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Abstract

There are several methods to generate a checking sequence (CS)
from a given Finite State Machine M. These methods generate a CS
in such a way that when the CS is traced on M, every node visited
during this trace is recognized as some state of M and every transition
of M is traversed. When the recognitions of the nodes in this trace are
analyzed, it is observed that some of the nodes are recognized multiple
times redundantly. This observation raises the following question: Is
it possible to reduce the length of a given CS by eliminating redundant
recognitions? In this thesis we focus on this question. We formalize the
recognitions, detect multiple redundant recognitions and suggest a way
to eliminate them to reduce the length of a given CS. An experimental

study of our approach is also presented.
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Uretimi, Ikili Formiil
Ozet

Verilen bir Sonlu Durumlu Makina (SDM) M igin bir ¢ok kon-
trol dizisi (KD) iiretme metodu bulunmustur. Bu metodlar KD
tretimini, KD M tizerinden gezilirken yapilmaktadir. Bu gezme
sirasinda ziyaret edilen tim digimler, M’de bulunan baz du-
rumlar tarafindan tanimlanir ve M’de bulunan her bir baglanti
tizerinden gecilmis olur. Diigiimlerin tanimlanmasi incelendiginde,
baz diigiimlerin birden fazla kez gereksiz yere tanimlanmig olduk-
lar1 gozlemlenebilmektedir. Bu gozlem su soruyu ortaya ¢ikarmaktadir:
KD’nin uzunlugununu gereksiz tanimlamalar1 ortadan kaldirarak
azaltmak mumkiin miidiir? Bu ¢alismada bu soru tizerinde durul-
maktadir. Verilen bir KD uzunlugunu kisaltabilmek i¢in, tanimlamalar
somutlagtirilmig, birden fazla kez tanimlanan gereksiz diigiimler
bulunmug ve bu diigiimleri ortadan kaldirmak icin bir ¢oziim
sunulmustur. Ayrica bu yaklagimin deneysel bir ¢alismast da bu

tez igerisinde sunulmaktadir.
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1 Introduction

Behaviour of communication protocols, control circuits, machine learning
systems can be modeled as finite state machines (FSMs) [2, 4, 21, 24, 25, 26].
Unified Modeling Language (UML), Specification and Description Language
(SDL), and state charts also incorporate stated based representation for be-
havioural specifications [8, 18].

Given an FSM M representing the behavioural specification of a system,
and an implementation I claimed to implement M, I is needed to be tested
to check if it correctly implements M or not. The correctness of I with
respect to M can be proved by applying an input sequence to I, observing
the actual output sequence produced by [ in response to the application of
the input sequence, and comparing the actual output sequence of I with the
expected output sequence from M. The input sequence and the expected
output sequence compose a test sequence. Not every test sequence would
prove I to be correct. In fact, it is not possible to design a test sequence that
will prove I to be correct, in general. However under certain assumptions on
M and I, this is possible and a test sequence accomplishing such a proof is
called a checking sequence [10, 9, 16, 17].

The line of work for constructing such test sequences starts in 60s [10].
There were some studies in 70’s and 80’s [9, 4, 7, 23, 22], but area was more
active in 90’s [2, 21, 20, 19, 13, 14, 16]. The area has been still active within
the last decade [17, 1, 11, 15, 6, 3, 28, 12, 27, 5|. Each new method tries
to improve on the previous methods by constructing shorter test sequences
with the help of a better analysis or by applying a new approach.

A checking sequence basically tests if every state in the specification ma-
chine M also exists in the implementation /. Furthermore, it also considers

every transition in M and makes sure that the starting and ending states of



each transition, and the output produced by the transition can be the same
as in the specification M. Existence of a state of M in [ is performed by
using a special test sequence called a state identification sequence. There
are several flavors of state identification sequences such as preset distinguish-
ing sequence, adaptive distinguishing sequence, or unique input/out sequence,
etc [19]. Among these state identification sequences, distinguishing sequences
allows one to construct a polynomial length checking sequence.

A (preset or adaptive) distinguishing sequence D has a unique response
from each state of M. Therefore when a distinguishing sequence is applied
to I, the state of I before the application of D can be correlated to the
corresponding state of M based on the output produced by I to D. In this
case we say, the state of I is d-recognized as the corresponding state of M.
It is also possible to t-recognize a state of I as a state of M by using the
following observation: If there are two states of I recognized as the same
state of M and if the test sequence applies the same test sequence at both
of these states, then the final state reached after this test sequence must
also be recognized as the same state of M. In this thesis we also make
use of another recognition technique which we call e-recognition (stands for
elimination recognition). Intuitively a state n of I is recognized as a state
s of M when there are evidences that for each state s’ of M where s’ # s,
n cannot be s’. All of these recognition methods will be explained more
formally in Section 2 and in Section 3.

When a checking sequence generated by some method is analyzed, it is
observed that some of the states in I are recognized multiple times (of course
all of these recognitions will be for the same state of M), whereas only one
recognition is sufficient for the purpose.

After this observation, it is natural to think that it might be possible to



reduce the length of a given checking sequence by removing the parts of a
checking sequence causing multiple recognitions.

The rest of the thesis is structured as follows. Section 2 provides an
overview of related material. Section 3 then describes an approach to detect
multiple recognitions in a checking sequence and how to eliminate them.
In Section 4, we report an experimental study of the proposed approach
by trying to reduce checking sequence generated by several methods from
randomly generated FSMs. Finally, some concluding remarks are given in

Section 5.



2 Preliminaries

2.1 Finite State Machines
2.1.1 FSM elements

An FSM (finite state machine) M is defined as a tuple M = (S, X, Y, drr, Aar, Do, So)
in which S is a finite set of states, sy is the initial state, X is a finite

input alphabet, Y is a finite output alphabet, dy; is a next state function:

Om : Dy — S, Ay is an output function: Ay @ Dy — Y and D), is the
specification domain of these functions: Dy, € S x X [1].

An FSM M is deterministic if for each state s € S and for each input
1 € X, there is at most one transition defined in M.

An FSM is completely specified if the functions d;; and Ay, are total. In
other words if D, is equal to S x X, M is completely specified, this means
for each state s € S and for each input ¢ € X there is a transition defined in
M.

A transition is defined by a tuple (s;—z/y — s;) in which s, is the starting
state, x is the input, s; = dp(s;, x) is the ending state, and y = A\p(s;, x) is
the output. The transiton is s; — x — s; when the output is not used.

Supposed that;

M = (S, X,Y,0nm, Aur, Dar, s1) and

I =(T,X,Y,Ar,A;, Dy, ty) are two FSMs.

Further, we suppose that specifications will be represented with M and
implementations will be represented with notation I which are complete.

Two states, s; of M and t; of I, said to be compatible if and only if
for every input sequence o = x1xs...x, € X* the machines produce the
same output sequence, i.e. 0y (sj,a) = Af(t;, o). Otherwise the states are

distinguishable.



