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Abstract

This thesis aims at solving a multi-depot vehicle scheduling problem with disrup-
tions at the operational level. Although there are many cases of disruptions in trans-
portation, we mainly focus on the excessive customer demand for a specific destination
and late arrival of vehicles. We refer to these problems as extra trip and delayed trip
problems, respectively. Then we propose a solution method that is based on swapping
two routes. Conventional vehicle scheduling problem is solved by generating a sequence
of trips known as routes. By using a set partitioning model, it is ensured that each trip
is covered exactly once while the total deadheading cost is minimized. Since the set
partitioning model has exponentially many variables, the column generation algorithm
is used to solve the problem efficiently. However, with our proposed swapping strategy,
a set partitioning model with side constraints is formulated. To solve this new model,
we need to use two different subproblems. The first one is a standard one, which follows
the column generation algorithm directly. The second subproblem generates pairs of
routes (columns) and along with these pairs constraints are added to the problem. To
handle this difficulty, we propose to apply a column-and-row generation algorithm and
discuss the optimality of this approach. The proposed method is tested on a set of
randomly generated problem instances. Computational results show that the proposed
approach can effectively handle the disruptions at the expense of a slight increase in
the cost of the conventional model.



ÇOK DEPOLU ARAÇ ROTALAMA PROBLEMLERİNDE AKSAKLIKLAR

Ezgi Yıldız

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2011

Tez Danışmanı: Doç. Dr. Ş. İlker Birbil

Anahtar Kelimeler:çok depolu araç rotalama problemi, aksaklık yönetimi, sütün

türetme, satır ve sütün türetme

Özet

Bu çalışma, çok depolu araç rotalama probleminde operasyon aşamasında ortaya
çıkabilecek aksaklıkları yönetmeyi amaçlamaktadır. Ulaşım sektöründe, ilgili prob-
lemler yapısı itibari ile çok farklı aksaklıklar içerse de, bu tez kapsamında özellikle
aşırı müşteri talebi ve gecikmiş seferler göz önünde bulundurulmuştur. Sözü edilen
aksaklıklar ek sefer ve gecikmiş sefer problemleri olarak isimlendirilmiştir. Bu iki prob-
leme çözüm olarak, uygun iki rotayı çaprazlayan bir yöntem geliştirilmiştir. Gelenek-
sel araç rotalama problemi her bir seferi bir kez kapsayacak şekilde seferler dizisinden
oluşan rotaların yaratılması ve bu rotaların küme bölüntüleme modelinde kullanılması
ile çözülür. Amaç fonksiyonunun, toplam boş sefer mesafesini en küçüklemek olduğu
bu model üssel sayıda değişken içerdiğinden sütun türetme yaklaşımı kullanılır. Fakat
aksaklıkların yönetimi için küme bölüntüleme modeline eklenen yan kısıtlar modelin
standart sütun türetme yöntemi ile çözümünü imkansız hale getirmiştir. Bu yeni mod-
eli çözebilmek için iki farklı alt probleme ihtiyaç duyulmuştur. Alt problemlerden
ilki tek bir rota oluşturulmasını amaçlarken diğer problem rota çifti oluşturmaktadır.
Rota çiftleri oluşturan bu problem değişkenler ile birlikte kısıtlarıda beraberinde ge-
tirdiği için satır-ve-sütun türetme yaklaşımı geliştirilmiş ve yöntemin en iyilik durumu
ispat edilmiştir. Önerilen yöntemin hesaplama sonuçlarının gösterdiği üzere elde edilen
sonuçlar aksaklıklara çözüm sunarken, geleneksel yöntemin amaç fonksiyonunda sınırlı
miktarda artışa sebep olmuştur.
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CHAPTER 1

INTRODUCTION

The planning process of transportation includes different phases. It starts with the

strategic level decision of demand forecasting and ends with a set of lines that will be

opened. As the next step, the set of trips are determined with specific departure and

arrival destinations. Then each trip obtains a departure and arrival time. After this

setup, it is necessary to assign the vehicles to the scheduled trips, and the resulting

problem is called as vehicle scheduling problem (VSP).

VSP is an important stage of transportation planning. Since this problem is solved

frequently by the transportation companies, many researchers are interested in solving

VSP. The major works in literature focus on two problems; single depot vehicle schedul-

ing problem (SDVSP) and the multi-depot vehicle scheduling problem (MDVSP). To

solve SDVSP, polynomial time algorithms, such as quasi-assignment proposed by Frel-

ing et al. [2001] are available. However, when there are multiple depots, the problem

becomes NP hard (see Daduna et al. [1993] for details). One of the well-known ap-

proaches to solve MDVSP is based on generating a sequence of trips that will be

assigned to a vehicle.

In this thesis, we focus on MDVSP for inter-city transportation. To solve this

problem, we first employ a network structure. In the network model, each trip is

represented by a node and the compatibility relations are represented by arcs. For each

depot, a source and a sink node are introduced to the network. There is a connection

from each depot to a trip and likewise, from each trip to each depot. An arc cost is

equal to the distance between the arrival location of the head node and the departure

location of the tail node of the arc. These costs are related to relocation costs, which

are also called the deadheading costs especially in the airline scheduling literature.
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Figure 1.1: Sample network

In Figure 1, a sample network is illustrated. Two dummy source nodes, s1 and s2 and

two dummy sink nodes, t1 and t2 are inserted for two depots, respectively. In a given

sequence, a pair of consecutive trips are said to be compatible, if the time windows

of these trips do not overlap and there is sufficient time (connection time) between

them. In sample network, (7, 9) is a compatible pair since a vehicle can complete trip

7 at 09:30 and travel from city A to city F, which takes 4 hours, and then take over

trip 9. The cost of arc (7, 9) is the travel distance between city A to city F. If the

arrival city of a trip is the same as the departure city of the succeeding trip, then

the deadheading cost is zero. As emphasized above, to solve the MDVSP, we need to

generate sequences of trips, which contain compatible pairs. In the remaining part of

this study, this sequence of trips are called as routes . For instance, s1−2−5−8−11−t1

is a route.

The objective of MDVSP is to select a subset of all feasible routes in order to cover

each trip in the schedule exactly once with the minimum total deadheading cost. This

problem may be stated as a set partitioning problem with side constraints:

minimize
∑
r∈R

cryr, (1.1)

subject to
∑
r∈R

atryr = 1, t ∈ T , (1.2)

∑
r∈R

bd
ryr ≤ Cd, d ∈ D, (1.3)

2



yr ∈ {0, 1}, r ∈ R, (1.4)

where R is the set of all routes, T is the set of all trips and D is the set of all depots.

Here cr is the cost of route r; atr = 1, if trip t is covered by route r and 0, otherwise.

The decision variable yr equals to 1, if route r is selected and 0, otherwise. Parameter

bd
r = 1 if route r leaves depot d and 0, otherwise. Cd is the capacity of depot d. The

objective function minimizes the total cost of the selected routes. The set of constraints

(1.2) implies that each trip should be covered exactly once. The set of constraints (1.3),

ensure that the number of routes assigned to a specified depot is less than the capacity

of the depot.

Although MDVSP depends on the set of trips determined by the previous stages of

the planing, these decisions sometimes do not overlap with the reality because they are

obtained from some forecasts and historical data. Since there are many uncertainties

in real life, the schedules may not work and result with extra costs for companies. For

instance, because of traffic jam, the arrival time of a vehicle cannot be anticipated

correctly or because of the excess demand for a particular destination, an extra trip

may be inserted into the schedule. To alleviate the adverse effects of these disruptions,

some researchers study mathematical modeling approaches that take into account the

possible disruptions at the planning stage. Similarly, in this thesis, we assume that

possible sources of disruptions may be guessed, and to handle these disruptions at the

operation level, we try to create a robust schedule in the sense that this schedule gives

more flexibility to the decision makers to recover from the disruptions.

1.1 Contributions of The Thesis

Main contribution of this thesis is to create a robust solution to MDVSP to manage

disruptions. With our proposed solution approach, the delayed and the the extra

trips are handled at operational level. We solve the MDVSP with column generation.

Although column generation is frequently applied for solving conventional MDVSP, it

is not possible to use column generation directly to solve our particular robust model.

Thus, we introduce a new subproblem that grows both horizontally (column-wise) and

vertically (row-wise). With using two different subproblems, the optimality of the

algorithm is proved. The contributions of this study can be listed as follows:

• We give mathematical programming model that takes into consideration the dis-

3



ruptions caused by delays and extra trips in MDVSP.

• We introduce a solution approach to solve the linear programming relaxation of

the proposed integer programming model.

• This approach is a special application of the method proposed by Muter et al.

[2011].

• We show that the proposed solution approach converges to the optimal solution

of the linear programming relaxation of the robust integer programming model.

• We test our method with a variety of randomly generated instances. Our solutions

emphasize that:

– with small cost increases, possible sources of disruptions can be handled

– large MDVSP instances can be solved in reasonable amount of time.

1.2 Outline

The outline of this thesis is as follows: Chapter 2 gives a literature review on the

MDVSP and disruption management. Chapter 3 includes our problem statement and

the proposed algorithm with its optimality proof. In Chapter 4, we present a com-

putational study on a set of randomly generated problem instances. Conclusions are

discussed in Chapter 5.

4



CHAPTER 2

LITERATURE REVIEW

In this chapter, we present the existing modeling approaches and solution techniques

that are used to formulate and solve the multi-depot vehicle scheduling problem. We

also present the studies focused on the disruption management in transportation. Ex-

isting solution approaches based on column-and-row generation are also included in

the last part of this chapter.

2.1 Multi-Depot Vehicle Scheduling

In the literature, the early solution methods for multi-depot vehicle scheduling problem

(MDVSP) are mainly the heuristic methods. To the best of our knowledge, the first

studies using heuristics are given by Bodin et al. [1983] and Bertossi et al. [1987].

Dell’Amico et al. [1993] apply a polynomial time heuristic based on solving a series

of shortest path problems and minimizing the total number of vehicles. In their study,

they try to minimize the total travel distance by covering all trips. To solve the problem,

they use a network representation and determine the duty of a vehicle with a circuit

on this network. Their solution algorithm includes a series of stages. At the first stage,

they solve the relaxation of the original problem, where each cycle can include more

than one depot. This relaxed version is a simple problem that can be solved easily.

