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Abstract

This thesis investigates diagnosis strategies for k-out-of-n systems under the general type
precedence constraints. Given the testing costs and the prior working probabilities, the prob-
lem is to devise strategies that minimizes the total expected cost of finding the correct state
of the system. The true state of the system is determined by sequential inspection of these n
components. We try to find good strategies for the problem under general type precedence
constraints by adapting an optimal algorithm that works when there are no precedence con-
straints. We refer to this algorithm Intersection-Precedence and represent the strategy that we
obtain efficiently by a Block-Walking Diagram structure. Since no computational results are
reported in the literature for this particular problem, in order to benchmark the performance
of the Intersection-Precedence algorithm, we develop Tabu Search and Simulated Annealing
algorithms that find permutation strategies.We conduct an extensive computational study to
compare the results obtained by the alternative algorithms and we observe that Intersection-
Precedence algorithm, in general, outperforms the other algorithms.
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öncelik kısıtları, sıralı test etme

Özet

Bu tez nin klısı (k-out-of-n) sistemlerde genel tipte öncelik kısıtları oduğu zaman, tanılama
stratejilerini araştırmaktadır. Başarılı çalışma olasılıkları ve test etme maliyetleri önceden
belli n tane bağımsız bileşenden oluşan bu problem sistemin doğru durumunu olurlu bir
strateji ile belirlemenin beklenen maliyetini en aza indirmeyi hedeflemektedir. Sistemin
gerçek durumu bileşenlerinin sırayla test edilmesiyle tespit edilir. Öncelik kısıtlarının ol-
madığı durumda en iyi çalışan bir algoritma, genel tipte öncelik kısıtlarının olduğu du-
ruma uyarlanmıştır. Bu algoritma Kesişim-Öncelik olarak isimlendirilmiş ve elde edilen
strateji etkili bir biçimde Block-Walking Diyagram yapısı ile gösterilmiştir. Literatürde bu
problem için sayısal çalışmalar bulunmadığı için algoritmanın performansını kıyaslamak
adına, permütasyon stratejileri bulmak için Tabu Arama ve Benzetilmiş Tavlama algorit-
maları oluşturulmuştur. Önerilen alternatif algoritmaları analiz etmek ve önerilen çözüm
yöntemlerinin hesaplama etkinliğini göstermek amacıyla kapsamlı bir sayısal çalışma yapılmıştır.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

We deal with very complex structures in almost all service and production systems and our

daily lives. Typical examples are telecommunication systems, manufacturing systems, me-

chanical and/or electronic products etc. These systems typically consist of subsystems or

components. The state of the whole system is described by a function of the states of these

subsystems. For instance, the state of a telecommunications system can be defined by the

existence of a functional path between two specific nodes of the network. In this particular

example, the state of the system is working if there exists a path that consists of working

components and failure, otherwise. Often, it is necessary to diagnose these systems and find

out the correct state of the system with the minimum cost. In order to do this, we need to

learn the states of the subsystems. We assume that in order to learn the correct state of the

subsystems, we need to conduct costly tests. In most cases, it is not necessary to learn the

correct state of all the components or subsystems. For instance, in the above example, once

we detect a path that consists of functioning components, we do not need to learn the states of

the remaining components. So it is important to develop a strategy to carry out the diagnosis

procedure with a minimum total expected cost.

The variations of the general testing problem have many application areas such as clas-

sification of pattern vectors [8], file screening/searching applications [18], maintenance op-

erations [4], plant pathology, medical diagnosis, decision table programming, computerized

banking, pattern recognition, nuclear power plant control [12, 21, 22], testing incoming pa-

tients against some rare but dangerous disease [9], discriminant analysis of test data, reli-

ability analysis of coherent systems, research and development planning, communication

networks, speech/voice recognition, distributed computing, and in the design of interactive

expert systems [11],wafer probe testing in electrical engineering [6], best value, or satisfying

1



search algorithms in artificial intelligence [17], organization and criterion of an applied re-

search project [19]. As an example for application areas of testing problem, Bert and Roel [3]

examined to maximize the net present value in project scheduling when the activities have

failure probabilities. They determined the overall project termination criteria depended on

the failure probabilities of activities. They showed that the problem is NP-hard.

In this study, we work on a related problem, namely, the sequential testing problem of

k-out-of-n systems under general precedence constraints. A variation of this problem in

electronic and electro mechanic systems is shown to be NP-complete [21]. A k-out-of-

n system consists of n components which are either faulty or fault-free. This system is

functional when at least k of the components are fault-free and it is not functional when

at least (n − k + 1) components are faulty. The system functionality depends only on the

number of working and faulty components. Given the cost of testing each component and the

prior probability of being fault-free for each component, the problem is to devise an optimal

strategy that minimizes the total expected cost of finding the correct state of the system.

Variations of optimal test sequencing problem without precedence constraints have been

extensively studied under various assumptions [2, 6]. On the other hand, in the existence

of precedence constraints, there are only a few analytical results for the sequential testing

problem. In [7], parallel chain precedence constraints was studied. In [13], an optimal

algorithm was developed when precedence constraints satisfy some certain conditions. These

conditions are given below:

• The precedence graph is a forest type precedence graph.

• Each tree in the forest is either an out-tree or in-tree.

As a special case of the result given by Garey in [13], an algorithm was developed for the

series system when the precedence graph is a special forest in [7]. In these studies, there are

not any computational results. The proposed algorithm in [7] can also be adapted for general

k-out-of-n systems.

1.1 Contributions

The main purpose of this study is to minimize the expected cost of k-out-of-n sequential

testing problem under general precedence constraints. The contributions of this study can be
2



summarized as follows:

• We adapt the intersection algorithm (which is optimal for k-out-of-n systems when

there are no precedence constraints) for the case of precedence constraints so that it is

still possible to store the resulting strategy efficiently.

• We propose tabu search and simulated annealing algorithms to solve proposed prob-

lem.

• We conduct an extensive computational study to investigate the performances of the

proposed methods.

1.2 Outline

The problem description and the literature review are presented in Chapter 2. We apply and

improve intersection algorithm proposed by Ben-Dov [2] for our problem under precedence

constraints in Chapter 3. Chapter 4 presents the proposed test sequencing problem with

precedence constraints. We develop tabu search and simulated annealing algorithms for this

test sequencing problem. We present numerical results in Chapter 5 to demonstrate the com-

putational efficiency of the implemented heuristics and developed Intersection-Precedence

Algorithm and to comparatively analyze all methods according to cost and time efficiency

measures. Finally, in Chapter 6 we conclude and discuss future research directions.
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CHAPTER 2

PROBLEM DESCRIPTION AND LITERATURE REVIEW

2.1 Problem Description

We consider a system that consists of n components whose functionalities are not known yet.

The set of the individual components is denoted by N = {u1, u2, ..., un}. Each component

of this set is functional or not and xi describes the functionality of component i. xi is 1 if the

component i is functional, 0 if it is not functional.

x = (x1,x2, ...,xn) is a boolean vector describing the states of individual components

where the ith element of that vector shows the functionality of component i. The states of

the components are not known by the decision maker, but the prior working probabilities of

the components are known. We denote by pi, the probability that component i functions.