If I and M are complete, the compatible states have been equivalent
states. A machine M is minimal (reduced) if and only if no FSM with fewer
states than M is equivalent to M or if every pair of its states is distinguishable.

For an input sequence «.x:

O (Siy ) = Opr(dpr (s, ), ) while

A (8i, ) = A8y, @) A (O (i, @), ).

An FSM is also initially reachable if for each s; € S there exists some
input sequence av € X* such that dp(so, ) = s; (i.e. each state s; € 5 is

reachable from the initial state sq)

2.1.2 FSM as a Directed Graph

An FSM M can be represented by a digraph (directed graph) G = (V| E),
with a vertex set V = {vy, vy, ..., v,} which represents the set S of states of
M where n = |S| number of elements, and with the edges e = (v;, vg; 2 /y) €
FE that represents a transition from state s; to state s, with input z € X
and output y € Y [16].

vj and vy, are the start and end of e and input/output (I/O pair) z/y is
the label of e, denoted label(e). Two edges e; and e, are called adjacent if
end of e; and start of e; are same.

A path P = (nq,no; x1/y1)(ne, ng; ©2/ya) - .. (Np_1, 0y Tpy JYyp—1), 7 > 1, of
G is a finite sequence of (not necessarily distinct) adjacent edges in E| where
each node n; represents a vertex from V';n; and n, are the start and end of
P and (z1/y1)(z2/y2) - .. (xy—1/yr—1) is the label of P, denoted label(P).

P can also represented by (ny,n,; 1/O), where label(P) = 1/O is the 10-
sequence (z1/y1) (x2/y2) ... (xr—1/yr—1), input sequence I = (z123...2,,) is
the input portion of I/O, and output sequence O = (y1ys . . . ¥, ) is the output
portion of [/0O.



b/0

a/0
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b/1
a/l a/0

S

b/1
Figure 1: FSM M,

G is strongly connected, if for all v;;v; € V', there is a path from v; to v;.

The cost (or length) of an edge is the number of /O pairs in the label of
the edge.

The cost (or length) of path P is the sum of the costs of edges in P. The
concatenation of two sequences (or paths) P and @ is denoted by PQ.

Consider the FSM M; given in Figure 1, according to definitions:

e For each state, there is at most one transition defined in FSM M,

therefore FSM M, is deterministic.

e For each state, there is a transition defined in FSM M, therefore FSM

M is completely specified.

e Every pair of states in FSM M; are distinguishable so FSM M is

minimal.

e For every vertex in FSM M there is a path between them, so FSM M,

is strongly connected.



2.2 Transfer Sequence

The label of a path from s; to s; is the transfer sequence T' of FSM M [11]. In
other words, for each of two states s;,s; € S, there exists an input sequence
a, called a transfer sequence from state s; to state s;, such that s; = §(s;, ).
For example, there is a transfer sequence from state s3 to s; with path
aa/00 on FSM M; given in Figure 1.
If there exist a transfer sequence from all state s; to state s;, FSM M is
said to be strongly connected. The FSM M is initially connected if there is a

transfer sequence from the initial state sy to each state.

2.3 Distinguishing Sequence

There are two types distinguishing sequences; preset distinguishing sequence
and adaptive distinguishing sequence. We actually use the adaptive distin-
guishing sequence but in order to give the concept and differencies between

them. We need to metion about two of them.

2.3.1 Preset Distinguishing Sequence

An input sequence x € X is a preset distinguishing sequence (PDS) for an
FSM M if the output sequence produced by M in response to x is different
for each state[15].

For instance, for an input sequence D and for every pair of s;,s; € S,
Z?é.]7 )\M(SHD) 7£ )\M(S]7D>
2.3.2 Adaptive Distinguishing Sequence

A PDS can be used as an input sequence and distinguish each state of the

FSM. As for adaptive distinguishing sequence (ADS) is not really a sequence



but a decision tree which exactly n leaves. The internal nodes of the tree are
labeled with input symbols, its edges are labeled with output symbols, and
its leaves are uniquely labeled with states [15]. That means while the tree is
walked from the root through a leaf, we can find one of the state unique input
and output sequences which is distinguished from the other leaves (states),
such that for a common prefix o, Ay(si, @) # A(sj, @).

For every leaf of the tree, if D; and y; are the input and output strings
respectively formed by the node and edge labels on the path from the root
to the leaf labeled by state s; of the FSM then y; = Aps(s;, D).

We call D; as the ADS of state s;.

For example, D; = a/1, Dy = aa/01, D3 = aa/00 are the distinguishing
sequence of each state of M; on Figure 1.

ADS has more advantages than PDS on state identification. At first PDS
is a kind of ADS, but the reverse is not true. Therefore, there can be FSMs
with ADS but not PDS. If we can use adaptive distinguishing sequences
instead of preset ones in a checking sequence generation method, then the
method can be applied on a strictly larger set of FSMs. Because for a given
FSM it is known that the shortest ADS is no longer than the shortest PDS
[19].

2.4 Checking Sequence

The checking sequence concept is born in order to determine fault detec-
tion of an FSM. Assume that an F'SM; € ®(FSM;) which is deterministic,
strongly connected, completely specified and minimal and also assume that
an F.SM; € ®(FSM;) claimed to be an implementation of the F'SM which
is not change during execution and sets of inputs and outputs are identical

to those F'SM, and also it has n distinct states.



The input sequence of F'SM; is called a checking sequence, when output
sequence from F'SM; in response to the checking sequence is used to verify
whether F'SM; is a correct implementation of F'SM;.

A checking sequence of FSM, is an input sequence such that it distin-
guishes F'SM, from every FSM FSM; € ®(FSM;) that is not equal to
FSM;.

Checking sequence correctness is obtained by three steps:

1. F'SM,; should be initialized.
2. F'SM; is checked whether it has at least n distinct states.

3. F'SM; is checked whether it implements all transitions of F'.SM,.

For the first step of checking sequence correctness, there should be shown
that if F'SM; has a (s;, sg; x/y) transition, then F'SM; should have a corre-
sponding transition (f(s;), f(sk);z/v).

The state correctness are formally proved by the concepts d-recognition
and t-recognition.

Consider a path P of G representing F'SM, and the nodes within it:

d-recognition:

A node n; of P is d-recognized as state s of F'SM, if n; is the start of a
subpath of P with label D/A(s, D).
In Figure 2, a distinguishing sequence on a subpath with label D/A(a, D)

is recognized for node n; so node n; is d-recognized.



D/A(a, D)

d-recognized
as a

Figure 2: d-recognition
t-recognition:

A node n; of P is t-recognized as state s’ of F'SM, if there are two subpaths
(ng,ni; X'/Y") and (nj, ng; X'/Y’) of P such that n, and n; are recognized
as s of F'SM, , ny is recognized as state s’ of F’'SM,. The similar transfer

sequences and recognitions are shown in Figure 3.

