input as ni. The output function of a node may or may

not be the same as the output function of ni. If the output function is the

same, the next state functions should be different then ni’s output function.

If the output functions are different, we do not need the next state function

comparisons.

If we experience these type of nodes for each state different than s that

mentioned above the elimination recognition method can be performed for

ni.

We can denote elimination recognition as e-recognition.

We can explain the recognition more formally:

Supposed that there exists a checking secuence with path P and FSM

FSMs and nodes ni and ni+1 with a sequence (ni, ni+1; xi/yi) can be recog-

nized as states s and s′. Node ni can be e-recognized as state s, if there exist

13

sequences for all different states then s like:

1. (nk, nk+1; xk/yk) ∈ P , if node nk is not recognized as state s, nk+1 is

not recognized as s′, xk = xi, yk = yi or

2. (nl, nl+1; xk/yk) ∈ P , if node nl is not recognized as state s, xk = xi,

yk 6= yi for all states of FSMs different then state s.

For example, node n3 in checking sequence in Figure 4 want to be rec-

ognized as state s2 with a sequence (n3, n4; a/0) . We assume that n4 is

recognized as state s1.

There exist two different states than s2, therefore we trace the checking

sequence if there exist transitions;

• that the incoming node is not recognized as state s2 and outgoing node

is not recognized as state s1, while the input and output is a/0. These

transitions are found from Appendix A and Figure 4:

– (n6, n7; a/0), We can see that from Appendix A.6 n6 is recognized

as state s3 and from Appendix A.7 n7 is recognized as state s2

– (n11, n12; a/0), We can see that from Appendix A.11 n11 is rec-

ognized as state s3 and from Appendix A.12 n12 is recognized as

state s2

• that the incoming node is not recognized as state s2, while the input

is a and output is different than 0: These transitions are found from

Appendix A and Figure 4:

– (n1, n2; a/1), We can see that from Appendix A.1 n1 is recognized

as state s1

14

– (n4, n5; a/1), We can see that from Appendix A.4 n4 is recognized

as state s1

– (n10, n11; a/1), We can see that from Appendix A.10 n11 is recog-

nized as state s1

– (n14, n15; a/1), We can see that from Appendix A.14 n14 is recog-

nized as state s1

3.2 Checking Sequence as Boolean Formula

In this thesis the checking sequence is formulated as boolean formula. The

boolean formula is generated via d-, t-, e- recognition methods that men-

tioned on Section 2 and Section 3. All nodes on checking sequence path can

be recognized by these methods. All recognition possibilities of node of a

checking sequence are represented as boolean formula.

The boolean formula building structure has two different kind of values,

these values represent possible state and input functions of a node on checking

sequence path.

More formally, we can explain these two kind of values with:

1. node ni can be recognized as state s can be shown as σi (Possible state

function of node ni)

2. node ni transition can have x input function can be shown as ρi (Pos-

sible input function of node ni)

The boolean formula generally is constructed with below instructions:

• All state recognition methods are formulated with σ and ρ.

• In order to represent d-, t-, e- recognitions of one node, the and (∧)

operation is used between all σ and ρ.

15

• The and (∧) operation is also used between all d-, t-, e- recognition

groups of two different checking sequence nodes.

• The or (∨) operation exists between all d-, t-, e- recognitions of one

checking sequence node.

3.2.1 Boolean Formula of d-recognition

The founded d-recognitions on the path are represented by only possible input

functions, ρ.

Supposed that node ni has a d-recognition with a distinguishing set

D = {Dsi, Dsi+1
} where Di = xi/yi, Dsi+1

= xi+1/yi+1, so this recognition

equation is represented as:

ρi ∧ ρi+1
(1)

This means the node has a distinguishing sequence with two input functions

and the occurrence of those input functions found for ρi, ρi+1.

For example, we know that node n2 in checking sequence in Figure 4

has a d-recognition D3 from Section 2.3.2. We represent this recognition in

Appendix A.2.1 as:

∣

∣

∣ n2 → a ∧ n3 → a

∣

∣

∣

So

∣

∣

∣ ρ2 ∧ ρ3

∣

∣

∣

3.2.2 Boolean Formula of t-recognition

The founded t-recognitions on the path are represented by possible input

functions ρ and possible state functions σ.

16

There are two groups in the representation of t-recognition as a boolean

formula; one part is for the incoming transition and the other part is for

similar transitions of the node that has been t-recognized. The incoming

transition part is defined by the previous node and its input function and it

is represented by possible state and input function of one previous node of the

node that has been t-recognized. Similar transitions are the transitions that

includes the possible state of the node that has been t-recognized and possible

state of its previous node. The similar transition part are represented by

possible state functions of incoming and outgoing node and possible input

function of incoming node of current similar transition.

Supposed that nodes ni+1 with a sequence (ni, ni+1; xi/yi) can be t-recognized

as state s′. And we know that ni has already been recognized as s.

So the incoming transition part is represented as:

σi ∧ ρi (2)

For example, consider node n2 of the checking sequence in Figure 4. The

incoming transition of node n2 is (n1, n2; a/1). It is represented in Appendix

A.2.2 as:

∣

∣

∣ n1 is s1 ∧ n1 → a

∣

∣

∣

So

∣

∣

∣ σ1 ∧ ρ1

∣

∣

∣

Supposed that there exists a checking secuence with path P and it has

like; (na, na+1; xa/ya), (nb, nb+1; xb/yb) and (nc, nc+1; xc/yc) are the similar

transitions, that means na, nb, nc can be recognized as state s and na+1, nb+1,

nc+1 can be recognized as state s′ and {xa, xb, xc} = xi, {ya, yb, yc} = yi.