Haghani and Banihashemi [2002] also apply heuristics to solve an extension of

MDVSP problem, namely, multiple depot vehicle scheduling problem with route time

constraints (MDVSRTC). For this problem, they add a constraint which limits the

duration of a route. As a solution procedure, they use an exact method and two

different heuristic approaches. Since the size of the constraint set that limits the route

time, is inherently large, it is not possible to solve the problem directly. Instead, they

apply a constraint generation method. As a heuristic approach, first they solve the

problem without the route time limiting constraint. For the routes that violate the

5



time limit, they delete the trips one by one until the route becomes feasible. They

resolve the model and apply the procedure until all routes are feasible. With the

second heuristic, they aim to reach integer solution. Furthermore, in their study they

try to decrease the total number of joining trips and the decision variables.

Beyond the heuristics, several exact methods are also applied to solve MDVSP.

Ribeiro and Soumis [1994] formulate MDVSP as a set partitioning problem. In our

study, we also adopt the same formulation. Ribeiro and Soumis apply some bounding

techniques and relax the MDVSP with different techniques. With these techniques,

they come up with assignment and shortest path problems. They also use additive

bound technique, which is also used by Carpaneto et al. [1989a]. In this study, Ribeiro

and Soumis show that, the linear relaxation of MDVSP generates a better bound than

the additive bound of Carpaneto.

In his thesis, Löbel [1998] tries to solve a large scale MDVSP by using combinations

of several methods. First, he applies Lagrangian relaxation to set a tight lower bound on

the fleet size and the operational cost. For this bound, he uses two different Lagrangian

relaxation. Then, he searches for a feasible integer solution as a good starting point.

By using two different primal opening heuristics. The first heuristic assigns each trip

to one of the depots with the shortest travel distance. The second heuristic is based

on the minimum-cost flow idea. After determining the initial feasible solution, linear

programming (LP) relaxation of the problem is solved by column generation. To test

the algorithm, he uses a real-world data involving the cities of Germany.

Similar to Ribeiro and Soumis, Hadjar et al. [2006] apply a column generation

method to solve MDVSP. Since the LP relaxation optimal solution may include some

fractional variables, they introduce a class of valid inequalities to obtain integer so-

lutions. By using the newly introduced constraints, they create a new reduced cost

formulation to solve the resulting problem. Since the number of variables of MDVSP

is huge, they also use variable fixing procedure. In their study, they define the non-

integral solution of the linear relaxation of the problem as an odd cycle. To remove

the odd cycles they apply lifting procedures to MDVSP . They also use a branch-and-

bound tree and apply column generation at each node. This approach is also known

as branch-and-price.

6



2.2 Managing Disruptions

In the literature, the solution methods to manage disruptions can be categorized under

two groups. The first group focuses on the online approach. These studies compute the

schedules of vehicles during the execution and update the schedules at the operational

level. Alternate solution approaches consider the possible disruptions at the planning

stage. This class of solution procedures creates schedules that are likely to remain

stable when disruptions occur. These approaches belong to the second group and they

are called offline aproaches. The proposed approach in this thesis is also an offline

approach.

As an example of online solution approach, Huisman et al. [2004] underline the

importance of the delays in the schedules of public transportation vehicles. First, they

apply a static model using multi-commodity flow formulation. Then, they focus on

a dynamic solution approach which just sets the schedule of the near future. They

assume that the travel times in that period are known. For the following periods, the

probabilities of occurrences are known and these probabilities are based on historical

data, subjective expert opinions, or a combination of both. In fact, they solve the

problem at time T , where the schedule for [T, T + l] is created with using the proba-

bilistic information of the period after T + l. According to the computational results,

by increasing the number of vehicles they can reduce the number of delayed trips with

the dynamic method.

Li et al. [2008] focus on the breakdowns of vehicles as a source of disruption. They

state that, it is necessary to pick up the passengers of a broken vehicle and then com-

plete the remaining trips of the vehicle to avoid any delays and cancelations. With their

proposed method, they consider the operation costs, the scheduled disruption costs and

the trip cancelation costs for the single depot vehicle scheduling problem. Their solu-

tion method starts with preprocessing step, which generates the network. Then, they

apply Lagrangian relaxation with relaxing one of the constraints of the mathematical

model. They also decompose the relaxed problem into three subproblems. To solve

these subproblems, they apply column generation. With the Lagrangian multipliers,

the network is updated and the shortest path problems on reduced network is solved.

Their results show that the parameters like trip cancelation costs or penalties on each

reassignment clearly affect the optimal solution of the problem. In this thesis, we also

apply column generation, however, instead of Lagrangian multipliers, we use the dual

values. With Lagrangian heuristic method, Li et al. solve at most 700 original trip

7



problem. However, as illustrated in section 4, we can solve 800 trip problem with 2

depots.

In the study of Kramkowski et al. [2009], the possible delays that can occur at the

operational level are handled by inserting buffer times between the trips. The critical

point of this approach is to determine the right place to insert the buffer times. To

solve the resulting robust vehicle scheduling problem, they apply a path based flow

decomposition method on a network. For different objectives, different decomposition

strategies are used. As another method, they manually add idle times before and

after each trip. They apply simulated annealing to solve the problem. In this setting,

they represent the objective function of the model in terms of the planned and the

delayed cost. Since the delay amounts are not known certainly, the objective function

are stochastically influenced. Thus, instead of conventional simulated annealing, they

apply an extension called simulated annealing for noisy environment algorithm. When

these different approaches are compared in terms of their solution performance the

decomposition strategies and simulated annealing extension is shown to perform best.

Sato et al. [2009] develop a method to manage disruptions that can be applied both

on vehicle and train scheduling. Mainly, their study focuses on the network-flow model

and compare it with the set-covering formulation. As a solution method to manage

disruptions, they develop a two phase heuristic. At the first phase, they partially

swap the schedule of vehicles or trains to generate a feasible solution by modifying the

original schedule. The second phase is a local search heuristic which tries to improve

the solution while maintaining feasibility. It is clear that the idea behind to manage

disruptions is similar to our the solution approach. However, our approach yields an

optimal solution.

Managing disruption is also studied in the airline scheduling literature. Shebalov

and Klabjan [2006] attack robust crew scheduling problem by paying attention to the

delays of flights. With their proposed method, they try to include as many recovery

combinations as possible within the optimal solution. As a recovery method for each

flight, the keep a different crew to cover the preceding flights of this trip and call this

crew as the move-up crew. With this method, the duties of two crews are swapped,

if a delay occurs for the specified flight. This idea to create the recovery solution is

also used in our study. Their model is based on standard set partitioning problem.

By adding a side constraint, they also keep the operation cost less than a threshold

value. To solve the overall mathematical model, they use a combination of Lagrangian

8



relaxation and column generation.

In their study Tekiner et al. [2009] focus on a specific disruption in airline crew

pairing disruption is caused by the extra flights that could be added to the flight

schedule at the operational level. To handle this disruption at the planning stage, they

come up with two solution approaches. One of the approaches try to generate pairings

that can directly cover extra flight. Other approach focuses on swapping duties of two

crews. To model the problem, they use a set covering formulation with side constraints

and solve the resulting problem by applying a column generation based heuristic.

2.3 Column-and-Row Generation

Column generation is a well-known approach for solving large-scale LP problems. It is

commonly used to solve problems with exponentially many variables. However, with

conventional column generation, it is not possible to solve problems that expand both

horizontally (column-wise) and vertically (row-wise). Thus some researchers propose

solution method that generate both columns and rows.

Muter et al. [2011] propose a simultaneous column-and-row generation algorithm.

Their study focuses on a set of of large-scale LP problems with exponentially many

variables and column dependent rows. In other words, these problems have a com-

mon issue that the generation of variables (columns) creates sets of linking constraints.

To solve these problems, they propose a simultaneous column-and-row generation al-

gorithm with three subproblems. They also discuss the optimality condition of this

solution method and illustrate its application to the multi-stage cutting stock and the

quadratic set covering problems. In this thesis, we apply the column-and-row genera-

tion approach developed by Muter et al.. The proposed method of Muter et al. has

a generic form for each horizontally and vertically expanding problem, we develop a

specific version of it and prove its optimality.

Another study that discusses simultaneous column and row generation is proposed

by Feillet et al. [2010]. In this study they develop a method that combines branch-and-

cut with branch-and-price. Since their methodology includes simultaneous generation

of variables and cuts, their problems expand both horizontally and vertically. For

a restricted master problem, they construct a primal feasible but not necessarily a

dual feasible solution such that cost values of the both of the problems equal. If the

existing solution is dual feasible, they terminate with an optimal solution. Otherwise,

9



at least one variable, which is associated with the violated dual constraint is added to

the restricted master problem. In their study, they illustrate implementations for two

problems; split delivery vehicle routing problem and a service network design problem

for urban rapid transit systems.
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CHAPTER 3

MULTI-DEPOT VEHICLE SCHEDULING WITH DISRUPTIONS

In this chapter, we give the mathematical model of our multi-depot vehicle scheduling

problem with disruptions. We explain our solution approach prove the optimality of

the proposed approach.

3.1 Problem Statement

We focus on the disruptions that may occur at the operational level. In the scope of

this thesis, we attack two types of disruptions; delays and extra trips. The delayed

trips problem aims to cover the predetermined trips with the existing vehicles in case

of possible delays. Similar to the delayed trips problem, the extra trips problem deals

with possible additional trips that can be added to the schedule at the operational

level. These extra trips must be covered by adjusting the planned schedule with the

minimum number of changes. Although these two problems are seemingly different,

we may apply the same approach to solve them. This approach is based on swapping

two routes in such a way that if any one of these disruptions occurs, then the recovery

is possible with the existing route schedule.

If a trip is delayed and it may cause further delays in all subsequent trips. Hence

all those subsequent trips that are delayed can be continued with another vehicle that

has ample time to take over. Likewise, the delayed vehicle shall then carry on with

the subsequent trips of the latter vehicle. This is called swapping routes. Similar to

delayed trips, extra trips can also be handled by swapping routes. One of the vehicles

attempts to cover the extra trip, and hence cannot continue with the remaining trips

in its route. A second vehicle then swaps its remaining trips with those of the first

vehicle so that the remaining trips of the first vehicle are also covered. As it is common

in practice, the exact time of the extra trips are not known in advance, and hence, we

assume that a time window is given for the possible departure time of the extra trips.