T T

(—=() -

d- or t-recognized t-recognized d- or t-recognized d-or t-recognized
as a as a' as a as a'

Figure 3: t-recognition

The last step of the checking sequence correctness is defined as follows.
A transition t = (s, s';2/y) of FSMj is verified (in P ) if there is an edge
(ni,niy1; 2" /y") of P such that nodes n; and n,;y; are recognized as states s
and s’ of F'SMj respectively and z'/y' = z/y.

The theorem below from [16] explains effectively checking sequence.

Theorem 1. Let X/Y be the label of a path P of directed graph G (for FSM
FSM; ) such that every transition is verified in P. Then X (i.e. the input
portion of label of P ) forms a checking sequence of F.SM .

For the checking sequence in Figure 4, consider 1/0O sequence with a path

X/Y = aaaabaabaaabaa/10011001010001 and FSM M; in Figure 1. In the

10



! ‘,/i‘,/i‘,/i
b/1
a/l

Figure 4: Checking Sequence of FSM M,

given path, every transition is verified with d-recognition and t-recognition.
Then, we can say that X = aaaabaabaaabaa forms a checking sequence of

FSM M; in Figure 1.

2.5 Random FSM Generation

In order to make checking sequence analysis and comparisons, a group of
FSMs that have different number of states is needed. All checking sequence
generation and optimization methods need special FSMs. Thanks to random
FSM generation tool, the random FSM can be generated with special prop-
erties. This tool generate FSMs with any of the following properties listed

below:
e Being strongly connected (or not)

e Being initially reachable (or not)

11



e Being minimal (or not)
e Having a preset distinguishing sequence (or not)

e Having an adaptive distinguishing sequence (or not)

In our thesis, the properties strongly connected, minimal and having

adaptive distinguishing sequence are used.

12



3 Our Method

In this section a new checking sequence optimization method will be pre-
sented. In order to reduce the length of the checking sequence, we generate
a new state recognition method is called elimination recognition method. We
then describe the checking sequence as a boolean formula in order to enable
the elimination and other state recognition methods to work on it and let
them to find unnecessary transitions. We use an AND-OR graph in order to
implement this checking sequence and we do an exhaustive search in order

to find transitions that can be removed.

3.1 Elimination Recognition Method

A node n; of P is recognized with this method as state s of F.SM, if there
exists different nodes for each different state then s (s’ # s) and these nodes
have also the same input as n;. The output function of a node may or may
not be the same as the output function of n;. If the output function is the
same, the next state functions should be different then n;’s output function.
If the output functions are different, we do not need the next state function
comparisons.

If we experience these type of nodes for each state different than s that
mentioned above the elimination recognition method can be performed for
n;.

We can denote elimination recognition as e-recognition.

We can explain the recognition more formally:

Supposed that there exists a checking secuence with path P and FSM
FSMs and nodes n; and n;,1 with a sequence (n;, n;,1;;/y;) can be recog-

nized as states s and s’. Node n; can be e-recognized as state s, if there exist

13



sequences for all different states then s like:

1. (ng,ngr1; 2/yr) € P, if node ny is not recognized as state s, ngyq is

3 /
not recognized as s', xp = x;, yp = y; Or

2. (ng,nq1; 2 /yx) € P, if node n; is not recognized as state s, zp = x;,

yr 7 y; for all states of F'SM s different then state s.

For example, node ng in checking sequence in Figure 4 want to be rec-
ognized as state sy with a sequence (ng,n4;a/0) . We assume that ny is
recognized as state sj.

There exist two different states than sy, therefore we trace the checking

sequence if there exist transitions;

e that the incoming node is not recognized as state s, and outgoing node
is not recognized as state sy, while the input and output is a/0. These

transitions are found from Appendix A and Figure 4:

— (ng,n7;a/0), We can see that from Appendix A.6 ng is recognized

as state s3 and from Appendix A.7 n; is recognized as state sg

— (n11,n12;a/0), We can see that from Appendix A.11 nq; is rec-
ognized as state s3 and from Appendix A.12 ny, is recognized as

state sy

e that the incoming node is not recognized as state sy, while the input
is a and output is different than 0: These transitions are found from

Appendix A and Figure 4:

— (n1,n9;a/1), We can see that from Appendix A.1 n; is recognized

as state s;

14



— (n4,n5;a/1), We can see that from Appendix A.4 ny is recognized

as state s;

— (n19,n11;a/1), We can see that from Appendix A.10 nq; is recog-

nized as state s;

— (ny4,n15;a/1), We can see that from Appendix A.14 ny, is recog-

nized as state s;

3.2 Checking Sequence as Boolean Formula

In this thesis the checking sequence is formulated as boolean formula. The
boolean formula is generated via d-, t-, e- recognition methods that men-
tioned on Section 2 and Section 3. All nodes on checking sequence path can
be recognized by these methods. All recognition possibilities of node of a
checking sequence are represented as boolean formula.

The boolean formula building structure has two different kind of values,
these values represent possible state and input functions of a node on checking
sequence path.

More formally, we can explain these two kind of values with:

1. node n; can be recognized as state s can be shown as o; (Possible state

function of node n;)

2. node n; transition can have x input function can be shown as p; (Pos-

sible input function of node n;)
The boolean formula generally is constructed with below instructions:
e All state recognition methods are formulated with o and p.

e In order to represent d-, {-, e- recognitions of one node, the and (A)

operation is used between all o and p.

15



e The and (A) operation is also used between all d-, -, e- recognition

groups of two different checking sequence nodes.

e The or (V) operation exists between all d-, t-, e- recognitions of one

checking sequence node.

3.2.1 Boolean Formula of d-recognition

The founded d-recognitions on the path are represented by only possible input
functions, p.
Supposed that node n; has a d-recognition with a distinguishing set

D = {D,,, D, } where D; = x;/y;, D = i11/Yis1, SO this recognition

Sit1

equation is represented as:

Pi N\ Pit1 (1)

This means the node has a distinguishing sequence with two input functions
and the occurrence of those input functions found for p;, p;i1.

For example, we know that node ny in checking sequence in Figure 4
has a d-recognition D3 from Section 2.3.2. We represent this recognition in

Appendix A.2.1 as:

)n2—>a/\n3—>a

So

i

3.2.2 Boolean Formula of t-recognition

The founded t-recognitions on the path are represented by possible input

functions p and possible state functions o.
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There are two groups in the representation of t-recognition as a boolean
formula; one part is for the incoming transition and the other part is for
similar transitions of the node that has been t-recognized. The incoming
transition part is defined by the previous node and its input function and it
is represented by possible state and input function of one previous node of the
node that has been t-recognized. Similar transitions are the transitions that
includes the possible state of the node that has been t-recognized and possible
state of its previous node. The similar transition part are represented by
possible state functions of incoming and outgoing node and possible input
function of incoming node of current similar transition.

Supposed that nodes n; ;1 with a sequence (n;, n;11; ;/y;) can be t-recognized
as state . And we know that n; has already been recognized as s.