17

So the similar transition part is represented as:

σa ∧ ρa ∧ σa+1

σb ∧ ρb ∧ σb+1

σc ∧ ρc ∧ σc+1

(3)

For example, node n2 of the checking sequence in Figure 4 has a incoming

transition (n1, n2; a/1). The similar transtions is represented in Appendix

A.2.2 as:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n4 is s1 ∧ n4 → a ∧ n5 is s3

∨

n10 is s1 ∧ n10 → a ∧ n11 is s3

∨

n14 is s1 ∧ n14 → a ∧ n15 is s3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

So

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ4 ∧ ρ4 ∧ σ5

∨

σ10 ∧ ρ10 ∧ σ11

∨

σ14 ∧ ρ14 ∧ σ15

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The incoming and similar transition parts are combined as:

∣

∣

∣ σi ∧ ρi

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σa ∧ ρa ∧ σa+1

∨

σb ∧ ρb ∧ σb+1

∨

σc ∧ ρc ∧ σc+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4)

18

Node n2 of the checking sequence in Figure 4 has a t-recognition in Ap-

pendix A.2.2 represented as:

∣

∣

∣ n1 is s1 ∧ n1 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n4 is s1 ∧ n4 → a ∧ n5 is s3

∨

n10 is s1 ∧ n10 → a ∧ n11 is s3

∨

n14 is s1 ∧ n14 → a ∧ n15 is s3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

So

∣

∣

∣ σ1 ∧ ρ1

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ4 ∧ ρ4 ∧ σ5

∨

σ10 ∧ ρ10 ∧ σ11

∨

σ14 ∧ ρ14 ∧ σ15

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3.2.3 Boolean Formula of e-recognition

The founded elimination recognitions on the path are also represented by

possible input functions ρ and possible state functions σ.

There are two groups in the representation of e-recognition as a boolean

formula; one part is for the outgoing node of the node that has been e-

recognized, and the other part, different transitions part, is for the nodes

that can be recognized as a state different then the state of the node that

has been e-recognized. The outgoing node is represented by possible state

function of next node of the node that has been e-recognized. Different tran-

sitions are the transitions that has a incoming node that can be recognized

as a state different then the possible state function of the node that has been

e-recognized and these transitions have also the same input function as the

19

node that has been e-recognized. The output function of a node may or not

the same as the node that has been e-recognized. If the output function is

same, the next state function should be different then the node that has been

e-recognized has. So this type of different transition part can be represented

by possible state functions of incoming and outgoing node and possible in-

put function of incoming node of current different transition. If the output

functions are different we do not need the next state function comparisons.

So this type of different transition part can be represented by possible state

and input function of incoming node of current different transition.

Supposed that nodes ni with a sequence (ni, ni+1; xi/yi) can be e-recognized

as state s. And we know that ni+1 has already been recognized as s′.

So the outgoing node part is represented as:

σi+1
(5)

The outgoing node of the checking sequence node n2 in Figure 4 is n3,

therefore the outgoing node part is represented in Appendix A.2.3 as:

∣

∣

∣ n3 is s2

∣

∣

∣

So

∣

∣

∣ σ3

∣

∣

∣

Supposed that there exists a checking secuence with path P and it has

nodes ni and ni+1 with a sequence (ni, ni+1; xi/yi) can be recognized as states

s and s′.

Supposed also that there exist a sequence (nk, nk+1; xk/yk) ∈ P and node

nk are not recognized as state s, nk+1 are not recognized as s′, xk = xi,

20

yk = yi:

So different transition part with same output function is represented as:

σk ∧ ρk ∧ σk+1
(6)

Node n2 of the checking sequence in Figure 4 has a outgoing transition

(n2, n3; a/0) and node n2 wants to be recognized as state s3 and node n3

is recognized as state s2. Therefore the different transition part with same

output is represented in Appendix A.2.3 as:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a ∧ n4 is s1

∨

n7 is s2 ∧ n7 → a ∧ n4 is s1

∨

n9 is s2 ∧ n9 → a ∧ n10 is s1

∨

n13 is s2 ∧ n13 → a ∧ n14 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

So

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ3 ∧ ρ3 ∧ σ4

∨

σ7 ∧ ρ7 ∧ σ8

∨

σ9 ∧ ρ9 ∧ σ10

∨

σ13 ∧ ρ13 ∧ σ14

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Supposed that there exist a sequence (nl, nl+1; xk/yk) ∈ P and nodes nl

are not recognized as state s, xk = xi, yk 6= yi for all states of FSMs different

21

then state s.

So different transition part with different output function is represented

as:

σk ∧ ρk (7)

Node n2 of the checking sequence in Figure 4 has a outgoing transition

(n2, n3; a/0) and node n2 wants to be recognized as state s3 and node n3 is

recognized as state s2. Therefore the different transition part with different

output is represented in Appendix A.2.3 as:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a

∨

n4 is s1 ∧ n4 → a

∨

n10 is s1 ∧ n10 → a

∨

n14 is s1 ∧ n14 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

So

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ1 ∧ ρ1

∨

σ4 ∧ ρ4

∨

σ10 ∧ ρ10

∨

σ14 ∧ ρ14

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

22

Now supposed that FSM FSMs has three different states s, s′, s′′. And

node ni is wanted to be e-recognized as s. We also supposed that there exist

a sequence (ni, ni+1; xi/yi) and ni+1 is recognized as s′.

If there exist a different transition part for all nodes other then s, it can

be said that ni can be e-recognized as s.

Supposed that there exist such below transitions for s′, s′′ respectively:

1. (nk, nk+1; xk/yk) ∈ P , if node nk is recognized as state s′, nk+1 is not

recognized as s′, xk = xi, yk = yi

2. (nl, nl+1; xk/yk) ∈ P , if node nl is recognized as state s′′, xk = xi,

yk 6= yi

3. (nm, nm+1; xm/ym) ∈ P , if node nm is recognized as state s′′, xm = xi,

ym 6= yi

So the e-recognition boolean equation will be:

∣

∣

∣ σk ∧ ρk ∧ σk+1

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

σl ∧ ρl

∨

σm ∧ ρm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ σi+1

∣

∣

∣
(8)

Node n2 of the checking sequence in Figure 4 has a e-recognition that is

represented in Appendix A.2.3 can be shown as:

23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ1 ∧ ρ1

∨

σ4 ∧ ρ4

∨

σ10 ∧ ρ10

∨

σ14 ∧ ρ14

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ3 ∧ ρ3 ∧ σ4

∨

σ7 ∧ ρ7 ∧ σ8

∨

σ9 ∧ ρ9 ∧ σ10

∨

σ13 ∧ ρ13 ∧ σ14

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ σ3

∣

∣

∣

3.2.4 Boolean Formula of a Checking Sequence Node

Between all possible state recognition methods of a node the or (∨) operation

exists.

