
SIMULTANEOUS COLUMN-AND-ROW GENERATION FOR SOLVING

LARGE-SCALE LINEAR PROGRAMS WITH

COLUMN-DEPENDENT-ROWS

by

İBRAHİM MUTER

Submitted to the Graduate School of Engineering

and Natural Sciences in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Sabancı University

Spring 2011

c©İbrahim Muter, 2011

All Rights Reserved

to my family

and

my deceased uncle Dr. Necmettin Erkan

SIMULTANEOUS COLUMN-AND-ROW GENERATION FOR SOLVING

LARGE-SCALE LINEAR PROGRAMS WITH

COLUMN-DEPENDENT-ROWS

İbrahim Muter

PhD Thesis, 2011

Thesis Advisor: Assoc. Prof. Dr. Ş. İlker Birbil

In this thesis, we handle a general class of large-scale linear programming problems.

These problems typically arise in the context of linear programming formulations with

exponentially many variables. The defining property for these formulations is a set of

linking constraints, which are either too many to be included in the formulation directly,

or the full set of linking constraints can only be identified, if all variables are generated

explicitly. Due to this dependence between columns and rows, we refer to this class of

linear programs as problems with column-dependent-rows. To solve these problems, we

need to be able to generate both columns and rows on-the-fly within a new solution

method. The proposed approach in this thesis is called simultaneous column-and-row

generation. We first characterize the underlying assumptions for the proposed column-

and-row generation algorithm. These assumptions are general enough and cover all

problems with column-dependent-rows studied in the literature up until now. We then

introduce, in detail, a set of pricing subproblems, which are used within the proposed

column-and-row generation algorithm. This is followed by a formal discussion on the

optimality of the algorithm. Additionally, this generic algorithm is combined with

v

Lagrangian relaxation approach, which provides a different angle to deal with simulta-

neous column-and-row generation. This observation then leads to another method to

solve problems with column-dependent-rows. Throughout the thesis, the proposed so-

lution methods are applied to solve different problems, namely, the multi-stage cutting

stock problem, the time-constrained routing problem and the quadratic set covering

problem. We also conduct computational experiments to evaluate the performance of

the proposed approaches.

vi

KOLON-BAĞLI-SATIR PROBLEMLERİNİN ÇÖZÜMÜ İÇİN

EŞZAMANLI KOLON-VE-SATIR TÜRETME

İbrahim Muter

Doktora Tezi, 2011

Tez Danışmanı: Doç. Dr. Ş. İlker Birbil

Bu tezde genel bir problem sınıfa ait büyük-ölçekli doğrusal programlama problemleri

ele alınmıştır. Bu problemler genellikle çok sayıda kolon içeren doğrusal program-

larda ortaya çıkmaktadır. Bu formülasyonların ayırıcı özelliği bağlayıcı kısıtlardır. Bu

kısıtlar ya formülasyona direk eklenemeyecek kadar çoktur ya da tüm kısıt seti ancak

tüm kolonlar yaratıldığında tanımlanabilir. Kolon ve satırlar arasındaki bu bağımlılık

nedeniyle bu doğrusal programlama sınıfına kolon-bağlı-satırlar problemleri denilmiştir.

Bu problemleri çözebilmek için yeni bir çözüm yöntemi içinde hem kolon hem de

satır türetilebilmelidir. Bu tezde önerilen çözüm yaklaşımına eşzamanlı kolon-ve-satır

türetme adı verilmektedir. Öncelikle kolon-bağlı-satırlar problemleri için varsayımlar

tanımlanmıştır. Bu varsayımlar yeterince geneldir ve literatürde bilinen tüm kolon-

bağlı-satırlar problemlerini kapsamaktadır. Ardından önerilen kolon-ve-satır türetme

algoritmasında kullanılan ücretlendirme altproblemleri detaylı olarak tanımlanmıştır.

Bunu algoritmanın optimalliği üzerine formal bir tartışma izlemektedir. Ayrıca bu genel

algoritma Lagrange gevşetmesi yaklaşımı ile birleştirilmiştir. Bu birleştirme kolon-

ve-satır türetme için farklı bir bakış açısı sağladığı gibi kolon-bağlı-satırlar problem-

lerini çözmek için yeni bir yöntem ortaya koymaktadır. Önerilen çözüm yöntemleri

çok-aşamalı stok kesme problemi, zaman-kısıtlı rotalama problemi ve karesel küme

vii

kaplama problemi gibi değişik problemlere uygulanmıştır. Önerilen yaklaşımların per-

formanslarını değerlendirmek için bilgisayısal deneyler yapılmıştır.

viii

Acknowledgments

I thank my advisor Ş. İlker Birbil for his invaluable support during my Ph.D. study.

It was and will be a pleasure to work with him. The most valuable lesson I learned

from him is how to cultivate an idea for a scientific research. I am very thankful to

Kerem Bülbül for his significant contribution to my research. I am very glad to work

with Güvenç Şahin who gave me constant support and encouragement. I also thank

the members of the research group AlgOpt.

I thank Andrea Lodi who introduced me to a new research area and made possible

my research visit to Bologna. I also thank Sibel Salman for her helpful comments on

my thesis.

I thank my officemates. It has always been fun to be in the same office with

them. I am grateful to Mahir Yıldırım and Çetin Suyabatmaz for offering a space in

their dorm room for me whenever necessary and for being great dudes. We shared the

same anxiety and excitement with Figen Öztoprak and Taner Tunç as Ph.D. candidates.

I thank both of them for their invaluable friendship. In numerous occasions, Taner Tunç

cheered me up with his joy. I will remember my colleague Ezgi Yıldız with her laughters

that made any boring working session enjoyable. Lastly, I thank Nurşen Aydın who

took the courses I assisted at Marmara University and then became a colleague and a

friend at Sabancı University.

Lastly, I owe everything I have achieved to my parents. Without their support,

it would be very difficult to complete this work. I thank and apologize all those who

bore with me during this long and painful period.

ix

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Motivations of This Research . 3

1.2 Contributions of The Thesis . 4

1.3 Outline of The Thesis . 5

2 LITERATURE REVIEW 7

2.1 Large-Scale Linear Programming Problems 7

2.2 Integer Programming Problems . 14

2.3 Existing Work on Problems with Column-Dependent-Rows 17

3 PROBLEMS WITH COLUMN-DEPENDENT-ROWS 21

3.1 Generic Mathematical Model . 22

3.2 Illustrative Examples . 26

4 SIMULTANEOUS COLUMN-AND-ROW GENERATION 30

4.1 Proposed Solution Method . 30

4.1.1 y−Pricing Subproblem . 33

4.1.2 x−Pricing Subproblem . 34

4.1.3 Row-Generating Pricing Subproblem 34

4.2 Applications of The Proposed Method 50

4.2.1 Multi-Stage Cutting Stock Problem 51

4.2.2 Quadratic Set Covering . 63

4.2.3 Time-Constrained Routing Problem 69

x

4.3 Mixed Column-Dependent-Rows Problems 75

5 COMBINATION WITH LAGRANGIAN RELAXATION 78

5.1 Proposed Solution Method . 78

5.2 An Application to The Time-Constrained Routing Problem 88

6 CONCLUSIONS AND FUTURE RESEARCH 96

xi

LIST OF TABLES

4.1 Notation for the analysis of the row-generating PSP. 37

4.2 Comparison of algorithms on MSCS test instances. 62

4.3 Comparison of algorithms on QSC test instances. 68

4.4 Counterexample for the optimality of the algorithm proposed by [2]. . . 74

5.1 Comparison of algorithms on TCR test instances. 93

xii

LIST OF FIGURES

2.1 The flow of a typical column generation algorithm. 10

4.1 The flow of the proposed column-and-row-generation algorithm. 32

4.2 Basis augmentation for QSC, where Fk = {{k, l}, {k,m}}, and the new

basic variables {xkl, sl1, sl3} and {xkm, sm1, sm3} are associated with the

new linking constraints ∆({k, l}) and ∆({k,m}), respectively. 45

5.1 Bounding in the CG-LR Algorithm. 85

xiii

Chapter 1

INTRODUCTION

Linear programming (LP) deals with problems of maximizing or minimizing a linear

function subject to a set of linear constraints. LP has been one of the most prominent

tools used in the operations research field. One of the reasons is that LP problems have

nice structures compared to the other optimization problems. Hence, these problems

can be solved very efficiently. The major work on LP dates back to 1940s, when George

Dantzig developed the simplex algorithm to solve LP problems [21]. The LP problem

was first shown to be solvable in polynomial time by Khachiyan in 1979 [51], but a

larger theoretical and practical breakthrough in the field came in 1984 when Karmarkar

introduced a new interior point method for solving LP problems [49].

LP problems arise in diverse application areas. In many complex problems,

such as; stochastic programming, nonlinear programming, combinatorial optimization,

mixed integer programming problems and so on, LP is used as a modeling and solution

tool. In the algorithms to solve these problems, LP problems are generally solved re-

peatedly and hence, the speed of the algorithms to solve LP problems becomes a major

concern. The solution of an LP problem provides important information on the opti-

mal solution of the original problem. To illustrate the use of LP, consider the following

1

optimization problem:

minimize c
ᵀ
x

subject to Ax ≥ b,

Bx ≥ d,

x ≥ 0,

x integer,

(1.1)

where A is an m×n matrix, B is a k×n matrix, and b, c, and d are m×1, n×1, and k×1

vectors, respectively. This problem is called the (linear) integer-programming problem.

It is said to be a mixed integer program when some, but not all, variables are restricted

to be integer, and is called a pure integer program when all decision variables must

be integers. Since the objective function and the constraints are linear, the problem

turns into an LP problem, if the integrality restrictions on the variables are ignored. It

is well-known that the objective function value of the resulting LP problem provides

a lower-bound on that of the original integer programming problem. In general, the

optimal decision variables will be fractional in the linear-programming solution, and

hence, further measures must be taken to determine an integer solution.

In this thesis and in many applications, we deal with LP problems with a large

number of variables. Instead of solving these LP problems directly by an LP solver,

various algorithms have been developed to find the optimal solution in a shorter com-

putation time. Column generation is a prominent algorithm to solve large-scale LP

problems.

When the number of variables is very large, it would even be impossible to enu-

merate all the variables in the problem. In such large-scale linear programs, the vast

majority of the variables are zero at optimality. This is the fundamental concept un-

derlying the column generation method, which is pioneered by Dantzig and Wolfe [23]

as well as Gilmore and Gomory [39]. In this approach, the linear program is initialized

with a small set of columns, referred to as the restricted master problem (RMP), and

then new columns are added as required. This is accomplished iteratively by solving

a pricing subproblem (PSP) following each optimization of the RMP. In the PSP, the

reduced cost of a column is minimized over the set of all columns, and upon solving

2

the PSP, we either add a new column to the RMP with a negative reduced cost (for

minimization) or prove the optimality of the overall problem.

1.1 Motivations of This Research

One of the pillars of the classical column generation framework is that the constraints

in the master problem are all known explicitly. In this case, the number of rows in the

restricted master problem is fixed, and complete dual information is supplied to the PSP

from the restricted master problem, which allows us to compute the reduced cost of a

column in the subproblem accurately. While this framework has been used successfully

for solving a large number of problems over the years, it does not fit applications in

which missing columns induce new linking constraints to be added to the restricted

master problem. To motivate the discussion, consider a quadratic set covering (QSC)

model, where the binary variable yk is set to 1, if column k is selected (see for example

[66, 9]). We compute the total contribution from columns k and l as ckyk +clyl+cklykyl,

where ck and cl are the individual contributions from columns k and l, respectively, and

ckl captures the cross-effect of having columns k and l simultaneously in the solution.

A common linearization followed by relaxing the integrality constraints would lead to

the large-scale LP below:

minimize . . .+ ckyk + clyl + cklxkl + . . .

subject to . . .

yk + yl − xkl ≤ 1, yk − xkl ≥ 0, yl − xkl ≥ 0, (1.2)

0 ≤ yk, yl, xkl ≤ 1,

. . .

Note that this model contains three linking constraints for each pair of y−variables, and

a large number of y−variables in an instance would prevent us from including all rows

in the RMP a priori. Thus, in this case both rows and columns need to be generated

on-the-fly as required. Constraints of type (1.2) not present in the current RMP may

3

lead to two issues. First, primal feasibility may be violated with respect to the missing

constraints. In order to address this issue, we should presumably add variable xkl to the

RMP along with one of the variables yk or yl. Second, the reduced costs of the variables

may be computed incorrectly in the PSP because no dual information associated with

the missing constraints is passed from the RMP to the PSP. For instance, assume that

yk is already a part of the RMP, while yl, xkl, and the linking constraints (1.2) are

absent from it. In this case, the PSP for yl must anticipate the values of the dual

variables associated with the missing constraints (1.2); otherwise, the reduced cost of yl

is calculated incorrectly. Thus, we conclude that in order to design a column generation

algorithm for this particular linearization of the quadratic set covering problem, we

need a subproblem definition that allows us to generate several variables and their

associated linking constraints simultaneously by correctly estimating the dual values of

the missing linking constraints. Note that this type of dependence between columns can

be generalized if several columns interact simultaneously and would lead to a similar

problem that grows both column- and row-wise.

The discussion in the preceding paragraph points to a major difficulty in column

generation, if the number of rows in the RMP depends on the number of columns. We

refer to such formulations as problems with column-dependent-rows, or briefly as CDR-

problems. We emphasize that the solution of a CDR-problem is based on simultaneous

column-and-row generation. The cornerstone of this approach is a subproblem definition

that can simultaneously generate new columns as well as new structural constraints

that are no longer redundant in the presence of these new columns. This is in marked

contrast to traditional column generation where all structural constraints are added to

the RMP at the outset.

1.2 Contributions of The Thesis

In this dissertation, we introduce a column-and-row generation method that is able to

overcome the difficulties resulting from the simultaneous addition of rows along with

columns in a column generation method. We also study the combination of this method

with Lagrangian relaxation.

4

To be more specific, first the problems that we refer to as CDR-problems are

formulated. Then, a set of assumptions underlying these problems are defined, and the

literature that deals with CDR-problems is discussed.

A generic column-and-row generation algorithm for CDR-problems is presented

and the optimality of this algorithm is proved. The proposed approach is applied to the

QSC, the multi-stage cutting stock (MSCS), and the time-constrained routing (TCR)

problems. For the latter two problems, the existing methods are improved or in certain

cases, corrected.

We also apply Lagrangian relaxation to CDR-problems by dualizing the set of

linking constraints in the objective function. The resulting combination of column

generation and Lagrangian relaxation is analyzed and then applied to the TCR problem.

This thesis is the first work in the literature, which addresses CDR-problems in

a unified framework and gives a complete treatment of the optimality conditions along

with associated optimal solution methods.

1.3 Outline of The Thesis

The current chapter is followed by Chapter 2, which includes a literature survey on

the algorithms to solve large-scale LP problems. The main focus will be on column

generation. Since the problems that we discuss are integer programming problems, we

also give a survey on the lower-bounding methods and the ways to find the optimal

integral solutions for general classes of integer programming problems. Finally, the

literature related specifically to the CDR-problems are presented.

In Chapter 3, the generic mathematical model and the underlying assumptions

for the CDR-problems are given. We demonstrate that two of the CDR-problems that

we use as illustrative examples, namely the MSCS and QSC problems, conform to our

generic mathematical model and the underlying assumptions. We also emphasize that

all the CDR-problems in the literature can be cast into our generic model, and they all

satisfy our assumptions.

In Chapter 4, the proposed simultaneous column-and-row generation method is

presented. Then, the optimality proof of this method is given. After this presentation,

5

the proposed method is applied to the MSCS, QSC, and TCR problems. Computa-

tional experiments are then conducted on the MSCS and QSC problems to evaluate

the performance of the algorithm.

In Chapter 5, the combination of the column-and-row generation algorithm with

Lagrangian relaxation is investigated, and its differences from the simultaneous column-

and-row generation method given in Chapter 4 are pointed out. The resulting hybrid

method is applied to the TCR problem, and it is compared against the column-and-row

generation algorithm of Chapter 4 by conducting additional computational experiments.

In the last chapter, we summarize the conclusions of this dissertation and discuss

further research directions.

6

Chapter 2

LITERATURE REVIEW

In this chapter, first we present methods which are used to solve large-scale LP prob-

lems. Since the problems we deal with in this thesis are integer programming and

combinatorial optimization problems whose particular relaxation is an LP problem, we

explain algorithms to find an integral optimal solution. Moreover, the literature related

specifically to the CDR-problems is presented.

2.1 Large-Scale Linear Programming Problems

The advances in the solution algorithms for large-scale LP problems have made these

problems a viable relaxation to many difficult problems. In particular, large-scale inte-

ger programming and combinatorial optimization problems depend on the solution of

large-scale LP problems. In this section, we give a survey on the algorithms, particu-

larly the column generation algorithm and the Benders decomposition algorithm, that

are used to solve large-scale LP problems. We explain the column generation algorithm

as a general idea to solve the Dantzig-Wolfe decomposition problem (see [17] for the

details). Benders decomposition takes place in this review since it can also be applied

to the CDR-problems.

7

Column Generation. Consider the following LP problem which is the relaxation of

(1.1) given in Chapter 1:

minimize c
ᵀ
x,

subject to Ax ≥ b,

Bx ≥ d,

x ≥ 0.

(2.1)

Suppose that (2.1) is significantly easier to solve when the set of constraints Ax ≥ b is

removed. This could be, for instance, because the resulting problem after removal is

easy to decompose into smaller independent problems. In fact, such problems are said

to have block diagonal structure. In this setting, the set of constraints Ax ≥ b is often

called the complicating constraint set.

Let us denote the polyhedron induced by the second set of constraints and the

nonnegativity constraints as P = {x ∈ Rn|Bx ≥ d, x ≥ 0} 6= ∅. Using the represen-

tation theorem of Minkowski [62], any point in P can be represented by the convex

combination of its extreme points {pq}q∈Q plus a nonnegative combination of its ex-

treme rays {pr}r∈R of P . Hence, the representation of any point x ∈ P in terms of the

extreme points and the rays is given by

x =
∑
q∈Q

pqλq +
∑
r∈R

prλr,
∑
q∈Q

λq = 1, λ ∈ R|Q|+|R|+ . (2.2)

Substituting for x in (2.1) and applying the linear transformations cq = c
ᵀ
pq, q ∈ Q

and ar = Apr, r ∈ R, we obtain an equivalent extensive formulation of (2.1):

minimize
∑
q∈Q

cqλq +
∑
r∈R

crλr,

subject to
∑
q∈Q

aqλq +
∑
r∈R

arλr ≥ b,∑
q∈Q

λq = 1,

λ ≥ 0, λ ∈ R|Q|+|R|+ .

(2.3)

Typically, problem (2.3) has a large number of variables (|Q| + |R|), but possibly

substantially fewer rows than problem (2.1). The second constraint is referred to as

8

the convexity constraint over the extreme points of P . This substitution is known as

Dantzig-Wolfe decomposition, developed in [23], and it easily generalizes to the case

when matrix B is block diagonal.

As we pointed out previously, a column generation algorithm is generally used

when the number of columns in the problem is very large. It is either applied to

the extensive formulations (Dantzig-Wolfe decomposition) of problems with a set of

complicating constraints or to compact (original) formulations with (exponentially)

many columns. The compact formulation and the extensive formulation are structurally

similar except for the convexity constraints.

The RMP, which is formed by a subset of the columns of (2.3) indexed by Q̄ and

R̄, is given by

minimize
∑
q∈Q̄

cqλq +
∑
r∈R̄

crλr,

subject to
∑
q∈Q̄

aqλq +
∑
r∈R̄

arλr = b,∑
q∈Q̄

λq = 1,

λ ≥ 0, λ ∈ R|Q̄|+|R̄|+ .

(2.4)

Let α and β be the optimal dual variables corresponding to the first and the second

constraints of the RMP given in (2.3), respectively. The corresponding PSP is then

equivalent to

minimize (c
ᵀ − αᵀ

A)x− β,

subject to Bx ≥ d,

x ≥ 0.

(2.5)

The main objective of this model is to find the columns with the minimum reduced

costs. If the minimum reduced cost is negative and finite, a column corresponding to

an extreme point is added to the model. If the minimum reduced cost is negative and

infinite, a column corresponding to an extreme ray is added to the model. Otherwise,

the algorithm terminates. The typical flow of a column generation algorithm is outlined

in Figure 2.1. The novel applications of column generation to integer programming

problems include [27, 24, 64, 6, 36, 69, 1] (see also [25, 55] for comprehensive surveys

9

on column generation).

Figure 2.1: The flow of a typical column generation algorithm.

The RMP is generally solved by the simplex algorithm from which we obtain the

optimal dual variables to be used in the PSP. Unfortunately, the convergence of the

simplex algorithm may be poor. One of the reasons is degeneracy which results in many

iterations without improvement. Additionally, the dual solution oscillates dramatically

during the early phases of the algorithm and this may add many useless columns (see

[68] for the related issues). As a remedy, stabilized column generation algorithms have

been proposed. One approach studied in [29] perturbs the right hand side to reduce

degeneracy and uses a box concept to limit the variation in the dual variables. Interior

point methods, such as the analytic center method [30], have also been used to solve

the RMP.

Benders Decomposition. Benders decomposition developed in [12] is useful for solv-

ing problems that contain groups of variables of different natures. While Dantzig-Wolfe

decomposition deals with the complicating constraints, Benders decomposition handles

the problems with complicating variables whose removal results in a significantly easier

problem. Hence, it is a dual idea with respect to Dantzig-Wolfe decomposition. There

are many applications of this methodology to mixed-integer programming problems.

Some examples are the multi-commodity distribution network design, the locomotive

and car assignment, the simultaneous aircraft routing and crew scheduling, and the

large scale water resource management problems [37, 19, 18, 13].

The basic model, where x is taken as the complicating variable set, is given by

minimize c
ᵀ
x+ f

ᵀ
y

subject to Ax ≥ b,

Bx+Dy ≥ d,

x ≥ 0, y ≥ 0,

(2.6)

10

where c, A, B, b and d are defined as in (1.1), f is a l × 1 vector, and D is a k × l

matrix. Reformulating this model leads to the following two level structure

minimize c
ᵀ
x+ z(x),

subject to Ax ≥ b,

x ≥ 0,

(2.7)

where

z(x) = minimize f
ᵀ
y,

subject to Dy ≥ d−Bx,

y ≥ 0.

(2.8)

Given the value of x and applying duality, the optimal solution of problem (2.8) can be

obtained by solving

z(x) = maximize (d−Bx)
ᵀ
v,

subject to Dv ≤ f,

v ≥ 0,

(2.9)

where v is the set of dual variables corresponding to the first set of constraints in

(2.8). Note that the dual polyhedron, which we will denote by Φ, is independent of

x. Therefore, using the representation theorem, we can enumerate the set of extreme

points and extreme rays of Φ as PΦ = {p1, p2, ..., pP} and QΦ = {q1, q2, ..., qQ}. Using

these extreme points and extreme rays, problem (2.8) can be written as

z(x) = minimize z,

subject to (d−Bx)
ᵀ
v ≤ z, v ∈ PΦ,

(d−Bx)
ᵀ
v ≤ 0, v ∈ QΦ,

(2.10)

which finds the dual extreme point resulting in the maximum objective function value.

11

If we plug in z(x) in (2.7), the resulting problem then becomes

minimize c
ᵀ
x+ z,

subject to Ax ≥ b,

(d−Bx)
ᵀ
v ≤ z, v ∈ PΦ,

(d−Bx)
ᵀ
v ≤ 0, v ∈ QΦ,

x ≥ 0.

(2.11)

When compared to (2.6), problem (2.11) has fewer variables, since variables y do not

exist in this problem. However, the number of constraints in (2.11) is considerably

larger, since there is one constraint for each extreme point and extreme ray.

Enumerating all extreme points and extreme rays may be very time-consuming.

Therefore, we may instead include only a subset of the constraints corresponding to

the sets of extreme points and extreme rays and add the violated constraints on the

fly. This approach is known as delayed constraint generation. The restricted Benders

master problem (BMP) at any iteration t is given by

Zt = minimize c
ᵀ
x+ z,

subject to Ax ≥ b,

(d−Bx)
ᵀ
v ≤ z, v ∈ P t

Φ,

(d−Bx)
ᵀ
v ≤ 0, v ∈ Qt

Φ,

x ≥ 0,

(2.12)

where P t
Φ andQt

Φ are subsets of PΦ andQΦ, respectively. The optimal objective function

value and the optimal solution are denoted by Zt and (x, z), respectively. Using the x

values, the dual subproblem (SP) in (2.9) is solved. If the solution of SP is unbounded,

letting v be the corresponding extreme ray, we add the feasibility cut to the BMP as a

constraint given by

(d−Bx)
ᵀ
v ≤ 0. (2.13)

12

If there is an optimal solution to SP, an extreme point is obtained. If we denote this

extreme point by v, then we check whether

(d−Bx)
ᵀ
v > z (2.14)

holds. If (2.14) holds, then the optimality cut corresponding to the extreme point v is

added to the BMP as a constraint given by

(d−Bx)
ᵀ
v ≤ z. (2.15)

Otherwise; i.e., if no constraint is violated, the algorithm terminates. An important

extension to this algorithm is presented in [38] which suggests a generalized Benders

decomposition approach. In this study, the Benders method is extended to the case

where the subproblem is a convex optimization problem. In [58], the influence of cuts

in a Benders Decomposition algorithm applied to mixed integer programs is studied

and, a new technique for accelerating the convergence of the algorithm through model

formulations and selection of Pareto-optimal cuts are introduced.