In order to determine the correct the state of the whole system, we need to test some of

the components. The testing procedure terminates when the actual state of the system is

determined. It is assumed that the individual components function or fail independent of each

other. It is costly to test individual components (i.e. to learn the correct state of individual

components). We denote by ci the cost of testing component i. This could also correspond

to the time required to test component i.

The whole system can be in either working state or failure state. In this particular study,

we consider k-out-of-n systems, where the system is in working state if and only if at least

k components are functioning. In other words, the testing procedure is terminated once we

find k functioning components or n − k + 1 failing components. The k-out-of-n systems

are the generalization of the 1-out-of-n (parallel) systems and n-out-of-n (serial) systems.In

certain applications, it is not possible to test the components in any order. Due to physical or

technological constraints, there can be precedence constraints among the components. This

4



precedence relationship can naturally be described by an acyclic directed graph. The nodes

of the graph correspond to the components of the system. An arc from node i to node j

means that one can test component j only if component i is already tested.

A testing strategy S is a rule that specifies which component will be tested next, given

the states of the inspected components. Each strategy will have a certain expected cost. An

optimal inspection strategy is the one that has minimum total expected time or cost among

all strategies.

The notation is summarized below:

N : set of nodes, N = {u1, u2, ..., un}

pi: priori probability that ui is working

qi: priori probability that ui is not working, qi = (1-pi)

ci: testing cost of node ui

While, testing strategies for the simple parallel and simple series systems are represented

by permutations of components, in general, the strategies for k-out-of-n systems can be

represented by a binary decision tree. An example binary decision tree of 3-out-of-5 system

diagnosis procedure is given in figure 3.1.The nodes of the binary decision tree corresponds

to the components to be tested. If the component is faulty, then the next component to be

tested is the component corresponding to left child of the previously tested node. If the

component is fault-free, then the next component to test is the right child. The leaf nodes are

”success” or ”fail” nodes that show the state of the system.

For instance, in the example in Figure 3.1, the first component to be tested is component

3. If component 3 functions then the next component to be tested is 2, otherwise the next

component to be tested is 4. There is a unique path from the root to each leaf node. If

the leaf node is success node, then there are k right arcs and less than (n − k + 1) left

arcs and for the fail nodes there are (n − k + 1) left arcs and less than k right arcs on the

path from the root to that leaf node. On each path from root to a leaf node we can observe

the state of each component on this path and we can find the cost and probability of the

path. The cost of a path can be calculated by summing up all the costs associated to the

nodes on this path and the probability of a path can be calculated by product of pi’s for the
5



working state components multiplied by the product of 1 − pi’s for the faulty components.

In this framework, we can calculate the expected cost of a path by multiplying path cost

with the path probability. By summing up all paths’ expected cost, we will find the expected

cost of decision tree or expected cost of testing strategy S. If we describe a strategy by an

explicit binary decision tree, the size of this binary decision tree can be exponentially large

in terms of the problem size, which is described by k, n, C and P. So it would not be

possible to store the solution strategy in a compact way. One can overcome this difficulty by

describing an algorithm that outputs the next component to be tested given the results of the

tests conducted so far. In this way, it is possible to use this algorithm to diagnose a system

by running it until k functioning or n− k+ 1 failing components have been determined. On

the other hand, we will not be able to compute the expected cost of the strategy in this way

in polynomial time. It turns out that, when there are no precedence constraints, it is possible

to describe an optimal strategy in a compact way by using a data structure called Block-

Walking Diagram. We explain the details of this data structure in Chapter 3. Unfortunately,

when there are precedence constraints, to describe an optimal strategy in this manner is no

longer possible. Since this method is optimal when there are no precedence case, we try to

adapt the same logic of choosing the next component to inspect and using Block-Walking

Diagram by hoping that this will produce satisfactory results.

Since it is very difficult to store a solution strategy as an explicit binary decision tree,

due to the exponential growth in the size of the tree, it could be of interest to consider a

subset of the strategies that are easy to represent and try to find a good solution among these

strategies. An alternative is to consider permutation strategies, where the next component to

test is the next component in the permutation. In this case, a strategy is just described by

a permutation, but we still need to be able to compute the expected cost of such a strategy

efficiently. It turns out that this is possible. We show how to compute the expected cost

of a permutation strategy in Chapter 4 and propose tabu search and simulating annealing

algorithms that find good permutation strategies.

2.1.1 An Example k-out-of-n System Under Precedence Constraints

A 3-out-of-5 system example is given below with data in Table 3.1. The precedence con-

straints are given in Table 2.2 by using P (i, j)’s and in Figure 2.5 by using arcs between
6



components which has precedence relationship. P (i, j) = 1 means there is an arc from node

i to j. We calculate the total expected testing cost of some strategies by using given data

under precedence constraints.

i u1 u2 u3 u4 u5

pi 0.95 0.9 0.7 0.82 0.6
ci 2 2.5 2 4 3

Table 2.1: Data for an Example of 3-out-of-5 System

P(i , j) 1 2 3 4 5
1 0 0 0 0 0
2 0 0 0 0 1
3 0 1 0 1 0
4 1 0 0 0 0
5 0 0 0 0 0

Table 2.2: Precedence Constraints Data for an Example of 3-out-of-5 System

Figure 2.1: Precedence Constraints for Example of 3-out-of-5 System

In the first strategy, we consider a feasible permutation strategy according to precedence

constraints which is (3-2-4-5-1). We start to test components according to this given order to

determine the state of the whole system. 3-out-of-5 system is functional if at least 3 of the

components are fault-free or the system is not functional if 3 of the components are faulty.

In Figure 2.2, binary decision tree of this procedure is given. As can be seen in Figure 2.2,

no matter what the state of already inspected components are, as long as we need to inspect

a component, it is the next component in the permutation. The expected cost of given order

can be calculated as:
7



TC = 1.c3 + (q3 + p3).c2 + [q3.(p2 + q2) + p3.(p2 + q2)].c4 + [q3.(q2.p4 + p2.q4 + p2.p4) +

p3.(q2.p4 + q2.q4 +p2.q4)].c5 + [q3.(q2.p4.p5 +p2.q4.p5 +p2.p4.q5) +p3.(q2.q4.p5 + q2.p4.q5 +

p2.q4.q5)].c1

For this example total cost is calculated 10.35072.

8
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When we have a permutation strategy, we can calculate total expected cost for given

testing order computationally easily. The calculation steps can be represented by using a

matrix which is given below:

C(0,0) C(0,1) ... C(0,k)

C(1,0) C(1,1) ... C(1,k)

... ... ... ...