So the node ni boolean equation will be:

∣

∣

∣ ρi ∧ ρi+1

∣

∣

∣
∨

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣ σi ∧ ρi

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σa ∧ ρa ∧ σa+1

∨

σb ∧ ρb ∧ σb+1

∨

σc ∧ ρc ∧ σc+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∨

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣ σk ∧ ρk ∧ σk+1

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

σm ∧ ρm

∨

σl ∧ ρl

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ σi+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(9)

Possible recognition methods boolean equation of checking sequence node

n2 in Figure 4 is represented in Appendix A.2.3:

24

∣

∣

∣ ρ2 ∧ ρ3

∣

∣

∣
∨

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣ σ1 ∧ ρ1

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ4 ∧ ρ4 ∧ σ5

∨

σ10 ∧ ρ10 ∧ σ11

∨

σ14 ∧ ρ14 ∧ σ15

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∨

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ1 ∧ ρ1

∨

σ4 ∧ ρ4

∨

σ10 ∧ ρ10

∨

σ14 ∧ ρ14

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ3 ∧ ρ3 ∧ σ4

∨

σ7 ∧ ρ7 ∧ σ8

∨

σ9 ∧ ρ9 ∧ σ10

∨

σ13 ∧ ρ13 ∧ σ14

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ σ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3.2.5 Boolean Formula of Checking Sequence

Between all nodes boolean equation, the and (∧) operation exists.

Supposed that all nodes on checking sequence path P has a boolean

equation c. If P = (n1, n2; x1/y1)(n2, n3; x2/y2) . . . (nr−1, nr; xr−1/yr−1), r >

1 and the boolean equations of the nodes are c1, c2, c2, c4, . . . cr−1, cr.

The checking sequence boolean equation will be:

c1 ∧ c2 ∧ c3 ∧ c4 ∧ . . . cr−1 ∧ cr (10)

The boolean formula of checking sequence in Figure 4 represented in

Appendix A is:

c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6 ∧ c7 ∧ c8 ∧ c9 ∧ c10 ∧ c11

∧ c12 ∧ c13 ∧ c14 ∧ c15

(11)

3.3 AND OR Graph Construction

We represent the checking sequence boolean formula as an AND-OR graph.

This graph has three group of nodes: possible input functions ρ, possible state

25

functions σ, and boolean equation of nodes c. Each possible state function

has a boolean equation. As we mentioned formerly, the boolean equation is

a combination of different possible input and state functions.

3.3.1 Possible Input Function ρ Graph Construction

The possible input function node of the graph includes the current node and

input of the checking sequence. Besides them, two kinds of boolean value

also exist; one of them controls if the possible input function can be removed

from the checking sequence, the other controls if the possible input function

has already removed from the checking sequence.

3.3.2 Possible State Function σ Graph Construction

The possible state function node of the graph includes the current node and

possible state of the checking sequence. Besides them, two kinds of boolean

value also exist; one of them controls if the possible state function can be

removed from the checking sequence, the other controls if the possible state

function has already removed from the checking sequence. The boolean

equation information, that proves the existence of possible state function

of current checking sequence node, is also included.

3.3.3 Boolean Equation c Graph Construction

The boolean equation node, that proves the existence of the current node of

the checking sequence, includes boolean equation of d-recognition, t-recognition

and e-recognition separetly. Also it has a boolean value in order to return

the boolean equation result. The boolean equation result is found by making

or operations between d-recognition, t-recognition and e-recognition boolean

values.

26

d-recognition Boolean Equation Graph Construction

As we mentioned on Section 3.2.1, the d-recognition is represented by only

possible input functions. Therefore d-recognition has information of related

possible input function nodes. Also a boolean value exists in order to control

whether d-recognition is proved.

t-recognition Boolean Equation Graph Construction

As we mentioned on Section 3.2.2, the t-recognition node has incoming tran-

sition and similar transitions that consist of possible state function and pos-

sible input function nodes. Also a boolean value exists in order to control

whether t-recognition is proved.

e-recognition Boolean Equation Graph Construction

As we mentioned on Section 3.2.3, the e-recognition node has outgoing node

and different transitions of all states different than selected state, that consist

of possible state and input function nodes. Also a boolean value exists in order

to control whether e-recognition is proved.

3.4 Checking Sequence Transition Optimization

Our main problem is to find redundant nodes on checking sequence, that’s

why finding the biggest transition set, that can be removed, is crucial. As

also we know that, trying all node combinations in order to find biggest node

set is very expensive. Therefore a simple heuristic is used in order to find

biggest consecutive node set and we try if this set is removable.

27

3.4.1 Finding a Possible Removable Input Function ρ

The algorithm is explained informally below and more precisely in Algorithm

2;

The algorithm start from the boolean value assignment of possible input

functions, ρ. ”True” value is gived for all boolean value of possible input

functions by default. The other nodes boolean values are not known at that

moment.

The possible state function σ and relevant possible input function ρ that

wants to be removed get the ”False” boolean values.

If a d-recognition possible input functions are all ”True”, the boolean equa-

tion c which has the relevant d-recognition get the ”True” value,

When a boolean equation c gets the ”True” boolean value, the possible

state function σ which is proved by this boolean equation c have ”True”

boolean value. The newly ”True” assigned σ boolean values effect also the

other boolean equations that have the σ.

After each iteration at least one newly assigned possible state function σ

should be found until all possible state functions get the ”True” value.

If all of the σ boolean values get ”True” excluding the node that is wanted

to remove, all other nodes of the checking sequence can be proved. If all possi-

ble state functions σ are traced and there exist at least one that unassigned,

there exist some nodes that can not be proved without the node that is

wanted to remove.

The Algorithm 1 initializes the boolean values of of ρi and σi that will be

removed.

The Algorithm 2 is the function that updates all the boolean values of c

and σ in a loop and returns possible removable input function order on the

checking sequence.