2.2 Integer Programming Problems

Suppose that the polyhedron P = {x ∈ Rn|Bx ≥ d, x ≥ 0} 6= ∅ given earlier is replaced

by a finite set X = P ∩ Z+. Then, problem (2.1) becomes

minimize c
ᵀ
x

subject to Ax ≥ b,

x ∈ X,

(2.16)

which is known to be an NP-Complete optimization problem [62]. In this section, we

discuss the branch-and-bound algorithm, which is by far the most widely used tool

for solving large scale NP-hard combinatorial optimization problems. The bounding

operation can be performed by several algorithms such as: LP relaxation (with column

generation), Lagrangian relaxation and cutting plane algorithms.

13

Branch-and-Bound Algorithm. The branch-and-bound method is based on the

idea of iteratively partitioning the set of feasible solutions to form subproblems of the

original integer program that are easier to handle. The same process is applied to the

subproblems, and this process goes on until the optimal solution of any subproblem pro-

vides an optimal solution to the original problem. This is called branching and as the

number of branches increases, the number of subproblems grows exponentially. Hence,

it becomes crucial to eliminate some of the subproblems. This requires a bounding

scheme, which is based on setting lower and upper bounds on the optimal objective

function values of the subproblems. The relaxations of the subproblems are generally

solved to speed-up the algorithm and any feasible solution to the original problem ob-

tained by solving a subproblem gives an upper bound. The best upper bound is recorded

during the search. The driving force behind the branch-and-bound approach lies in the

fact that if a lower bound for the objective value of a given subproblem is larger than

the best upper bound, then the optimal solution of the original integer program cannot

lie in the subset of solutions associated with the given subproblem. Hence, the corre-

sponding subset is pruned. Hence, the lower bounds on the objective function values of

the subproblems are, in essence, used to construct a proof of optimality without doing

an exhaustive search of the branches.

To implement the branch-and-bound algorithm, several decisions must be made.

Among these decisions we can give the two most prominent ones as examples; the

branching and the subproblem selection strategies (see [62] for the details). To approx-

imate the optimal solution of the integer program defined on a node of the branch-and-

bound tree, different bounding procedures are used. Most bounding procedures are

based on the generation of a polyhedron that approximates the convex hull of feasible

solutions. Solving an optimization problem over such a polyhedral approximation pro-

duces a bound that can be used in a branch and bound algorithm. The effectiveness of

the bounding procedure depends largely on how well X in (2.16) can be approximated.

The most straightforward approximation is the continuous approximation, which boils

down to the LP relaxation. The bound resulting from this approximation is frequently

weak. The success of the other bounding algorithms given below relies heavily on the

14

effectiveness of the solution methodology to solve the PSP, Lagrangian subproblem or

the separation subproblem. Heuristic algorithms are frequently employed to solve these

subproblems as long as a column or cut that improves the bound is detected. Other-

wise, they must be solved exactly to prove optimality. Two examples, where such a

strategy is used, are the pick-up and delivery problem [65] and the capacitated vehicle

routing problem [57]. Next, we discuss the Lagrangian relaxation and the cutting plane

methods that can be used to find a lower-bound at a node of the branch-and-bound

tree.

Lagrangian Relaxation. Lagrangian relaxation is widely employed to obtain an

improved bound (see [34] for the details of the use of Lagrangian relaxation in IP).

Lagrangian relaxation algorithm moves the complicating constraint set in (2.16) to

the objective function by multiplying it with the Lagrangian multiplier vector u. The

resulting problem becomes

L(u) := min
x∈X

c
ᵀ
x− uᵀ

(Ax− b). (2.17)

Given vector u, the optimal objective function value, L(u), provides a lower-bound

on the optimal solution of the integer program. Clearly, the best bound then can be

obtained by solving the Lagrangian dual problem given by

max
u≥0

L(u). (2.18)

In [62], the dual of the Lagrangian dual model is shown to be equivalent to the Dantzig-

Wolfe decomposition for a given X. It is well-known that Lagrangian relaxation is

obtained by dualizing exactly those constraints that are the linking constraints in the

Dantzig-Wolfe decomposition. Moreover, the subproblem that we need to solve in the

column generation procedure is the same as the one we have to solve for the Lagrangian

relaxation except for a constant term in the objective function. Column generation and

Lagrangian relaxation provide the same bounds which is better than the LP relaxation,

if the convex hull of X does not have integrality property. Hence, the constraints to

15

be relaxed are generally selected to violate the integrality property. To find an upper

bound, either Lagrangian relaxation is embedded in a branch-and-bound algorithm as

in [4, 53] or a Lagrangian heuristic approach is employed as in [14, 10].

There are several methods to solve the Lagrangian dual problem given in (2.18).

Subgradient algorithm is widely used to find the optimal Lagrangian multipliers in

(2.18). This algorithm is first applied in the Lagrangian relaxation context to the

traveling salesman problem by Held and Karp [43, 44]. The performance and the

theoretical convergence properties of subgradient optimization are given in [45]. Other

successful alternatives to the subgradient optimization are the volume algorithm and

the bundle algorithm (see [5, 54], respectively, for the details of these algorithms).

Cutting Plane Algorithms. Cutting plane methods improve the continuous ap-

proximation by dynamically generating valid inequalities to form a better approxima-

tion of the convex hull of the feasible region. An inequality πx ≤ π0 is a valid inequality

for X if πx ≤ π0 for all x ∈ X. The valid inequalities are generated by solving a separa-

tion problem. The addition of each valid inequality cuts the approximating polyhedron,

resulting in a potentially improved bound.

The general cutting plane algorithm solves the continuous relaxation of the prob-

lem and checks if the optimal solution violates any of the valid inequalities by solving a

separation subproblem. If this is the case, the most violated valid inequality is added;

otherwise, the algorithm terminates. If the solution is not integral, then branching

takes place.

The cuts can be classified as general cutting planes and cuts for special structures.

Gomory cuts are one of the most prominent general classes of cutting planes [40]. These

cuts can be applied to any integer linear program. However, exploiting the special

structure of the given problem may result in more effective cuts. Such cuts exploiting the

special structure of the problem have been successfully used in the traveling salesman

problem (see [22, 20, 63] for different cuts).

Depending on the selected bounding algorithm, the branch-and-bound algorithm

takes different names. To obtain an integral optimal solution using column generation,

16

it must be embedded in a branch-and-bound framework. This procedure is called

branch-and-price [27, 8]. In this case, new columns are generated at each node of the

branch-and-bound tree and branching is implemented when no columns enter the basis

and the LP relaxation is fractional. When the cutting plane procedure is applied at each

node of the branch-and-bound tree, the resulting procedure is called branch-and-cut

[46, 62]. When the cuts do not result in an integral solution, branching occurs. Branch-

and-cut-and-price, on the other hand, employs column generation and cut generation

at each node of the branch-and-bound tree together [7, 11].

2.3 Existing Work on Problems with Column-Dependent-Rows

The literature on the CDR-problems is somewhat limited. In this section, we discuss

the existing work in the literature and position our contributions. When it comes to

the CDR-problems mentioned in this section, it is relatively easy to check that these

problems satisfy our assumptions that will be defined in the next chapter. Therefore,

the proposed column-and-row generation algorithm indeed provides a generic approach

to solve these problems.

To the best of our knowledge, the first column-and-row generation algorithm as we

consider here was devised in [73], who tries to solve a one-dimensional MSCS problem.

The algorithm developed in [73] is based on a restrictive assumption, which causes the

algorithm to terminate at a suboptimal solution. A two-stage batch scheduling problem

that is structurally similar to MSCS is formulated in [71] and the proposed algorithm

suffers from an analogous restrictive assumption. MSCS will be introduced in Section

3.2 and our solution method will be applied to this problem in Section 4.2.1.

In [2], a time-constrained routing (TCR) problem motivated by an application

that needs to schedule the visit of a tourist to a given geographical area as efficiently

as possible in order to maximize her total satisfaction is studied. The goal is to send

the tourist on one tour during each day in the vacation period while ensuring that each

attraction site is visited no more than once. This problem is formulated as a set packing

problem with side constraints and solved heuristically by a column-and-row generation

approach due to a potentially huge number of tours. The authors enumerate and store a

17

large number of tours before invoking their column generation algorithm. The SRMP for

solving the LP relaxation of the proposed formulation is initialized with a subset of the

enumerated tours. A selected tour must be assigned to one of the days in the vacation

period. Each generated tour during the column generation procedure introduces a set

of variables and leads to a new linking constraint in the SRMP. The authors define an

optimality condition for terminating their column generation algorithm based on the

dual variables of the constraints in the current SRMP. Following each optimization of

the SRMP, this condition is verified for each tour currently absent from the SRMP; i.e.,

no PSP is required. In Section 4.2.3, we demonstrate that this stopping condition fails

to account for the dual variables of the missing linking constraints properly and may

lead to a suboptimal LP solution at termination.

A branch-and-cut-and-price algorithm for the well-known P-median problem is

proposed in [3]. In their formulation, a set of binary variables indicate the set of selected

median nodes, and binary assignment variables designate the median node assigned to

each node in the network. These two types of binary variables are linked by variable

upper bound constraints. One of the main contributions of the authors is a column-and-

row generation method for solving the LP relaxation of this formulation. The algorithm

is invoked with a subset of the assignment variables and additional ones are generated

as necessary. The generation of each assignment variable leads to a single new linking

constraint added to the SRMP for primal feasibility, and the dual variable associated

with this linking constraint is calculated correctly a priori due to the special structure of

the formulation and incorporated directly into the reduced cost calculations. No PSP is

required because all potential assignment variables are known explicitly. Similar to the

formulation in the previous work of these authors on the TCR problem, we note that

the P-median formulation investigated in [3] is a special case of our generic formulation

(MP) and can be handled by our proposed solution methodology.

In [61], a robust airline crew pairing problem for managing extra flights with the

objective of hedging against a certain type of operational disruption by incorporating

robustness into the pairings generated at the planning level is studied. In particular,

they address how a set of extra flights may be added into the flight schedule at the time

18

of operation by modifying the pairings at hand and without delaying or canceling the

existing flights in the schedule. Essentially, this is accomplished in two different ways.

An extra flight may either be inserted into an existing pairing with ample connection

time (a type-B solution) or the schedules of a pair of pairings are partially swapped to

cover an extra flight while ensuring the feasibility of these two pairings before and after

the swap (a type-A solution). In the latter case, there is a benefit of having a pair of

pairings in the solution simultaneously. However, an additional complicating factor is

that the set of type-A solutions and the associated linking constraints are not known

explicitly. This is akin to the MSCS problem, where the set of intermediate rolls is

not available a priori. Ultimately, the mathematical model proposed in [61] boils down

to a QSC problem with restricted pairs and side constraints. The model is linearized

by the same approach as that in (3.6)-(3.12) for the QSC problem. A heuristic two-

phase iterative column-and-row generation strategy is devised in [61] to solve the LP

relaxation of their master problem. In the first phase, the number of constraints in the

SRMP is fixed and column generation is applied in a classical manner. Then, in the

second phase additional type-A solutions are identified based on the pairings generated

during the last call to the column generation with a fixed number of constraints, and the

associated constraints are added to the SRMP before the next iteration of the algorithm

resumes. We note that the problem in [61] is a CDR-problem and can be handled by

the proposed methodology in this thesis.

Finally, we refer to a recent work in [32]. In this work, the optimality conditions

for column-and-row generation are analyzed for two sample problems; the split delivery

vehicle routing problem and the service network design problem for an urban rapid

transit system. The authors claim that there is no simple rule to construct an optimal

solution and thus, one has to define specifically how to proceed for every application

case. Our work, however, does state a generic model and characterizes the type of

problems that can be solved by column-and-row generation including those discussed

in [32]. Besides, we also propose an associated solution framework to design a column-

and-row generation algorithm for CDR-problems.

Column-and-row generation (or row-and-column generation) is a term without a

19

widely-agreed precise definition. Therefore, we conclude this section by distinguishing

our work from others, who use the same term in a different context. For instance, in

both [35] and [50], the multi-commodity capacitated network design problem is consid-

ered and column-and-row generation algorithms are employed. In both of these cases,

the rows that are added to the formulation are valid inequalities that strengthen the

LP relaxation in line with the general branch-and-cut-and-price paradigm (see [26, 28]).

This is very different than our framework for CDR-problems, in which generated rows

are structural constraints that are required for the validity of the formulation. Fur-

thermore, as pointed out in [35] the column- and row generation subproblems in the

branch-and-cut-and-price context are either independent from each other or generated

columns introduce new cuts with trivial separation problems. For a CDR-problem, the

situation is completely different as we study thoroughly in Chapter 4.

20

Chapter 3

PROBLEMS WITH

COLUMN-DEPENDENT-ROWS

In this chapter, we first specify the canonical form of the generic mathematical model

representing the class of CDR-problems that we consider. Then, we discuss the assump-

tions underlying our modeling and solution framework. To illustrate our construction,

we briefly describe two example problems, the MSCS and QSC problems, and demon-

strate that both of these problems satisfy our assumptions and they may conform to our

generic model. These two problems are selected for their different characteristics that

help us illustrate the different features and aspects of our proposed solution method.

21

3.1 Generic Mathematical Model

The generic mathematical formulation of CDR-problems appears below, and we refer

to it as the master problem, following the common terminology in column generation:

(MP) minimize
∑
k∈K

ckyk+
∑
n∈N

dnxn,

subject to
∑
k∈K

Ajkyk ≥ aj, j ∈ J, (MP-y)

∑
n∈N

Bmnxn ≥bm, m ∈M, (MP-x)

∑
k∈K

Cikyk+
∑
n∈N

Dinxn ≥ ri, i ∈ I, (MP-yx)

yk ≥ 0, k ∈ K, xn ≥ 0, n ∈ N.

There may be exponentially many y− and x− variables in this formulation, and we

allow both types of variables to be generated in a column generation algorithm applied

to solve the master problem. We assume that the set of constraints (MP-y) and (MP-x)

are known explicitly and their cardinality is polynomially bounded in the size of the

problem. On the other hand, a complete description of the set of linking constraints

(MP-yx) may not be available. If this is the case, we may have to generate all y− and

x− variables in the worst case to identify all linking constraints in a column generation

algorithm. The discussion on a robust crew pairing problem studied in [61] in Section

2.3 provides an example for this case. Even if all linking constraints (MP-yx) are

known explicitly a priori, there may be exponentially many of them. For instance, in

the QSC example introduced in the previous section each pair of variables induces three

linking constraints in the linearized formulation, and incorporating all O(| K |2) linking

constraints in the formulation directly is not a viable alternative for large | K |.
Based on the discussion in the preceding paragraph, the column-and-row gener-

ation algorithm for solving the master problem is initialized with subsets K̄ ⊂ K and

22

N̄ ⊂ N . The resulting model then becomes

(SRMP) minimize
∑
k∈K̄

ckyk+
∑
n∈N̄

dnxn,

subject to
∑
k∈K̄

Ajkyk ≥ aj , j ∈ J, (SRMP-y)

∑
n∈N̄

Bmnxn ≥bm, m ∈M, (SRMP-x)

∑
k∈K̄

Cikyk+
∑
n∈N̄

Dinxn ≥ ri, i ∈ I(K̄, N̄), (SRMP-yx)

yk ≥ 0, k ∈ K̄, xn ≥ 0, n ∈ N̄ ,

where I(K̄, N̄) ⊂ I in (SRMP-yx) denotes the set of linking constraints formed by

{yk|k ∈ K̄}, and {xn|n ∈ N̄}. During the column generation phase, new variables

{yk|k ∈ SK} and {xn|n ∈ SN}, where SK ⊂ (K \ K̄) and SN ⊂ (N \ N̄), are added

to the RMP iteratively as required as a result of solving different types of PSPs which

we discuss in depth in Section 4.1. Moreover, these new variables may appear in new

linking constraints currently absent from the RMP, where the set of these new linking

constraints is represented by ∆(SK , SN) = I(K̄ ∪ SK , N̄ ∪ SN) \ I(K̄, N̄). Thus, the

RMP grows both vertically and horizontally during column generation, and due to this

special structure we refer to the RMP in our column-and-row generation algorithm as

the short restricted master problem (SRMP).

Three main assumptions characterize the type of problems that fit into our generic

model and that we can tackle by our proposed solution methodology. In the next

section, we argue that all of these assumptions hold for our two illustrative CDR-

problems; QSC and MSCS. Moreover, in Section 2.3 we considered other problems

from the literature, for which it is trivial to check that these assumptions also apply.

The first assumption implies that the generation of the x−variables depends on the

generation of the y−variables. Moreover, each x−variable is associated with only one

set of linking constraints.

Assumption 3.1.1 The generation of a new set of variables {yk|k ∈ SK} prompts

the generation of a new set of variables {xn|n ∈ SN(SK)}. Furthermore, a variable

23

xn′ , n
′ ∈ SN(SK), does not appear in any linking constraints other than those indexed

by ∆(SK , SN(SK)) and introduced to the SRMP along with {yk|k ∈ SK} and {xn|n ∈

SN(SK)}.

Note that the dependence of N̄ on K̄ is designated by the index set SN(SK). In

the remainder of the thesis, we will use the shorthand notation ∆(SK) instead of

∆(SK , SN(SK)) whenever there is no ambiguity.

The next assumption requires the definition of a minimal variable set. A minimal

variable set is a set of y−variables that triggers the generation of a set of x−variables

and the associated linking constraints in the sense of Assumption 3.1.1. In the QSC

formulation in Section 1.1, a minimal variable set given by {yk, yl} consists of the

variables yk and yl and generates a set of linking constraints of type (1.2) and the

variable xkl. We also note that in our subsequent discussion, we shall see that there

may be several minimal variable sets associated with a set of linking constraints. Thus,

we state the following assumption for the general case.

Assumption 3.1.2 A linking constraint is redundant until all variables in at least one

of the minimal variable sets associated with this linking constraint are added to the

SRMP.

This assumption implies that a feasible solution of SRMP does not violate any missing

linking constraint before all variables in at least one of the associated minimal variable

sets are added to the SRMP.

Assumptions 3.1.1 and 3.1.2 together define the goal of the fundamental subprob-

lem in our proposed column-and-row generation approach. The objective of the row-

generating PSP derived in Section 4.1 is to identify one or several minimal variable sets,

where each minimal variable set {yk|k ∈ SK} yields a set of variables {xn|n ∈ SN(SK)}.

These two sets of variables appear in a set of linking constraints indexed by ∆(SK) cur-

rently not present in the SRMP, and we are also required to add these constraints to

the SRMP to avoid violating the primal feasibility of the master problem (MP). Thus,

for each new minimal variable set {yk|k ∈ SK} to be introduced into the SRMP as

an output of the row-generating PSP, the index sets defining SRMP are updated as

24

K̄ ← K̄ ∪ SK , N̄ ← N̄ ∪ SN(SK), and a new set of constraints ∆(SK) appear in the

SRMP. Clearly, at least one of the currently generated y−variables must have a negative

reduced cost.

The next assumption characterizes the signs of the coefficients in the linking con-

straints.

Assumption 3.1.3 Suppose that we are given a minimal variable set {yl|l ∈ SK}

that generates a set of linking constraints ∆(SK) and a set of associated x−variables

{xn|n ∈ SN(SK)}. When the set of linking constraints ∆(SK) is first introduced into

the SRMP during the column-and-row generation, then for each k ∈ SK there exists a

constraint i ∈ ∆(SK) of the form

Cikyk +
∑

n∈SN (SK)

Dinxn ≥ 0, (3.1)

where Cik > 0 and Din < 0 for all n ∈ SN(SK).

Assumption 3.1.3 ensures that a variable xn, n ∈ SN(SK), cannot assume a positive

value until all variables in at least one of the minimal variable sets that generate

∆(SK) are positive in the SRMP. In addition, we emphasize that although we use (3.1)

throughout this thesis, our analysis is also valid when a constraint of type (3.1) is given

in a disaggregated form like

Cikyk +Dinxn ≥ 0, n ∈ SN(SK).

Furthermore, linking constraints of type (3.1) may be specified as equalities in some

CDR-problems. This case may also be handled with minor modifications to the analysis

in Section 4.1. An example of the equality case can be found in Section 4.2.3 where our

proposed approach is applied to the TCR problem.

We further classify CDR-problems as CDR-problems with interaction and CDR-

problems with no interaction. This distinction between two problem types plays an

important role in our analysis.

25

Definition 3.1.1 In a CDR-problem with interaction, the cardinality of any minimal

variable set is larger than one. On the other hand, if each minimal variable set is a

singleton, then the corresponding problem belongs to the class of CDR-problems with

no interaction.

Differentiating between CDR-problems with and with no interaction allows us to

focus on the unique properties of these two types that affect the analysis of the row-

generating PSP in Section 4.1. However, it is possible to combine the tools developed in

this thesis to tackle CDR-problems in which some minimal variable sets are singletons

while others include more than one variable. This extension is discussed in Section 4.3.

3.2 Illustrative Examples

In the one-dimensional multi-stage cutting stock (MSCS) problem, operational restric-

tions impose that stock rolls are cut into finished rolls in more than one stage (see

[42, 33, 72, 73]). The objective is to minimize the number of stock rolls used for satisfy-

ing the demand for finished rolls, and appropriate cutting patterns need to be identified

for each stage in the cutting process. We restrict our attention to the two-stage cutting

stock problem similar to the study by [73]. In the first stage, a stock roll is cut into

intermediate rolls, while finished rolls are produced from these intermediate rolls in the

second stage. If we ignore the integrality restrictions, then the LP model for the MSCS

problem is given by

minimize
∑
k∈K

yk, (3.2)

subject to
∑
n∈N

Bmnxn ≥bm, m ∈M, (3.3)

∑
k∈K

Cikyk+
∑
n∈N

Dinxn ≥ 0, i ∈ I, (3.4)

yk ≥ 0, k ∈ K, xn ≥ 0, n ∈ N, (3.5)

where the set of intermediate and finished rolls are denoted by I and M , respectively.

The set of cutting patterns K for the first stage constitute the columns of C. Similarly,

26

the columns of B are formed by the set of cutting patterns N for the second stage.

The matrix D establishes the relationship between the cutting patterns in the first and

the second stages. A single non-zero entry Din = −1 in column n of D indicates that

the cutting pattern n for the second stage is cut from the intermediate roll i. Con-

straints (3.3) ensure that the demand for finished rolls given by the vector b is satisfied,

and constraints (3.4) impose that the consumption of the intermediate rolls does not

exceed their production. The objective is to minimize the total number of stock rolls

required. Clearly, this problem is a special case of the generic model (MP), where A, a,

d, and r are zero, and c is a vector of all ones. In general, there may be exponentially

many feasible cutting patterns in both stages, which prompts us to develop a column

generation algorithm for solving this formulation. The challenging issue is that each

generated cutting pattern for the first stage, which includes an intermediate roll cur-

rently absent from the RMP, adds one more constraint to the model. Thus, the RMP

grows both horizontally and vertically and exhibits the structure of a CDR-problem.

MSCS satisfies Assumption 3.1.1 because a cutting pattern for the second stage based

on an intermediate roll i cannot be generated unless there exists at least one cutting

pattern for the first stage that includes this intermediate roll i. Moreover, the associ-

ated linking constraint is redundant in this case as required by Assumption 3.1.2, and

any cutting pattern for the first stage that contains a currently absent intermediate roll

i constitutes a minimal variable set for the corresponding linking constraint. The last

assumption does also hold because the linking constraint corresponding to a currently

absent intermediate roll is of the form (3.1). We conclude that MSCS belongs to the

class of CDR-problems with no interaction.

In the column-and-row generation algorithm given in [73], three types of PSPs are

defined. The first PSP looks for a new first-stage cutting pattern, which only includes

the intermediate rolls that are already present in the restricted master problem. In

the second PSP, the objective is to identify new cutting patterns for the second stage

based on the currently existing intermediate rolls. Both of these PSPs are classical

knapsack problems. The final PSP considers the possibility of generating both new

intermediate rolls and related cutting patterns simultaneously and results in a difficult

27

nonlinear integer programming problem. This subproblem is solved heuristically under

a restrictive assumption which dictates that only one new intermediate roll can be

generated at each iteration. Thus, the solution method given in [73] may terminate

prematurely at a suboptimal solution which is verified by applying our proposed solution

method to an instance provided in [72]. Our proposed solution method will be applied

to MSCS in Section 4.2.1.

In the QSC problem, the objective is to cover all items j ∈ J by the sets k ∈ K at

minimum total cost. In addition to the sum of the individual costs of the sets, we also

incorporate a cross-effect between each pair of sets k, l ∈ K which results in a quadratic

objective function. [9] and [66] study this problem. QSC is formulated as

minimize y
ᵀ
Fy,

subject to Ay ≥ 1,

y ∈ {0, 1}|K|,

where A is a binary | J | × | K | matrix of set memberships, and F is a symmetric

positive semidefinite | K | × | K | cost matrix. To linearize the objective function, we

add a binary variable xkl for each pair of sets k, l ∈ K. A set of linking constraints

mandates that xkl = 1 if and only if yk = yl = 1. Relaxing the integrality restrictions

leads to the following linear program:

minimize
∑
k∈K

fkkyk +
∑

(k,l)∈P,k<l

2fklxkl, (3.6)

subject to
∑
k∈K

Ajkyk ≥ 1, j ∈ J, (3.7)

yk + yl − xkl ≤ 1, (k, l) ∈ P, k < l, (3.8)

yk − xkl ≥ 0, (k, l) ∈ P, k < l, (3.9)

yl − xkl ≥ 0, (k, l) ∈ P, k < l, (3.10)

yk ≥ 0, k ∈ K, (3.11)

xkl ≥ 0, (k, l) ∈ P, k < l, (3.12)

28

where P := K × K is the set of all possible pairs, and Ajk = 1, if item j is covered

by set k; and 0, otherwise. The first set of constraints is the coverage constraints and

the remaining are the linking constraints. This problem is a special case of the generic

model (MP) with both B and b equal to zero, and a is a vector of ones. The vector of

cost coefficients c and d in (MP) are formed by the diagonal and off-diagonal entries

of the cost matrix F , respectively. To solve this formulation by column generation, we

select a subset of the columns from K and the associated linking constraints to form the

initial SRMP. If a new variable, say yk, enters SRMP, a set of linking constraints and

x−variables for each pair (k, l) with l ∈ K̄ are also added. We note that the variable

xkl and the set of linking constraints yk + yl−xkl ≤ 1, yk−xkl ≥ 0, and yl−xkl ≥ 0 are

redundant until both of the variables yk and yl are part of the SRMP. Thus, the minimal

variable set {yk, yl} allows us to generate xkl and the constraints that relate these three

variables. We arrive at the conclusion that QSC is a CDR-problem with interaction

that satisfies both Assumptions 3.1.1 and 3.1.2 stipulated previously. Moreover, the

set of linking constraints induced by any minimal variable set SK = {yk, yl} conforms

to the characterization in Assumption 3.1.3 because the constraints (3.9) and (3.10)

are of the form (3.1). In Section 4.2.2, we show that our proposed solution method for

CDR-problems can handle the formulation (3.6)-(3.12).