So the incoming transition part is represented as:

i N\ pi (2)

For example, consider node ny of the checking sequence in Figure 4. The
incoming transition of node ny is (ny, ng; a/1). It is represented in Appendix

A.2.2 as:

‘nlissl/\nl—ﬂz)

So

’ A WAY

Supposed that there exists a checking secuence with path P and it has
like; (g, nar1;Ta/Ya), (Mo Mpr1;Te/ys) and (ne, Ner1; xe/y.) are the similar
transitions, that means n,, ny, n. can be recognized as state s and nqy 1, npi1,

ner1 can be recognized as state s’ and {z,, xp, .} = Tiy {Yas Yb, Yo} = V-

17



So the similar transition part is represented as:

Oa N\ Pa N\ gt
oy N\ Py N\ Opt1 (3)
Oc N\ Pe N\ Ocy1

For example, node ny of the checking sequence in Figure 4 has a incoming

transition (n1,m9;a/1). The similar transtions is represented in Appendix

A.2.2 as:

N4 18 S ANy — a A ns 1S S3
vV
n10 is S1 N Nyg — a A\ nqp is S3

V

N4 1S S1 A Nja — a A nys 1S S3

So

(o) /\p4 A 05
Vv
010 N\ pro N\ o

vV

014 N\ p1a\ 015

The incoming and similar transition parts are combined as:

Oq N Po N\ Ogt1
V
N oy A py A Opy1 (4>

) i N\ i
V

Oc N\ Pe N\ Ocq1
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Node ns of the checking sequence in Figure 4 has a t-recognition in Ap-

pendix A.2.2 represented as:

N4 18 S ANy — a Ans 1S S3
V

nyis s Ang —a | N| nyois st Angg — aAngp is Sz

V

N4 1S S1 A Nja — a A nys 1S S3

So

o4 N\ pg N\ 05
vV

) WA )/\ 010 N\ p1o A\ 011

V

014 N\ p1a N\ 015

3.2.3 Boolean Formula of e-recognition

The founded elimination recognitions on the path are also represented by
possible input functions p and possible state functions o.

There are two groups in the representation of e-recognition as a boolean
formula; one part is for the outgoing node of the node that has been e-
recognized, and the other part, different transitions part, is for the nodes
that can be recognized as a state different then the state of the node that
has been e-recognized. The outgoing node is represented by possible state
function of next node of the node that has been e-recognized. Different tran-
sitions are the transitions that has a incoming node that can be recognized
as a state different then the possible state function of the node that has been

e-recognized and these transitions have also the same input function as the
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node that has been e-recognized. The output function of a node may or not
the same as the node that has been e-recognized. If the output function is
same, the next state function should be different then the node that has been
e-recognized has. So this type of different transition part can be represented
by possible state functions of incoming and outgoing node and possible in-
put function of incoming node of current different transition. If the output
functions are different we do not need the next state function comparisons.
So this type of different transition part can be represented by possible state
and input function of incoming node of current different transition.

Supposed that nodes n; with a sequence (n;, n;41; x;/y;) can be e-recognized
as state s. And we know that n,;,; has already been recognized as s'.

So the outgoing node part is represented as:

Oit+1 (5)

The outgoing node of the checking sequence node ny in Figure 4 is ng,

therefore the outgoing node part is represented in Appendix A.2.3 as:

‘ngiSSg‘

So

o |
Supposed that there exists a checking secuence with path P and it has
nodes n; and n; 1 with a sequence (n;, n;11; x;/y;) can be recognized as states
s and s'.
Supposed also that there exist a sequence (ng, ngi1;xx/yx) € P and node

ng are not recognized as state s, npy; are not recognized as s, rp = x;,

20



Yk = Yi:

So different transition part with same output function is represented as:

Ok N\ P N\ Ok41 (6)

Node ns of the checking sequence in Figure 4 has a outgoing transition
(n2,m3;a/0) and node ny wants to be recognized as state s3 and node ng
is recognized as state so. Therefore the different transition part with same

output is represented in Appendix A.2.3 as:

n3 iS S Ang — a Any is sq
V

N7 18 So Any — aAny is s;
V

Ng 1S S9 A g — a A nqg is S1
V

n13 is S9 ANnNig — a A\ niy is s1

So

o3 N\ p3 N\ oy
V

o7 N\ pr N\ 03
\%

o9 N\ pg N\ 010

V

013 N\ p13 N\ 014
Supposed that there exist a sequence (n;,ni1;zx/yr) € P and nodes n,

are not recognized as state s, x, = x;, yp # y; for all states of 'S M s different
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then state s.
So different transition part with different output function is represented

as:

O /\pk (7)

Node ny of the checking sequence in Figure 4 has a outgoing transition
(na,m3;a/0) and node ny wants to be recognized as state s3 and node ng is
recognized as state so. Therefore the different transition part with different

output is represented in Appendix A.2.3 as:

nyis sgAng —a
V

ng is s1 ANy — a
V

n10 is S1 NNy — a

V

N4 1S S AN — a

So

WA
V

04 N\ Py
V

010 N P1o

V

014 N\ P14
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Now supposed that FSM F.SMs has three different states s, ', s”. And
node n; is wanted to be e-recognized as s. We also supposed that there exist
a sequence (n;,n;y1;x;/y;) and n; ;1 is recognized as s'.

If there exist a different transition part for all nodes other then s, it can
be said that n; can be e-recognized as s.

Supposed that there exist such below transitions for s’, s” respectively:

1. (ng, nge1; xe/yr) € P, if node ny is recognized as state ', ng.q is not

recognized as s, T, = T, Yp = Vi

2. (ny,nyy1; xe/yr) € P, if node n; is recognized as state s”, z, = z,

yk#yi

3. (Mn, ma1; T /Ym) € P, if node n, is recognized as state s”, x,, = z;,

So the e-recognition boolean equation will be:

o\ pi

O N\ P N\ Opgr | A \ A ’ Oit1 (8)
Om N\ Pm,
Node nsy of the checking sequence in Figure 4 has a e-recognition that is

represented in Appendix A.2.3 can be shown as:
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o1\ p1
V
o4 N\ Py
V

010 N\ P1o

V

014 N\ P14

03N\ p3/\ 0oy
V

0'7/\p7/\0'8

A V

o9 \ pg N\ 010
V

013 A\ p13 N 014

Mo ]

3.2.4 Boolean Formula of a Checking Sequence Node

Between all possible state recognition methods of a node the or (V) operation

exists.

So the node n; boolean equation will be:

‘ Pi I\ Pit1 ‘\/

A

} i N\ p;

Oa N\ Pa N\ Oay1
V

Oy N\ pp N\ Opy1
vV

Oc N\ Pe N\ Ocq1

Vil ok Ape Aoggr | A

\ /\‘UiJrl‘

Possible recognition methods boolean equation of checking sequence node

no in Figure 4 is represented in Appendix A.2.3:
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a1 A\ p1 o3\ p3 N\ 0y
o4 N\ py N\ 05 V \Vi
V o4 N\ Py o7 N\ pr N\ og
‘02/\P3 ‘V ‘01/\,01 Nl owApioAon | |V \% A \
\Y 010 A\ p1o o9 A\ pg N\ 019
14 N\ p1a N\ 015 \Y vV
o114 N\ P14 013\ p13 N\ 014

3.2.5 Boolean Formula of Checking Sequence

Between all nodes boolean equation, the and (A) operation exists.