28

Algorithm 1: START-UPDATE

Input: BIiisρi boolean value

Input: BSiisσi boolean value

BIi = False;1

BSi = False;2

Algorithm 2: UPDATE-ALL

Input: ρi possible input function

Output: i possible input function order in checking sequence

BI = ρ’s boolean value;1

BS = σ’s boolean value;2

BC = c’s boolean value;3

BCD = c’s d-recognition boolean value;4

set all BI to ”True”;5

if c has a d-recognition and all BI of d-recognition is ”True” then6

BCD = True;7

BC = True;8

while any BS has not get a ”True” boolean value or all of BS,9

excluding the removing one, get ”True” do

set the related BC values to ”True”;10

set the related BS values to ”True”;11

if all BS, excluding the removing one, get ”True” then12

return i;13

29

Condider the tenth node of the checking sequence in Figure 4, n10, if this

node is removed, all and (∧) equations of a condition node that contains

n10 are eliminated. Because BI10 and BS10 get ”False” value, all and (∧)

equations that contain these values also get ”False” value. If we review

equations on Appendix A we can see n2, n3, n5, n6, n7 n9, n11, n13, n15 have

n10 in their boolean equations.

For example, consider n9, it has an equation like as;

∣

∣

∣ n9 → a ∧ n10 → a

∣

∣

∣
∨

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a

∨

n4 is s1 ∧ n4 → a

∨

n10 is s1 ∧ n10 → a

∨

n14 is s1 ∧ n14 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a ∧ n3 is s2

∨

n6 is s3 ∧ n6 → a ∧ n7 is s2

∨

n11 is s3 ∧ n11 → a ∧ n12 is s2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n10 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Each possibility of the equation has node n10, therefore if n10 is removed

n9 can not be proved.

If we consider n15, it has an equation like as:

∣

∣

∣ n14 is s1 ∧ n14 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a ∧ n2 is s3

∨

n4 is s1 ∧ n4 → a ∧ n5 is s3

∨

n10 is s1 ∧ n10 → a ∧ n11 is s3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

When node n10 gets the false value, if one of the other possibilities returns

true, node n15 can be proved.

30

3.4.2 Find Descending Consecutive List Set

The simple heuristic algorithm is explained informally below and more pre-

cisely in Algorithm 3;

At first all possible removable input functions ρ are found and added to

a list. Then this list members are grouped consecutively and separeted to

different lists and these lists are ordered by number of elements in descending

order.

Algorithm 3: FIND-ALL-REMOVABLE

Output: l list of possible input functions

foreach ρ do1

i = UPDATE-ALL();2

l = l ∩ {i} ;3

return l;4

The Algorithm 3 finds all possible removable input functions and put

them to a list. When nodes n5, n8, n9, n11, n12, n13 in Figure 4 is tried to

remove separetly from the checking sequence, all nodes, excluding selected

possible removed node, is proved on Appendix A.

Algorithm 4: GROUP-AND-ORDER-CONSECUTIVES

Input: l possible input function index list

Output: cls consecutive list set

find consecutive groups;1

order consecutive groups;2

return cls;3

The Algorithm 4 groups and orders consecutives and thus the nodes n5,

n8, n9, n11, n12, n13, can be grouped as {{n11, n12, n13}, {n8, n9}, {n5}}.

31

3.4.3 Find All Removed Nodes

All removed node list can be found by trying to remove all possible con-

secutive lists. If the list is removable, we update the checking sequence by

removing transitions related with consecutive list elements and by adding

new binding nodes (Section 3.4.4) in lieu of removed consecutive list. Then,

we remove this consecutive list from the set and we continue to find the other

most larger consecutive list to remove.

If the list is not removable, we devide the list to two new list (if the list

has for example 1, 2, 3, 4 elements; the new lists will be 1, 2, 3 and 2, 3, 4)

and add those new consecutive lists to the set and reorder the descending

consecutive list set. We continue this operation until descending consecutive

list set gets empty. At the end, all removed nodes are found.

The Algorithm 5 finds largest removed node set. When we look our

example, largest consecutive node set is {n11, n12, n13}. If the Algorithm

1 is run for all nodes of consecutive node set and we iterate Algorithm 2,

we can realize that all nodes excluding consecutive node set is proved on

Appendix A. But the transition (s2 − b/0 → s2) of FSM in Figure 1 can not

be implemented from reduced checking sequence. Therefore the consecutive

node list reordered and a new list created in order to reiterate the algorithm.

The new consecutive list is {{n12, n13}, {n11, n12}, {n8, n9}, {n5}}. As we

can also see the first two elements of the list can also be removed but the

transition (s2 − b/0 → s2) of FSM in Figure 1 can not be implemented from

reduced checking sequence again. So the consecutive node list reordered

again, it is now {{n8, n9}, {n5}, {n11}, {n12}, {n13}}.

When {n8, n9} are tried to remove, at this time the transition (s1 −

b/1 → s2) of FSM in Figure 1 can not be implemented from reduced checking

sequence.

32

Algorithm 5: FIND-LARGEST-REMOVED-NODE-SET

Input: cls consecutive list set

Output: rnl removed node set

BIisρ’s boolean value;1

BSisσ’s boolean value;2

CS checking sequence BNS binding node set while cls is not empty345

do

Try if the largest consecutive list cl is removable;6

foreach ρ in cl do7

START-UPDATE(ρ);8

UPDATE-ALL();9

if cl is removable then10

if all states of FSM in Figure 1 can be initialized on reduced11

checking sequence then

rnl = rnl ∩ cl ;12

BI = False ;13

BS = True ;14

CS = CS ∩ BNS ;15

Remove cl from cls;16

else17

Remove cl from cls;18

Generate two new consecutive lists from cl;19

Add two new cl to cls and reorder cls;20

return rnl ;21

33

Now we have a consecutive node list as: {{n5}, {n11}, {n12}, {n13}, {n8}, {n9}}.

All nodes in this list are tried to remove. Node {n5} can not be removed,

because the transition (s3− b/1 → s3) can not be implemented. Nodes {n12}

or {n13} can not be removed, because again the transition (s2 − b/0 → s2)

can not be implemented. Nodes {n8} or {n9} can not be removed, because

again the transition (s1 − b/1 → s2) can not be implemented.

It is only left node n11, when it is removed all other nodes can be proved

on Appendix A and all transitions of FSM in Figure 1 can be implemented

from reduced checking sequence.

3.4.4 Adding Binding Nodes

When a group of consecutive nodes are removed from checking sequence,

there may be needed to add binding nodes in order to attach previous node

of the first member of the consecutive list and next node of the last member of

consecutive list. The shortest path from the previous node of the first member

of the consecutive list to next node of the last member of consecutive list is

found from the FSM of the checking sequence and if this binding node path

is smaller than removed consecutive nodes set size, it is added to checking

sequence. Otherwise the consecutive node set can not be removed and new

consecutive node sets are tried to generate (see Algorithm 5).