For some problems, the linking constraints (3.8)-(3.10) may be formed by a strict

subset P̄ of the set of all possible pairs P . If in addition an explicit complete description

of P̄ is not available a priori before invoking a column generation algorithm, then we

refer to these problems as QSC with restricted pairs (see also the discussion in the

paragraph immediately following the statement of problem (MP).) Typically, in QSC

problems with restricted pairs the generation of the pairs that belong to P̄ requires a

call to an oracle. One example is studied in [61] discussed in the next section.

29

Chapter 4

SIMULTANEOUS COLUMN-AND-ROW

GENERATION

In this chapter, we develop a generic column-and-row generation algorithm that can

handle all CDR-problems including our prototype examples QSC and MSCS as well

as those mentioned in Section 2.3. First, we discuss the rationale of the proposed

algorithm at a higher level without going into the details of the specific PSPs, and then

analyze each type of subproblem separately. We devote most of the discussion to the

row-generating PSP and to the proof of optimality of the proposed algorithm. Finally,

the proposed algorithm is illustrated on three problems along with some computational

experiments.

4.1 Proposed Solution Method

The dual of (MP) is given by

(DMP)maximize
∑
j∈J

ajuj+
∑
m∈M

bmvm+
∑
i∈I

riwi,

subject to
∑
j∈J

Ajkuj +
∑
i∈I

Cikwi ≤ ck, k ∈ K, (DMP-y)

∑
m∈M

Bmnvm+
∑
i∈I

Dinwi ≤dn, n ∈ N, (DMP-x)

uj ≥ 0, j ∈ J, vm ≥ 0,m ∈M, wi ≥ 0, i ∈ I,

30

where u, v, and w denote the dual variables associated with the sets of constraints

(MP-y), (MP-x), and (MP-yx), respectively.

As discussed in Chapter 1 and Chapter 2, the traditional column generation frame-

work operates under the assumption that the number of constraints in the restricted

master problem stays constant throughout the algorithm and all corresponding dual

variables are known explicitly. This property is violated for CDR-problems, where gen-

erated columns introduce new constraints into the SRMP, and we need a new set of

tools to solve these problems by column generation. In Section 1.1, we argued that

the constraints missing in the SRMP may lead to a premature termination, if classical

column generation is applied to the SRMP of a CDR-problem naively. To motivate

our solution method and demonstrate our point formally, consider a set of variables

{yk|k ∈ SK}, currently not present in the SRMP, and assume that adding these vari-

ables to the SRMP would also require adding a set of constraints ∆(SK). Based on

(DMP-y), the reduced cost c̄k of yk, k ∈ SK , is then given by

c̄k = ck −
∑
j∈J

Ajkuj −
∑

i∈I(K̄,N̄)

Cikwi −
∑

i∈∆(SK)

Cikwi, (4.1)

and ignoring the dual variables {wi|i ∈ ∆(SK)} could result in

c̄k < 0 ≤ ck −
∑
j∈J

Ajkuj −
∑

i∈I(K̄,N̄)

Cikwi. (4.2)

In this case, we fail to detect that yk prices out favorably. In [2], such an error is

committed as discussed in depth in [60].

Figure 4.1: The flow of the proposed column-and-row-generation algorithm.

An overview of the proposed column-and-row generation algorithm is depicted

in Figure 4.1. The y− and x−PSPs search for new y− and x− variables, respectively,

under the assumption that these variables price out favorably with respect to the current

set of rows in the SRMP. On the other hand, the row-generating PSP identifies at least

31

one y−variable with a negative reduced cost, only if a set of new linking constraints

and related x−variables are added to the SRMP. We note that not all CDR-problems

give rise to all three PSPs as we discuss separately in the context of each PSP in the

sequel. Theoretically, the order of invoking these subproblems does not matter; however,

solving the row-generating PSP turns out to be computationally the most expensive in

general. Therefore, we adopt the convention illustrated in Figure 4.1. The algorithm

commences by calling the y−PSP repeatedly as long as new y−variables are generated,

and then invokes the x−PSP in a similar manner. Finally, the row-generating PSP

is called, if we can no longer generate y− or x− variables given the current set of

constraints in the SRMP. Observe that we return to the y−PSP after solving a series

of x− or row-generating PSPs because the dual variables in the y−PSP are modified.

The proposed column-and-row generation algorithm terminates, if solving the y−, x−,

and the row-generating PSPs consecutively in a single pass does not yield a negatively

priced column (only when FLAG=0 in Figure 4.1). Next, we investigate each PSP in

detail.

4.1.1 y−Pricing Subproblem

This subproblem checks the feasibility of the dual constraints (DMP-y) using the values

of the known dual variables. The objective is to determine a variable yk, k ∈ (K \ K̄)

with a negative reduced cost. The y−PSP is stated as

ζy = min
k∈(K\K̄)

{ck −
∑

j∈J Ajkuj −
∑

i∈I(K̄,N̄)Cikwi}, (4.3)

where the dual variables {uj|j ∈ J} and {wi|i ∈ I(K̄, N̄)} are obtained from the optimal

solution of the current SRMP. If ζy is nonnegative, we move to the next subproblem.

Otherwise, there exists yk with c̄k < 0, and SRMP grows by a single variable by setting

K̄ ← K̄ ∪ {k}. For example, a column-and-row generation algorithm for the problems

MSCS and QSC with restricted pairs requires this PSP.

At this point we note that whenever a column yk with a negative reduced cost is

generated, one or several minimal variable sets may be coincidentally completed by the

32

introduction of this new variable. Consequently, it may become necessary, particularly

for CDR-problems with interaction, to add the associated sets of linking constraints

as well as the x−variables to the SRMP before re-invoking the y−PSP. For MSCS,

this subproblem generates a cutting pattern for the first stage composed of the existing

intermediate rolls only. Hence, no new linking constraint can be added. However,

consider the QSC problem with restricted pairs and a pair of columns yk and yl, where

(k, l) ∈ P̄ . When the y−PSP generates yk, the associated column yl may already

be present in the SRMP. This would then require augmenting the problem with new

constraints of type (3.8)-(3.10). Ultimately, when the y−PSP is unable to produce

any more new columns, it is guaranteed that all linking constraints, which are induced

by the minimal variable sets that are currently in the SRMP, are already generated.

Although the y−PSP may yield new sets of linking constraints, we stress that it differs

fundamentally from the row-generating PSP. In the former case, new linking constraints

are only a by-product of the newly generated columns. However, the latter problem is

solved with the sole purpose of identifying new linking constraints that help us price

out additional y−variables which otherwise possess nonnegative reduced costs.

4.1.2 x−Pricing Subproblem

This subproblem attempts to generate a new x−variable by identifying a violated con-

straint (DMP-x) and assumes that the number of constraints in the SRMP is fixed.

Recall from our previous discussion that no new linking constraint may be induced in

the SRMP without generating new y−variables in the proposed column-and-row gen-

eration algorithm; that is, ∆(∅) = ∅ for this PSP (see also Assumption 3.1.1). Thus,

all dual variables that appear in this PSP are known explicitly. The x−PSP is then

simply given by

ζx = min
n∈NK̄

{dn −
∑

m∈M Bmnvm −
∑

i∈I(K̄,N̄) Dinwi}, (4.4)

where the dual variables {vm|m ∈ M} and {wi|i ∈ I(K̄, N̄)} are retrieved from the

optimal solution of the current SRMP. In order to introduce a new variable xn into the

33

SRMP, we require that at least one associated minimal set of variables {yk|k ∈ SK}

is already present in the model; that is, SK ⊆ K̄. Consequently, the search for xn

with a negative reduced cost in this PSP is restricted to the set NK̄ ⊆ N , where

NK̄ is the index set of all x−variables that may be induced by the set of variables

{yk|k ∈ K̄} in the current SRMP. We update N̄ ← N̄ ∪{n} if ζx < 0, i.e., if the x−PSP

determines a variable xn, n ∈ NK̄ that prices out favorably. Otherwise, the column-and-

row generation algorithm continues with the appropriate subproblem dictated by the

flow of the algorithm in Figure 4.1. In the MSCS problem, the x−PSP identifies cutting

patterns for the second stage that only consume intermediate rolls that are produced by

the cutting patterns for the first stage in the current SRMP. This PSP is not needed in a

column-and-row generation algorithm for QSC-type problems because the x−variables

in the corresponding formulations are auxiliary and are only added to the SRMP along

with a set of new linking constraints induced by a set of new y−variables.

4.1.3 Row-Generating Pricing Subproblem

Note that before invoking the row-generating PSP, we always ensure that no nega-

tively priced variables exist with respect to the current set of constraints in the SRMP

(see Figure 4.1). Therefore, the objective of this PSP is to identify new columns that

price out favorably only after adding new linking constraints currently absent from

the SRMP. The primary challenge here is to properly account for the values of the

dual variables of the missing constraints, and thus be able to determine which linking

constraints should be added to the SRMP together with a set of variables. Demon-

strating that this task can be accomplished implicitly is a fundamental contribution

of the proposed solution framework. Under the assumptions for CDR-problems stated

in Section 3.1, we can correctly anticipate the optimal values of the dual variables of

the missing constraints without actually introducing them into the SRMP first, and

this thinking-ahead approach enables us to calculate all reduced costs correctly in our

column-and-row generation algorithm for CDR-problems. Furthermore, recall that As-

sumption 3.1.3 stipulates that a variable xn that appears in a new linking constraint

cannot assume a positive value unless all y−variables in an associated minimal variable

34

set are positive. Thus, while we generate x− and y−variables simultaneously in this

PSP along with a set of linking constraints, the ultimate goal is to generate at least

one y−variable with a negative reduced cost. We formalize these concepts later in the

discussion.

In the context of the row-generating PSP, we need to distinguish between CDR-

problems with and with no interaction as specified in Definition 3.1.1. For CDR-

problems with no interaction, a single variable yk, k /∈ K̄, may induce one or several new

linking constraints. For instance, in the MSCS problem a cutting pattern yk, k /∈ K̄,

for the first stage leads to one new linking constraint per intermediate roll that it in-

cludes and is currently missing in the SRMP. Thus, all linking constraints that are

required in the SRMP to decrease the reduced cost of yk below zero may be directly

induced by adding yk to the SRMP. However, in CDR-problems with interaction no

single variable yk induces a set of new linking constraints, and the row-generating PSP

must be capable of identifying one or several minimal variable sets, each with a car-

dinality larger than one, to add to the SRMP so that yk prices out favorably in the

presence of these one or several new sets of linking constraints. To illustrate this point

for QSC, assume that the reduced cost of yk, k /∈ K̄, is positive if we only consider

the minimal variable sets of the form {yk, yl}, l ∈ K̄. However, the reduced cost of yk

may turn negative if it is generated along with yl′ , l
′ /∈ K̄. In this case, {yk, yl′} is a

separate minimal variable set that introduces a set of linking constraints of the form

(3.8)-(3.10) into the SRMP. Summarizing, the optimal solution of the row-generating

PSP is a family Fk of index sets Sk
K , where each element Sk

K ∈ Fk is associated with a

minimal variable set {yl|l ∈ Sk
K}, and k in the superscript of the index set Sk

K denotes

that yk ∈ {yl|l ∈ Sk
K}. Consequently, Fk is an element of the power set Pk of the set

composed by the index sets of the minimal variable sets containing yk. If the reduced

cost c̄k corresponding to the optimal family Fk is negative, then SRMP grows both hori-

zontally and vertically with the addition of the variables {yl|l ∈ Σk}, {xn|n ∈ SN(Σk)},

and the set of linking constraints ∆(Σk), where Σk = ∪Sk
K∈Fk

Sk
K denotes the index

set of all y−variables introduced to the SRMP along with yk. In the following dis-

cussion, SRMP(K̄, N̄ , I(K̄, N̄)) refers to the current SRMP formed by {yk|k ∈ K̄},

35

{xn|n ∈ N̄}, and the set of linking constraints I(K̄, N̄) in addition to the structural

constraints (SRMP-y)-(SRMP-x). Consequently, the outcome of the row-generating

PSP is represented as SRMP(K̄ ∪Σk, N̄ ∪ SN(Σk), I(K̄, N̄)∪∆(Σk)). In Table 4.1, we

summarize our notation required for a detailed analysis of the row-generating PSP in

the sequel.

A further distinction between CDR-problems with and with no interaction needs

to be clarified before we delve into the mechanics of the row-generating PSP. The oracle

that solves the row-generating PSP yields a family Fk –along with an associated index

set Σk– so that c̄k < 0, if SRMP grows as specified above. For CDR-problems with no

interaction, the optimal family of index sets reduces to a singleton, i.e., Fk = {{k}} and

Σk = {k}. Furthermore, we must have k /∈ K̄; otherwise, c̄k ≥ 0 would hold because

k ∈ K̄ implies SN({k}) ⊆ N̄ and ∆({k}) ⊆ I(K̄, N̄), and the current SRMP would

have been solved to optimality with all constraints relevant for yk. On the other hand,

for CDR-problems with interaction there may exist an l ∈ Σk with l ∈ K̄.

Table 4.1: Notation for the analysis of the row-generating PSP.

SK denotes the index set of a minimal variable set {yl|l ∈ SK}.
Sk
K denotes that yk is a member of the minimal variable set {yl|l ∈ Sk

K}.
SN (SK) denotes the index set of the x−variables induced by {yl|l ∈ SK}.
∆(SK) denotes the index set of the linking constraints induced by

{yl|l ∈ SK}.
Pk denotes the power set of the set composed by the index sets of the

minimal variable sets containing yk.
Fk denotes a family of the index sets of the minimal variable sets of

the form Sk
K , i.e., Fk ∈ Pk.

Σk = ∪Sk
K∈Fk

Sk
K .

SRMP(K̄, N̄ , I(K̄, N̄)) denotes the current SRMP formed by {yk|k ∈ K̄}, {xn|n ∈ N̄}, and
the set of linking constraints I(K̄, N̄) in addition to (SRMP-y)-
(SRMP-x).

As explained previously, the minimal variable set {yl|l ∈ SK} introduces ∆(SK).

In general, this relationship is not one-to-one; that is, yk may appear in several sets of

linking constraints, and the same set of linking constraints may be induced by several

different minimal variable sets. To illustrate in the context of MSCS, if the intermediate

rolls i, j and i, h appear in the first-stage cutting patterns k and l, respectively, then we

have {({k}, {i}), ({k}, {j}), ({l}, {i}), ({l}, {h})}, where a pair (SK ,∆(SK)) specifies

36

that the minimal variable set {yl|l ∈ SK} introduces ∆(SK). Therefore, {yk} and

{yl} are the minimal variable sets for the sets of linking constraints {i, j} and {i, h},

respectively, and the linking constraint i may be induced by both {yk} and {yl}. In

contrast, for the QSC problem, each set of linking constraints of the form (3.8)-(3.10)

is introduced to the SRMP by a unique minimal variable set {yk, yl}, and we have

({k, l}, {i1, i2, i3}), where i1, i2, i3, are the indices of the associated linking constraints.

In general, adding new constraints and variables to an LP may destroy both the

primal and the dual feasibility. In our case, Assumption 3.1.2 guarantees that the pri-

mal feasibility is preserved. Therefore, the goal of our analysis is to attach a correct set

of values to each variable wi, i ∈ ∆(Σk), and thus be able to calculate the reduced costs

of yk and {xn|n ∈ SN(Σk)} to be inserted into the SRMP correctly. In particular, the

ensuing analysis computes the optimal values of {wi|i ∈ ∆(Σk)} without solving the

SRMP explicitly under the presence of the currently missing associated set of linking

constraints ∆(Σk). Moreover, it also guarantees that the optimal values of the dual

variables {uj|j ∈ J}, {vm|m ∈ M}, and {wi|i ∈ I(K̄, N̄)} retrieved from the opti-

mal solution of the current SRMP would remain optimal with respect to the SRMP

augmented with the set of linking constraints ∆(Σk) and {xn|SN(Σk)}. These proper-

ties, stated formally in Corollary 4.1.1a-b, are key to the correctness of the proposed

column-and-row generation algorithm. Then, for any given yk, an associated Fk, and

Sk
K ∈ Fk, we have

c̄k = ck −
∑
j∈J

Ajkuj −
∑

i∈I(K̄,N̄)

Cikwi −
∑

i∈∆(Σk)

Cikwi, (4.5)

d̄n = dn −
∑
m∈M

Bmnvm −
∑

i∈I(K̄,N̄)

Dinwi −
∑

i∈∆(Σk)

Dinwi (4.6)

= dn −
∑
m∈M

Bmnvm −
∑

i∈∆(Sk
K)

Dinwi, (4.7)

where c̄k and d̄n are the reduced costs for yk and xn, n ∈ SN(Sk
K), respectively. The

simplification of expression (4.6) to (4.7) follows from Assumption 3.1.1 which states

that an x−variable appears in no more than one set of linking constraints. To reiterate,

37

in (4.5)-(4.7) the values of the dual variables {uj|j ∈ J}, {vm|m ∈ M}, and {wi|i ∈

I(K̄, N̄)} are retrieved from the optimal solution of the current SRMP, and {wi|i ∈

∆(Σk)} are unknown. Next, we introduce a series of conditions imposed on the reduced

costs (4.7) as well as on the unknown dual variables {wi|i ∈ ∆(Σk)} which ultimately

leads to the formulation of the row-generating PSP. In this discussion, we also present

how we can obtain a valid starting basis for the next optimization of the SRMP given

that it is augmented by the variables {yl|l ∈ Σk}, {xn|n ∈ SN(Σk)}, and the set of

linking constraints ∆(Σk).

Suppose that for a given Fk and a set of associated dual variables {wi|i ∈ ∆(Σk)}

we have c̄k ≥ 0 and d̄n′ < 0 for some n′ ∈ SN(Sk
K) with Sk

K ∈ Fk. Hence, {yl|l ∈ Σk},

{xn|n ∈ SN(Σk)}, and the set of linking constraints ∆(Σk) are added to the SRMP.

This implies that xn′ is eligible to enter the basis during the next iteration of solving the

SRMP. However, this basis update would only result in a degenerate simplex iteration as

the value of xn′ is forced to zero in the basis by Assumption 3.1.3. That is, there exists a

nonbasic variable yl, l ∈ Sk
K , such that an associated constraint (3.1) is introduced into

the SRMP. Note that the existence of such a nonbasic variable is guaranteed because

Sk
K 6⊆ K̄. In order to avoid this type of degeneracy, we require that d̄n ≥ 0 holds for all

n ∈ SN(Sk
K) and for each Sk

K ∈ Fk while determining the values of {wi|i ∈ ∆(Σk)}. In

other words, we impose the following set of constraints:

∑
m∈M

Bmnvm +
∑

i∈∆(Sk
K)

Dinwi ≤ dn, n ∈ SN(Sk
K), Sk

K ∈ Fk. (4.8)

We underline that our proposed approach goes beyond the classical LP sensitivity

analysis that would augment the basis with the surplus variables in the new linking

constraints and then proceed to repair the infeasibility in the constraints (4.8). This is

because setting wi = 0, i ∈ Sk
K , Sk

K ∈ Fk may violate (4.8). Therefore, incorporating

these constraints directly into the row-generating PSP may be regarded as a look-ahead

feature. A further critical observation is that constraints (4.8) exhibit a block-diagonal

structure. Given the optimal solution of the current SRMP, the first term on the left

38

hand side of (4.8) is a constant for all n, and hence, we have

∑
i∈∆(Sk

K)

Dinwi ≤ dn −
∑
m∈M

Bmnvm, n ∈ SN(Sk
K), Sk

K ∈ Fk, (4.9)

which exposes the block-diagonal structure. The dual variables {wi|i ∈ ∆(Sk
K)} do not

factor into the reduced costs of any x−variables, except for {xn|n ∈ SN(Sk
K)}. Thus,

the task of determining the values of {wi|i ∈ ∆(Σk)} decomposes, and this property is

also exploited in our analysis. We next show that enforcing the set of constraints (4.8) in

the row-generating PSP does not change the minimum value of c̄k and hence imposing

(4.8) does not affect the correctness of the column-and-row generation procedure.

Lemma 4.1.1 For a given k, an associated Fk, and Sk
K ∈ Fk, imposing (4.8) on the

set of unknown dual variables {wi|i ∈ ∆(Sk
K)} while solving the row-generating PSP

does not increase the minimum value of c̄k.

Proof. This result stems directly from Assumption 3.1.3 which states that

there always exists a linking constraint i′ ∈ ∆(Sk
K) of the form (3.1) such that Ci′k > 0

and Di′n < 0 for all n ∈ SN(Sk
K). Coupling this with wi ≥ 0, i ∈ ∆(Sk

K) as required

by the (DMP), we conclude that increasing wi′ increases the reduced cost d̄n given in

(4.7) for all {xn|n ∈ SN(Sk
K)} while reducing c̄k in (4.5). Thus, (4.8) is always satisfied

for the minimum value of c̄k. �

From the discussion so far it is evident that the row-generating PSP must provide

us with a variable yk and an associated family of index sets Fk so that the reduced cost

c̄k as defined in (4.5) is negative. Thus, for a given variable yk we need to select a subset

Fk ∈ Pk so that c̄k is minimized. During this optimization we must prescribe that the

values determined for the unknown set of dual variables {wi|i ∈ ∆(Sk
K)} satisfy the

conditions set forth in (4.8) for each Sk
K ∈ Fk. These arguments prompt us to pose

the row-generating PSP as a two-stage optimization problem. In the first stage, we

formulate and solve the problem of finding the minimum reduced cost for a given yk

as a subset selection problem. For any given Fk ∈ Pk, the problem of computing

the optimal values of {wi|i ∈ ∆(Σk)} decomposes into finding the optimal values of

39

{wi|i ∈ ∆(Sk
K)} for each Sk

K ∈ Fk. In the second stage, we pick the y−variable with

the most negative minimum reduced cost. We stop solving the row-generating PSP

and proceed according to Figure 4.1 if the minimum reduced cost is nonnegative for all

yk, k ∈ (K \ K̄).

The only missing piece in the approach described in the preceding paragraph is

computing a valid reduced cost for yk for a given Fk without changing the reduced

costs of the variables in SRMP(K̄, N̄ , I(K̄, N̄)). This task is accomplished by show-

ing that the optimal solution of the row-generating PSP corresponds to an implicit

construction of a basic optimal solution to SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪ ∆(Σk))

that allows us to correctly price out {yl|l ∈ Σk}. In particular, we prove that the

optimal values of the dual variables {uj|j ∈ J}, {vm|m ∈ M}, and {wi|i ∈ I(K̄, N̄)}

in SRMP(K̄, N̄ , I(K̄, N̄)) are identical to those in SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪

∆(Σk)), and the values set for {wi|i ∈ ∆(Σk)} in the row-generating PSP are optimal

for SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪∆(Σk)) as stated in Corollary 4.1.1a-b. In addi-

tion, it turns out that we have Cilwi = 0 for a variable yl, l ∈ K̄ and for i ∈ ∆(Σk). In

other words, a y−variable that currently exists in the SRMP does not appear in a new

linking constraint with a positive dual variable, and this property guarantees that the

reduced costs of {yl|l ∈ K̄} are identical with respect to the optimal dual solutions of

both SRMP(K̄, N̄ , I(K̄, N̄)) and SRMP(K̄, N̄ ∪SN(Σk), I(K̄, N̄)∪∆(Σk)) as stated in

Corollary 4.1.1c.

To explain the construction of an optimal basis for SRMP(K̄, N̄∪SN(Σk), I(K̄, N̄)

∪∆(Σk)) based on the solution of the row-generating PSP, suppose that we are given

a specific Fk. We introduce {xn|n ∈ SN(Σk)} and a set of new linking constraints

∆(Σk) into SRMP(K̄, N̄ , I(K̄, N̄)) to obtain SRMP(K̄, N̄ ∪SN(Σk), I(K̄, N̄)∪∆(Σk)).

Warm starting the primal simplex method for this new SRMP would require us to

augment the optimal basis of SRMP(K̄, N̄ , I(K̄, N̄)) with | ∆(Σk) | new basic variables

associated with the new set of linking constraints. To ensure complementary slackness,

we determine the values of {wi|i ∈ ∆(Σk)} such that the number of linearly independent

active constraints among wi ≥ 0, i ∈ ∆(Σk) and (4.9) is at least | ∆(Σk) |. This

restriction is directly added to the definition of the row-generating PSP specified below.