11



We take the worst case scenario and keep the earliest departure and latest arrival time

for each extra trip.
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Figure 3.1: Swapping solutions for disruptions

The swapping operation for delays is illustrated in Figure 3.1(a). B is the departure,

C is the arrival city for trip 4. The departure and arrival times are also given. Since

the distance from city C to city D is 250 kilometers, the cost of the arc between node 4

and node 8 is 250 units. In the original assignment, one of the vehicles covers the trip

4 and continues with trip 8, and another vehicle covers 5 and 7 in this order. However,

trip 4 is delayed and the vehicle reaches city C two hours later. Consequently, it is not

possible for this vehicle to reach city D in two hours because travel time between city

C and D is only three hours. Instead of delaying trip 8 as well, the company has an

opportunity to recover this disruption with another vehicle. That is, if the disruption

from this delay occurs, the vehicles who cover the trips 4, 8 and 5, 7 swap their duties.

New sequence will be 4′, 7 and 5, 8. In Figure 3.1(b), without the extra trip k one of

the vehicles covers trips 3 and 5, and another vehicle covers trips 2 and 6. If the extra

trip k is realized, the first vehicle covers trip 3, the extra trip and then continues with

trip 6. Other vehicle does trip 2 and continues with trip 5. As illustrated in Figure 3.1,

both the delayed trips and the extra trips can be solved by the same method. Only

difference between these two problems is the search method to find possible swapping

solutions.

By taking into consideration the recovery options for disruptions, we adapt model

(1.1)-(1.4) and obtain

minimize
∑
r∈R

cryr, (3.1)

subject to
∑
r∈R

atryr = 1, t ∈ T , (3.2)
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∑
r∈R

bd
ryr ≤ Cd, d ∈ D, (3.3)

∑

(r,q)∈P(k)

xk
(r,q) ≥ 1, k ∈ K, (3.4)

yr ≥ xk
(r,q), r ∈ R : (r, q) ∈ P(k), k ∈ K, (3.5)

yq ≥ xk
(r,q), q ∈ R : (r, q) ∈ P(k), k ∈ K, (3.6)

yr + yq ≤ 1 + xk
(r,q), (r, q) ∈ P(k), k ∈ K, (3.7)

yr ∈ {0, 1}, r ∈ R, (3.8)

xk
(r,q) ∈ {0, 1}, (r, q) ∈ P(k), k ∈ K, (3.9)

where K denotes the set of all possible disruptions (delayed trips or extra trips inser-

tions). The index set P(k) denotes the set of route pairs that can be swapped to create

a solution for disruption k. The auxiliary binary variable xk
(r,q) is set to 1, if the route

pair (r, q) ∈ P(k) and both routes r and q are presented in the route solution and to

0, otherwise. The sets of constraints (3.5)-(3.7) prescribe that xk
(r,q) takes the value 1

if and only if yp = yq = 1. They are called the linking constraints. Notice that the

number of linking constraints depends on the total number of swapping solutions. We

name this new model as MDVSP with disruptions.

3.2 Column-and-Row Generation Approach

In almost all practical settings, the total number of routes (variables) in model (3.1)-

(3.9) is very large. Therefore, it is common to use column generation to solve the

problems with large number of variables (see Dantzig and Wolfe [1960]). The column

generation algorithm aims to solve the LP relaxation of model (3.1)-(3.9). The linear

programming model becomes

minimize (3.1), (3.10)

subject to (3.2)− (3.7), (3.11)

0 ≤ yr ≤ 1, r ∈ R, (3.12)

0 ≤ xk
(r,q) ≤ 1, (r, q) ∈ P(k), k ∈ K. (3.13)

13



In this study, we call this model (3.10)-(3.13) as the master problem (MP). In tra-

ditional column generation to solve MDVSP, the restricted master problem (RMP)

contains all the constraints but only a subset of variables. Using the optimal dual

values of RMP, a pricing subproblem is solved, where a new column with a negative

reduced cost is searched. The pricing subproblem for MDVSP is typically solved on a

trip network (see Figure 1.1). The objective of this subproblem is to find a path from

a specified depot to the same depot with the minimum reduced cost. In this thesis, we

shall call this standard subproblem as the individual route pricing subproblem.

In column generation, all constraints of the model are assumed to be available.

However, constraints (3.5)-(3.7) depend on the decision variables through the set P(k).

Thus, it is not possible to solve problem (3.1)-(3.9) with conventional column generation

approach. Because of these column-dependent-rows, the problem has to be initialized

with a subset of rows and columns. Therefore, following its definition in Muter et al.

[2011], the resulting problem is called as the short restricted master problem (SRMP),

since we not only have a subset of columns but also a subset of rows. To solve the LP

relaxation of MDVSP by column generation, we replace the sets R and P(k) by their

subsets, namely R and P(k), respectively. The resulting model is then given by

minimize
∑

r∈R
cryr, (3.14)

subject to
∑

r∈R
atryr = 1, t ∈ T , (3.15)

∑

r∈R
bd
ryr ≤ Cd, d ∈ D, (3.16)

∑

(r,q)∈P(k)

xk
(r,q) ≥ 1, k ∈ K, (3.17)

yr ≥ xk
(r,q), r ∈ R : (r, q) ∈ P(k), k ∈ K, (3.18)

yq ≥ xk
(r,q), q ∈ R : (r, q) ∈ P(k), k ∈ K, (3.19)

yr + yq ≤ 1 + xk
(r,q), (r, q) ∈ P(k), k ∈ K, (3.20)

0 ≤ yr ≤ 1, r ∈ R, (3.21)

0 ≤ xk
(r,q) ≤ 1, (r, q) ∈ P(k), k ∈ K. (3.22)

According to the model above, when (r, q) in P(k)\P(k) is added to the model, a new

set of constraints of type (3.18)-(3.20) and a variable xk
(r,q) are also introduced to the
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model. If any one of yr and yq is not part of the SRMP, it can be emphasized that the

linking constraints are redundant.

A typical column generation algorithm creates a variable, adds it to the RMP and

solves it to update the values of the dual variables. However, to solve problems (3.1)-

(3.9), we also need to find pairs of variables, which triggers the generation of auxiliary

x-variables and the associated linking constraints. The proposed column generation

algorithm with two pricing subproblems is illustrated in Figure 3.2. This approach is

in fact inspired by the column-and-row generation algorithm proposed by Muter et al.

[2011] because the mathematical model (3.14)-(3.22) is a special case of the model in

that study. At the initialization step of the algorithm, a set of routes is generated to

obtain an initial feasible solution for SRMP. After solving the SRMP, the optimal values

of the dual variables are obtained. Then, individual route pricing subproblem is solved.

If the minimum reduced cost is negative, then the route is added to SRMP and the

algorithm continues; otherwise the first phase of the algorithm is terminated. At this

phase, a group of columns have already been generated and some of them may become

candidates for swapping to create a recovery solution. Therefore, the column pool is

searched for possible pairs and for each pair, the auxiliary x variable and the associated

linking constraints are added to SRMP. This step is followed by the second phase of

the algorithm, where pairs of routes are generated in the second pricing subproblem.

For each disruption, we check whether there is any negative reduced cost column only

after pairs of routes are generated along with a set of linking constraints. If so, the

columns and rows are added to SRMP and the algorithm returns back to the first

pricing problem. If the algorithm cannot find such pairs of routes for all disruptions,

then the current solution becomes optimal. To emphasize that our algorithm is an

application of CRG given in Muter et al. [2010], we remark that individual route

generating subproblem corresponds to the y- generating subproblem and route-pair

generating subproblem corresponds to the row-generating subproblem in their work.
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Figure 3.2: Flow of the proposed column-and-row generation algorithm

For pricing subproblems, the reduced cost evaluation is the key element. The

reduced cost of a column is simply checking the violation in the associated dual con-

straints. To this end, we need the dual of the SRMP. If we denote the dual variables

corresponding to the constraints (3.14)-(3.22) by ut, vd, zk, γ1
(r,q),k, γ2

(r,q),k, γ3
(r,q),k,δ

1
r and

δ2
(r,q),k respectively, then the dual problem becomes

minimize
∑
t∈T

ut +
∑

d∈D
Cdvd +

∑

k∈K
zk +

∑

k∈K

∑

(r,q)∈P(k)

γ1
(r,q),k+

∑

r∈R
δ1
r +

∑

k∈K

∑

(r,q)∈P(k)

δ2
(r,q),k, (3.23)

subject to
∑
t∈T

atrut +
∑

d∈D
bd
rv

d+

∑

k∈K

∑

(r,q)∈P(k)

(γ1
(r,q),k + γ3

(r,q),k)+
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∑

k∈K

∑

(q,r),k∈P(k)

(γ2
(q,r),k + γ3

(q,r)) + δ1
r ≤ cr, r ∈ R, (3.24)

zk − γ1
(r,q),k − γ2

(r,q),k − γ3
(r,q),k + δ2

(r,q),k ≤ 0, (r, q) ∈ P(k), k ∈ K
(3.25)

vd ≤ 0, d ∈ D, (3.26)

zk ≥ 0, k ∈ K, (3.27)

γ1
(r,q),k ≥ 0, (r, q) ∈ P(k), k ∈ K, (3.28)

γ2
(r,q),k ≥ 0, (r, q) ∈ P(k), k ∈ K, (3.29)

γ3
(p,q),k ≤ 0, (p, q) ∈ P(k), k ∈ K, (3.30)

δ1
r ≤ 0, r ∈ R, (3.31)

δ2
(r,q),k ≤ 0, (r, q) ∈ P(k), k ∈ K. (3.32)

We need to maintain primal feasibility throughout column and row generation so

that the optimality is reached by the eliminating columns with negative reduced costs.

At any iteration the missing constraints (3.15)-(3.17) that are not in SRMP are not

violated because, unless both yr and yq are generated, the associated linking constraints

are redundant. Moreover, if only one of yr or yq exists in the model, then keeping

the auxiliary variable xk
(r,q) as nonbasic and the bounds on the constraints ensures

that the corresponding constraints are not violated. Overall the primal feasibility is

always preserved as in traditional column generation. Thus, we next focus on the dual

feasibility by solving the pricing subproblems.