Supposed that all nodes on checking sequence path P has a boolean
equation c. If P = (ny,n9;x1/y1)(na, n3; xe/y2) - . (Mp—1, My Tpy [Yp—1), 7 >
1 and the boolean equations of the nodes are cq, co, o, ¢4, ... Cr_1, Cp.

The checking sequence boolean equation will be:

cgNCaNCgNeg N ey Ny (10)

The boolean formula of checking sequence in Figure 4 represented in

Appendix A is:

Cl/\CQ/\Cg/\C4/\C5/\06/\07/\08/\09/\010/\011 ( )
11

A cig N\ c13 A cig A €15

3.3 AND OR Graph Construction

We represent the checking sequence boolean formula as an AND-OR graph.
This graph has three group of nodes: possible input functions p, possible state

25
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functions o, and boolean equation of nodes c¢. Each possible state function
has a boolean equation. As we mentioned formerly, the boolean equation is

a combination of different possible input and state functions.

3.3.1 Possible Input Function p Graph Construction

The possible input function node of the graph includes the current node and
input of the checking sequence. Besides them, two kinds of boolean value
also exist; one of them controls if the possible input function can be removed
from the checking sequence, the other controls if the possible input function

has already removed from the checking sequence.

3.3.2 Possible State Function ¢ Graph Construction

The possible state function node of the graph includes the current node and
possible state of the checking sequence. Besides them, two kinds of boolean
value also exist; one of them controls if the possible state function can be
removed from the checking sequence, the other controls if the possible state
function has already removed from the checking sequence. The boolean
equation information, that proves the existence of possible state function

of current checking sequence node, is also included.

3.3.3 Boolean Equation ¢ Graph Construction

The boolean equation node, that proves the existence of the current node of
the checking sequence, includes boolean equation of d-recognition, t-recognition
and e-recognition separetly. Also it has a boolean value in order to return
the boolean equation result. The boolean equation result is found by making
or operations between d-recognition, t-recognition and e-recognition boolean

values.
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d-recognition Boolean Equation Graph Construction

As we mentioned on Section 3.2.1, the d-recognition is represented by only
possible input functions. Therefore d-recognition has information of related
possible input function nodes. Also a boolean value exists in order to control

whether d-recognition is proved.

t-recognition Boolean Equation Graph Construction

As we mentioned on Section 3.2.2, the t-recognition node has incoming tran-
sition and similar transitions that consist of possible state function and pos-
sible input function nodes. Also a boolean value exists in order to control

whether t-recognition is proved.

e-recognition Boolean Equation Graph Construction

As we mentioned on Section 3.2.3, the e-recognition node has outgoing node
and different transitions of all states different than selected state, that consist
of possible state and input function nodes. Also a boolean value exists in order

to control whether e-recognition is proved.

3.4 Checking Sequence Transition Optimization

Our main problem is to find redundant nodes on checking sequence, that’s
why finding the biggest transition set, that can be removed, is crucial. As
also we know that, trying all node combinations in order to find biggest node
set is very expensive. Therefore a simple heuristic is used in order to find

biggest consecutive node set and we try if this set is removable.
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3.4.1 Finding a Possible Removable Input Function p

The algorithm is explained informally below and more precisely in Algorithm
2;

The algorithm start from the boolean value assignment of possible input
functions, p. 7True” value is gived for all boolean wvalue of possible input
functions by default. The other nodes boolean values are not known at that
moment.

The possible state function o and relevant possible input function p that
wants to be removed get the ”False” boolean values.

If a d-recognition possible input functions are all " True”, the boolean equa-
tion ¢ which has the relevant d-recognition get the ”True” value,

When a boolean equation c gets the "True” boolean value, the possible
state function o which is proved by this boolean equation c¢ have ”True”
boolean value. The newly ”True” assigned o boolean values effect also the
other boolean equations that have the o.

After each iteration at least one newly assigned possible state function o
should be found until all possible state functions get the "True” value.

If all of the o boolean values get " True” excluding the node that is wanted
to remove, all other nodes of the checking sequence can be proved. If all possi-
ble state functions o are traced and there exist at least one that unassigned,
there exist some nodes that can not be proved without the node that is
wanted to remove.

The Algorithm 1 initializes the boolean values of of p; and o; that will be
removed.

The Algorithm 2 is the function that updates all the boolean values of ¢
and o in a loop and returns possible removable input function order on the

checking sequence.
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Algorithm 1: START-UPDATE

1

2

Input: Bl;isp; boolean value
Input: BS;iso; boolean value
BI;, = False;
BS; = False;

Algorithm 2: UPDATE-ALL

10

11

12

13

Input: p; possible input function

Output: ¢ possible input function order in checking sequence

BI = p’s boolean value;

BS = o’s boolean value;

BC = ¢’s boolean value;

BCD = ¢’s d-recognition boolean value;

set all BI to ”True”;

if ¢ has a d-recognition and all BI of d-recognition is "True” then
BCD = True;
BC = True;

while any BS has not get a "True” boolean value or all of BS,
excluding the removing one, get "True” do
set the related BC' values to ” True”;

set the related BS values to " True”;

if all BS, excluding the removing one, get "True” then

return ¢;
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Condider the tenth node of the checking sequence in Figure 4, ny, if this
node is removed, all and (A) equations of a condition node that contains
nip are eliminated. Because Bljy and BSjo get "False” value, all and (A)
equations that contain these values also get "False” value. If we review
equations on Appendix A we can see ns, n3, ns, Ng, N7 Ng, N11, N13, N5 have
nio in their boolean equations.

For example, consider ng, it has an equation like as;

ng —>alAnyg—a |V

nis st Ang —a
V N9 1S S3 Ang — a A ns is S
N4 18 Sy ANy — a V
Vv ANl ngis s3/Ang—>a/Anyis sy /\’nloissl
n10 1S S1 NN — a V
V N1 1S S3 A nip — a A njg is Sy
N4 1S S1 AN — a

Each possibility of the equation has node nyq, therefore if nqy is removed

ng can not be proved.

If we consider nys, it has an equation like as:

Ny 18 S ANy — a Angis S3
V
N1 1S S1 AN — a A N4 18 S ANy — a A ns 1S S3

vV

n10 is s1 ANniyg — aAnp is S3
When node nj, gets the false value, if one of the other possibilities returns

true, node n;5 can be proved.
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3.4.2 Find Descending Consecutive List Set

The simple heuristic algorithm is explained informally below and more pre-
cisely in Algorithm 3;

At first all possible removable input functions p are found and added to
a list. Then this list members are grouped consecutively and separeted to
different lists and these lists are ordered by number of elements in descending

order.