A tight constraint of the form (4.9) prescribes adding the corresponding x−variable to

40

the basis, while wi = 0 implies that the basis is extended by the corresponding primal

surplus variable. In addition, in order to ensure that Cilwi = 0 for i ∈ ∆(Σk) and for

{yl|l ∈ K̄} as discussed before, we only allow wi > 0 if constraint i ∈ ∆(Sk
K) is of the

form (3.1) as specified in Assumption 3.1.3 with Cik > 0. Clearly, such a constraint

does not include a variable yl, l ∈ K̄. The index set of constraints ∆(Sk
K) of the form

(3.1) with Cik > 0 is represented by ∆+(Sk
K), and the complement of this set is denoted

by ∆0(Sk
K) = ∆(Sk

K) \ ∆+(Sk
K). Thus, we always pick a surplus variable as basic

for a constraint i ∈ ∆0(Sk
K) for all Sk

K ∈ Fk. For the other new linking constraints,

we either designate an x− or a surplus variable as basic. In Lemma 4.1.3, we first

prove that the augmentation prescribed by the row-generating PSP is a valid basis for

SRMP(K̄, N̄ ∪SN(Σk), I(K̄, N̄)∪∆(Σk)), and then in Lemma 4.1.4, we prove that it is

optimal. In particular, the values of the dual variables {wi|i ∈ ∆(Σk)} set as described

turn out to be optimal for SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪ ∆(Σk)) as formalized in

Corollary 4.1.1b. The row-generating PSP is then stated as:

ζyx = min
k∈(K\K̄)

ck −∑
j∈J

Ajkuj −
∑

i∈I(K̄,N̄)

Cikwi − max
Fk∈Pk

 ∑
Sk
K∈Fk

αSk
K

 , where (4.10)

αSk
K

=maximize
∑

i∈∆(Sk
K)

Cikwi, (4.11a)

subject to
∑

i∈∆(Sk
K)

Dinwi ≤ dn −
∑
m∈M

Bmnvm, n ∈ SN (Sk
K), (4.11b)

wi = 0, i ∈ ∆0(Sk
K), (4.11c)

wi ≥ 0, i ∈ ∆+(Sk
K), (4.11d)

|∆(Sk
K)| many linearly independent tight constraints among

(4.11b)− (4.11d). (4.11e)

The fundamental property of this formulation is that we solve (4.11) independently for

each Sk
K ∈ Fk which allows us to calculate the minimum reduced cost of yk efficiently.

This decomposition relies on the block-diagonal structure previously discussed in the

context of (4.9) and is exemplified in Section 4.2 when our generic methodology is ap-

41

plied to the MSCS and QSC problems. A potential source of difficulty is the constraint

(4.11e) which mandates that the search for an optimal solution of (4.11) is restricted

to the set of extreme points of the polyhedron described by (4.11b)-(4.11d). Without

this restriction, the problem (4.11a)-(4.11d) is unbounded by a similar argument to

that used in the proof of Lemma 4.1.1. Fortunately, in many cases (4.11) is amenable

to simple solution approaches. This is illustrated on the MSCS and QSC problems in

Section 4.2.

In summary, suppose that solving the row-generating PSP (4.10)-(4.11) results in

c̄k = ζyx < 0 and an associated family of index sets Fk. Then, SRMP(K̄, N̄ , I(K̄, N̄))

expands to SRMP(K̄ ∪ Σk, N̄ ∪ SN(Σk), I(K̄, N̄) ∪ ∆(Σk)) before the primal simplex

method is warm started based on the basis augmentation provided by the optimal

solutions of (4.11) for Sk
K ∈ Fk. This augmentation achieves two primary goals. First,

the resulting basis is optimal for SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪ ∆(Σk)), and the

optimal objective function value ζyx of the row-generating PSP is the correct reduced

cost of yk under this augmentation. Second, we can invoke the primal simplex algorithm

with this initial basis for SRMP(K̄ ∪ Σk, N̄ ∪ SN(Σk), I(K̄, N̄) ∪ ∆(Σk)) so that yk is

the natural candidate to enter the basis. In the remainder of this section, we prove

these properties of the proposed basis augmentation preceding a formal proof of the

correctness of the proposed column-and-row generation approach for CDR-problems.

Let B and B be the optimal basis of SRMP(K̄, N̄ , I(K̄, N̄)) and the associated

basic sequence, respectively. Suppose that B is a β×β matrix, and δ :=| ∆(Σk) | denotes

the number of new constraints to be added to the SRMP. Recall that we always pick

surplus variables as basic for the set of constraints ∆0(Sk
K) for all Sk

K ∈ Fk. However, for

a constraint i ∈ ∆+(Sk
K) we either select the corresponding surplus variable as basic if

wi = 0 or an x−variable that appears in this constraint, if its associated dual constraint

(4.11b) is tight in the optimal solution of (4.11) for Sk
K . In other words, no more than

| ∆+(Sk
K) | of the variables {xn|n ∈ SN(Sk

K)} are designated as basic by the optimal

solution of (4.11). We denote the sets of new linking constraints associated with the

new basic x− and surplus variables as ∆x(Σk) and ∆s(Σk), respectively, where δx =|

∆x(Σk) |, δs =| ∆s(Σk) |, and ∆x(Σk) ⊆ ∪Sk
K∈Fk

∆+(Sk
K). The resulting augmented

42

matrix Bk is then obtained as:

Bk =



A1 0 E1 0 0

0 B1 E2 B2 0

C1 D1 E3 0 0

0 0 0 D2 0

C2 0 0 D3 −I


=


B F 0

0 D2 0

G D3 −I

 , (4.12)

where the coefficients of the new basic x−variables in the currently existing constraints

in the SRMP are given by a β × δx matrix F =
(

0
B2
0

)
. The δx × δx matrix D2 and

the δs × δx matrix D3 specify the coefficients of these x−variables in the new linking

constraints ∆x(Σk) and ∆s(Σk), respectively. The final column of Bk is associated

with the new basic surplus variables, where I is a δs × δs identity matrix. The δx × β

matrix
(
0 0 0

)
in the fourth row of Bk and the δs × β matrix G =

(
C2 0 0

)
are constructed by the coefficients of the current basic variables in the new linking

constraints ∆x(Σk) and ∆s(Σk), respectively. This partitioning is best explained in the

context of the illustration in Figure 4.2 for the QSC problem, for which B1 = E2 =

B2 = 0 because the x− variables appear only in the linking constraints. In this specific

example, ζyx = c̄k < 0 and Fk = {{k, l}, {k,m}}. The variable yl is already present in

the current SRMP, and ym is to be incorporated in the SRMP along with yk. Along

with these, we introduce xkl, xkm, two sets of linking constraints of the form (3.8)-

(3.10) associated with the pairs of variables yk, yl, and yk, ym, respectively, and a set of

six surplus variables associated with the new linking constraints into the SRMP. The

problem (4.11) designates xkl, sl1, and sl3 as basic for the constraints yk−xkl− sl2 = 0,

−yk − yl + xkl − sl1 = −1, and yl − xkl − sl3 = 0, respectively, where the first of

these constraints belongs to the set ∆+({k, l}) and the rest form the set ∆0({k, l}),

respectively. Note that sl2 may replace xkl in the augmented basis depending on the

optimal solution of (4.11) for {k, l}. The variables xkm, sm1, and sm3 are selected as

basic for the set of linking constraints ∆({k,m}) in a similar way. Thus, ∆x({k, l,m})

consists of the new linking constraints yk − xkl − sl2 = 0 and yk − xkm − sm2 = 0,

while the rest of the new linking constraints belong to ∆s({k, l,m}). Two crucial

43

observations are due based on this discussion. First, no variable in the current SRMP

is present in a constraint i ∈ ∆+(Sk
K) for any Sk

K ∈ Fk; that is, the submatrix in the

first position in the fourth row of Bk is zero. Second, D2 is invertible as formalized by

the next lemma. These two properties allow us to establish that Bk is a valid basis for

SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪ ∆(Σk)) in Lemma 4.1.3. For other CDR-problems

with interaction, we would need to define the sets ∆+(Sk
K) and ∆0(Sk

K) as appropriate

for all Sk
K ∈ Fk, and the structure of the submatrices C2, D2, and D3 would be different.

Otherwise, the basis augmentation carries over in exactly the same way. The only extra

provision for CDR-problems with no interaction is that C2 = 0 because Σk = {k} and

k /∈ K̄.

B2

I(K̄, N̄)

M

J

sl1
sl3
sm1

sm3

xkm
xkl

B

∆x({k, l,m})

∆s({k, l,m})

Constraint Basic Variable

yl

SRMP (K̄, N̄ , I(K̄, N̄)

xkmxkl

0

A1 0 E1

E3D1C1

0 0

0

0

-1

1
-1

1
-1

-1
1

-10 0

0 0

sl3sl1

-1
-1

sm3sm1

-1
-1

0

0

0

−ID2 D3C2

xn, n ∈ B basic surplus varsyj, j ∈ B

0

0 0

B1 E2

Figure 4.2: Basis augmentation for QSC, where Fk = {{k, l}, {k,m}}, and the new
basic variables {xkl, sl1, sl3} and {xkm, sm1, sm3} are associated with the new linking
constraints ∆({k, l}) and ∆({k,m}), respectively.

Lemma 4.1.2 The δx × δx matrix D2 is invertible.

Proof. The matrix
(
D2 0
D3 −I

)
is constructed by solving (4.11) for each Sk

K ∈

Fk and exhibits a block-diagonal structure as discussed before. The columns in a

given block are linearly independent as prescribed by (4.11e). Therefore,
(
D2 0
D3 −I

)
must

be invertible, and by the uniqueness of the inverse we conclude that
(
D2 0
D3 −I

)−1
=(

D2
−1 0

D3D2
−1 −I

)
. Thus, D2 must be invertible. �

In Figure 4.2, one block in
(
D2 0
D3 −I

)
is formed by the coefficients of xkl, sl1, and sl3,

44

while xkm, sm1, and sm3 construct the second block. The next lemma proves that Bk

provides us with a basic solution for SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪∆(Σk)).

Lemma 4.1.3 Bk is a (β + δ)-dimensional basis for SRMP(K̄, N̄ ∪SN(Σk), I(K̄, N̄)∪

∆(Σk)), and its inverse is obtained as:


B F 0

0 D2 0

G D3 −I


−1

=


B−1 −B−1FD2

−1 0

0 D2
−1 0

GB−1 −GB−1FD2
−1 + D3D2

−1 −I

 .

Proof. The matrix J =

B F

0 D2

 is invertible because both B and D2 are

invertible, and we compute J−1 =

B−1 −B−1FD2
−1

0 D2
−1

. Thus, Bk =

J 0

K −I

,

where K =
(
G D3

)
. Finally, we obtain

B−1
k =

J 0

K −I

−1

=

 J−1 0

KJ−1 −I

 =


B−1 −B−1FD2

−1 0

0 D2
−1 0

GB−1 −GB−1FD2
−1 + D3D2

−1 −I


after plugging in J−1 and KJ−1 as appropriate. �

We next state one of our main results in this section and prove that Bk is in fact

an optimal basis for SRMP(K̄, N̄ ∪SN(Σk), I(K̄, N̄)∪∆(Σk)). We emphasize that this

result does not require an optimal solution of (4.11) for Sk
K ∈ Fk. It is sufficient to

choose any extreme point feasible solution of (4.11b)-(4.11d) for each Sk
K ∈ Fk while

constructing Bk.

Lemma 4.1.4 Bk is an optimal basis for SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪∆(Σk)).

Proof. It is sufficient to prove that Bk defines a pair of primal and dual basic

feasible solutions since complementary slackness is always satisfied by a basic solution.

In the following, b represents the right hand side coefficients of the constraints in

SRMP(K̄, N̄ , I(K̄, N̄)) while cB stands for the objective function coefficients of the

45

variables in the optimal basic sequence B of SRMP(K̄, N̄ , I(K̄, N̄)). Furthermore, the

objective coefficients of the new basic x−variables are denoted by cx, and the right

hand sides of the new linking constraints ∆x(Σk) and ∆s(Σk) are given by the vectors

rx and rs, respectively, where rx = 0 by (3.1) in Assumption 3.1.3. Thus, the vector

bk =
(

b
0
rs

)
defines the right hand side of SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪∆(Σk)).

For verifying the primal feasibility, we compute

B−1
k bk =


B−1 −B−1FD2

−1 0

0 D2
−1 0

GB−1 −GB−1FD2
−1 + D3D2

−1 −I




b

0

rs

 =


B−1b

0

GB−1b− rs

 ≥

0

0

0

 . (4.13)

The nonnegativity of B−1b follows from the optimality of B for SRMP(K̄, N̄ , I(K̄, N̄)).

By Assumption 3.1.2, the optimal solution of SRMP(K̄, N̄ , I(K̄, N̄)) does not violate

the linking constraints ∆s(Σk) which are absent from SRMP(K̄, N̄ , I(K̄, N̄)). Thus,

we have G(B−1b) ≥ rs, and GB−1b− rs ≥ 0 as required.

In order to check the nonnegativity of the reduced costs in SRMP(K̄, N̄∪SN(Σk),

I(K̄, N̄)∪∆(Σk)), we first determine the values of the dual variables prescribed by Bk.

That is

(
cB cx 0

)
B−1 −B−1FD2

−1 0

0 D2
−1 0

GB−1 −GB−1FD2
−1 + D3D2

−1 −I


=
(
cBB

−1 (cx − cBB
−1F)D2

−1 0
)
, (4.14)

where the objective coefficients of the basic surplus variables are represented by 0. From

(4.14), we conclude that the values of the dual variables {uj|j ∈ J}, {vm|m ∈M}, and

{wi|i ∈ I(K̄, N̄)} are identical to those in the optimal solution of SRMP(K̄, N̄ , I(K̄, N̄)).

Moreover, we can show that the values of the dual variables {wi|i ∈ ∆(Σk)} are pre-

cisely those assigned by the row-generating PSP. To this end, recall that we form an

invertible δ× δ submatrix
(
D2 0
D3 −I

)
consisting of columns corresponding to x− and sur-

plus variables based on the solutions of (4.11) for each Sk
K ∈ Fk. In addition, note that

the objective function coefficient of xn, n ∈ SN(SK) in the primal LP corresponding to

the dual LP (4.11a)-(4.11d) is given by dn−
∑

m∈M Bmnvm. Clearly, if xn is selected as

46

basic in SRMP(K̄, N̄ ∪SN(Σk), I(K̄, N̄)∪∆(Σk)) this value is equal to the component

of cx− cBB
−1F associated with xn. Thus, the values assigned to {wi|i ∈ ∆(Σk)} in the

row-generating PSP are calculated as

(
cx − cBB

−1F 0
)D2 0

D3 −I

−1

=
(
cx − cBB

−1F 0
) D2

−1 0

D3D2
−1 −I

 (4.15)

=
(

(cx − cBB
−1F)D2

−1 0
)
, (4.16)

which are identical to those computed in (4.14) based on Bk.

From the optimality of SRMP(K̄, N̄ , I(K̄, N̄)), cl−
∑

j∈J Ajluj−
∑

i∈I(K̄,N̄) Cilwi ≥

0 for a variable yl, l ∈ K̄ and dn −
∑

m∈M Bmnvm −
∑

i∈I(K̄,N̄) Dinwi ≥ 0 for a variable

xn, n ∈ N̄ . Furthermore, no variable in SRMP(K̄, N̄ , I(K̄, N̄)) is present in a link-

ing constraint i ∈ ∆x(Σk), and wi = 0 for all i ∈ ∆s(Σk). Thus, we conclude that

c̄l = cl −
∑

j∈J Ajluj −
∑

i∈I(K̄,N̄) Cilwi −
∑

i∈∆(Σk) Cilwi ≥ 0 for a variable yl, l ∈ K̄

and d̄n = dn −
∑

m∈M Bmnvm −
∑

i∈I(K̄,N̄) Dinwi −
∑

i∈∆(Σk) Dinwi ≥ 0 for a vari-

able xn, n ∈ N̄ in SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪ ∆(Σk)). For xn, n ∈ SN(Σk),

d̄n = dn −
∑

m∈M Bmnvm −
∑

i∈I(K̄,N̄) Dinwi −
∑

i∈∆(Σk) Dinwi = dn −
∑

m∈M Bmnvm −∑
i∈∆(Sk

K) Dinwi ≥ 0 by (4.11b) and because the values of the dual variables {wi|i ∈

∆(Σk)} employed in the row-generating PSP are optimal with respect to SRMP(K̄, N̄∪

SN(Σk), I(K̄, N̄) ∪ ∆(Σk)). Thus, we arrive at the conclusion that the values of the

dual variables calculated in (4.14) are dual feasible as required. �

The proof of Lemma 4.1.4 establishes formal arguments for some fundamental

claims and propositions that we employed in the development of our column-and-row

generation approach for CDR-problems. These are summarized in the following corol-

lary.

Corollary 4.1.1

a. The optimal values of the dual variables {uj|j ∈ J}, {vm|m ∈ M}, and {wi|i ∈

I(K̄, N̄)} are identical for SRMP(K̄, N̄ , I(K̄, N̄)) and SRMP(K̄, N̄∪SN(Σk), I(K̄, N̄)

∪∆(Σk)).

47

b. The values assigned to the dual variables {wi|i ∈ ∆(Σk)} in the row-generating PSP

are optimal for SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪∆(Σk)). For i ∈ ∆s(Σk), we have

wi = 0 at optimality.

c. The reduced costs of {yl|l ∈ K̄} and {xn|n ∈ N̄} are identical with respect to the op-

timal dual solutions of SRMP(K̄, N̄ , I(K̄, N̄)) and SRMP(K̄, N̄∪SN(Σk), I(K̄, N̄)∪

∆(Σk)).

d. The reduced cost c̄k computed in the row-generating PSP for any yk, k /∈ K̄ and

Fk ∈ Pk is equal to the reduced cost of yk with respect to the optimal solution of

SRMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪∆(Σk)).

e. A variable xn, n ∈ SN(Σk) basic at the optimal solution of SRMP(K̄, N̄ ∪ SN(Σk),

I(K̄, N̄) ∪∆(Σk)) is equal to zero.

We are now ready to prove that the column-and-row generation algorithm depicted

in Figure 4.1 is an optimal algorithm for solving (MP) for CDR-problems characterized

by Assumptions 3.1.1-3.1.3.

Theorem 4.1.1 Given an optimal basis B for SRMP(K̄, N̄ , I(K̄, N̄)) and a set of as-

sociated optimal values for the dual variables {uj|j ∈ J}, {vm|m ∈ M}, and {wi|i ∈

I(K̄, N̄)}, the proposed column-and-row generation algorithm terminates with an op-

timal solution for the master problem (MP) if ζy ≥ 0, ζx ≥ 0, and ζyx ≥ 0 in three

consecutive calls to the y−, x−, and the row-generating PSPs, respectively.

Proof. According to the flow of the proposed column-and-row generation

algorithm in Figure 4.1, we invoke the row-generating PSP only after the y− and

x−PSPs fail to identify negatively priced y− and x− variables, respectively, given the

optimal dual solution of SRMP(K̄, N̄ , I(K̄, N̄)). If in addition the optimal objective

value ζyx of the row-generating PSP is nonnegative given the optimal dual solution

of SRMP(K̄, N̄ , I(K̄, N̄)), then the algorithm terminates with an optimal solution to

(MP) as we prove below. On the other hand, if the row-generating PSP terminates at

least once successfully with a negatively priced new y−variable, then the optimal values

48

of the dual variables are updated by re-optimizing SRMP augmented with new rows

and columns. Therefore, in this case we cannot claim optimality following a subsequent

unsuccessful optimization of the row-generating PSP with ζyx ≥ 0, and we must call

the y− and x−PSPs again (FLAG=1 at the termination of the row-generating PSP in

Figure 4.1).

Now, assume that ζy ≥ 0, ζx ≥ 0, and ζyx ≥ 0 in three consecutive calls to

the y−, x−, and the row-generating PSPs, respectively. In the sequel, we show that

c̄k ≥ 0 for k ∈ K and d̄n ≥ 0 for n ∈ N even if we introduce the currently absent set

of linking constraints I \ I(K̄, N̄) into the SRMP. Recall that the linking constraints

feature a block-diagonal form, where a block is defined by a set of x− and surplus

variables that only appear in this block. For each block, we can choose any extreme

point of a polyhedron similar to that defined by (4.11b)-(4.11d), designate new x− and

surplus variables as basic as prescribed, and then incorporate these linking constraints

and the associated x− and surplus variables in the SRMP. The resulting SRMP and

the associated basis are denoted as SRMP(K̄,N, I) and B′, respectively. Moreover,

recall that Lemma 4.1.3 does not require that (4.11) is solved to optimality. Thus, we

can develop a proof analogous to that of Lemma 4.1.4 and show that B′ is an optimal

basis for SRMP(K̄,N, I). Clearly, d̄n ≥ 0, n ∈ N and c̄l ≥ 0, l ∈ K̄ hold at the optimal

solution of SRMP(K̄,N, I), and we have xn = 0 for all N \ N̄ by a straightforward

extension of Corollary 4.1.1e. Finally, in order to complete the proof we need to argue

that no variable yk, k ∈ K \ K̄ prices out favorably with respect to the optimal solution

of SRMP(K̄,N, I). To this end, note that all missing linking constraints ∆(Sk
K) induced

by all minimal variable sets of the form {yl|l ∈ Sk
K} are included in SRMP(K̄,N, I).

The corresponding family of index sets is clearly an element of Pk. Thus, we conclude

that the reduced cost c̄k of yk is nonnegative because 0 ≤ ζyx ≤ c̄k, where ζyx denotes

the minimum reduced cost of yk computed over all possible members of Pk in the

row-generating PSP in (4.10). �

49

4.2 Applications of The Proposed Method

In this section, the proposed solution method is applied to our illustrative problems,

MSCS, QSC, and TCR. For the TCR problem, we demonstrate that the optimality con-

dition proposed in [2] is incorrect and may lead to a suboptimal solution at termination.

We identify the source of this error and discuss how our proposed column-and-row gen-

eration algorithm may be applied to this TCR problem in order to solve the proposed

large-scale LP correctly. Moreover, we will conduct computational experiments on the

example problems except for the TCR problem. The computational experiments for the

TCR problem are presented in the next chapter where the extension with Lagrangian

relaxation is given so that a comparison of the algorithms can be made. We conducted

our computational experiments on a single core of an HP Compaq DX 7400 computer

with a 2.40 GHz Intel Core 2 Quad Q6600 CPU and 3.25 GB of RAM running on

Windows XP. Our codes are implemented in Visual C++, and IBM ILOG CPLEX

12.1/ Concert Technology 2.9 is employed to solve the linear programs in the column

generation procedure. All of the instances generated for the example problems are also

solved optimally by CPLEX 12.1.

4.2.1 Multi-Stage Cutting Stock Problem

We develop the subproblems for a column-and-row generation algorithm that solves the

LP relaxation of the one-dimensional MSCS problem given in (3.2)-(3.5) with exponen-

tially many cutting patterns both in the first and second stages. We follow the steps of

the generic framework for CDR-problems developed in Section 4.1.

As discussed in Section 3.2, MSCS is a CDR-problem with no interaction, that

is, the cardinality of a minimal variable set is just one. A first-stage cutting pattern

represented by yk is generated by any feasible combination of existing and new interme-

diate rolls. For each new intermediate roll currently absent from the SRMP included

in the pattern, a single new linking constraint is introduced into the SRMP. Thus,

Fk = {{k}}, Σk = {k}, and ∆(Σk) denotes the set of linking constraints that corre-

spond to the new intermediate rolls in the pattern. All three types of PSPs introduced

50

in Section 4.1 are required for the MSCS problem. In the sequel, we explain how each

PSP is constructed. To this end, we first state the dual of the LP (3.2)-(3.5):

maximize
∑
m∈M

bmvm, (4.17)

subject to
∑
i∈I

Cikwi ≤1, k ∈ K, (4.18)

∑
m∈M

Bmnvm+
∑
i∈I

Dinwi ≤0, n ∈ N, (4.19)

vm ≥ 0,m ∈M, wi ≥ 0, i ∈ I, (4.20)

where {vm|m ∈M}, and {wi|i ∈ I} are the dual variables corresponding to the primal

constraints (3.3) and (3.4), respectively. Recall that a single non-zero entry Din = −1

in column n of D indicates that the cutting pattern n for the second stage is cut from

the intermediate roll i. This implies for xn associated with a cutting pattern obtained

from the intermediate roll i that the inequality (4.19) reduces to
∑

m∈M Bmnvm ≤ wi.

In the y−PSP given below, the objective is to identify a violated constraint (4.18)

for a first-stage cutting pattern composed of the set of intermediate rolls I(K̄, N̄) present

in the current SRMP:

maximize
∑

i∈I(K̄,N̄)

wiCi,

subject to
∑

i∈I(K̄,N̄)

εiCi ≤ W,

Ci ∈ Z+ ∪ {0}, i ∈ I(K̄, N̄),

(4.21)

where W is the stock roll width, εi is the width of the intermediate roll i, and Ci is the

number of times intermediate roll i is cut from the stock roll. Clearly, the y−PSP is

an integer knapsack problem that may be solved efficiently by well-known methods in

the literature. If the optimal objective function value of (4.21) is larger than 1, then

a new first-stage cutting pattern with a negative reduced cost is added to the SRMP.

Representing this pattern by yk, we have K̄ ← K̄ ∪ {k}.

In the x−PSP, we search for a second-stage cutting pattern with a negative re-

duced cost that is cut from one of the existing intermediate rolls in the current SRMP.

51

In other words, we determine whether one of the dual constraints
∑

m∈M Bmnvm ≤

wi, i ∈ I(K̄, N̄), is violated:

maximize
∑

m∈M
vmBm,

subject to
∑

m∈M
πmBm ≤ εi − emin,

Bm ∈ Z+ ∪ {0},m ∈M,

(4.22)

where i is the index for the existing intermediate roll of width εi under consideration, πm

is the width of the finished roll m ∈M , and Bm denotes the number of times finished roll

m is cut from intermediate roll i. The parameter emin represents a mandatory minimal

edge for intermediate rolls (see [72, 73]). Similar to the previous case, the x−PSP is

an integer knapsack problem. If the optimal objective function value of (4.22) is larger

than wi, then a new second-stage cutting pattern with a negative reduced cost is added

to the SRMP. Representing this pattern by xn, we have N̄ ← N̄ ∪ {n}.