3.2.1 Individual Route Generating Subproblem

According to the proposed algorithm, after the SRMP is solved with the existing vari-

ables and constraints, the individual route pricing subproblem is called to check if there

is any route with a negative reduced cost. Using the optimal values of the known dual

variables obtained by solving SRMP, we check whether any of the dual constraints

(3.24)-(3.25) is violated. If we denote the reduced cost for route r ∈ R is by cr, then

we have

cr = cr −
∑
t∈T

atrut −
∑

d∈D
bd
rv

d −
∑

k∈K

∑

(r,q)∈P(k)

(γ1
(r,q),k + γ3

(r,q),k)−
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∑

k∈K

∑

(q,r),k∈P(k)

(γ2
(q,r),k + γ3

(q,r))− δ1
r . (3.33)

Since route r has not been generated yet, it cannot appear in any swapping solution set

in P(k). Moreover, since we produce only an individual route, we are not interested in

whether this route pairs up with any other individual route. Hence, in relation (3.33),

the variables γ1
(r,q),k, γ2

(r,q),k and γ3
(r,q),k are equal to zero for (r, q) ∈ P(k). Also δ1

r is

equal to zero because yr = 0. This leads to

cr = cr −
∑
t∈T

atrut −
∑

d∈D
bd
rv

d. (3.34)

The objective of the pricing subproblem is to determine a route r with cr < 0. Solving

the pricing sub-problem of the VSP is equivalent to solving the shortest path problem

on the network representation where the weights correspond to the dual values (see

also Desrochers and Soumis [1989]).

We should emphasize that SRMP enlarges column-wise but it is fixed row-wise until

route pricing subproblem cannot find negatively priced column. During individual

route pricing, some column pairs that can be swapped to handle the disruption may be

incidentally formed. However, their associated linking constraints (3.18)-(3.20) and the

auxiliary variables are not a part of SRMP. Before starting the column pairs pricing

subproblem, we investigate the pool of columns to determine the possible swapping

solutions and add necessary constraints along with the auxiliary variables. After adding

these rows coming from the existing columns, we solve the resulting SRMP and move

on to the route-pair generating subproblem.

3.2.2 Route-Pair Generating Subproblem

By solving this subproblem, our objective is to identify new columns that price out

favorably only after adding new linking constraints currently absent from SRMP. To

generate new linking constraints, we have to generate route pairs that are in P(k)\P(k).

To find out such pairs of routes, we use a search mechanism based on labeling the nodes

for each disruption. We remark that this labeling is done only once throughout the

solution procedure.

The search mechanism is illustrated in Figure 3.3. Suppose that the cause of dis-

ruption is the addition of the extra trip k. We first check through all trips list and

label them with before tags if it is possible to add an arc from this trip to the extra.
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Figure 3.3: Search algorithm for swapping solution of disruptions

Likewise, the trips that can come after the extra trip is labeled by after tags. Then for

each trip that is labeled as before, we check the successor arcs and for each trip that is

labeled as after, we look at the predecessor arcs. If there is an arc from a predecessor

of an after trip to a successor of a before trip, then these four nodes are candidates for

forming a swapping solution for extra trip k when they appear in the routes. In Figure

3.3, trips 3 and 6 are labeled before, after trips respectively. Trip 5 is the successor to

trip 3. On the other hand trips 1 and 2 are the predecessor trips of trip 6. Thus, we

should check if there is an arc between 1 to 4, 1 to 5, 2 to 4 or 2 to 5. Since there

is an arc from 2 to 5, (3, 5, 2, 6) is a solution for extra trip k. A route containing the

connection from node 3 to node 5, and another route containing connection from node

2 to node 6 constitute a candidate recovery pair for extra trip k. In the same vein,

(3, 4, 1, 6) is a also solution for the same extra trip. As emphasized before, handling

the disruptions caused by the delays are similar to recovering the disruptions from the

extra trips. To create a swapping solution for delays, we again try to find a quadruple.

However, in this case the first element of quadruple is the delayed trip itself. In Figure

3.3.b, the search mechanism for delayed trip problem is illustrated. Trip 6 is labeled as

after because, there is enough connection time between trip 3 after delay and trip 6.

Similar to the extra trip problem, (3, 5, 2, 6) and (3, 4, 1, 6) are the sought quadruples.

In the route-pair pricing subproblem, we generate a pair of routes, r and q by

solving a shortest path problem. The pricing problem is illustrated in Figure 3.4(a)

and 3.4(b).
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Figure 3.4: Reduced cost calculation for route-pair pricing subproblem

Let (3, 5, 2, 6) be a member of the extra trip k’s solution set P(k). To handle the

extra trip k, two routes are generated and one of them includes trips 3 and 5, and

the other one includes trips 2 and 6. Best way to generate these routes is determining

the shortest path from source to nodes 3 and 2, which are already available from the

last iteration of individual route generating PSP. To calculate the shortest paths from

nodes 5 and 6 to the sink node simply solving the shortest path from each node is not

efficient because it results with solving many shortest path problems. Instead, we find

the shortest path from the sink to each node on a reversed network, and then solving

only one shortest path problem becomes sufficient. Figure 3.4(a) shows the shortest

paths to nodes 2 and 3 with the reduced costs on the original network. In Figure

3.4(b), the reversed network is represented with the reversed arcs. This network is

used to calculate the shortest paths to nodes 5 and 6. It should be emphasized that

the dual value corresponding to constraint (3.16) for depot d should be subtracted from

the reduced cost value of route. The same procedure is repeated for the second route.

However, we should underline that these two routes must belong to the same depot.

This procedure should than be repeated for each disruption.

3.2.3 Optimality of the Proposed Method

In this section, we show the optimality of our methodology outlined in Figure 3.2. We

should give the notation that we use in our analysis in Table 3.1.

In the context of a typical column generation approach, equation (3.33) is simplified

to equation (3.34). However, when a pair of routes, (r, q) ∈ Sr
k is generated, the

associated linking constraints and an auxiliary variable x are also added to SRMP

and the dual values of these constraints should also be taken into consideration. To

anticipate the dual values of the newly introduced constraints, we assume that xk
(r,q),

slack and surplus variables with the associated constraints are added, and the optimal

basis is constructed. This optimal basis gives us dual values that are used to calculate

20



Table 3.1: Notation for analysis
Notation Explanation

cr reduced cost value of yr induced by B
caugr reduced cost value of yr induced by Br

cB objective function values for variables in B
y dual values for the constraints in B

yaug dual values for the constraints in Br

Ar column values of yr without new constraints
Aaugr column values of yr with new constraints

zk dual value of constraint set (17) for kth disruption
Sr

k = {(r, q) ∈ P(k) | cq − zk < 0} set of variable pairs which satisfy necessary conditions

the reduced cost of the variable pairs. This approach is named as thinking ahead

approach by Muter et al. [2011]. The rationale of the thinking ahead approach is the

following: For a pair (r, q) we first add the associated variable xk
(r,q), the slack and

surplus variables and the associated linking constraints set. After this modification

this problem is referred to as the augmented problem. The vital step is constructing

an optimal basis. Muter et al. propose a way to augment the optimal basis that

preserves dual and primal feasibility. Using the resulting values of the dual variables,

the reduced costs of the pair of y variables are calculated before actually introducing

them to the SRMP. We should emphasize that individual route generating subproblem

expands the SRMP in column-wise but do not affect the size of the basis. On the other

hand, route-pair generating PSP expands the basis and the SRMP both horizontally

and vertically because the sets of linking constraints and their associated variables

are added to the SRMP. This expanded problem shall be called as the augmented

problem in the remaining part of this thesis. At any stage of the algorithm the basis,

denoted by B, has the following form: B =
(

A1 0 E1
0 B1 E2

C1 D1 E3

)
. The matrix

(
A1
0

C1

)
shows the

columns of y variables. The matrix ( A1 0 E1 ) represents the set of constraints (3.15)

and (3.16). The matrix
(

0
B1
D1

)
includes the columns of x variables. The matrix ( 0 B1 E2 )

is associated with constraints (3.17) and,
(

E1
E2
E3

)
corresponds to the columns of surplus

or slack variables. The matrix ( C1 D1 E3 ) represents the existing linking constraints.

To construct an optimal basis for the augmented problem, we have to make sure that

the reduced cost values of the variables in the augmented problem are greater than or

equal to zero. Moreover to calculate the reduced costs correctly, the augmentation must

satisfy that the values of the existing dual variables do not change because changes in

the dual values affect the reduced cost calculation. We show in Lemma 2 that with the

proposed augmentation, which shall be explained later, these conditions are satisfied.

Reduced cost for xk
(r,q) variable, denoted by d

k

(r,q), is given calculated by
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d
k

(r,q) = −zk + γ1
(r,q),k + γ2

(r,q),k + γ3
(r,q),k. (3.35)

We have already emphasized that for each route pair, we should add three linking

constraint. Thus, we need three new basic variable. Similar to a classical LP sensitivity

analysis, initially slack and surplus variables are picked as basic, since we know that

the new set of linking constraint currently absent from SRMP are redundant. The dual

values of the newly added constraints become zero. Thus, the reduced cost of an xk
(r,q)

variable can be calculated as −zk which is nonpositive. When zk = 0, we can terminate

our method. We shall later show in Lemma 3 that this decision is optimal. At this

point, we can assume that −zk, is strictly less than zero and according to (3.35) the

reduced cost of xk
(r,q) is negative. To preserve dual feasibility, the reduced cost value of

x should be greater than equal to zero and according to equation (3.35), the values of

γ1
(r,q),k, γ2

(r,q),k or γ3
(r,q),k should be equal to zk. Because of complementary slackness only

one of this variable can assume positive value. Since γ3
(r,q),k ≤ 0, the variable x can be

basic at newly added rows given by (3.18) or (3.19) and γ1
(r,q),k or γ2

(r,q),k should have

nonzero value. Let xk
(r,q) become basic at constraint (3.18) and γ1

(r,q),k = zk, γ2
(r,q),k = 0

and γ3
(r,q),k = 0. The augmented basis for only one pair of route, Br, has the following

form

Br =




A1 0 E1 0 0 0

0 B1 E2 B2 0 0

C1 D1 E3 0 0 0

0 0 0 −1 0 0

C2 0 0 −1 1 0

C3 0 0 −1 0 −1




. (3.36)

Here, the fourth column represents the x variable and the fifth and the sixth columns

represent the slack and the surplus variables corresponding to the constraints (3.19) and

(3.20), respectively. Note that, at any augmentation, there is a possibility that one of

the yr or yq variables can be part of the existing basis. If one of the variables is already

part of the basis, the associated entries of C2 and C3 become 1. We have explained

that x variable may pivot out the surplus variables of the rows (3.18) or (3.19). We

also emphasize that the ties may be broken arbitrarily. However, to have a valid basis

augmentation, the dual values of the existing constraints and the reduced cost values
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of the existing variables should not change. Let us assume that yq is already part of

the basis and yr ∈ R\R. Setting xk
(r,q) as basic for constraint (3.19), is undesirable

because in this case the reduced cost of yq, which is a basic variable, changes and

consequently the values of the existing dual variables change. Then, the augmented

basis may not be optimal and hence, the reduced costs of yr is calculated wrongly.