C(n−k+1,0) C(n−k+1,1) ... C(n−k+1,k)

Then we can calculate the expected testing cost by using the following recursion in a

bottom-up fashion:

• C(i,j)= C(ai+j+1) + p(ai+j+1).C(i, j + 1) + [(1− p(ai+j+1)).C(i+ 1, j) if j < k and

i < (n− k + 1)

• C(i,j) = 0 if j = k and i = (n− k + 1)

where

• ai; ith component in the given permutation a = a1, a2, ..., an

• C(ai): Cost of testing ai

• p(ai): Prior success probability of ai

When we have a permutation strategy, we can compute the total expected testing cost in

polynomial time. For k-out-of-n problems, the optimal testing strategy is not always a per-

mutation strategy. We mention about binary tree representation. We calculate the objective

function value by using a permutation testing strategy for the example of 3-out-of-5 system

under precedence constraints. An example binary decision tree strategy is given in Figure

2.3 for this problem whose data is given in Table 3.1.
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The expected cost of the binary tree example given in Figure 2.3 is calculated as follows:

TC = 1.c3 + [p3 + (q3.p2) + (q3.q2)].c4 + [q3 + (p3.q4) + (p3.p4)].c2 + [(q3.q2.p4) +

(q3.p2.q4) + (p3.q4.q2) + (q3.p2.p4.q5) + (p3.q4.p2.q5) + (p3.p4.q2.q5)].c1 + [(q3.p2.p4) +

(p3.q4.p2) + (p3.p2.q4) + (q3.q4.p2.p1) + (q3.p4.q2.p1) + (p3.q2.q4.p1)].c5

For this example total cost is calculated as 10.57449. For small size problems, it is

computationally easy to calculate the total expected cost, when the testing strategy is not a

permutation strategy. Unfortunately, when n and k get larger, it is not possible to represent

binary decision tree and to calculate the expected cost of the tree. In Chapter 3 we propose

an algorithm to find testing procedure and a matrix representation to calculate the total ex-

pected testing cost. To compare these results, then in Chapter 4 we start with a good feasible

solution and apply a search procedure based on some well-known heuristics and find better

permutation solutions.

2.2 Literature Review

Chiu et al. [7] study k-out-of-n sequential testing problem with special precedence con-

straints referred to parallel chain type precedence constraints. This precedence type consists

disjoint subsets of components set. These disjoint subsets have the precedence constraints

only within each of themselves. This precedence type constraints means that all items can

be partitioned into subsets and each block has a precedence constraints which is defined by

unique inspection order. Chui et al give an example of this type of precedence constraints for

a series system (inspecting the components until a failure is found or all of the components

have been inspected) which is given in Figure 2.4:

Figure 2.4: A series system with parallel chain precedence constraint

They determined testing cost, testing priori probability, testing states by using the Block

Walking Algorithm which is developed by Chang, Chi and Fuchs [6]. The following notation

is used in their algorithms, also, they determined the working probability, testing cost and
12



some ratios which will be used in solution methodology, of a set I = (i1, i2, ..., ij) such as:

• Working probability of the set I: P (I) = pi1 .pi2 ....pij

• Testing cost of the set I with respect to series structure: C(I) = ci1 + pi1 .ci2 + ... +

pi1 ....pij−1
.cij

• Failure probability of the set I: Q(I) = qi1 .qi2 ....qij

• Testing cost of the set I with respect to parallel structure (inspecting the components

until a success is found or all of the components have been inspected): D(I) = ci1 +

qi1 .ci2 + ...+ qi1 ....qij−1
.cij

• R-ratio: R(I) = C(I)
1−P (I)

• S-ratio: S(I) = D(I)
1−Q(I)

They proved theorems that give an optimal testing strategy for series and parallel systems

by using R-ratio and S-ratio which are given below:

• For a series system problem with a parallel-chain precedence constraints, if the blocks

are arranged in order of increasing R-ratio according to the precedence constraints;

then the resulting sequence is optimal.

• For a parallel system problem with a parallel-chain precedence constraints, if the

blocks are arranged in order of increasing S-ratio according to the precedence con-

straints; then the resulting sequence is optimal.

Using the results for series and parallel systems they developed the optimal testing strat-

egy for k− out− of − n systems. If an inspection procedure satisfies two conditions which

are given below, then it is optimal:

• Condition 1: All of the blocks in the sequence has a S-ratio which is less than the

blocks before them comes from a different chain.

• All of the blocks in the sequence has a R-ratio which is less than the blocks before

them comes from a different chain.
13



In summary, Chui et al. developed more general results by using the study of Ben-

Dov [2]. Also, they pointed out that the optimal inspection rule for the general k-out-of-n

systems under parallel-chain precedence constraints is not yet known.

Also, Garey in [13] studied simple series (parallel) systems sequential testing problem

with forest type precedence constraints where in each precedence graph either no component

has more than one immediate predecessor, or no task in that component has more than one

immediate successor. An example of forest type precedence constraints is given in Figure

2.5.

Figure 2.5: An example of forest type precedence constraints

Garey [13] provided some reduction rules like Chui et al. [7] that turn the precedence

graph into a graph without any arcs. Essentially, the reduction rules combine certain nodes

or delete some arcs in the precedence graph. Then they used their reduction rules to find a

series and parallel systems under forest type precedence constraints.

Ünlüyurt [24] described and analyzed a framework for sequential testing problem. In this

review paper, different related applications are described such as distributed computing, ar-

tificial intelligence, manufacturing and telecommunications. The mathematical framework,

variations and extensions of this problem are given. Series, parallel, k-out-of-n, Series-

Parallel systems are mentioned and strategies, binary decision trees, solution methodologies

about these problem types are reviewed. Catay et al [5] develop an ant colony based algo-

rithm for testing series (parallel) systems under precedence constraints.

Tanrıverdi [23] studied k-out-ofn testing problem under forest type precedence con-

straints. In this study, optimal inspection strategies are obtained for series and parallel sys-

tems. Then these strategies are adapted for k-out-of-n systems.

14



CHAPTER 3

SOLUTION METHODOLOGY UNDER PRECEDENCE CONSTRAINTS

In the Chapter 2, we mentioned some strategies that are optimal for the sequential testing

problem of k-out-of-n system without precedence constraints, namely the Intersection Al-

gorithm. In this section, we develop algorithms for the general k-out-of-n system problem

by using Intersection Algorithm. We adapt the Intersection Algorithm proposed by [2] for

the case of precedence constraints. Also, we describe how to store this strategy by using

Block-Walking representation. In this chapter, first we describe the Intersection Algorithm

and Block-Walking representation in detail. Then we describe how we adapt this algorithm

when general precedence constraints exist.

3.1 Intersection Algorithm and Block Walking Representation without Precedence

Constraints

For k-out-of-n structures without any precedence constraints, an optimal diagnosis procedure

is proposed by Ben-Dov [2]. This diagnosis procedure can also be described by a binary

decision tree. Each leaf node of this binary decision tree shows testing result. If a node is

tested and its result is success, then the right subtree is taken else its result is failure, then

the left subtree is taken. The objective is to find the diagnosis procedure which gives the

minimum expected testing cost.

Firstly, two sets are defined as U and V. The set Ui = {τ(j)|1 ≤ j ≤ i} is utilized by the

permutation which is labeled as,

c1
p1

≤ c2
p2

≤ ... ≤ cn
pn

The set Vi = {π(j)|1 ≤ j ≤ i} consists an order of nodes which is utilized by a

15



permutation so that,

cπ(1)

pπ(1)
≤ cπ(2)

pπ(2)
≤ ... ≤ cπ(n)

pπ(n)

Firstly, intersection algorithm that is proposed by Ben-Dov [2], takes the intersection of

the sets Uk and Vn−k+1. To obtain an optimal strategy for k− out− of −n structure without

any precedence constraint, the tested unit is any of the elements of this intersection. If the

first item is faulty, then the problem becomes a k − out − of − (n − 1) system and if the

first item is fault-free the problem becomes (k − 1) − out − of − (n − 1) system. And

the intersection procedure is implemented for these new systems. This procedure is stopped

when the correct state for the whole system is found.