In the row-generating PSP, a first-stage cutting pattern may contain new inter-

mediate rolls in addition to the existing ones. Following the structure of the general

formulation in (4.10)-(4.11), the row-generating PSP for MSCS is stated as:

maximize
∑

i∈I(K̄,N̄)

wiCi +
∑

i′∈I\I(K̄,N̄)

αi′ , (4.23a)

subject to
∑

i∈I(K̄,N̄)

εiCi +
∑

i′∈I\I(K̄,N̄)

εi′Ci′ ≤ W, (4.23b)

Ci ∈ Z+ ∪ {0}, i ∈ I, (4.23c)

52

where

αi′ =maximize wi′Ci′ , (4.24a)

subject to
∑
m∈M

πmBm ≤ εi′ − emin, (4.24b)

εmin ≤ εi′ ≤ εmax, (4.24c)

Bm ∈ Z+ ∪ {0}, m ∈M, (4.24d)∑
m∈M

vmBm ≤ wi′ , (4.24e)

wi′ ≥ 0, (4.24f)

At least one of (4.24e) or (4.24f) is tight. (4.24g)

Due to their potential size, we cannot explicitly generate the sets of all feasible first-

and second-stage cutting patterns. Therefore, the structural constraints (4.23b)-(4.23c)

and (4.24b)-(4.24d) that define the feasible first- and second-stage cutting patterns,

respectively, are incorporated in the row-generating PSP. The constraints (4.23b) and

(4.24b) are the classical knapsack constraints for the first- and second-stage cutting

patterns, respectively. The constraint (4.24c) defined in [73] imposes lower and upper

bounds on the width of a new intermediate roll. In [73], it is also imposed that (4.24b)

is satisfied with equality, that is, the width of any unknown intermediate roll may

be presented as a linear combination of finished roll widths plus minimum edge. The

constraint (4.24e) corresponds to (4.11b) and mandates that the unknown dual variable

associated with the currently absent intermediate roll i′ is larger than or equal to the

sum of the dual variables for the finished rolls that are cut from this intermediate roll.

Note that all new linking constraints in this problem are of type (3.1) as specified in

Assumption 3.1.3. Therefore, ∆+({k}) = ∆({k}) and ∆0({k}) = ∅ which only requires

wi′ ≥ 0 as stated in (4.24f). Finally, constraint (4.24g) is the counterpart of (4.11e).

Observe that in the above row-generating PSP, we assume no limit on the number of

new intermediate rolls in contrast to [73, 72] which heuristically limit the number of

new intermediate rolls to one when solving this subproblem.

Note that for each i′ ∈ I \ I(K̄, N̄), the constraints in (4.24) are distinct. Also,

53

(4.23b) is the constraint that links I \ I(K̄, N̄) to I(K̄, N̄). This subproblem can be

solved by column generation through forming the integer master problem with the

constraints (4.23a)-(4.23c). The rest of the constraints (4.24b)-(4.24g) form the sub-

problem that characterizes the unknown intermediate rolls, the x−variables that are

cut from these rolls, and also the values of the unknown dual variables. This problem

structure is known as the nested decomposition or two-level decomposition, since the

row-generating PSP itself is also solved by column generation (see [31] and [70] for the

details of the two-level and nested decomposition procedures). We first relax the inte-

grality constraints (4.23c) in the integer master problem and then replace I by I(K̄, N̄)

to form the restricted master problem of the row-generating PSP, which we refer to as

RMPS, given by

zRMPS = maximize
∑

i∈I(K̄,N̄)

wiCi, (4.25)

subject to
∑

i∈I(K̄,N̄)

εiCi ≤ W, (4.26)

Ci ≥ 0, i ∈ I(K̄, N̄). (4.27)

Suppose that ξ is the dual variable corresponding to the constraint (4.26). The pricing

subproblem of the row-generating PSP, which we refer to as SPSP, is

zSPSP = maximize w − ξε, (4.28)

subject to
∑
m∈M

πmBm = ε− emin, (4.29)

εmin ≤ ε ≤ εmax, (4.30)

Bm ∈ Z+ ∪ {0}, m ∈M, (4.31)∑
m∈M

vmBm ≤ w, (4.32)

w ≥ 0, (4.33)

ε ≥ 0, (4.34)

At least one of (4.32) or (4.33) is tight. (4.35)

54

Observe that (4.24b) turns into (4.29) as it is proved in [73]. The value of the dual

variable (w), the width of the new intermediate roll (ε), and the second-stage cutting

pattern that is cut from this intermediate roll are determined by this subproblem.

Constraint (4.35) imposes that either w = 0 or w =
∑

m∈M
vmBm. Since vm ≥ 0 and

Bm ≥ 0 for all m ∈ M , if (4.33) is tight, we must have
∑

m∈M
vmBm = w = 0. Thus,

(4.32) can be replaced by
∑

m∈M
vmBm = w without loss of generality. This is equivalent

to adding the corresponding x−variable to the basis. Plugging the terms w and ε into

subproblem (4.28)-(4.35), we obtain:

zSPSP = maximize
∑

m∈M
(vm − ξπm)Bm − ξemin,

subject to εmin ≤
∑

m∈M
πmBm + emin ≤ εmax,

Bm ∈ Z+ ∪ {0}, m ∈M.

(4.36)

If vm ≤ ξπm for all m ∈M , the optimal objective function value cannot be positive and

the column generation at this level terminates. Problem (4.36) generates a new inter-

mediate roll and a second-stage cutting pattern that can be cut from this intermediate

roll. If zSPSP > 0, this new intermediate roll is added to I(K̄, N̄) and (4.25)-(4.27) is

solved again.

To solve the row-generating PSP, a branch-and-price algorithm must be developed

(see [8] for a comprehensive survey on the branch-and-price algorithm). If the result

of the branch-and-price algorithm is larger than one, a first-stage cutting pattern is

added to the SRMP along with a set of linking constraints and x−variables. When

SPSP cannot generate a positive reduced cost column, we must branch to eliminate

the current fractional solution and reoptimize the LP relaxation at each node in the

branch-and-bound tree. In our case, the master problem is a knapsack problem and the

pricing subproblem is a knapsack problem with a lower-bounding constraint. Moreover,

the solution of the master problem RMPS is trivial since the continuous relaxation of

the knapsack problem is readily available after putting the variables in a nonincreasing

order of (wi/εi), i ∈ I(K̄, N̄). Without loss of generality, let the indices i1, i2, . . . of the

variables correspond to their position in this ordering. At the root node, Ci1 = W/εi1 ,

55

Ci = 0 for i ∈ I(K̄, N̄)\i1 and zRMPS = wi1W/εi1 . The value of the dual variable

corresponding to the knapsack constraint is ξ = (wi1/εi1). The pricing subproblem

checks whether zSPSP > 0, which implies

∑
m∈M

vmBm − ξ

(∑
m∈M

πmBm + emin

)
> 0, (4.37)

w − ξε > 0, (4.38)

w

ε
> ξ, (4.39)

w

ε
>

wi1

εi1
. (4.40)

If so, there exists i ∈ I \ I(K̄, N̄) for which (wi/εi) > (wi1/εi1). If there is no such

intermediate roll and the solution of the RMPS is fractional, then branching occurs.

Suppose that a variable i∗ for which (wi∗/εi∗) > (wi1/εi1) is detected. The interme-

diate roll i∗ is added to the RMPS, and since it is now the variable with the largest ratio

(w/ε), we set Ci∗ = W/εi∗ , Ci = 0 for i ∈ I(K̄, N̄)\i∗ and zRMPS = wi∗W/εi∗ . Since i∗

is the variable with the largest ratio already generated by SPSP, solving SPSP again

does not generate a new intermediate roll having a ratio larger than wi∗/εi∗ . Hence,

the column generation terminates. If W/εi∗ is fractional, the most general branching

rule can be applied, where we create two nodes in which we impose Ci∗ ≤ bW/εi∗c

and Ci∗ ≥ dW/εi∗e. In the former branch, let ξi∗ be the dual variable corresponding to

Ci∗ ≤ bW/εi∗c. When RMPS is solved in the former branch, we have Ci∗ = bW/εi∗c,

Ci1 = (W − εi∗ bW/εi∗c)/εi1 , Ci = 0 for i ∈ I(K̄, N̄)\{i∗, i1}, and ξ = (wi1/εi1) and

ξi∗ = (wi∗ − εi∗wi1/εi1). Then, we check whether there is any intermediate roll for

which (wi/εi) > (wi1/εi1). The intermediate roll i∗, whose reduced cost is nonnegative

in RMPS, is generated again by the SPSP since SPSP does not take into consideration

the dual variable corresponding to the bounding constraint, εi∗. Therefore, we have to

add constraints to the SPSP to prevent the regeneration of intermediate roll i∗. Similar

difficulties pertaining to such branching are defined in [67]. To overcome this difficulty,

we convert SPSP into a 0-1 problem using the transformation given in [59] that is de-

signed for knapsack problems. To this end, we put the natural upper bounds, ubm,

m ∈ M on the items such that Bm ≤ b(εmax − emin)/πmc = ubm. For each variable

56

Bm,m ∈ M , a sequence of dlog2(ubm + 1)e binary variables, say Bmj
, is introduced.

Suppose that B̂mj
for m ∈ M and j = 1, . . . , dlog2(ubm + 1)e are the values of the

binary variables resulting from the solution of the transformed SPSP. To rule out the

generation of variable i∗, we add boolean constraints of the following form

M∑
m=1

(
∑

j:B̂mj =1

(1−Bmj
) +

∑
j:B̂mj =0

Bmj
) ≥ 1. (4.41)

There may be several alternate solutions of the 0-1 SPSP that result in the intermediate

roll i∗. In this case, a set of constraints of the form (4.41) is added to the 0-1 SPSP

to prevent the generation of i∗. As we go deeper in the branch-and-bound tree, the

number of added constraints increases.

In summary, at some node, where ξ = win/εin and n is the position of the given

intermediate roll in the nonincreasing sequence of w/ε values, the column generation

algorithm generates intermediate roll i for which wi/εi > win/εin . When no such in-

termediate roll is generated by SPSP, branching occurs if the solution is fractional. At

any node in the tree, there is only one fractional variable due to the structure of the

RSMP. At a particular node, assume that Cin is the fractional variable and let its value

be C̄in . On the branch of the form Cin ≤
⌊
C̄in

⌋
, the value of ξ is set to win+1/εin+1 ,

which is the largest ratio smaller than win/εin , and the SPSP is called. However, on

the branch of the form Cin ≥
⌈
C̄in

⌉
, the value of ξ is set to win−1/εin−1 unless the node

problem becomes infeasible. If C̄in is not fractional, we update the best upper-bound

(UB) when zRMPS < UB. Pruning rule is applied when zRMPS > UB.

We apply the branch-and-price algorithm explained above to the instances given

in [73, 72]. For the problem instance in [73], we observe that the proposed branch-and-

price algorithm finds the optimal objective function value of the LP relaxation of the

MSCS problem which is 20. The same value is also reached by the algorithm given in

[73]. However, for the problem instance given in [72], our algorithm reaches the optimal

objective function value of the LP relaxation of the MSCS problem which is 35.97, while

the algorithm given in [72] stops at 36.

Instead of applying a full-blown branch-and-price algorithm for solving the row-

57

generating PSP, we construct a heuristic algorithm mimicking the routine of the branch-

and-price algorithm explained above. This algorithm is detailed in Algorithm 1. At the

beginning of the algorithm, we have a set of intermediate rolls denoted by I(K̄, N̄), and

the ratios (w/ε) are stored in a nonincreasing order in array R (line 1, Algorithm 1).

We first set ξ to the ratio of the corresponding intermediate roll (line 3, Algorithm 1).

Then, we solve SPSP, which is a 0-1 knapsack problem with additional constraints, to

generate an intermediate roll (̂i) whose ratio (wî/εî) is larger than ξ (line 5, Algorithm

1). If zSPSP > 0, we add a constraint to RMPS in order to prevent the generation of this

intermediate roll again (line 7, Algorithm 1) and add the generated intermediate roll to

I(K̄, N̄) (line 8, Algorithm 1). If the number of intermediate rolls added at iteration i

of the for-loop is a multiple of a parameter S, we solve RMPS as an integer program

(line 11, Algorithm 1). If zSPSP ≤ 0, we check whether any intermediate rolls are added

after the last call of RMPS, in which case RMPS is solved as an integer program (line

20, Algorithm 1). If the optimal objective function value of integer RMPS is larger than

one, then we stop the algorithm and add the resulting cutting pattern for the first stage

to SRMP. Otherwise, the counter is set to zero and the same operations are repeated

for i + 1. When the main for-loop ends after i = |R|, the column-and-row generation

algorithm terminates, since no cutting pattern for the first stage with reduced cost

larger than one is detected by our heuristic algorithm.

Solving SPSP becomes harder when the number of intermediate rolls increases,

since we add a new constraint for each intermediate roll. Since SPSP may generate

many intermediate rolls for some iteration i, we choose to solve RMPS as an integer

program at given intervals to check whether a cutting pattern for the first stage with

positive reduced cost exists in the current solution.

Moreover, the optimal integer solution of RMPS may actually use only a small

number of new intermediate rolls that are generated by SPSP. We may delete the

new intermediate rolls, which do not exist in the first-stage cutting pattern. However,

this also requires the deletion of the associated constraints in SPSP that prevent the

generation of these rolls. However, such a strategy takes more time in our computational

experiments because in the next call of the row-generating PSP, these intermediate rolls

58

Algorithm 1: Algorithm to solve the row-generating PSP for MSCS

problem.

1 Input: I(K̄, N̄), R, counter = 0

2 for i = 1 to |R| do

3 ξ = R(i) ;

4 while true do

5 Solve SPSP → (zSPSP , î);

6 if zSPSP > 0 then

7 add (4.41) for î ;

8 I(K̄, N̄)← I(K̄, N̄) ∪ î ;

9 counter → counter + 1 ;

10 if counter = S then

11 Solve RMPSIP ;

12 if zRMPS > 1 then

13 break out of the for loop;

14 counter = 0 ;

15

16 else
17 break out of the while loop;

18

19 if counter > 0 then
20 Solve RMPSIP ;

21 if zRMPS > 1 then

22 break out of the for loop;

23

24 counter = 0;

59

may be generated again with their corresponding prevention constraints of the form

(4.41).

In this section, we solve the instances given in [73, 72], and eight other randomly

generated instances by Algorithm 1 where S = 4 is selected. To generate the set of

instances, we determine pseudo-random integral numbers in a given range, which are

generated by the operator R(m,n) where m and n are the limits of the range, as follows:

W = 100R(10, 110), |M | = R(3, 7), bm = R(20, 200) for m ∈ M , emin = R(10, 50),

εmin = R(W
11
, W

9
), εmax = R(W

5
, W

3
), and πm = R(W

20
, W

12
) for m ∈ M . To compare

our results, we implement the algorithm given in [73, 72]. Moreover, we develop an

optimal approach to solve the LP relaxation of the MSCS problem in which all possible

intermediate rolls are enumerated a priori and the cutting patterns for the first and the

second stages are generated by y− and x−PSPs.

In [73, 72], the illustrative problems are solved by starting with the intermediate

roll εmin which may not exist in the list of intermediate rolls that can be generated by

SPSP (εmin 6=
∑

m∈M
πmBm. + emin). Also, in [73, 72], an algorithm is given to generate a

good initial solution including the intermediate roll εmin. The initial solution we choose

to start with corresponds to this good initial solution except for the intermediate roll

εmin. The good initial solution is found as follows: For each finished roll width πm, we

identify an intermediate roll width ε as

a =
⌊
(εmax − emin)/πm

⌋
(4.42)

s = emin + aπm (4.43)

Clearly, ε ≤ εmax is guaranteed. If ε ≥ εmin, this intermediate roll is added to the set

I(K̄, N̄). If I(K̄, N̄) = ∅ after each finished roll is processed, I(K̄, N̄) = {εmin}.

In Table 4.2, the results of the experiments are given. The instances are defined

based on their number of finished rolls (# Fin. Rolls) and their stock roll width (W).

The first two instances are taken from [73] and [72], respectively. The columns show

the results of the optimal solution (Optimal), our heuristic column-and-row generation

algorithm (HCRG), and the algorithm presented in [73] (Zak). We report the objective

60

function value (OFV), the total number of intermediate rolls generated (# Int. Rolls),

and the solution time (Time). Except for the second instance, HCRG reaches the

optimal objective function values of the instances given in Table 4.2. On the other hand,

the algorithm given in [73] reaches the objective function values in only four instances.

HCRG, on average, generates 80% of all possible intermediate rolls. On the other hand,

the number of intermediate rolls that are generated by Zak is approximately eight times

smaller than that generated by HCRG and one tenth of all possible intermediate rolls.

The solution times of the algorithms seem to be proportional to the number of

intermediate rolls generated but not the number of finished rolls. For example, although

the number of finished rolls is 6 in the sixth instance, its solution time is considerably

larger than that of the ninth instance where there are only 7 finished rolls. The solution

time of HCRG is on average 17% of that of the optimal approach. However, the solution

time of Zak is even lower than that of HCRG. With only a small deviation from the

optimal solution, Zak proves to be a very efficient heuristic approach. As explained

previously, HCRG mimics the branch-and-price algorithm so that it is more geared

towards reaching the optimal solution rather than finding a solution in a short amount

of time.

61

T
ab

le
4.

2:
C

om
p
ar

is
on

of
al

go
ri

th
m

s
on

M
S
C

S
te

st
in

st
an

ce
s.

In
st
a
n
c
e
s

O
p
ti
m

a
l

H
C
R
G

Z
a
k

#
F

in
.

R
o
ll

s
W

O
F

V
#

In
t.

R
o
ll
s

T
im

e
O

F
V

#
In

t.
R

o
ll
s

T
im

e
O

F
V

#
In

t.
R

o
ll
s

T
im

e

4
5
,0

0
0

3
5
.9

7
4
7

3
2
.7

6
3
5
.9

7
3
7

2
3
.2

7
3
5
.9

7
1
1

7
.4

6

2
1
9
4

2
0
.0

0
3

1
.2

3
2
0
.8

9
1

0
.0

9
2
0
.8

9
1

0
.2

0

3
2
,0

0
0

1
7
.7

8
1
8

1
6
.2

5
1
7
.7

8
1
4

1
2
.7

2
1
8
.0

0
3

2
.5

0

4
3
,1

0
0

5
4
5
.6

8
6
4

6
3
.5

0
5
4
5
.6

8
4
8

4
5
.7

8
5
4
5
.7

0
1
3

1
2
.4

7

4
6
,0

0
0

4
6
.6

0
6
4

9
2
.3

6
4
6
.6

0
2
5

3
0
.5

1
4
6
.6

0
1
1

8
.6

4

6
1
0
,4

0
0

5
5
6
.1

3
4
8
1

3
0
,0

1
5
.8

0
5
5
6
.1

3
3
9
5

3
,7

1
5
.0

6
5
5
6
.3

9
2
1

5
5
.0

0

4
3
,3

0
0

5
1
0
.9

4
6
5

2
3
.1

1
5
1
0
.9

4
5
1

6
9
.1

8
5
1
0
.9

4
8

5
.6

1

4
5
,8

0
0

3
6
1
.9

9
6
7

1
6
8
.0

8
3
6
1
.9

9
4
8

7
4
.1

7
3
6
1
.9

9
1
4

1
1
.7

2

7
9
,4

0
0

8
6
0
.0

3
2
6
8

3
,0

5
9
.5

5
8
6
0
.0

3
2
4
0

1
,9

8
3
.0

5
8
6
0
.2

7
1
9

4
1
.9

1

5
5
,1

0
0

5
4
.6

0
3
8

2
4
.3

0
5
4
.6

0
2
0

1
9
.8

1
5
4
.8

3
7

5
.3

3

A
v
er

a
g
e

3
0
0
.9

7
1
1
1
.5

0
3
,3

4
9
.6

9
3
0
1
.0

6
8
7
.9

0
5
9
7
.3

6
3
0
1
.1

6
1
0
.8

0
1
5
.0

8

62

4.2.2 Quadratic Set Covering

In this section, we develop the subproblems for a column-and-row generation algorithm

that solves the LP relaxation of the QSC problem which belongs to the class of CDR-

problems with interaction. The cardinality of each minimal variable set for this problem

is two, and three linking constraints of type (3.8)-(3.10) and one auxiliary x−variable

are associated with a minimal variable set. As described in Section 3.2, the set of

all y−variables is given explicitly, and the set of all possible pairs composed of the

y−variables is denoted by P .

To solve the formulation (3.6)-(3.12) by column-and-row generation, we initialize

the SRMP with a set of columns K̄ that satisfy the covering constraints (3.7) in addition

to the set of all linking constraints (3.8)-(3.10) induced by {yl|l ∈ K̄}. A new variable yk

is always added to the SRMP along with three linking constraints of type (3.8)-(3.10)

and a variable xkl for each pair of variables yk, yl, where l ∈ K̄. Thus, the column-

and-row generation mechanism maintains that the SRMP is constituted by {yl|l ∈ K̄},

{xn|n ∈ SN(K̄)}, and the set of all linking constraints ∆(K̄) induced by K̄ at all

times during the course of the algorithm. Moreover, the x−variables are auxiliary and

only appear in the linking constraints. Therefore, for QSC we only need to solve the

row-generating PSP developed below. We first state the dual of the LP (3.6)-(3.12):

maximize
∑
j∈J

uj +
∑

(k,l)∈P,k<l

wkl,

subject to
∑
j∈J

Ajkuj +
∑

(k,l)∈P,k<l

(wkl + ϕkl) +
∑

(l,k)∈P,l<k

(wlk + ϕ′lk) ≤ fkk, k ∈ K,

− wkl − ϕkl − ϕ′kl ≤ 2fkl, (k, l) ∈ P, k < l,

ϕkl, ϕ
′
kl ≥ 0, wkl ≤ 0, (k, l) ∈ P, k < l,

where {uj|j ∈ J} are the dual variables corresponding to the covering constraints (3.7),

and wkl, ϕkl, ϕ
′
kl for (k, l) ∈ P, k < l, are the dual variables associated with the linking

constraints (3.8)-(3.10), respectively.

Following the structure of the general formulation in (4.10)-(4.11), the row gen-

63

erating PSP for QSC is stated as:

ζyx = min
k∈(K\K̄)

fkk −∑
j∈J

Ajkuj − max
Fk∈Pk

 ∑
{k,l}∈Fk,k<l

αkl +
∑

{l,k}∈Fk,l<k

αlk

 ,

where (4.44)

αkl =maximize wkl + ϕkl, (4.45a)

subject to − wkl − ϕkl − ϕ′kl ≤ 2fkl, (4.45b)

wkl = ϕ′kl = 0, (4.45c)

ϕkl ≥ 0, (4.45d)

At least one of (4.45b) or (4.45d) is tight, (4.45e)

αlk =maximize wlk + ϕ′lk, (4.45f)

subject to − wlk − ϕlk − ϕ′lk ≤ 2flk, (4.45g)

wlk = ϕlk = 0, (4.45h)

ϕ′lk ≥ 0, (4.45i)

At least one of (4.45g) or (4.45i) is tight, (4.45j)

where Fk and the values of the dual variables {ϕkl|{k, l} ∈ Fk, k < l} and {ϕ′kl|{k, l} ∈

Fk, l < k} are to be determined. From the discussion on Figure 4.2 in Section 4.1.3,

recall that only the dual variable associated with a constraint yk− xkl ≥ 0 may assume

a positive value, and the rest of the constraints in ∆({k, l}) belong to the set ∆0({k, l}).

These restrictions for {k, l} ∈ Fk are imposed by the constraints (4.45c)-(4.45d) and

(4.45h)-(4.45i) for k < l and l < k, respectively. The dual feasibility of the x−variables

in the new linking constraints is mandated by the constraints (4.45b) and (4.45g), and

constraints (4.45e) and (4.45j) are the counterparts of (4.11e).

For {k, l} ∈ Fk, k < l, the optimal solution of (4.45a)-(4.45e) is identified below,

and the case for l < k can be derived analogously.

1. If fkl < 0, the optimal value of ϕkl = −2fkl since ϕkl is a nonnegative variable

64

that appears with a negative coefficient in (4.45b) and with a positive coefficient

in the objective (4.45a). In this case, xkl is the basic variable associated with

the new linking constraint yk − xkl ≥ 0. For the other two linking constraints in

∆({k, l}), the associated surplus variables are selected as basic.

2. If fkl ≥ 0, the optimal value of ϕkl = 0, and all new basic variables are surplus

variables.

Thus, we conclude that αkl = max(−2fkl, 0), where 2fkl is the objective function coeffi-

cient of xkl in (3.6)-(3.12). Based on this very simple structure of the optimal solutions

of (4.45a)-(4.45e) and (4.45f)-(4.45j), we re-state the row-generating PSP for QSC:

ζyx = min
k∈K\K̄

(fkk−
∑
j∈J

Ajkuj− max
Fk∈Pk

(
∑

{k,l}∈Fk,k<l

max(0,−2fkl)+
∑

{l,k}∈Fk,l<k

max(0,−2flk))). (4.46)

If ζyx = c̄k < 0 with an associated optimal family of index sets Fk, then SRMP grows

both horizontally and vertically with the addition of the variables {yl|l ∈ Σk}, {xn|n ∈

SN(Σk)}, and the linking constraints ∆(Σk), where Σk = ∪{k,l}∈Fk
{k, l}. Furthermore,

as explained at the beginning of this section, all relevant linking constraints associated

with the variables {yl|l ∈ (Σk \ {k})} are also incorporated into the SRMP. Note that

some of the variables {yl|l ∈ Σk} are already a part of the SRMP. This is generally true

for CDR-problems with interaction.