Algorithm 3: FIND-ALL-REMOVABLE
Output: [ list of possible input functions

1 foreach p do
2 i = UPDATE-ALL();
3 l=1n{i};

4 return [;

The Algorithm 3 finds all possible removable input functions and put
them to a list. When nodes ns, ng, ng, ni1, ni2, niz in Figure 4 is tried to
remove separetly from the checking sequence, all nodes, excluding selected

possible removed node, is proved on Appendix A.

Algorithm 4: GROUP-AND-ORDER-CONSECUTIVES
Input: [ possible input function index list

Output: cls consecutive list set
1 find consecutive groups;
2 order consecutive groups;

3 return cls;

The Algorithm 4 groups and orders consecutives and thus the nodes nj,

ng, Ng, Ni1, N12, N13, Cal be grouped as {{77/11,77/12, 'I’ng}, {77/8, ’I’Lg}, {77/5}}
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3.4.3 Find All Removed Nodes

All removed node list can be found by trying to remove all possible con-
secutive lists. If the list is removable, we update the checking sequence by
removing transitions related with consecutive list elements and by adding
new binding nodes (Section 3.4.4) in lieu of removed consecutive list. Then,
we remove this consecutive list from the set and we continue to find the other
most larger consecutive list to remove.

If the list is not removable, we devide the list to two new list (if the list
has for example 1,2,3,4 elements; the new lists will be 1,2,3 and 2,3,4)
and add those new consecutive lists to the set and reorder the descending
consecutive list set. We continue this operation until descending consecutive
list set gets empty. At the end, all removed nodes are found.

The Algorithm 5 finds largest removed node set. When we look our
example, largest consecutive node set is {nii, niz,ni3}. If the Algorithm
1 is run for all nodes of consecutive node set and we iterate Algorithm 2,
we can realize that all nodes excluding consecutive node set is proved on
Appendix A. But the transition (s; —b/0 — s3) of FSM in Figure 1 can not
be implemented from reduced checking sequence. Therefore the consecutive
node list reordered and a new list created in order to reiterate the algorithm.

The new consecutive list is {{ni2, n13}, {n11, n12}, {ns, o}, {ns}}. As we
can also see the first two elements of the list can also be removed but the
transition (so —b/0 — s9) of FSM in Figure 1 can not be implemented from
reduced checking sequence again. So the consecutive node list reordered
again, it is now {{ng,no}, {ns}, {n11}, {n2}, {n1s}}

When {ng,ng} are tried to remove, at this time the transition (s; —
b/1 — s9) of FSM in Figure 1 can not be implemented from reduced checking

sequence.
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Algorithm 5: FIND-LARGEST-REMOVED-NODE-SET

10

11

12

13

14

15

16

17

18

19

20

21

Input: cls consecutive list set

Output: rnl removed node set

Blisp’s boolean value;

BSiso’s boolean value;

C'S checking sequence BN S binding node set while cls is not empty

do

Try if the largest consecutive list ¢l is removable;
foreach p in cl do

L START-UPDATE(p);

UPDATE-ALL();

if cl is removable then

if all states of FSM in Figure 1 can be initialized on reduced
checking sequence then

rnl =rnlNcl ;

BI = False ;

BS = True ;

CS=CSNBNS ;

Remove cl from cls;

else
Remove cl from cls;
Generate two new consecutive lists from cl;

Add two new cl to cls and reorder cls;

return rnl ;
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Now we have a consecutive node list as: {{ns}, {ni1}, {ni2}, {nis}, {ns}, {no}}.

All nodes in this list are tried to remove. Node {ns} can not be removed,

because the transition (s3 —b/1 — s3) can not be implemented. Nodes {ns}

or {n13} can not be removed, because again the transition (s —b/0 — s2)

can not be implemented. Nodes {ng} or {ng} can not be removed, because

again the transition (s; — b/1 — s3) can not be implemented.

It is only left node ni;, when it is removed all other nodes can be proved

on Appendix A and all transitions of FSM in Figure 1 can be implemented

from reduced checking sequence.

3.4.4 Adding Binding Nodes

When a group of consecutive nodes are removed from checking sequence,

there may be needed to add binding nodes in order to attach previous node

of the first member of the consecutive list and next node of the last member of

consecutive list. The shortest path from the previous node of the first member

of the consecutive list to next node of the last member of consecutive list is

found from the FSM of the checking sequence and if this binding node path

is smaller than removed consecutive nodes set size, it is added to checking

sequence. Otherwise the consecutive node set can not be removed and new

consecutive node sets are tried to generate (see Algorithm 5).

In our example we know that, when node ny; is removed all other nodes

are proved on Appendix A and all transitions of FSM in Figure 1 are im-

plemented from reduced checking sequence. But we do not know now, the

previous and next node of ny; can bind without adding a new node. From

checking sequence in Figure 4, possible state of node nyy is s; and possible

state of node nis is s9. It can be seen on FSM in Figure 1 that there is a

direct transition between states s; and s,. Therefore we can directly bind
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Figure 5: Reduced Checking Sequence of FSM M;

node njy and n15. New checking sequence will be on Figure 5.

After a new checking sequence is found, the Algorithm 2 is reiterated in
order to find new removable nodes. When nodes ni, ng are tried to remove
separetly from the checking sequence, all nodes excluding possible removed
node, are all proved on Appendix A.

When node n; is tried to remove, the transition (s; —a/1 — s3) of FSM
in Figure 1 can not be implemented from reduced checking sequence.

When node ng is tried to remove, all states are implemented from the
reduced checking sequence. But removing node ng is expensive, because the
possible state of previous node ng and next node nig are s; and FSM in
Figure 1 does not have a direct transition between s; and s;, so we can not
directly bind previous and next nodes.

Therefore only node ny; can be removed from checking sequence in Figure
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4 Analysis

A variety of methods for the construction of checking sequences have been
proposed in the literature [10, 17, 12, 3, 28, 27]. The newly found methods
were focused on the improvement of previous methods.

In this section the checking sequence transition reduction analysis will be
discussed and effectiveness of our approach will be compared according to
different invented methods. The methods have been implemented with Java
and the experiments have been executed on a machine with Intel Xeon 3.20
GHz and 64 GB ram.

The random FSM generation tool, that is mentioned in Section 2.5, is
used in order to generate diffent FSMs . For the analysis, 4 different groups
of FSM are used. Each group of FSM contains 30 FSMs and has 25, 50,
75, 100 number of states respectively. Each FSM has 5 input symbols and 5
output symbols.

We are going to compare our method according to 6 proposed different
methods. The comparisons will be in terms of checking sequence length.
The performance will be compared in terms of checking sequence length and
method execution times.

We also examine the recognition possibility augmentation of example on
Appendix A and how binding nodes and FSM implementation satisfaction
reduce this possibility.

4.1 Comparisons with Other Methods

In this section, checking sequence optimization of our method is compared
according to different methods. For the analysis, 6 different methods are line

up in chronological order, so their checking sequence lengths are also line up

36



in decreasing order.
The results show that even there exist low reductions at some points, our

method can not be feasible on large FSMs and for all early invented methods.