Chang, Chi and Fuchs [6] recompute and save the optimal diagnosis procedure by a com-

pact representation by using Block-Walking Algorithm. They represent the binary decision

tree by this block-walking representation in O(n2) space.

Notations and definitions for this representation are given below:

TU(v): Tested unit set, for any vertex v4 in a binary decision tree, it is the set of units tested

along the path from the root to v, including v.

TS(v): Test state, for any vertex v in a binary decision tree, it is defined to be an ordered

pair (i,j), where i and j are the number of fault-free and faulty units tested along the

path from root to v, excluding v.

G: Set of intermediate states, G = {(i, j)|0 ≤ i ≤ k − 1, 0 ≤ j ≤ n− k}.

S: Set of success states, S = {(k, j)|0 ≤ j ≤ n− k}.

F : Set of failure states, F = {(i, n− k + 1)|0 ≤ i ≤ k − 1}.

δs: G→ N it indicates which unit to test if the last test has succeeded.

δf : G→ N it indicates which unit to test if the last test has failed.

δs(i, j) = ul and δf (i, j) = um mean that, in state (i,j), it ul will be tested if last test

succeeded and um will be tested if last test failed. They have assumed that the test before

state (0,0) as succeeded. Also, they have proven that block-walking representation can be
16



represented if the unit which has the smallest subscript (SS) from the intersection set is

chosen.

3.2 Intersection Algorithm without Precedence Constraints

A k-out-of-n structure with the yield probability p1, p2, , pn and the testing cost c1, c2, , cn.

G,S and F can be constructed easily and δs and δf can be constructed by the following steps.

Algorithm 3.1: Intersection Algorithm
Step 1:
tmp := Uk

⋂
Vn − k + 1;

δs(0, 0) := SS(tmp);

Step 2:
for i = 1 to k − 1 do
tmp := tmp

⋃
{uπ(n−k+1+i)} − {δs(i− 1, 0)};

δs(i, 0) := SS(tmp);
end for

Step 3:
for i = 0 to k − 1 do
tmp := Vn−k+1+i − {δs(j, 0)|0 ≤ j ≤ i};
Sort tmp into ascending subscript order;
for j = 1 to n− k do
δf (i, j):= the jth unit of tmp;

end for
end for

Step 4:
for i = 1 to n− k do

for j = 1 to k − 1 do
if δf (i, j) = δf (i− 1, j) then
δs(i, j) = δs(i, j − 1);

else
δs(i, j) = δf (i, j);

end if
end for

end for

End of Algorithm

The implementation steps of this algorithm is given by using a numerical example. In

Table 3.1, success probability and testing cost of a 3-out-of-5 example is given below. Also,
17



in Figure 3.1 and Figure 3.2, the binary decision tree and block-walking representation of

this example are given.

i u1 u2 u3 u4 u5

pi 0.95 0.9 0.7 0.82 0.6
ci 2 2.5 2 4 3

Table 3.1: Example of 3-out-of-5 System

By using the information which is given on the Table 1, U and V sets are defined as U =

{1, 2, 3, 4, 5} and V = {3, 5, 4, 2, 1}. The implementation steps of intersection algorithm is

given below:

Figure 3.1: Example diagnosis procedure for 3-out-of-5 System

18



Figure 3.2: A diagnosis procedure defined by the block-walking representation

The total expected cost can be calculated by using this block-walking representation.

Calculating the whole expected cost, all of the grid points are considered. A matrix repre-

sentation by using this block-walking representation is given below.
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Algorithm 3.2: Intersection Algorithm - Example
Step 1:
tmp := U3 = {1, 2, 3}

⋂
V5−3+1 = {3, 5, 4} = {3} so δs(0, 0) := 3;

Step 2:
for i = 1 to 3− 1 do
i = 1→ tmp := {3}

⋃
{2} − {δs(0, 0)} = {2};

δs(1, 0) := 2;
i = 2→ tmp := {2}

⋃
{1} − {δs(1, 0)} = {1};

δs(2, 0) := 1;
end for
Step 3:
for i = 0 to 3− 1 do
i = 0→ tmp := {3, 5, 4} − {δs(0, 0)} = {5, 4};
Sort tmp into ascending subscript order, so tmp := {4, 5};
for j = 1 to 5− 3 do
j = 1→ δf (0, 1) = 4;
j = 2→ δf (0, 2) = 5;

end for
i = 1→ tmp := {3, 5, 4, 2} − {δs(0, 0)andδs(1, 0)} = {5, 4};
Sort tmp into ascending subscript order, so tmp := {4, 5};
for j = 1 to 5− 3 do
j = 1→ δf (1, 1) = 4;
j = 2→ δf (1, 2) = 5;

end for
i = 2→ tmp := {3, 5, 4, 2, 1} − {δs(0, 0), δs(1, 0)andδs(2, 0)} = {4, 5};
Sort tmp into ascending subscript order, so tmp := {4, 5};
for j = 1 to 5− 3 do
j = 1→ δf (2, 1) = 4;
j = 2→ δf (2, 2) = 5;

end for
end for
Step 4:
for i = 1 to 5− 3 do
i = 1→
for j = 1 to 3− 1 do
j = 1→ (δf (1, 1) = δf (0, 1))
δs(1, 1) := δs(1, 0) = 2;
j = 2→ (δf (1, 2) = δf (0, 2))
δs(1, 2) := δs(1, 1) = 2;

end for
i = 2→
for j = 1 to 3− 1 do
j = 1→ (δf (2, 1) = δf (1, 1))
δs(2, 1) := δs(2, 0) = 1;
j = 2→ (δf (2, 2) = δf (1, 2))
δs(2, 2) := δs(2, 1) = 1;

end for
end for
End of Algorithm
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Representing the matrix form, for all states (i,j) there are four columns:

• For state (i,j), first column represents that the probability when you reached this state

after you test a node and it was fault-free in state (i-1,j).

• Second column represents that δs(i,j).

• For state (i,j), third column represents that the probability when you reached this state

after you test a node and it was faulty in state (i,j-1).

• Fourth column represents that δf (i,j).

By using this information, it is easy to calculate the root probability for each state. For

example, for state (2,2), it is possible to reach this state after testing a node in state (1,2)

and test result is success or after testing a node in state (2,1) and test result is fail. So, by

using the root from (1,2), we can reach the column 1 (because the result is success), and the

root probability is q3.q4.p5.p2 + [(q3.p4.q2 + p3.q2.q4).p5]. Because we test u2 and u5 in (1,2)

state and we know the result is success, so the success probability of those nodes multiplied

the probability which is found from state (0,0) to the current state. By using the root from

(2,1) [(q3.p4.p2 + p3.q2.p4).q1] + p3.p2.q1.q4. Because in state (2,1), we test u1 and u4 and

the result is failure, and we use the failure probability of those nodes. After completing the

whole representation, we obtain the expected cost by multiplying the probabilities by testing

units.

The expected cost of above example:

TC = 1.c3 + q3.c4 + q3.q4.c5 + p3.c2 + q3.p4.c2 + p3.q2.c4 + q3.q4.p5.c2 + [(q3.p4.q2 +

p3.q2.q4).c5] + p3.p2.c1 + [(q3.p4.p2 + p3.q2.p4).c1] + p3.p2.q1.c4 + [(q3.q4.p5.p2 + (q3.p4.q2 +

p3.q2.q4).p5)].c1 + [((q3.p4.p2 + p3.q2.p4).q1) + p3.p2.q1.q4].c5

For this example total cost is calculated 8.30499.