Example 4.2.1 Consider the following symmetric positive semidefinite cost matrix F

and the cover matrix A:

F =


2 0 0 0

0 3 −1 −1

0 −1 2 −1

0 −1 −1 2

 ,A =


1 1 0 0

1 0 1 0

1 0 0 1

 .

Solving the QSC instance defined by F and A by excluding the possibility of adding

several y−variables simultaneously to the SRMP would result in the following PSP:

ζyx = min
k∈K\K̄

(fkk −
∑
j∈J

Ajkuj −
∑

l∈K̄,k<l

max(0,−2fkl)−
∑

l∈K̄,l<k

max(0,−2flk)). (4.47)

65

Suppose that we form the initial SRMP with y1 only. The PSP defined in (4.47),

which ignores the minimal variable sets of the form {yk, yl}, l /∈ K̄ for pricing out

yk, k /∈ K̄, cannot identify any new y−variable with a negative reduced cost, and the

column generation terminates with y1 = 1 and an objective function value of 2. Taking

also into account the minimal variable sets {yk, yl}, l /∈ K̄ by solving the row-generating

PSP (4.46) yields the optimal families of index sets F2 = {{1, 2}, {2, 3}, {2, 4}}, F3 =

{{1, 3}, {2, 3}, {3, 4}}, and F4 = {{1, 4}, {2, 4}, {3, 4}} for y2, y3, and y4, respectively.

The associated reduced costs c̄2, c̄3, c̄4 < 0, and in all cases all remaining y−variables

are incorporated into the SRMP. The resulting true optimal solution of (3.6)-(3.12) is

given by y1 = 0, y2 = y3 = y4 = 1 with an objective value of 1.

Although our aim is to find a variable with a negative reduced cost, the optimal

solution of the row-generating PSP may require the addition of many columns simulta-

neously. Let us denote the cardinality of a set by the operator |.|. Then, the addition of

a y−variable introduces 3|K̄| many linking constraints and |K̄| many x−variables. The

subproblem (4.46) adds every minimal variable set (k, l) for which fkl < 0. Clearly,

this increases the size of SRMP considerably. Moreover, even after this effort, some

of the variables in these minimal variable sets may never enter the basis. Hence, we

will present an algorithm that searches for a family of index sets Fk that results in a

negative reduced cost column yk and, more importantly, introduces the smallest set of

variables {yl|l ∈ (Σk ∩K\K̄)} to the SRMP.

We propose the approach detailed in Algorithm 2. As we mentioned above, our

first aim is to find a family of minimal variable sets that makes the reduced cost of a

variable negative. Our second aim is to minimize the number of variables to be added to

the SRMP. Prior to this algorithm, we can solve the subproblem (4.47) which considers

adding columns one-by-one. If there is no column with negative reduced cost in K\K̄,

then we move to Algorithm 2. Therefore, when we start Algorithm 2, we already have

the reduced costs of the variables yk, k ∈ K\K̄ (line 1, Algorithm 2). We define an

array zk that contains the elements fkl < 0, where l ∈ K\K̄ in the kth row of the

cost matrix F (line 5, Algorithm 2). We then sort the elements in zk in ascending

order to minimize the number of variables that are needed to make the reduced cost

66

of yk negative (line 7, Algorithm 2). Then, we start adding the elements of zk to c̄k

one-by-one (line 9, Algorithm 2). If c̄k becomes negative, then we add the indices

corresponding to the values in zk that are used to make yk a negative reduced cost

column to Nk (line 11, Algorithm 2). When all k ∈ K\K̄ are processed, the column

generation is terminated, if there is no negative reduced cost column. Otherwise, we

select the minimum cardinality set Nk with c̄k < 0 (line 17, Algorithm 2) and then, add

it to SRMP.

Algorithm 2: Algorithm to solve the row-generating PSP for QSC.

1 Input: c̄l for each l /∈ K̄ computed according to (4.47)

2 for k ∈ K\K̄ do

3 for l ∈ K\K̄ do
4 if fkl < 0 then
5 Concatenate 2fkl to zk;

6

7 Sort zk in ascending order;

8 for t=1 to |zk| do
9 c̄k = c̄k + zkt;

10 if c̄k < 0 then
11 Nk ← order(1 to t);

12 Go to line 2;

13

14 if c̄k > 0 ∀k ∈ K\K̄ then
15 Terminate column generation ;

16 else
17 u = arg mink∈K\K̄,c̄k<0 |Nk|;
18 ζyx = c̄u;

19

We next generate a set of instances for the QSC problem and solve it using the

column-and-row generation algorithm given in Algorithm 2. To generate the set of in-

stances, we determine five values for the number of columns |K| ∈ {100, 150, 200, 250, 300},

and three values for the number of covering constraints |J | ∈ {50, 75, 100}. The num-

ber of x−variables for an instance is (|K|−1)|K|
2

and the number of linking constraints is

3 (|K|−1)|K|
2

. For a column k ∈ K, the coefficient Ajk = 1, if a random number U(0, 1)

67

Table 4.3: Comparison of algorithms on QSC test instances.
Instances CPLEX CRG

Cov. Const. # y−var. OFV Time # y−var. gen. Time

50 100 9,082.77 2.13 80 1.11

50 150 7,860.86 7.16 121 2.59

50 200 7,332.89 28.88 169 5.72

50 250 7,258.90 111.05 230 20.89

50 300 6,959.41 299.78 294 86.45

75 100 10,185.20 2.11 78 1.47

75 150 8,882.87 8.86 116 3.25

75 200 8,277.32 40.48 187 10.34

75 250 8,233.85 167.56 237 42.59

75 300 8,225.77 415.33 284 95.73

100 100 10,337.50 2.06 80 1.89

100 150 9,967.91 10.83 111 4.67

100 200 9,357.93 56.25 174 10.20

100 250 9,171.65 212.20 235 38.05

100 300 8,365.23 619.02 283 116.94

Average 8,633.34 132.25 178.60 29.46

is lower than 0.1. Otherwise, Ajk = 0. The diagonal elements in F are obtained by

adding 1000 to a random number uniformly distributed between 0 and 300. That is,

fkk = 1000 + U(0, 300). Using the same notation, the remaining elements are set to

fkl = flk = 5 + U(−10, 0), ∀k, l ∈ K. The positive semi-definiteness of the matrix F

is then checked for each instance. To initialize the column-and-row generation algo-

rithm, we run the approximation algorithm of Chavatal [16], which is developed for the

conventional set-covering problem and use the resulting feasible solution to form the

SRMP.

Table 4.3 gives the results of the experiments. The instances are characterized by

the number of covering constraints (# Cov. Const.) and the number of y−variables (#

y−var.). We report the objective function value (OFV), the total number of y−variables

(# y−var. gen.) generated by our column-and-row generation algorithm denoted by

CRG in Table 4.3 and the solution time (Time). Our proposed algorithm outperforms

CPLEX for the given instance set. The average solution time of CPLEX given at the

bottom of Table 4.3 is approximately four times that of our column-and-row generation

algorithm.

68

4.2.3 Time-Constrained Routing Problem

In [2], a time-constrained routing (TCR) problem motivated by an application that

needs to schedule the visit of a tourist to a given geographical area as efficiently as

possible in order to maximize his/her total satisfaction is studied. The goal is to send

the tourist to one tour on each day during the vacation period while ensuring that each

attraction is visited no more than once.

TCR is formulated as a set packing problem with side constraints. To be consistent

with (MP), we change the notation given in [2]. The set of sites that may be visited by

a tourist in a vacation period M is denoted by J , and K represents the set of daily tours

that originate from and terminate at the same location. Each tour is a sequence of sites

to be visited on the same day, provided that it satisfies the time-windows restrictions of

the tourist and the other feasibility criteria. The total satisfaction of the tourist from

participating in tour k is given by ck, and the binary variable yk is set to one, if tour k

is incorporated into the itinerary of the tourist. If tour k is performed on day m, the

binary variable xkm takes the value one. The overall mathematical model is given as

maximize
∑
k∈K

ckyk, (4.48)

subject to
∑
k∈K

Ajkyk ≤ 1, j ∈ J, (4.49)

∑
k∈K

Bkmxkm = 1, m ∈M, (4.50)

yk −
∑
m∈M

Dkmxkm = 0, k ∈ K, (4.51)

yk ∈ {0, 1}, k ∈ K, (4.52)

xkm ∈ {0, 1}, k ∈ K,m ∈M, (4.53)

where Ajk = 1, if tour k contains the site j, Ajk = 0 otherwise; Bkm = Dkm = 1, if

tour k can be performed on day m, Bkm = Dkm = 0 otherwise. By constraints (4.49),

at most one tour in the selected itinerary of the tourist visits site j. Constraints (4.51)

impose that a tour to be included in the itinerary is assigned to one of the days allowed

69

in M , and we also require that exactly one tour is selected on each day of the vacation

period as prescribed by constraints (4.50). Finally, the objective (4.48) maximizes the

total satisfaction of the tourist over the vacation period M .

In [2], TCR is solved heuristically in two steps. In the first step, the LP relaxation

of (4.48)-(4.53) is solved by a column-and-row generation approach due to a potentially

huge number of tours. To this end, a large number of possible tours is enumerated

and added to a set K. A subset K̄ ⊂ K of these tours is selected to form the SRMP

for the column-and-row generation procedure. At each iteration, a set of new tours

k ∈ L ⊆ (K\K̄) is introduced to the SRMP. For each k ∈ L, this implies adding xkm for

all m such that Bkm = 1, and the associated linking constraint yk−
∑

m∈M
Dkmxkm = 0 to

the SRMP. The row-and-column generation procedure terminates when the condition

stated below in Theorem 4.2.1 is satisfied. Observe that the authors evaluate this

condition for each tour in k ∈ (K \ K̄) following each optimization of the SRMP, where

K is known explicitly. Furthermore, in the computational experiments | L |= 1, that

is, the tour that violates the condition in Theorem 4.2.1 to the largest extent is added

to the SRMP. In the second step of the proposed solution approach, (4.48)-(4.53) is

solved by a commercial solver over the set of tours currently present in the SRMP in

order to obtain an integer feasible solution for TCR.

Now, let {uj|j ∈ J}, {vm|m ∈ M}, and {wk|k ∈ K}, denote the dual variables

associated with the constraints (4.49)-(4.51). The following theorem given in [2] without

a proof defines the stopping condition for the column-and-row generation algorithm of

the authors:

Claim 4.2.1 (adapted from [2]) The solution of the current RMP is optimal for

the LP relaxation of (4.48)-(4.53) if c̄k = ck −
∑
j∈J

Ajkuj −
∑

m∈M
Bkmvm ≤ 0, for each

k ∈ K.

The statement of the claim above corrects two typos in the original Theorem 3.1

in [2], where the termination condition appears as c̄k = ck−
∑
j∈J

Ajkuj−
∑

m∈M
Bkmvm ≥ 0,

for each m ∈ M and k such that Bkm = 1. Next, we demonstrate that the stopping

condition in Claim 4.2.1 is incorrect and may lead to a suboptimal solution when the

70

column-and-row generation algorithm proposed in [2] terminates. Then, we discuss

how the generic column-and-row generation algorithm proposed in this chapter may be

applied here in order to solve the proposed large-scale LP correctly.

The following is the dual of the linear programming relaxation of (4.48)-(4.53):

minimize
∑
j∈J

uj +
∑
m∈M

vm, (4.54)

subject to
∑
j∈J

Ajkuj + wk ≥ ck, k ∈ K, (4.55)

− wk + vm ≥ 0, k ∈ K,m ∈ {m ∈M : Bkm = 1}, (4.56)

uj ≥ 0, j ∈ J. (4.57)

Given the optimal dual variables associated with the current SRMP, the resulting pric-

ing subproblem to be solved is stated as

ζyx = max
k∈K\K̄

c̄k, (4.58)

where c̄k = ck −
∑
j∈J

Ajkuj − wk denotes the reduced cost of tour k. If the optimal

objective function value of this subproblem is positive with c̄k > 0, the variables yk,

xkm for all m ∈M such that Bkm = 1, and the primal constraint yk−
∑

m∈M
Dkmxkm = 0

should be added to the SRMP. Otherwise, the optimal solution of the current SRMP is

declared as optimal for the LP relaxation of (4.48)-(4.53), and the algorithm terminates.

The challenge here is that the value of the dual variable wk is unknown because the

corresponding constraint is currently absent from the SRMP. Hence, in order to design

an optimal column-and-row generation algorithm for TCR, one has to devise a method

that anticipates the correct value of wk to be incorporated into the pricing subproblem.

In the sequel, we first show that the condition in Claim 4.2.1 fails to do so and then

illustrate how this is accomplished based on the generic column-and-row generation

framework proposed in this chapter.

Consider an iteration of the column-and-row-generation algorithm, where the cur-

rent SRMP is solved to optimality and the associated optimal dual solution is repre-

71

sented by uj, j ∈ J , wk, k ∈ K̄, and vm,m ∈ M . Suppose that yk′ , k
′ ∈ K \ K̄ is to be

priced out, where c̄k′ = ck′ −
∑
j∈J

Ajkuj −
∑

m∈M
Bkmvm ≤ 0. Observe for the currently

unknown dual variable wk′ that the dual constraint set (4.56) implies that

wk′ ≤ min
m∈M :Bk′m=1

vm, (4.59)

and if | {m ∈M : Bk′m = 1} |> 1 and maxm∈M :Bk′m=1 vm > 0, then we may have

wk′ ≤ min
m∈M :Bk′m=1

vm <
∑

m∈M :Bk′m=1

vm. (4.60)

Clearly, this may lead to

c̄k′ = ck′ −
∑
j∈J

Ajk′uj −
∑
m∈M

Bk′mvm ≤ 0 < ck′ −
∑
j∈J

Ajk′uj − wk′ = c̄k′ . (4.61)

Thus, we conclude that while c̄k ≤ 0 for all k ∈ K as required by Theorem 4.2.1 due to

Avella et al. [2], there may exist a tour k′ with c̄k′ > 0. In other words,
∑

m∈M
Bkmvm is

not an appropriate estimate of the missing dual variable wk′ , and the column-and-row

generation algorithm given in [2] may terminate prematurely while there exists a tour

k′ with a positive reduced cost. On the other hand, if vm ≤ 0 for all m ∈M such that

Bk′m = 1, ∑
m∈M :Bk′m=1

vm < wk′ ≤ min
m∈M :Bk′m=1

vm (4.62)

may hold, and this may result in

c̄k′ = ck′ −
∑
j∈J

Ajk′uj − wk′ < 0 < ck′ −
∑
j∈J

Ajk′uj −
∑
m∈M

Bk′mvm = c̄k′ . (4.63)

That is, a tour k′ with a negative reduced cost may violate the condition in Claim 4.2.1

and is added to the SRMP unnecessarily.

Using our proposed column-and-row generation algorithm, the pricing subproblem

72

becomes a two-stage problem given by

ζyx = max
k∈K\K̄

ck −
∑
j∈J

Ajkuj − αk (4.64)

αk = minimize wk (4.65)

subject to wk ≤ vm, m ∈ {m ∈M : Bkm = 1}, (4.66)

at least one constraint in (4.66) is tight. (4.67)

To calculate the correct reduced cost of yk, we solve the problem (4.65)-(4.67) separately

for each k ∈ K \ K̄. Since TCR problem is a CDR-problem with no interaction,

∆0(k) = ∅ for any k ∈ K\K̄ and Σk = {k}. Moreover, yk −
∑

m∈M
Dkmxkm = 0

belongs to ∆+(k). The constraint set (4.66) corresponds to (4.11b) and imposes that

the dual constraints (4.56) corresponding to the variables xkm for all m ∈M such that

Bkm = 1 induced by any k ∈ K \ K̄ are not violated. The constraint (4.67) corresponds

to (4.11e) and imposes the complementary slackness condition. Consequently, if the

optimal objective of (4.64) is ζyx = c̄k > 0, then the SRMP is augmented with yk, xkm

for all m ∈ M such that Bkm = 1, and one new linking constraint of type (4.50), and

yk is the natural candidate to enter the basis during the next iteration of the column-

and-row generation scheme. In order to warm-start the primal simplex algorithm to

re-optimize the SRMP, the optimal basis from the previous iteration must be augmented

with a new variable. This new basic variable xkm is provided by the optimal solution

of (4.65)-(4.67) for yk and corresponds to a tight constraint in (4.66).

For each k ∈ K \ K̄, the solution of (4.65)-(4.67) is trivial and αk = wk =

min
m∈M :Bkm=1

vm. We next formulate the correct termination criterion for a column-and-

row generation algorithm for TCR in Theorem 4.2.1. The proof of this theorem follows

from the analysis of the column-and-row generation algorithm given in Section 4.1. We

then conclude with a small numerical example for which the stopping condition of [2]

as stated in Claim 4.2.1 would lead to a premature termination of the column-and-row

generation algorithm with a suboptimal solution. This example and a Lagrangian way

to find a correct termination criterion are given in [60].

73

Theorem 4.2.1 The solution of the current SRMP is optimal for the LP relaxation of

(4.48)-(4.53) if ck−
∑
j∈J

Ajkuj − min
m∈M :Bkm=1

vm ≤ 0 for every k ∈ K \ K̄, for each k ∈ K.

Example 4.2.2 Consider an instance of TCR with 3 sites, 4 tours, 2 time periods,

and assume that the SRMP is initialized with the first 3 three tours. All other data are

specified in Table 4.4, where the optimal dual solution of the initial SRMP is provided

in Columns “u0
j ,” “w0

k,” and “v0
m.” The values of the non-zero variables in the corre-

sponding optimal primal solution are y0
1 = 1, x0

11 = 1, y0
2 = 0, y0

3 = 1, x0
32 = 1 with an

objective function value of 7.

Table 4.4: Counterexample for the optimality of the algorithm proposed by [2].
Site j {k|Ajk = 1} u0

j u1
j Tour k ck {m|Bkm = 1} w0

k w1
k Period m v0

m v1
m

1 {1, 4} 0 1 1 5 {1} 3 3 1 3 3
2 {1, 2} 2 1 2 4 {1, 2} 2 3 2 2 3
3 {3, 4} 0 0 3 2 {2} 2 2

4 4 {1, 2} 3

Following Claim 4.2.1, the reduced cost of y4 is computed as

c̄4 = c4 −
∑
j∈J

Aj4u
0
j −

∑
m∈M

B4mv
0
m = r4 − (u0

1 + u0
3)− (v0

1 + v0
2) = −1,

and the column-and-row generation algorithm terminates. However, the correct reduced

cost of y4 is given by

c̄4 = c4 −
∑
j∈J

Aj4u
0
j − min

m∈M :B4m=1
v0
m = c4 − (u0

1 + u0
3)−min(v0

1, v
0
2) = 2

according to Theorem 4.2.1, and the column-and-row generation algorithm proceeds af-

ter augmenting the SRMP with y4. In the next iteration, re-solving the SRMP provides

us with an optimal solution y1
1 = 0, y1

2 = 1, x1
21 = 1, y1

3 = 0, y1
4 = 1, x1

42 = 1, and an

associated objective value of 8. The corresponding optimal dual solution is displayed

in columns titled “u1
j ,” “w1

k,” and “v1
m” in Table 4.4.

74

4.3 Mixed Column-Dependent-Rows Problems

Keeping the discussion on the CDR-problems with and with no interaction separate

helped us to highlight the differences in developing the row-generating PSP for these

two types of problems in the past sections. These tools of analysis may however also be

combined to tackle CDR-problems in which some minimal variable sets are of cardinality

one, while others are composed of two or more y−variables. We aptly refer to such

problems as mixed CDR-problems. To the best of our knowledge, there is no study in

the literature that deals with a mixed CDR-problem. Therefore, to complement our

discussion with such an extension, we briefly describe a fictitious mixed CDR-problem

in the subsequent part of this section.

Consider a tactical network design and vehicle routing problem defined on a di-

rected network, where the set of nodes is represented by K. A demand bk is associated

with each node of the network, and these demands have to be served daily by a set of

routes originating and terminating at a depot, possibly located at two different nodes

of the network. We pay a fixed cost of ck for opening a depot at a node k ∈ K, and each

vehicle route incurs a cost of dn. Assume that split deliveries are allowed, where the

number of units delivered to customer k by route n is given by Bkn. The objective is to

minimize the total fixed and routing costs. No more than vk vehicles may be dispatched

from a depot at node k to return to the same location. Such routes are referred to as

tours. Similarly, the number of vehicles which originate at node k and terminate at

node l cannot exceed vkl. The set of tours starting at node k is denoted by Nk, and

Nkl represents the set of routes emanating from node k and finishing at node l. The

set of all routes is given by N = (∪k∈KNk) ∪ (∪k,l∈K,k 6=lNkl). The variable yk, k ∈ K,

takes the value one, if a depot is located at node k, and is zero otherwise. The binary

variable xn, n ∈ N , indicates whether tour/route n is selected in the solution. Then,

75

the LP relaxation of this problem may be formulated as below:

minimize
∑
k∈K

ckyk+
∑
n∈N

dnxn, (4.68)

subject to
∑
n∈N

Bknxn ≥bk, k ∈ K, (4.69)

vkyk−
∑
n∈Nk

xn ≥ 0, k ∈ K, (4.70)

vklyk−
∑
n∈Nkl

xn ≥ 0, k, l ∈ K, k 6= l, (4.71)

vklyl−
∑
n∈Nkl

xn ≥ 0, k, l ∈ K, k 6= l, (4.72)

0 ≤ yk ≤ 1, k ∈ K, 0 ≤ xn ≤ 1, n ∈ N. (4.73)

The objective (4.68) minimizes the total cost of opening depots and serving the cus-

tomers by a set of routes. Constraints (4.69) ensure that the customer demands are

satisfied. The set of linking constraints (4.70) prescribe that a tour associated with

k ∈ K is not selected unless a depot is located at node k. Similarly, a route from node

k to node l requires that a depot is present at both nodes k and l as described by the

set of linking constraints (4.71)-(4.72).

This problem is a special case of the generic model (MP), where A, a, and r are

zero, and M = K. In general, the number of routes in the problem may grow expo-

nentially which motivates a column generation algorithm for solving the formulation

(4.68)-(4.73). If, in addition, the number of nodes in the network is large, then this

would merit a column-and-row generation approach because including all O(| K |2)

linking constraints in the formulation (4.68)-(4.73) directly would be computationally

prohibitive. The column-and-row generation would be initialized with a small number

of depots located at nodes k ∈ K̄ and a set of associated routes so that the initial

SRMP is feasible. For this problem, no y−PSP is required because the generation of

a new y−variable is only meaningful if associated x−variables and linking constraints

are introduced into the SRMP along with it. In the x−PSP, we either construct a tour

associated with a depot at a node k ∈ K̄ or a route from a depot at a node k ∈ K̄

76

to a depot at a node l ∈ K̄. In the row-generating PSP for yk, {yk} is a minimal

variable set of cardinality one for a single linking constraint (4.70). The remaining

minimal variable sets are either of the form {yk, yl} or {yl, yk}, depending on whether

routes are generated from node k to node l or vice versa. That is, except for one,

all minimal variable sets in the row-generating PSP for yk are of cardinality two and

induce two linking constraints (4.71)-(4.72). In both cases, y−variables generate the

associated x−variables, and the linking constraints are redundant until all variables in

the associated minimal variable set take positive values. Thus, both Assumptions 3.1.1

and 3.1.2 are satisfied. Note that there is a one-to-one correspondence between the

minimal variable sets and the linking constraints. Moreover, the linking constraints are

in the form mandated by (3.1) in Assumption 3.1.3. We conclude that the problem

at hand is a mixed CDR-problem and is amenable to the column-and-row generation

framework devised in this chapter. We only need to pay attention to set up (4.11) in the

row-generating PSP properly depending on the cardinality of the associated minimal

variable set.

77

Chapter 5

COMBINATION WITH LAGRANGIAN

RELAXATION

In this chapter, we consider another approach based on combining Lagrangian relax-

ation (LR) and column generation (CG) to solve the CDR problems. This approach

results from a different observation than that in Chapter 4 because the increase in the

number of rows must now be taken into account by an increase in the number of La-

grange multipliers. More explicitly, the generation of a minimal variable set {yk|k ∈ SK}

triggers the generation of {xn|n ∈ SN(SK)} and a set of linking constraints ∆(SK),

which is dualized in the objective function so that a set of new multipliers are added to

the set of existing Lagrange multipliers. In the next section, we give an introduction to

the combination of LR and CG algorithms and present a methodology that combines

these two approaches to solve the CDR problems. In the second section, we apply this

algorithm to the TCR problem which belongs to the class of CDR-problems. Moreover,

we conduct computational experiments for this problem on a set of randomly generated

instances. The performance of this algorithm is compared with that of the simultaneous

column-and-row generation algorithm defined in Chapter 4.

5.1 Proposed Solution Method

Column Generation vs. Lagrangian Relaxation. LR and CG algorithms are two

prominent algorithms to solve integer programming problems. CG algorithm is used

78

to solve Dantzig-Wolfe decompositions although this algorithm can also be applied di-

rectly to a compact formulation, e.g., as in vehicle routing problem with time-windows.

The relationship between Dantzig-Wolfe decomposition and Lagrangian relaxation is

significant. As we explained in Chapter 2, LR is obtained by dualizing exactly those

constraints that are the linking constraints in the Dantzig-Wolfe decomposition. More-

over, the subproblems in the corresponding LR and CG algorithms are identical except

for a constant in the Lagrangian subproblems. In the column generation procedure,

the values for the dual variables are obtained by solving the LP relaxation of the RMP,

whereas in the LR, the Lagrange multipliers can be updated by the simple subgradient

optimization (see [47] for a detailed comparison of these methods).