In our example we know that, when node n11 is removed all other nodes

are proved on Appendix A and all transitions of FSM in Figure 1 are im-

plemented from reduced checking sequence. But we do not know now, the

previous and next node of n11 can bind without adding a new node. From

checking sequence in Figure 4, possible state of node n10 is s1 and possible

state of node n12 is s2. It can be seen on FSM in Figure 1 that there is a

direct transition between states s1 and s2. Therefore we can directly bind

34

n1 is s1 n2 is s3 n3 is s2 n4 is s1 n5 is s3

n10 is s1 n9 is s2 n8 is s1 n7 is s2 n6 is s3

n12 is s2 n13 is s2 n14 is s1 n15 is s3

a/1 a/0 a/0 a/1

b/1

a/0a/0b/1a/0

b/1

b/0 a/0 a/1

Figure 5: Reduced Checking Sequence of FSM M1

node n10 and n12. New checking sequence will be on Figure 5.

After a new checking sequence is found, the Algorithm 2 is reiterated in

order to find new removable nodes. When nodes n1, n9 are tried to remove

separetly from the checking sequence, all nodes excluding possible removed

node, are all proved on Appendix A.

When node n1 is tried to remove, the transition (s1 − a/1 → s3) of FSM

in Figure 1 can not be implemented from reduced checking sequence.

When node n9 is tried to remove, all states are implemented from the

reduced checking sequence. But removing node n9 is expensive, because the

possible state of previous node n8 and next node n10 are s1 and FSM in

Figure 1 does not have a direct transition between s1 and s1, so we can not

directly bind previous and next nodes.

Therefore only node n11 can be removed from checking sequence in Figure

4.

35

4 Analysis

A variety of methods for the construction of checking sequences have been

proposed in the literature [10, 17, 12, 3, 28, 27]. The newly found methods

were focused on the improvement of previous methods.

In this section the checking sequence transition reduction analysis will be

discussed and effectiveness of our approach will be compared according to

different invented methods. The methods have been implemented with Java

and the experiments have been executed on a machine with Intel Xeon 3.20

GHz and 64 GB ram.

The random FSM generation tool, that is mentioned in Section 2.5, is

used in order to generate diffent FSMs . For the analysis, 4 different groups

of FSM are used. Each group of FSM contains 30 FSMs and has 25, 50,

75, 100 number of states respectively. Each FSM has 5 input symbols and 5

output symbols.

We are going to compare our method according to 6 proposed different

methods. The comparisons will be in terms of checking sequence length.

The performance will be compared in terms of checking sequence length and

method execution times.

We also examine the recognition possibility augmentation of example on

Appendix A and how binding nodes and FSM implementation satisfaction

reduce this possibility.

4.1 Comparisons with Other Methods

In this section, checking sequence optimization of our method is compared

according to different methods. For the analysis, 6 different methods are line

up in chronological order, so their checking sequence lengths are also line up

36

in decreasing order.

The results show that even there exist low reductions at some points, our

method can not be feasible on large FSMs and for all early invented methods.

States M 1 M 2 M 3 M 4 M 5 M 6

100 25 17 0 10 4 0

75 25 16 0 12 3 0

50 22 23 1 19 6 0

25 24 23 5 15 5 0

Table 1: Number of Reduced Checking Sequences

Table 1 shows how many checking sequences were reduced for different

methods form Method 1 to Method 6 depending on the number of states. As

we can see from Table 1, as the methods get improved, numbers of checking

sequences that are reduced decrease and the possibility that the checking

sequences have not any reduction change increases.

States M 1 M 2 M 3 M 4 M 5 M 6

100 159/7664 123/6852 0/3142 49/3059 6/2453 0/2329

75 112/5466 147/4964 0/2276 47/2237 11/1775 0/1689

50 111/3398 108/2759 44/1603 37/1469 13/1124 0/1067

25 111/1453 72/1072 33/623 25/619 15/501 0/486

Table 2: Ratio of Reduced Lengths over the Original Checking Sequence

Lengths

Table 2 shows the ratio of average checking secuence lengths of differ-

ent invented methods versus checking sequence length reductions with new

invented method according to 4 different groups of 30 FSMs with different

number of states ranging 25 to 100. While finding the averages, the checking

37

sequences with 0 reductions are ignored for checking sequences groups that

the reduction is possible. For instance, the 25 checking sequences of Method

1 for FSMs that has 75 states can be reduced, so the averages are found for

checking sequence and reduction lengths on that 25 checking sequences. But

any checking sequence of Method 6 can be reduced, therefore they directly

get 0 for reduction average.

Even if a slight fluctuation exists on Method 3, while the methods are

improved, the reduction averages are diminished and reach 0 for the last

invented method.

States M 1 M 2 M 3 M 4 M 5 M 6

100 2.07% 1.78% 0% 1.6% 0.24% 0%

75 2.05% 2.96% 0% 2.1% 0.61% 0%

50 3.27% 3.91% 2.74% 2.5% 1.16% 0%

25 7.64% 6.72% 5.3% 4.04% 2.99% 0%

Table 3: Gain Percentage for Different Invented Methods

For each different state group, the checking sequence reduction gain per-

centage comparisons are shown from Table 3. As the number of states in-

crease, gain percentage is decreasing.

From Table 2 and 3, we can say that while the number of states in-

crease and methods improved, the complexity of the checking sequences also

increase and when try to remove a checking sequence node, binding the re-

maining nodes and satisfying FSM implementation is getting difficult.

4.2 Execution Time Analysis

During the analysis, it is noticed that most of the time is spent for elimination

recognition boolean formula creation. Figure 6 shows elimination recognition

38

Figure 6: Method execution times by checking sequence length

boolean formula creation execution times in second according to checking

sequence length, during reduction analysis. As we can see from Figure 6,

as the length of checking sequence increase, the reduction analysis execution

time increase exponentially.

4.3 Analysis of the Example

The example has 9 d-recognition boolean equations, 30 t-recognition boolean

equations and 123 e-recognition boolean equations. The e-recognition boolean

equations, that don’t have the possible input function and possible state func-

tion of other recognitions have for a node of checking sequence, are 45. There-

fore the recognition possibility of a state is augment 1, 9% on average.