3.3 Intersection-Precedence Algorithm

Intersection algorithm is applied for k-out-of-n structure without precedence constraints in

the previous section. In this section, to find the better solutions for this problem, Intersection-

Precedence Algorithm (INT-PREC) is developed by using some rules of Intersection Algo-

rithm. Intersection Algorithm gives an optimal strategy if there is no precedence relationship.
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Under precedence constraints, it is more difficult to select which following node is tested.

Every success and failure states, it is needed to control which nodes can be tested because of

previous success and failure states and precedence relationship.

Notations and definitions for Intersection Algorithm are used for this algorithm. Also,

there are some other notations and definitions which are given below:

tmp: Temporary set defined by the algorithm.

ind: Item has a highest number of successors of a set.

AI: Available item set according to precedence constraints in this stage.

tmp− AI: Intersection set of tmp and AI.

t: Tested units before reaching that state.

SS: Smallest subscript.

A k-out-of-n structure with precedence constraint the yield probability p1, p2, , pn and the

testing cost c1, c2, , cn. G,S and F can be constructed easily and δs and δf can be constructed

by the following steps.

This algorithm gives always feasible results, because in all of the steps, it controls

whether there are available items. If a testing strategy is shown by a binary decision tree,

we check the available items by following the previous failure and success states. It is time

consuming to decide which nodes are available to test in the present state. If a strategy is

obtained by Intersection Algorithm, after some iterations, all of the available items are used

and any feasible solution is not found. So, in this algorithm, to select following node, the

number of successors of the item is another criteria. Also, this algorithm gives us a chance

to select following component according to existing state of the system. So, this algorithm

gives not only a testing sequence but also a binary tree of the testing components in all of

the states. We will comparatively analyze the results of this algorithm and applied heuristics

based on objective function value and run time. When we solve a small size of problem, we

use the same data which is given in Table 3.1. So, U = {1, 2, 3, 4, 5} and V = {3, 5, 4, 2, 1}.

But we add new precedence relationship between {(2,4), (3,4), (4,5), (4,1)}. (i,j) means j can

be tested if and only if i is tested before. For this particular example, we generate all of the
23



possible policies in Excel, then check if they are feasible, calculate their objective function

values and find the minimum one. The value is 9.704 is same as the value which we find by

this algorithm.
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Algorithm 3.3: Intersection-Precedence Algorithm
Step 1:
tmp := Uk

⋂
Vn − k + 1;

AI:= Find the available items according to precedence constraint;
tmp− AI := tmp

⋂
AI;

if tmp-AI is not an empty set and ind(tmp− AI) 6= Ø then
δs(0, 0) := r;

else
Sort AI into order of ind values, δs(0, 0) := SS(AI);

end if
Step 2:
for i = 1 to k − 1 do
tmp := tmp

⋃
{uπ(n−k+1+i)};

AI := N − {δs(i− 1, 0)}
tmp− AI := tmp

⋂
AI;

if tmp-AI is not an empty set and ind(tmp− AI) 6= Ø then
δs(i, 0) := r;

else
Sort AI into order of ind values, δs(i, 0) := SS(AI);

end if
end for
Step 3:
for i = 0 to k − 1 do

for j = 1 to n− k do
AI := N − {δs(m, 0)|0 ≤ m ≤ i} − {δf (m, t)|0 ≤ t < jand0 < m < i};
if i > 1 and δf (i− 1, j)εAI then
δf (i, j) := δf (i− 1, j)

else
tmp := tmp

⋃
Vn−k+1+i;

tmp− AI := tmp
⋂
AI;

if tmp-AI is not an empty set and ind(tmp− AI) 6= Ø then
δf (i, j) := r

else
Sort AI into order of ind values, then δf (i, j) := SS(AI);

end if
end if

end for
end for
Step 4:
for i = 1 to n− k do

for j = 1 to k − 1 do
if δf (i, j) = δf (i− 1, j) then
δs(i, j) = δs(i, j − 1);

else
δs(i, j) = δf (i, j);

end if
end for

end for
End of Algorithm
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CHAPTER 4

HEURISTICS

In this chapter, we propose a tabu search (TS) and simulated annealing (SA) algorithm to

find good permutation strategies for the sequential testing problem for k-out-ofn systems

under general precedence constraints. As mentioned before, we focus on the permutation

strategies since we can compute their expected costs efficiently. Both TS and SA require

an initial solution to start with. First, we describe how we find a good initial solution, that

we will use as a starting solution for both algorithms. Then we describe the TS and SA

algorithms in detail, in terms of implementation details and parameters.

4.1 Initial Solution

We are interested in finding permutation strategies that respect the precedence constraints.

We order the nodes as a sequence such that for every arc (i, j) ∈ precedencelist, order(i)¡

order(j). We construct feasible permutations by using different merit values and compare the

results in order to find out which merit values perform the best. We implement the generic

algorithm performed on 4.1. At each step, the available nodes are those nodes with indegree

0 or the nodes that can be tested immediately, i.e. the nodes for which all predecessors are

already tested.

Selection Merit Value

Random Selection: While there are available nodes to use for order, the next node is chosen

randomly among available nodes.

Increasing Order of Cost/Priori Success Probability: At each step we choose the next com-

ponent as the component that has the minimum cost/probability of functioning. Let us
26



Algorithm 4.1: Initial Solution Algorithm
for all i ∈ N do

in degree(i):=0;
end for
for all (i, j) ∈ A do

in degree(j):=indegree(j)+1;
end for
List := ∅;
next := 0;
for all i ∈ N do

if indegree(i) = 0 then
List := List

⋃
{i};

end if
end for
while List 6= ∅ do

rank order nodes in List according to chosen merit value;
select first node i of List and delete it;
next := next+ 1;
order(i) := next;
for all (i, j) ∈ A(i) do
indegree(j) := indegree(j)− 1;
if in degree(j)=0 then
List := List

⋃
{j};

end if
end for

end while
if next¡n then

the precedence constraints give a directed cycle;
else

the network is acyclic and the array order gives a suitable order of nodes;
end if
End of Algorithm

note that this sequence is optimal for 1-out-of-n (parallel) systems without any prece-

dence constraints.

Increasing Order of Cost/Priori Failure Probability: At each step we choose the next com-

ponent as the component that has the minimum cost/probability of failing. Let us note

that this sequence is optimal for n-out-of-n (parallel) systems without any precedence

constraints.

Increasing Order of Cost/[(Priori Failure Probability)(Priori Success Probability)]: At

each step we choose the next component as the component that has the minimum
27



cost/(probability of failing*probability of functioning). One may consider this as a

trade-off between the two latter merit values

We try all of these criteria to find out which one gives better initial solution. Different

selection methodologies are used for different values of k. These results are given in Chapter

5.

4.2 Tabu Search Algorithm

Tabu search is a meta-heuristic method developed by Glover [14, 15] and has since been

widely used to solve combinatorial optimization problems in the field of scheduling, routing,

facility design, and so on. We refer the interested reader to the book by Glover and Laguna

[16] and the references therein.