Both approaches have advantages and disadvantages. For example, in CG, while

solving the RMP by the simplex algorithm, a tailing-off effect; i.e., slow convergence

towards the optimum in the final phase of the algorithm, is generally observed. In LR,

the subgradient optimization method provides a fast update of the Lagrange multipliers

but we usually have to stop the procedure without a proof of optimality. There exist

approaches which combine these two methods to exploit the strengths of both. An

overview of the possible combinations of these methods is given in [47]. They discuss

two ways in which the two methods can be combined efficiently:

• LR can be applied to the master problem to approximate the optimal values of

the dual variables. Two examples using this combination are [15] and [48], which

solve the discrete lot-sizing and scheduling problem. LR is employed to solve the

master problem in order to reduce the degeneracy.

• In the second one, LR can be used on the original formulation of the problem to

generate columns since the pricing subproblem in Dantzig-Wolfe decomposition

is the same as the LR subproblem except for a constant. Hence, after the pricing

subproblem finds a negative reduced cost column, LR is solved by subgradient

optimization and the generated columns are added to the RMP. These subgradient

iterations are considerably faster than solving the RMP at each iteration. An

example using this combination is given in [6], which solves the plant location

79

problem.

It is clear that we can apply the former combination to CDR problems by dualizing

the linking constraints into the objective function. For a given set of multipliers w ≥ 0,

the resulting LR problem is given by

Z(w) = minimize
∑
k∈K

ckyk +
∑
n∈N

dnxn+

∑
i∈I

wi(ri −
∑
k∈K

Cikyk −
∑
n∈N

Dinxn),

subject to
∑
k∈K

Ajkyk ≥ aj, j ∈ J,

∑
n∈N

Bmnxn ≥ bm, m ∈M,

yk ≥ 0, k ∈ K; xn ≥ 0, n ∈ N.

(5.1)

The dual of (5.1) then becomes

maximize
∑
j∈J

ajuj +
∑
m∈M

bmvm +
∑
i∈I

riwi,

subject to
∑
j∈J

Ajkuj ≤ ck −
∑
i∈I

Cikwi, k ∈ K,

∑
m∈M

Bmnvm ≤ dn −
∑
i∈I

Dinwi, n ∈ N,

uj ≥ 0, j ∈ J ; vm ≥ 0,m ∈M,

(5.2)

where {uj|j ∈ J} and {vm|m ∈ M} are the sets of dual variables corresponding to the

first and the second constraint sets of (5.1), respectively, and {wi|i ∈ I} is the set of

Lagrange multipliers. Suppose that the optimal objective function value of the original

CDR problem is Z. The optimal objective function value of (5.1) for any w ≥ 0 is

Z(w) ≤ Z. To find the best possible lower bound attainable through (5.1) we solve the

Lagrangian dual (LD) problem

ZLD = max
w≥0

Z(w). (5.3)

80

Since the LR problem in (5.1) is a LP problem, that, the extreme points can be frac-

tional, theoretically ZLD = Z (see [62] for the formal explanations of these statements).

Subgradient Optimization. Subgradient optimization algorithm is an iterative met-

hod and at each iteration problem (5.1) is solved. The values of the multipliers are

initialized as w0. Let (y∗(wt), x∗(wt)) be the optimal, possibly infeasible, primal solu-

tion when (5.1) is solved at iteration t using the multiplier vector wt. Additionally, let

gti , i ∈ I be the subgradient vector associated with the relaxed constraints. The entries

of this vector are calculated as gti = (ri −
∑
k∈K

Ciky
∗
k(wt) −

∑
n∈N

Dinx
∗
n(wt)), i ∈ I. The

values of the multipliers can be updated in a subgradient step as follows:

wt+1
i = max(0, wt

i + λtgti), (5.4)

λt =
θ(UB − Z(wt))∑

i∈I
(gti)

2
, (5.5)

where λt is the step size, UB is the objective function value of any feasible solution

to the problem. The parameter θ is initialized. If there is no progress (increase) in

the lower bound for some given number of iterations, say S, then θ is updated as

θ → θ/2. The subgradient iterations are terminated when a given number of iterations

are performed or θ is lower than a given small value. The lower bound value Z(wt) is not

a nondecreasing function of t. Hence, we denote the maximum lower bound found over

all subgradient iterations as Zmax. It is updated at each subgradient iteration as Zmax =

max(Zmax, Z(wt)). At the end of the subgradient phase, the Lagrange multipliers and

Zmax are approximations of the optimal dual variables and ZLD, respectively. Using

these multipliers, problem (5.1) is solved again. We refer to [10, 43, 44] for details about

the implementation of subgradient optimization.

Solution Approach. In this section, we give the details of the combination of CG

and LR algorithms, denoted by CG-LR, to solve the CDR problems. If the number of

variables in (5.1) is large, we can solve this problem by column generation by replacing

the sets K, N by their subsets K̄ and N̄ , respectively, to form the RMP. Note that the

81

set of constraints in this model is known in contrast to the SRMP given in Chapter 3,

where the new rows are added to the model on the fly. Hence, we no longer call this

problem SRMP, but solely RMP. Additionally, the notation SRMP(K̄, N̄ , I(K̄, N̄))

defined in Chapter 4 now reduces to RMP(K̄, N̄ , I(K̄, N̄)) where the last set is the set

of existing multipliers residing in the objective function. There is a set of multipliers

wi, i ∈ I\I(K̄, N̄) which does not exist in the objective function since the associated

constraints have not been generated. The resulting LR problem at iteration T of the

column generation algorithm is given by

ZT (w) = minimize
∑
k∈K̄

ckyk +
∑
n∈N̄

dnxn +
∑

i∈I(K̄,N̄)

wi(ri −
∑
k∈K̄

Cikyk −
∑
n∈N̄

Dinxn),

subject to
∑
k∈K̄

Ajkyk ≥ aj, j ∈ J,

∑
n∈N̄

Bmnxn ≥ bm, m ∈M,

yk ≥ 0, k ∈ K̄; xn ≥ 0, n ∈ N̄ .

Reorganizing the terms in the model above, the LR problem becomes

ZT (w) = minimize
∑
k∈K̄

(ck −
∑

i∈I(K̄,N̄)

Cikwi)yk +
∑
n∈N̄

(dn −
∑

i∈I(K̄,N̄)

Dinwi)xn+

∑
i∈I(K̄,N̄)

wiri, (5.6)

subject to
∑
k∈K̄

Ajkyk ≥ aj , j ∈ J, (5.7)

∑
n∈N̄

Bmnxn ≥ bm, m ∈M, (5.8)

yk ≥ 0, k ∈ K̄; xn ≥ 0, n ∈ N̄ . (5.9)

This problem decomposes into separate problems for y and x. The resulting Lagrangian

dual problem is

ZT
LD = max

wi≥0,i∈I(K̄,N̄)
ZT (w). (5.10)

82

which is solved by the subgradient optimization method. At each iteration of the

subgradient optimization algorithm, the LP problem (5.6)-(5.9) is solved. Using the

values of the dual variables {uj|j ∈ J}, {vm|m ∈M}, and multipliers {wi|i ∈ I(K̄, N̄)}

obtained by the subgradient optimization, we solve one of the PSPs, which are y−,

x−PSPs and row generating PSP, to detect the negative reduced cost variables. The

mechanism of the CG-LR algorithm is exactly like that given in Figure 4.1 in Chapter 4.

Additionally, the definitions of the PSPs are similar to those given in Chapter 4 since

the dual constraints in (5.2) are the same as (DMP-y) and (DMP-x). However, the

values of the dual variables {uj|j ∈ J}, {vm|m ∈M}, and multipliers {wi|i ∈ I(K̄, N̄)}

to check the feasibility in the dual constraints in (5.2) are provided by the subgradient

optimization instead of the simplex method. Moreover, the newly added rows resulting

from the row-generating PSP are dualized in the objective function so that we add a set

of multipliers to the existing multipliers. More explicitly, the generation of a minimal

variable set {yk|k ∈ SK} triggers the generation of {xn|n ∈ SN(SK)} and a set of

linking constraints ∆(SK) which is dualized in the objective function so that a set of

new multipliers {wi|i ∈ ∆(SK)} is added to the set of existing Lagrange multipliers.

This chapter provides a different perspective for the unknown dual variables defined in

Chapter 4. Later, we explain the row-generating PSP from this perspective.

Dualizing a new constraint is also used in relax-and-cut where Lagrangian bounds

are attempted to be improved by dynamically strengthening relaxations with the in-

troduction of valid inequalities (see [41, 52, 56] for the details of the relax-and cut

algorithm). This algorithm avoids dualizing the set of all constraints (cuts) in expo-

nential size to the objective function but adds them dynamically by utilizing a cut

pool strategy. In relax-and-cut, the added constraints are violated constraints and are

detected by solving a separation problem but in our case, the constraints to be added

are not violated and they must be considered when solving the row-generating PSP.

Finally, we elaborate on one more issue related to the upper-bounding before we

move on to the row-generating PSP. Recall that Z is the optimal objective function

value of (MP). Suppose that LR is applied to solve the CDR problem defined as (MP).

To solve the Lagrangian dual problem by subgradient optimization, we use UB, which

83

can be obtained by using a heuristic, as the objective function value of a primal feasible

solution to (MP). UB is valid throughout the algorithm since at each iteration of the

subgradient optimization algorithm, the LR problem, which provides a lower-bound

on Z, is solved. However, when (MP) is solved by CG-LR, at some iteration of the

column generation, say T , the value of ZT
LD is an approximation to the optimal objective

function value of RMP, ZT
LD ≈ ZT . Moreover, we know that at the same iteration T ,

the objective function value is also an upper bound on Z such that ZT ≥ Z. Hence,

if ZT > UB, then UB is not a valid upper bound on the optimal objective function

of the RMP. This situation can be seen in Figure 5.1. The subgradient optimization

cannot reach ZT
LD since the step length λ defined in (5.4) approaches to zero when

ZT (w) ≈ UB. Moreover, the multipliers are misguided at the subgradient update

given in (5.4) since the step size λ is negative when ZT (w) > UB. To overcome this

issue, we use the objective function value of the previous Lagrangian dual problem ZT−1
LD

as the upper-bound for iteration T of column generation as long as UB < ZT−1
LD . When

UB ≥ ZT−1
LD , UB is valid and we use it as the upper bound because using ZT−1

LD as the

upper bound at the latest iterations of column generation causes slow convergence, as

observed in computational experiments.

The case in Figure 5.1 is also observed in [48]. At various steps during the column

generation process, they construct a good feasible integer solution starting from the

current solution of the RMP. This upper-bound is valid since it is obtained through a

heuristic considering only the existing variables in the RMP.

Figure 5.1: Bounding in the CG-LR Algorithm.

Before invoking the row-generating PSP, neither y- nor x-PSP results in a negative

reduced cost column using the set of constraints in RMP and the set of multipliers wi, i ∈

I(K̄, N̄) in the objective function of RMP. However, there may be some minimal variable

sets not in RMP which induce a set of x−variables and a set of linking constraints.

There are Lagrange multipliers associated with these linking constraints in the objective

function which are not generated yet.

84

Remark 5.1.1 Assumption 3.1.2 given in Chapter 3 implies that a feasible solution

of RMP does not violate any missing linking constraint (i ∈ I\I(K̄, N̄)) before all

variables in at least one of the associated minimal variable sets are added to the RMP.

If we initialize the multipliers with value zero, a multiplier remains at zero after a

subgradient iteration as long as the associated constraint is not violated. However,

gti > 0 may affect the calculation of λt. As in [10], we choose to set gti = 0 whenever

gti > 0 and wi = 0.

The row-generating PSP, as explained in Chapter 3, generates a family of the index sets

of the form Sk
K , denoted by Fk. The generation of Fk prompts the generation of a set of

y− variables indexed by Σk, a set of x−variables indexed by SN(Σk) and a set of linking

constraints ∆(Σk) which is dualized in the objective function with multipliers {wi|i ∈

∆(Σk)}. Also, the reduced costs c̄k and d̄n for yk and xn, n ∈ SN(Sk
K), respectively, are

expressed as below for any given yk, an associated Fk, and Sk
K ∈ Fk:

c̄k = ck −
∑
j∈J

Ajkuj −
∑

i∈I(K̄,N̄)

Cikwi −
∑

i∈∆(Σk)

Cikwi, (5.11)

d̄n = dn −
∑
m∈M

Bmnvm −
∑

i∈∆(Sk
K)

Dinwi (5.12)

In (5.11)-(5.12), the values of the dual variables {uj|j ∈ J}, {vm|m ∈ M} and {wi|i ∈

I(K̄, N̄)}, are retrieved from the subgradient optimization and due to Remark given

above, wi = 0, i ∈ ∆(Σk) can be selected. It may result that c̄k > 0, k ∈ Σk and d̄n < 0

for some n ∈ SN(Σk). Hence, {yl|l ∈ Σk} and {xn|n ∈ SN(Σk)} are added to the RMP

and the linking constraints ∆(Σk) are dualized to the objective function. According

to the Assumption 3.1.3, the set of linking constraints ∆(Σk) imposes that xn cannot

assume a positive value until all variables in Sk
K have a positive value. However, these

linking constraints are dualized to the objective function with multipliers so that xn

can take positive values and some of the constraints in ∆(Σk) are violated. Hence, the

values of the associated multipliers {wi|i ∈ ∆(Σk)} are increased in the subgradient

iteration. The question is whether we can we avoid such subgradient iterations by

estimating the values of the new multipliers. It boils down to a look-ahead procedure

85

as given in Chapter 4.

Suppose that for a given family of index sets Fk that minimizes the reduced cost of

a variable yk, we use the procedure given in Chapter 4 to determine the starting values

of the new multipliers {wi|i ∈ ∆(Sk
K)} for each Sk

K ∈ Fk. This is accomplished by an

implicit construction of a basic optimal solution to RMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪

∆(Σk)). Moreover, the values of the multipliers {wi|i ∈ ∆(Sk
K)} are determined by

solving the two-stage problem (4.11a)-(4.11e) defined in Chapter 4 and they satisfy the

following conditions:

• The objective in (4.11a) makes sure that the minimum possible reduced cost of

yk, k ∈ K\K̄ is obtained.

• The constraints (4.11c)-(4.11d) impose that wi = 0, i ∈ ∆0(Σk) and wi ≥ 0, i ∈

∆+(Sk
K) where Cil = 0, l ∈ K̄ and Din = 0, n ∈ N̄ for i ∈ ∆+(Sk

K). Hence, the

reduced costs of the variables {yl|l ∈ K̄} and {xn|n ∈ N̄} do not change.

• According to (4.11b), the reduced costs of {xn|n ∈ SN(Σk)} are nonnegative.

Hence, the dualization of the new linking constraint set ∆(Σk) with multipliers

satisfying (4.11b)-(4.11d) results in a set of variables {xn|n ∈ SN(Σk)} having

nonnegative reduced cost added to RMP(K̄, N̄ , I(K̄, N̄)). Therefore, the optimal

values of the dual variables {uj|j ∈ J}, {vm|m ∈ M}, and {wi|i ∈ I(K̄, N̄)} in

RMP(K̄, N̄ , I(K̄, N̄)) do not change and the values set for {wi|i ∈ ∆(Σk)} in the

row-generating PSP are optimal for RMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪∆(Σk)).

• Lastly, the complementary slackness condition (4.11e) imposes that |∆(Sk
K)| of

the tight constraints in (4.11b)-(4.11d) are linearly independent. In general, the

subgradient optimization algorithm does not necessarily need this condition to ter-

minate. However, the values of the new multipliers {wi|i ∈ ∆(Σk)} determined

by (4.11a)-(4.11e) are the optimal dual variable values resulting from the solution

of RMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪ ∆(Σk)) as mentioned in the previous item.

If RMP(K̄, N̄ ∪ SN(Σk), I(K̄, N̄) ∪∆(Σk)) is solved by subgradient optimization

starting with wi = 0, i ∈ ∆(Σk), then the values of the multipliers {wi|i ∈ ∆(Σk)}

86

would be the approximations of those found by (4.11a)-(4.11e) when the subgra-

dient optimization terminates. Due to constraint (4.11e), the reduced cost of

some xn, n ∈ SN(Σk) may be zero; i.e., (4.11b) is tight for xn. This means that

there is an alternate optimal solution for RMP(K̄, N̄ ∪SN(Σk), I(K̄, N̄)∪∆(Σk)).

However, xn is not allowed to enter the basis until Σk is added to RMP, which is

possible only if c̄k < 0.

Hence, if the objective function value of the two-stage problem is negative, it means

that a variable yk has negative reduced cost and it enters the basis. Then, {xn|n ∈

SN(Σk)} are allowed to enter the basis. Therefore, with this strategy, we prevent the

premature violation in the new dualized constraints ∆(Σk) by assigning the values of

{wi|i ∈ ∆(Σk)} properly.

We use the above strategy to find the values of the multipliers {wi|i ∈ ∆(Σk)}

to solve the PSP correctly. However, in implementing the subgradient optimization

algorithm, the new multipliers {wi|i ∈ ∆(Σk)} can also be initialized to zero, which

is the convention in the literature. Therefore, the multipliers for the new dualized

constraints are initialized either to zero or to the value found by the row-generating PSP.

It is stated in [10] that how quickly the subgradient procedure terminates is relatively

insensitive to the initial choice of the multipliers. Both approaches converge to the same

Lagrangian dual solution but we shall show through our computational experiments

that the initialization with the value found by the row-generating subproblem is more

beneficial in terms of computation time. The reason is that the values found by the

row-generating subproblem act as a penalty to prevent a violation in the new set of

linking constraints.

87

5.2 An Application to The Time-Constrained Routing Problem

We use LR to relax the linking constraints (4.51) using the dual multipliers wk. Then,

the resulting problem is given by

Z(w) = maximize
∑
k∈K

(ck − wk)yk +
∑
k∈K

wk

∑
m∈M

Dkmxkm, (5.13)

subject to
∑
k∈K

Ajkyk ≤ 1, j ∈ J, (5.14)

∑
k∈K

Bkmxkm = 1, m ∈M, (5.15)

yk ∈ {0, 1}, k ∈ K, (5.16)

xkm ∈ {0, 1}, k ∈ K,m ∈M. (5.17)

where the multipliers w are unrestricted in sign, since the dualized constraints are of

equality type. To solve the LP relaxation of this problem by column generation, we

replace the set K by K̄. Then, the RMP at iteration T of column generation becomes

ZT (w) = maximize
∑
k∈K̄

(ck − wk)yk +
∑
k∈K̄

wk

∑
m∈M

Dkmxkm, (5.18)

subject to
∑
k∈K̄

Ajkyk ≤ 1, j ∈ J, (5.19)

∑
k∈K̄

Bkmxkm = 1, m ∈M, (5.20)

yk ∈ [0, 1], k ∈ K̄, (5.21)

xmn ∈ [0, 1], m ∈M,n ∈ N. (5.22)

88

Note that for a given set of multipliers {wk|k ∈ K̄}, the above problem is separated

into two problems. The first one is

ZT
1 (w) = maximize

∑
k∈K̄

(ck − wk)yk, (5.23)

subject to
∑
k∈K̄

Ajkyk ≤ 1, j ∈ J, (5.24)

yk ∈ [0, 1], k ∈ K̄, (5.25)

which is a continuous relaxation of the set-packing problem. The second problem is

ZT
2 (w) = maximize

∑
k∈K̄

wk

∑
m∈M

Dkmxkm, (5.26)

subject to
∑
k∈K̄

Bkmxkm = 1, m ∈M, (5.27)

xmn ∈ [0, 1], m ∈M,n ∈ N. (5.28)

The solution of this problem is straightforward, since for each m ∈ M we can select

xkm with the maximum objective function coefficient.

The value of the relaxation, ZT (w), is the summation of the objective function

value of these two problems such that ZT (w) = ZT
1 (w) +ZT

2 (w). Then the Lagrangian

dual problem at iteration T of column generation is simply given by

ZT
LD = min

wk,k∈K̄
ZT (w). (5.29)

This Lagrangian dual problem is solved and ZT
LD is found by subgradient optimization

algorithm. Let (y∗(wt), x∗(wt)) be the optimal, possibly infeasible, primal solution

when (5.23)-(5.25) and (5.26)-(5.28) are solved at iteration t using the multiplier vector

{wt
k|k ∈ K̄}. Additionally, let gtk, k ∈ K̄ be the subgradient vector associated with

the existing relaxed constraints. The entries of this vector are calculated as gtk =

(y∗k(wt)−
∑

m∈M
Dkmx

∗
km(wt)), k ∈ K̄. The values of the multipliers can be updated in a

subgradient step as follows:

89

wt+1
k = wt

k + λtgtk, (5.30)

λt =
θ(ZT (wt)− LB)∑

k∈K̄
(gtk)2

, (5.31)

The parameters and the termination criterion for the subgradient optimization are

given later when we give the computational results. After finding the solution with

subgradient optimization, we solve the row-generating PSP

ζyx = max
k∈K\K̄

ck −
∑
j∈J

Ajkuj − αk (5.32)

αk = minimize wk (5.33)

subject to wk ≤ vm, m ∈ {m ∈M : Bkm = 1}, (5.34)

at least one constraint in (5.34) is tight, (5.35)

where {uj|j ∈ J} and {vm|m ∈M} are the dual variables corresponding to (5.24) and

(5.27), respectively. Note that {vm|m ∈M} can simply be obtained by

vm = max
k∈K̄:Bkm=1

wk. (5.36)

Clearly, the model given by (5.32)-(5.35) is quite similar to (4.64)-(4.67). If ζyx < 0,

then yk, xkm for all m ∈ M such that Bkm = 1 and a new multiplier corresponding

to the linking constraint k are added to RMP. The solution of problem (5.33)-(5.35)

is αk = wk = min
m∈M :Bkm=1

vm and the xkm−variable, for which (5.34) is satisfied with

equality, has zero reduced cost. In Chapter 4, this variable is used to augment the

optimal basis. However, in CG-LR, the new linking constraint indexed by k is dualized

to the objective function with wk. Hence, allowing xkm to enter the basis may violate

this constraint. Therefore, we prevent it from entering the basis before yk enters the

RMP.

Next, we conduct computational experiments for TCR problem. We compare

90

the performance of CG-LR against the CRG algorithm given in Chapter 4 on a set of

randomly generated instances. In [2], all possible tours are enumerated by checking

several feasibility rules. Moreover, some dominance rules are used to speed up the tour

enumeration. In this thesis, since we are only concerned with the performances of the

algorithms, the tours are generated in a different manner: The number of sites that

can be visited are selected as 50 and 150 and the vacation period is taken as 5 days. A

single tour can visit at most four sites that are selected randomly. Each site is randomly

assigned a rating uniformly distributed between 1 and 100, and the objective function

coefficient of a tour is defined as the sum of the ratings of the sites visited in the tour.

Moreover, the days in the vacation period in which the tours can take place are also

determined randomly. We generate from 10,000 to 100,000 tours.

In contrast to the algorithm in [2], no initial set of tours are selected to form the

SRMP. Instead, an artificial variable sm with an objective function value of −R, where

R is a large number, is added to the model as follows:

∑
k∈K

Bkmxkm + sm = 1,m ∈M. (5.37)

The CRG algorithm is initialized with only artificial variables and as new columns are

added, primal feasibility is achieved and the artificial variables are deleted.

Recall that in Section 5.1 we give a discussion on the use of an upper-bound in the

updating phase of the subgradient optimization algorithm. Since TCR is a maximiza-

tion problem, we need a lower-bound to use in subgradient updating. Three different

lower-bounding methods, as mentioned in Section 5.1, are used in our experiments with

CG-LR. The first one uses LB, which is the objective function value of some primal fea-

sible solution obtained by a heuristic algorithm. We refer to the results obtained with

this lower-bounding as CG-LR1 in Table 5.1. As the second lower-bounding method,

we use the objective function value of the previous Lagrangian dual problem, ZT−1
LD , as

the lower-bound for iteration T of column generation whenever LB > ZT−1
LD . Other-

wise; i.e., when LB ≤ ZT−1
LD , we use LB. The results obtained with this lower-bounding

method are given in Table 5.1 as CG-LR2. The last lower-bounding method uses only

91

ZT−1
LD as the lower-bound and its results are listed as CG-LR3 in Table 5.1. To warm

start these three CG-LR algorithms, we start with a set of columns that is feasible for

(MP). Hence, unlike the CRG algorithm, using artificial variables to initialize the CG-

LR algorithms is not necessary. This is done by a brute force procedure, in which the

tours are added to the model in their index order until a feasible solution is obtained.

Moreover, as mentioned previously, the initial LB can be obtained by a heuristic algo-

rithm. We assume that the value of LB is given by an oracle as 0.95Z, where Z is the

optimal objective function value of (MP). A heuristic algorithm for the TCR could be

developed or a rounding algorithm may be called at some points in column generation

to find the value of LB.

Moreover, in the application of the subgradient optimization algorithm, we use

the following parameters: θ is initialized with value 1.5 and if there is no progress

(decrease) in the upper bound for 10 iterations, θ is halved. The subgradient iterations

are terminated when 250 iterations are performed or θ < 0.05. Naturally, an increase

in these parameters improves the approximation of the multipliers to the optimal dual

variables at the expense of increasing computational times.

The results are given in Table 5.1, where “OFV” denotes the objective function

value, “Time” denotes the computation time in seconds and “# Col.” denotes the

number of y−variables generated in the column generation algorithm. The optimal

objective function value of (MP) is given under the CPLEX column but recall that

CRG also finds the optimal value. Objective function values reported for CG-LR algo-

rithms are the approximations of the optimal values, since the stopping criteria of the

subgradient optimization are not exact.

92

T
ab

le
5.

1:
C

om
p
ar

is
on

of
al

go
ri

th
m

s
on

T
C

R
te

st
in

st
an

ce
s.

In
st
a
n
c
e
s

C
P
L
E
X

C
R
G

C
G
-L

R
1

C
G
-L

R
2

C
G
-L

R
3

O
F

V
T

im
e

#
C

o
l.

T
im

e
O

F
V

#
C

o
l.

T
im

e
O

F
V

#
C

o
l.

T
im

e
O

F
V

#
C

o
l.