Ignoring the binding nodes and FSM implementation satisfaction, {n8, n9,

n10, n11, n12, n13} nodes seem to be removed altogether. But if we consider

39

these two conditions, only n11 can be removed. Therefore the reduction

decrease 83%.

40

5 Conclusion

Finding the correctness of an FSM is the key point of FSM based testing.

The checking sequence is used in order to determine this correctness. All

invented checking sequence generation methods use distinguishing sequence

and it is known that distinguishing sequence may not exist for all FSMs and

the main problem of these methods is the reduction of the checking sequence

length.

In this thesis, we addressed these problems and found a new state recog-

nition method and tried to reduce checking sequence with a new approach,

that is boolean formula based checking sequence optimization algorithm.

The new state recognition method is called elimination method. It finds

new recognition conditions besides d- and t- recognition and augments the

possibility of the state recognition. In this recognition method, the states

conditions, other than the state that has been recognized, are examined and

the states that has the same input function and different possible output

function than the state that has been recognized has and states that has the

same input and possible output function and different next state function

than the state that has been recognized has, are taken to elimination recog-

nition set. Therefore during the determination of a elimination recognition,

the distinguishing sequence is not used.

The other contribution is a new checking sequence optimization algo-

rithm. This algorithm uses boolean formula in order to represent d-, t- and

e- recognition conditions of a state. All elements of a recognition condition

are anded and all possible recognition conditions of a state are ored with

each other. Indeed the checking sequence are represented as a global boolean

formula which has ands between each group of state recognition conditions.

Even if, thanks to the new recognition method and new approach for op-

41

timizing checking sequence, the recognition possibility of a state is increased,

trying to bind checking sequence nodes and to control whether the removable

node is broken the FSM state implementation or not, diminish the checking

sequence reduction and therefore the improvement can not be feasible with

under all of these conditions.

For the improvements and future work, we use a simple heuristic in order

to find largest removable node group of the checking sequence, it can be

better to find more clever heuristics. The other improvement can be on

generating elimination recognition conditions. Our algorithm now finds same

elimination recognition conditions and prevents the regeneration of these

same conditions. But a more powerful implementation can be found in order

to find similar parts of the elimination recognition conditions, therefore we

can also prevent regeneration of the same parts of elimination recognition

conditions and may reduce the time cost.

42

n1 is s1 n2 is s3 n3 is s2 n4 is s1 n5 is s3

n10 is s1 n9 is s2 n8 is s1 n7 is s2 n6 is s3

n11 is s3 n12 is s2 n13 is s2 n14 is s1 n15 is s3

a/1 a/0 a/0 a/1

b/1

a/0a/0b/1a/0

a/1

a/0 b/0 a/0 a/1

Figure 7: Checking Sequence of FSM M1

A Boolean Equation of the Example

This appendix give the boolean equation of checking sequence of M1 on

Figure 7.

We use possible state function σ and possible input function ρ in order to

explain boolean equations.

• Possibility of node k been state a, is denoted as nk is sa. It is the

possible state function σ of k.

• Possibility of node k trasition input been x, is denoted as nk → x. It

is the possible input function ρ of k.

43

A.1 Proposition of node n1 as state s1

A.1.1 d-recognition

∣

∣

∣ n1 → a

∣

∣

∣

A.1.2 e-recognition

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a

∨

n6 is s3 ∧ n6 → a

∨

n11 is s3 ∧ n11 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a

∨

n7 is s2 ∧ n7 → a

∨

n9 is s2 ∧ n9 → a

∨

n13 is s2 ∧ n13 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n2 is s3

∣

∣

∣

A.2 Proposition of node n2 as state s3

A.2.1 d-recognition

∣

∣

∣ n2 → a ∧ n3 → a

∣

∣

∣

A.2.2 t-recognition

∣

∣

∣ n1 is s1 ∧ n1 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n4 is s1 ∧ n4 → a ∧ n5 is s3

∨

n10 is s1 ∧ n10 → a ∧ n11 is s3

∨

n14 is s1 ∧ n14 → a ∧ n15 is s3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

44

A.2.3 e-recognition
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a

∨

n4 is s1 ∧ n4 → a

∨

n10 is s1 ∧ n10 → a

∨

n14 is s1 ∧ n14 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a ∧ n4 is s1

∨

n7 is s2 ∧ n7 → a ∧ n4 is s1

∨

n9 is s2 ∧ n9 → a ∧ n10 is s1

∨

n13 is s2 ∧ n13 → a ∧ n14 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n3 is s2

∣

∣

∣

A.3 Proposition of node n3 as state s2

A.3.1 d-recognition

∣

∣

∣ n3 → a ∧ n4 → a

∣

∣

∣

A.3.2 t-recognition

∣

∣

∣ n2 is s3 ∧ n2 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

n6 is s3 ∧ n6 → a ∧ n7 is s2

∨

n11 is s3 ∧ n11 → a ∧ n12 is s2

∣

∣

∣

∣

∣

∣

∣

∣

∣

A.3.3 e-recognition
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a

∨

n4 is s1 ∧ n4 → a

∨

n10 is s1 ∧ n10 → a

∨

n14 is s1 ∧ n14 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

n6 is s3 ∧ n6 → a ∧ n7 is s2

∨

n11 is s3 ∧ n11 → a ∧ n12 is s2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n4 is s1

∣

∣

∣

45

A.4 Proposition of node n4 as state s1

A.4.1 d-recognition

∣

∣

∣ n4 → a

∣

∣

∣

A.4.2 t-recognition

∣

∣

∣ n3 is s2 ∧ n3 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n7 is s2 ∧ n7 → a ∧ n8 is s1

∨

n9 is s2 ∧ n9 → a ∧ n10 is s1

∨

n13 is s2 ∧ n13 → a ∧ n14 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A.4.3 e-recognition

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a

∨

n6 is s3 ∧ n6 → a

∨

n11 is s3 ∧ n11 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a

∨

n7 is s2 ∧ n7 → a

∨

n9 is s2 ∧ n9 → a

∨

n13 is s2 ∧ n13 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n5 is s3

∣

∣

∣

A.5 Proposition of node n5 as state s3

A.5.1 t-recognition

∣

∣

∣ n4 is s1 ∧ n4 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a ∧ n2 is s3