Thus, we impose that xk
(r,q) cannot be picked as basic for the constraints which include

the existing variables. For this reason, the first three elements of the fourth row are

set to zero. The augmented basis notation can now be simplified as

Br =




B F 0 0

0 −1 0 0

G −1 −1 0

H −1 0 1




, (3.37)

where F =
(

0
B2
0

)
, G = ( C2 0 0 ) and H = ( C3 0 0 ).

In the lemmas below, we try to underline the validity of the calculated values of the

dual variables and the reduced costs with our specific basis augmentation. It should

be emphasized that, instead of only one route pair, for a specific route r, we generate

all route pairs (r, q) such that q ∈ Sr
k. Thus we use the basis Br given by

Br =




A1 0 E1 0 0 0

0 B1 E2 B2 0 0

C1 D1 E3 0 0 0

0 0 0 −I 0 0

C2 0 0 −I −I 0

C3 0 0 −I 0 I




, (3.38)

where the auxiliary variable xk
(r,q), the slack variables, surplus and the variables for each

member of Sr
k are added to the basis. For simplicity, the same type of constraints and

variables are grouped together. The fourth row corresponds to constraints of type

(3.18) for which x variables are basic. The fifth and the sixth rows correspond to

constraints of type (3.19) and (3.20), respectively. Using the similar analysis in Muter

et al. [2011], we show that indeed the dual values of the existing variables are not

altered by our specific augmentation.

Lemma 1 The inverse of the augmented basis is obtained as
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Br
−1 =




B−1 B−1F 0 0

0 −I 0 0

GB−1 GB−1F + I −I 0

HB−1 HB−1F + I 0 I




(3.39)

Proof. Let J =


B F

0 −I


. We know that J−1 =


B−1 B−1F

0 −I


.Br =


 J 0

M K




where M =


G −I

H −I


 and K =


−I 0

0 I


 B−1

r =


 J−1 0

MJ−1 K−1


. Thus

B−1
r =




B−1 B−1F 0 0

0 −I 0 0

GB−1 GB−1F + I −I 0

HB−1 HB−1F + I 0 I




(3.40)

2

After augmenting the basis and calculating this inverse by (3.39), we can derive

the dual values of both the existing constraints and the newly generated constraints.

This step is necessary to calculate the reduced costs of the introduced variables. Next,

we show that, the values of the dual variables associated with the current basis do not

change as we augment B to Br.

Lemma 2 The values of the dual variables associated with the existing constraints do

not change.

Proof. Let the objective function coefficients of the basic variables of the augmented

basis cBaug =
(
cB | cx 0 0

)
, where cB is the vector of coefficients for the existing

variables, cx is for the newly entered x variable The remaining zero coefficients are

given for the surplus variables. Note that cx is also zero.
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yaug =
(

cB 0 0 0
)




B−1 B−1F 0 0

0 −I 0 0

GB−1 GB−1F + I −I 0

HB−1 HB−1F + I 0 I




=
(

cBB−1 cBB−1F 0 0
)

(3.41)

.

Thus yaug = cBB−1, which shows the desired result. 2

We should also point out that dual values of the newly generated constraints can

be anticipated as claimed above with γ1
(r,q),k = zk, γ2

(r,q),k = 0 and γ3
(r,q),k = 0. For the

case Sr
k = {(r, q)}, using the dual values of the constraints, the reduced costs of yr

and yq are calculated as

caugr = cr − yaugAaugr = cr −
(
cBB−1 | zk 0 0

)




Ar

1

0

1




= cr − zk (3.42)

and

caugq = cq − yaugAaugq = cq −
(
cBB−1 | zk 0 0

)




Aq

0

1

1




= cq, (3.43)

respectively. From traditional column generation perspective, if one of the variables

in any set (r, q) ∈ Sr
k has negative reduced cost, we add the associated y variable to

the RMP and then column generation continues. However as we show in the following

lemma, we propose a stronger condition to terminate, where we take the thinking-ahead

approach a step further.

Lemma 3 Given an optimal basis Br and a set of associated optimal values for the

dual variables, the proposed algorithm terminates with an optimal solution for the mas-

ter problem (MP) when

minr∈(R\R){cr +
∑

q∈Sr
k cq− | Sr

k | zk} ≥ 0.
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Proof. Before we first assume that zk = 0. In this case Sr
k is an empty set and

{s1, s2, s3} for all (r, q) ∈ P(k)\P(k) gives an optimal augmentation. Hence we stop

at an optimal solution. Suppose that zk < 0 for a given k ∈ K. We illustrate our basis

augmentation for three route pairs (r, q1), (r, q2) and (r, l1) in Sr
k. To cover all possible

cases, let us assume that yq1 , yq2 are not part of the basis and yl1 is part of the basis.

For simplicity, we denote a subset of Sr
k such that (r, l) ∈ Sr

k and yl is already part of

the basis as Tr
k. For each route pair, say (r,m) ∈ Sr

k firstly we can augment the basis

as {x(r,m)
k, s2, s3}. Thus our initial basis can be rewritten as

Br =




B X1 X1 . X1 M 0 0

0 D1 0 . 0 0 0 0

0 0 D1 . 0 0 0 0

. . . . 0 0 0 0

0 0 0 0 D1 0 0 0

0 0 0 0 0 −I 0 0

G 0 0 0 0 −I −I 0

H 0 0 0 0 −I 0 I




, (3.44)

where D1 =
( −1 0 0
−1 −1 0
−1 0 1

)
and X1 = ( F 0 0 ). The matrix M = ( F F ... F ) with the size of

|Tr
k|. Dots imply that there may be other (r,m) ∈ Sr

k. To augment the basis easily,

similar to Lemma 1, we keep same variables together for the blocks of Tr
k.

The inverse of the basis is then given by

B−1
r =




B−1 −B−1X1D
−1
1 −B−1X1D

−1
1 . −B−1X1D

−1
1 B−1M 0 0

0 D−1
1 0 . 0 0 0 0

0 0 D−1
1 . 0 0 0 0

. . . . 0 0 0 0

0 0 0 0 D−1
1 0 0 0

0 0 0 0 0 −I 0 0

GB−1 GB−1X1D
−1
1 GB−1X1D

−1
1 . . GB−1M + I −I 0

HB−1 HB−1X1D
−1
1 HB−1X1D

−1
1 . . HB−1M + I 0 I




(3.45)

The dual values for the associated matrix are become by
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yaug =
(
cB 0 0 . 0 0 0 0

)
Br

−1

=
(
cBB−1 | − cBB−1X1D

−1
1 + 0D−1

1 | ... |cBB−1M |0 |0
)

=
(
cBB−1 |Z1 | ... |Z1 |Z2 |0 |0

)

where Z1 =
(
−zk 0 0

)
and Z2 =

(
−zk −zk ... −zk

)
which has size of |T k

r |.
Because of our basis construction, we should pivot yr firstly. Thus we should calculate

the reduced cost of yr by

craug = cr − yaug

(
Ar| 1 0 1 ... 1 0 1

)T

= cr − |Sr
k|zk.

If cr − |Sr
k|zk < 0, yr can enter the basis. Otherwise, our basis is optimal and we can

terminate our iterations. Let us assume that it is less than zero. In the next stage, we

apply the minimum ratio test to place yr in basis and calculate Araug.

To emphasize our stoping condition, we want that s2 for the first linking constraint

leave the basis. Thus we next show that the second entry of the added first block on

Araug, denote by An,raug has a nonzero value. It should be also emphasized that for

the same entry, say bnaug is zero for the sake of the minimum ratio test. Then we have

Araug = Br
−1Araug = Br

−1
(
Ar | 1 0 1 | ... | 1 0 1

)T

An,raug =
(
0 | 1 −1 0 | 0 0 0 ...

)(
Ar | 1 0 1 | ... | 1 0 1

)
= 1,

baug = Br
−1baug = Br

−1
(
b | 0 0 1 | ... | 0 0 1

)T

bnaug =
(
0 | 1 −1 0 | 0 0 0 ...

)(
b | 0 0 1 | ... | 0 0 1

)
= 0.

Consequently, yr can enter the basis at this specific row. Next, we should update Br

and continue our iterations. That is

Br =




B X2 X1 . X1 M 0 0

0 D2 0 . 0 0 0 0

0 D3 D1 . 0 0 0 0

. . . . 0 0 0 0

0 D3 0 0 D1 0 0 0

0 D4 0 0 0 −I 0 0

G 0 0 0 0 −I −I 0

H D4 0 0 0 −I 0 I




, (3.46)
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where D2 =
( −1 1 0
−1 0 0
−1 1 1

)
, D3 =

(
0 1 0
0 0 0
0 1 0

)
, D4 =

(
0 1 0
0 1 0
0 1 0

)
and X2 = ( F Ar 0 ). The inverse of

the basis is given by

B−1
r =




B−1 −B−1K −B−1X1D
−1
1 . −B−1X1D

−1
1 B−1M 0 0

0 D−1
2 0 . 0 0 0 0

0 D3D
−1
2 D−1

1 . 0 0 0 0

. . . . 0 0 0 0

0 D3D
−1
2 0 0 D−1

1 0 0 0

0 D4D
−1
2 0 0 −I 0 0 0

GB−1 −GB−1K −D4D
−1
2 GB−1X1D

−1
1 ... ... GB−1M + I −I 0

HB−1 −HB−1K HB−1X1D
−1
1 . HB−1X1D

−1
1 HB−1M + I 0 I




,

(3.47)

where K = (X2D
−1
2 +

∑
|Sr

k|−|Tr
k|−1

X1D3D
−1
2 + MD4D

−1
2 ). The dual values for the

associated matrix become

yaug =
(
cB cB1 0 ... 0 0 0 0

)
Br

−1

(
cBB−1 | − cBB−1K + cB1D−1

2 | − cBB−1X1D−1
1 | ... | B−1M 0 0

)
=

(
cBB−1 |cr − (|Sr

k| − 1)zk (|Sr
k|)zk − cr 0 |Z1 |...| Z1 |Z2 |0 |0

)
.

where cB1 = ( 0 cr 0 ). Clearly the dual values of the existing constraints do not change.