The main motivation of TS heuristic is to enable the search process to escape the trap

of the local optimal solutions. In order to achieve this, it allows climbing moves when

no neighboring solution improves the previous best solution. Besides, unlike other search

techniques, TS avoids examining previously explored regions recurrently by keeping a tabu

list. Tabu list includes the solutions that have been considered in the short run. This list

forbids some moves to avoid returning to the previous solution unless they satisfy some

aspiration criterion.

The general flow of a TS heuristic can be described as follows: The algorithm starts

with an initial solution. At each iteration, we evaluate neighbor solutions and select the best

solution in the neighborhood of the current solution until a termination criterion is met. Note

that if this best solution is obtained as a result of a tabu move, we check whether or not the

aspiration condition is satisfied. The aspiration condition describes a favorable circumstance

under which even a tabu move is allowed. After selecting the new solution, we set the

selected solution as the current solution and update the tabu list. If the selected solution

improves the best solution so far we also update the best solution.

We have already discussed the process of finding an initial feasible solution. Next we

describe how we implement other components of the TS algorithm, including neighborhood

strategy, solution evaluation, tabu list and aspiration condition and termination criteria.
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4.2.1 Neighborhood Strategy

We use a neighborhood move that is widely used in the literature, described as follows:

• Swap(i,j): Change the orders that node i and j in the permutation strategy

The swap function is used to evaluate all neighbor solutions obtained by the swap moves

and select the best neighbor solution. In our TS implementation, at each iteration we apply

the swap function. Then, we calculate the objection function value of that neighbor solution.

We also check the number of successive iterations without any improvement in the overall

best solution. If this number exceeds 50, we terminate the algorithm.

4.2.2 Solution Evaluation

To force the search, we allow infeasible moves with respect to “precedence constraints”. If

the precedence constraints are violated, the objective function is modified. To make this

modification, we add a penalty function βP (x). Here P (x) is the total number of violated

precedence relations calculated according to the ordered sequence for a decision vector x

and β is the penalty coefficient with an initial value of 1. If the assignment is feasible for the

sequence then P (x) is equal to zero. Every 5 iterations the penalty coefficient β is divided

by 2 if all 5 previous solutions were feasible or multiplied by 2 if all were infeasible.

4.2.3 Tabu List and Aspiration Condition

TS algorithm determines a tabu list to have a short term memory. The tabu list includes some

tabu moves that means these moves are forbidden to apply. We cannot consider these moves

unless they satisfy some aspiration condition.

It is also an important decision to determine the tabu list size. As the list size increases

we may not identify the local optimal solutions, also if it is smaller, it may cause to reach to

the previously discovered local optimal solutions. In our implementation, we define the tabu

list size based on the number of k values.

If the selected move is in the tabu list, then in order to accept this move we should check

whether the aspiration condition is satisfied. If this tabu move leads to a solution that has

an objective function value strictly better than the best solution so far, then the aspiration

condition is satisfied and this tabu move is accepted.
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4.2.4 Termination Criteria

We terminate the search algorithm if the maximum computation time criteria is met. In our

implementation, the maximum computation time (timelim) is defined as 500 seconds. We

select a time limit as larger as our computed time for all data set. For larger n values, the

algorithm is typically terminated because of time limit.

We conduct a computational study to test the efficiency and effectiveness of the proposed

tabu search algorithms and present the corresponding numerical results in the related chapter.

4.3 Simulated Annealing Algorithm Heuristic

Simulated Annealing is a widely used meta-heuristic methodology that compose a search

process to escape from a local optimum [20]. The approach used in this methodology is

to focus on searching the global optimum. This can be found in anywhere in the feasible

region, the early emphasis is to take steps in random directions.

The general flow of SA heuristic, at each iteration search process moves from the current

trial solution to an immediate neighbor in the local neighborhood of this solution. To define

how an immediate neighbor is selected to be the next trial solution is different from TS.

Selection rule and notations are given below:

• Zc= objective function value for the current trial solution,

• Zn= objective function value for the current candidate to be the next trial solution,

• T= a parameter that measures the tendency to accept the current candidate to be the

next trial solution if this candidate is not an improvement on the current trial solution.

Since our problem is a minimization problem, selecting the next trial solution from

among all candidate alternatives is performed according to move selection rule for mini-

mization problems of the simulated annealing algorithm . This rule is given below:

• If Zn ≤ Zc ⇒ This candidate is always accepted.

• IfZn > Zc ⇒ This candidate is accepted with probability: Probability{acceptance} =

ex where x = Zc−Zn

T

Basic simulated annealing algorithm outline can be described as follows:
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– Initialization: It is started with an initial feasible solution.

– Iteration: Next trial solution is selected and if there is no suitable next trial

solution, the algorithm is terminated.

– Temperature Schedule Check: Simulated Annealing Algorithm is started with

an initial temperature (T) value. When the desired number of iterations have been

performed at the current temperature value, temperature is decreased to any other

temperature value by using the schedule. Then solution methodology is resumed

performing iterations by using this new temperature value.

– Stopping Rule: When the desired number of iterations have been performed

according to every determined T values in schedule or when none of the current

trial solution improves the best trial solution.

4.3.1 Neighborhood Strategy

We used the move selection rule to select the next trial solution. Select two nodes

from feasible trial order and swap them by considering the precedence constraints

(Enumeration).

4.3.2 Checking the Temperature Schedule

When the possible number of iterations have been reached at the initial value of T

(0.2 times objective function value of initial feasible solution), decrease T (0.2 times

previous temperature value) to the next value in the temperature schedule and perform

iterations by using this new value. The computational results of different T values is

given in Chapter 5.

4.3.3 Termination Criteria

When possible number of iterations has been performed at the smallest value of T

(T[0]) in the temperature schedule, stop. However, if reasonable numbers (all iterations

for any of the T values) of last iterations have the same objective function values (no

improvement), we terminate the algorithm.
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We conduct a computational study to test the efficiency and effectiveness of the pro-

posed simulated annealing algorithms and present the corresponding numerical results

in the related chapter.
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CHAPTER 5

COMPUTATIONAL STUDY

We conduct an extensive computational study to test the performance of the proposed

algorithms. In this chapter, we first explain the problem instance generation proce-

dure in detail. Then we discuss the implementation details of the algorithm and the

performance of the algorithms.

5.1 Problem Instances Generation

In order to test the computational performance of our solution methods, we generated

random problem instances with different properties, in terms of problem size, prece-

dence graph structure, the success probabilities and testing costs.

– Problem size: We let the number of components n to assume 4 different values

namely, 20, 50,100, 200.

– Testing cost and priori testing success probability: We generated the testing costs

and success probabilities by using uniform distribution. The testing costs are

generated with parameters 1.0 and 10.0. The success probabilities ware generated

with different parameters such as (0.0-1.0), (0.5-1.0) and (0.75-1.0).

– Precedence relationship: We generated precedence graphs by inserting 1%, 5%,

10%, 20%, 40%, 50%, 75% of all possible arcs in the precedence graph.

Then we named our problem instances according to generating strategy of success

probability. If we use the parameters (0.0-1.0) for success probability, we name this

group of data set as A. Likely, when we use parameters (0.5-1.0) and (0.75-1.0), we
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name data set B and C, respectively. Then, we separate the data into eight subgroups

according to strictness of precedence relationship. When we use 1%, 5%, 10%, 20%,

40%, 50%, 75% precedence relationship for data set A, these subgroups were named

asAA,AB, .., AH , respectively. Data set B and C are named in this same strategy. We

generated 10 data for all subgroup of data set. So, for different n values, we solved the

problem for 240 different data. In total we have 960 problem instances and we solved

these instances for 3 times with parameters k=n/2, k=n/3 and k=n/4.