∨

n10 is s1 ∧ n10 → a ∧ n11 is s3

∨

n14 is s1 ∧ n14 → a ∧ n15 is s3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

46

A.5.2 e-recognition

∣

∣

∣ n8 is s1 ∧ n8 → b ∧ n9 is s2

∣

∣

∣
∧
∣

∣

∣ n12 is s2 ∧ n12 → b

∣

∣

∣
∧
∣

∣

∣ n6 is s3

∣

∣

∣

A.6 Proposition of node n6 as state s3

A.6.1 d-recognition

∣

∣

∣ n6 → a ∧ n7 → a

∣

∣

∣

A.6.2 e-recognition
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a

∨

n4 is s1 ∧ n4 → a

∨

n10 is s1 ∧ n10 → a

∨

n14 is s1 ∧ n14 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a ∧ n4 is s1

∨

n7 is s2 ∧ n7 → a ∧ n4 is s1

∨

n9 is s2 ∧ n9 → a ∧ n10 is s1

∨

n13 is s2 ∧ n13 → a ∧ n14 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n7 is s2

∣

∣

∣

A.7 Proposition of node n7 as state s2

A.7.1 t-recognition

∣

∣

∣ n6 is s3 ∧ n6 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a ∧ n3 is s2

∨

n11 is s3 ∧ n11 → a ∧ n12 is s2

∣

∣

∣

∣

∣

∣

∣

∣

∣

47

A.7.2 e-recognition
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a

∨

n4 is s1 ∧ n4 → a

∨

n10 is s1 ∧ n10 → a

∨

n14 is s1 ∧ n14 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a ∧ n3 is s2

∨

n11 is s3 ∧ n11 → a ∧ n12 is s2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n8 is s1

∣

∣

∣

A.8 Proposition of node n8 as state s1

A.8.1 t-recognition

∣

∣

∣ n7 is s2 ∧ n7 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a ∧ n4 is s1

∨

n9 is s2 ∧ n9 → a ∧ n10 is s1

∨

n13 is s2 ∧ n13 → a ∧ n14 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A.8.2 e-recognition

∣

∣

∣ n5 is s3 ∧ n5 → b ∧ n6 is s3

∣

∣

∣
∧
∣

∣

∣ n12 is s2 ∧ n12 → b

∣

∣

∣
∧
∣

∣

∣ n9 is s2

∣

∣

∣

A.9 Proposition of node n9 as state s1

A.9.1 d-recognition

∣

∣

∣ n9 → a ∧ n10 → a

∣

∣

∣

48

A.9.2 e-recognition
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a

∨

n4 is s1 ∧ n4 → a

∨

n10 is s1 ∧ n10 → a

∨

n14 is s1 ∧ n14 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a ∧ n3 is s2

∨

n6 is s3 ∧ n6 → a ∧ n7 is s2

∨

n11 is s3 ∧ n11 → a ∧ n12 is s2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n10 is s1

∣

∣

∣

A.10 Proposition of node n10 as state s1

A.10.1 d-recognition

∣

∣

∣ n10 → a

∣

∣

∣

A.10.2 t-recognition

∣

∣

∣ n9 is s2 ∧ n9 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a ∧ n4 is s1

∨

n7 is s2 ∧ n7 → a ∧ n8 is s1

∨

n13 is s2 ∧ n13 → a ∧ n14 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

49

A.10.3 e-recognition

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a

∨

n6 is s3 ∧ n6 → a

∨

n11 is s3 ∧ n11 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a

∨

n7 is s2 ∧ n7 → a

∨

n9 is s2 ∧ n9 → a

∨

n13 is s2 ∧ n13 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n11 is s3

∣

∣

∣

A.11 Proposition of node n11 as state s3

A.11.1 t-recognition

∣

∣

∣ n10 is s1 ∧ n10 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a ∧ n2 is s3

∨

n4 is s1 ∧ n4 → a ∧ n5 is s3

∨

n14 is s1 ∧ n14 → a ∧ n15 is s3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A.11.2 e-recognition
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a

∨

n4 is s1 ∧ n4 → a

∨

n10 is s1 ∧ n10 → a

∨

n14 is s1 ∧ n14 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a ∧ n4 is s1

∨

n7 is s2 ∧ n7 → a ∧ n4 is s1

∨

n9 is s2 ∧ n9 → a ∧ n10 is s1

∨

n13 is s2 ∧ n13 → a ∧ n14 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n12 is s2

∣

∣

∣

50

A.12 Proposition of node n12 as state s2

A.12.1 t-recognition

∣

∣

∣ n11 is s3 ∧ n11 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a ∧ n3 is s2

∨

n6 is s3 ∧ n6 → a ∧ n7 is s2

∣

∣

∣

∣

∣

∣

∣

∣

∣

A.12.2 e-recognition

∣

∣

∣ n5 is s3 ∧ n5 → b

∣

∣

∣
∧
∣

∣

∣ n8 is s1 ∧ n8 → b

∣

∣

∣
∧
∣

∣

∣ n13 is s2

∣

∣

∣

A.13 Proposition of node n13 as state s2

A.13.1 d-recognition

∣

∣

∣ n13 → a ∧ n14 → a

∣

∣

∣

A.13.2 t-recognition

∣

∣

∣ n12 is s3 ∧ n12 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

n5 is s3 ∧ n5 → a ∧ n6 is s1

∨

n8 is s3 ∧ n8 → a ∧ n9 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

A.13.3 e-recognition
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a

∨

n4 is s1 ∧ n4 → a

∨

n10 is s1 ∧ n10 → a

∨

n14 is s1 ∧ n14 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a ∧ n3 is s2

∨

n6 is s3 ∧ n6 → a ∧ n7 is s2

∨

n11 is s3 ∧ n11 → a ∧ n12 is s2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n14 is s1

∣

∣

∣

51

A.14 Proposition of node n14 as state s1

A.14.1 d-recognition

∣

∣

∣ n14 → a

∣

∣

∣

A.14.2 t-recognition

∣

∣

∣ n13 is s2 ∧ n13 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a ∧ n4 is s1

∨

n7 is s2 ∧ n7 → a ∧ n8 is s1

∨

n9 is s2 ∧ n9 → a ∧ n10 is s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A.14.3 e-recognition

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n2 is s3 ∧ n2 → a

∨

n6 is s3 ∧ n6 → a

∨

n11 is s3 ∧ n11 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n3 is s2 ∧ n3 → a

∨

n7 is s2 ∧ n7 → a

∨

n9 is s2 ∧ n9 → a

∨

n13 is s2 ∧ n13 → a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∧
∣

∣

∣ n15 is s3

∣

∣

∣

A.15 Proposition of node n15 as state s3

A.15.1 t-recognition

∣

∣

∣ n14 is s1 ∧ n14 → a

∣

∣

∣
∧

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 is s1 ∧ n1 → a ∧ n2 is s3

∨

n4 is s1 ∧ n4 → a ∧ n5 is s3

∨

n10 is s1 ∧ n10 → a ∧ n11 is s3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

52

References

[1] Fsm-based incremental conformance testing methods. IEEE Trans.