States M1 | M2 M3 | M4|M5| M6
100 25 | 17 0 10 4 0
75 25 16 0 12 3 0
50 22 | 23 1 19 6 0
25 24 | 23 5 15 5 0

Table 1: Number of Reduced Checking Sequences

Table 1 shows how many checking sequences were reduced for different
methods form Method 1 to Method 6 depending on the number of states. As
we can see from Table 1, as the methods get improved, numbers of checking
sequences that are reduced decrease and the possibility that the checking

sequences have not any reduction change increases.

States M1 M 2 M 3 M 4 M5 M 6
100 | 159/7664 | 123/6852 | 0/3142 | 49/3059 | 6/2453 | 0/2329
75 112/5466 | 147/4964 | 0/2276 | 47/2237 | 11/1775 | 0/1689
50 111/3398 | 108/2759 | 44/1603 | 37/1469 | 13/1124 | 0/1067
25 111/1453 | 72/1072 | 33/623 | 25/619 | 15/501 | 0/486

Table 2: Ratio of Reduced Lengths over the Original Checking Sequence
Lengths

Table 2 shows the ratio of average checking secuence lengths of differ-
ent invented methods versus checking sequence length reductions with new
invented method according to 4 different groups of 30 FSMs with different
number of states ranging 25 to 100. While finding the averages, the checking
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sequences with 0 reductions are ignored for checking sequences groups that
the reduction is possible. For instance, the 25 checking sequences of Method
1 for FSMs that has 75 states can be reduced, so the averages are found for
checking sequence and reduction lengths on that 25 checking sequences. But
any checking sequence of Method 6 can be reduced, therefore they directly
get 0 for reduction average.

Even if a slight fluctuation exists on Method 3, while the methods are
improved, the reduction averages are diminished and reach 0 for the last

invented method.

States | M 1 M 2 M3 M 4 M5 | M6
100 | 2.07% | 1.78% | 0% 1.6% | 0.24% | 0%
75 | 2.06% | 2.96% | 0% 21% | 0.61% | 0%
50 | 3.27% | 3.91% | 2.74% | 2.5% | 1.16% | 0%
25 | 7.64% | 6.72% | 5.3% | 4.04% | 2.99% | 0%

Table 3: Gain Percentage for Different Invented Methods

For each different state group, the checking sequence reduction gain per-
centage comparisons are shown from Table 3. As the number of states in-
crease, gain percentage is decreasing.

From Table 2 and 3, we can say that while the number of states in-
crease and methods improved, the complexity of the checking sequences also
increase and when try to remove a checking sequence node, binding the re-

maining nodes and satisfying FSM implementation is getting difficult.

4.2 Execution Time Analysis

During the analysis, it is noticed that most of the time is spent for elimination

recognition boolean formula creation. Figure 6 shows elimination recognition
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Checking Sequence Length

Figure 6: Method execution times by checking sequence length

boolean formula creation execution times in second according to checking
sequence length, during reduction analysis. As we can see from Figure 6,
as the length of checking sequence increase, the reduction analysis execution

time increase exponentially.

4.3 Analysis of the Example

The example has 9 d-recognition boolean equations, 30 t-recognition boolean
equations and 123 e-recognition boolean equations. The e-recognition boolean
equations, that don’t have the possible input function and possible state func-
tion of other recognitions have for a node of checking sequence, are 45. There-
fore the recognition possibility of a state is augment 1,9% on average.
Ignoring the binding nodes and FSM implementation satisfaction, {ng, ng,

n10, N11, N2, N1z} nodes seem to be removed altogether. But if we consider
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these two conditions, only mq; can be removed. Therefore the reduction

decrease 83%.
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5 Conclusion

Finding the correctness of an FSM is the key point of FSM based testing.
The checking sequence is used in order to determine this correctness. All
invented checking sequence generation methods use distinguishing sequence
and it is known that distinguishing sequence may not exist for all FSMs and
the main problem of these methods is the reduction of the checking sequence
length.

In this thesis, we addressed these problems and found a new state recog-
nition method and tried to reduce checking sequence with a new approach,
that is boolean formula based checking sequence optimization algorithm.

The new state recognition method is called elimination method. It finds
new recognition conditions besides d- and t- recognition and augments the
possibility of the state recognition. In this recognition method, the states
conditions, other than the state that has been recognized, are examined and
the states that has the same input function and different possible output
function than the state that has been recognized has and states that has the
same input and possible output function and different next state function
than the state that has been recognized has, are taken to elimination recog-
nition set. Therefore during the determination of a elimination recognition,
the distinguishing sequence is not used.

The other contribution is a new checking sequence optimization algo-
rithm. This algorithm uses boolean formula in order to represent d-, ¢- and
e- recognition conditions of a state. All elements of a recognition condition
are anded and all possible recognition conditions of a state are ored with
each other. Indeed the checking sequence are represented as a global boolean
formula which has ands between each group of state recognition conditions.

Even if, thanks to the new recognition method and new approach for op-
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timizing checking sequence, the recognition possibility of a state is increased,
trying to bind checking sequence nodes and to control whether the removable
node is broken the FSM state implementation or not, diminish the checking
sequence reduction and therefore the improvement can not be feasible with
under all of these conditions.

For the improvements and future work, we use a simple heuristic in order
to find largest removable node group of the checking sequence, it can be
better to find more clever heuristics. The other improvement can be on
generating elimination recognition conditions. Our algorithm now finds same
elimination recognition conditions and prevents the regeneration of these
same conditions. But a more powerful implementation can be found in order
to find similar parts of the elimination recognition conditions, therefore we
can also prevent regeneration of the same parts of elimination recognition

conditions and may reduce the time cost.
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a/l

Figure 7: Checking Sequence of FSM M;
A Boolean Equation of the Example

This appendix give the boolean equation of checking sequence of M; on
Figure 7.
We use possible state function o and possible input function p in order to

explain boolean equations.

e Possibility of node k been state a, is denoted as ny is s,. It is the

possible state function o of k.

e Possibility of node k trasition input been x, is denoted as n, — x. It

is the possible input function p of k.
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A.1 Proposition of node n; as state s,

A.1.1 d-recognition

oy -sa]

A.1.2 e-recognition

N3 is so Ang — a
No 1S S3 ANy — a V
V nyis so Any — a
ne is s3 Ang —a | N V A‘TLQiSSg‘
\Y, Ng 1S S9 Ang — a
ny 18 s3\niyp — a V
N3 1S So A ni3 — a