We next pivot out yq1 . Thus, we calculate the reduced cost of yq1 by

cq1aug = cq1 − yaug

(
Aq1 | 0 1 1 0 0 ... 0

)T

= cq1 + cr − |Sr
k|zk.

If cq1 + cr − |Sr
k|zk < 0, then yq1 enters the basis. Otherwise, our basis is optimal and

we can terminate our iterations. Let us assume that it is less than zero. To emphasize

our stoping condition, we again force s2 for the second linking constraint to leave the

basis. Thus, we show that the second entry of first block on Aq1aug, say An,q1aug, has

nonzero value. It should be also emphasized that for the same entry, bnaug is zero for

the sake of minimum ratio test. That is

Aq1aug = Br
−1Aq1aug = Br

−1
(
Aq1 | 0 1 1 | ... | 0 0 0

)T

An,q1aug =
(
0 | −1 1 0 |1 −1 0 |...

)(
Aq1 | 0 1 1 | ... | 0 0 0

)
= 1,

baug = Br
−1baug = Br

−1
(
b | 0 0 1 | ... | 0 0 1

)T

bnaug =
(
0 | −1 1 0 | 1 −1 0 |...

) (
b | 0 0 1 | ... | 0 0 1

)
= 0.
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According to the equations above, yq1 can enter the basis at this specific row. Next,

we should update Br and continue our iterations. Then, we have

Br =




B X2 X3 X1 . M 0 0

0 D2 D5 . . 0 0 0

0 D3 D6 . . 0 0 0

0 D3 0 D1 . 0 0 0

. . . . . 0 0 0

0 D4 0 0 0 −I 0 0

G 0 0 0 0 −I −I 0

H D4 0 0 0 −I 0 I




. (3.48)

To take the inverse of the basis, we merge matrices such that D =
(

D2 D5
D3 D6

)
X = ( X2 X3 )

where D5 =
(

0 0 0
0 1 0
0 1 0

)
, D6 =

( −1 0 0
−1 0 0
−1 0 1

)
and X3 = ( F Aq1 0 ). The inverse of the basis then

becomes

B−1
r =




B−1 −B−1L −B−1X1D
−1
1 . −B−1X1D

−1
1 B−1M 0 0

0 D−1 0 . 0 0 0 0

0 D3D
−1 D−1

1 . 0 0 0 0

0 D3D
−1 0 D−1

1 0 0 0 0

. . . . . 0 0 0

0 D4D
−1 0 0 −I 0 0 0

GB−1 −GB−1L−D4D
−1 GB−1X1D

−1
1 ... ... GB−1F + I −I 0

HB−1 −HB−1L HB−1X1D
−1
1 ... ... HB−1F + I 0 I




(3.49)

where L = (XD−1 +
∑

|Sr
k|−|Tr

k|−2

X1D3D
−1 + MD4D

−1). The dual values for the asso-

ciated matrix become

yaug =
(
cB (cB1cB1) 0 ...

)
Br

k−1

(
cBB−1 | − cBB−1(XD−1 +

∑
|Srk|−|Trk|−2

X1D3D−1) + (cB1cB1 )D−1 | − cBB−1X1D−1
1 |...

)
=

(
cBB−1 |cq1 − zk cq1 0 −(|Sr

k| − 1)zk + cr + cq1 (|Sr
k|)zk − cr − cq1 0 |...

)

Again the dual values associated with the existing constraints do not change. We next

pivot out yq2 . Thus, we calculate the reduced cost of yq2 by

cq2aug = cq2 − yaug

(
Aq2 | 0 0 0 0 1 1 ...

)T

= cq2 + cq1 + cr − |Sr
k|zk.
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After illustrating the basis augmentation with the variables that are not already

a part of the basis, we generalize our rule for all types of the variables. By following

the thinking ahead approach, we never pivot out a variable to the linking constraint

set where an already basis variable has nonzero coefficient. For the variables that are

already a part of the basis, it is not necessary to do additional iterations. It is clear that,

this iterations continue until the last non basic variable enters the basis. In Lemma 2,

we have showed that the dual values of the existing constraints are not affected by the

existence of some variables already in basis. Since the reduced cost of basic variables

equals to zero, we confirm that the basis iterations are correct. For the last variable

that enters the basis, the reduced cost value is equal to cr +
∑

q∈Sr
k cq− | Sr

k | zk.

However, according to our assumption we have cr +
∑

q∈Sr
k cq− | Sr

k | zk ≥ 0, and

hence we cannot augment the basis. The values of the existing dual variables are

also preserved. Thus, continue with pricing problem results with degenerate simplex

iteration. It concludes that the current solution is optimal. 2

With the lemma above, we prove the optimality of the stopping condition and the

validity of the proposed algorithm. To test our algorithm, we next implement a generic

code and give some numerical results.
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CHAPTER 4

COMPUTATIONAL STUDY

Our solution approach can be analyzed in two dimensions, its practical use and com-

putational success. This chapter includes the details of our implementation. We also

present the numerical results obtained by solving a set of randomly generated data.

4.1 Implementation Details

We conduct our computational experiments on a machine with Intel(R) Core(TM)2

Quad CPU and 7.96 GB of RAM running Windows XP. The column generation code

is written in Visual C++ and the linear programming relaxation of the MDVSP model

is solved by ILOG CPLEX 12.1 using ILOG Concert Technology 2.9. To test our

algorithm, we implement the proposed approach in C++. Our program consists of two

stages: generating routes and solving the SRMP. Because it makes it easier to represent

the network structure and to solve shortest path problems, we use Boost Graph and

Date-Time Libraries (see BoostInc. [2011]). To solve the LP models corresponding to

each SRMP, we use Cplex 12.1 and Concert Technology (see IBM [2011]).

By means of Boost Graph Libraries, we create a directed graph, which includes

the trips(nodes) and connections(arcs). Since each trip has same specific properties

like Departure Time, Arrival Time, Departure City, Arrival City, Trip Number, Dual

Value and each connection has Deadheading Cost, Head Trip, Tail Trip, we create Trip

and Connection classes. Moreover, our problem needs to generate routes, we create

another class Route that keeps the sequence of trips and has properties like Total Cost,

Number of Trips, Depot Number. For the extra trip problem, we also have ExtraTrip

class, which has similar properties as the Trip class. For the delayed trip problem, we

generate DelayedTrip class, whose properties are Trip Number and the Delay Amount.

To represent the arrival and departure times, we use Boost Date-Time Libraries.

According to the proposed method, it is also necessary to generate set Sr
k for each
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r ∈ R\R. Since, this subproblem required in the worst case the total enumeration of all

routes, we propose another method to solve the problem. At each subproblem, instead

of generating whole pairs for r, we just generate a route q such that cq is minimum and

our stopping condition simply becomes cr +cq−zk. If cr +cq−zk < 0, we add the route

pair to SRMP, otherwise we terminate our algorithm. With this heuristic method, we

were able to obtain the optimal solutions for most of the problems and solve problems

with as many as 800 trips.

4.2 Numerical Results

We try to solve the MDVSP with disruptions. Depending on the magnitude of the

disruption, generally, the conventional model’s solution cannot absorb the alterations

to the schedule, and hence a considerable number of changes may be required with an

increase the cost. In Figure 4.1, the conventional model’s solution is illustrated. Three

routes cover the 12 trip, and the total operation cost in terms of deadheading cost is

calculated as 500. All other deadheading costs are zero. Unfortunately, as predicted

before, trip 5 is delayed and it reaches the arrival city at 12:30. This tiny disruption

delays all the following trips in that route.

2 5 11

1 6 10 13

12

8‘5‘

43 7 9

8

H−G
23:00−08:30

A−F
14:00−18:00 20:00−03:00

B−A
04:00−09:00

F−E
12:00−23:30

E−A
01:00−10:00

B−C
14:00−23:00

11‘

A−D
10:30−23:00

C−A
01:00−12:30

C−A
01:00−09:00

D−B
00:00−08:00

F−B

B−H
12:00−21:00

G−C
14:30−23:00

C−B
02:00−12:00

s1

s2 t2

t1

Figure 4.1: Consequences of the delay on the sample network when the conventional
model is used

In Figure 4.1 when trip 5 is delayed, an available vehicle is waiting for its following

duty which is later than the departure time of trip 8. This vehicle can be assigned

to trip 8, however, its following trip should be covered by a vehicle. At operational

level, not to delay succeeding trips, a chain of swaps needs to be executed. A group of

vehicles swaps their duties among them and the disruption can be handled as illustrated

in Figure 4.2.

32



5‘

2 5 11

3

1 6

4 7 9

10 13

12

8

H−G
23:00−08:30

A−F
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Figure 4.2: Chain of swaps required to handle the delay when the solution of conven-
tional method is used

In Figure 4.2 the schedules of three vehicles are changed but this solution does not

work and results in a more complex situation because to execute this solution, an extra

free vehicle is required. Instead, with our solution method, we obtain a set of routes

that includes possible swaps for a disruption. This kind of solution may have higher

operational cost than the conventional one but allows flexibility to absorb disruptions.
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Figure 4.3: The proposed solution of problem on the sample network

In Figure 4.3, the proposed solution for the sample network is given. Some routes

are designed different than Figure 4.2 to handle the delay. Since the delayed vehicle

can cover trip 8, this trip becomes a part of the second route. However, the total cost

now becomes 700. It is clear that the proposed method can create a simple solution

for each possible delayed trip.

To test our method’s computational efficiency, we next consider several problem

instances with different sizes. We generate data for timetabled trips and disruptions.