5.2 Computational Results

5.2.1 Initial Solution

In Chapter 4, we discuss various methods to find an initial solution methodology. We

try to select the next node according to a merit value which is obtained by increasing

value of testing cost/priori success probability, testing cost/priori failure probability,

testing cost/[(priori success probability)(priori failure probability)], random selection.

We perform all these criteria using a subset of our data set generated before, according

to different k values. Our main goal is, to decide which selection criteria gives us

a better initial solution. If we start with a better initial solution, we expect to have

better solutions at the end.. When k = n/2, k = n/3 and k = n/4 the tables below

give a comparative analysis among all mentioned selection criteria. For the parameter

k, we just choose values less than or equal to n/2. This is due to the fact that the

state of a k-out-of-n systems depends only on the number of functioning components.

For instance, let us consider a 3-out-of-7 system. This system functions if at least 3

components function and fails if at least 5 components fail. On the other hand, if we

consider a 5-out-of-7 system, the system functions if at least 5 components function

and fails if at least 3 components fail. If we just interchange the labels of states, i.e.

working state becomes failing state and vice versa, we essentially get the same system.

In fact, these system functions are dual of each other in Boolean function context.

Essentially, it suffices to investigate only k values that are less than or equal to n/2.

Let us recall that a 1-out-of-n system is a parallel system and there are some optimality

results for these systems under special conditions. When k is small, in some way, one
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can argue that the system behaves somehow similar to the parallel system. Thinking

in this way, one can also argue that the most difficult instances are when k = n/2,

since in this case it is difficult to prove that the system is functioning (we need n/2

functioning components) and it is also difficult to prove that the system is failing since

we need n/2 + 1 failing components.

As it is seen in tables 5.1, 5.2 and 5.3 to select the available items changes according

to different k values. For k = n/2 to use c/p is the best choice to start a good initial

feasible solution, whereas for k = n/3 and k = n/4 to use c/q is the best choice to

find the best initial feasible solution. So, c/q is the best choice to obtain a good initial

feasible solution.

k=n/2 c/p c/pq c/q random Best Selection Methodology
n=20 79.47 82.76 78.09 84.81 c/q
n=50 189.80 204.19 202.66 207.43 c/p

n=100 381.54 399.85 393.57 401.63 c/p
n=200 793.65 821.63 820.25 825.08 c/p

Table 5.1: Objective function values for initial solution when k=n/2

k=n/3 c/p c/pq c/q random Best Selection Methodology
n=20 81.56 81.56 75.58 85.60 c/q
n=50 213.20 213.20 206.28 218.45 c/q

n=100 415.93 415.93 402.17 422.38 c/q
n=200 860.10 860.10 842.89 862.91 c/q

Table 5.2: Objective function values for initial solution when k=n/3

k=n/4 c/p c/pq c/q random Best Selection Methodology
n=20 20.00 20.00 20.00 20.00 c/q
n=50 50.00 50.00 50.00 50.00 c/q

n=100 100.00 100.00 100.00 100.00 c/q
n=200 200.00 200.00 200.00 200.00 c/q

Table 5.3: Objective function values for initial solution when k=n/4

5.2.2 Tabu Search Algorithm

In this section, the computational results for different n, k values and the parameters of

Tabu Search Algorithm are presented. Our algorithm is developed under precedence
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constraints. If the precedence constraints are violated, the objective function is modi-

fied as explained in Chapter 4. To make this modification, we add a penalty function

βP (x). Every 5 iterations the penalty coefficient β is divided by 2 if all 5 previous

solutions were feasible or multiplied by 2 if all were infeasible. Also, our algorithm

is terminated if the maximum computation time is met. We define this value as 500

seconds in Chapter 4.

Average improvement values between the initial solution and the solutions stated by

the Tabu Search Algorithm are given below k = n/2, k = n/3, k = n/4. Firstly, in

tables 5.4, 5.5, 5.6 the improvement values between initial solution and Tabu search

Algorithm of k = n/2 for data type A, B and C, respectively. As it is seen from

tables, the improvement values of the algorithm for data type A is the least. A is

generated with a success probability with the parameters (0.0-1.0). For data type B

and C parameters are (0.5-1.0) and (0.75-1.0) respectively. So, B and C it is easier to

select nodes according to their success probabilities. Also, the average improvement

values are lower when the precedence relationship is strict. We have divided to data

set into eight subgroups for A, B and C. However average improvement values for

data set AA is 1.57%, it gets lower and it becomes 0.62% for AH. Because from A to

H, instances are generated with more strict precedence constraints. If an instance is

relaxed, than we can find so many strategy to try and hit a better one to minimize the

total expected cost.

Secondly, in tables 5.7, 5.8, 5.9 the improvement values of k = n/3 for data type A, B

and C, respectively. As it is seen from tables, the improvement values of the algorithm

for data type A is still the least. Also, the average improvement values are lower when

the precedence relationship is strict. We have divided to data set into eight subgroups

for A, B and C. However average improvement values for data set AA is 6.70%, it gets

lower and it becomes 2.39% for AH. Because from A to H, instances are generated

with more strict precedence constraints. If an instance is relax, than we can find so

many strategy to try and hit a better one to minimize the total expected cost.

Lastly, in tables 5.10, 5.11, 5.12 improvement values of k = n/4 for data type A, B

and C, respectively. As seen from the tables, the improvement values of the algorithm

for data type A is the least as same as for k = n/2 and k = n/3. Also, the average
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improvement values are still lower when the precedence relationship is strict.

5.2.3 Simulated Annealing Algorithm

In this section, the computational results and parameters of Simulated Annealing Algo-

rithm are given. Before giving the computational results, we provide improvement val-

ues for Temperature parameter of Simulated Annealing algorithm. T = 2%, T = 5%,

T = 10%, T = 20% are tried to select the best value. Below table, for the same sub-

set which is used for selection criteria for initial solution, improvement of objective

function values are given for all different T values. And T = 20% gives more efficient

results if we take average of the whole data that is used for this selection.

Below, we analyze the improvement of Simulated Annealing Algorithm based on de-

fined initial solution. Best numerical results are studied by trying different temperature

values. Generally the initial temperature value gives the best results, nearly 44% of the

number of best solutions of data set. When possible number of iterations has been per-

formed at the smallest value of T in the temperature schedule, the algorithm is stopped.

However, for any of the T values if all possible iterations are performed and there is

no improvement in the objective function value, then our algorithm is stopped.

Average improvement values between initial solution and Tabu Search Algorithm re-

sults are given below k = n/2, k = n/3, k = n/4. Firstly, in tables 5.14, 5.15, 5.16

improvement values of k = n/2 for data type A, B and C, respectively. Likewise in

Tabu Search Algorithm results, improvement values of the algorithm for data type A

is the least. A is generated with a success probability with the parameters (0.0-1.0).

For data type B and C parameters are (0.5-1.0) and (0.75-1.0) respectively. Also, aver-

age improvement values are lower when the precedence relationship is strict. As it is

given for Tabu Search results, improvement values get lower from A to H because of

strictness of the precedence relationship.