T
im

e

1
0
0
0
0
-5

0
-5

-5
1
,6

1
2
.0

0
3
.8

9
2
9

1
.6

4
1
,6

1
2
.7

0
5
8

4
0
.0

5
1
,6

1
2
.2

6
5
5

4
0
.8

8
1
,7

0
8
.4

5
6
9

9
0
.4

1

2
0
0
0
0
-5

0
-5

-5
1
,6

0
5
.0

0
1
3
.4

5
2
9

3
.0

5
1
,6

0
5
.3

6
8
1

7
0
.0

8
1
,6

0
5
.3

5
6
4

5
4
.7

2
1
,6

9
0
.5

1
6
1

6
7
.4

5

3
0
0
0
0
-5

0
-5

-5
1
,6

8
7
.0

0
2
6
.7

2
2
9

4
.4

5
1
,6

9
0
.0

7
9
0

8
5
.1

9
1
,6

8
8
.0

2
7
5

6
9
.0

9
1
,7

9
3
.7

1
5
8

7
4
.4

4

4
0
0
0
0
-5

0
-5

-5
1
,4

6
6
.0

0
4
9
.8

6
2
5

5
.0

6
1
,4

6
7
.1

0
1
0
4

1
5
4
.5

2
1
,4

6
6
.2

1
1
1
0

1
2
3
.8

3
1
,5

1
9
.1

1
7
7

8
6
.2

0

5
0
0
0
0
-5

0
-5

-5
1
,5

8
4
.0

0
8
6
.4

6
2
4

6
.0

3
1
,5

8
5
.5

6
7
4

6
5
.2

2
1
,5

8
4
.7

2
8
8

8
8
.5

2
1
,6

8
1
.3

2
6
9

7
8
.1

6

6
0
0
0
0
-5

0
-5

-5
1
,5

2
5
.0

0
1
0
7
.0

9
2
4

7
.3

4
1
,5

2
9
.7

1
1
2
0

1
8
8
.6

7
1
,5

2
6
.0

1
9
2

1
0
9
.9

5
1
,6

1
4
.0

9
7
4

8
2
.3

6

7
0
0
0
0
-5

0
-5

-5
1
,4

8
0
.0

0
1
3
0
.8

6
2
8

9
.7

3
1
,4

8
1
.5

2
1
0
3

1
4
8
.0

0
1
,4

8
1
.3

6
1
0
3

1
4
2
.0

3
1
,5

7
4
.7

6
6
2

9
6
.5

5

8
0
0
0
0
-5

0
-5

-5
1
,5

6
8
.0

0
1
6
6
.2

7
2
5

1
0
.0

0
1
,5

6
9
.2

0
1
3
7

2
4
4
.4

1
1
,5

6
8
.2

4
1
2
8

2
2
3
.2

3
1
,6

3
9
.7

5
5
9

6
5
.9

5

9
0
0
0
0
-5

0
-5

-5
1
,5

5
7
.0

0
2
1
4
.6

1
2
7

1
1
.9

9
1
,5

5
8
.4

5
8
9

1
1
4
.4

1
1
,5

5
7
.4

5
1
3
1

2
2
7
.8

8
1
,6

1
0
.5

3
6
3

8
6
.4

1

1
0
0
0
0
0
-5

0
-5

-5
1
,5

0
0
.0

0
2
8
0
.8

4
2
9

1
4
.1

7
1
,5

0
1
.3

0
7
2

7
7
.6

4
1
,5

0
1
.2

3
8
5

1
0
4
.3

8
1
,5

9
8
.5

6
7
3

9
8
.0

5

1
0
0
0
0
-1

5
0
-5

-5
1
,8

0
5
.2

0
1
.2

2
1
7

1
.0

0
1
,8

0
5
.6

3
2
4

1
2
.9

5
1
,8

0
5
.6

1
2
2

1
1
.6

1
1
,8

4
0
.3

0
2
9

1
5
.9

5

2
0
0
0
0
-1

5
0
-5

-5
1
,7

8
3
.0

0
2
.8

8
1
3

1
.4

1
1
,7

8
4
.0

1
2
1

7
.7

8
1
,7

8
3
.8

0
2
1

1
0
.5

8
1
,8

5
4
.8

5
4
3

2
4
.7

2

3
0
0
0
0
-1

5
0
-5

-5
1
,7

1
9
.5

0
5
.7

8
1
0

1
.6

3
1
,7

2
0
.1

4
2
3

1
1
.8

4
1
,7

2
0
.0

5
2
0

1
0
.8

9
1
,8

4
0
.1

8
4
7

5
1
.1

1

4
0
0
0
0
-1

5
0
-5

-5
1
,8

6
2
.4

0
1
0
.0

9
1
7

3
.4

8
1
,8

6
3
.4

1
2
5

1
2
.9

1
1
,8

6
3
.2

7
2
5

1
6
.9

5
1
,9

2
8
.9

3
4
1

3
8
.3

8

5
0
0
0
0
-1

5
0
-5

-5
1
,8

2
0
.6

7
4
3
.7

2
2
0

5
.0

5
1
,8

2
2
.3

5
2
7

1
5
.0

0
1
,8

2
1
.5

6
2
5

1
6
.8

9
1
,9

3
5
.5

7
6
1

5
9
.6

1

6
0
0
0
0
-1

5
0
-5

-5
1
,7

8
5
.1

4
2
4
.0

0
1
9

5
.8

4
1
,7

8
6
.5

5
2
6

1
5
.6

3
1
,7

8
6
.3

0
2
6

1
7
.5

0
1
,8

4
7
.2

8
4
1

4
1
.9

1

7
0
0
0
0
-1

5
0
-5

-5
1
,8

8
0
.5

0
2
7
.6

9
2
0

7
.0

8
1
,8

8
1
.6

1
2
7

1
7
.6

3
1
,8

8
1
.2

3
2
6

1
8
.0

2
1
,9

3
9
.5

7
4
1

4
2
.2

7

8
0
0
0
0
-1

5
0
-5

-5
1
,8

1
0
.6

0
9
5
.8

0
2
3

9
.0

9
1
,8

1
1
.4

5
3
2

2
5
.6

7
1
,8

1
1
.2

6
2
9

2
3
.8

0
1
,9

1
0
.7

1
6
9

8
5
.7

2

9
0
0
0
0
-1

5
0
-5

-5
1
,8

8
4
.1

4
5
8
.1

3
1
7

7
.7

7
1
,8

8
5
.3

5
2
9

2
6
.7

0
1
,8

8
4
.7

4
2
8

2
4
.7

8
2
,0

2
4
.0

9
6
5

7
9
.7

2

1
0
0
0
0
0
-1

5
0
-5

-5
1
,8

4
2
.0

0
6
0
.2

3
1
7

8
.4

8
1
,8

4
2
.9

8
2
7

2
1
.8

9
1
,8

4
2
.9

9
2
4

2
0
.2

8
1
,9

9
8
.8

7
6
2

7
8
.7

8

A
v
er

a
g
e

1
,6

5
4
.8

2
6
8
.6

0
2
2
.1

9
5
.9

4
1
,6

5
6
.1

7
5
8
.0

0
6
5
.3

6
1
,6

5
5
.5

6
5
7
.4

3
6
5
.1

5
1
,7

3
9
.3

4
5
6
.7

6
6
4
.7

1

93

The results in Table 5.1 indicate that on average, CRG algorithm outperforms

other algorithms. As the average solution time figures show CRG is more than ten

times faster than CG-LR algorithms. The computation time of CG-LR algorithms are

very close to each other. The average of the objective function values obtained by

CG-LR1 and CG-LR2 are very close to the average optimal objective function values.

Though the indifference is insignificant, CG-LR2 seems to outperform CG-LR1. CG-

LR3 is, however, not a strong contender and the average of the objective function values

obtained by CG-LR3 is 5% higher than that of CG-LR2. Overall, these findings are

in favor of the bounding procedure used in CG-LR2. The gap between the average

objective function values of CPLEX and CG-LR2 is just 0.04%. More importantly, the

average solution time of CG-LR2 is 5% shorter than that of CPLEX. Note that for the

TCR problem, all the algorithms proposed in this thesis use only a very small number

of columns.

Note that CG-LR performs poor compared to CRG. The reason is that even

though the LR problem is smaller than (MP), after dualizing the linking constraints, it

must be solved many times at each subgradient optimization call. On the other hand,

solving SRMP by a linear programming solver turned out to be much faster than the

subgradient optimization algorithm in our experiments. As discussed in [15] and [48]

the use of CG-LR may be justified, if the dual variables found by the simplex algorithm

cause many degenerate iterations, and the number of column generation iterations is

quite large.

Another question raised above is concerned with the advantages of initializing

the multipliers for the new dualized constraints with the values found by the row-

generating PSP over initializing them with value zero. The CG-LR algorithms initialize

the multipliers for the new dualized constraints with the values found by the row-

generating PSP. To this end, we rerun the CG-LR2 algorithm with the new multipliers

initialized with value zero. The average values for the objective function and time are

1,656.17 and 109.25, respectively. Even though the average objective function value is

close to that of CG-LR2 given in Table 5.1, the average computation time is considerably

large. It seems that the initialization of the dual multipliers with the values found by

94

the row-generating PSP is more beneficial.

95

Chapter 6

CONCLUSIONS AND FUTURE

RESEARCH

Column generation is a well-studied concept and has been applied to many problems

in different application areas. In some problems that are solved by column generation,

the addition of new columns triggers the generation of a set of rows. This simultaneous

generation of both columns and rows has been of interest in the literature recently.

However, there has been no unified strategy to approach these problems which we re-

fer to as column-dependent-rows problems. In this thesis, we have primarily aimed at

characterizing the common aspects of these problems. Then, a unified way to han-

dle these problems and a generic methodology, coined simultaneous column-and-row

generation, have been developed. Then, we have applied this solution methodology to

time-constrained routing, multi-stage cutting stock and quadratic set covering problems

successfully. For the time-constrained routing and multi-stage cutting stock problems,

the optimal solution is reached in contrast to the algorithms in the literature. The last

problem has been considered in the column generation context for the first time and

its analysis has provided us a motivation for making the methodology as generic as

possible. Moreover, combination of the proposed column-and-row generation algorithm

with Lagrangian relaxation has also been investigated in this thesis. The theoretical

results are consolidated by the computational experiments.

96

The proposed generic algorithms are applied successfully to several example prob-

lems in this thesis. As long as the assumptions underlying the CDR problems are sat-

isfied, many other problems can be solved by the proposed solution method. Take for

instance a vehicle scheduling problem, where the trip times are exposed to disruptions

like delays or trip cancellations. Using a similar approach to that in [61], the resulting

problem can be shown to be a column-dependent-rows problem.

Note that the example problems that we consider are actually integer program-

ming problems. We only concentrated on the linear programming relaxation of the

problems. After the column-and-row generation algorithm terminates, we can solve an

integer program using the set of columns generated. However, this gives only an up-

per bound on the optimal integral solution. To reach the integral optimal solution, the

column-and-row generation algorithm can be embedded in a branch-and-bound scheme.

A follow-up work is the combination of the column-and-row generation algorithm

with the Benders decomposition. Using then delayed constraint generation along with

column-and-row generation can yield an efficient solution method.

97

Bibliography

[1] J. M. Van Den Akker, J. A. Hoogeveen, and S. L. Van De Velde. Parallel machine

scheduling by column generation. Operations Research, 47(6):862–872, 1999.

[2] P. Avella, B. D’Auria, and S. Salerno. A LP-based heuristic for a time-constrained

routing problem. European Journal of Operational Research, 173:120–124, 2006.

[3] P. Avella, A. Sassano, and I. Vasilev. Computational study of large-scale p-median

problems. Mathematical Programming, 109:89–114, 2007.

[4] E. Balas and M.C. Carrera. A dynamic subgradient-based branch-and-bound pro-

cedure for set covering. Operations Research, 44(6):875–890, 1996.

[5] F. Barahona and R. Anbil. The volume algorithm: producing primal solutions

with a subgradient method. Mathematical Programming, 87(3):385–399, 2000.

[6] F. Barahona and D. Jensen. Plant location with minimum inventory. Mathematical

Programming, 83:101–111, 1998.

[7] C. Barnhart, C.A. Hane, and P.H. Vance. Using branch-and-price-and-cut to solve

origin-destination integer multicommodity flow problems. Operations Research,

48(2):318–326, 2000.

[8] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance.

Branch-and-price: Column generation for solving huge integer programs. Opera-

tions Research, 46(3):316–329, 1998.

[9] M.S. Bazaraa and J.J. Goode. A cutting-plane algorithm for the quadratic set-

covering problem. Operations Research, 23:150–158, 1975.

98

[10] J. E. Beasley. Lagrangian relaxation. pages 243–303. John Wiley & Sons, Inc.,

New York, NY, USA, 1993.

[11] G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting. European Jour-

nal of Operational Research, 171(1):85–106, 2006.

[12] J. Benders. Partitioning procedures for solving mixed-variables programming prob-

lems. Numerische Mathematik, 4:238–252, 1962.

[13] X. Cai, D. C. McKinney, L. S. Lasdon, and Jr. D. W. Watkins. Solving large

nonconvex water resources management models using generalized benders decom-

position. Operations Research, 49:235–245, 2001.

[14] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering

problem. Operations Research, 47:730–743, 1999.

[15] D. Cattrysse, M. Salomon, R. Kuik, and L. N. Van Wassenhove. A dual ascent

and column generation heuristic for the discrete lotsizing and scheduling problem

with setup times. Management Science, 39(4):477–486, 1993.

[16] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics Of

Operations Research, 4(3):233–235, 1979.

[17] A.J. Conejo, E. Castillo, R. Minguez, and G.B. Raquel. Decomposition Techniques

in Mathematical Programming. Springer, New York, 2006.

[18] J.-F. Cordeau, F. Soumis, and J. Desrosiers. A benders decomposition approach

for the locomotive and car assignment problem. Transportation Science, 34(2):133–

149, 2000.

[19] J.-F. Cordeau, G. Stojkovic, F. Soumis, and J. Desrosiers. Benders decomposition

for simultaneous aircraft routing and crew scheduling. Transportation Science,

35(4):375–388, 2001.

99

[20] H. Crowder and M.W. Padberg. Solving large-scale symmetric travelling salesman

problems to optimality. Management Science, 26(5):495–509, 1980.

[21] G.B. Dantzig. Maximization of a linear function of variables subject to linear

inequalities. In T.C. Koopmans, editor, Activity Analysis of Production and Allo-

cation, pages 339–347. Wiley & Chapman-Hall, New York-London, 1947.

[22] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solution of a large-scale

travelling-salesman problem. Operations Research, 2:393–410, 1954.

[23] G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Opera-

tions Research, 8:101–111, 1960.

[24] G. Desaulniers, J. Desrosiers, Y. Dumas, S. Marc, B. Rioux, M.M. Solomon, and

F. Soumis. Crew pairing at Air France. European Journal of Operational Research,

97(2):245–259, 1997.

[25] G. Desaulniers, J. Desrosiers, and M.M. Solomon. Column Generation. Springer,

New York, 2005.

[26] G. Desaulniers, J. Desrosiers, and S. Spoorendonk. Cutting planes for branch-and-

price algorithms. Les Cahiers du GERAD G-2009-52, HEC Montréal, Forthcoming

in Networks, 2009.

[27] M. Desrochers, J. Desrosiers, and M.M. Solomon. A new optimization algorithm for

the vehicle routing problem with time windows. Operations Research, 40(2):342–

354, 1992.

[28] J. Desrosiers and M.E. Lübbecke. Branch-Price-and-Cut Algorithms. In J.J.

Cochran, editor, Encyclopedia of Operations Research and Management Science.

John Wiley & Sons, Chichester, 2011.

[29] O. du Merle, D. Villeneuve, Desrosiers J., and Hansen P. Stabilized column gen-

eration. Discrete Mathematics, 194:229–237, 1999.

100

[30] S. Elhedhli and J.-L. Goffin. Solution of a large-scale travelling-salesman problem.

Operations Research, 100(2):267–294, 2004.

[31] S. Elhedhli and J.-L. Goffin. Efficient production-distriburion system design. Man-

agement Science, 51(7):1151–1164, 2005.

[32] D. Feillet, M. Gendreau, A.L. Medaglia, and J.L. Walteros. A note on branch-and-

cut-and-price. Operations Research Letters, In Press, 2010.

[33] J.S. Ferreira, M.A. Neves, and P.F. Castro. A two-phase roll cutting problem.

European Journal of Operational Research, 44(2):185–196, 1990.

[34] L.M. Fisher. The lagrangean relaxation method for solving integer programming

problems. Management Science, 27(1):1–18, 1981.

[35] A. Frangioni and B. Gendron. 0-1 reformulations of the multicommodity capac-

itated network design problem. Discrete Applied Mathematics, 157:1229–1241,

2009.

[36] M. Gamache, F. Soumis, G. Marquis, and J. Desrosiers. A column generation ap-

proach for large-scale aircrew rostering problems. Operations Research, 47(2):247–

263, 1999.

[37] A. M. Geoffrion and G. W. Graves. Multicommodity distribution system design

by benders decomposition. Management Science, 20:822–844, 1974.

[38] A.M. Geoffrion. Generalized benders decomposition. Journal of Optimization

Theory and Applications, 10:237–260, 1972.

[39] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-

stock problem. Operations Research, 9:849–859, 1961.

[40] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.

Bulletin of the American Mathematical Society, 64:275–278, 1958.

[41] M. Guignard. Efficient cuts in lagrangean ‘relax-and-cut’ schemes. European Jour-

nal of Operational Research, 105(1):216–223, 1998.

101

[42] R.W. Haessler. A heuristic programming solution to a nonlinear cutting stock

problem. Management Science, 17(12):793–802, 1971.

[43] M. Held and R.M. Karp. The travelling salesman problem and minimum spanning

trees:part i. Operations Research, 18:1138–1162, 1970.

[44] M. Held and R.M. Karp. The travelling salesman problem and minimum spanning

trees:part ii. Mathematical Programming, 1:6–25, 1971.

[45] M. Held, P. Wolfe, and H.P. Crowder. Validation of subgradient optimization.

Mathematical Programming, 6:62–88, 1974.

[46] K. Hoffman and M.W. Padberg. Solving airline crew scheduling problems by

branch and cut. Management Science, 39:657–682, 1993.

[47] D. Huisman, R. Jans, M. Peeters, and A.P.M. Wagelmans. Combining column

generation and lagrangean relaxation. In G. Desaulniers, J. Desrosiers, and M.M.

Solomon, editors, Column Generation, chapter 9, pages 247–270. Springer-Verlag,

Boston, MA, 2005.

[48] R. Jans and Z. Degraeve. An industrial extension of the discrete lot-sizing and

scheduling problem. IIE Transactions, 36(1):47 – 58, 2004.

[49] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-

binatorica, 4(4):373–395, 1984.

[50] N. Katayama, M. Chen, and M. Kubo. A capacity scaling heuristic for the mul-

ticommodity capacitated network design problem. Journal of Computational and

Applied Mathematics, 232:90–101, 2009.

[51] L.G. Khachiyan. A polynomial algorithm in linear programming. Doklady

Akademiia Nauk SSSR, 244:1093–1096, 1979. (English translation: Soviet Mathe-

matics Doklady, 20(1), 1979).

102

[52] A. Klose. A lagrangean relax-and-cut approach for the two-stage capacitated facil-

ity location problem. European Journal of Operational Research, 126(2):408–421,

2000.

[53] N. Kohl and O.B.G. Madsen. An optimization algorithm for the vehicle routing

problem with time windows based on lagrangian relaxation. Operations Research,

45(3):395–406, 1997.

[54] C. Lemaréchal, J.J. Strodiot, and A. Bihain. On a bundle algorithm for nonsmooth

optimization. In O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, editors,

Nonlinear Programming, chapter 4, pages 331–358. Academic Press, New York,

1981.

[55] M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53:1007–1023, 2005.

[56] A. Lucena. Non delayed relax-and-cut algorithms. Annals of Operations Research,

140(1):375–410, 2005.

[57] J. Lysgaard, A.N. Letchford, and R.W. Eglese. A new branch-and-cut algorithm

for the capacitated vehicle routing problem. Mathematical Programming, 100:423–

445, 2004.

[58] T.L. Magnanti and R.T. Wong. Accelerated benders decomposition: Algorithmic

enhancement and model selection criteria. Operations Research, 29:464–484, 1981.

[59] S. Martello and P. Toth. Knapsack problems: algorithms and computer implemen-

tations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[60] İ. Muter, Ş.İ. Birbil, K. Bülbül, and G. Şahin. A note on “a LP-based heuristic for

a time-constrained routing problem”. Technical Report SU FENS 2010/0005, Sa-

bancı University, Istanbul, Turkey, March 2010. http://research.sabanciuniv.

edu/14198/.

103

[61] İ. Muter, Ş.İ. Birbil, K. Bülbül, G. Şahin, D. Taş, D. Tüzün, and H. Yenigün.

Solving a robust airline crew pairing problem with column generation. Computers

and Operations Research, 2010. To appear. http://dx.doi.org/10.1016/j.cor.

2010.11.005.

[62] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley-

Interscience, New York, 1988.

[63] M. Padberg and Rinaldi. G. Facet identification for the symmetric traveling sales-

man polytope. Mathematical Programming, 47:219–257, 1990.

[64] M. Savelsbergh. A branch-and-price algorithm for the generalized assignment prob-

lem. Operations Research, 45(6):831–841, 1997.

[65] M. Savelsbergh and M. Sol. Drive: Dynamic routing of independent vehicles.

Operations Research, 46(4):474–490, 1998.

[66] R.R. Saxena and S.R. Arora. A linearization technique for solving the quadratic

set covering problem. Optimization, 39:33–42, 1997.

[67] P.H. Vance. Branch-and-price algorithms for the one-dimensional cutting stock

problem. Computational Optimization and Applications, 9:211–228, 1998.

[68] F. Vanderbeck. Implementing mixed integer column generation. In G. Desaulniers,

J. Desrosiers, and M.M. Solomon, editors, Column Generation, chapter 12, pages

331–358. Springer-Verlag, Boston, MA, 2005.

[69] François Vanderbeck. Computational study of a column generation algorithm for

bin packing and cutting stock problems. Mathematical Programming, 86:565–594,

1999.

[70] François Vanderbeck. A nested decomposition approach to a three-stage, two-

dimensional cutting-stock problem. Management Science, 47(6):864–879, 2001.

[71] G. Wang and L. Tang. A row-and-column generation method to a batch ma-

chine scheduling problem. In Proceedings of the Ninth International Symposium

104

on Operations Research and Its Applications (ISORA10), page 301308, Chengdu-

Jiuzhaigou, China, 2010.

[72] E.J. Zak. Modeling multistage cutting stock problems. European Journal of Op-

erational Research, 141:313–327, 2002.

[73] E.J. Zak. Row and column generation technique for a multistage cutting stock

problem. Computers and Operations Research, 29:1143–1156, 2002.

105

Curriculum Vitae

Education

• 2007− 2011, Ph.D., Industrial Engineering, Sabancı University

Dissertation: Simultaneous Column-and-Row Generation For Solving Large-Scale

Linear Programs With Column-Dependent-Rows

• 2002− 2004, M.S., Operations Management, Celal Bayar University

Thesis: Design of Experiments for Quality Improvement

• 1995− 2000, B.S., Industrial Engineering, Dokuz Eylül University

Graduation Project: An Application of Sales Forecasting

Experience

• Sep 2007−Dec 2011, Teaching Assistant, Sabancı University

• Feb 2010−Jun 2010, Visiting Researcher, University of Bologna, Prof. Andrea

Lodi and Prof. Matteo Fischetti

Research Topic: Chvatal-Gomory Cuts for Integer Programs

• August 2007 − February 2010, Research Assistant, Sabancı University, Project

title: Robust Airline Crew Pairing: Models, Solution Techniques and Applica-

tions, supported by The Scientific and Technological Research Council of Turkey

(TÜBİTAK) under grant 106M472

• Feb 2005−Jul 2007, Teaching Assistant, Marmara University

106

• Feb 2002−Feb 2005, Teaching Assistant, Celal Bayar University

• Jul 2001− Jan 2002, Quality Assurence Systems Consultant, Işık Consulting Ltd.

Papers

• Muter, İ., The Use of Split Plot Designs in Industrial Design of Experiments and

the placement of Four - Level Factors into These Designs. Turkish Statistical

Institute, Journal of Statistical Research,2004,3,1, 21-34.

• Muter, İ., Ş.İ. Birbil, K. Bülbül, G. Şahin, D. Taş, D. Tüzün, H. Yenigün. Solving

A Robust Airline Crew Pairing Problem With Column Generation. Computers

and Operations Research, To Appear DOI: 10.1016/j.cor.2010.11.005, 2010.

• Muter, İ., Ş.İ. Birbil, and G. Şahin. Combination of Metaheuristic and Exact

Algorithms for Solving Set Covering-Type Optimization Problems. INFORMS

Journal on Computing, 2010, 22, 4, 603-619.

• Muter, İ., Ş.İ. Birbil, K. Bülbül, G. Şahin. Simultaneous Column-and-Row Gen-

eration for Large-Scale Linear Programs with Column-Dependent-Rows, Minor

Revision in Mathematical Programming, 2010.

• Muter, İ., Ş.İ. Birbil, K. Bülbül, G. Şahin. A Note on “A LP-based Heuristic

for a Time-Constrained Routing Problem”, Submitted to European Journal of

Operational Research, 2010.

Proceedings

• Çoban, E., İ. Muter, D. Taş, Ş.İ. Birbil, K. Bülbül, G. Şahin, Y.İ. Topçu, D.

Tüzün, H. Yenigün. Column Generation Approaches to a Robust Airline Crew

Pairing Model For Managing Extra Flights. Operations Research Proceedings

2008: Selected Papers of the Annual International Conference of the German

Operations Research Society (GOR), 2008, 439-444.

107