We select 33 cities in Turkey as our locations. We also determine five of these cities

as possible base locations. The connection distances data between cities are collected

from the web page of Turkey General Directorate of Highways (see GDH [2011]). The

travel durations between the cities are directly derived from that data. Similar to

the random data generation mechanism of Carpaneto et al. [1989a], we determine the

arrival and departure locations of each trip by sampling from uniform distribution. We

also determine the departure time of each trip uniformly. We assume that each trip

can depart every half an hour.

For the extra trip problem, we first determine the set of cities that extra trip may

depart and arrive. From this set, we determine the extra trips similar to timetabled

trips.For delayed trip problem, we again choose the trip that can possibly arrive late

from the set of timetabled trips randomly. Their delay amount is also uniformly dis-

tributed between 60 and 180 minutes. To determine the capacity of each depot, we

use the idea of Carpaneto et al. [1989b]. However, we also include the total number of

depots. For problem with n time tabled trips and m depots, we determine the size of

each depot by sampling from uniform distribution with bounds
[

n
2m

, n
3m

]
. To test our

model we determine the number of trips as 100, 200, 300, 500 and 800. The number
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of depots are between 1 and 5. Up to 20 disruptions are used in our instances.

Recall that we solve the linear relaxation of the overall problem. Therefore, some

instances may result with fractional solutions. To obtain integer solution, we solve the

existing SRMP with the integer solver of Cplex. In the tables below, both of the LP

relaxation and the integer solutions are represented.

Before testing the results obtained with the proposed solution method, we tried

to solve the problem without column generation. To test our results, we generate all

possible routes and as well as the set that includes all possible swapping solutions for

each disruption. Since the size of the routes set and the swapping solution set are really

large, only a limited number of problems can be solved with this method.

Table 4.1 includes the computational results for the problem with 100 trips. A

variety of instances is provided by different number of depots and disruptions. Note

that n−m−k represent the number of trips, depots and disruptions respectively in the

first column. The second column of the table shows the LP objective function value for

each instance which is same for both of the proposed and conventional method. The

third column represent the IP solution of our proposed method. The fourth column

includes the total computation time of the proposed method combined with the solution

time of IP solver, when the solution is fractional. The last two column represents the

IP solution and computation time for the all columns generation strategy. The last

column represents the computational time difference between proposed method and

the conventional method. We can emphasize that for smaller instances, conventional

method works faster. However, when the problem gets larger, our proposed method is

better. We also note that the average optimality gap using column-and-row generation

in a heuristic way is only 0.8 % for these 25 instances.

Clearly, when the number of disruptions and depots increase, the total number of

routes and the total number of swapping solutions increase dramatically, In the case

of 5 disruptions and 5 depots, 118,995 swapping solutions are available. According to

the mathematical model, each swapping solution has three linking constraint, so that

the total number of rows is larger than 350,000. This numbers show that it is very

difficult to solve large instances. As last column shows, it is easier to solve smaller

instances by generating all routes. However, when the problem becomes large, the

proposed algorithm seems to be the only option. In case of 5 disruptions and 5 depots,

the computation time difference between them is approximately 1,308%.
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Table 4.2: Results for large instances of the delayed trip problem
Instance OFV of CPU time of OFV of CPU time of Difference between OFV

size LP solution LP solution IP solution IP solution of LP and IP solutions(%)
200-1-1 62445.0 14.281 62445 0.062 0.0000
200-1-2 62445.0 14.141 62445 0.093 0.0000
200-1-3 62445.0 15.313 62445 0.078 0.0000
200-1-4 62445.0 15.484 62445 0.078 0.0000
200-1-5 44445.0 30.985 44445 0.125 0.0000
200-2-1 44467.5 37.156 45405 0.093 0.0211
200-2-2 44737.5 32.797 44745 0.094 0.0002
200-2-3 45772.5 36.813 46140 0.109 0.0080
200-2-4 46572.5 35.094 46800 0.094 0.0049
200-2-5 62805.0 14.765 63165 0.093 0.0057
200-3-1 38535.0 37.828 38535 0.078 0.0000
200-3-2 38535.0 40.515 38535 0.094 0.0000
200-3-3 38955.0 42.312 39375 0.109 0.0108
200-3-4 39045.0 36.484 39045 0.078 0.0000
200-3-5 39281.3 42.109 39525 0.109 0.0062
200-4-1 36270.0 37.953 36270 0.094 0.0000
200-4-2 36270.0 40.875 36270 0.094 0.0000
200-4-3 36780.0 37.422 36780 0.093 0.0000
200-4-4 36900.0 43.204 37110 0.094 0.0057
200-4-5 39478.8 44.250 41550 0.109 0.0525
200-5-1 35745.0 41.515 35745 0.094 0.0000
200-5-2 36255.0 40.765 36255 0.094 0.0000
200-5-3 36690.0 49.469 37110 0.125 0.0114
200-5-4 37605.0 47.640 38280 0.188 0.0179
200-5-5 39577.5 45.359 39900 0.110 0.0081
300-1-1 96435.0 32.687 96435 0.078 0.0000
300-1-2 96435.0 34.000 96435 0.094 0.0000
300-1-3 96585.0 35.062 96735 0.219 0.0016
300-1-4 96975.0 36.360 98145 0.078 0.0121
300-1-5 97065.0 37.281 97300 0.125 0.0024
300-2-1 69610.0 102.551 69810 0.203 0.0029
300-2-2 69660.0 59.549 69810 0.125 0.0022
300-2-3 69660.0 60.643 69810 0.125 0.0022
300-2-4 69660.0 63.206 69810 0.125 0.0022
300-2-5 69954.4 67.065 70170 0.125 0.0031
300-3-1 59160.0 135.484 59160 0.125 0.0000
300-3-2 59520.0 141.984 59880 0.156 0.0060
300-3-3 59670.0 126.515 59670 0.157 0.0000
300-3-4 59910.0 147.125 60540 0.109 0.0105
300-3-5 60207.5 144.078 60480 0.156 0.0045
300-4-1 55095.0 139.125 55455 0.203 0.0065
300-4-2 55177.5 133.453 55245 0.172 0.0012
300-4-3 55635.0 151.141 56100 0.203 0.0084
300-4-4 55961.3 134.891 57930 0.171 0.0352
300-4-5 56360.0 146.828 56760 0.219 0.0071
300-5-1 53265.0 136.453 53475 0.125 0.0039
300-5-2 53422.5 137.531 53790 0.187 0.0069
300-5-3 53565.0 135.859 53565 0.188 0.0000
300-5-4 54330.0 150.750 54960 0.125 0.0116
300-5-5 55584.2 146.406 57735 0.204 0.0387
500-1-1 163020.0 124.453 163020 0.437 0.0000
500-1-2 163020.0 128.421 163020 0.266 0.0000
500-1-3 163170.0 129.843 163320 0.281 0.0009
500-1-4 163650.0 133.515 163650 0.219 0.0000
500-1-5 163740.0 133.656 164100 0.281 0.0022
500-2-1 131685.0 202.625 131685 0.172 0.0000
500-2-2 131745.0 219.219 131745 0.281 0.0000
500-2-3 132159.0 235.594 132810 0.203 0.0049
500-2-4 132165.0 330.375 132210 0.172 0.0003
500-2-5 132608.0 235.656 133080 0.219 0.0036
500-3-1 114780.0 278.750 114810 0.188 0.0003
500-3-2 114983.0 297.657 115200 0.312 0.0019
500-3-3 115028.0 282.937 115035 0.344 0.0001
500-3-4 115673.0 334.735 116190 0.203 0.0045
500-3-5 117820.0 296.891 117975 0.218 0.0013
500-4-1 112200.0 295.453 112200 0.172 0.0000
500-4-2 112428.0 297.141 112695 0.281 0.0024
500-4-3 113520.0 307.765 114780 0.219 0.0111
500-4-4 114135.0 314.062 114165 0.171 0.0003
500-4-5 115245.0 304.297 115245 0.219 0.0000
500-5-1 100538.0 354.469 100665 0.344 0.0013
500-5-2 100545.0 337.593 100785 0.250 0.0024
500-5-3 100620.0 336.078 100620 0.219 0.0000
500-5-4 101968.0 363.406 103080 0.375 0.0109
500-5-5 102818.0 368.047 104175 0.219 0.0132
800-1-1 253560.0 609.781 253560 0.609 0.0000
800-1-2 253560.0 622.610 253560 0.469 0.0000
800-1-3 253560.0 629.750 253560 0.610 0.0000
800-1-4 253875.0 630.390 254190 0.812 0.0012
800-1-5 253920.0 631.078 254280 0.547 0.0014
800-2-1 245955.0 507.594 245955 0.734 0.0000
800-2-2 245955.0 700.484 245955 0.500 0.0000
800-2-3 245955.0 520.296 245955 0.047 0.0000
800-2-4 245955.0 505.515 245955 0.453 0.0000
800-2-5 246630.0 506.484 246630 0.703 0.0000
800-3-1 242910.0 510.109 242910 0.500 0.0000
800-3-2 242910.0 513.531 242910 0.484 0.0000
800-3-3 242910.0 515.985 242910 0.062 0.0000
800-3-4 242910.0 522.891 242910 0.328 0.0000
800-3-5 243225.0 519.437 243540 0.532 0.0013
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Table 4.3: Results for large instances of the extra trip problem
Instance OFV of CPU time of OFV of CPU time of Difference between OFV