A.2 Proposition of node n, as state s3
A.2.1 d-recognition

Ng — a/A\nsg —a

A.2.2 t-recognition

Ny 1S 1 Any — a Ans is S3
V

nyissgAng —a | N| nyis st Anyg — aAnqg is s3

V

N4 1S 51 ANy — a A nqs 1S S3
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A.2.3 e-recognition

nyis s1Ang — a
V

Ng 18 S ANy — a
V

n10 is s1 \Nniyg — a
V

N4 1S S1 AN — a

N3 1S S9 Ang —> a Any is s;
V

N7 1S So Any — aAnyis s
V

Ng 1S S Ang — a A nyg is Sy
V

N13 1S So A Ny3 — a A Ny IS Sg

A.3 Proposition of node n3 as state sy

A.3.1 d-recognition

A.3.2 t-recognition

No 1S S3 ANy — a

Ng — a/A\ng —a

/\’ngiSSQ

Nng is S3 A g — a Any 1S Sy

A V

A.3.3 e-recognition

nyis sgAn —a
V

ng is s1Ang — a
V

N1 1S S1 Anjg — a
V

Ny 1S 51 ANy — a

N1 1S S3 ANy — a A njs is Sy

Nng 1S S3 Ang — a ANy IS 8o
V

N1 1S S3 ANy — a A njs is Sy
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A.4 Proposition of node n, as state s,

A.4.1 d-recognition

A.4.2 t-recognition

n3 is s9 Ans — a

A.4.3 e-recognition

No 1S S3 ANy — a
V

Ng is s3 Ang — a

V

ny 18 S3\Nnyp — a

A

ri-sa]

Ny iS S Any — a Ang is S;
vV
Ng 1S So Ang — a A nyg is Sy

V

n13 is S9 NNz — a ANy is s1

n3 is so Ans — a
\
nyis so Any — a

V /\‘7151883‘
Ng 1S S9 Ang — a
V

N3 1S So A niz — a

A.5 Proposition of node n; as state s

A.5.1 t-recognition

ng is st Ang — a

A

ny 18 S Any — aAngis S3
V

n10 is S1 AN Nig — a A\ nqp is S3
vV

N4 1S S1 A Nja — a A nys 1S S3
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A.5.2 e-recognition

ng is st Ang — b A ngis sy

/\’nlgiSSQ/\Tng—)b’/\’TLGiSSg’

A.6 Proposition of node ng as state s
A.6.1 d-recognition

Nng — a/\ny; —a

A.6.2 e-recognition

nyis s1Ang — a N3 1S S9 ANz —> a Any is S;
V V
Ng 18 S ANy — a N7 1S So Any — aAnyis s
\Y, A V /\’n7i852
N1 1S 81 Anypg — a Ng 1S S Ang — a A nyg is S1
V V
N4 1S S1 AN — a N13 1S So A Ny3 — a A Ny 1S Sg

A.7 Proposition of node n; as state sy

A.7.1 t-recognition

No 1S S3 ANy — a Ans is S
ng is s3 Ang — a | N\ Vv

N1 1S S3 ANy — a A njs is Sy
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A.7.2 e-recognition

nyis s1Ang — a
V

Ng 18 S ANy — a

N4 1S S1 AN — a

No 1S S3 ANy — a A ns is Sy

\Vi A V /\’ngissl
n10 is s1 \Nniyg — a ny is S3 ANyt — a A\ nio is S9
\%

A.8 Proposition of node ng as state s

A.8.1 t-recognition

nyis so Any — a

A.8.2 e-recognition

A

N3 1S So Ang — a Any is s;
V
Ng i8S So Ang — a A nqg IS $1

V

n13 is S9 NNz — a ANy is s1

ns is s3 Ans — b A ng is s3 ‘/\‘ N9 1S So A g — b ‘/\‘ Ng 1S S9

A.9 Proposition of node ng as state s;

A.9.1 d-recognition

Ng — a N\ MNjg — a
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A.9.2 e-recognition

niss1Ang —a
V

N4 18 Sy ANy — a

n10 is sy NNy — a
\%

N4 1S S1 AN — a

vV A

N9 1S S3 Ang — a A ns is S
V

Ng 1S S3 Ang — a A ny is S
V

Nn11 1S S3 ANy — a A njs is Sy

A.10 Proposition of node n;; as state s;

A.10.1 d-recognition

A.10.2 t-recognition

Nng is S9 Ang —>a | N| n7is ss Any — aAngis s;

‘n10—>a‘

V

V
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A.10.3 e-recognition

No 1S S3 ANy — a
V

Ng is s3 Ang — a

V

N1 1S S3A Ny — a

A.11

A.11.1 t-recognition

N10 is S1 AN — a A

A.11.2 e-recognition

nyis sgAn; —a
V

ngisS s1 ANy — a
V

N1 1S $1 AN — a

V

N4 1S S1 AN — a

N13 1S So A niz — a

n3 is s9 Ans — a
\
nyis so Any — a
V
Ng 1S S9 Ang — a

V

V

ng 1S 1 Any — a Ans is s3

V

N3 18 S9 Ang — aAnyis s

V

ny 1S S Any — a Any is S

V

Ng 1S So A g — a A nyg 1S S1

V

N13 1S So A Ny3 — a A nyg 1S S;
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Ny 18 S Any — a Angis S3

N4 1S 81 ANy — a A nqs 1S S3

/\’nniSSg’

Proposition of node n;; as state s3

/\) N2 is So




A.12 Proposition of node n;y as state s

A.12.1 t-recognition

No 18 S3 ANy — a A ns 1S Sy

‘n11i553/\n11—>a A V

Nng 1S S3 Ang — a Any is Sg

A.12.2 e-recognition

‘n51533/\n5—>b‘/\‘ngissl/\ng—>b‘/\‘n13i552

A.13 Proposition of node n;3 as state s
A.13.1 d-recognition

‘ Nz —> a ANy — a

A.13.2 t-recognition

ns 1S s3 Ang — a A ng is Sy
n12i883/\n12—>a’/\ V

ng is s3 Ang — a A ng is Sy

A.13.3 e-recognition

nis st Ang —a
vV No 1S S3 ANy — a A ns is Sy
N4 18 SY ANy — a V
Vv ANl ngis s3Ang —>a/Anyis sy /\’nMissl
n10 1s S1 \NNiyg — a V
V N11 1S s3 ANy — a A njs is Sy
Ny 18 S1 ANy — a
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A.14

A.14.1

A.14.2

A.14.3

Proposition of node ny4 as state s;

d-recognition

t-recognition

n13 is S9 NNz — a

e-recognition

Ng 1S S3 ANy — a
V
Ng is s3 Ang — a

V

ny 1S S3 A\ Ny — a

|

A

n14—>a‘

V

Vv

N3 is so Ang — a
V

nyis so Any — a
V

Ng 1S S9 Ang — a
V

N3 1S So ANz — a

N3 18 So Ang — a Any is s;

ny is so Any — a Ang is sy

Ng 1S S9 Ang — a A nqg 1S S1

/\‘n15i553‘

A.15 Proposition of node n;; as state s;

A.15.1

t-recognition

N4 1S S1 AN — a

A

V

V
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Ny 18 S Any — a Ang is S3

ng 1S 1 Any — a Ans is S3

N0 1S S1 Anjg — a A nqp 1S S3
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