Secondly, in tables 5.17, 5.18, 5.19 improvement values of k = n/3 for data type A,

B and C, respectively. As it is seen from tables, improvement values of the algorithm

for data type A is still the least. Also, the average improvement values are lower when

the precedence relationship is strict.
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Lastly, in tables 5.20, 5.21, 5.22 improvement values of k = n/4 for data type A, B

and C, respectively. As it is seen from tables, improvement values of the algorithm

for data type A is the least as same as for k = n/2 and k = n/3. Also, average

improvement values are still lower when the precedence relationship is strict.

5.3 Comparison of Algorithms

In this section, Intersection-Precedence Algorithm and our heuristics algorithms are

compared and analyzed. In general, we observe that Intersection-Precedence Algo-

rithm generally improves the objective function value. For some instances, determin-

ing the next component to inspect according to the current testing state can lead to

worse results. As it is seen below, in some cases our proposed algorithm does not im-

prove our objective function value. It runs faster than the heuristics for small n values,

the comparative analysis for the running time will be given.

Firstly, comparison of algorithms is given for k = n/2. As it is seen from the tables

5.23, 5.24, Simulated Annealing and Tabu Search heuristics give good results from

initial solution. They give a testing sequence and the next component to test is not

depended on the states of already tested. Our Intersection-Precedence Algorithm gives

results for strategies described by a binary tree, and also, it gives generally better

results than the heuristics. Generally, for smaller values of n average improvement

values of Intersection-Precedence Algorithm than heuristics are higher with respect

to higher values of n. When there are a few nodes to order, to decide which node

to test according to present state can make a sharp decrease in the objective function

value that obtained by using a permutation strategy. For example, when there are 100

nodes to test, to make a change in the order according to previous states cannot make

a reasonable numerical effect in the objective function value. If the problem has a

strict precedence relationship, there are a few possible orders and heuristics can not

improve the objective function so much. But Intersection-Precedence Algorithm can

choose the available items by looking at every state and it can improve the objective

function value higher than the heuristics. As it is seen in tables 5.25, 5.26, for n = 100

and n = 200 heuristics give more faster results because available items are searched
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at every states of INTER-PREC. Also, average improvement values are getting higher

from data set A to C. For example, when k = n/2, n = 50 average improvement value

of Intersection-Precedence Algorithm with respect to Simulated Annealing is 0.74%

for A, 7.24% for B, 7.48% for C. The prior success probabilities are higher and the

failure probabilities are lower for C. As it is stated before, Intersection-Precedence

Algorithm decides which item to test according to present state. Our next item to test

can be changed according to result of our previous state is success or failure. When the

items have a high success probability, it is easy to decide the next node by using the

information of previous states. As a summary, for k = n/2 our developed algorithm

give better results from heuristics according to objective function value.

After making a comparison between Intersection-Precedence Algorithm and Heuris-

tics Algorithms, in Table 5.27 a comparison of Simulated Annealing Algorithm and

Intersection Algorithm when there are no precedence constraints is given. To get

benchmark results we used some well-known heuristics. To know that our algorithm

really performs better, it is needed to to know performance of our benchmark results.

Simulated Annealing and Tabu Search Algorithms gave similar results, so we made

a comparison by using one of them, Simulated Annealing. We know that when there

are no precedence constraints, Intersection Algorithm gives optimal results. So, we

used same data without precedence constraints and solved by using Intersection Algo-

rithm. We found optimal results for this data set. Then, we used Simulated Annealing

for same data set and made a comparison. For k = n/2 Simulated Annealing Al-

gorithm has 4.7% bigger objective function value than Intersection Algorithm. This

result shows us our heuristics are good benchmark results. This analysis is not taken

for also k = n/3 and k = n/4.

Likewise k = n/2 it is given below computational results for k = n/3. As it is seen

from the tables 5.28, 5.29, our Intersection-Precedence Algorithm gives more effi-

cient results from heuristics. INTER-PREC improves the objective function value 30%

higher than the SA and TS. Generally, for smaller values of n average improvement

values of Intersection-Precedence Algorithm than heuristics are higher with respect to

higher values of n. Also, average improvement values are getting higher from data set

A to C. Likewise for k = n/2, as it is seen in tables 5.30, for n = 100 and n = 200
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Simulated Annealing Algorithm gives more faster results because available items are

searches at every states of INTER-PREC. Also, Tabu Search Algorithm gives more

time consuming results for only n = 20 than INTER-PREC that is shown in Table

5.31.

Lastly, comparison of algorithms are given for k = n/4. Again, as it is seen from

the tables 5.32, 5.33, Intersection-Precedence Algorithm gives more efficient results

from heuristics. INTER-PREC improves the objective function value 30% higher than

the SA and TS. Generally, for smaller values of n average improvement values of

Intersection-Precedence Algorithm than heuristics are higher with respect to higher

values of n. Likewise for k = n/3, as it is seen in Table 5.30, for n = 100 and

n = 200 Simulated Annealing Algorithm gives more faster results because INTER-

PREC searches for available items at every states. Also, Tabu Search Algorithm gives

more time consuming results for only n = 20 that is shown in Table 5.31.
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Comparative results for different T values n=20 n=50 n=100 n=200
T=2% 3.24% 1.35% 0.92% 0.54%
T=5% 3.05% 1.20% 0.86% 0.88%
T=10% 3.21% 1.23% 0.82% 0.81%
T=20% 3.06% 1.17% 0.94% 0.94%

Selected Methodology T=2% T=2% T=20% T=20%

Table 5.13: Computational results of different Temperature results
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

In this study, the sequential testing problem for k-out-of-n systems under general type

precedence constraints is investigated. We use the results from the literature for the

sequential testing problem for k-out-of-n systems without any precedence constraints,

to come up with an algorithm, ”Intersection-Precedence” that finds feasible strategies

that can be efficiently represented by a Block-Walking Diagram. We also consider

permutation strategies that can also be represented in an efficient manner and try to find

good permutation strategies by implementing a Tabu Search and Simulated Annealing

algorithm. We compare the performances of all these algorithms and we observe that

on the average, Intersection-Precedence outperforms the others.

For the experimental analysis, one major difficulty that we deal with, is the represen-

tation of feasible solutions. The natural way to represent feasible solutions is to use

Binary Decision Trees. On the other hand, even for moderate values of k and n, the

size of the binary decision tree becomes exponential and it is not possible to work with

these binary decision trees. That is why, in this work, we concentrate on strategies that

can be efficiently represented. From a computational point of view we have to do it,

on the other hand, in this way we only consider a subset of the feasible solutions.

As of now, there is no formal proof that the problem is NP-complete even for the

series(parallel) systems. We are aware of some efforts towards this end. For the se-

ries(parallel) systems the problem resembles very much to the scheduling problem

where one tries to minimize the total completion times on a single machine with gen-

eral precedence constraints. This problem is NP-complete but there is no direct way to

use this result to prove the NP-completeness of the sequential testing problem.
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We mention some results from the literature where they claim to obtain an optimal

algorithm under special conditions related to the data. One could also look for some

special classes of precedence graphs where the optimal solution can be found. This

has been done for the series(parallel) systems. Again, these do not extend easily to

k-out-of-n systems.
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