size LP solution LP solution IP solution IP solution of LP and IP solutions(%)
200-1-1 62445.0 17.281 62745 0.094 0.0048
200-1-2 62445.0 18.656 62745 0.094 0.0048
200-1-3 62445.0 20.516 62445 0.094 0.0000
200-1-4 62445.0 22.625 62445 0.094 0.0000
200-1-5 63735.0 30.297 63735 0.140 0.0000
200-2-1 44205.0 37.438 44205 0.078 0.0000
200-2-2 44670.0 52.016 44835 0.110 0.0037
200-2-3 44790.0 41.359 45090 0.078 0.0067
200-2-4 45090.0 43.250 45090 0.109 0.0000
200-2-5 45650.3 62.609 45830 0.109 0.0039
200-3-1 38535.0 42.375 38535 0.125 0.0000
200-3-2 38535.0 45.891 39810 0.094 0.0331
200-3-3 38535.0 51.406 39810 0.110 0.0331
200-3-4 38535.0 55.000 39810 0.015 0.0331
200-3-5 39330.0 72.219 39330 0.109 0.0000
200-4-1 36270.0 43.703 36270 0.094 0.0000
200-4-2 36270.0 46.765 37545 0.110 0.0352
200-4-3 36270.0 51.687 36930 0.110 0.0182
200-4-4 37065.0 57.953 37065 0.032 0.0000
200-4-5 37065.0 73.484 37065 0.094 0.0000
200-5-1 35745.0 47.938 35745 0.109 0.0000
200-5-2 35745.0 53.344 35745 0.093 0.0000
200-5-3 35745.0 58.156 35745 0.110 0.0000
200-5-4 36420.0 62.719 36420 0.094 0.0000
200-5-5 38228.8 83.282 39960 0.140 0.0453
300-1-1 96435.0 40.750 96435 0.109 0.0000
300-1-2 96435.0 41.906 96435 0.079 0.0000
300-1-3 96435.0 45.016 96435 0.094 0.0000
300-1-4 97380.0 49.610 97380 0.063 0.0000
300-1-5 97380.0 58.859 97380 0.141 0.0000
300-2-1 69510.0 60.424 69510 0.078 0.0000
300-2-2 69810.0 64.675 69810 0.094 0.0000
300-2-3 69810.0 63.378 69810 0.109 0.0000
300-2-4 69810.0 65.253 69810 0.078 0.0000
300-2-5 69909.0 69.862 70125 0.078 0.0031
300-3-1 59160.0 150.219 59160 0.125 0.0000
300-3-2 59160.0 156.000 60450 0.141 0.0218
300-3-3 59160.0 166.375 60450 0.156 0.0218
300-3-4 60285.0 180.047 63360 0.328 0.0510
300-3-5 61260.0 208.125 61260 0.172 0.0000
300-4-1 54735.0 153.687 54735 0.141 0.0000
300-4-2 54735.0 156.187 56010 0.141 0.0233
300-4-3 54735.0 166.453 56010 0.156 0.0233
300-4-4 55410.0 172.828 55410 0.032 0.0000
300-4-5 55410.0 212.515 55410 0.157 0.0000
300-5-1 53055.0 156.734 53055 0.109 0.0000
300-5-2 53055.0 159.578 54330 0.141 0.0240
300-5-3 53055.0 169.296 54330 0.157 0.0240
300-5-4 54525.0 176.547 54705 0.047 0.0033
300-5-5 54525.0 216.110 54705 0.172 0.0033
500-1-1 163020.0 137.735 163020 0.375 0.0000
500-1-2 163020.0 143.203 163020 0.218 0.0000
500-1-3 163020.0 148.563 163020 0.266 0.0000
500-1-4 163020.0 160.468 163020 0.250 0.0000
500-1-5 163650.0 172.750 163650 0.219 0.0000
500-2-1 131670.0 227.156 131670 0.219 0.0000
500-2-2 131745.0 251.094 131745 0.187 0.0000
500-2-3 131745.0 358.031 131745 0.281 0.0000
500-2-4 132608.0 268.844 133080 0.063 0.0036
500-2-5 132608.0 296.625 133080 0.187 0.0036
500-3-1 115380.0 292.735 115575 0.218 0.0017
500-3-2 115455.0 299.031 115875 0.203 0.0036
500-3-3 115639.0 339.281 116190 0.265 0.0048
500-3-4 115703.0 300.016 115875 0.235 0.0015
500-3-5 116109.0 353.703 116580 0.234 0.0041
500-4-1 95910.0 1432.450 95910 1.329 0.0000
500-4-2 95910.0 468.750 95910 0.219 0.0000
500-4-3 95910.0 916.672 97185 0.625 0.0133
500-4-4 96397.5 788.297 97245 0.594 0.0088
500-4-5 96705.0 918.234 96705 0.625 0.0000
500-5-1 93090.0 743.734 93090 0.344 0.0000
500-5-2 93090.0 706.390 93090 0.422 0.0000
500-5-3 93607.5 792.422 95790 0.828 0.0233
500-5-4 94057.5 757.047 94380 0.453 0.0034
500-5-5 94245.0 1038.390 94695 0.594 0.0048
800-1-1 253560.0 609.781 253560 0.609 0.0000
800-1-2 253560.0 622.610 253560 0.469 0.0000
800-1-3 253560.0 629.750 253560 0.610 0.0000
800-1-4 253810.0 631.078 254280 0.812 0.0019
800-1-5 254190.0 630.390 254190 0.547 0.0000
800-2-1 245955.0 507.594 245955 0.734 0.0000
800-2-2 245955.0 700.484 245955 0.500 0.0000
800-2-3 245955.0 520.296 245955 0.047 0.0000
800-2-4 245955.0 505.515 245955 0.453 0.0000
800-2-5 246630.0 506.484 246630 0.703 0.0000
800-3-1 219330.0 1107.550 219330 0.844 0.0000
800-3-2 219330.0 1327.280 219330 2.531 0.0000
800-3-3 219330.0 1147.200 219330 2.172 0.0000
800-3-4 221455.5 1150.500 221900 2.435 0.0020
800-3-5 221455.5 1212.830 221900 2.768 0.0020

In Table 4.2 and Table 4.3, the computational results for large instances of the

delayed trip problem and the extra trip problem are given respectively. The second

and the third columns include the objective function values and the computation times

for linear relaxation solutions, respectively. Next two columns include results for integer

solutions. The last column gives the gap between the objective function values of the

linear and integer solutions. According to our computational study, we observe that

most of the time, the linear relaxation and integer solutions have the same results.
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The solutions with large instances show that up to 800 trips, 5-disruptions instances

can be solved easily. However, for 800 trip problem up to 3-depot instances can be

solved. Table 4.2 and Table 4.3 illustrate that, when the total number of trips increases,

the total deadheading cost also increases. Since, adding a new depot with extra capacity

relaxes the existing solution, it also decreases the objective function value. However,

obtaining the optimal solution becomes much more difficult and the computation time

increases.

To investigate the effect of the number of disruptions, we add up to 20 disruptions

to a selected problem with 300 trips and 2 depots. In Table 4.4, these results are

reported for both disruption types.

Table 4.4: Results for varying numbers of disruptions (m=300)
Instance OFV change for Comp. Time for OFV change for Comp. Time for

size extra trip (%) extra trip delayed trip(%) delayed trip
300-3-0 0.00000 58.533 0.00000 59.533
300-3-1 0.00432 62.754 0.00000 60.502
300-3-2 0.00432 59.674 0.00432 64.769
300-3-3 0.00432 60.768 0.00432 63.487
300-3-4 0.00432 63.331 0.00432 65.331
300-3-5 0.00950 67.19 0.00885 69.94
300-3-6 0.02460 66.518 0.00885 69.284
300-3-7 0.02611 69.659 0.00885 94.847
300-3-8 0.02698 70.894 0.00885 88.691
300-3-9 0.03388 76.035 0.00885 77.815
300-3-10 0.03841 105.16 0.00885 78.518
300-3-11 0.03971 78.112 0.00885 81.722
300-3-12 0.04769 76.363 0.00885 84.738
300-3-13 0.04834 73.785 0.03388 85.566
300-3-14 0.05050 81.254 0.03388 99.691
300-3-15 0.05179 82.503 0.03388 127.302
300-3-16 0.06452 79.737 0.03798 94.019
300-3-17 0.07531 83.847 0.04834 96.939
300-3-18 0.07574 141.412 0.04834 94.696
300-3-19 0.07574 92.931 0.05050 98.516
300-3-20 0.07574 97.836 0.06452 98.329

As a reference point, we solve the problem without any disruptions. In Table 4.4,

the second column is the increase in the objective function value for the problem when

the disruption is due to an extra trip. The third row is the computation time for this

problem. Next two columns represent the similar results for the delayed trip problem.

We emphasize that our objective function comparison includes the objective function

values of the integer solutions. According to the results given at Table 4.4, adding

a new disruption may increases the cost but sometimes no change is observed. This

stability of objective function value is caused by alternate optimal solutions that can

also cover the newly added disruption. If we investigate the results in terms of the types

of disruptions, it can be observed that the schedule is more vulnerable to emergence of

extra trips because for most of the entries in the second column are greater than the

entries in the fourth column.

We should also emphasize that in the case of 20 disruption are take into consid-

eration, the objective function value of integer solution increases approximately 7.5%.

However, we note once again that if the proposed solution method is not used, it may
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not be possible for the company to handle these disruptions with the conventional

MDVSP solution. Therefore, a more significant increase in the cost may be observed.

Figure 4.4 illustrates the relationship between the number of disruptions and the

objective function value changes for a problem with 500 trips. For the instances with

larger number of depots (represented by m in figure) adding more disruptions has more

affect on the objective function values.

Figure 4.4: Objective function value increase when adding numbers of disruptions for
variety of depot size
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CHAPTER 5

CONCLUSION

Because of uncertainties that are inherent in the duration of trips and customer de-

mand, the solution obtained by solving the traditional vehicle scheduling problem usu-

ally cannot satisfy the requirements of the public transportation companies.

In this thesis, we solve the multi-depot vehicle scheduling problem with disruptions.

Specifically, we focus on the extra trips and the delayed trips. To solve this extension

of MDVSP, we propose a method which is based on simultaneous column-and-row gen-

eration. To generate columns and rows, we use two different pricing subproblems. One

of these subproblems individually generates routes and the other one generates pairs

of routes. These subproblems lead to specific versions of the shortest path problem.

We also show that the algorithm converges to the optimal solution.

We implement the proposed algorithm using generic programming tools. To test

our method, we randomly generate problem instances up to 800 nodes for both delayed

trip and extra trip problems. As a benchmark strategy, we generate the complete set of

routes for small problems and solve them to optimality by standard linear programming

and integer programming solvers. The conventional method cannot deal with large

instances, however, the proposed method is able to solve these instances in a reasonable

time. According to our computational results, the deadheading cost increases only

slightly even when a large number of disruptions exist. The conducted computational

study shows that the proposed method both computationally and practically efficient.
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Tekiner, H., Birbil, Ş. İ., and Bülbül, K. (2009). Robust crew pairing for managing

extra flights. Computers and Operations Research, 36:2031–2048.

44