Softw. Eng., 30:425–436, July 2004.

[2] A.V. Aho, A. T. Dahbura, D. Lee, and M.U. Uyar. An optimization tech-

nique for protocol conformance test generation based on uio sequences

and rural chinese postman tours. IEEE Transactions on Communica-

tions, pages 1604–1615, 1991.

[3] Jessica Chen, Robert M. Hierons, Hasan Ural, and Hüsnü Yenigün.

Eliminating redundant tests in a checking sequence. In Ferhat Khendek

and Rachida Dssouli, editors, TestCom, volume 3502 of Lecture Notes

in Computer Science, pages 146–158. Springer, 2005.

[4] T. S. Chow. Test design modeled by finite-state machines. IEEE Trans.

Software Eng., pages 178–187, 1978.

[5] M. Emre Dinçtürk. A two phase approach for checking sequence gener-

ation. Master’s thesis, Sabanci University, 2009.

[6] Lihua Duan and Jessica Chen. Reducing test sequence length using in-

vertible sequences. In Michael Butler, Michael G. Hinchey, and Maŕıa M.

Larrondo-Petrie, editors, ICFEM, volume 4789 of Lecture Notes in Com-

puter Science, pages 171–190. Springer, 2007.

[7] A.D. Friedman and P.R. Menon. Fault Detection in Digital Circuits.

Englewood Cliffs, NJ: Prentice-Hall, 1971.

[8] Stefania Gnesi, Diego Latella, and Mieke Massink. Formal test-case gen-

eration for uml statecharts. Engineering of Complex Computer Systems,

IEEE International Conference on, 0:75–84, 2004.

53

[9] Guney Gonenc. A method for the design of fault detection experiments.

Computers, IEEE Transactions on, C-19(6):551 – 558, june 1970.

[10] F. C. Hennie. Fault detecting experiments for sequential circuits. Proc.

5th Ann. Symp. Switching Circuit Theory and Logical Design, pages 95–

110, 1964.

[11] R. M. Hierons and H. Ural. Uio sequence based checking sequences

for distributed test architectures. Information and Software Technology,

45:798–803, 2003.

[12] Rob M. Hierons and Hasan Ural. Optimizing the length of checking

sequences. IEEE Transanctions on Computers, 55(5):618–629, 2006.

[13] Robert M. Hierons. Extending test sequence overlap by invertibility.

Comput. J., 39(4):325–330, 1996.

[14] Robert M. Hierons. Testing from a finite-state machine: Extending

invertibility to sequences. Comput. J., 40(4):220–230, 1997.

[15] Robert M. Hierons, Guy-Vincent Jourdan, Hasan Ural, and Husnu Yeni-

gun. Using adaptive distinguishing sequences in checking sequence con-

structions. In Proceedings of the 2008 ACM symposium on Applied com-

puting, SAC ’08, pages 682–687, New York, NY, USA, 2008. ACM.

[16] Robert M. Hierons and Hasan Ural. On minimizing the lengths of check-

ing sequences. IEEE Transactions on Computers, 46(46):93–99, 1997.

[17] Robert M. Hierons and Hasan Ural. Reduced length checking sequences.

IEEE Trans. Comput., 51(9):1111–1117, 2002.

[18] Florentin Ipate. Test selection for hierarchical and communicating finite

state machines. Comput. J., 52:334–347, May 2009.

54

[19] D. Lee and M. Yannakakis. Testing finite-state machines: State identi-

fication and verification. IEEE Transactions on Computers, 43(3):306–

320, 1994.

[20] D. Lee and M. Yannakakis. Principles and methods of testing fsms - a

survey. Proceedings of the IEEE, 84:1090–1123, 1996.

[21] R.E. Miller and S. Paul. On the generation of minimal-length confor-

mance tests for communication protocols. IEEE/ACM Trans. Netw.,

pages 116–129, 1993.

[22] S. Naito and M. Tsunoyama. Fault detection for sequential machines by

transition tours. Proc. Ilth IEEE Fault Tolerant Comput. Symp., pages

238–243, 1981.

[23] K. K. Sabnani and A. T. Dahbura. A protocol test generation procedure.

Computer Networks and ISDN Syst., pages 285–297, 1988.

[24] B. Sarikaya, G. v. Bochmann, and E. Cerny. A test design methodology

for protocol testing. IEEE Trans. Softw. Eng., 13:518–531, May 1987.

[25] B. Settles. ABNER: An open source tool for automatically tag-

ging genes, proteins, and other entity names in text. Bioinformatics,

21(14):3191–3192, 2005.

[26] D.P. Sidhu and T.K. Leung. Formal methods for protocol testing: a

detailed study. IEEE Trans. Softw. Eng., pages 413–426, 1989.

[27] Adenilso Simão and Alexandre Petrenko. Generating checking sequences

for partial reduced finite state machines. In TestCom ’08 / FATES ’08:

Proceedings of the 20th IFIP TC 6/WG 6.1 International Conference on

55

Testing of Software and Communicating Systems, pages 153–168, Berlin,

Heidelberg, 2008. Springer-Verlag.

[28] Hasan Ural and Fan Zhang. Reducing the lengths of checking sequences

by overlapping. In M. Ümit Uyar, Ali Y. Duale, and Mariusz A. Fecko,

editors, TestCom, volume 3964 of Lecture Notes in Computer Science,

pages 274–288. Springer, 2006.

56

